
Improved Fault Templates of Boolean Circuits in

Cryptosystems can Break Threshold

Implementations

Debdeep Mukhopadhyay,
Department of Computer Science and Engineering,

Indian Institute of Technology Kharagpur
West Bengal, India

Email: debdeep@cse.iitkgp.ac.in

Abstract

Fault Template Analysis (FTA) has been shown as a powerful tool for
attacking cryptosystems and exposing vulnerabilities which were previ-
ously not reported in existing literature. Fault templates can be utilized
for attacking block ciphers in middle rounds which were known prior to
be resistant against fault attacks. In this paper we revisit the potent
of fault templates and show a more systematic methodology to develop
fault templates of Boolean circuits using a well known concept in design
verification, namely positive Davio’s decomposition. We show that the
improved FTAs, called FTA2.0, can be used to fault analyze block ci-
phers in the middle rounds using as few as two bit-flip faults. Further,
it can be used to attack TI-implemented block ciphers by considering a
Double Bit Upset (DBU) fault in a target share bit. The attack shows
that varying the latency of the fault the adversary can obtain unmasked
bits and can recover the secret key.

1 Introduction

Faults have been shown to be catastrophic to the security of cryptosystems.
The seminal paper of Kocher exposed that faults can be catastrophic for crypto-
systems. Subsequently several fault based cryptanalysis on ciphers have been
developed to show that faults are a very powerful attack vector. The potent
of fault based cryptanalysis arose from the development in two directions of
research: i) There was a huge development of accurate and reasonably afford-
able fault injection tools. Various fault injection methods based on clock/voltage
glitches, electromagnetic pulse injections, and laser shots are some popular tech-
niques of fault injections on crypto-devices like FPGAs, smart-cards etc. ii)
The fault based crptanalysis algorithms on crypto-standards like the Advanced
Encryption Standard (AES) were significantly improved over prior research to

1



eventually take around a single fault to deduce the key [1]. Different fault anal-
ysis techniques, like Differential Fault Analysis (DFA), Differential Fault Inten-
sity Attacks (DFIA), and Statistical Fault Intensity (SIFA), Persistent Fault
Attacks (PFA) were developed and show that not-only crypto-implementations,
but even countermeasures like redundancy, concurrent error detection (CED),
Infective countermeasures and the like can also be thwarted. using fault injec-
tions. A common aspect of these fault attack techniques are that all of them are
non-profiled attacks and require access to faulty ciphertexts (also the fault-free
ciphers in case of the classical DFA). This often restricts the attacks on the start-
ing or last rounds. Recently, the first profiled fault attack, called Fault Template
Attack (FTA) was proposed [2]. FTA is based on fault propagation character-
istic which is dependent on the inputs to a Boolean circuit and is defined in
a fault template collected in a profiling phase. Subsequently, the template is
used in a template matching phase while launching the attack on a target de-
vice to recover the internal states and secret key of the victim cryptosystem.
Notably, FTA does not require access to the ciphertext, a property which is
useful to perform middle round attacks which are not attainable by other fault
attacks. FTA has been applied successfully on masking countermeasures, in-
cluding mathematically sound TI protections. In this paper, we first make the
fault template building phase for Boolean circuits more systematic and name it
FTA2.0. Subsequently, we delve into analyzing TI-protected schemes of popular
ciphers like PRESENT and show how they can leak the actual unshared inputs
in the face of the improved FTA2.0 method. In particular, we show that the
ability to flip a register storing an inner round share bit twice during an encryp-
tion following a Double Bit Upset (DBU) fault model1 can leak the unshared
inputs. Interestingly, we show that a control on latency of the fault pattern can
reveal all the state-bits even without knowledge of the input and outputs of the
inner round. This makes FTA2.0 successful on most software implementations
of such TI-protected schemes where the computations of the inner round output
shares are evaluated in multiple cycles.

2 Fault Model

The manifestation of faults in electronic circuits are captured. by fault models.
Proper definition of fault models are needed to analyze the threats of these
faulty behavior on the secret computations. The fault model that we address
here in the paper are transient faults which are more pertinent than permanent
faults wrt. fault attacks. They are short-lived and thus they are more stealthy
compared. to permanent faults which can render the device unusable thus
making the attack less threatening. The transient faults are characterized by
i) Fault Injection Time, denoted as tinj which is the time instance when the
value of a target register changes from its correct configuration, and ii) Fault
Release Time, denoted as trelease, which is the instance of time when the faulty
configuration of the target register is released. If the target register r is a single

1Modern day lasers can create such fault patterns at bit-level in registers

2



bit entity, then on release it returns back to its correct bit value as before tinj .
The fault duration is denoted as d = trelease − tinj , and we consider such faults
at the granularity of clock cycles. Thus, we denoted any fault as the following
notation, F (r, tinj , trelease).

3 Boolean Functions and FTA2.0

Let f be a Boolean function with n-variables x1, x2, · · · , xi, · · · , xn. By using
positive Davio decomposition we can write,

f = fxi
+ xi

∂f

∂xi

Here,

fxi = f(x1, · · · , xi−1, 0, xi+1, · · · , xn)

∂f

∂xi
= f(x1, · · · , xi−1, 0, xi+1, · · · , xn)⊕ f(x1, · · · , xi−1, 1,

xi+1, · · · , xn)

Consider, a stuck-at-1 fault in the variable xi. Since, fxi
does not contain

xi, this part will not corrupt the output. So, the fault will propagate to the
output iff xi = 0, and ∂f

∂xi
= 1.

