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Abstract

Synchronous consensus protocols, by definition, have a worst-case commit latency that depends on
the bounded network delay. The notion of optimistic responsiveness was recently introduced to allow
synchronous protocols to commit instantaneously when some optimistic conditions are met. In this work,
we revisit this notion of optimistic responsiveness and present optimal latency results.

We present a lower bound for Byzantine Broadcast that relates the latencies of optimistic and syn-
chronous commits when the designated sender is honest and while the optimistic commit can tolerate
some faults. We then present two matching upper bounds for tolerating f faults out of n = 2f+1 parties.
Our first upper bound result achieves optimal optimistic and synchronous commit latencies when the
designated sender is honest and the optimistic commit can tolerate some faults. Our second upper bound
result achieves optimal optimistic and synchronous commit latencies when the designated sender is hon-
est but the optimistic commit does not tolerate any faults. The presence of matching lower and upper
bound results make both of the results tight for n = 2f + 1. Our upper bound results are presented in a
state machine replication setting with a steady state leader who is replaced with a view-change protocol
when they do not make progress. For this setting, we also present an optimistically responsive protocol
where the view-change protocol is optimistically responsive too.

1 Introduction

Byzantine fault-tolerant (BFT) protocols based on a synchronous network have a high resilience of up to one-
half Byzantine faults. In comparison, BFT protocols under asynchronous or partially synchronous networks
can tolerate only one-third Byzantine faults. Although partially synchronous protocols have a lower tolerance
for Byzantine faults, they have an advantage in terms of the latency to commit – they can commit in O(δ)
time where δ is the actual latency of the network. On the other hand, the latency for synchronous protocols
depends on ∆, where ∆ is a pessimistic bound on the network delay.

A recent work, Hybrid Consensus [21], introduced the notion of responsiveness to describe a commit
whose latency depends only on the actual network delay δ. In this regard, asynchronous and partially
synchronous protocols are responsive by design, whereas synchronous protocols are not. Another recent work,
Thunderalla [22], introduced the notion of optimistic responsiveness that allows a synchronous consensus
protocol to commit responsively when some optimistic conditions are met. Their protocol is always safe
against up to one-half Byzantine faults. Moreover, if a “leader” and > 3n/4 replicas are honest, and if
they are on a “fast-path”, then replicas can commit responsively with a commit latency independent of ∆.
Otherwise, the protocol falls back to a “slow-path”, and the commit latency depends on ∆.

The Thunderella paradigm of optimistic responsiveness requires replicas in the protocol to know which
of the two paths they are in, and perform an explicit switch between them. If they start in the slow-path,
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a switch to the fast-path is performed when the optimistic conditions are met. The fast-path allows for
responsive commits. If, at some point, the conditions are not met, then the replicas switch to the slow-path
again. Their slow-path protocols are Nakamoto consensus and Dolev-Strong. Thus, the slow-path, as well as
the switch between the two paths, is extremely slow, requiring O(κ∆) and O(n∆) latency respectively. Their
slow-path–fast-path paradigm, however, holds generically for other synchronous protocols. Sync HotStuff [2]
adopted this paradigm and presented a protocol where the slow-path, as well as the switch, is considerably
faster, requiring only a 2∆ latency. A fundamental question then is,

What is the optimal latency of an optimistically responsive synchronous protocol?

Observe that if all the replicas know whether the optimistic conditions are met, i.e., in the case of Sync
HotStuff, whether or not fewer than 1/4 replicas are Byzantine, then we can use a protocol with optimal
latency for that setting. For instance, if the optimistic conditions are met, then we can rely on partially
synchronous protocols [26, 18, 6, 5] to commit responsively. Otherwise, we can use an optimal synchronous
protocol with ∆ latency [3]. Observe that Thunderella or Sync HotStuff with optimistic responsiveness
will be inferior to either of the above options; if we start off in the wrong path, i.e., slow-path when
optimistic conditions are met and vice versa, then we incur an additional path switching latency making
the latency worse than either of the options. Thus, with optimistically responsive synchronous protocols,
we are interested in the optimal latency when it is not known whether the optimistic conditions are met
(or if during the execution of the protocol, the adversarial conditions can switch to-and-from meeting the
optimistic conditions). In such a scenario, using a partially synchronous protocol, or a non-optimistically
responsive synchronous protocol leads to either a safety violation or sub-optimal latency respectively.

A lower bound on the latency of an optimistically responsive synchronous protocol. Our first
result presents a lower bound on the latency of such optimistically responsive synchronous protocols. Specif-
ically, we show the following result:

Theorem 1 (Lower bound on the latency of an optimistically responsive synchronous protocol, informal).
For some 0 < α < ∆, there does not exist a Byzantine Broadcast protocol that can tolerate n/3 < f <
n/2 faults and when all messages between non-faulty parties arrive instantaneously, achieves the following
simultaneously under an honest designated sender:

(i) (optimistic commit) a commit latency of < α in the presence of n− 2f crash faults, and

(ii) (synchronous commit) a commit latency of < 2∆− α in the presence of f omission faults.

The lower bound says that if a Byzantine Broadcast protocol tolerating n/3 < f < n/2 corruption has
an optimistic (fast) commit with latency < α time while still being able to tolerate n− 2f faults, then the
synchronous (slow) commit should have a latency ≥ 2∆− α time when tolerating f faults. For instance, if
the optimistic commit requires 0.5∆ time for a commit, then the synchronous path cannot commit in time
< 1.5∆. Known optimistically responsive protocols such as Thunderella and Sync HotStuff use α = O(δ),
but require a slow-path latency of O(κ∆)/O(n∆) for Thunderella and 2∆ for Sync HotStuff. Thus, none of
these protocols obtain the desired optimal latency.

Our next two results present matching upper bounds for this lower bound for n = 2f + 1. Thus, both
our lower bounds and upper bounds are tight. In the process of seeking an optimal latency protocol in
this setting, we depart from the back-and-forth slow-path–fast-path paradigm for optimistic responsiveness
and present an optimal one-half resilient synchronous protocols where replicas do not need to know which
path they are on. If the conditions for a optimistic commit are met, they commit optimistically. Otherwise,
they commit using the synchronous commit rule. Thus, intuitively, they exist in both paths simultaneously
without requiring an explicit switch. Since all of our upper bounds assume a value of α = O(δ), whenever
appropriate, we also call the optimistic commit a responsive commit.

Optimal optimistic responsiveness with 2∆-synchronous latency and > 3n/4-sized responsive
quorum. Our first result obtains optimistic responsiveness where the synchronous commit has a commit
latency of 2∆, while the responsive commit has a latency of 2δ using quorums of size > 3n/4. Specifically,
we show the following:
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Theorem 2 (Optimistic responsiveness with 2∆-synchronous latency and > 3n/4-sized responsive quorum,
informal). There exists a Byzantine Broadcast protocol that can tolerate < n/2 faults, and under an honest
designated sender achieves the following simultaneously:

(i) (responsive commit) a commit latency of 2δ when > 3n/4 replicas are honest, and

(ii) (synchronous commit) a commit latency of 2∆ +O(δ) otherwise.

Intuitively, the fundamental property that this upperbound provides in comparison to Thunderella or
Sync HotStuff is simultaneity, i.e., replicas do not need to on agree on specific paths for performing a
responsive commit or a synchronous commit. Moreover, the parameters obtained in this result are optimal.
First, the early stopping lower bound due to Dolev, Reischuk, and Strong [9] states that when the number
of faults is f , and the maximum number of faults is t, there will exist an execution in a Byzantine Broadcast
protocol that requires min(t + 1, f + 2) rounds. Hence, in the absence of any faults, no protocol can have
a latency of less than 2δ. Second, the > 3n/4 quorum size is tight due to a lower bound presented in
Thunderella [22]. Specifically, it says that no protocol can have a worst-case resilience of one-half Byzantine
replicas while being optimistically responsive when there are more than n/4 Byzantine replicas. Finally, due
to the lower bound from our first result (Theorem 1), latency for the synchronous commit is optimal for
α = O(δ), ignoring O(δ) delays.

Optimal optimistic responsiveness with ∆-synchronous latency and n-sized responsive quorum.
In Theorem 1, the 2∆− α latency for a synchronous commit is applicable only when the optimistic commit
can tolerate n−2f faults. In this upperbound result, we show that the synchronous latency can be improved
if the optimistic commit guarantees hold only when all n = 2f + 1 replicas are honest. Specifically, we show
the following:

Theorem 3 (Optimistic responsiveness with ∆-synchronous latency and n-sized responsive quorum, in-
formal). There exists a Byzantine Broadcast protocol that can tolerate < n/2 faults, and under an honest
designated sender achieves the following simultaneously:

(i) (responsive commit) a commit latency of 2δ when all n replicas are honest, and

(ii) (synchronous commit) a commit latency of ∆ +O(δ) otherwise.

The responsive commit latency is optimal due to Dolev et al. [9] while the synchronous commit latency
∆ is optimal (ignoring O(δ) delays) due to the lower bound in [2].

Comparison with works having simultaneity in commits. We note that our upperbound results are
not the first results to use simultaneous paths. There are works such as Zyzzyva [17], SBFT [14] and FaB [20]
which have considered the notion of simultaneous paths under partial synchrony. Similarly, a recent work
called PiLi [7] achieves simultaneity under a synchronous assumption. This is the first work that achieves
simultaneity under a synchrony assumption while obtaining optimal latency.

Byzantine Broadcast vs. State Machine Replication. We note that although we present our theorem
statements for Byzantine Broadcast in the presence of an honest designated sender, we directly describe
our protocols in a state machine replication setting with a steady state leader proposing a sequence of
values. Whenever the leader does not make progress, it is replaced using a view-change protocol. An honest
designated sender in Byzantine Broadcast is thus equivalent to having an honest leader in a state machine
replication setting. Thus, when the leader is honest, our protocol from Theorem 2 (resp. Theorem 3) can
commit every value optimistically in 2δ time and synchronously in 2∆ + O(δ) (resp. ∆ + O(δ)). Moreover,
the honest leader can propose consecutive values as fast as 2δ (resp. ∆ + 2δ) time independent of whether
commits are performed responsively or synchronously.

Optimistic responsiveness with responsive view-change. The upperbound protocols that we just
mentioned can commit responsively when the leader is honest and their respective optimistic conditions
are met. However, when executing on a sequence of values, for reasons such as fairness or distribution of
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work, we may want to change leaders every block, or every few blocks. Indeed, several recent protocols have
been designed with this goal in mind [2, 6, 8, 13, 15, 25]. However, for the upper bounds described earlier,
the view-change protocols, although efficient, still require 4∆ + O(δ) time; such a latency is reasonable if
a view-change happens only occasionally. However, the incurred latency maybe high if we need to change
views after every block. Moreover, the latency is incurred even when the optimistic conditions are met.

Our final result addresses this concern and presents a protocol which has an optimistically responsive
view-change as well. Thus, when rotating among honest leaders and if > 3n/4 replicas are honest, this
protocol can commit a block every O(δ) time without incurring O(∆) time in the steady state or the view-
change. On the other hand, even if the optimistic conditions are not met, the protocol requires 2∆ time to
elect a leader and 3∆ +O(δ) time to commit a block after an honest leader is elected.

Organization. The rest of the paper is organized as follows. In Section 2, we define state machine replication
and Byzantine Broadcast. In Section 3, we present a lower bound on latency for optimistic responsiveness.
Section 4 presents an optimal optimistically responsive protocol with 2∆-synchronous latency and > 3n/4-
sized responsive quorum for n = 2f + 1. Section 5 presents an optimal optimistically responsive protocol
with ∆-synchronous latency and n-sized responsive quorum for n = 2f + 1. In Section 6, we present an
optimistically responsive protocol that includes optimistically responsive view-change. Finally, Section 7
compares with closely related work.

