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Abstract10

Payment Channel Networks (PCNs) have been a promising approach to scale blockchains. However,11

PCNs have limited liquidity: large-amount or multi-hop payments may fail. The major threat of12

PCNs liquidity is payment griefing, where the adversary who acts as the payee keeps withholding the13

payment, so that coins involved in the payment cannot be used for routing other payments before14

the payment expires. Payment griefing gives adversaries a chance to launch the congestion attack,15

where the adversary griefs a large number of payments and paralyses the entire PCN. Understanding16

congestion attacks, including their strategies and impact, is crucial for designing PCNs with better17

liquidity guarantees. However, existing research has only focused on the specific attacking strategies18

and specific aspects of their impact on PCNs.19

We fill this gap by studying the general congestion attack. Compared to existing attack strategies,20

in our framework each step serves an orthogonal purpose and is customisable, allowing the adversary21

to focus on different aspects of the liquidity. To evaluate the attack’s impact, we propose a generic22

method of quantifying PCNs’ liquidity and effectiveness of the congestion attacks. We evaluate our23

general congestion attacks on Bitcoin’s Lightning Network, and show that with direct channels to24

1.5% richest nodes, and ∼ 0.0096 BTC of cost, the adversary can launch a congestion attack that25

locks 47% (∼280 BTC) coins in the network; reduces success rate of payments by 16.0%∼60.0%;26

increases fee of payments by 4.5%∼16.0%; increases average attempts of payments by 42.0%∼115.3%;27

and increase the number of bankruptcy nodes (i.e., nodes with insufficient balance for making28

normal-size payments) by 26.6%∼109.4%, where the amounts of payments range from 0.001 to 0.01929

BTC.30

2012 ACM Subject Classification Security and privacy → Distributed systems security31

Keywords and phrases Blockchain, PCN, Congestion32

Digital Object Identifier 10.4230/OASIcs...33

1 Introduction34

Public blockchains suffer from limited throughput. Payment Channel Network (PCN) –35

introduced by the Lightning Network (LN) [16] – is one of the promising ways to scale36

blockchains. Payment channels enable off-chain payments, i.e. payments that do not need to37

be recorded on the blockchain. To open a payment channel, two nodes collateralise some coins38

in a joint address. They can make a payment by signing a new transaction that updates their39

balances. To close the channel, one of the two nodes commits the transaction recording the40

latest balance allocation to the blockchain. If two nodes do not have a direct channel, they41

can make payments to each other using multi-hop payments, i.e., payments going through42

one or more intermediate channels. In a multi-hop payment, the payer has to find a path43

that directs him to the payee. The payment is made by updating balances of these channels44
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in an atomic way. The atomic update can be achieved by Hash Time Locked Contracts45

(HTLCs): the payment in each hop is locked by a hash value chosen by the payee, and all46

payments proceed if the payee reveal a hash value’s preimage before a timeout to redeem the47

payment from the payer, otherwise the payment will expire. In a HTLC-based multi-hop48

payment, the payee chooses a preimage, and nodes make HTLC payments on all involved49

channels with this preimage’s hash value. Revealing this preimage activates these HTLC50

payments simultaneously.51

Payment griefing. A well-known attack on HTLC-based multi-hop payments is payment52

griefing [18], where the adversary makes a payment and withholds the preimage, so that53

coins involved in this payment are locked and cannot be used in other payments before the54

griefing payment expires. Thus, payment griefing can reduce the PCN’s liquidity, i.e. the55

ability of routing payments. In addition, payment griefing is free, as the payer does not need56

to pay anything for failed payments. Moreover, payment griefing is also unaccountable, as 1)57

the victim cannot distinguish between a normal failed payment and a griefing payment, and58

2) the intermediate nodes can not know the payer and payee’s identity.59

Congestion attacks. Griefing opens an important attack vector on HTLC-based PCN’s60

liquidity, namely the congestion attack [1, 13]. In a congestion attack, the adversary initiates61

a large number of concurrent payments and griefs them. Consequently, some channels hit the62

limit of max_concurrent_htlcs, i.e., the number of concurrent unsettled payments allowed in63

the channel, and therefore cannot route payments before the adversary’s payments expire.64

By launching a large-scale congestion attack, the entire PCN can be paralysed, i.e., the PCN65

cannot route further payments.66

PCNs’ liquidity: what is the real limit? Understanding congestion attacks is important67

for understanding PCNs’ liquidity and therefore future PCN design. However, congestion68

attacks are still a new concept and haven’t been well-studied yet. While existing research [1,13]69

only considers max_concurrent_htlcs as an exhaustible resource, it’s unclear whether there70

exists other resources that can be exhausted to create congestion. In addition, existing71

congestion attacks apply a rather straightforward attack strategy, which will be analysed in72

detail in §7. Moreover, we also observe that liquidity – the congestion attack’s target – is not73

well-defined yet. Besides the amount of locked balance and the number of locked channels74

mentioned in Mizrahi et al. [13], some other metrics such as success rate of payments, fee75

of payments, and number of attempts for making a payment have direct indications on the76

