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ABSTRACT
Synchronous consensus protocols, by definition, have a worst-case

commit latency that depends on the bounded network delay. The

notion of optimistic responsiveness was recently introduced to

allow synchronous protocols to commit instantaneously when some

optimistic conditions are met. In this work, we revisit this notion

of optimistic responsiveness and present optimal latency results.

We present a lower bound for Byzantine Broadcast that relates

the latency of optimistic and synchronous commits when the desig-

nated sender is honest and while the optimistic commit can tolerate

some faults. We then present two matching upper bounds for toler-

ating f faults out of n = 2f +1 parties. Our first upper bound result
achieves optimal optimistic and synchronous commit latency when

the designated sender is honest and the optimistic commit can toler-

ate at least one fault. We experimentally evaluate this protocol and

show that it achieves throughput comparable to state-of-the-art

synchronous and partially synchronous protocols and under opti-

mistic conditions achieves latency better than the state-of-the-art.

Our second upper bound result achieves optimal optimistic and

synchronous commit latency when the designated sender is honest

but the optimistic commit does not tolerate any faults. The pres-

ence of matching lower and upper bound results make both of the

results tight for n = 2f + 1. Our upper bound results are presented

in a state machine replication setting with a steady-state leader

who is replaced with a view-change protocol when they do not

make progress. For this setting, we also present an optimistically re-

sponsive protocol where the view-change protocol is optimistically

responsive too.

KEYWORDS
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1 INTRODUCTION
Byzantine fault-tolerant (BFT) protocols based on a synchronous

network have a high resilience of up to one-half Byzantine faults.

In comparison, BFT protocols under asynchronous or partially syn-

chronous networks can tolerate only one-third Byzantine faults.

Although partially synchronous protocols have a lower tolerance

for Byzantine faults, they have an advantage in terms of the latency

to commit – they can commit in O(δ ) time where δ is the actual

latency of the network. On the other hand, the latency for synchro-

nous protocols depends on ∆, where ∆ is a pessimistic bound on

the network delay.
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A recent work, Hybrid Consensus [23], formalized this differ-

ence by introducing a notion called responsiveness. A protocol is

responsive if its commit latency depends only on the actual net-

work delay δ , but not the pessimistic upper bound ∆. In this regard,

asynchronous and partially synchronous protocols are responsive

by design, whereas synchronous protocols are not.

For synchronous protocols, a notion called optimistic responsive-
ness was introduced by Thunderalla [24]; this allows synchronous

protocols to commit responsively when some optimistic conditions
are met. Thunderella is safe against up to one-half Byzantine faults.

Moreover, if a “leader” and > 3n/4 replicas are honest, and if they

are on a “fast-path”, then replicas can commit responsively in O(δ )
time; otherwise, the protocol falls back to a “slow-path”, which has

a commit latency that depends on ∆.
The Thunderella paradigm of optimistic responsiveness requires

replicas to know which of the two paths they are in, and explicitly

switch between them. If, at some point, the optimistic conditions

cease to be met, the replicas switch to the slow-path. When they

believe the optimistic conditions start to hold again, they switch

back to the fast-path. Thunderella uses Nakamoto’s protocol [22] or

the Dolev-Strong protocol [10] as their slow-path. Thus, the slow-

path, as well as the switch between the two paths, is extremely

slow, requiringO(κ∆) andO(n∆) latency respectively (where κ is a

security parameter). The slow-path latency can be improved to 2∆
using state-of-the-art synchronous protocols [2].

Can we further improve the latency of optimistically respon-

sive synchronous protocols? Before answering the question, let us

emphasize an important point in the study of optimistic responsive-

ness: replicas do not know whether the optimistic conditions are

met. If all the replicas know, in the case of Thunderella, whether

or not fewer than 1/4 replicas are Byzantine, then we can use a

protocol with optimal latency for that setting. Under optimistic

conditions, we can use partially synchronous protocols [6, 7, 18, 28]

to commit responsively; otherwise, we can use a state-of-the-art

synchronous protocol tolerating a minority faults to commit in

∆ +O(δ ) time [2, 3]. In contrast, the fast-path-slow-path switching

paradigm, even if it uses optimal protocols in the two respective

paths, still leaves a lot to be desired. If we start off in the wrong path,

then we incur an additional switching delay, making the latency

worse than either of the competing options under their respec-

tive conditions. More importantly, since there is no way to verify

whether the optimistic conditions hold, such a protocol cannot tell

when to switch to the fast-path, and hence will likely “miss out” on

some periods with optimistic conditions.

Our paper explores optimality of optimistic responsiveness with

the above restriction in mind. Specifically, we ask,



What is the optimal latency of an optimistically respon-
sive synchronous protocol?

To answer this question, we obtain tight upper and lower bounds

for the latency of such protocols.We also show that our protocol has

better latency and comparable throughput in practice compared to

state-of-the-art synchronous and partially synchronous protocols.

A lower bound on the latency of an optimistically respon-
sive synchronous protocol. Our first result presents a lower

bound on the latency of such optimistically responsive synchronous

protocols. Specifically, we show the following result:

Theorem 1 (Lower bound on the latency of an optimisti-

cally responsive synchronous protocol, informal). There does
not exist a Byzantine Broadcast protocol that can tolerate f > n/3
faults and when all messages between non-faulty parties arrive in-
stantaneously, achieves the following simultaneously under an honest
designated sender:

(i) (optimistic commit) a commit latency of O(δ ) in the presence of
max(1,n − 2f ) faults, and

(ii) (synchronous commit) a commit latency of < 2∆ −O(δ ) in the
presence of f faults.

The lower bound says that if a Byzantine Broadcast protocol

tolerating f > n/3 corruption has an optimistic (fast) commit

with latency O(δ ) while still being able to tolerate max(1,n − 2f )
faults, then the synchronous (slow) commit should have a latency

≥ 2∆ −O(δ ) when tolerating f faults.

Our next two results present matching upper bounds for n =
2f + 1. Thus, both our bounds are tight. In our protocols, when

the conditions for an optimistic commit are met, replicas commit

optimistically. Otherwise, they commit using the synchronous com-
mit rule. Thus, intuitively, they exist in both paths simultaneously
without requiring an explicit switch. Since all of our upper bounds

requireO(δ ) time for the optimistic commit, whenever appropriate,

we also call it a responsive commit.

Optimal optimistic responsiveness with 2∆-synchronous la-
tency and > 3n/4-sized responsive quorum. Our first protocol
obtains optimistic responsiveness where the synchronous commit

has a commit latency of 2∆, while the responsive commit has a

latency of 2δ using quorums of size > 3n/4. Specifically, we show
the following:

Theorem 2 (Optimistic responsivenesswith 2∆-synchronous
latency and > 3n/4-sized responsiveqorum, informal). There
exists a Byzantine Broadcast protocol tolerating < n/2 faults, and
under an honest sender achieves the following simultaneously:

(i) (responsive commit) a commit latency of 2δ when > 3n/4 replicas
are honest, and

(ii) (synchronous commit) a commit latency of 2∆ +O(δ ) otherwise.

Intuitively, the fundamental property that this upper bound pro-

vides in comparison to Thunderella or Sync HotStuff is simultaneity,
i.e., replicas do not need to on agree on specific paths for performing

a responsive commit or a synchronous commit. Moreover, the pa-

rameters obtained in this result are optimal. First, the early stopping

lower bound due to Dolev-Reischuk-Strong [9] states that when

the number of faults is f , and the maximum number of faults is t ,

each execution of Byzantine Broadcast requires min(t + 1, f + 2)
rounds. Hence, no protocol tolerating a fault can have latency less

than 2δ . Second, the > 3n/4 quorum size is tight due to a lower

bound in Thunderella [24]; the bound says that no protocol can

have a worst-case resilience of one-half Byzantine replicas while be-

ing optimistically responsive for more than n/4 Byzantine replicas.
Finally, latency for the synchronous commit is optimal (ignoring

O(δ ) delays) due to our first result (Theorem 1).

Optimal optimistic responsiveness with ∆-synchronous la-
tency and n-sized responsive quorum. In Theorem 1, the 2∆ −

O(δ ) latency for a synchronous commit is applicable only when

the optimistic commit can tolerate max(1,n − 2f ) faults. In this

result, we show that the synchronous latency can be improved if

the optimistic commit guarantees hold only when all n = 2f + 1
replicas are honest.

Theorem 3 (Optimistic responsiveness with ∆-synchronous
latency andn-sized responsiveqorum, informal). There exists
a Byzantine Broadcast protocol tolerating < n/2 faults, and under an
honest sender achieves the following simultaneously:

(i) (responsive commit) a commit latency of 2δ when all n replicas
are honest, and

(ii) (synchronous commit) a commit latency of ∆ +O(δ ) otherwise.

The responsive commit latency is optimal due to Dolev et al. [9]

while the synchronous commit latency ∆ is optimal (ignoring O(δ )
delays) due to the lower bound in Sync HotStuff [2].

Implementation and evaluation. We implement and evaluate

the performance of our first protocol and compare it with state-

of-the-art synchronous and partially synchronous protocols. We

note that although the upper bounds were presented for Byzantine

Broadcast in the theorem statements, in practice, such protocols will

be useful in a state machine replication (SMR) setting for consensus

on a sequence of values. Hence, we describe as well as implement

our protocols in an SMR setting. In the SMR setting, our proto-

cols assume a steady state leader proposing a sequence of values.

Whenever the leader does not make progress, it is replaced using

a view-change protocol. An honest designated sender in Byzan-

tine Broadcast is thus equivalent to having an honest leader in a

state machine replication setting. Thus, when the leader is honest,

our protocol from Theorem 2 can commit every value optimisti-

cally in 2δ time and synchronously in 2∆ + O(δ ). Moreover, the

honest leader can propose consecutive values as fast as 2δ time

independent of whether commits are performed responsively or

synchronously.

In our evaluation, we observe that under optimistic conditions,

our latency is better than even a partially synchronous protocol

such as HotStuff [28] since HotStuff requires more rounds of com-

munication. Our protocol also obtains a throughput comparable to

these protocols.

Optimistic responsivenesswith responsive view-change.Our
upper bound protocols can commit responsively when the leader is

honest and optimistic conditions are met. However, when executing

on a sequence of values, for reasons such as fairness or distribution

of work, we may want to change leaders every block, or every few

blocks. Indeed, several recent protocols have been designed with



this goal in mind [2, 7, 8, 13, 15, 27]. For the upper bounds described

earlier, the view-change protocols, although efficient, still require

4∆ +O(δ ) time. Such a latency is reasonable if a view-change hap-

pens only occasionally. However, the incurred latency maybe high

if we need to change views after every block. Moreover, the latency

is incurred even when the optimistic conditions are met.

Our final result addresses this concern and presents a protocol

which has an optimistically responsive view-change as well. Thus,

when rotating among honest leaders and if > 3n/4 replicas are

honest, the steady state commit and view change can both finish

in O(δ ) time. On the other hand, even if the optimistic conditions

are not met, the protocol requires 2∆ time to do a view change and

3∆ +O(δ ) time to commit a block in the steady state.

Summary of contributions. To summarize, we make the follow-

ing contributions in this work:

(1) We present a lower bound on the latency for optimistic respon-

siveness (Section 3).

(2) We present matching upper bounds. Section 4 presents an op-

timal optimistically responsive protocol with 2∆-synchronous
latency tolerating at least 1 fault in the responsive commit. Sec-

tion 5 presents an optimal optimistically responsive protocol

with ∆-synchronous latency tolerating no crash faults in the

responsive commit.

(3) We evaluate our 2∆-synchronous protocol in Section 7.

(4) We present an optimistically responsive protocol that includes

an optimistically responsive view-change (Appendix 6).

2 MODEL AND DEFINITIONS
We consider a standard State Machine Replication (SMR) problem

used for building a fault tolerant service to process client requests.

The system consists n replicas out of which f < n/2 replicas are
Byzantine faulty. Byzantine replicas may behave arbitrarily. The

aim is to build a consistent linearizable log across all non-faulty

(honest) replicas such that the system behaves like a single non-

faulty server in the presence of f < n/2 Byzantine replicas.

Definition 4 (Byzantine Fault-tolerant State Machine Replication
[26]). A Byzantine fault-tolerant state machine replication protocol

commits client requests as a linearizable log to provide a consistent

view of the log akin to a single non-faulty server, providing the

following two guarantees.

• Safety. Honest replicas do not commit different values at the

same log position.

• Liveness. Each client request is eventually committed by all hon-

est replicas.