2 Model and Definitions

We consider a standard State Machine Replication (SMR) problem used for building a fault tolerant service
to process client requests. The system consists n replicas out of which f < n/2 replicas are Byzantine faulty.
The Byzantine replicas may behave arbitrarily. The aim is to build a consistent linearizable log across all
non-faulty (honest) replicas such that the system as a whole behaves like a single non-faulty server in the
presence of f < n/2 Byzantine replicas.

Definition 2.1 (Byzantine Fault-tolerant State Machine Replication [24]). A Byzantine fault-tolerant state
machine replication protocol commits client requests as a linearizable log to provide a consistent view of the
log akin to a single non-faulty server, providing the following two guarantees.

• Safety. Honest replicas do not commit different values at the same log position.

• Liveness. Each client request is eventually committed by all honest replicas.

We assume the network between replicas includes a standard synchronous communication channel with
point-to-point, authenticated links between them. Messages between replicas may take at most ∆ time before
they arrive, where ∆ is a known maximum network delay. To provide safety under adversarial conditions,
we assume that the adversary is capable of delaying the message for an arbitray time upper bounded by ∆.
The actual message delay in the network is denoted by δ. We make use of digital signatures and a public-key
infrastructure (PKI) to prevent spoofing and replays and to validate messages. Message x sent by a replica
p is digitally signed by p’s private key and is denoted by 〈x〉p.

Byzantine Broadcast. Our lower bound is presented for a Byzantine Broadcast setting with a designated
sender.

Definition 2.2 (Byzantine Broadcast). A Byzantine broadcast protocol provides the following three guaran-
tees.

• Agreement. If two honest replicas commit values b and b′ respectively, then b = b′.

• Termination. All honest replicas eventually commit.

• Validity. If the designated sender is honest, then all honest replicas commit on the same value it
proposes.
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3 A Lower Bound on the Latency of Optimistic Responsiveness

An optimistically responsive synchronous protocol has two commit rules – an optimistic commit rule and
a synchronous commit rule. This lower bound captures the relationship between the latencies of the two
commit rules. Essentially, it says that if the optimistic commit rule is too fast, then the synchronous commit
rule should be correspondingly slower. Specifically, the sum of the latencies of the two commit rules should
be at least 2∆ time.

In this lower bound, we assume that an optimistic commit is capable of tolerating n−2f crash faults and
has a commit latency of < α time for some 0 < α < ∆. The lower bound then proves that if an optimistically
responsive protocol can tolerate n/3 < f < n/2 Byzantine faults, then its synchronous commit rule cannot
have a latency < 2∆− α.

Intuition. The intuition behind the lower bound is to show a split-brain attack that can be performed by
a minority of Byzantine replicas if a protocol has sum of latencies for the two commit rules to be less than
2∆. For simplicity, we present intuition for α = O(δ) and n = 2f + 1. First, observe that any protocol
tolerating minority Byzantine faults cannot use quorum sizes larger than n − f = f + 1 in the worst case.
Hence, it is always possible that a single honest replica R commits to a value due to a quorum of messages
received from only the Byzantine replicas if it does not wait long enough before committing. Second, since
the optimistic commit rule can tolerate at least one crash fault (n − 2f = 1), replicas (set P) committing
through the optimistic rule may commit without receiving any messages from replica R. Thus, to avoid a
safety violation through a split-brain attack, it is required for the replicas in P and R to communicate about
protocol instance specific messages with each other. Using the fact that the adversary can delay any message
by up to ∆ time, replicas in P may not receive the sender’s message in the first ∆ time. Moreover, it takes ∆
time for messages from P to arrive at R. So, R cannot be stopped from committing a different value unless
it waits for 2∆ time. On the other hand, since P is performing an optimistic commit, it may not wait for
more than O(δ) (in general, α time) before committing (which is not sufficient to receive messages from R).

Before presenting the formal lower bound, we define the notion of a (β, fc)-time-shift-invariant protocol.

Definition 3.1 ((β, fc)-time-shift-invariant Byzantine Broadcast protocol). We say a Byzantine Broadcast
protocol among n parties tolerating f Byzantine faults is (β, fc)-time-shift-invariant if the following two
executions are such that, for every non-faulty party if it takes an action at time t in execution (i), it will
take the same action at time ≤ t+ β in execution (ii):

(i) All fc crash faults (not including the designated sender), crash at time 0. All messages sent among
non-faulty parties arrive instantaneously.

(ii) All fc crash faults (not including the designated sender), crash at time 0. An execution where the first
message from the designated sender received by any party is delayed by β time and all other messages
sent among non-faulty parties arrive instantaneously.

Intuitively, parties in protocols may behave differently depending on the schedule of messages in execu-
tions. For instance, protocols may have time-outs for receiving some messages, which if triggered, parties
take a different set of actions (e.g., blame a leader) than if the time-outs did not trigger. A (β, fc)-time-
shift-invariant Byzantine Broadcast protocol tolerating f -out-of-n Byzantine faults defines a sub-class of
Byzantine Broadcast protocols which under fc crashes, even if the arrival of the first message from the
designated sender is delayed by β time and all other messages arrive instantaneously, the parties take the
same actions compared to a setting where all messages arrive instantaneously; however, each action may
be taken up to β time later corresponding to the all-instantaneous world. We note that for β ≤ ∆, all
known synchronous Byzantine Broadcast protocols, to the best of our knowledge, satisfy (β, fc)-time-shift-
invariance. This is because under a synchrony assumption, any message can be delayed by up to ∆ time,
and this could have happened to the sender’s message. Thus, any delay of < ∆ for the first message is not
handled differently by known synchronous Byzantine Broadcast protocols.

We now present the formal lower bound below.
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Theorem 4 (Lower bound on the latency of an optimistically responsive synchronous protocol). For 0 <
α < ∆, there does not exist a (∆ − α, n − 2f)-time-shift-invariant Byzantine Broadcast protocol that can
tolerate n/3 < f < n/2 faults and when all messages between non-faulty parties arrive instantaneously,
achieves the following simultaneously under an honest designated sender:

(i) the commit latency is < α in the presence of n− 2f crash faults, and

(ii) the commit latency is < 2∆− α in the presence of f omission faults.

Proof. Suppose there exists a protocol that can simultaneously achieves both of these properties for some
0 < α < ∆. We will show a sequence of worlds, and through an indistinguishability argument prove a
violation in the agreement property of such a protocol. Consider parties being split into three groups P , Q,
and R. P contains f parties, Q contains f parties, and R contains the remaining n − 2f parties. Observe
that under a synchrony assumption, the messages can take up to ∆ time to arrive at its destination but
within this duration the adversary can deliver it at an arbitrary time. We consider four worlds as follows.
In all four worlds, we suppose a party from set Q is the designated sender.

World 1.

- Setup. Parties in P and Q are honest while the parties in R have crashed. Suppose the honest sender
sends input value b at time 0.

- Adversarial schedule. The adversary follows the following message schedule (schedule (i)): All messages
sent among parties in P ∪Q are delivered instantaneously.

- Execution and views of honest players. Since there are 2f honest parties in P ∪Q and the remaining
n − 2f have crashed, the protocol will commit at time < α. By the validity property of Byzantine
Broadcast, all parties in P ∪Q commit b at time < α.

World 1′.

- Setup. Parties in P and Q are honest while the parties in R have crashed. Suppose the honest sender
sends input value b at time 0.

- Adversarial schedule. The adversary follows the following message schedule (schedule (ii)): The first
message received by parties in P ∪Q from the designated sender is delayed by time ∆− α. All other
messages sent among parties in P ∪Q are delivered instantaneously.

- Execution and views of honest players. Given the protocol is (∆− α, n− 2f)-time-shift-invariant, the
replicas in P ∪ Q will take the same actions as the replicas in World 1; however each action may be
taken up to ∆− α time later. Hence, all parties in P ∪Q commit b at time < (∆− α) + α = ∆.

World 2.

- Setup. Parties in Q and R are honest while parties in P are omission faults. Suppose the honest sender
sends input value b′ 6= b at time 0.

- Adversarial schedule. The first message received by any party in P is delivered at time ∆ − α. Also,
messages sent by parties in P at time < ∆−α are not omitted. Messages sent by parties in P at time
≥ ∆− α are omitted.

The adversary follows the following message schedule (schedule (iii)) for parties in Q∪R. All messages
sent by P are delivered at a delay of ∆ to R and vice versa. All the messages between all honest
replicas in Q ∪R (including that of the designated sender) are delivered instantaneously.

- Execution and views of honest players. Since Q ∪ R contains n − f honest parties, by the validity
property of Byzantine Broadcast, all parties in Q ∪R commit b′ at time < 2∆− α.
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World 3.

- Setup. Parties in P and R are honest while parties in Q (which contains the designated sender) are
Byzantine. The designated sender sends input value b to P and b′ to R.

- Adversarial schedule. The parties in Q behave exactly the same as honest Q in the execution of World 2
with parties in R. Parties in Q also behave exactly the same way as in execution of World 1′ with
parties in P .

Messages sent to P follow schedule (ii) described in World 1′. This can be performed by delaying the
first message from the designated sender in Q to P ∪ Q by ∆ − α time. All other messages among
parties in P ∪Q are delivered instantaneously. In addition, all messages sent from R to P are delayed
by ∆.

Messages sent to R follow schedule (iii) described in World 2, i.e., messages within Q∪R are delivered
instantaneously whereas messages received from P to R are delivered at a delay of ∆.

- Execution and views of honest parties. Since messages from R are delayed to the maximum ∆ time,
parties in P do not receive any message from R during the first < ∆ time period. Hence, the view of
parties in P is exactly the same as in World 1′. Hence, parties in P commit b at time < ∆.

For honest R, all the messages delivered to it from P are delayed by ∆. All the messages sent by
parties in P at time < ∆− α are not related to the sender’s input (since the sender’s first message to
parties in P is delayed by ∆− α time). So, until time < 2∆− α, the view of R is exactly the same as
that in World 2. Hence, it commits to b′ at time < 2∆− α.

Remark 1. Our lower bound has a restriction n/3 < f < n/2 due to the way the proof is constructed. We
believe this should be easily modifiable to the setting where f > n/3 by setting the sizes of P , Q, and R
differently.

Remark 2. Our lower bound holds only for (∆ − α, n − 2f)-time-shift-invariant Byzantine Broadcast
protocols. We do not know of any existing synchronous Byzantine Broadcast protocols that does not satisfy
this requirement. It is an interesting open problem to come up with a protocol that is not (∆− α, n− 2f)-
time-shift-invariant and can circumvent the lower bound to obtain better latency results.

4 Optimal Optimistic Responsiveness with 2∆-synchronous La-
tency and > 3n/4-sized Quorum

We first present a simple synchronous consensus protocol that achieves optimal optimistic responsiveness
when the optimistic commit does not require a quorum of all replicas. In a synchronous commit, a replica
commits 2∆ time after voting (recall that ∆ is an upper bound on the maximum network delay) if an
equivocating proposal has not been detected. In a responsive commit, a replica can commit immediately,
i.e., without waiting for the 2∆ time period, if a sufficient number of replicas have voted for the block and
no equivocation has been detected. For every block, a replica opportunistically waits to commit using either
of the commit rules.

Recall that δ ≤ ∆ is the actual network delay. If a “leader” is honest then no matter what the adversary
does, the system can commit a block in time 2∆ +O(δ). But if there are > 3n/4 honest replicas along with
an honest leader, then the system can commit in time O(δ) (in an optimistically responsive manner).