PCN’s liquidity. Congestion attacks over these metrics are not explored before.77

This work: general congestion attacks. In this paper, we fill this gap by introducing78

general congestion attack, which generalises the existing congestion attack in terms of attack79

strategies and targeted metrics. We introduce a framework for launching congestion attacks,80

where the adversary generates Sybil nodes connecting to a carefully chosen set of nodes,81

establishes channels with them, initiates numerous multi-hop payments between its nodes,82

and griefs these payments simultaneously. Compared to existing studies that put less effort83

on the order of payments to be griefed [13,21], we provide five strategies for ranking these84

payments, and each strategy focuses on some specific aspects of liquidity. To quantify the85

effectiveness of congestion attacks, we introduce a generic method of quantifying PCNs’86

liquidity. We evaluate the congestion attack on Bitcoin’s LN – the first and most well-known87

PCN. Our results show that congestion attacks can significantly damage the liquidity of88

PCNs. In particular, with direct channels to 1.5% richest nodes, the adversary can launch a89

congestion attack that locks 47% (∼280 BTC) coins in the network; reduces success rate90

of payments by 16.0%∼60.0%; increases fee of payments by 4.5%∼16.0%; increases average91

attempts of payments by 42.0%∼115.3%; and increase the number of bankruptcy nodes by92
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26.6%∼109.4%, where the amounts of payments range from 0.001 to 0.019 BTC.93

While being effective, our general congestion attacks are cheap to launch. The only cost94

of general congestion attacks is the fee for establishing channels. Our evaluation shows that,95

a successful attack on LN requires channel fee of approximately 0.0096 BTC. The adversary96

does not lose its custody (i.e., coins in the channel) during the attack, as payments for97

griefing will expire.98

Roadmap. Section 2 provides the background of PCNs and griefing. Section 3 describes99

the security model and the congestion attack. Section 4 describes the method of quantifying100

PCNs’ liquidity. Section 5 evaluates congestion attacks on LN. Section 6 discusses the101

cost of congestion and strategy to utilise it for making a profit. Section 7 reviews relevant102

literature, and provides a quantitative comparison between the general congestion attack103

and the existing ones. Section 8 concludes this paper.104

2 Background105

2.1 Payment Channel Networks106

Lightning Network (LN) [16] introduces the idea of Payment Channel Networks. A payment107

channel allows two parties to pay each other without the need to publish every payment to108

the blockchain. Instead, they collateralise their coins into a 2-of-2 multi-signature address.109

They can make payments by mutually signing new transactions with updated balances. They110

can make payments with each other by mutually signing new transactions with updated111

amounts of their collateralised coins. To close the channel, one party commits the latest112

state of channel balance to the blockchain, and coins in the channel will be allocated to both113

parties accordingly.114

A B C

C sends h to A

A and B sign H1e−07
AB

B and C sign H9e−08
BC

C reveals s to B to advance H9e−08
BC

B reveals s to A to advance H1e−07
AB

Figure 1 A multi-hop payment from A to C via an intermediate node B.

The system can be further extended to support multi-hop payments. Most multi-hop115

payment protocols are based on Hash Time Locked Contracts (HTLCs). HTLC is a contract116

between two parties which guarantees that a payment will be made if the payee shows the117

preimage of a hash value before a negotiated block height on the blockchain. If the payee118

does not show the preimage and the timeout expires, the payment is deemed invalid.119

Figure 1 describes a multi-hop payment where A pays 9e-08 BTC to C via an intermediate120

node B in Bitcoin’s LN. First, C chooses a random string s as preimage and sends its hash121

value h = H(s) to A, where H(·) is a cryptographic hash function. A then signs a HTLC122

contract H1e−07
AB with B stating “A will pay 1e-07 BTC to B if B can show the value of s123

within (e.g.) 144 blocks”. B also signs a HTLC contract H9e−08
BC with C saying that “B will124

pay 9e-08 BTC to C if C can show the value of s within (e.g.) 138 blocks”. Then C shows125
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s to B to redeem 9e-08 BTC in H9e−08
BC from B. Meanwhile, B can redeem 1e-07 BTC in126