We assume the network between replicas includes a standard

synchronous communication channel with point-to-point, authen-

ticated links between them. Messages between replicas may take

at most ∆ time before they arrive, where ∆ is a known maximum

network delay. To provide safety under adversarial conditions, we

assume that the adversary is capable of delaying the message for

an arbitray time upper bounded by ∆. The actual message delay in

the network is denoted by δ . We make use of digital signatures and

a public-key infrastructure (PKI) to prevent spoofing and replays

and to validate messages. Message x sent by a replica p is digitally

signed by p’s private key and is denoted by ⟨x⟩p .

Byzantine Broadcast. Our lower bound is presented for a Byzan-

tine Broadcast setting with a designated sender.

Definition 5 (Byzantine Broadcast). A Byzantine broadcast proto-

col provides the following three guarantees.

• Agreement. If two honest replicas commit values b and b ′ respec-
tively, then b = b ′.

• Termination. All honest replicas eventually commit.

• Validity. If the designated sender is honest, then all honest replicas

commit on the value it proposes.

3 A LOWER BOUND ON THE LATENCY OF
OPTIMISTIC RESPONSIVENESS

An optimistically responsive synchronous protocol has two commit

rules – an optimistic commit rule and a synchronous commit rule.

This lower bound captures the relationship between the latencies

of the two commit rules. Essentially, it says that if the optimistic

commit rule is too fast, then the synchronous commit rule should

be correspondingly slower. Specifically, the sum of the latencies of

the two commit rules should be at least 2∆ time.

In a bit more detail, suppose that there exists a protocol with

an optimistic commit rule tolerating max(1,n − 2f ) faults with
a commit latency of < α time for some 0 < α < ∆ when all

messages arrive instantaneously. The lower bound then proves

that if the optimistically responsive protocol can tolerate f > n/3
Byzantine faults, then its synchronous commit rule cannot have

a latency < 2∆ − α . The converse is also true: if there exists a

protocol tolerating f > n/3 faults and committing with a latency of

< 2∆ − α , then it cannot commit with < α latency in an optimistic

case that toleratesmax(1,n − 2f ) faults even when messages arrive

instantaneously.

Intuition. The intuition behind the lower bound is to show a split-
brain attack that can be performed by a minority of Byzantine

replicas if a protocol has sum of latencies for the two commit rules

to be less than 2∆. For simplicity, we present intuition for α = O(δ )
and n = 2f + 1. First, observe that any protocol tolerating minority

Byzantine faults cannot use quorum sizes larger than n − f = f + 1
in the worst case. Hence, it is always possible that a single honest

replica R commits to a value due to a quorum of messages received

from only the Byzantine replicas if it does not wait long enough

before committing. Second, since the optimistic commit rule can

tolerate at least one crash fault, replicas (set P) committing through

the optimistic rule may commit without receiving any messages

from replica R. Thus, to avoid a safety violation through a split-

brain attack, replicas in P andR should communicate about protocol

instance specific messages with each other. Using the fact that the

adversary can delay any message by up to ∆ time, replicas in P
may not receive the sender’s message in the first ∆ time. Moreover,

it takes ∆ time for messages from P to arrive at R. So, R cannot

be stopped from committing a different value unless it waits for

2∆ time. On the other hand, since P is performing an optimistic

commit, it may not wait for more than O(δ ) (in general, α time)

before committing (not sufficient to receive messages from R).
Before presenting the formal lower bound, we will discuss the

behavior of protocols when initial messages may be delayed by < ∆.
In principle, parties in protocols may behave differently depending



on the schedule of messages. However, all known synchronous

Byzantine Broadcast protocols, to the best of our knowledge, show

β-delay-invariance for β < ∆, i.e., replicas do not take different

actions if the first set of messages they receive are delayed by β time

(although the time at which the actions are taken may be delayed).

This is because under a synchrony assumption, any message can

be delayed by up to ∆ time, and this could have happened to the

first set of messages sent before β . Our lower bound is applicable to
this subclass of protocols with β-delay-invariance. While we do not

know of Byzantine Broadcast protocols that do not belong to this

subclass, it is an interesting open problem to find such a protocol

to circumvent the bound or extend the bound to all protocols. We

now present the formal lower bound below.

Theorem 6 (Lower bound on the latency of an optimisti-

cally responsive synchronous protocol). For 0 < α , β < ∆,
there does not exist a Byzantine Broadcast protocol that can tolerate
f > n/3 faults and achieve the following simultaneously when the
designated sender is honest:

(i) all honest nodes commit before timeα+β when there aremax(1,n−
2f ) crash faults, messages sent by non-faulty nodes before time
β arrive at time β , and messages sent by non-faulty nodes after
time β arrive instantaneously,

(ii) all honest nodes commit before time 2∆ − α when there are f
omission faults and messages sent by non-faulty nodes arrive
instantaneously,

Proof. Suppose there exists a protocol that simultaneously achieves

both properties above. We will show a sequence of worlds, and

through an indistinguishability argument prove a violation in the

agreement property of such a protocol. Consider parties being split

into three groups P , Q , and R such that |P | ≤ f , |Q | ≤ f , and
|R | = max(1,n − 2f ). We suppose the designated sender is in Q .

We set β = ∆ − α in the proof. Recall that under a synchrony

assumption, each message can take anywhere from 0 to ∆ time to

arrive at its destination. We consider three worlds as follows.

World 1.
Setup. Parties in P andQ are honest while parties in R have crashed.

Suppose the honest sender sends input value b.
Message schedule. No messages arrive before time β . After that, all

messages sent among parties in P ∪Q are delivered instantaneously.

Execution and views of honest players. This execution satisfies (i),

so all honest nodes commit before time α + β = ∆. By the validity

property of Byzantine Broadcast, all parties in P ∪ Q commit b
before time ∆.

World 2.
Setup. Parties inQ and R are honest while parties in P are omission

faults. Suppose the honest sender sends input value b ′ , b.
Message schedule. Messages sent by parties in P before time β are

delivered at β . Messages sent by parties in P after time β are omitted.

All the messages between all honest replicas in Q ∪ R (including

those of the sender) are delivered instantaneously. All messages

from R to P are delivered at a delay of ∆. All messages sent by Q to

P before time β are delivered at time β ; All messages sent by Q to

P after time β are delivered instantaneously.

Execution and views of honest players. This execution satisfies (ii),

so all honest nodes commit before time 2∆ − α . By the validity

property, all parties in Q ∪ R commit b ′ before time 2∆ − α .

World 3.
Setup. Parties in P and R are honest while parties in Q (which

includes the designated sender) are Byzantine.

Message schedule. The parties in Q perform a split-brain attack

where they behave like in World 2 towards parties in R, and behave
like in World 1 towards parties in P . Hence, we will denote each
brain of Q as Q1 and Q2 such that Q1 only communicates with P
and Q2 only communicates with R.

Messages sent between P ∪Q1 follow the schedule in World 1,

i.e., these messages are delivered instantaneously, except for the

messages sent before time β are delivered at time β . In addition, all

messages sent from R to P are delayed by ∆.
Messages between Q2 ∪ R follow the schedule described in

World 2, i.e., messages within Q2 ∪ R are delivered instantaneously.

Messages from P to R are delivered at a delay of ∆. Messages re-

ceived by a replica inQ1 from P at time β are forwarded to its other

brain replica in Q2 instantaneously.

Execution and views of honest parties. Since messages from R to P

are delayed to the maximum ∆ time and Q1 behaves exactly as in

World 1, the views of parties in P are exactly the same as in World 1

until time ∆. Hence, parties in P commit b before time ∆.
Similarly, the view of R until time β + ∆ is exactly the same as

World 2. Note that messages sent by P before time β are identical

in all three worlds, because P does not receive any message until

time β in all three worlds. Thus,Q2 receives (viaQ1) the same set of

messages from P asQ in World 2 did. SoQ2 behaves towards R just

like Q in World 2 did. For a message sent by P after time β , the ∆
delay from P to R ensures that R does not receive the message until

time β + ∆ (which was the case in World 2 as well since messages

from P after β were omitted). So, until time β + α = 2∆ − α , the
views of parties in R are exactly the same as in World 2. Hence,

they commit b ′ before time 2∆ − α . This leads to a violation of the

agreement property between P and R. □

4 OPTIMAL OPTIMISTIC RESPONSIVENESS
WITH 2∆-SYNCHRONOUS LATENCY

We first present a simple synchronous consensus protocol that

achieves optimal optimistic responsiveness when the optimistic

commit does not require a quorum of all replicas. In a synchronous
commit, a replica commits 2∆ time after voting (recall that ∆ is an

upper bound on the maximum network delay) if an equivocating

proposal has not been detected. In a responsive commit, a replica
can commit immediately, i.e., without waiting for the 2∆ time pe-

riod, if a sufficient number of replicas have voted for the block

and no equivocation has been detected. For every block, a replica

opportunistically waits to commit using either of the commit rules.

Recall that δ ≤ ∆ is the actual network delay. If a “leader” is

honest then no matter what the adversary does, the system can

commit a block in time 2∆ +O(δ ). But if there are > 3n/4 honest
replicas along with an honest leader, then the system can commit

in time O(δ ) (in an optimistically responsive manner).



Why does our protocol perform better than protocols in the
slow-path–fast-path paradigm? The general strategy employed

in the protocols with back-and-forth slow-path–fast-path paradigm

is to start in one of the two paths, say, the slow path. When the

optimistic conditions are met, an explicit switch is performed to

move to the fast path. Similarly, when a lack of progress is detected

in the fast path, the protocol makes another switch to the slow path.

The explicit switch between the paths incurs a latency of at least ∆
in all of these protocols.

Under minority Byzantine faults, the adversary can attack the

above strategy toworsen the commit latency compared to a protocol

with a single slow path. For example, when the protocol is in slow

path, the adversary responds promptly and the replicas receive

> 3n/4 responses thereby triggering a switch to fast path. Once in

the fast path, the adversary stops responding and prevents progress.

This forces an explicit switch to the slow path again. Under this

attack, a single decision can incur a latency of 4∆ if the replicas are

in the fast path and then switch to the slow path to commit. In the

fast path, replicas never commit if the adversary does not respond.

Our protocol avoids this concern by avoiding an explicit switch.

Instead, both paths are active simultaneously. As a result, when

the leader is honest, the commit latency is 2δ during optimistic

executions and 2∆ otherwise.

View-based execution. Like PBFT [6], our protocol progresses

through a series of numbered views with each view coordinated by

a distinct leader. Views are represented by non-negative integers

with 0 being the first view. The leader of the current view v is

determined by (v mod n). Within each view, also called the steady

state, the leader is expected to propose values and keep making

progress by committing client requests at increasing heights. An
honest replica participates in any one view at a time and moves

to a higher numbered view when the current view fails to make

progress. If the replicas detect equivocation or lack of progress in

a view, they initiate a view-change by blaming the current leader.

When a quorum of replicas have blamed the current leader, they

perform a view-change and replace the faulty leader.

Blocks and block format. Client requests are batched into blocks.
Each block references its predecessor with the exception of the

genesis block which has no predecessor. We call a block’s position

in the chain as its height. A block Bk at height k has the format,

Bk := (bk ,H (Bk−1))

where Bk−1 is the block at height k − 1 and H (Bk−1) is the hash
digest of Bk−1. The predecessor for the genesis block is ⊥. A block

Bk is said to be valid if (1) its predecessor block is valid, or if

k = 1, predecessor is ⊥, and (2) client requests in the block meet

application-level validity conditions and are consistent with its

chain of requests in ancestor blocks.

Block extension and equivocation. A block Bk extends a block
Bl (k ≥ l) if Bl is an ancestor of Bk . Note that a block Bk extends

itself. Two blocks Bk and B′
k ′ proposed in the same view equivocate

one another if they are not equal to and do not extend one another.

Block certificates. A block certificate represents a set of signatures
on a block by a quorum of replicas. Given a ratio 0 ≤ α < 1, a block

Bk and a view v we denote by Cα
v (Bk ) a set of ⌊αn⌋ + 1 signatures

from different replicas on block Bk signed in view v . In this section,

we will use synchronous certificate where α = 1/2, and responsive
certificate where α = 3/4. Whenever the distinction between the

two is not important, we will represent the certificates by Cv (Bk )
and ignore the superscript α . In the next section, we will also use

full certificates which require all n replicas to sign.

Chain certificates. We use the notion of chain certificates to com-

pare different chains when replicas receive many of them. Most

earlier protocols (e.g., HotStuff [28] or Sync HotStuff [2]) compared

certified chains using just the views and heights. However, in our

protocol, there are two types of certificates, a responsive certificate

and a synchronous certificate, and hence, comparing them is subtle.