Why does our protocol perform better than protocols in the slow-path–fast-path paradigm?
The general strategy employed in the protocols with back-and-forth slow-path–fast-path paradigm is to start
in one of the two paths, say, the slow path. When the optimistic conditions are met, an explicit switch is
performed to move to the fast path. Similarly, when a lack of progress is detected in the fast path, the
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protocol makes another switch to the slow path. The explicit switch between the paths incurs a latency of
at least ∆ in all of these protocols. The slow path and the fast path in Sync HotStuff has a commit latency
of 2∆ and 2δ respectively. Similarly, the slow path to fast path switch incurs a latency of ∆ and fast path
to slow path switch incurs 2∆ latency is Sync HotStuff.

Under minority Byzantine failures, the adversary can attack the above strategy to worsen the commit
latency compared to a protocol with a single slow path. For example, when the protocol is in slow path,
the adversary responds promptly and the replicas receive > 3n/4 responses thereby triggering fast path
by performing an explicit switch. Once in the fast path, the adversary stops responding completely thus
preventing progress in the fast path. This forces an explicit switch to the slow path again. Under this attack,
a single decision can incur a latency of 4∆ if the replicas are in the fast path and switch to the slow path to
commit. Replicas may never commit in the fast path if the adversary does not respond in the fast path.

Our protocol avoids this concern by avoiding an explicit switch between the responsive and synchronous
conditions. Instead, both paths are active simultaneously. Replicas commit responsively when > 3n/4
replicas respond and synchronously otherwise. As a result, when the leader is honest, the commit latency is
2δ during optimistic executions and 2∆ in the worst-case (during non-optimistic executions).

View-based execution. Like PBFT [5], our protocol progresses through a series of numbered views with
each view coordinated by a distinct leader. Views are represented by non-negative integers with 0 being
the first view. The leader of the current view v is determined by (v mod n). Within each view, also called
the steady state, the leader is expected to propose values and keep making progress by committing client
requests at increasing heights. An honest replica participates in any one view at a time and moves to a
higher numbered view when the current view fails to make progress. If the replicas detect equivocation or
lack of progress in a view, they initiate a view-change by blaming the current leader. When a quorum of
replicas have blamed the current leader, they perform a view-change and replace the faulty leader.

Blocks and block format. Client requests are batched into blocks. Each block references its predecessor
with the exception of the genesis block which has no predecessor. We call a block’s position in the chain of
blocks as its height. A block Bk at height k has the format,

Bk := (bk, H(Bk−1))

where Bk−1 is the block at height k − 1 and H(Bk−1) is the hash digest of Bk−1. The predecessor for the
genesis block is ⊥. A block Bk is said to be valid if (i) its predecessor block is valid, or if k = 1, predecessor
is ⊥, and (ii) client requests in the block meet application-level validity conditions and are consistent with
its chain of requests in ancestor blocks.

Block extension and equivocation. A block Bk extends a block Bl (k ≥ l) if Bl is an ancestor of Bk.
Note that a block Bk extends itself. Two blocks Bk and B′k′ proposed in the same view equivocate one
another if they are not equal to and do not extend one another.

Block certificates. A block certificate represents a set of signatures on a block by a quorum of replicas.
Given a ratio 0 ≤ α < 1, a block Bk and a view v we denote by Cαv (Bk) a set of bαnc + 1 signatures
from different replicas on block Bk signed in view v. In this section, we will use synchronous certificate
where α = 1/2, and responsive certificate where α = 3/4. Whenever the distinction between the two is not
important, we will represent the certificates by Cv(Bk) and ignore the superscript α. In later sections, we
will also use full certificates which require all n replicas to sign.

Chain certificates. We use the notion of chain certificates to compare different chains when replicas receive
many of them. Most earlier protocols (e.g., HotStuff [26] or Sync HotStuff [2]) compared certified chains
using just the views and heights. However, in our protocol, there are two types of certificates, a responsive
certificate and a synchronous certificate and hence, comparing them is more subtle. However, as we will see
the rank of a chain will be completely determined by the highest synchronous certificate from a view and the

highest responsive certificate of its ancestor. A chain certificate comprises of a pair of certificates C3/4v (Bk)

and C1/2v (B`). Each element in the pair is either a block certificate or ⊥ such that (i) if either of them are
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not ⊥, both certificates are from the same view, (ii) if not ⊥’s, the first certificate has threshold 3/4, the

second has threshold 1/2, and (iii) block B` extends block Bk, if C3/4v (Bk) is not ⊥.

Ranking chain certificates. Given two chain certificates CC = (C3/4v (Bk),C1/2v (B`)) and CC′ = (C3/4v′ (Bk′),C1/2v′ (B`′)),
the chain certificates are first ranked by views, i.e., CC < CC′ if v < v′. While moving from view v to any
higher view, our protocol ensures that if a certified block Bk is committed in view v, then all honest replicas
lock on a chain certificate that extends Bk. Hence, a certificate chain produced in a higher view will always
include Bk. Said another way, a certificate chain CC′ in a higher view will extend Bk; if it does not, it must
be the case that Bk was not committed by any honest replica in view v. Thus, it is safe to extend CC′.

For chain certificates in the same view v, the chain certificates are first ranked based on the height of the
responsive certificate, i.e., CC < CC′ if k < k′. In our protocol, we ensure that if there exists a responsive

certificate for a block Bk′ in view v, i.e., C3/4v (Bk′) exists, there cannot exists a responsive certificate for a
conflicting block at any height in view v. Thus, if there is a responsive certificate for Bk in view v, then

Bk′ must extend Bk. Moreover, we also ensure that if C3/4v (Bk) exists, no replica will have synchronously
committed on an equivocating block B` with certificate Cv(B`). Thus, any equivocating chain with chain
certificate CC will not contain committed blocks that are not extended by CC′.

Finally, if both chain certificates are in the same view v and have a common responsive certificate in
the view (or both do not have a responsive certificate), the chain certificates are ranked by the heights of
synchronous certificates, i.e., CC < CC′ if ` < `′. Our protocol ensures that if Bk is committed synchronously

in view v, then there does not exist an equivocating certified block. Thus, if equivocating C1/2v (B`) and

C1/2v (B`′) exist, both B` and B`′ could not have been committed. To ease the rule in the case where they
do not equivocate and one chain certificate extends the other, we select the higher of the two.

Thus, Given two chain certificates CC = (C3/4v (Bk),C1/2v (B`)) and CC′ = (C3/4v′ (Bk′),C1/2v′ (B`′)), we say
CC < CC′ if:

1. v < v′ (the chain certificates are first ranked by view),

2. v = v′ and k < k′ (secondly ranked by responsive certificates), or

3. v = v′ and k = k′ and ` < `′ (finally ranked by synchronous certificates).

In this above comparison, we use the numerical value −1 to represent a ⊥.

Tip of a chain certificate. The tip of a chain certificate is the highest block in the chain. Given a
CC = (C3/4(Bk), C1/2(B`)), if C1/2(B`) 6= ⊥ then define tip(CC) = B`, otherwise define tip(CC) = Bk.

Updating chain certificates. Each replica stores CC, the highest chain certificate it has ever received.
Any time a new block certificate is received, the replica updates its highest ranked chain certificate using
the comparison rule described earlier.

4.1 Steady State Protocol

Our protocol executes the following steps in iterations within a view v.

Propose. The leader L of view v proposes a blockBk := (bk, H(Bk−1)) by broadcasting 〈propose, Bk, v, Cv(Bk−1)〉L.
The proposal contains a block at height-k extending a block Bk−1 at height k − 1, the view number v, and
a view-v certificate for Bk−1. The leader makes such a proposal as soon as it receives a view-v certificate
for Bk−1. The first view-v certificate is obtained during the view-change process as will be described in the
next subsection.

Vote. When a replica r receives the first proposal for Bk either from L or through some other replica, if r
hasn’t received a proposal for an equivocating block, i.e., it has not detected a leader equivocation in view
v, it broadcasts a vote for Bk in the form of 〈vote, Bk, v〉r, and forwards the proposal to all replicas. It also
starts a synchronous commit-timerk,v and sets it to 2∆.
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Let v be the view number and replica L be the leader of view v. While in view v, a replica r runs the
following protocol:

1. Propose. If replica r is the leader L, upon receiving Cv(Bk−1), it broadcasts
〈propose, Bk, v, Cv(Bk−1)〉L where Bk extends Bk−1.

2. Vote. Upon receiving the first proposal 〈propose, Bk, v, Cv(Bk−1)〉L with a valid view v certificate
for a block at height k− 1 (not necessarily from L) where Bk extends Bk−1, if no leader equivocation
is detected, forward the proposal to all replicas, broadcast a vote in the form of 〈vote, Bk, v〉r, set
commit-timerv,k to 2∆, and start counting down.

3. (Non-blocking) Commit rules. Replica r commits block Bk using either of the following rules if
r is still in view v:

(a) Responsive commit. On receiving b3n/4c+ 1 votes for Bk, i.e., C3/4v (Bk), commit Bk and all

its ancestors immediately. Broadcast 〈notify, C3/4v (Bk), v〉r, and abort commit-timerv,k.

(b) Synchronous commit. If commit-timerv,k reaches 0, commit Bk and all its ancestors.

4. (Non-blocking) Blame and quit view.

- Blame if no progress. For p > 0, if fewer than p proposals trigger r’s votes in (2p+ 4)∆ time
in view v, broadcast 〈blame, v〉r.

- Quit view on f + 1 blame messages. Upon gathering f + 1 distinct 〈blame, v〉r messages,
broadcast them, abort all view v timers, and quit view v.

- Quit view on detecting equivocation. If leader equivocation is detected, broadcast the
equivocating proposals signed by L, abort all view v timers, and quit view v.

Figure 1: Steady state protocol for optimal optimistic responsiveness with 2∆-synchronous latency and
> 3n/4-sized quorum.

Observe that the certificate in the proposal need not be the same as the certificate that replica r has
obtained. Specifically, replica r can vote for a proposal containing a synchronous certificate for the previous
block even if it holds a responsive certificate for the same block, and vice versa.

Commit. The protocol includes two commit rules and the replica commits using the rule that is triggered
first. In a responsive commit, a replica commits block Bk and its ancestors immediately if the replica receives
> 3n/4 votes for Bk in view v. Note that a responsive commit doesn’t depend on the commit-timer and
∆, and a replica can commit at the actual speed of the network (δ). In addition, the replica immediately

notifies the strong certificate C3/4v (Bk) to all replicas. This is critical to maintain safety. When a replica’s
commit-timerv,k for Bk expires in view v, the replica synchronously commits Bk and all its ancestors. When
a replica commits Bk, it aborts commit-timers for all its ancestors.

The commit step is non-blocking and it does not affect the critical path of progress. The leader can
make a proposal for the next block as soon as it receives a certificate for the previous block independent of
whether replicas have committed blocks for previous heights.

Note that if an honest replica commits a block Bk in view v using one of the rules, it is not necessary
that all honest replicas commit Bk in view v using the same rule, or commit Bk at all. Some Byzantine
replicas may decide to send votes to only a few honest replicas causing some honest replicas to commit
using a responsive rule whereas some others using a synchronous rule. A Byzantine leader could send an
equivocating block to some honest replicas and prevent them from committing. The protocol ensures safety
despite all inconsistencies introduced by Byzantine replicas.