H1e−07
AB from A by revealing s to A. B is incentivised to reveal s, as B does not want to lose127

money. The timelock of AB is set to be longer than BC, so B always has sufficient time to128

reveal s to A.129

By routing this payment, B gets 1e-08 BTC from A. This is known as “fee”, which is130

paid by the payer and is used for encouraging nodes to route multi-hop payments. In LN, fee131

consists of a fixed base fee and proportional fee that fluctuates according to the congestion132

level of the network. To minimise the cost, payers usually search for a path with the least133

fee when making payments.134

2.2 Payment Griefing135

If the payee C reveals the preimage on time and the intermediate node B is rational, the136

multi-hop payment will happen. However, as we mentioned before, there exists an attack137

called payment griefing [4], where the payee withholds the preimage until HTLCs expire.138

Before HTLC expires, coins involved in all channels of this payment are locked and cannot139

route other payments.140

Payment griefing is a threat to PCNs’ liquidity. If a big portion of coins in a PCN are141

locked, the PCN will no longer be able to route payments. Payment griefing is cheap, as142

the payment does not really happen and the payer does not pay for the fee to intermediate143

nodes. Identifying payment griefing can be hard, as nodes cannot distinguish whether the144

withholding is due to network delay, on purpose, or by accident. If the PCN’s routing protocol145

is privacy-preserving, payment griefing can even be launched anonymously. For example,146

Bitcoin’s LN adopts Sphinx [7], where each intermediate node only has the knowledge of147

nodes who directly connect with him.148

2.3 Congestion attack149

Attacker

Attacker

Attacker

1
1

1 1

2 2 2 2

3

3

22

Attacker

3

Figure 2 Congestion attack.

In a congestion attack, the adversary establishes payment channels with existing nodes150

in the PCN, and make numerous multi-hop payments between its nodes simultaneously.151

Then, the adversary withholds preimages until these payments expire. Before that, coins152

locked in these payments cannot be used in other payments. If the adversary has sufficient153

custody, it can lock a great portion of coins in the PCN so that the PCN may be paralysed.154
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Figure 2 shows the intuition of the congestion attack, where the adversary generates Sybil155

nodes connecting to a carefully chosen set of nodes, establishes channels with them, initiates156

numerous multi-hop payments between its nodes, and griefs these payments simultaneously.157

To reduce the custody required for an attack, Mizrahi et al. [13] proposed to lock the chan-158

nel by initiating numerous payments with small amounts to occupy all max_concurrent_htlcs,159

the maximum number of concurrent payments in a channel. In addition, they propose three160

strategies for enumerating payment paths. Tikhomirov et al. [21] provided another strategy,161

where the adversary attacks a single channel rather than a path for each step.162

We compare the strategies of our attack with those of Mizrahi et al. [13] and Tikhomirov163

et al. [21] in §3.2, and compare the cost and effectiveness in §7. The result show that. If164

the attacker is fee-sensitive, then our attack is preferred because our fees are 16% of and 5%165

of other two. Whereas, if the attacker has a restricted custody in hand, then the attack by166

person Mizrahi et al. is more preferred, as the custody required is only 1.5% of our attack167

(in case of locking 41% network’s capacity).168

3 General congestion attack169

3.1 Model170

We consider a HTLC-based PCN that is identical to Bitcoin’s Lightning Network as described171

in §2.1. We model the PCN as a weighted directed graph G = (V, E). V is the set of nodes172

in the network, and all v∗ in the remainder of the paper refer to a specific element (i.e. a173

node) in V . E is a set of tuples (vs, vt, capacity), which represents a channel with a capacity174

of capacity from vs to vt. Since channels in LN is bi-directional, a channel is represented in175

the graph as two opposite edges (vs, vt, capacity) and (vt, vs, capacity). A payment P is a176

dictionary {amount : α, path : path}, where α is the amount of coins that the payer wants177

to pay to the payee and path is the path of payment (a list of edges). Then, P denotes list178

of payments enumerated by the attacker. Meanwhile, we use l to refer the length of path.179

For simplicity, we do not consider the impact of timelocks on our attack. The payer also180

needs to pay some fee fi for each intermediate node i on the path. We can now get the size181

of a multi-hop payment θ as182

θ = α · l +
l∑

i=2
fi

In addiciton, we use Γv to refer the total capacity of all channels connecting to v.183

Therefore, the richest node we defined earlier is the node with the largest Γv.184

We consider nodes in the PCN are rational. Each honest node in a multi-hop payment185

will reveal the preimage of the hashlock to the upstream node once the node knows it. We186

assume a malicious adversary, who has sufficient coins and aims at paralysing the entire187

PCN with minimal cost. The adversary does not control any node in the beginning, but188

has the knowledge of the network topology and each channel’s capacity and fee policy. The189

information can be retrieved from PCN’s P2P protocol, evidenced by existing studies [5, 10].190

When the adversary establishes a channel with a node, the node is willing to provide sufficient191

capacity. According to liquidity providers such as Bitrefill [3], purchasing capacity from192

nodes is easy and costs negligible coins. Moreover, if an adversary just wants to attack PCN193

for a period of time, it can use the channel lease marketplace like lightning pool [14] to get194

incoming liquidity at a much lower cost.195
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3.2 Attack framework196