As we will see, the rank of a chain will be completely determined by

the block with the highest synchronous certificate from the largest

view and the block’s ancestors’ highest responsive certificate in this

view. A chain certificate comprises of a pair of certificates C
3/4
v (Bk )

and C
1/2
v (Bℓ). Each element in the pair is either a block certificate

or ⊥ such that (i) if either of them are not ⊥, both certificates are

from the same view, (ii) if not ⊥’s, the first certificate has threshold

3/4, the second has threshold 1/2, and (iii) block Bℓ extends block

Bk , if C
3/4
v (Bk ) is not ⊥.

Ranking chain certificates. Given two chain certificates CC =

(C
3/4
v (Bk ),C

1/2
v (Bℓ)) and CC′ = (C

3/4

v ′ (Bk ′),C
1/2

v ′ (Bℓ′)), they are

first ranked by views, i.e., CC < CC′
if v < v ′

. While moving

from view v to any higher view, our protocol ensures that if a

certified block Bk is committed in view v , then all honest replicas

lock on a chain certificate that extends Bk . Hence, a certificate chain
produced in a higher view will always include Bk . Said another

way, a certificate chain CC′
in a higher view will extend Bk ; if it

does not, it must be the case that Bk was not committed by any

honest replica in view v . Thus, it is safe to extend CC′
.

For chain certificates in the same view v , they are first ranked

based on the height of the responsive certificate, i.e., CC < CC′
if

k < k ′. In our protocol, we ensure that if there exists a responsive

certificate for a block Bk ′ in view v , i.e., C
3/4
v (Bk ′) exists, there

cannot exists a responsive certificate for a conflicting block at any

height in view v . Thus, if there is a responsive certificate for Bk in

view v , then Bk ′ must extend Bk . Moreover, we also ensure that if

C
3/4
v (Bk ) exists, no replica will have synchronously committed on

an equivocating block Bℓ with certificate Cv (Bℓ). Thus, any equiv-

ocating chain with chain certificate CC will not contain committed

blocks that are not extended by CC′
.

Finally, if both chain certificates are in the same viewv and have

a common responsive certificate in the view (or both do not have

a responsive certificate), the chain certificates are ranked by the

heights of synchronous certificates, i.e., CC < CC′
if ℓ < ℓ′. Our

protocol ensures that if Bk is committed synchronously in view v ,
then there does not exist an equivocating certified block. Thus, if

equivocating C
1/2
v (Bℓ) and C

1/2
v (Bℓ′) exist, both Bℓ and Bℓ′ could

not have been committed. To ease the rule in the case where they

do not equivocate and one chain certificate extends the other, we

select higher of the two.

Thus, given two chain certificates CC = (C
3/4
v (Bk ),C

1/2
v (Bℓ))

and CC′ = (C
3/4

v ′ (Bk ′),C
1/2

v ′ (Bℓ′)), we say CC < CC′
if:



(1) v < v ′
(the chain certificates are first ranked by view),

(2) v = v ′
and k < k ′ (secondly by responsive certificates),

(3) v = v ′
and k = k ′ and ℓ < ℓ′ (finally by sync certificates).

The above comparison uses numerical value −1 to represent a ⊥.

Tip of a chain certificate. The tip of a chain certificate is the

highest block in the chain. Given a CC = (C3/4(Bk ),C
1/2(Bℓ)),

if C1/2(Bℓ) , ⊥ then define tip(CC) = Bℓ , otherwise define

tip(CC) = Bk .

Updating chain certificates. Each replica stores CC, the highest

chain certificate it has ever received. Any time a new block cer-

tificate is received, the replica updates its highest ranked chain

certificate using the comparison rule described earlier.

4.1 Steady State Protocol
Our protocol executes the following steps in iterations within a

view v . Refer Figures 1 and 2.

Propose.The leaderL of viewv proposes a blockBk := (bk ,H (Bk−1))
by broadcasting ⟨propose,Bk ,v,Cv (Bk−1)⟩L . The proposal con-

tains a block at height-k extending a block Bk−1 at height k − 1, the

view numberv , and a view-v certificate for Bk−1. The leader makes

such a proposal as soon as it receives a view-v certificate for Bk−1.
The first view-v certificate is obtained during the view-change

process as will be described in the next subsection.

Vote.When a replica r receives the first proposal for Bk either from

L or through some other replica, if r hasn’t received a proposal for

an equivocating block, i.e., it has not detected a leader equivocation

in view v , it broadcasts a vote for Bk in the form of ⟨vote,Bk ,v⟩r ,
and forwards the proposal to all replicas. It also starts a synchronous

commit-timerk,v and sets it to 2∆.
Observe that the certificate in the proposal need not be the same

as the certificate that replica r has obtained. Specifically, replica r
can vote for a proposal containing a synchronous certificate for the

previous block even if it holds a responsive certificate for the same

block, and vice versa.

Commit. The protocol includes two commit rules and the replica

commits using the rule that is triggered first. In a responsive com-

mit, a replica commits block Bk and its ancestors immediately if

the replica receives > 3n/4 votes for Bk in view v . Note that a

responsive commit doesn’t depend on the commit-timer and ∆,
and a replica can commit at the actual speed of the network (δ ).
In addition, the replica immediately notifies the strong certificate

C
3/4
v (Bk ) to all replicas. This is critical to maintain safety. When

a replica’s commit-timerv,k for Bk expires in view v , the replica
synchronously commits Bk and all its ancestors. When a replica

commits Bk , it aborts commit-timers for all its ancestors.

The commit step is non-blocking and it does not affect the critical

path of progress. The leader can make a proposal for the next block

as soon as it receives a certificate for the previous block independent

of whether replicas have committed blocks for previous heights.

Note that if an honest replica commits a block Bk in view v
using one of the rules, it is not necessary that all honest replicas

commit Bk in viewv using the same rule, or commit Bk at all. Some

Byzantine replicas may decide to send votes to only a few honest

replicas causing some honest replicas to commit using a responsive

rule whereas some others using a synchronous rule. A Byzantine

leader could send an equivocating block to some honest replicas

and prevent them from committing. The protocol ensures safety

despite all inconsistencies introduced by Byzantine replicas.

Blame and quit view. A view-change is triggered when repli-

cas observe lack of progress or an equivocating proposal from the

current leader. If an honest replica learns an equivocation, it broad-

casts ⟨blame, v⟩r message along with the equivocating proposals

and quits view v . The equivocating proposals serve as a proof of

misbehavior and all honest replicas blame the leader to trigger a

view-change. To ensure progress, the leader is expected to propose

at least one block every 2∆ time that trigger’s the replica’s vote. Oth-

erwise, replicas blame the current leader. When an honest replica

receives a blame certificate (f + 1 blame messages), it broadcasts

the blame certificate, quits current view v and stops participating

in view v . All replicas receive the blame certificate within ∆ time

due to synchrony assumption and quit view v .
We now provide some intuition on why either of these commit

rules are safe within a view. We discuss safety across views in the

subsequent section.

Why does a responsive commit ensure safety within a view?
Consider an honest replica r that responsively commits a block Bk
at time t . This is because it received ⌊3n/4⌋ + 1 votes for Bk by time

t and it did not observe any equivocation until then. It is easy to see

that if there exists ⌊3n/4⌋ + 1 votes for Bk , no other equivocating

block B′
k ′ at any height k ′ can be committed responsively due to a

simple quorum intersection argument. Under a minority corruption,

any two quorums of size ⌊3n/4⌋ + 1 intersect in f + 1 replicas out
of which at least one replica is honest. This honest replica will not

vote for two equivocating blocks.

A synchronous commit of an equivocating block cannot happen

due to the following reason. Since replica r hasn’t received an

equivocation until time t , no replica has voted for an equivocating

proposal until time t − ∆. Hence, their synchronous 2∆ window for

committing an equivocating block ends at time > t + ∆. A commit

for Bk at time t implies that some honest replica must have voted

and forwarded the corresponding proposal before t and this will

arrive by time t + ∆ at all honest replicas. This will prevent any

other replica from committing an equivocating block. Observe that

a responsive commit does not imply that an equivocating block B′
k ′

will not be certified; hence, during a view-change, we need to be

able to carefully extend the chain that contains a block that has

been committed by some other replica.

Whydoes a synchronous commit ensure safetywithin a view?
Consider an honest replica r that votes for a block Bk at time t and
commits at time t + 2∆ because it did not observe an equivocation

until then. This implies (i) all honest replicas have received Bk by

time t + ∆, and (ii) no honest replica has voted for an equivocating

block by time t + ∆. Due to the rules of voting, no honest replica
will vote for an equivocating block in this view after time t + ∆
ruling out an equivocating commit through either of the two rules.

4.2 View-change
The view-change protocol is responsible for replacing a possibly

faulty leader with a new leader to maintain liveness. In the process,



Let v be the view number and replica L be the leader of view v . While in view v , a replica r runs the following protocol:

(1) Propose. If replica r is the leader L, upon receiving Cv (Bk−1), it broadcasts ⟨propose,Bk ,v,Cv (Bk−1)⟩L where Bk extends Bk−1.
(2) Vote. Upon receiving the first proposal ⟨propose,Bk ,v,Cv (Bk−1)⟩L with a valid view v certificate for a block at height k − 1 (not

necessarily from L) where Bk extends Bk−1, if no leader equivocation is detected, forward the proposal to all replicas, broadcast a

vote in the form of ⟨vote,Bk ,v⟩r , set commit-timerv,k to 2∆, and start counting down.

(3) (Non-blocking) Commit rules. Replica r commits block Bk using either of the following rules if r is still in view v :

(a) Responsive commit. On receiving ⌊3n/4⌋ + 1 votes for Bk , i.e., C
3/4
v (Bk ), commit Bk and all its ancestors immediately. Broadcast

⟨notify,C3/4
v (Bk ),v⟩r , and abort commit-timerv,k .

(b) Synchronous commit. If commit-timerv,k reaches 0, commit Bk and all its ancestors.

(4) (Non-blocking) Blame and quit view.
- Blame if no progress. For p > 0, if fewer than p proposals trigger r ’s votes in (2p + 4)∆ time in view v , broadcast ⟨blame, v⟩r .
- Quit view on f + 1 blame messages. Upon gathering f + 1 distinct ⟨blame,v⟩r messages, broadcast them, abort all view v timers,

and quit view v .
- Quit view on detecting equivocation. If leader equivocation is detected, broadcast the equivocating proposals signed by L, abort all
view v timers, and quit view v .

Figure 1: Steady state protocol for optimal optimistic responsiveness with 2∆-synchronous latency and > 3n/4-sized quorum.

Let L and L’ be the leaders of view v and v + 1, respectively. Each replica r runs the following steps.

i) Status. Wait for 2∆ time. Until this time, if a replica receives any chain certificates, the replica updates its chain certificate CC to

the highest possible rank. Set lockv+1 to be the highest ranked chain certificate at the end of the 2∆ wait. Send ⟨status, lockv+1⟩r to
L′. Enter view v + 1.

ii) New-view. The new leader L′ waits for 2∆ time after entering viewv + 1. L′ broadcasts ⟨new-view,v + 1, lockv+1⟩L′ , where lockv+1
is the highest ranked chain certificate known to L′ after this wait.

iii) First vote. Upon receiving the first ⟨new-view,v + 1, lock′⟩L′ , if lockv+1 ≤ lock′, then broadcast ⟨new-view,v + 1, lock′⟩L′ and
⟨vote, tip(lock′),v + 1⟩r .

Figure 2: View-change protocol for optimal optimistic responsiveness with 2∆-synchronous latency and > 3n/4-sized quorum.

it needs to maintain safety of any commit that may have happened

in the previous views.

Status. After quitting view v , a replica waits for 2∆ time before

entering view v + 1. The 2∆ wait ensures that all honest replicas

receive a certificate for a block Bk before entering viewv+1 if some

honest replica committed Bk in view v . This is critical to maintain

the safety of the commit in view v . The replica updates its chain
certificate CC to the highest possible rank and sets lockv+1 to CC.

It then sends lockv+1 to the next leader L′ via a ⟨status, lockv+1⟩r .

New-view. Leader L′ waits 2∆ time after entering view v + 1 to
receive a status message from all honest replicas. Based on these

status messages, L′ picks the highest ranked chain certificate lock′.
It creates a new-view message ⟨new-view,v + 1, lock′⟩L′ and sends
it to all honest replicas. The highest ranked chain certificate across

all honest replicas at the end of view v helps an honest leader to

appropriately send a new-view message that will be voted upon by

all honest replicas and maintain the liveness of the protocol.