Blame and quit view. A view-change is triggered when replicas observe lack of progress or an equivocating
proposal from the current leader. If an honest replica learns an equivocation, it broadcasts 〈blame, v〉r

10



Let L and L’ be the leaders of view v and v + 1, respectively. Each replica r runs the following steps.

i) Status. Wait for 2∆ time. Until this time, if a replica receives any chain certificates, the replica
updates its chain certificate CC to the highest possible rank. Set lockv+1 to be the highest ranked
chain certificate at the end of the 2∆ wait. Send 〈status, lockv+1〉r to L′. Enter view v + 1.

ii) New-view. The new leader L′ waits for 2∆ time after entering view v+1. L′ broadcasts 〈new-view, v+
1, lockv+1〉L′ , where lockv+1 is the highest ranked chain certificate known to L′ after this wait.

iii) First vote. Upon receiving the first 〈new-view, v + 1, lock′〉L′ , if lockv+1 ≤ lock′, then broadcast
〈new-view, v + 1, lock′〉L′ and 〈vote, tip(lock′), v + 1〉r.

Figure 2: View-change protocol for optimal optimistic responsiveness with 2∆-synchronous latency and
> 3n/4-sized quorum.

message along with the equivocating proposals and quits view v. The equivocating proposals serve as a
proof of misbehavior and all honest replicas blame the leader to trigger a view-change. To ensure progress,
the leader is expected to propose at least one block every 2∆ time that trigger’s the replica’s vote. Otherwise,
replicas blame the current leader. When an honest replica receives a blame certificate (f+1 blame messages),
it broadcasts the blame certificate, quits current view v and stops participating in view v. All replicas receive
the blame certificate within ∆ time due to synchrony assumption and quit view v.

We now provide some intuition on why either of these commit rules are safe within a view. We discuss
safety across views in the subsequent section.

Why does a responsive commit ensure safety within a view? Consider an honest replica r that
responsively commits a block Bk at time t. This is because it received b3n/4c+ 1 votes for Bk by time t and
it did not observe any equivocation until then. It is easy to see that if there exists b3n/4c+ 1 votes for Bk,
no other equivocating block B′k′ at any height k′ can be committed responsively due to a simple quorum
intersection argument. Under a minority corruption, any two quorums of size b3n/4c+ 1 intersect in f + 1
replicas out of which at least one replica is honest. This honest replica will not vote for two equivocating
blocks.

A synchronous commit of an equivocating block cannot happen due to the following reason. Since replica
r hasn’t received an equivocation until time t, no replica has voted for an equivocating proposal until time
t−∆. Hence, their synchronous 2∆ window for committing an equivocating block ends at time > t+ ∆. A
commit for Bk at time t implies that some honest replica must have voted and forwarded the corresponding
proposal before t and this will arrive by time t + ∆ at all honest replicas. This will prevent any other
replica from committing an equivocating block. Observe that a responsive commit does not imply that an
equivocating block B′k′ will not be certified; hence, during a view-change, we need to be able to carefully
extend the chain that contains a block that has been committed by some other replica.

Why does a synchronous commit ensure safety within a view? Consider an honest replica r that
votes for a block Bk at time t and commits at time t+ 2∆ because it did not observe an equivocation until
then. This implies (i) all honest replicas have received Bk by time t + ∆, and (ii) no honest replica has
voted for an equivocating block by time t + ∆. Due to the rules of voting, no honest replica will vote for
an equivocating block in this view after time t+ ∆ ruling out an equivocating commit through either of the
two rules.

4.2 View-change

The view-change protocol is responsible for replacing a possibly faulty leader with a new leader to maintain
liveness. In the process, it needs to maintain safety of any commit that may have happened in the previous
views.
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Status. After quitting view v, a replica waits for 2∆ time before entering view v + 1. The 2∆ wait ensures
that all honest replicas receive a certificate for a block Bk before entering view v + 1 if some honest replica
committed Bk in view v. This is critical to maintain the safety of the commit in view v. The replica updates
its chain certificate CC to the highest possible rank and sets lockv+1 to CC. It then sends lockv+1 to the next
leader L′ via a 〈status, lockv+1〉r.

New-view. Leader L′ waits 2∆ time after entering view v + 1 to receive a status message from all honest
replicas. Based on these status messages, L′ picks the highest ranked chain certificate lock′. It creates a
new-view message 〈new-view, v + 1, lock′〉L′ and sends it to all honest replicas. The highest ranked chain
certificate across all honest replicas at the end of view v helps an honest leader to appropriately send a
new-view message that will be voted upon by all honest replicas and maintain the liveness of the protocol.

First vote. Upon receiving a 〈new-view, v + 1, lock′〉L′ message, if the certified block lock′ has a rank no
lower than r’s locked chain certificate lockv+1, then it forwards the new-view message to all replicas and
broadcasts a vote for it.

Next, we provide some intuition on how the view-change protocol ensures safety across views and liveness.

Why do replicas lock on chains extending committed blocks before entering the next view?
In this protocol, we use locks to ensure safety. The protocol guarantees that if an honest replica commits a
block (through either rules), then at the end of the view all honest replicas will lock on a chain certificate
that extends the committed block. At the start of the next view, when the leader sends a lock through
the new-view message, by testing whether this lock is higher than the lock stored locally, an honest replica
ensures that only committed blocks are extended.

What ensures that replicas lock on chains extending committed blocks before entering the next
view? Suppose an honest replica r responsively commits a block Bk in view v at time t. Notice that no
honest replica has entered view v+ 1 by time t+ ∆; otherwise, replica r must have received blame certificate

by time t due to the 2∆ wait in the status step. Replica r’s notify containing C3/4v (Bk) reaches all honest
replicas by time t+ ∆. As noted earlier, there may exist a synchronous certificate for an equivocating block

B′k′ in view v i.e., C1/2v (B′k′) (for any value of k′, e.g., k′ > k). However, a chain certificate CC containing

C3/4v (Bk) ranks higher than a chain certificate CC′ containing C1/2v (B′k′) as per our ranking rule and all honest
replicas lock on CC or higher before entering view v + 1.

If replica r synchronously commits Bk in view v at time t then, replica r voted for Bk at time t − 2∆
didn’t detect an equivocation or blame certificate by time t. This implies all honest replicas will vote for

Bk at time t − ∆ and receive C1/2v (Bk) by time t. As noted earlier, there doesn’t exist an equivocating
certificate in view v during synchronous commit. Hence, all honest replicas will lock on a chain certificate

CC containing C1/2v (Bk) before entering view v + 1.

How does the protocol ensure liveness? The protocol ensures liveness by allowing a new honest leader
to always propose a block that will be voted for by all honest replicas. All honest replicas send their locked
chain certificate to the next leader L′ at the start of the new view in a status message. L′ could be lagging
and enter v + 1 ∆ time after other replicas. Thus, it waits 2∆ time to collect chain certificates from all
honest replicas. If L′ is honest, it extends the highest ranked chain certificate lock′. This suffices to ensure
that all honest replicas vote on its proposal, in turn, ensuring liveness when the leader is honest. In the new
view, as long as the leader keeps proposing valid blocks, honest replicas will vote and keep committing new
blocks.

4.3 Safety and Liveness

We say a block Bk is committed directly in view v if an honest replica successfully runs the responsive commit
rule 3(a), or the synchronous commit rule 3(b) on block Bk. Similarly, we say a block Bk is committed
indirectly if it is a result of directly committing a block B` (` > k) that extends Bk but is not equal to Bk.

We say that a replica is in view v at time t if the replica executes the Enter view v of Step (i) in Fig 2
by time t and did not execute any Quit view of Step 5 in Fig 1 for view v at time t or earlier.
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Claim 5. If a block Bk is committed directly in view v, using the responsive commit rule, then a responsive
certificate for an equivocating block B′k′ in view v does not exist.

Proof. If replica r commits Bk due to the responsive commit rule in view v, then r must have received

b3n/4c + 1 votes, i.e., C3/4v (Bk), forming a quorum Q for Bk in view v. Since a responsive block certificate
requires b3n/4c+1 votes, a quorum intersection argument shows that a responsive certificate for equivocating
block B′k′ cannot exist. Specifically, if an equivocating block receives b3n/4c+ 1 votes forming a quorum Q′,
then we have |Q ∩Q′| ≥ 2b3n/4c+ 2− n ≥ bn/2c+ 1. Since at least one replica in Q ∩Q′ must be honest,
it will not vote for two equivocating blocks.

Claim 6. If a block Bk is committed directly in view v, using the responsive commit rule, then there does

not exists a chain certificate CC in view v, such that CC > (C3/4v (Bk),⊥) where a block in CC equivocates Bk.

Proof. By Claim 5, no equivocating block can have a responsive block certificate. So all responsive block

certificates must extend Bk. Since we assume that CC > (C3/4v (Bk),⊥) then it must be that either CC is of

the form (C3/4v (Bk), C1/2v (B`)) and by definition B` extends Bk, or CC is of the form (C3/4v (Bk′), C1/2v (B`′))
where Bk′ extends Bk and again by definition and transitivity B`′ must extend Bk.

Claim 7. If a block Bk is committed directly in view v using the synchronous commit rule, then a block
certificate for an equivocating block B′k′ does not exist in view v.

Proof. Suppose replica r directly commits block Bk at time t using the synchronous commit rule. So replica
r voted and forwarded the proposal for Bk at time t− 2∆ and its commit-timerv,k expired without detecting
equivocation. By synchrony assumption, all replicas receive the forwarded proposal for Bk by time t −∆.
Since they do not vote for equivocating blocks, they will not vote for B′k′ received at time > t−∆. Moreover,
no honest replica must have voted for an equivocating block at time ≤ t − ∆. Otherwise, replica r would
have received the equivocating proposal by time t and it wouldn’t have committed. Since no honest replica
votes for an equivocating block, B′k′ will not be certified.

Claim 8. If a block Bk is committed directly in view v using the responsive commit rule, then all honest

replicas receive C3/4v (Bk) before entering view v + 1.

Proof. Suppose replica r directly commits block Bk at time t using the responsive commit rule. So replica

r notifies the certificate C
3/4
v (Bk) which arrives at all honest replicas at time ≤ t+ ∆. No honest replica r′

is at view v + 1 at time ≤ t+ ∆. Because if r′ was at view v + 1 at time ≤ t+ ∆, then due to the 2∆ wait
in the status step, r′ would have quit view v at time ≤ t−∆. Hence, replica r must have received a blame

certificate or equivocation at time ≤ t and it wouldn’t commit. Hence, all honest replicas receive C3/4v (Bk)
before entering view v + 1.

Claim 9. If a block Bk is directly committed in view v at time t using the synchronous commit rule, then
all honest replicas receive Cv(Bk) before entering view v + 1.

Proof. We will prove that if a block Bk is directly committed in view v at time t using the synchronous
commit rule, then (i) all honest replicas are in view v at time t −∆, (ii) all honest replicas vote for Bk at
time ≤ t−∆, and (iii) all honest replicas receive Cv(Bk) before entering view v + 1. Part (iii) is the desired
claim.

Suppose honest replica r synchronously commits Bk at time t in view v. It votes for block Bk at time
t−2∆. Thus, replica r entered view v at time ≤ t−2∆. Due to the 2∆ wait before sending a status message,
replica r must have sent a blame certificate or equivocating blocks at time ≤ t− 4∆ which arrives all honest
replicas at time ≤ t− 3∆. Hence, all honest replicas enter view v at time ≤ t−∆ (again due to 2∆ wait in
the status step). Also, observe that no honest replica has quit view v at time ≤ t−∆. Otherwise, replica r
hears of blame certificate or equivocation at time ≤ t. This proves part (i).

Replica r received a proposal for Bk which contains Cv(Bk−1) at time t − 2∆. Thus, replica r’s vote
and forwarded proposal for Bk arrives all honest replicas by time t−∆. No honest replica has voted for an
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equivocating block at time ≤ t − ∆; otherwise replica r would have received an equivocation at time ≤ t.
Thus, all honest replicas will vote for Bk at time ≤ t−∆. This proves part (ii).