We generalise the congestion attack in terms of attack strategies and liquidity metrics. We197

propose a framework for launching congestion attacks. The framework consists of four steps198

as follows.199

1. Node selection: the adversary chooses a set of nodes and establishes channels with200

them.201

2. Payment enumeration: the adversary enumerates all payments between its nodes.202

3. Path ranking: the adversary orders these payments.203

4. Launching attack: the adversary starts to make and abort payments in this order.204

Comparison with existing attack strategies. While existing congestion attacks [13,21]205

start by enumerating griefing paths or griefing channels, our attack chooses nodes in the206

beginning and enumerates paths within the given set of nodes. Such design allows us to207

divide the attack into multiple steps with orthogonal purposes, revealing the complete design208

space for congestion attacks. Specifically, the adversary decides resources (e.g., channel209

capacity or the max_concurrent_htlc parameter) to congest when enumerating payments,210

and decides its focus of liquidity metrics when ranking payments.211

In addition, in existing congestion attacks [13, 21], the adversary has to create new212

channels when attacking a new channel or path. Therefore, the adversary has to establish213

a large number of channels, which incurs additional transaction fees on the underlying214

blockchain. In contrast, our attack chooses nodes in the beginning and enumerates paths215

within the given set of nodes, and therefore requires much fewer channels.216

3.3 Node selection217

The adversary’s first step is to join the PCN by establishing channels with existing nodes. We218

analyse the adversary’s strategy on the type of nodes and the number of nodes to establish219

channels with.220

Type of nodes to establish channels with. We suggest establishing channels with the221

richest (w.r.t. total capacity of involved channels) nodes (which we call hubs) in the network,222

as they are likely to route more griefing payments than a normal node. If establishing223

channels with nodes with little capacity, the adversary has to establish channels with more224

nodes, leading to more fee on establishing channels.225

Number of nodes to establish channels with. The number of nodes to establish226

channels with depends on how the adversary enumerates griefing payments (i.e., the second227

step). By establishing channels with sufficient nodes, the total size of enumerated payments228

will take the majority of the network capacity, and therefore the congestion attack will take229

effect. Later in §5.1, we will show that for Bitcoin’s Lightning Network, by establishing230

channels with the top 1.5% richest nodes the enumerated payments can occupy 81% of the231

network capacity ideally (47% in the experiment).232

3.4 Enumerating payments233

After establishing payment channels, the adversary enumerates all possible payments between234

its nodes. To this end, the adversary has to find all paths between each pair of its nodes,235

and calculate the maximum amount that each path can afford. Our payment enumerating236

algorithm builds upon the Ford–Fulkerson algorithm [9] - a maximum flow algorithm in237

graph theory. Maximum flow is a classic problem in graph theory, which aims at finding the238
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Algorithm 1 Enumerating payments.

Input:
1: The entire network G = (V, E)
2: The adversary’s node list N
Output:
3: The list of payments P

4: P ← []
5: for (v1, v2) in N .combination() do
6: path_list← BFS(G, v1, v2)
7: for path ∈ path_list do
8: P ← {path : [], amount : 0}
9: P.path← path

10: capacity_list← [edge.capacity for edge in path]
11: α← min(capacity_list) . Max viable amount
12: if α = 0 then continue . This path is not viable
13: P.amount← α . P is a viable payment
14: Append P to P
15: Consume P in G
16: end for
17: end for
18: return P

maximum amount of flow that the network allows from a source to a sink. Ford–Fulkerson239

algorithm is one of the most effective algorithms to solve the maximum flow problem. Given240

a weighted directed graph and two vertices. The Ford-Fulkerson algorithm uses Breadth-241

First Search (BFS) [12] to find all paths between these two vertices. For each path, the242

maximum viable amount is the minimum weight of edges. Algorithm 1 describes the process243

of enumerating payments in Python syntax. First, it enumerates the binary combinations244

of nodes who the adversary establishes channels as the starting and ending points of the245

path. Second, it executes BFS to find all paths between each two adversary nodes similar246

Ford–Fulkerson. Third, we derive the most viable amount using the least channel capacity247

for each path. Last, it consumes this payment from the graph and adds this payment to our248

payment list, i.e., we subtract the amount of this payment from the capacity of all channels249

on the path.250

3.5 Ranking payments251

Different griefing payments have different impacts on the PCNs’ liquidity. With limited252

balance, the adversary has to start from griefing important payments for maximising the253

attack’s effect.254

Rank-by-length, -amount and -size. We first consider three ranking criteria, namely255

the length, amount, and size θ of a payment. Rank-by-length aims at maximising the effect256

while minimising the cost, as long payments lock most capacity with the least amount.257