First vote. Upon receiving a ⟨new-view,v + 1, lock′⟩L′ message, if

the certified block lock′ has a rank no lower than r ’s locked chain

certificate lockv+1, then it forwards the new-view message to all

replicas and broadcasts a vote for it.

Next, we provide some intuition on how the view-change proto-

col ensures safety across views and liveness.

Why do replicas lock on chains extending committed blocks
before entering the next view? In this protocol, we use locks to

ensure safety. The protocol guarantees that if an honest replica

commits a block (through either rules), then at the end of the view

all honest replicas will lock on a chain certificate that extends the

committed block. At the start of the next view, when the leader

sends a lock through the new-view message, by testing whether

this lock is higher than the lock stored locally, an honest replica

ensures that only committed blocks are extended.

What ensures that replicas lock on chains extending com-
mitted blocks before entering the next view? Suppose an hon-

est replica r responsively commits a block Bk in view v at time t .
Notice that no honest replica has entered view v + 1 by time t + ∆;
otherwise, replica r must have received blame certificate by time t
due to the 2∆ wait in the status step. Replica r ’s notify containing

C
3/4
v (Bk ) reaches all honest replicas by time t + ∆. As noted earlier,

there may exist a synchronous certificate for an equivocating block

B′
k ′ in view v i.e., C

1/2
v (B′

k ′) (for any value of k ′). However, a chain

certificate CC containing C
3/4
v (Bk ) ranks higher than a chain cer-

tificate CC′
containing C

1/2
v (B′

k ′) as per our ranking rule and all

honest replicas lock on CC or higher before entering view v + 1.
If replica r synchronously commits Bk in view v at time t , then

replica r voted for Bk at time t−2∆. It did not detect an equivocation
or blame certificate by time t . This implies all honest replicas will

vote for Bk at time t − ∆ and receive C
1/2
v (Bk ) by time t . As noted

earlier, there does not exist an equivocating certificate in view v



during synchronous commit. Hence, all honest replicas will lock

on CC containing C
1/2
v (Bk ) before entering view v + 1.

How does the protocol ensure liveness? The protocol ensures
liveness by allowing a new honest leader to always propose a block
that will be voted for by all honest replicas. All honest replicas send

their locked chain certificate to the next leader L′ at the start of the
new view in a status message. L′ could be lagging and enter v + 1
∆ time after other replicas. Thus, it waits 2∆ time to collect chain

certificates from all honest replicas. If L′ is honest, it extends the
highest ranked chain certificate lock′. This suffices to ensure that

all honest replicas vote on its proposal, in turn, ensuring liveness

when the leader is honest. In the new view, as long as the leader

keeps proposing valid blocks, honest replicas will vote and keep

committing new blocks.

4.3 Safety and Liveness
We say a block Bk is committed directly in view v if an honest

replica successfully runs the responsive commit rule 3(a), or the

synchronous commit rule 3(b) on block Bk . Similarly, we say a block
Bk is committed indirectly if it is a result of directly committing a

block Bℓ (ℓ > k) that extends Bk but is not equal to Bk .
We say that a replica is in view v at time t if the replica executes

the Enter view v of Step i) in Figure 2 by time t and did not execute

any Quit view of Step 5 in Figure 1 for view v at time t or earlier.

Claim 7. If a block Bk is committed directly in viewv using the re-
sponsive commit rule, then a responsive certificate for an equivocating
block B′

k ′ in view v does not exist.

Proof. If replica r commits Bk due to the responsive commit rule in

view v , then r must have received ⌊3n/4⌋ + 1 votes, i.e., C
3/4
v (Bk ),

forming a quorum for Bk in view v . A simple quorum intersection

argument shows that a responsive certificate for equivocating block

B′
k ′ cannot exist. □

Claim 8. If a block Bk is committed directly in view v using the
responsive commit rule, then there does not exists a chain certificate
CC in view v , such that CC > (C

3/4
v (Bk ),⊥) where a block in CC

equivocates Bk .

Proof. By Claim 7, no equivocating block can have a responsive

block certificate. So all responsive block certificates must extend

Bk . Since we assume that CC > (C
3/4
v (Bk ),⊥) then it must be that

either CC is of the form (C
3/4
v (Bk ),C

1/2
v (Bℓ)) and by definition Bℓ

extends Bk , or CC is of the form (C
3/4
v (Bk ′),C

1/2
v (Bℓ′)) where Bk ′

extends Bk and again by transitivity Bℓ′ must extend Bk . □

Claim 9. If a block Bk is committed directly in view v using the
synchronous commit rule, then a block certificate for an equivocating
block B′

k ′ does not exist in view v .

Proof. Suppose replica r directly commits block Bk at time t using
the synchronous commit rule. So replica r voted and forwarded

the proposal for Bk at time t − 2∆ and its commit-timerv,k ex-

pired without detecting equivocation. By synchrony assumption,

all replicas receive the forwarded proposal for Bk by time t − ∆.
Since they do not vote for equivocating blocks, they will not vote

for B′
k ′ received at time > t − ∆. Moreover, no honest replica must

have voted for an equivocating block at time ≤ t − ∆. Otherwise,

replica r would have received the equivocating proposal by time t
and it wouldn’t have committed. Since no honest replica votes for

an equivocating block, B′
k ′ will not be certified. □

Claim 10. If a block Bk is committed directly in view v using
the responsive commit rule, then all honest replicas receive C3/4

v (Bk )
before entering view v + 1.

Proof. Suppose replica r directly commits block Bk at time t using
the responsive commit rule. So replica r notifies the certificate

C
3/4
v (Bk ) which arrives at all honest replicas at time ≤ t + ∆. No

honest replica r ′ is at view v + 1 at time ≤ t + ∆. Because if r ′ was
at view v + 1 at time ≤ t + ∆, then due to the 2∆ wait in the status

step, r ′ would have quit view v at time ≤ t − ∆. Hence, replica r
must have received a blame certificate or equivocation at time ≤ t

and it wouldn’t commit. Hence, all honest replicas receive C
3/4
v (Bk )

before entering view v + 1. □

Claim 11. If a block Bk is directly committed in view v at time t
using the synchronous commit rule, then all honest replicas receive
Cv (Bk ) before entering view v + 1.

Proof. Wewill prove that if a block Bk is directly committed in view

v at time t using the synchronous commit rule, then (i) all honest

replicas are in view v at time t − ∆, (ii) all honest replicas vote
for Bk at time ≤ t − ∆, and (iii) all honest replicas receive Cv (Bk )
before entering view v + 1. Part (iii) is the desired claim.

Suppose honest replica r synchronously commits Bk at time

t in view v . It votes for block Bk at time t − 2∆. Thus, replica r
entered view v at time ≤ t − 2∆. Due to the 2∆ wait before sending

a status message, replica r must have sent a blame certificate or

equivocating blocks at time ≤ t − 4∆ which arrives all honest

replicas at time ≤ t − 3∆. Hence, all honest replicas enter view v at

time ≤ t −∆ (again due to 2∆ wait in the status step). Also, observe

that no honest replica has quit view v at time ≤ t − ∆. Otherwise,
replica r hears of blame certificate or equivocation at time ≤ t . This
proves part (i).

Replica r received a proposal for Bk which contains Cv (Bk−1)
at time t − 2∆. Thus, replica r ’s vote and forwarded proposal for

Bk arrives all honest replicas by time t − ∆. No honest replica has

voted for an equivocating block at time ≤ t −∆; otherwise replica r
would have received an equivocation at time ≤ t . Thus, all honest
replicas will vote for Bk at time ≤ t − ∆. This proves part (ii).

The votes from all honest replicas will arrive at all honest replicas

by time ≤ t . By part(i) of the claim and 2∆ wait in the status step,

honest replicas do not enter view v + 1 at time ≤ t + ∆. Thus, all
honest replicas receive Cv (Bk ) before entering view v + 1. □

Lemma 12. If an honest replica directly commits a block Bk in view
v , then: (i) all honest replicas have lockv+1 such that tip(lockv+1)
extends Bk , (ii) for any chain certificate CC that the adversary can
create and any honest lock lockv+1, either CC < lockv+1 or tip(CC)
extends Bk .

Proof. By Claim 10 and Claim 11, all honest replicas will receive

Cv (Bk ) before entering view v + 1. If Bk is committed using the

synchronous commit rule, then by Claim 9, there doesn’t exists a

view v certificate that equivocates Bk . Since, honest replicas lock
on highest ranked chain certificate, tip(lockv+1) must extend Bk .
Similarly, if Bk is committed using the responsive commit rule,



then by Claim 8 there doesn’t exist chain certificate CC such that

CC > (Cv (Bk ),⊥) and CC equivocatesBk . Thus, tip(lockv+1)must

extend Bk . By similar argument, any CC that an adversary creates

either has CC < lockv+1 or tip(CC) extends Bk . □

The following lemma considers safety of directly committed

blocks across views.

Lemma 13 (Uniqe Extensibility). If an honest replica directly
commits a block Bk in view v , and Cv ′(Bk ′) is a view v ′ > v block
certificate, then Bk ′ extends Bk . Moreover, all honest replicas have
lockv ′ such that tip(lockv+1) extends Bk .

Proof. The proof is by induction on viewsv ′ > v . For a viewv ′
, we

prove that if Cv ′(tip(lock′)) exists then it must extend Bk . A simple

induction shows that all later block certificates must also extend

tip(lock′), this follows directly from the vote rule in Figure 1 step 2.

For the base case, wherev ′ = v+1, the proof that Cv ′(tip(lock′))
extends Bk follows from Lemma 12 because the only way such a

block can be certified is some honest votes for it. However, all honest

are locked on a block that extends Bk and a chain certificate with

a higher rank for an equivocating block does not exist. Thus, no

honest replica will first vote (Figure 2 step iii)) for a block that does

not extend Bk . The second part follows directly from Lemma 12.

Given that the statement is true for all views below v ′
, the proof

that Cv ′(tip(lock′)) extends Bk follows from the induction hypoth-

esis because the only way such a block can be certified is if some

honest votes for it. An honest party with a lock lock will vote only

if tip(lockv ′) has a valid block certificate and lock ≥ lockv ′ . Due to

Lemma 12 and the induction hypothesis on all block certificates of

view v < v ′′ < v ′
is must be that Cv ′(tip(lock)) extends Bk . □

Theorem 14 (Safety). Honest replicas do not commit conflicting
blocks for any height ℓ.

Proof. Suppose for contradiction that two distinct blocks Bℓ and

B′
ℓ
are committed at height ℓ. Suppose Bℓ is committed as a result

of Bk being directly committed in view v and B′
ℓ
is committed as a

result of B′
k ′ being directly committed in view v ′

. This implies Bk
extends Bℓ and B

′
k ′ extends B

′
ℓ
. Without loss of generality, assume

v ≤ v ′
; if v = v ′

, further assume k ≤ k ′. If v = v ′
and k ≤ k ′,

by Claim 8 and Claim 9, B′
k ′ extends Bk . Similarly, if v < v ′

, by

Lemma 13, B′
k ′ extends Bk . Thus, B

′
ℓ
= Bℓ . □

Theorem 15 (Liveness). All honest replicas keep committing new
blocks.

Proof. In a view, a leader has to propose at least p blocks that trig-

ger honest replicas votes in (2p + 4)∆ time. As long as the leader

proposes at least p valid blocks, honest replicas will keep voting and

committing proposed blocks. If the Byzantine leader equivocates or

proposes less than p blocks, a view-change will occur. Eventually,

there will be an honest leader due to round-robin leader election.

Next, by Lemma 12, all honest replicas lock on a highest certified

chain before entering a new view. The leader may enter the new

view ∆ time later than others; hence need to wait for 2∆ before

proposing. Due to 2∆ wait, the new leader receives the highest

locked certified chains from all honest replicas. If the leader is

honest, the leader will extend upon the tip of the highest ranked

certified chain. Honest replicas will vote for the new block since the

lock sent by the leader is at least as large as their lock. Moreover,

the honest leader doesn’t equivocate and keeps proposing at least

p blocks. This prevents forming a blame certificate to cause view-

change and all honest replicas will keep committing new blocks. □

5 OPTIMAL OPTIMISTIC RESPONSIVENESS
WITH ∆-SYNCHRONOUS LATENCY

Recall that our lower bound in Section 3 showed that we cannot

have the following two commit latencies simultaneously: (i) a re-

sponsive commit withO(δ ) latency wheremax(1,n − 2f ) faults are
tolerated in the responsive mode, and (ii) a synchronous commit

with < 2∆ latency simultaneously. The previous section showed a

protocol when at least one fault is tolerated in the responsive com-

mit. In this section, we will present a protocol with a synchronous

latency of ∆ +O(δ ) when no faults are tolerated in the responsive

commit. For a synchronous commit, an honest replica commits a

block in ∆+O(δ ) time after receiving a valid proposal for the block

if no equivocating proposals are received and f + 1 replicas have
voted. A responsive commit completes immediately when a replica

receives acknowledgments for a block from all replicas and no equiv-
ocation has been detected. The protocol has a commit latency of

2δ as long as all replicas are behaving honestly and responding

promptly.