The votes from all honest replicas will arrive at all honest replicas by time ≤ t. By part(i) of the claim
and 2∆ wait in the status step, honest replicas do not enter view v + 1 at time ≤ t + ∆. Thus, all honest
replicas receive Cv(Bk) before entering view v + 1.

Lemma 10. If an honest replica directly commits a block Bk in view v, then: (i) all honest replicas have
lockv+1 such that tip(lockv+1) extends Bk, (ii) for any chain certificate CC that the adversary can create and
any honest lock lockv+1, either CC < lockv+1 or tip(CC) extends Bk.

Proof. By Claim 8 and Claim 9, all honest replicas will receive Cv(Bk) before entering view v + 1. If Bk is
committed using the synchronous commit rule, then by Claim 7, there doesn’t exists a view v certificate that
equivocates Bk. Since, honest replicas lock on highest ranked chain certificate, tip(lockv+1) must extend Bk.
Similarly, if Bk is committed using the responsive commit rule, then by Claim 6 there doesn’t exist chain
certificate CC such that CC > (Cv(Bk),⊥) and CC equivocates Bk. Thus, tip(lockv+1) must extend Bk. By
similar argument, any CC that an adversary creates either has CC < lockv+1 or tip(CC) extends Bk.

The following lemma considers safety of directly committed blocks across views.

Lemma 11 (Unique Extensibility). If an honest replica directly commits a block Bk in view v, and Cv′(Bk′)
is a view v′ > v block certificate, then Bk′ extends Bk. Moreover, all honest replicas have lockv′ such that
tip(lockv+1) extends Bk.

Proof. The proof is by induction on the view v′ > v. For a view v′, we prove that if Cv′(tip(lock′)) exists
then it must extend Bk. A simple induction then shows that all later block certificates must also extend
tip(lock′), this follows directly from the Vote rule in line 2.

For the base case, where v′ = v + 1, the proof that Cv′(tip(lock′)) extends Bk follows from Lemma 10
because the only way such a block can be certified is some honest votes for it. However, all honest are locked
on a block that extends Bk and a chain certificate with a higher rank for an equivocating block does not
exist. Thus, no honest replica will first vote (Figure 2 step iii) for a block that does not extend Bk. The
second part follows directly from Lemma 10.

Given that the statement is true for all views below v′, the proof that Cv′(tip(lock′)) extends Bk follows
from the induction hypothesis because the only way such a block can be certified is if some honest votes for
it. An honest party with a lock lock will vote only if tip(lockv′) has a valid block certificate and lock ≥ lockv′ .
Due to Lemma 10 and the induction hypothesis on all block certificates of view v < v′′ < v′ is must be that
Cv′(tip(lock)) extends Bk.

Theorem 12 (Safety). Honest replicas do not commit conflicting blocks for any height `.

Proof. Suppose for contradiction that two distinct blocks B` and B′` are committed at height `. Suppose
B` is committed as a result of Bk being directly committed in view v and B′` is committed as a result of
B′k′ being directly committed in view v′. This implies Bk extends B` and B′k′ extends B′`. Without loss of
generality, assume v ≤ v′; if v = v′, further assume k ≤ k′. If v = v′ and k ≤ k′, by Claim 6 and Claim 7,
B′k′ extends Bk. Similarly, if v < v′, by Lemma 11, B′k′ extends Bk. Thus, B′` = B`.

Theorem 13 (Liveness). All honest replicas keep committing new blocks.

Proof. In a view, a leader has to propose at least p blocks that trigger honest replicas votes in (2p + 4)∆
time. As long as the leader proposes at least p valid blocks, honest replicas will keep voting for the blocks
and keep committing the proposed blocks. If the Byzantine leader equivocates or proposes less than p blocks,
a view-change will occur. Eventually, there will be an honest leader due to round-robin leader election.
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Next, by Lemma 10, all honest replicas lock on a highest certified chain before entering a new view. The
leader may enter the new view ∆ time later than others; hence need to wait for 2∆ before proposing. Due
to 2∆ wait, the new leader receives the highest locked certified chains from all honest replicas. If the leader
is honest, the leader will extend upon the tip of the highest ranked certified chain. Honest replicas will vote
for the new block since the lock sent by the leader is at least as large as their lock. Moreover, the honest
leader doesn’t equivocate and keeps proposing at least p blocks. This prevents forming a blame certificate
to cause view-change and all honest replicas will keep committing new blocks.

5 Optimal Optimistic Responsiveness with ∆-synchronous Latency
and n-sized Quorum

Recall that our lower bound in Section 3 showed that we cannot have the following two commit latencies
simultaneously: (i) a responsive commit with O(δ) latency where ≥ n − 2f faults are tolerated in the
responsive mode, and (ii) a synchronous commit with < 2∆ latency simultaneously. The previous section
showed a protocol for n = 2f + 1 with optimal synchronous latency of 2∆ when fewer than n replicas
participate in the responsive mode. In this section, we will present an optimal synchronous latency of ∆+O(δ)
when all n = 2f+1 replicas participate in a responsive commit. For a synchronous commit, an honest replica
commits a block in ∆ +O(δ) time after receiving a valid proposal for the block if no equivocating proposals
are received and f + 1 replicas have voted for the block. A responsive commit completes immediately when
a replica receives acknowledgments for a block from all replicas and no equivocation has been detected. The
responsive commit has a commit latency of 2δ. The protocol maintains a commit latency of 2δ as long as
all replicas are behaving honestly and responding promptly.

Unlike the protocol in the previous section where a replica immediately votes for a valid proposal, in this
protocol a replica sends an acknowledgements (ack) for the proposed block immediately and votes only if it
does not detect any equivocation ∆ time after its acknowledgement. We define a set of 2f + 1 signed ack
messages from the same view for a block Bk as full certificate for Bk and represent it as Cfv (Bk). As before,

we call a set of f + 1 signed vote messages for Bk as synchronous certificate and represent it as C1/2v (Bk).
Whenever the distinction is not important, we represent certificates as Cv(Bk). Later in the section, we show
that if there exists a certificate (either full or synchronous) for a block Bk in a view v, there cannot exists
a certificate for an equivocating block in view v. For this reason, we define a simple certificate ranking rule.
Certified blocks are first ranked by views and then by height, i.e., (i) blocks certified in a higher view have
a higher rank, and (ii) for blocks certified in the same view, a higher height implies a higher rank.

5.1 Steady State Protocol

The steady state protocol runs following steps in iterations with a view v.

Propose. The Leader L of view v proposes a block Bk by extending a highest certified block Cv′(Bk−1)
known to L. If the leader has just entered steady state after view-change, it waits for 2∆ time to receive the
highest certified blocks from all honest replicas in which case v′ < v. Otherwise, the leader proposes a new
block as soon as it learns a certificate for the previous block proposed in the same view.

Ack. The protocol includes an additional ack step before voting. A replica r broadcasts an ack 〈ack, Bk, v〉
for a proposed block Bk if (i) it hasn’t detected any equivocation in view v, and (ii) Cv′(Bk−1) has rank
equal to or higher than its own locked block. Once replica r sends an ack, it starts a vote-timerv,k initialized
to ∆ time and starts counting down. Replica r also forwards the received proposal for Bk.

Vote. When vote-timerv,k for block Bk expires, if replica r hasn’t heard of any equivocation in view v, it
broadcasts a vote 〈vote, Bk, v〉 for Bk.

Commit. Replica r can commit either responsively or synchronously based on which rule is triggered
first. A responsive commit is triggered when r receives 2f + 1 ack messages for Bk, i.e., Cfv (Bk) and r
commits Bk and all its ancestors immediately. Replica r stops vote-timerv,k and notifies Cfv (Bk) to all honest
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Let v be the view number and replica L be the leader of the current view. While in view v, a replica r
runs the following protocol in steady state.

1. Propose. If replica r is the leader L, upon receiving Cv′(Bk−1), it broadcasts
〈propose, Bk, v, Cv′(Bk−1)〉L where Bk extends Bk−1. If this is the first block in this view, i.e., v′ < v,
then it waits for an additional 2∆ time after entering the view before proposing.

2. Ack. Upon receiving the first proposal 〈propose, Bk, v, Cv′(Bk−1)〉L (not necessarily from L) at height
k in view v, if Cv′(Bk−1) is ranked greater than or equal to its locked block, forward the proposal to
all replicas and broadcast an acknowledgment in the form of 〈ack, Bk, v〉. Set vote-timerv,k to ∆ and
start counting down.

3. Vote. If vote-timerv,k reaches 0, send a vote for Bk in the form of 〈vote, Bk, v〉.

4. (Non-blocking) Commit. Replicas can commit block Bk using either of the following rules:

(a) Responsive commit. On receiving 2f + 1 acks for Bk, i.e., Cfv (Bk) in view v, commit Bk and
all its ancestors immediately. Stop vote-timerv,k and notify the certificate Cfv (Bk).

(b) Synchronous commit. On receiving f + 1 votes for Bk, i.e., C1/2v (Bk) in view v, commit Bk
and all its ancestors immediately. Notify the certificate C1/2v (Bk) to all replicas.

5. (Non-blocking) Blame and quit view.

- Blame if no progress. For p > 0, if fewer than p proposals trigger r’s votes in (3p+ 4)∆ time
in view v, broadcast 〈blame, v〉r.

- Quit view on f + 1 blame messages. Upon gathering f + 1 distinct 〈blame, v〉r messages,
broadcast them, abort all view v timers, and quit view v.

- Quit view on detecting equivocation. If leader equivocation is detected, broadcast the
equivocating proposals signed by L, abort all view v timers, and quit view v.

Figure 3: Steady state protocol for optimal optimistic responsiveness with ∆-synchronous latency and n-sized
quorum.

replicas. Similarly, replica r synchronously commits Bk along with its all ancestors when it receives f + 1

vote messages for Bk, i.e., C1/2v (Bk). r also notifies C1/2v (Bk) to all replicas. Like before, both the commit
paths are non-blocking and the leader can keep proposing as soon as it learns a certificate for previous block.

Blame and quit view step remains identical to the one in Figure 2.
Next, we provide some intuition on why either of these commit rules are safe within a view.

Why does a responsive commit ensure safety within a view? A replica commits a block Bk respon-
sively only when it receives acks from all replicas which includes all honest replicas. This implies no honest
replicas will either ack or vote for an equivocating block B′k′ at any height k′. Hence, an equivocating block
B′k′ will neither receive 2f + 1 acks nor f + 1 votes required for a block to be committed.

Why does a synchronous commit ensure safety within a view? An honest replica r synchronously
commits a block Bk at time t when it receives f + 1 votes for Bk and hears no equivocation by time t. This
implies no honest replica has voted for an equivocating block B′k′ by time t−∆. At least one honest replica
r′ sent an ack for Bk by time t − ∆. r′s ack arrives all honest replicas by time t. Hence, honest replicas
will neither ack nor vote for an equivocating block B′k′ after time t. This also prevents honest replicas from
committing an equivocating block after time t.
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Let L and L′ be the leader of view v and v + 1, respectively. Each replica r runs the following steps.

i) Status. Wait for 2∆ time. Pick the highest certified block Bk′ with certificate Cv′(Bk′). Lock on
Cv′(Bk′), and send Cv′(Bk′) to the new leader L′. Enter view v + 1.

Figure 4: View-change protocol for optimal optimistic responsiveness with ∆-synchronous latency and n-
sized quorum.