Rank-by-amount aims at attacking the channel with large capacity. Since real-time balance258

in LN cannot be seen, payer tends to prefer to go through channels with large capacities to259

reduce the number of attempts. Rank-by-size aims at maximising the attack effect without260

considering the custody, as payments with large sizes cost most collateral.261
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Rank-by-fee. Inspired by B’eres et al. [5], we consider rank-by-fee, where the adversary262

starts from attacking channels with lower fees. This aims at maximising the average channel263

fee of normal payments after the attack. The ranking criterium Score(P ) for payment P is264

calculated as265

Score(P ) = −
∑l

i=2 fi

l

Rank-by-bankrupt. In addition, we consider the bankruptcy rates presented by Dandekar266

et al. [6, 17, 20] as a ranking criterium. The adversary first attacks channels that make most267

nodes “bankrupt”. Dandekar et al. introduced credit networks [6], where nodes are connected268

by edges with a limited resource called credit. We model the PCN as a credit network269

following Ramseyer et al. [17], where each channel’s credit is its capacity. Liquidity in a credit270

network is quantified as the probability that nodes become bankrupt, i.e., loss of all credit.271

Dandekar et al. [6] proved that the probability that a node v goes bankrupt is upper-bounded272

by 1
Γv+1 , where Γv is the total capacity of all channels connecting to v. Griefing can be273

seen as “removing” the capacity of nodes, and therefore increases the probability of nodes274

becoming bankrupt. In rank-by-bankrupt, the adversary first attacks payments that reduce275

the most mathematical expectations of the probability of nodes becoming bankrupt.276

The bankruptcy criterium is quantified as the total increased probability Score(P ) of277

nodes in P becoming bankruptcy278

Score(P ) = Scoret(v1, α) +
l∑

i=1
Scorei(vi, α) + Scoret(vl+1, α)

where Scoret(v1, α) and Scoret(vl+1, α) are the increased probability of node v1 and vl+1,
respectively, and Scorei(vi, α) is the increased probability of intermediate nodes vi where
i ∈ [2, l]. For node v = v1 or vl+1, the capacity is reduced by α, so

Scoret(v, α) = 1
Γv − α+ 1 −

1
Γv + 1

Meanwhile, for intermediate nodes v = vi where i ∈ [1, l − 1], the capacity is reduced by 2α,
so

Scorei(v, α) = 1
Γv − 2α+ 1 −

1
Γv + 1

3.6 Launching attack279

To obtain a list of griefing payments before launching the attack, we use channels’ capacities280

rather than their balances for determining the amounts of payments. As balances are281

fluctuating in real-time, some of the enumerated payments may not succeed during the attack.282

In real-world PCNs, if a node cannot route a payment, the node will reply to the payer with283

an error message, e.g., LN calls this error InsufficientFunds. Thus, we introduce a retry284

mechanism that, when a griefing payment is rejected, the adversary reduces its amount by a285

parameter step, and retries the same path until it is successful or the amount reaches zero.286

Algorithm 2 describes the attack process. To avoid being detected due to the retry pattern,287

the adversary can obfuscate the payment pattern, e.g., by dividing payments into multiple288

ones with random amounts.289
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Algorithm 2 Launching attack.

Input:
1: The list of ranked payments Pranked

2: The dropping step ratio step_ratio
3: The custody of the adversary B

4: for P in Pranked do
5: if B ≤ 0 then
6: return ;
7: end if
8: step_amount← step_ratio ∗ P.amount
9: while True do
10: response← make_payment(P )
11: if response = InsufficientFunds then
12: P.amount = P.amount− step_amount
13: if P.amount ≤ 0 then break
14: continue
15: end if
16: B = B − P.amount
17: break
18: end while
19: end for

4 Quantifying PCNs’ liquidity and congestion attacks’ impact290

We propose a generic method of quantifying PCNs’ liquidity and congestion attacks’ impact.291

In our method, we generate a batch of payments, simulate them on the PCN, and calculate292

liquidity metrics. The liquidity metrics include the success rate, the average cost and the293

number of attempts of payments, and the number of bankruptcy nodes. A congestion attack’s294

impact is quantified as the liquidity difference before and after the attack.295

4.1 Generating payments for simulation296

We follow the approach of Béres et al. [5] to test PCNs’ liquidity. Specifically, we generate a297

batch of n payments, of which payers and payees are random and the amount xt is fixed. We298

test multiple batches of payments with different amounts to cover regular payment scenarios,299

which will be discussed in §5.300

We simulate these payments in the PCN. Each payment is allowed to try r times to find301

a viable path. If it finds a path within r tries, we consider it successful, otherwise failed.302