Unlike the protocol in the previous section where a replica im-

mediately votes for a valid proposal, in this protocol, a replica sends

an ack for the proposed block immediately and votes only if it

does not detect any equivocation ∆ time after its ack. Using an ack
message to obtain ∆ latency under an honest leader was proposed

by Abraham et al. [3]. We augment this idea to use a set of 2f + 1
signed ack messages to obtain responsiveness simultaneously. The

2f + 1 signed acks from the same view for a block Bk is called a

full certificate and represented as C
f
v (Bk ). As before, we call a set

of f + 1 signed vote messages for Bk as synchronous certificate and
represent it as C

1/2
v (Bk ). Whenever the distinction is not impor-

tant, we represent certificates as Cv (Bk ). Later in the section, we

show that if there exists a certificate (either full or synchronous)

for a block Bk in a view v , there cannot exist a certificate for an
equivocating block in view v . Hence, we define a simple certificate

ranking rule. Certified blocks are first ranked by views and then

by height, i.e., (i) blocks certified in a higher view have a higher

rank, and (ii) for blocks certified in the same view, a higher height

implies a higher rank.

5.1 Protocol
The steady state protocol runs following steps within a view v .

Propose. The Leader L of viewv proposes a block Bk by extending

a highest certified block Cv ′(Bk−1) known to L. If the leader has just
entered the view, it waits for 2∆ time to receive the highest certified

blocks from all honest replicas in which case v ′ < v . Otherwise,
the leader proposes as soon as it learns a certificate for the previous

block proposed in the same view.

Ack. The protocol includes an additional ack step before voting. A

replica r broadcasts an ack ⟨ack,Bk ,v⟩ for a proposed block Bk if

(i) it hasn’t detected any equivocation in view v , and (ii) Cv ′(Bk−1)
has rank equal to or higher than its own locked block. Once replica



Let v be the view number and replica L be the leader of the current view. A replica r runs the following protocol in iterations:

(1) Propose. If replica r is the leader L, upon receiving Cv ′(Bk−1), it broadcasts ⟨propose,Bk ,v,Cv ′(Bk−1)⟩L where Bk extends Bk−1.
If it is the first block in this view, i.e., v ′ < v , then it waits for an additional 2∆ time after entering the view before proposing the

highest certified block received from the status step.

(2) Ack. Upon receiving the first proposal ⟨propose,Bk ,v,Cv ′(Bk−1)⟩L (not necessarily from L) at height k in view v , if Cv ′(Bk−1) is
ranked greater than or equal to its locked block, forward the proposal to all replicas and broadcast an acknowledgment in the form

of ⟨ack,Bk ,v⟩. Set vote-timerv,k to ∆ and start counting down.

(3) Vote. If vote-timerv,k reaches 0, send a vote for Bk in the form of ⟨vote,Bk ,v⟩.
(4) (Non-blocking) Commit. Replicas can commit block Bk using either of the following rules:

(a) Responsive commit. On receiving 2f + 1 acks for Bk , i.e., C
f
v (Bk ) in view v , commit Bk and all its ancestors immediately. Stop

vote-timerv,k and notify the certificate C
f
v (Bk ).

(b) Synchronous commit. On receiving f + 1 votes for Bk , i.e., C
1/2
v (Bk ) in view v , commit Bk and all its ancestors immediately. Notify

the certificate C
1/2
v (Bk ) to all replicas.

(5) (Non-blocking) Blame and quit view.
- Blame if no progress. For p > 0, if fewer than p proposals trigger r ’s votes in (3p + 4)∆ time in view v , broadcast ⟨blame, v⟩r .
- Quit view on f + 1 blame messages. Upon gathering f + 1 distinct ⟨blame,v⟩r messages, broadcast them, abort all view v timers,

and quit view v .
- Quit view on detecting equivocation. If leader equivocation is detected, broadcast the equivocating proposals signed by L, abort all
view v timers, and quit view v .

Figure 3: Steady state protocol for optimal optimistic responsiveness with ∆-synchronous latency and n-sized quorum.

r sends an ack, it starts a vote-timerv,k initialized to ∆ time and

starts counting down. Replica r also forwards the received proposal.

Vote. When vote-timerv,k for block Bk expires, if replica r hasn’t
heard of any equivocation in viewv , it broadcasts a vote ⟨vote,Bk ,v⟩.

Commit.Replica r can commit either responsively or synchronously

based on which rule is triggered first. A responsive commit is trig-

gered when r receives 2f + 1 ack messages for Bk , i.e., C
f
v (Bk ) and

r commits Bk and all its ancestors immediately. Replica r stops

vote-timerv,k and notifies C
f
v (Bk ) to all honest replicas. Similarly,

replica r synchronously commits Bk along with its all ancestors

when it receives f + 1 vote messages for Bk , i.e., C
1/2
v (Bk ). r also

notifies C
1/2
v (Bk ) to all replicas. Like before, both the commit paths

are non-blocking and the leader can keep proposing as soon as it

learns a certificate for previous block.

5.2 View Change Protocol
Blame and quit view step remains identical to the one in Figure 2.

Status. During this step, a replica r waits for 2∆ time and locks on

the highest certified block Cv ′(Bk ′) known to r . It forwards Cv ′(Bk ′)
to the next leader and enters next view. As shown in Lemma 19, the

2∆wait ensures that all honest replicas lock on the highest-certified

block corresponding to a commit at the end of the view, which, in

turn, is essential to maintain the safety of the protocol. The status

message along with the accompanying 2∆ wait in the propose step

ensures liveness, i.e., it ensures that an honest leader proposes a

block that extends locks held by all honest replicas and hence will

be voted upon by all honest replicas.

Next, we provide some intuition on why either of these commit

rules are safe within a view.

Why does a responsive commit ensure safety within a view?
A replica commits a block Bk responsively only when it receives

acks from all replicas which includes all honest replicas. This implies

no honest replicas will either ack or vote for an equivocating block

B′
k ′ at any height k ′. Hence, an equivocating block B′

k ′ will neither

receive 2f + 1 acks nor f + 1 votes required for a commit.

Whydoes a synchronous commit ensure safetywithin a view?
An honest replica r synchronously commits a block Bk at time t
when it receives f + 1 votes for Bk and hears no equivocation by

time t . This implies no honest replica has voted for an equivocating

block B′
k ′ by time t−∆. At least one honest replica r ′ sent an ack for

Bk by time t −∆. r ′s ack arrives all honest replicas by time t . Hence,
honest replicas will neither ack nor vote for an equivocating block

B′
k ′ after time t . This also prevents honest replicas from committing

an equivocating block after time t .

5.3 Safety and Liveness
We say a block Bk is committed directly in view v if any of the

two commit rules are triggered for Bk . Similarly, a block Bk is

committed indirectly if it is a result of directly committing a block

Bℓ (ℓ > k) that extends Bk but is not equal to Bk .

Claim 16. If an honest replica directly commits a block Bk in
view v using the responsive commit rule, then there does not exist a
certificate for an equivocating block in view v .

Proof. If replica r commits Bk in view v using responsive commit

rule, r must have received 2f + 1 acks, i.e., C
f
v (Bk ). This implies all

honest replicas have sent ack for Bk and no honest replica would

send ack or vote for an equivocating block B′
k ′ in view v . Since, a

certificate for B′
k ′ requires either 2f + 1 acks for full certificate or

at least one vote from an honest replica for synchronous certificate,

a certificate for an equivocating block cannot exist. □

Claim 17. If an honest replica directly commits a block Bk in
view v using the synchronous commit rule, then there does not exist a
certificate for an equivocating block in view v .



Let L and L′ be the leader of view v and v + 1, respectively. Each replica r runs the following steps.

(i) Status. Wait for 2∆ time. Pick the highest certified block Bk ′ with certificate Cv ′(Bk ′). Lock on Cv ′(Bk ′), and send Cv ′(Bk ′) to the

new leader L′. Enter view v + 1.

Figure 4: View-change protocol for optimal optimistic responsiveness with ∆-synchronous latency and n-sized quorum.

Proof. Suppose replica r synchronously commits Bk in view v at

time t without detecting an equivocation. Observe that an equiv-

ocating responsive certificate does not exist since replica r would
not ack two equivocating blocks. Hence, we need to only show that

a synchronous equivocating certificate does not exist. We show it

with the following two arguments. First, r votes for Bk at time leqt
and sends an ack for Bk at time ≤ t − ∆. r ’s ack for Bk arrives all

honest replicas by time t . Hence, no honest replica will vote for an

equivocating block B′
k ′ at time ≥ t . Second, no honest replica must

have sent an equivocating ack at time ≤ t − ∆. Otherwise, replica r
would not have committed. This also implies that no honest replica

will vote for an equivocating block at time ≤ t (due to the ∆ wait

between ack and vote).
□

Lemma 18. If an honest replica directly commits a block Bk in
view v then, (i) there doesn’t exist an equivocating certificate in view
v , and (ii) all honest replicas receive Cv (Bk ) before entering view
v + 1.

Proof. Part(i) follows immediately from Claim 16 and Claim 17.

Suppose replica r commits Bk at time t either responsively or

synchronously. r notifies the certificate (C
f
v (Bk ) or C

1/2
v (Bk )) which

arrives at all honest replicas at time ≤ t +∆. Observe that no honest
replica r ′ has entered view v + 1 at time ≤ t + ∆. Otherwise, due
to 2∆ wait before entering the new view, r ′ must have sent either

equivocating or a blame certificate at time ≤ t − ∆; r must have

received the blame certificate at time ≤ t . It would have quit view

and not committed. Hence, all honest replicas receive Cv (Bk ) before
entering view v + 1. □

Lemma 19. If an honest replica directly commits a block Bk in
view v , then all honest replicas lock on a certified block that ranks
higher than or equal to Cv (Bk ) before entering view v + 1.

Proof. By Lemma 18 part (ii), all honest replicas will receive Cv (Bk )
before entering view v + 1. By Lemma 18 part (i), no equivocating

certificate exists in view v . Since replicas lock on the highest certi-

fied block as soon as they enter the next view, all honest replicas

lock on a certified block that ranks higher than or equal to Cv (Bk )
before entering view v + 1. □

Lemma 20 (Uniqe Extensibility). If an honest replica directly
commits a block Bk in view v , then any certified block that ranks
equal to or higher than Cv (Bk ) must extend Bk .

Proof. Any certified block B′
k ′ in view v of rank equal to or higher

than Cv (Bk ) must extend Bk . Otherwise, B
′
k ′ equivocates Bk and

by Lemma 18, B′
k ′ cannot be certified in view v . For views higher

than v , we prove the lemma by contradiction. Let S be the set of

certified blocks that rank higher than Cv (Bk ), but do not extend Bk .
Suppose for contradiction S , ∅. Let Cv∗ (Bℓ∗ ) be a lowest ranked
block in S . Also, note that if Bℓ∗ does not extend Bk , then Bℓ∗−1
does not extend Bk either.

For Cv∗ (Bℓ∗ ) to exist, some honest replica must vote for Bℓ∗ in
viewv either upon receiving a proposal ⟨propose,Bℓ∗ ,v∗,Cv ′(Bℓ∗−1)⟩
forv ′ < v or ⟨propose,Bℓ∗ ,v∗,Cv∗ (Bℓ∗−1)⟩. If it is the former, then

Cv ′(Bℓ∗−1) must rank higher than or equal to Cv (Bk ). This is be-
cause due to Lemma 19 all honest replicas will have received a

certified block that ranks higher than or equal to Cv (Bk ) before
entering view v + 1. Moreover, replicas only lock on blocks of

monotonically increasing ranks. However, since v ′ < v∗, the rank
of Cv ′(Bℓ∗−1) is less than Cv∗ (Bℓ∗ ) by our certificate ranking rule.

This contradicts the fact that Cv∗ (Bℓ∗ ) is a lowest ranked block in

S . If it is the latter, then observe that Cv∗ (Bℓ∗−1) exists in view v∗.
Again, this certificate is ranked higher than Cv (Bk ) since v

∗ > v .
Also, this certificate is ranked lower than Cv∗ (Bℓ∗ ) due to its height.
Hence, this contradicts the fact that Cv∗ (Bℓ∗ ) is a lowest ranked
block in S . □

Safety. The safety proof is identical to that of Theorem 14 except

Lemma 20 needs to be invoked.