5.2 View Change Protocol

The view-change protocol involves only sending status message. During this step, a replica r waits for 2∆
time and locks on the highest certified block Cv′(Bk′) known to r. It forwards Cv′(Bk′) to the next leader and
enters next view. As shown in Lemma 17, the 2∆ wait ensures that all honest replicas lock on the highest-
certified block corresponding to a commit at the end of the view, which, in turn, is essential to maintain
the safety of the protocol. The status message along with the accompanying 2∆ wait in the propose step
ensures liveness, i.e., it ensures that an honest leader proposes a block that extends locks held by all honest
replicas and hence will be voted upon by all honest replicas.

5.3 Safety and Liveness

We say a block Bk is committed directly in view v if any of the two commit rules are triggered for Bk.
Similarly, a block Bk is committed indirectly if it is a result of directly committing a block B` (` > k) that
extends Bk but is not equal to Bk.

Claim 14. If an honest replica directly commits a block Bk in view v using the responsive commit rule, then
there does not exist a certificate for an equivocating block in view v.

Proof. If replica r commits Bk in view v using responsive commit rule, r must have received 2f +1 acks, i.e.,
Cfv (Bk). This implies all honest replicas have sent ack for Bk and no honest replica would send ack or vote for
an equivocating block B′k′ in view v. Since, a certificate for B′k′ requires either 2f + 1 acks for full certificate
or at least one vote from an honest replica for synchronous certificate, a certificate for an equivocating block
cannot exist.

Claim 15. If an honest replica directly commits a block Bk in view v using the synchronous commit rule,
then there does not exist a certificate for an equivocating block in view v.

Proof. Suppose replica r synchronously commits Bk in view v at time t without detecting an equivocation.
Observe that an equivocating responsive certificate does not exist since replica r would not ack two equivo-
cating blocks. Hence, we need to only show that a synchronous equivocating certificate does not exist. We
show it with the following two arguments. First, r votes for Bk at time leqt and sends an ack for Bk at
time ≤ t−∆. r’s ack for Bk arrives all honest replicas by time t. Hence, no honest replica will vote for an
equivocating block B′k′ at time ≥ t. Second, no honest replica must have sent an equivocating ack at time
≤ t−∆. Otherwise, replica r would not have committed. This also implies that no honest replica will vote
for an equivocating block at time ≤ t (due to the ∆ wait between ack and vote).

Lemma 16. If an honest replica directly commits a block Bk in view v then, (i) there doesn’t exist an
equivocating certificate in view v, and (ii) all honest replicas receive Cv(Bk) before entering view v + 1.

Proof. Part(i) follows immediately from Claim 14 and Claim 15.
Suppose replica r commits Bk at time t either responsively or synchronously. r notifies the certificate

(Cfv (Bk) or C1/2v (Bk)) which arrives at all honest replicas at time ≤ t + ∆. Observe that no honest replica
r′ has entered view v + 1 at time ≤ t + ∆. Otherwise, due to 2∆ wait before entering the new view, r′

must have sent either equivocating or a blame certificate at time ≤ t −∆; r must have received the blame
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certificate at time ≤ t. It would have quit view and not committed. Hence, all honest replicas receive Cv(Bk)
before entering view v + 1.

Lemma 17. If an honest replica directly commits a block Bk in view v, then all honest replicas lock on a
certified block that ranks higher than or equal to Cv(Bk) before entering view v + 1.

Proof. By Lemma 16 part (ii), all honest replicas will receive Cv(Bk) before entering view v + 1. By
Lemma 16 part (i), no equivocating certificate exists in view v. Since replicas lock on the highest certi-
fied block as soon as they enter the next view, all honest replicas lock on a certified block that ranks higher
than or equal to Cv(Bk) before entering view v + 1.

Lemma 18 (Unique Extensibility). If an honest replica directly commits a block Bk in view v, then any
certified block that ranks equal to or higher than Cv(Bk) must extend Bk.

Proof. Any certified block B′k′ in view v of rank equal to or higher than Cv(Bk) must extend Bk. Otherwise,
B′k′ equivocates Bk and by Lemma 16, B′k′ cannot be certified in view v. For views higher than v, we prove
the lemma by contradiction. Let S be the set of certified blocks that rank higher than Cv(Bk), but do not
extend Bk. Suppose for contradiction S 6= ∅. Let Cv∗(B`∗) be a lowest ranked block in S. Also, note that if
B`∗ does not extend Bk, then B`∗−1 does not extend Bk either.

For Cv∗(B`∗) to exist, some honest replica must vote for B`∗ in view v either upon receiving a proposal
〈propose, B`∗ , v∗, Cv′(B`∗−1)〉 for v′ < v or 〈propose, B`∗ , v∗, Cv∗(B`∗−1)〉. If it is the former, then Cv′(B`∗−1)
must rank higher than or equal to Cv(Bk). This is because due to Lemma 17 all honest replicas will have
received a certified block that ranks higher than or equal to Cv(Bk) before entering view v + 1. Moreover,
replicas only lock on blocks of monotonically increasing ranks. However, since v′ < v∗, the rank of Cv′(B`∗−1)
is less than Cv∗(B`∗) by our certificate ranking rule. This contradicts the fact that Cv∗(B`∗) is a lowest ranked
block in S. If it is the latter, then observe that Cv∗(B`∗−1) exists in view v∗. Again, this certificate is ranked
higher than Cv(Bk) since v∗ > v. Also, this certificate is ranked lower than Cv∗(B`∗) due to its height. Hence,
this contradicts the fact that Cv∗(B`∗) is a lowest ranked block in S.

Safety. The safety proof is identical to that of Theorem 12 except Lemma 18 needs to be invoked.

Liveness. The liveness proof is similar to that of Theorem 13.

6 Optimistic Responsiveness with Optimistically Responsive View-
Change

The protocols in Section 4 and Section 5 are optimistically responsive in the steady-state. However, whenever
a leader needs to be replaced, the view-change protocol must always incur a synchronous wait. This suffices
if leaders are replaced occasionally, e.g., when a leader replica crashes. However, in a democracy-favoring
approach it may be beneficial to replace leaders after every block, or every few blocks. In such a scenario,
the synchronous wait during view-change will increase the latency of the protocol. For example, the protocol
in Section 4 waits at least 4∆ time during view-change to ensure that the new leader collects status from
all honest replicas. Thus, in an execution where leaders are changed after every block, even when the leader
is honest, this protocol requires at least 4∆ + O(δ) for one block to be committed even during optimistic
executions, and requires at least 6∆ when < 3n/4 replicas are honest.

In this section, we present a protocol that is optimistically responsive in both the steady state as well as
view-change. In a world with rotating honest leaders, when > 3n/4 replicas are honest, this protocol can
commit blocks in O(δ) time and replace leaders in O(δ) time. When more than n/4 replicas are malicious
under the rotating honest leader setting, the protocol still commits in 5∆ +O(δ) time.
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6.1 Steady State Protocol

We make following modifications to the steady state protocol in Section 4 to support a responsive view-
change. In a synchronous commit, a replica commits within 3∆ time after voting if no equivocation or blame
certificate has been received. The additional ∆ wait in the synchronous commit accounts for the responsive
view-change that may occur before all honest replicas receive a certificate for committed blocks. The propose
and vote steps remain identical. However, after voting for Bk, the commit-timerv,k is set to 3∆ time.

Pre-commit. The protocol includes an additional pre-commit step with two pre-commit rules active simul-
taneously. The pre-commit is identical to the commit step in the previous protocol. A replica pre-commits
using the rule that is triggered first. In a responsive pre-commit, a replica r pre-commits a block Bk im-

mediately when it receives b3n/4c + 1 votes for Bk, i.e., C3/4v (Bk) in view v and notifies C3/4v (Bk) to all

replicas via 〈notify, C3/4v (Bk), v〉r. If replica r hasn’t blamed in view v, it broadcasts commit message via
〈commit, Bk, v〉r. Note that replica r doesn’t send commit message if it has already blamed in view v. This
is critical to ensure safety during responsive view-change. After responsive pre-commit, replica r resets its
commit-timerv,k to min(2∆, commit-timerv,k).

In a synchronous pre-commit, a replica pre-commits Bk when its commit-timerv,k reaches ∆. After
pre-commit, replica r broadcasts 〈commit, Bk, v〉r only if it hasn’t blamed in view v.

Commit. In a responsive commit, a replica commits a block Bk immediately along with its ancestors when
it receives b3n/4c+ 1 commit messages for Bk. In a synchronous commit, a replica commits Bk and all its
ancestors when its commit-timerv,k expires and it doesn’t detect an equivocation or blame certificate. We
note that a replica can commit even if it has sent a blame message in view v as long as it hasn’t detected
an equivocation or blame certificate in the view. As before, the commit rules are non-blocking to rest of the
execution.

Yield. When leader L wants to relinquish his leadership in view v, L broadcasts 〈yield, v〉L. The yield
message forces an explicit view-change and useful for democracy-favoring leader policy and change leader
after every block. Ideally, an honest leader issues yield after committing at least one block itself in view v.

Blame and quit view. The conditions for blaming and quitting a view are identical to earlier protocols.
Additionally, replicas blame and quit view v on receiving a yield message from the current leader and sets
blame-timerv to 2∆. We modify the blame message to include the highest ranked chain certificate CC known
to a replica. The blame message for a replica r has the form 〈blame, v, CC〉r. After quitting a view v, replica
r sets blame-timerv to 2∆ and starts counting down.

The requirements for a pre-commit in this protocol is identical to the requirements for a commit in the
protocol in Section 4. Hence, a similar intuition for those steps apply here as well. The key differences are (i)
if a replica r has blamed the leader, it does not send a commit message after pre-committing, and (ii) when
a blame message is sent, the replica also broadcasts its highest chain certificate CC with it. Both of these
steps are related to the safety of performing a responsive view-change and hence, we explain the intuition
after we describe the view-change protocol.

6.2 View-change Protocol

Unlike a synchronous view-change as shown in Figure 2 that waits 2∆ before entering a new view, a responsive
view-change allows replicas to quit current view and immediately transition to the next view without any
delay. In the new view, a leader can also propose blocks without waiting for an additional 2∆ time. We
make the following modifications to the view-change protocol to accommodate the responsive view-change.

Status. The status step includes two rules for entering into the new view. A replica r enters into view v+ 1
based on which rule is triggered first. A responsive rule is triggered when replica r receives a responsive

blame certificate with a set Q
3/4
B of b3n/4c+ 1 blame messages in view v and enters view v+ 1 immediately.

Replica r broadcasts the blame certificate to all replicas, updates its lock, lockv+1 to a highest ranked chain
certificate and sends lockv+1 to the new leader L′ via a status message. The responsive status rule ensures
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Let v be the view number and replica L be the leader of the current view. While in view v, a replica r
runs the following steps in iterations:

1. Propose. If replica r is the leader L, upon receiving Cv(Bk−1), it broadcasts
〈propose, Bk, v, Cv(Bk−1)〉L where Bk extends Bk−1.

2. Vote. Upon receiving the first proposal 〈propose, Bk, v, Cv(Bk−1)〉L with a valid view v certificate for
Bk−1 (not necessarily from L) where Bk extends Bk−1, forward the proposal to all replicas, broadcast
a vote in the form of 〈vote, Bk, v〉r. Set commit-timerv,k to 3∆ and start counting down.

3. Pre-commit. Replica r pre-commits Bk using one of the following rules if r is still in view v:

(a) Responsive Pre-commit. On receiving b3n/4c + 1 votes for Bk, i.e., C3/4v (Bk) in view

v, pre-commit Bk, and broadcast a notify in the form of 〈notify, C3/4v (Bk), v〉r. If r hasn’t
sent a blame message in view v, broadcast 〈commit, Bk, v〉r. Reset commit-timerv,k to
min(2∆, commit-timerv,k) and start counting down.