Then the payments can be categorized into three states according to the status before and303

after the attack, namely added, survived, or removed. Added means the payment fails before304

the attack but is successful after the attack. Survived means the payment is successful both305

before and after the attack. Removed means the payment is successful before the attack but306

fails after the attack. Since our analysis is based on successful payments, payments that fail307

both before and after the attack are ignored here.308

Interestingly, some payments are added. Assuming a payments P1 = A→ B → C → D309

fails before the attack since BC has insufficient balance. For example, if some successful310

payments that would have gone through BC failed after the attack, then channel BC would311
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become available to P1. Another example is that the attack may cause some payments to312

change their paths. Suppose a successful payment P2 originally went through EF and was313

forced to go through CB after the attack, then the balance of BC will increase and make it314

have enough balance to route P1.315

4.2 Calculating liquidity metrics316

We derive the PCNs’ liquidity from the execution results of the simulated payments. We317

consider the following five metrics: 1) amount of locked funds, 2) success rate of payments,318

3) fee of payments, 4) average attempt times of payments and 5) the number of bankruptcy319

nodes. A congestion attack’s impact is quantified by the difference of liquidity metrics before320

and after the attack.321

5 Evaluation of congestion attacks322

In this section, we evaluate congestion attacks on Bitcoin’s Lightning Network (LN), the323

first and most well-known PCN. We analyse the impact of congestion attacks with different324

strategies in terms of the defined five liquidity metrics. Our results show that the adversary325

who adopts congestion can severely limit the functionality of the entire PCN. Specifically,326

the adversary can launch a congestion attack that locks 47% (∼280 BTC) coins in the327

network; reduces success rate of payments by 16.0%∼60.0%; increases fee of payments by328

4.5%∼16.0%; increases average attempts of payments by 42.0%∼115.3%; and increase the329

number of bankruptcy nodes by 26.6%∼109.4%, where the amounts of payments range from330

0.001 to 0.019 BTC.331

5.1 Experimental setting332

Implementation and simulation setting. We simulate and implement our attack333

using Python 3.7.4 and NetworkX. For simplicity, we implement all algorithms sequentially.334

Adversaries can use multi-threaded programming to speed up the algorithm if they prefer335

efficiency. The topology provided by B’eres et al. [5] is the snapshot of the LN in 2019 (we336

checked the network snapshot for 2021 and found the topology to be similar to 2019, so337

we believe the results are similar of simulation on the 2021 snapshot). The snapshot also338

includes the fee policy for each channel as well as the capacity. Since the balance distribution339

characteristics of LN are not publicly available, we apply the random uniform distribution340

for initialising the channels’ balances similar to existing studies [5]. To amortise the bias341

from randomness, we run each group of simulations with a certain strategy and custody level342

for ten times. Our results show that the coefficient of variation for the quantitative impact343

of the different balance distributions is only 1%.344

Payment routing mechanism. In the real-world scenario, payments may sometimes fail,345

as nodes cannot know the real-time balances of channels they do not involve. LN introduces346

a success probability mechanism to optimise the routing. Specifically, if intermediate node347

A is unable to forward a payment because of insufficient balance, then it will return an348

error to the sender. The sender will temporarily reduce the success probability of this node.349

The path finding mechanism of LN is finding the shortest path on a weighted graph. For350

simplicity, we set the weight as channel fee. The routing algorithm is the plain Dijkstra [8]351

algorithm. When an attempt fails, we temporarily remove the first node on the current path352

with insufficient balance and try again. A payment is allowed to try r times for finding a353

viable path. If it finds a path within r tries, it is successful, otherwise we consider it fails.354
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Figure 4 Characterisation of enumerated payments and the amount of locked balance.

Parameters. We test attacks with different levels of custody of the adversary, i.e.,355

{7.7, 15.4, . . . , 77} BTC, all ranking criteria in Section 3.5, and step_ratio = 0.1 in Al-356

gorithm 2. When testing LN’s liquidity, we pick batch size n = 7000 for testing liquidity(which357

is identical to to existing works [5]), payment amount xt ∈ {0.001, 0.007, 0.013, 0.019} BTC,358

and payment retry times r = 10. In total, we ran 10 ∗ 4 ∗ 10 ∗ 5 = 2000 (retry times * # of359

payment amounts * # of different custody levels * # of strategies) simulations. We consider360

the threshold of bankruptcy as 0.006 BTC, which is the average amount of payments in361

LN [5].362

Choosing entry nodes. We test the percentage of the capacity that the adversary can lock363

by establishing channels with different numbers of richest nodes in LN. Figure 3 shows that,364

by establishing channels with the top 1.5% (42) richest nodes, the enumerated payments take365