Liveness. The liveness proof is similar to that of Theorem 15.

6 OPTIMISTIC RESPONSIVENESS WITH
OPTIMISTICALLY RESPONSIVE
VIEW-CHANGE

The protocols in Section 4 and Section 5 are optimistically respon-

sive in the steady-state. However, whenever a leader needs to be

replaced, the view-change protocol must always incur a synchro-

nous wait. This suffices if leaders are replaced occasionally, e.g.,

when a leader replica crashes. However, in a democracy-favoring

approach it may be beneficial to replace leaders after every block, or

every few blocks. In such a scenario, the synchronous wait during

view-change will increase the latency of the protocol. For example,

the protocol in Section 4 waits at least 4∆ time during view-change

to ensure that the new leader collects status from all honest repli-

cas. Thus, in an execution where leaders are changed after every

block, even when the leader is honest, this protocol requires at

least 4∆ + O(δ ) for one block to be committed even during opti-

mistic executions, and requires at least 6∆ when < 3n/4 replicas
are honest.

In this section, we present a protocol that is optimistically re-

sponsive in both the steady state as well as view-change. In a world

with rotating honest leaders, when > 3n/4 replicas are honest, this
protocol can commit blocks inO(δ ) time and replace leaders inO(δ )
time. When more than n/4 replicas are malicious under the rotating

honest leader setting, the protocol still commits in 5∆ +O(δ ) time.

6.1 Steady State Protocol
We make following modifications to the steady state protocol in

Section 4 to support a responsive view-change. In a synchronous

commit, a replica commits within 3∆ time after voting if no equiv-

ocation or blame certificate has been received. The additional ∆



wait in the synchronous commit accounts for the responsive view-

change that may occur before all honest replicas receive a certificate

for committed blocks. The propose and vote steps remain identical.

However, after voting for Bk , the commit-timerv,k is set to 3∆ time.

Pre-commit. The protocol includes an additional pre-commit step

with two pre-commit rules active simultaneously. The pre-commit

is identical to the commit step in the previous protocol. A replica

pre-commits using the rule that is triggered first. In a responsive

pre-commit, a replica r pre-commits a blockBk immediately when it

receives ⌊3n/4⌋+1 votes for Bk , i.e., C
3/4
v (Bk ) in viewv and notifies

C
3/4
v (Bk ) to all replicas via ⟨notify,C3/4

v (Bk ),v⟩r and broadcasts

commit message via ⟨commit,Bk ,v⟩r . Replica r , then, resets its
commit-timerv,k to min(2∆, commit-timerv,k ).

In a synchronous pre-commit, a replica pre-commits Bk when

its commit-timerv,k reaches ∆ and broadcasts ⟨commit,Bk ,v⟩r .

Commit. In a responsive commit, a replica commits a block Bk
immediately along with its ancestors when it receives ⌊3n/4⌋ +
1 commit messages for Bk . In a synchronous commit, a replica

commits Bk and all its ancestors when its commit-timerv,k expires

and it doesn’t detect an equivocation or blame certificate. As before,

the commit rules are non-blocking to rest of the execution.

Yield. When leader L wants to relinquish his leadership in view

v , L broadcasts ⟨yield,v⟩L . The yield message forces an explicit

view-change and useful for democracy-favoring leader policy and

change leader after every block. Ideally, an honest leader issues

yield after committing at least one block itself in view v .

Blame and quit view. The conditions for blaming the leader re-

mains identical to earlier protocols. We make modifications in how

a replica quits a view. Replicas quit view v when they receive f + 1
blame messages, detect equivocation or receive a yield message

from the current leader. On quitting view v , replica r broadcasts
⟨quit-view,v,CC⟩r where CC is the highest ranked chain certifi-

cate known to r . Replica r also broadcasts messages that triggered

quitting view v , for example, a blame certificate or yield message.

After quitting view v , replica r sets view-timerv+1 to 2∆ and starts

counting down.

The requirements for a pre-commit in this protocol is identical to

the requirements for a commit in the protocol in Section 4. Hence,

a similar intuition for those steps apply here as well. The key differ-

ence is replicas broadcast quit-view message along with its highest

chain certificate CC when quitting a view. We explain the intuition

behind this change after we describe the view-change protocol.

6.2 View-change Protocol
Unlike a synchronous view-change as shown in Figure 2 that waits

2∆ before entering a new view, a responsive view-change allows

replicas to quit current view and immediately transition to the next

view without any delay. In the new view, a leader can also propose

blocks without waiting for an additional 2∆ time. We make the fol-

lowing modifications to the view-change protocol to accommodate

the responsive view-change.

Status. The status step includes two rules for entering into the

new view. A replica r enters into view v + 1 based on which rule

is triggered first. A responsive rule is triggered when replica r

receives responsive quit-view certificate Q
3/4

B of ⌊3n/4⌋ + 1 quit-
viewmessages in viewv and enters viewv+1 immediately. Replica r

broadcastsQ
3/4

B to all replicas, updates its lock, lockv+1 to a highest
ranked chain certificate and sends lockv+1 to the new leader L′ via
a status message. The responsive status rule ensures that a replica

receives a responsively committed blocks when making immediate

transition to a higher view. This is critical to maintain the safety

of protocol (explained later). Due to the synchrony assumption,

all other honest replicas receive Q
3/4

B within ∆ time and transition

immediately to view v + 1.
The synchronous status rule is triggered when view-timerv+1

expires. Note that the view-timerv was set to 2∆. The 2∆ wait

ensures that all honest replicas receive a responsive certificate

C
3/4
v (Bk ) for some possibly committed block Bk before entering

viewv +1. Replica r enters viewv +1, and updates its lock, lockv+1
to a highest ranked chain certificate and sends lockv+1 to the new

leader L′ via ⟨status, lockv+1⟩r .

New-View. Upon entering view v + 1, the leader waits for a set S
of f + 1 status messages. We call the set S of f + 1 status messages

as status certificate. Based on the status certificate S, L′ picks the
highest ranked chain certificate lockv+1 and broadcasts new-view

message ⟨new-view-resp,v + 1, lockv+1⟩L′ along with S. Sending

S along with new-view message justifies that tip(lockv+1) extends
committed blocks in previous view.

First-Vote. Upon receiving a ⟨new-view-resp,v + 1, lock′⟩L′ mes-

sage along with status certificate S, if chain certificate lock′ has
the highest rank in S, then it forwards the new-view message to

all replicas and broadcasts a vote for it. Note that replica r may

have lockv+1 with rank higher than lock′. A replica votes for lock′

as long as lock′ is vouched by S. This is critical to ensure safety

across views.

Next, we provide some intuition on how the view-change proto-

col provides liveness and safety across views.

How is the safety of a responsive commit maintained across
views? Suppose an honest replica r responsively commits a block

Bk at time t . A responsive commit for a block Bk requires a set

Q
3/4

C of ⌊3n/4⌋ + 1 commit messages. A responsive view-change

requires a set Q
3/4

B of ⌊3n/4⌋ + 1 quit-view messages. Due to a quo-

rum intersection argument, Q
3/4

C and Q
3/4

B intersect in at least one

honest replicah which sends chain certificate CC such that tip(CC)
extends Cv (Bk ). Observe that this also explains why highest ranked
chain certificate is sent with a quit-viewmessage. The highest chain

certificate CC such that tip(CC) extends Cv (Bk ) from the honest

replica h at the intersection allows another replica r ′ performing a

responsive view change to learn about the commit of Bk .
A synchronous view-change waits 2∆ time before moving to

a higher view. Note that a replica making a synchronous view-

change hasn’t entered a higher view by time t + ∆. If an honest

replica r ′ ∈ Q
3/4

C pre-commits responsively by time t , its notify

containing C
3/4
v (Bk ) must reach all honest replicas by time t + ∆.

If replica r ′ ∈ Q
3/4

C pre-commits synchronously, honest replicas

making a synchronous view-change receive Cv (Bk ) by the time r ′



Let v be the view number and replica L be the leader of the current view. While in view v , a replica r runs the following steps in iterations:

(1) Propose. If replica r is the leader L, upon receiving Cv (Bk−1), it broadcasts ⟨propose,Bk ,v,Cv (Bk−1)⟩L where Bk extends Bk−1.
(2) Vote. Upon receiving the first proposal ⟨propose,Bk ,v,Cv (Bk−1)⟩L with a valid view v certificate for Bk−1 (not necessarily from L)

where Bk extends Bk−1, forward the proposal to all replicas, broadcast a vote in the form of ⟨vote,Bk ,v⟩r . Set commit-timerv,k to

3∆ and start counting down.

(3) Pre-commit. Replica r pre-commits Bk using one of the following rules if r is still in view v :

(a) Responsive Pre-commit. On receiving ⌊3n/4⌋ + 1 votes for Bk , i.e., C
3/4
v (Bk ) in view v , pre-commit Bk , and broadcast a notify

in the form of ⟨notify,C3/4
v (Bk ),v⟩r . Broadcast ⟨commit,Bk ,v⟩r and reset commit-timerv,k to min(2∆, commit-timerv,k ) and

start counting down.

(b) Synchronous Pre-commit. If commit-timerv,k reaches ∆, pre-commit Bk and broadcast ⟨commit,Bk ,v⟩r to all replicas.

(4) (Non-blocking) Commit. If replica r is still in view v , r commits Bk using the following rules:

(a) Responsive Commit. On receiving ⌊3n/4⌋ + 1 commit messages for Bk in view v , commit Bk and all its ancestors. Stop

commit-timerv,k .
(b) Synchronous Commit. If commit-timerv,k reaches 0, commit Bk and all its ancestors.

(5) Yield. Upon committing at least a block in view v , Leader L broadcasts ⟨yield,v⟩L when it wants to renounce leadership.

(6) (Non-blocking) Blame and quit view.
- Blame if no progress. For p > 0, if fewer than p proposals trigger r ’s votes in (2p + 4)∆ time in view v , broadcast ⟨blame,v⟩r .
- Quit view on f + 1 blame messages. Upon gathering f + 1 distinct blame messages, broadcast ⟨quit-view,v,CC⟩ along with f + 1
blame messages where CC is the highest ranked chain certificate known to r . Abort all view v timers, and quit view v . Set
view-timerv+1 to 2∆ and start counting down.

- Quit view on detecting equivocation. If leader equivocation is detected, broadcast ⟨quit-view,v,CC⟩r along with the equivocating

proposals, abort all view v timers, and quit view v . Set view-timerv+1 to 2∆ and start counting down.

- Quit view on yield. Upon receiving yield, broadcast ⟨quit-view,v,CC⟩r message along with yield message, abort all view v timers,

and quit view v . Set view-timerv+1 to 2∆ and start counting down.

Figure 5: Steady state protocol for optimistically responsive view-change.

Let L and L′ be the leader of view v and v + 1, respectively.

i) Status. Replica r can enter view v + 1 using one of the following rules:

a) Responsive. Upon gathering ⌊3n/4⌋ + 1 distinct quit-view messages, broadcast them. Update its chain certificate CC to the highest

possible rank. Set lockv+1 to CC and send ⟨status, lockv+1⟩r to L′. Enter view v + 1 immediately. Stop view-timerv+1.

b) Synchronous.When view-timerv+1 expires, update its chain certificate CC to the highest possible rank. Set lockv+1 to CC and

send ⟨status, lockv+1⟩r to L′. Enter view v + 1.

ii) New View. Upon receiving a set S of f + 1 distinct status messages after entering view v + 1, broadcast ⟨new-view-resp,v +
1, lockv+1⟩L′ along with S where lockv+1 is highest ranked chain certificate in S.

iii) First Vote. Upon receiving the first ⟨new-view-resp,v + 1, lock′⟩L′ along with S, if lock′ has a highest rank in S, update lockv+1
to lock′, broadcast ⟨new-view-resp,v + 1, lock′⟩L′ , and ⟨vote, tip(lock′),v + 1⟩r .

Figure 6: The optimistically responsive view-change protocol

pre-commits. Thus, all honest replicas lock on chain certificate CC

such that tip(CC) extends Cv (Bk ).

How is the safety of a synchronous commitmaintained across
views? Consider replica r votes for Bk at time t ′ and synchronously
commits at time t . If replica r pre-commits responsively at time

s with s − t ′ < ∆, it waits 2∆ before its commit-timerv,k expires.

Note that no honest replica has entered a higher view by time t −∆.