(b) Synchronous Pre-commit. If commit-timerv,k reaches ∆, pre-commit Bk. If r hasn’t sent a
blame message in view v, broadcast 〈commit, Bk, v〉r to all replicas.

4. (Non-blocking) Commit. If replica r is still in view v, r commits Bk using the following rules:

(a) Responsive Commit. On receiving b3n/4c+ 1 commit messages for Bk in view v, commit Bk
and all its ancestors. Stop commit-timerv,k.

(b) Synchronous Commit. If commit-timerv,k reaches 0, commit Bk and all its ancestors.

5. Yield. Upon committing at least a block in view v, Leader L broadcasts 〈yield, v〉L when it wants
to renounce leadership.

6. (Non-blocking) Blame and quit view.

- Blame if no progress. For p > 0, if fewer than p proposals trigger r’s votes in (2p+ 4)∆ time
in view v, broadcast 〈blame, v, CC〉r where CC is the highest ranked chain certificate known to r.

- Quit view on f+1 blame messages. Upon gathering f+1 distinct blame messages, broadcast
them. If r hasn’t blamed in view v, broadcast 〈blame, v, CC〉r. Abort all view v timers, and quit
view v. Set blame-timerv to 2∆ and start counting down.

- Quit view on detecting equivocation. If leader equivocation is detected, broadcast
〈blame, v, CC〉r along with the equivocating proposals, abort all view v timers, and quit view
v. Set blame-timerv to 2∆ and start counting down.

- Quit view on yield. Upon receiving yield, broadcast 〈blame, v, CC〉r message along with yield
message, abort all view v timers, and quit view v. Set blame-timerv to 2∆ and start counting
down.

Figure 5: Steady state protocol for optimistically responsive view-change.
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Let L and L′ be the leader of view v and v + 1, respectively.

i) Status. Replica r can enter view v + 1 using one of the following rules:

a) Responsive. Upon gathering b3n/4c + 1 distinct blame messages, broadcast them. Update its
chain certificate CC to the highest possible rank. Set lockv+1 to CC and send 〈status, lockv+1〉r to
L′. Enter view v + 1 immediately. Stop blame-timerv.

b) Synchronous. When blame-timerv expires, update its chain certificate CC to the highest possible
rank. Set lockv+1 to CC and send 〈status, lockv+1〉r to L′. Enter view v + 1.

ii) New View. Upon receiving a set S of f+1 distinct status messages after entering view v+1, broadcast
〈new-view-resp, v + 1, lockv+1〉L′ along with S where lockv+1 is highest ranked chain certificate in S.

iii) First Vote. Upon receiving the first 〈new-view-resp, v+ 1, lock′〉L′ along with S, if lock′ has a highest
rank in S, update lockv+1 to lock′, broadcast 〈new-view-resp, v+1, lock′〉L′ , and 〈vote, tip(lock′), v+1〉r.

Figure 6: The optimistically responsive view-change protocol

that a replica receives a responsively committed blocks when making immediate transition to a higher view.
This is critical to maintain the safety of protocol (explained later). Due to the synchrony assumption, all
other honest replicas receive the responsive blame certificate B within ∆ time and transition immediately to
view v + 1.

The synchronous status rule is triggered when blame-timerv expires. Note that the blame-timerv was

set to 2∆. The 2∆ wait ensures that all honest replicas receive a responsive certificate C3/4v (Bk) for some
possibly committed block Bk before entering view v + 1. Replica r enters view v + 1, and updates its lock,
lockv+1 to a highest ranked chain certificate and sends lockv+1 to the new leader L′ via 〈status, lockv+1〉r.

New-View. Upon entering view v + 1, the leader waits for a set S of f + 1 status messages. We call the
set S of f + 1 status messages as status certificate. Based on the status certificate S, L′ picks the highest
ranked chain certificate lockv+1 and broadcasts new-view message 〈new-view-resp, v+1, lockv+1〉L′ along with
S. Sending S along with new-view message justifies that tip(lockv+1) extends committed blocks in previous
view.

First-Vote. Upon receiving a 〈new-view-resp, v + 1, lock′〉L′ message along with status certificate S, if
chain certificate lock′ has the highest rank in S, then it forwards the new-view message to all replicas and
broadcasts a vote for it. Note that replica r may have lockv+1 with rank higher than lock′. A replica votes
for lock′ as long as lock′ is vouched by S. This is critical to ensure safety across views.

Next, we provide some intuition on how the view-change protocol provides liveness and safety across
views.

How is the safety of a responsive commit maintained across views? Suppose an honest replica

r responsively commits a block Bk at time t. A responsive commit for a block Bk requires a set Q
3/4
C of

b3n/4c + 1 commit messages. A responsive view-change requires a set Q
3/4
B of b3n/4c + 1 blame messages.

Due to a quorum intersection argument, Q
3/4
C and Q

3/4
B intersect in at least one honest replica h which sends

chain certificate CC such that tip(CC) extends Cv(Bk). Observe that this also explains why (i) highest ranked
chain certificate issent with a blame message, and (ii) a replica does not send a commit message if it has
blamed the leader. For (i), the highest chain certificate CC such that tip(CC) extends Cv(Bk) from the honest
replica h at the intersection allows another replica r′ performing a responsive view change to learn about the
commit of Bk. For (ii), if the honest replica at the intersection h does send a commit message for a block
Bk+1, r′ would not know of a potential commit of Bk+1, and it could vote for blocks that do not extend
Bk+1 and cause a safety violation.

A synchronous view-change waits 2∆ time before moving to a higher view. Note that a replica making
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a synchronous view-change hasn’t entered a higher view by time t + ∆. If an honest replica r′ ∈ Q
3/4
C

pre-commits responsively by time t, its notify containing C3/4v (Bk) must reach all honest replicas by time

t + ∆. If replica r′ ∈ Q3/4
C pre-commits synchronously, honest replicas making a synchronous view-change

receive Cv(Bk) by the time r′ pre-commits. Thus, all honest replicas lock on chain certificate CC such that
tip(CC) extends Cv(Bk).

How is the safety of a synchronous commit maintained across views? Consider replica r votes for
Bk at time t′ and synchronously commits at time t. If replica r pre-commits responsively at time s with
s− t′ < ∆, it waits 2∆ before its commit-timerv,k expires. Note that no honest replica has entered a higher

view by time t−∆. Replica r′s notify containing C3/4v (Bk) arrives all honest replicas by time s+ ∆ (i.e., by
time t−∆). In all other cases, replica r waits 3∆ time before its commit-timerv,k expires and replica r votes
at time t− 3∆. This implies all honest replicas receive Cv(Bk) by time t−∆. Any view-change after t−∆
will receive Cv(Bk) or higher and honest replicas will lock on chain certificate CC such that tip(CC) extends
Cv(Bk) before entering a higher view.

Why is it safe to vote for a valid new-view message with a lower ranked lock? The commit rules
in the protocol ensure that there does not exist an equivocating chain certificate CC ′ such that tip(CC ′)
does not extend committed blocks. This implies honest replicas lock on chain certificates that extend the
committed blocks. After entering a higher view, honest replicas send their locked chain certificates via a
status message. The new leader collects a status certificate S of f + 1 status messages, extends on the
highest ranked certified block in S. Note that an honest replica sends a status message only after entering
a higher view and has locked on a chain certificate that extends committed blocks in the previous view. As
S contains status from at least one honest replica, the highest ranked chain certificate lock′ in S will extend
committed blocks in the previous view. Thus, it is safe for replicas to unlock a lock with a rank higher than
lock′.

In the new view, due to the status certificate, all honest replicas will vote for the new-view message sent
by an honest leader. Subsequently, in the steady state, honest replicas will keep committing new blocks.

6.3 Safety and Liveness

Claim 19. If a block Bk is committed directly in view v using the responsive commit rule, then there does
not exist a chain certificate CC′ in view v such that CC′ > CC where tip(CC) extends Bk and a block in CC′
equivocates Bk.

Proof. If a replica r responsively commits a block Bk in view v, then r must have received b3n/4c+1 distinct
commit messages out of which at least a set R of b(n−f)/2 + 1c are from honest replicas. An honest replica
(say, r′ ∈ R) sends commit message only if it pre-commits and has not sent a blame message.

Replica r′ can pre-commit in two ways. First, r′ received b3n/4c + 1 votes for Bk in view v and pre-
committed responsively. This case is identical to responsive commit rule for the protocol in Section 4. By

Claim 6, an equivocating chain certificate CC′ of rank higher than (C3/4v (Bk),⊥) cannot exist in view v.
Second, replica r′ voted for Bk at time t − 2∆ and received no equivocation or blame certificate by time t
and synchronously pre-commits at time t. This case is identical to synchronous commit rule for the protocol
in Section 4. By Claim 7, there does not exist a block certificate for an equivocating block in view v. Thus,
chain certificate CC′ with an equivocating block such that CC′ > CC cannot exist in view v.

Claim 20. If a block Bk is directly committed in view v, using the synchronous commit rule then there does
not exist a chain certificate CC′ in view v such that CC′ > CC where tip(CC) extends Bk and a block in CC′
equivocates Bk.

Proof. Replica r synchronously commits a block Bk when its commit-timerv,k expires. Replica r could pre-
commits in two ways. First, replica r pre-commits responsively and then waits at least 2∆ time. The
responsive pre-commit rule is identical to the responsive commit rule for the protocol in Section 4. By

Claim 6, an equivocating chain certificate CC′ of rank higher than (C3/4v (Bk),⊥) cannot exist in view v.
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Second, replica r synchronously pre-commits at time t, i.e., it voted for Bk at time t− 2∆ and received
no equivocation or blame certificate by time t. This case is identical to synchronous commit rule for the
protocol in Section 4. By Claim 7, there does not exist a block certificate for an equivocating block in view
v. Thus, chain certificate CC′ with an equivocating block cannot exist in view v.

Lemma 21. If a block Bk is directly committed in view v, then there does not exist a chain certificate CC′
in view v such that CC′ > CC where tip(CC) extends Bk and a block in CC′ equivocates Bk.

Proof. Straightforward from Claim 19 and Claim 20.

Claim 22. Let Bk be a block proposed in view v using Step 1 in Figure 5. If an honest replica votes for
Bk at time t in view v and detects no equivocation or blame certificate at time ≤ t+ 2∆, then (i) all honest
replicas are in view v at time t+ ∆ (ii) all honest replicas vote for Bk at time ≤ t+ ∆.

Proof. Suppose an honest replica r votes for Bk at time t in view v and detects no equivocation or blame
certificate by time t + 2∆. This implies two facts. First, replica r entered view v at time ≤ t. If r quit
the previous view responsively, i.e., by receiving b3n/4c+ 1 blame messages, it must have sent a responsive
blame certificate at time ≤ t. All honest replicas receive the responsive blame certificate and enter view v at
time ≤ t+ ∆. If r quit the previous view due to f + 1 blame messages, it must have sent a blame certificate
at time ≤ t − 2∆ which arrives all honest replicas at time ≤ t − ∆. Due to the 2∆ wait after receiving
f +1-sized blame certificate, all honest replicas enter view v at time ≤ t+∆. We note that no honest replica
has quit view v at time ≤ t + ∆; otherwise, replica r receives a blame certificate at time ≤ t + 2∆. This
proves part (i) of the claim.

Replica r received a proposal for Bk which contains Cv(Bk−1) at time t. Replica r’s vote and forwarded
proposal for Bk arrives at all honest replicas at time ≤ t+∆. No honest replica has voted for an equivocating
block or received a blame certificate at time ≤ t+∆; otherwise replica r would have received an equivocation
or blame certificate at time ≤ t+ 2∆. Thus, all honest replicas will vote for Bk at time ≤ t+ ∆. This proves
part (ii) of the claim.