∼ 83% of the capacity of the entire network. In addition, the total amount of enumerated366

payments converges with the percentage of hubs increasing.367

5.2 Impact of congestion attacks368

We simulate the general congestion attack with five strategies in §3.5, and evaluate their369

impact in terms of the five metrics defined in §4. Figure 4 summarises the results under370

rank-by-length strategy, figures of all strategies appear in the full version available online [?].371

For Figure 4(b) and Figure 5, the baseline (when x = 0) is the scenario without any attack.372

Characterisation of enumerated payments. As mentioned before, we establish chan-373

nels with the 42 richest nodes in the network. Algorithm 1 enumerates 35,402 payments in374

total. Figure 4(a) visualises the distribution of these payments w.r.t. their amounts and375
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Figure 5 Overview of impacts of rank-by-fee.

lengths. Red indicates there are many griefing paths under that path length and payment376

amount, while blue means the opposite. The amount ranges from zero to 0.1 BTC, while377

the length ranges from 1 to 13. On average, most payments have a length of 3 ∼ 6 and an378

amount of 1e− 05 ∼ 0.01 BTC.379

Locked balance. With a custody of 80 BTC (13% of the total capacity), an adversary can380

lock 280 BTC (47% of the total capacity) in LN, where rank-by-length is the most efficient381

strategy for locking balance. The average length of griefing payments is 3.8, which implies382

that there is room for optimisation of our path enumeration algorithm, since LN allows a383

maximum payment length of 20 hops.384

Impact on different liquidity metrics. Figure 5 shows the result of the rank-by-fee385

strategy on LN as an example. With the rank-by-fee strategy and 7 ∼ 80 BTC as custody,386

the attack can reduce the payments’ success rates by 21.4%∼52.3%, increase the fee by387

9.3%∼27%, increase the number of attempts by 50%∼88.7%, and increase the number of388

bankrupt nodes by 26.7%∼60%.389

6 Discussion390

Budget analysis. The budget of launching congestion attacks is twofold: 1) channel391

fee for establishing channels and 2) custody deposited into channels. When preparing for392

a congestion attack, the adversary needs to pay the transaction fee for opening channels.393

Transaction fee is negligible as analysed in §5.1. After the congestion attack, the custody394

is refunded as payments are expired. For LN, the required custody is 77 BTC (13% of the395

network capacity). In Bitcoin, there are more than 10,000 addresses with more than 157396

BTC [2], making them having sufficient capacity to launch a congestion attack.397

Profit from congestion attacks. The adversary can apply griefing on other nodes’398

channels, so that more payments go through its controlled channels. To receive most fees399

following this approach, the adversary redirects as many payments to its channels as possible.400

Existing research [22] shows that the probability is proportional to the adversarial node’s401

betweenness centrality, while maximising the betweenness centrality by removing channels402

can be formalised as the destructive betweenness improvement problem that is NP-hard [11].403

To our knowledge, there exists no approximation algorithm to solve this problem, and we404

consider designing such algorism as future work.405
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7 Related work and comparison406

7.1 Attacks on PCNs407

Congestion attacks. Congestion attack was informally discussed by Lightning Network408

community [1]. Mizrahi et al. [13] first systematically studied the congestion attack on PCNs.409

In their proposed attack, the adversary makes a large number of small payments, in order to410

make channels hit max_concurrent_htlcs, the maximum number of concurrent payments.411

Tikhomirov et al. [21] used the same idea to lock the balance of the channel, but they only412

grief a single channel at a time.413

The two congestion attacks focus on a single attack liquidity metric, or put limitations414

on the attack strategy, and therefore can be seen as special cases of our general congestion415

attack. In addition, as their attacks focus on a single path or channel at a time, the adversary416

has to establish new channels when attacking a new path or channel. Establishing a large417

number of channels makes the adversary easier to be identified, and existing nodes may418

not be willing to establish too many channels in a short time period. Moreover, to occupy419

max_concurrent_htlcs, the adversary in their two attacks has to make a large number of420

concurrent payments compared to our attack. This also makes the adversary’s behaviour421

easier to be identified.422

Other attacks on PCNs. There have been attacks on PCNs with different goals. In423

the lockdown attack [15], the adversary griefs the victim’s channels to isolate it from the424

network. In the hijacking attack [22], the adversary publishes channels with small fee to425

attract payments, and withhold all payments through its channels. Rohrer et al. [19] discussed426

two attacks, namely channel exhaustion and node isolation. While congestion attacks aim427

at paralysing the entire PCN, these three attacks aim at exhausting individual channels or428

isolating individual nodes.429

7.2 Quantitative comparison with existing congestion attacks430

We quantitatively compare existing congestion attacks [13, 21] with ours w.r.t. different431

budget level of custody and channel fee and different max_concurrent_htlcs value distribution.432