Replica r ′s notify containing C
3/4
v (Bk ) arrives all honest replicas by

time s + ∆ (i.e., by time t − ∆). In all other cases, replica r waits 3∆
time before its commit-timerv,k expires and replica r votes at time

t − 3∆. This implies all honest replicas receive Cv (Bk ) by time t −∆.
Any view-change after t − ∆ will receive Cv (Bk ) or higher and
honest replicas will lock on chain certificate CC such that tip(CC)
extends Cv (Bk ) before entering a higher view.

Why is it safe to vote for a valid new-view message with a
lower ranked lock? The commit rules in the protocol ensure that

there does not exist an equivocating chain certificateCC ′
such that

tip(CC ′) does not extend committed blocks. This implies honest

replicas lock on chain certificates that extend the committed blocks.

After entering a higher view, honest replicas send their locked

chain certificates via a status message. The new leader collects a

status certificate S of f + 1 status messages, extends on the highest

ranked certified block in S. Note that an honest replica sends a

status message only after entering a higher view and has locked on

a chain certificate that extends committed blocks in the previous

view. As S contains status from at least one honest replica, the

highest ranked chain certificate lock′ in S will extend committed

blocks in the previous view. Thus, it is safe for replicas to unlock a

lock with a rank higher than lock′.



In the new view, due to the status certificate, all honest replicas

will vote for the new-view message sent by an honest leader. Sub-

sequently, in the steady state, honest replicas will keep committing

new blocks.

6.3 Safety and Liveness
Claim 21. If a block Bk is committed directly in view v using the

responsive commit rule, then there does not exist a chain certificate
CC′ in view v such that CC′ > CC where tip(CC) extends Bk and
a block in CC′ equivocates Bk .

Proof. If a replica r responsively commits a block Bk in viewv , then
r must have received ⌊3n/4⌋ + 1 distinct commit messages out of

which at least a set R of ⌊(n − f )/2 + 1⌋ are from honest replicas.

An honest replica (say, r ′ ∈ R) sends commit message only if it

pre-commits and has not sent a blame message.

Replica r ′ can pre-commit in twoways. First, r ′ received ⌊3n/4⌋+
1 votes for Bk in view v and pre-committed responsively. This case

is identical to responsive commit rule for the protocol in Section 4.

By Claim 8, an equivocating chain certificate CC′
of rank higher

than (C
3/4
v (Bk ),⊥) cannot exist in view v . Second, replica r ′ voted

for Bk at time t − 2∆ and received no equivocation or blame cer-

tificate by time t and synchronously pre-commits at time t . This
case is identical to synchronous commit rule for the protocol in

Section 4. By Claim 9, there does not exist a block certificate for

an equivocating block in view v . Thus, chain certificate CC′
with

an equivocating block such that CC′ > CC cannot exist in view

v . □

Claim 22. If a block Bk is directly committed in view v , using the
synchronous commit rule then there does not exist a chain certificate
CC′ in view v such that CC′ > CC where tip(CC) extends Bk and
a block in CC′ equivocates Bk .

Proof. Replica r synchronously commits a blockBk when its commit-timerv,k
expires. Replica r could pre-commit in two ways. First, replica r
pre-commits responsively and then waits at least 2∆ time. The re-

sponsive pre-commit rule is identical to the responsive commit rule

for the protocol in Section 4. By Claim 8, an equivocating chain

certificate CC′
of rank higher than (C

3/4
v (Bk ),⊥) cannot exist in

view v .
Second, replica r synchronously pre-commits at time t , i.e., it

voted for Bk at time t − 2∆ and received no equivocation or blame

certificate by time t . This case is identical to synchronous commit

rule for the protocol in Section 4. By Claim 9, there does not exist a

block certificate for an equivocating block in view v . Thus, chain
certificate CC′

with an equivocating block cannot exist in view

v . □

Lemma 23. If a block Bk is directly committed in viewv , then there
does not exist a chain certificate CC′ in view v such that CC′ > CC

where tip(CC) extends Bk and a block in CC′ equivocates Bk .

Proof. Straightforward from Claim 21 and Claim 22. □

Claim 24. Let Bk be a block proposed in view v using Step 1 in
Figure 5. If an honest replica votes for Bk at time t in view v and
detects no equivocation or blame certificate at time ≤ t + 2∆, then (i)
all honest replicas are in view v at time t + ∆, (ii) all honest replicas
vote for Bk at time ≤ t + ∆.

Proof. Suppose an honest replica r votes for Bk at time t in view

v and detects no equivocation or blame certificate by time t + 2∆.
This implies two facts. First, replica r entered view v at time ≤ t . If
r entered view v responsively, i.e., by receiving a responsive quit-

view certificate, Q
3/4

B of ⌊3n/4⌋ + 1 quit-view messages, it must

have sent Q
3/4

B at time ≤ t . All honest replicas receive Q
3/4

B and

enter view v at time ≤ t + ∆. If r quit the previous view due to

f + 1 blame messages, it must have sent the blame certificate at

time ≤ t − 2∆ which arrives all honest replicas at time ≤ t − ∆.
Due to the 2∆ wait after receiving f + 1-sized blame certificate,

all honest replicas enter view v at time ≤ t + ∆. We note that no

honest replica has quit view v at time ≤ t + ∆; otherwise, replica r
receives a blame certificate at time ≤ t + 2∆. This proves part (i) of
the claim.

Replica r received a proposal for Bk which contains Cv (Bk−1) at
time t . Replica r ’s vote and forwarded proposal for Bk arrives at all

honest replicas at time ≤ t + ∆. No honest replica has voted for an

equivocating block or received a blame certificate at time ≤ t + ∆;
otherwise replica r would have received an equivocation or blame

certificate at time ≤ t + 2∆. Thus, all honest replicas will vote for
Bk at time ≤ t + ∆. This proves part (ii) of the claim. □

Claim 25. Let Bk be a block proposed in view v using Step 1 in
Figure 5. If an honest replica votes for Bk at time t in view v and
detects no equivocation or blame certificate at time ≤ t + 3∆, then
(i) all honest replicas are still in view v at time t + 2∆ (ii) all honest
replicas receive Cv (Bk ) at time ≤ t + 2∆.

Proof. Suppose an honest replica r votes for a block Bk at time t
in view v and detects no equivocation or blame certificate by time

t +3∆. Trivially, replica r has not received an equivocation or blame

certificate by time t + 2∆. By Claim 24 (i), all honest replicas are

in view v at time t + ∆. No honest replica has quit view v by time

t + 2∆; otherwise replica r must receive blame certificate by time

t + 3∆ contradicting our hypothesis. Thus, all honest replicas are

still in view v at time t + 2∆. This proves part (i) of the claim.

If replica r receives no equivocation or blame certificate at time

≤ t + 3∆, it is easy to see that replica r receives no equivocation or

blame certificate by time t + 2∆. By Claim 24, all honest replicas

vote at time ≤ t + ∆. By synchrony assumption, all honest replicas

receive at least f + 1 votes for Bk i.e., Cv (Bk ) at time ≤ t + 2∆. This
proves part (ii) of the claim. □

Claim 26. If an honest replica directly commits a block Bk in view
v using the responsive commit rule, then all honest replicas receive
a chain certificate CC before entering view v + 1 such that tip(CC)
extends Bk .

Proof. We first discuss the case where some replica performs a view-

change due to a responsive quit-view certificate, and then discuss a

view-change due to a synchronous blame certificate. Suppose an

honest replica r receives a set Q
3/4

C of ⌊3n/4⌋ + 1 commit messages

for block Bk in view v and responsively commits Bk at time t .

Thus, all honest replicas in Q
3/4

C must have received Cv (Bk ) before
sending the commit message. By Claim 21, there does not exist

a chain certificate CC′
in view v such that CC′ > CC where

tip(CC) extends Bk and a block in CC′
equivocates Bk . Consider

the quorumQ
3/4

B that made some honest replica r ′ enter viewv + 1.



r ′ receives a responsive quit-view certificate of ⌊3n/4⌋ + 1 quit-

view messages each of which contains a chain certificate when the

quit-view message was sent. By quorum intersection argument,

Q
3/4

C and Q
3/4

B must intersect in at least one honest replica. Thus,

the intersecting honest replica must include a higher ranked chain

certificate CC where tip(CC) extends Bk in blame message. This

implies any replica that makes a responsive view-change must

receive CC before entering view v + 1.
Consider a view-change due to a synchronous blame certificate.

Observe that any honest replica (say, replica u) that quits view v
due to a synchronous blame certificate has not entered view v + 1
at time t +∆; otherwise replica u must have sent a blame certificate

at time ≤ t − ∆ (due to the 2∆ wait in the status step) and r must

receive the blame certificate at time ≤ t and r wouldn’t commit.

If some honest replica r ′ in Q
3/4

C pre-committed responsively, r ′

notifies C
3/4
v (Bk ) by time t and replica u receives C

3/4
v (Bk ) at time

≤ t + ∆. Similarly, if replica r ′ synchronously pre-commits Bk by

time t , it votes for Bk by time t − 2∆ and detects no equivocation

or blame certificate by time t . By Claim 24 (ii), all honest replicas

vote for Bk by time t − ∆. Hence, replica u receivesCv (Bk ) by time

t before entering view v + 1. This implies any replica that makes a

synchronous view-change has CC before entering view v + 1 such
that tip(CC) extends Bk . □

Claim 27. If an honest replica directly commits a block Bk in view
v using the synchronous commit rule, then all honest replicas receive
a chain certificate CC before entering view v + 1 such that tip(CC)
extends Bk .

Proof. Suppose an honest replica r synchronously commits a block

Bk at time t in view v . Its commit-timerv,k for Bk expires at time

t without detecting an equivocation or blame certificate.

Let t ′ be the time at which replica r votes for Bk . If replica r pre-

commits responsively and notifies C
3/4
v (Bk ) at time s with s−t ′ < ∆,

it waits at least 2∆ (with s + 2∆ = t ) before its commit-timerv,k
expires. It is easy to see that replica r voted at time t ′ and hasn’t

detected an equivocation or blame certificate by time t ′ + 2∆. By
Claim 24 (i), all honest replicas are in view v by time t ′ + ∆. All
honest replicas are still in view v at time t − ∆; otherwise, replica
r must have received a blame certificate by time t and wouldn’t

commit. Replica r ’s notify containing C
3/4
v (Bk ) reaches all honest

replicas at time ≤ s + ∆ i.e., at time ≤ t − ∆. Hence, all honest

replicas receive C
3/4
v (Bk ) before entering view v + 1.

In all other cases, replica r waits for 3∆ before its commit-timerv,k
expires. Replica r votes for Bk in view v at time t − 3∆ and detects

no equivocation or blame certificate by time t . By Claim 25, all

honest replicas are in view v at time t − ∆ and receive Cv (Bk ) by
time t −∆. Thus, all honest replicas receive Cv (Bk ) before entering
view v + 1. This implies all honest replicas have a chain certificate

CC such that tip(CC) extends Bk . □

Lemma 28. If an honest replica directly commits a block Bk in
view v , then all honest replicas have lockv+1 before entering view
v + 1 such that tip(lockv+1) extends Bk .

Proof. By Claim 26 and Claim 27, all honest replicas receive a certifi-

cate chain CC such that tip(CC) extends Bk . By Lemma 23, there

does not exists an equivocating chain certificate CC′
in view v

such that CC′ > CC. Since, honest replicas lock on highest ranked

chain certificate, all honest replicas update lockv+1 to CC with

tip(lockv+1) extending Bk .
□

Claim 29. If an honest replica directly commits a block Bk in view
v , the tip of a highest ranked chain certificate CC in a view v status
certificate, i.e., tip(CC) must extend Bk .

Proof. Suppose an honest replica r commits a block Bk in view v .
By Lemma 28, all honest replicas lock on CC before entering view

v + 1 such that tip(CC) extends Bk . An honest replica sends status

message containing their CC only after entering viewv + 1. A view

v status certificate contains a set S of f + 1 status messages which

includes the status message from at least one honest replica. By

Lemma 23, there does not exist a chain certificate CC′
in view v

such that CC′ > CC where tip(CC) extends Bk and a block in CC′

equivocates Bk . Thus, the tip of highest ranked chain certificate

CC in S, i.e., tip(CC) must extend Bk . □

Corollary 30. If the tip of highest ranked chain certificate CC
in a view v status certificate, i.e., tip(CC) does not extend a block Bk ,
then Bk has not been committed in view v .

Lemma 31 (Uniqe Extensibility). If an honest replica directly
commits a block Bk in view v , and Cv ′(Bk ′) is a view v ′ > v block
certificate, then Bk ′ extends Bk . Moreover, all honest replicas have
lockv ′ such that tip(lockv+1) extends Bk .