Claim 23. Let Bk be a block proposed in view v using Step 1 in Figure 5. If an honest replica votes for
Bk at time t in view v and detects no equivocation or blame certificate at time ≤ t+ 3∆, then (i) all honest
replicas are still in view v at time t+ 2∆ (ii) all honest replicas receive Cv(Bk) at time ≤ t+ 2∆.

Proof. Suppose an honest replica r votes for a block Bk at time t in view v and detects no equivocation or
blame certificate by time t + 3∆. Trivially, replica r has not received an equivocation or blame certificate
by time t+ 2∆. By Claim 22 (i), all honest replicas are in view v at time t+ ∆. No honest replica has quit
view v by time t + 2∆; otherwise replica r must receive blame certificate by time t + 3∆ contradicting our
hypothesis. Thus, all honest replicas are still in view v at time t+ 2∆. This proves part (i) of the claim.

If replica r receives no equivocation or blame certificate at time ≤ t+ 3∆, it is easy to see that replica r
receives no equivocation or blame certificate by time t + 2∆. By Claim 22, all honest replicas vote at time
≤ t+ ∆. By synchrony assumption, all honest replicas receive at least f + 1 votes for Bk i.e., Cv(Bk) at time
≤ t+ 2∆. This proves part (ii) of the claim.

Claim 24. If an honest replica directly commits a block Bk in view v using the responsive commit rule, then
all honest replicas receive a chain certificate CC before entering view v + 1 such that tip(CC) extends Bk.

Proof. We first discuss the case where some replica performs a view-change due to a responsive blame
certificate, and then discuss a view-change due to a synchronous blame certificate. Suppose an honest

replica r receives a set Q
3/4
C of b3n/4c+ 1 commit messages for block Bk in view v and responsively commits

Bk at time t. Thus, all honest replicas in Q
3/4
C must have received Cv(Bk) before sending the commit message.

By Claim 19, there does not exist a chain certificate CC′ in view v such that CC′ > CC where tip(CC) extends

Bk and a block in CC′ equivocates Bk. Consider the quorum Q
3/4
B that made some honest replica r′ quit

view v. r′ receives a responsive blame certificate of b3n/4c + 1 blame messages each of which contains a

chain certificate when the blame message was sent. By quorum intersection argument, Q
3/4
C and Q

3/4
B must
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intersect in at least one honest replica. Thus, the intersecting honest replica must include a higher ranked
chain certificate CC where tip(CC) extends Bk in blame message. This implies any replica that makes a
responsive view-change must receive CC before entering view v + 1.

Consider a view-change due to a synchronous blame certificate. Observe that any honest replica (say,
replica u) that quits view v due to a synchronous blame certificate has not entered view v+ 1 at time t+ ∆;
otherwise replica u must have sent a blame certificate at time ≤ t − ∆ (due to the 2∆ wait in the status
step) and r must receive the blame certificate at time ≤ t and r wouldn’t commit. If some honest replica r′

in Q
3/4
C pre-committed responsively, r′ notifies C3/4v (Bk) by time t and replica u receives C3/4v (Bk) at time

≤ t+ ∆. Similarly, if replica r′ synchronously pre-commits Bk by time t, it votes for Bk by time t− 2∆ and
detects no equivocation or blame certificate by time t. By Claim 22 (ii), all honest replicas vote for Bk by
time t−∆. Hence, replica u receives Cv(Bk) by time t before entering view v + 1. This implies any replica
that makes a synchronous view-change has CC before entering view v + 1 such that tip(CC) extends Bk.

Claim 25. If an honest replica directly commits a block Bk in view v using the synchronous commit rule,
then all honest replicas receive a chain certificate CC before entering view v+ 1 such that tip(CC) extends Bk.

Proof. Suppose an honest replica r synchronously commits a block Bk at time t in view v. Its commit-timerv,k
for Bk expires at time t without detecting an equivocation or blame certificate.

Let t′ be the time at which replica r votes for Bk. If replica r pre-commits responsively and notifies

C3/4v (Bk) at time s with s− t′ < ∆, it waits at least 2∆ (with s+ 2∆ = t) before its commit-timerv,k expires.
It is easy to see that replica r voted at time t′ and hasn’t detected an equivocation or blame certificate by
time t′ + 2∆. By Claim 22 (i), all honest replicas are in view v by time t′ + ∆. All honest replicas are still
in view v at time t−∆; otherwise, replica r must have received a blame certificate by time t and wouldn’t

commit. Replica r’s notify containing C3/4v (Bk) reaches all honest replicas at time ≤ s + ∆ i.e., at time

≤ t−∆. Hence, all honest replicas receive C3/4v (Bk) before entering view v + 1.
In all other cases, replica r waits for 3∆ before its commit-timerv,k expires. Replica r votes for Bk in view

v at time t− 3∆ and detects no equivocation or blame certificate by time t. By Claim 23, all honest replicas
are in view v at time t−∆ and receive Cv(Bk) by time t−∆. Thus, all honest replicas receive Cv(Bk) before
entering view v + 1. This implies all honest replicas have a chain certificate CC such that tip(CC) extends
Bk.

Lemma 26. If an honest replica directly commits a block Bk in view v, then all honest replicas have lockv+1

before entering view v + 1 such that tip(lockv+1) extends Bk.

Proof. By Claim 24 and Claim 25, all honest replicas receive a certificate chain CC such that tip(CC) extends
Bk. By Lemma 21, there doesn’t exists an equivocating chain certificate CC′ in view v such that CC′ > CC.
Since, honest replicas lock on highest ranked chain certificate, all honest replicas update lockv+1 to CC with
tip(lockv+1) extending Bk.

Claim 27. If an honest replica directly commits a block Bk in view v, the tip of a highest ranked chain
certificate CC in a view v status certificate, i.e., tip(CC) must extend Bk.

Proof. Suppose an honest replica r commits a block Bk in view v. By Lemma 26, all honest replicas lock
on CC before entering view v + 1 such that tip(CC) extends Bk. An honest replica sends status message
containing their CC only after entering view v + 1. A view v status certificate contains a set S of f + 1
status messages which includes the status message from at least one honest replica. By Lemma 21, there
does not exist a chain certificate CC′ in view v such that CC′ > CC where tip(CC) extends Bk and a block
in CC′ equivocates Bk. Thus, the tip of highest ranked chain certificate CC in S, i.e., tip(CC) must extend
Bk.

Corollary 28. If the tip of highest ranked chain certificate CC in a view v status certificate, i.e., tip(CC)
does not extend a block Bk, then Bk has not been committed in view v.
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Lemma 29 (Unique Extensibility). If an honest replica directly commits a block Bk in view v, and Cv′(Bk′)
is a view v′ > v block certificate, then Bk′ extends Bk. Moreover, all honest replicas have lockv′ such that
tip(lockv+1) extends Bk.

Proof. The proof is by induction on the view v′ > v. For a view v′, we prove that if Cv′(tip(lock′)) exists
then it must extend Bk. A simple induction then shows that all later block certificates must also extend
tip(lock′), this follows directly from the Vote rule in line 2.

For the base case, where v′ = v + 1, the proof that Cv′(tip(lock′)) extends Bk follows from Lemma 26
because the only way such a block can be certified is if some honest replica votes for it. However, all honest
replicas are locked on a block that extends Bk and a chain certificate with a higher rank for an equivocating
block does not exist. Although, honest replicas unlock on their locked chain certificates lockv+1 and lock
on a highest ranked chain certificate lock′ in a status certificate S, by Claim 27, tip(lock′) must extend Bk.
Thus, no honest replica will first vote (Figure 2 step iii) for a block that does not extend Bk. The second
part follows directly from Lemma 26.

Given that the statement is true for all views below v′, the proof that Cv′(tip(lock′)) extends Bk follows
from the induction hypothesis because the only way such a block can be certified is if some honest votes for
it. An honest party with a lock lock will vote only if tip(lockv′) has a valid block certificate and lock ≥ lockv′ .
Due to Lemma 26 and the induction hypothesis on all block certificates of view v < v′′ < v′ is must be that
Cv′(tip(lock)) extends Bk.

Safety. The safety proof remains identical to that of Theorem 12 except Lemma 21 and Lemma 29 needs
to be invoked.

Theorem 30 (Liveness). All honest replicas keep committing new blocks.

Proof. In a view, a leader has to propose at least p blocks that trigger honest replica’s votes in (2p + 4)∆
time. As long as the leader proposes at least p valid blocks, honest replicas will keep voting for the blocks
and keep committing the proposed blocks. If the Byzantine leader equivocates or proposes less than p blocks,
a view-change will occur. Eventually, there will be an honest leader due to round-robin leader election.

Next, we show that once the leader is honest, a view-change will not occur and all honest replicas keep
committing new blocks. If a block Bk has been committed in a previous view, by Lemma 26, all honest
replicas lock on a chain certificate lockv+1 such that tip(CC) extends Bk before entering a new view. After
entering a new view, honest replicas send their locked CC to the new leader in status message. The new
leader extends on the tip of a highest ranked chain certificate (say, lock′) in a status certificate S. Even if
some honest replicas are locked on chain certificates (say, CC”) that rank higher than lock′), by Corollary 28
it is safe to unlock on CC”). Hence, honest replicas will vote for blocks that extend tip(lock′). After that, the
honest leader can propose at least one block in 2∆ time and keep making progress. Moreover, the honest
leader doesn’t equivocate. This ensures all honest replicas keep committing new blocks.

7 Related Work

There has been a long line of work on Byzantine agreement starting at the Byzantine Generals Problem by
Lamport, Shostak and Pease [19]. Dolev and Strong [10] presented a deterministic solution to the Byzantine
Broadcast problem in the synchronous model and tolerates f < n− 1 faults. Their protocol achieves f + 1
round complexity and O(n2f) communication complexity. Several other works [1, 4, 11, 12, 16, 23, 15]
have been proposed to improve the round complexity. We review the most recent and closely related works
below. In particular, we make comparisons with synchronous BFT protocols with the notion of optimistic
and synchronous commit paths. Compared to all of these protocols, our responsive commit incurs an optimal
latency of 2δ and our synchronous commit incurs a latency of 2∆ time while tolerating the same number of
faults.

Thunderella. The idea of optimistic responsiveness in a back-and-forth slow-path–fast-path paradigm was
first introduced in Thunderella [22]. They commit a decision in a single round under optimistic executions
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but fall back on O(κ∆) or O(n∆) Nakamoto or Dolev-Strong slow paths when optimistic conditions are not
met. Moreover, the time to switch between these paths are O(κ∆) or O(n∆) respectively.

Sync HotStuff. Sync HotStuff [2] presents a synchronous SMR protocol with an optimistically responsive
commit path. Like Thunderella, it is presented in a back-and-forth slow-path–fast-path paradigm. If started
in the wrong path, their responsive commit will incur a latency of 2∆ +O(δ) time and synchronous commit
incurs 4∆ + O(δ) time. Compared to them, our protocol in Section 6 can also perform an optimistically
responsive view change, while their view change always incurs a 2∆ delay.

PiLi. PiLi [7] presents a BFT SMR protocol that progresses through a series of epochs. The protocol
assumes lock-step execution in epochs. Each epoch either lasts for 5∆ time under normal conditions or O(δ)
time during optimistic executions. The protocol commits 5 blocks after 13 consecutive epochs. PiLi has a
responsive commit latency of at least 16δ-26δ and incurs a synchronous latency of 40∆-65∆.
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