For both attacks, we simulate the capacity-first strategy. The strategy iterates the following433

process: when a path is enumerated, calculate the total capacity of involved channels whose434

max_concurrent_htlcs values have been filled, then remove these channels from the network.435

Locking a channel by using max_concurrent_htlcs takes max_concurrent_htlcs * 2 payments436

(as a channel has two directions). The smallest payment amount is 5.46e-06 BTC (i.e. the437

dust limit). Thus, the custody required for griefing a path is 2 * max_concurrent_htlcs *438

5.46e-06 BTC. When enumerating a path, we check whether both ends have channels with439

the adversary. If not, the adversary has to establish channels with them, leading to a fee of440

0.0002 BTC (∼ 18.89 USD at the time of writing).441

To quantify the impact of max_concurrent_htlcs, we test the locked capacity when442

different portions of channels adjust max_concurrent_htlcs. Given the size limit of Bitcoin443

transactions, the maximum value of max_concurrent_htlcs in Bitcoin’s LN is 483. Thus,444

we assume the adjusted value of max_concurrent_htlcs is uniformly distributed in interval445

[1, 483]. When the custody is limited, we assume the fee is unlimited, and vice versa.446

Figure 6 shows the experimental results. Each experiment is repeated 10 times, and447

the variation of experimental results is about 2.4%. As the results are similar after the448

20% channel adjustment, we skipped the simulation in 30%-90% for brevity. Figure 6(a)449

shows the performance of the three attacks under different custody. When all channels share450

© Zhichun Lu, Runchao Han and Jiangshan Yu;
licensed under Creative Commons License CC-BY 4.0

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


0 50
Custody (BTC)

0

250

500
Lo

ck
ed

 b
al

an
ce

 (B
TC

)
0% adjustment

0 50
Custody (BTC)

0

250

500
10% adjustment

0 50
Custody (BTC)

0

250

500

20% adjustment

0 50
Custody (BTC)

0

250

500

100% adjustment

Tikhomirov et al. Mizrahi et al. This paper

(a) Comparison of attacks with limited custody.

0.00 0.25 0.50
Transaction fee (BTC)

0

250

500

Lo
ck

ed
 b

al
an

ce
 (B

TC
)

0% adjustment

0.00 0.25 0.50
Transaction fee (BTC)

0

250

500
10% adjustment

0.00 0.25 0.50
Transaction fee (BTC)

0

250

500
20% adjustment

0.00 0.25 0.50
Transaction fee (BTC)

0

250

500
100% adjustment

(b) Comparison of attacks with limited cost.

Figure 6 Comparison with congestion attack. x% adjustment means x% channels adjust their
max_concurrent_htlcs.

the same max_concurrent_htlcs, Mizrahi et al.’s attack locks most capacity. When more451

channels adjust max_concurrent_htlcs, the locked capacity becomes less. This is because452

when channels in a path have different max_concurrent_htlcs values, the adversary can only453

congest the channel with the smallest max_concurrent_htlcs in this path by spamming this454

path only, making the strategy of Mizrahi et al. less effective. Meanwhile, Tikhomirov et455

al.’s attack and our attack are not affected by max_concurrent_htlcs. This is because our456

attack does not rely on max_concurrent_htlcs and the number of concurrent htlcs occupied457

by our attack averaged only 3.8 per channel, and Tikhomirov et al.’s attack focuses on a458

channel at a time. Figure 6(b) shows that, both Tikhomirov’s and Mizrahi’s attacks require459

more transaction fee compared to our attack. This is because, in their attacks, the adversary460

has to open a new channel when attacking a new path. With sufficient transaction fee,461

Tikhomirov’s locks more money compared to our attack.462

To lock in 250 BTC of liquidity. The attack by Mizrahi et al et al. requires 1 BTC of463

custody and pays a transaction fee of 0.05 BTC, the attack by person Tikhomirov et al.464

requires 8 BTC of custody and a fee of 0.15 BTC, while our attack requires 65 BTC of465

custody and a fee of 0.008 BTC. Therefore, if the attacker is fee-sensitive, then our attack is466

preferred because our fees are 16% of and 5% of other two. Whereas, if the attacker has a467

restricted custody in hand, then the attack by person Mizrahi et al. is more preferred, as the468

custody required is only 1.5% of our attack.469

8 Conclusion470

In this paper, we propose the general congestion attack on payment channel networks471

(PCNs). Our general congestion attack generalises the existing congestion attacks in terms472

of attack strategies, targeted metrics and optimisation techniques. We develop concrete473

steps for launching congestion attacks, and provide a generic method of quantifying PCNs’474

liquidity and effectiveness of congestion attacks. We evaluate our congestion attacks on475

Lightning Network – the first and most well-known PCN. Our evaluation results show that476

the congestion attack is cheap to launch and can greatly reduce the LN’s liquidity.477
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