Proof. The proof is by induction on the view v ′ > v . For a view
v ′
, we prove that if Cv ′(tip(lock′)) exists then it must extend Bk . A

simple induction then shows that all later block certificates must

also extend tip(lock′), this follows directly from the Vote rule in

line 2.

For the base case, wherev ′ = v+1, the proof that Cv ′(tip(lock′))
extends Bk follows from Lemma 28 because the only way such a

block can be certified is if some honest replica votes for it. However,

all honest replicas are locked on a block that extends Bk and a

chain certificate with a higher rank for an equivocating block does

not exist. Although, honest replicas unlock on their locked chain

certificates lockv+1 and lock on a highest ranked chain certificate

lock′ in a status certificate S, by Claim 29, tip(lock′) must extend

Bk . Thus, no honest replica will first vote (Figure 2 step iii)) for

a block that does not extend Bk . The second part follows directly

from Lemma 28.

Given that the statement is true for all views below v ′
, the proof

that Cv ′(tip(lock′)) extends Bk follows from the induction hypoth-

esis because the only way such a block can be certified is if some

honest votes for it. An honest party with a lock lock will vote only

if tip(lockv ′) has a valid block certificate and lock ≥ lockv ′ . Due to

Lemma 28 and the induction hypothesis on all block certificates of

view v < v ′′ < v ′
is must be that Cv ′(tip(lock)) extends Bk . □

Safety. The safety proof remains identical to that of Theorem 14

except Lemma 23 and Lemma 31 needs to be invoked.

Theorem 32 (Liveness). All honest replicas keep committing new
blocks.

Proof. In a view, a leader has to propose at least p blocks that trigger
honest replica’s votes in (2p + 4)∆ time. As long as the leader



proposes at least p valid blocks, honest replicas will keep voting

for the blocks and keep committing the proposed blocks. If the

Byzantine leader equivocates or proposes less than p blocks, a view-

change will occur. Eventually, there will be an honest leader due to

round-robin leader election.

Next, we show that once the leader is honest, a view-change

will not occur and all honest replicas keep committing new blocks.

If a block Bk has been committed in a previous view, by Lemma

28, all honest replicas lock on a chain certificate lockv+1 such that

tip(CC) extends Bk before entering a new view. After entering a

new view, honest replicas send their locked CC to the new leader

in status message. The new leader extends on the tip of a highest

ranked chain certificate (say, lock′) in a status certificate S. Even

if some honest replicas are locked on chain certificates (say, CC”)

that rank higher than lock′), by Corollary 30 it is safe to unlock

on CC”). Hence, honest replicas will vote for blocks that extend

tip(lock′). After that, the honest leader can propose at least one

block in 2∆ time and keep making progress. Moreover, the honest

leader doesn’t equivocate. This ensures all honest replicas keep

committing new blocks.

□

7 EVALUATION
In this section, we evaluate the performance of the protocol with

optimal optimistic responsiveness with 2∆ synchronous latency

and > 3n/4 sized quorum (Section 4). Here after, we call the protocol

OptSync for brevity. We first evaluate the throughput and latency of

OptSync under varying batch sizes and payload. We then compare

OptSync with Sync HotStuff [2] and HotStuff [28] at optimal batch

size under different payloads and system size.

Implementation Details and Methodology
Our implementation is an adaption of the open-source implemen-

tation of Sync HotStuff. We modify the core consensus logic to

replace the core Sync HotStuff code to OptSync.

In our implementation, each block consists of a batch of client

commands. Each command contains a unique command identifier

and an associated payload. The number of commands in a block

determines its batch size.

The throughput and latency results were measured from the per-

spective of external clients that run on separate machines from that

of the replicas. The clients broadcast a configurable outstanding

number of commands to every replica. Clients issue more com-

mands when the issued commands have been committed. In all of

our experiments, we ensure that the performance of replicas are

not limited by lack of client commands.

Experimental Setup.All our replicas and clients were installed on
Amazon EC2 c5.4xlarge instances. Each instance has 16 vCPUs

supported by Intel Xeon Platinum 8000 processors with maximum

network bandwidth of upto 10Gbps. The network latency between

two machines is measured to be less than 1ms. We used secp256k1
for digital signatures in votes and quorum certificate consists of an

array of secp256k1 signatures.

Baselines. We make comparisons with two state-of-the-art proto-

cols: (i) HotStuff, a partially synchronous protocol, and (ii) Sync Hot-

Stuff, a synchronous protocol. OptSync shares the same codebase

with HotStuff and Sync HotStuff, and thus enables a fair comparison

between the protocols. Although, HotStuff has a revolving leader

policy, for fair comparison we chose to compare with HotStuff un-

der stable leader policy as both OptSync and Sync HotStuff have a

stable leader in the steady state. In all of the experiments, the curves

represented by OptSync show the protocol’s performance when the

optimistic conditions are met. When the optimistic conditions are

not met, our protocol behaves identically to Sync HotStuff (without

responsiveness) and the curves marked as Sync HotStuff describe

the protocol’s performance.

Basic Performance
We first evaluate the basic performance of OptSync when the toler-

ating f = 1 fault with a synchronous delay ∆ = 50ms. We measure

the observed throughput (i.e., number of committed commands per

second) and the end-to-end latency for clients. In our first experi-

ment (Figure 7a), each command has a zero-byte payload and we

vary batch size at different values, 100, 400, and 800 as represented

by the three lines in the graph. Each point in the graph represents

the measured throughput and latency for a run with a given load

sent by clients. Basically, clients maintain an outstanding number of

commands at any moment and issue more commands immediately

when previous commands have been committed. We vary the size

of outstanding commands to simulate different loads. As seen in

the graph, the throughput increases with increasing load without

increasing latency upto a certain point before reaching saturation.

After saturation, the latency increases while the throughput ei-

ther remains consistent or slightly degrades. We observe that the

throughput is maximum at around 280 Kops/sec when the batch

size is 400 with a good latency of around 3ms. We set the batch size

to be 400 for our following experiments.

In our second experiment (Figure 7b), we vary the command

request/response payload at different values in bytes 0/0, 128/128

and 1024/1024 with a fixed batch size of 400. Not surprisingly, as the

payload size increases, each command requires a higher bandwidth

and the throughput, measured in number of commands, decreases.

We also observe a marginal drop in latency with increasing payload.

Scalability and Comparison with Prior Work
Next, we study how OptSync scales as the number of replicas in-

crease. We also compare with HotStuff and Sync HotStuff. First, we

study how the protocols perform with zero-payload commands to

understand the raw overhead incurred by the underlying consensus

mechanism at different values of f (Figure 8). Then, we study how

the protocols perform at a higher payload of 1024/2024 (Figure 9).

We use a batch size of 400 and a synchronous delay ∆ of 50ms for

both these experiments. Each data point in the graphs represent the

throughput and latency at the saturation point without overloading

the replicas. We note that we are using 2f + 1 replicas for OptSync
and Sync HotStuff, and 3f + 1 replicas for HotStuff.

Comparison with HotStuff. Figure 8 compares the raw through-

put and latency. The raw throughput of OptSync is slightly less

than HotStuff for different measured values of f . With a higher
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Figure 7: Throughput vs. latency at varying batch sizes and payload at ∆ = 50ms and f = 1.
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Figure 8: Performance as function of faults at ∆ = 50ms, optimal batch size, and 0/0 payload.

1 4 8 16

Faulty Replicas (f)

0

50

100

150

200

T
h
ro

u
g
h
p
u
t

(K
o
p
s/

se
c)

Sync-HS-p1024
HotStuff-p1024
OptSync-p1024

(a) f vs throughput.

1 4 8 16

Faulty Replicas (f)

0

40

80

120

160

200

240

L
a
te

n
cy

(m
s)

Sync-HS-p1024
HotStuff-p1024
OptSync-p1024

(b) f vs latency.
Figure 9: Performance as function of faults at ∆ = 50ms, optimal batch size, and 1024/1024 payload.

payload (Figure 9a), OptSync has a higher throughput compared to

HotStuff for moderate system sizes but it decreases at f = 16. There

are two competing factors that are reflected in this figure. First,

OptSync requires only a single block, i.e., fewer client commands

and lesser load, to commit, whereas HotStuff requires at least 3

blocks, and hence a higher load, to commit. This also worsens the

performance of HotStuff as the size of payload increases. Second,

each notify message in OptSync contains a responsive certificate

consisting of a list of signatures from ⌊3n/4⌋ + 1 replicas. Each

secp256k1 signature incurs 64 bytes. This increases the communi-

cation complexity of OptSync leading to a reduced performance as

f increases. This throughput decrease can be improved by using

succinct BLS signatures [5].

In terms of latency (Figures 8b,9b), OptSync performs much

better than HotStuff. OptSync commits in a single round of votes

wherease HotStuff requires 3 rounds.

Comparisonwith SyncHotStuff.OptSync is identical to SyncHot-
Stuff except for the responsive commit-path. Thus, The raw through-

put of OptSync and Sync HotStuff is similar (Figure 8b). At higher

payloads, we again see a better throughput for OptSync at moderate

system sizes but decreases at a higher f . The reasons are similar to

earlier; replicas in Sync HotStuff, due to the synchronous wait time,

need to maintain a higher load of blocks. In terms of latency, since

the optimistic commit in OptSync does not incur O(∆) delays, it’s
latency is far superior. We note that Sync HotStuff [2] work does

describe an optimistically responsive protocol (that was not im-

plemented). However, since they explicitly need to know whether

optimistic conditions are met, they will always incur at least a 2∆
delay to switch paths, and hence will have a worse latency.

8 RELATEDWORK
There has been a long line of work on Byzantine agreement start-

ing at the Byzantine Generals Problem [19]. Dolev and Strong [10]

presented a deterministic solution to the Byzantine Broadcast prob-

lem in the synchronous model tolerating f < n − 1 faults with a

f + 1 round complexity. Several other works [1, 4, 11, 12, 15, 16, 25]

have been proposed to improve the round complexity. We review

the most recent and closely related works below. In particular, we

make comparisons with synchronous BFT protocols with the notion

of optimistic and synchronous commit paths. Compared to all of

these protocols, our responsive commit incurs an optimal latency

of 2δ and synchronous commit incurs a latency of 2∆ time while

tolerating the same number of faults.



Thunderella. The idea of optimistic responsiveness in a back-and-

forth slow-path–fast-path paradigm was first introduced in Thun-

derella [24]. They commit a decision in a single round under opti-

mistic executions. Their path switching time and the synchronous

latency is O(κ∆) or O(n∆), where κ is a security parameter.

Sync HotStuff. Like Thunderella, Sync HotStuff [2] is presented

in a back-and-forth slow-path–fast-path paradigm. If started in

the wrong path, their responsive commit will incur a latency of

2∆ + O(δ ) time and synchronous commit incurs 4∆ + O(δ ) time.

Compared to them, our protocol in Section 6 can also perform an

optimistically responsive view change, while their view change

always incurs a 2∆ delay.

Comparisonwithworkshaving simultaneity in commits.Our
upper bound results are not the first results to use simultaneous

paths. There are works such as Zyzzyva [17], SBFT [14] and FaB [20]

which have considered the notion of simultaneous paths under par-

tial synchrony. Similarly, a recent work called PiLi [8] achieves

simultaneity under a synchronous assumption. Ours is the first

work that achieves simultaneity under a synchrony assumption

while obtaining optimal latency.

PiLi. PiLi [8] presents a BFT SMR protocol that progresses through

a series of epochs. The protocol assumes lock-step execution in

epochs. Each epoch lasts for O(δ ) (resp. 5∆) under optimistic (resp.

synchronous) conditions orO(δ ). The protocol commits 5 blocks af-

ter 13 consecutive epochs. PiLi has a responsive (resp. synchronous)

latency of at least 16δ -26δ (resp. 40∆-65∆).

Hybrid-BFT. A couple of weeks before the submission, an indepen-

dent and concurrent work called Hybrid-BFT [21] was posted. They

propose an optimistically responsive protocol with both responsive

and synchronous commit paths existing simultaneously. However,

after a responsive commit, their protocol waits for 7∆ time before

starting the next block. From the perspective of a client, if a com-

mand is sent to replicas just after processing some command, the

replicas will not process them for 7∆; though after that, it will im-

mediately commit within O(δ ) time. In comparison, our protocols

will commit within O(δ ) time without waiting for a synchronous

delay. Their synchronous commits also incur a similar 7∆ delay af-

ter starting a block. They also introduce a responsive view-change;

however, a synchronous wait of 7∆ before the view-change makes

it not responsive in essence.
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