As a concrete example, we consider the first output bit of the S-Box for
PRESENT as shown in Eq. (1). This S-Box has 4 input bits denoted as
x1, x2, x3, x4 and 4 output bits y1, y2, y3, y4 (where x1 and y1 are the Most
Significant Bits (MSB) and x4 and y4 are the Least Significant Bits (LSB)).

y1 = x1x2x4 + x1x3x4 + x1 + x2x3x4 + x2x3 + x3 + x4 + 1 (1)

Applying, the above decomposition by target x1 we have:

fx1
= x2x3x4 + x2x3 + x3 + x4 + 1

∂f

∂x1
= x2x4 + x3x4 + 1

Now, consider a stuck-at-1 fault at x1. The fault is propagated to the output
y iff x1 = 0 and x2x4 + x3x4 = 0⇒ x4 = 0, or x2 + x3 = 0.

Thus, the possible values of (x1, x2, x3, x4) can be any of the following states:
(0, 0, 0, 0), (0, 0, 1, 0), (0, 1, 0, 0), (0, 1, 1, 0), (0, 0, 0, 1), (0, 1, 1, 1).
Likewise, if we expand the function on the variable x2, we have:

fx2
= x1x3x4 + x1 + x3 + x4 + 1

∂f

∂x2
= x1x4 + x3x4 + x3

3



In this case, if we consider a stuck-at-1 fault at x2, then the fault propa-
gates to the output iff x2 = 0 and x1x4 + x3x4 + x3 = 1 ie. (x1, x2, x3, x4) =
(0, 0, 1, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 1, 1).

Note, that if the fault propagates in both the cases we intersect the above
possible values of (x1, x2, x3, x4), and we have (0, 0, 1, 0). Thus the leakage of
the input state leaks by observing only whether. the output is faulty.

In the worst case, we may need 4 fault injections. This is because when
the fault injected at a variable xi propagates to the output it leads to the
attacker obtaining a conjunction in the variables which can be generalized as:
xi = 0 ∧ ∂f

∂xi
= 1. It may be observed that when there is no fault propagation

we have a disjunction, namely: xi = 1∨ ∂f
∂xi

= 0. Since, we have 4 variables the
minimal faults would be required as when the fault propagation occurs and we
have equations which simplify to two equations with two variables which can
be trivially solved. However, when the fault propagation does not occur, in the
worst case-scenario, every fault injection will lead to a disjunction, which may
leak either one of the input variables or another equation with three variables ie.
without the variable on which the equation has been pivoted. Hence, one can
observe that 4 fault injections are sufficient for the retrieval of all the possible
input values.

NB: This also shows that our technique of FTA (Fault Template Attacks) is
significantly different from Safe Error Attacks (SEA). In SEA the attack would
require always 4 fault injections to retrieve the internal state of 4 bits. However,
in case of FTA, the number of faults required can be 2, as we are considering
the propagation criteria of the Boolean circuit which is not considered by FTA.

We call the fault propagation template as the Fault Template 2.0 (or FTA2.0).
FTA2.0 can be characterized by the vector S[n] for an n-variable Boolean
function. Here S[n] is a 0-1 vector which defines whether the fault propa-
gates to the output bit. Each bit, S[i] = 1 ⇒ (xi = 0) ∧ ∂f

∂xi
= 1, while

S[i] = 0⇒ (xi = 1)∨ ∂f
∂xi

= 0. The solution for the variable x = (x0, · · · , xn−1)
is thus a solution of this system of equations.

4 Application of FTA2.0 to Masked Circuits

For the sake of illustration, we first present the unshared version of F (Eq. (2)),
and then the shares corresponding to it (Eq. (3)). Note that, in Eq. (2) x0

denote the LSB and x3 denote the MSB.

F (x3,x2, x1, x0) = (f3, f2, f1, f0)

f3 = x2 + x1 + x0 + x3x0; f2 = x3 + x1x0; f1 = x2 + x1 + x3x0;

f0 = x1 + x2x0.

(2)

f10 = x2
1 + x2

2x
2
0 + x2

2x
3
0 + x3

2x
2
0

f20 = x3
1 + x3

2x
3
0 + x1

2x
3
0 + x3

2x
1
0

f30 = x1
1 + x1

2x
1
0 + x1

2x
2
0 + x2

2x
1
0

f11 = x2
2 + x2

1 + x2
3x

2
0 + x2

3x
3
0 + x3

3x
2
0

f21 = x3
2 + x3

1 + x3
3x

3
0 + x1

3x
3
0 + x3

3x
1
0

f31 = x1
2 + x1

1 + x1
3x

1
0 + x1

3x
2
0 + x2

3x
1
0

4



f12 = x2
3 + x2

1x
2
0 + x2

1x
3
0 + x3

1x
2
0

f22 = x3
3 + x3

1x
3
0 + x1

1x
3
0 + x3

1x
1
0

f32 = x1
3 + x1

1x
1
0 + x1

1x
2
0 + x2

1x
1
0

f13 = x2
2 + x2

1 + x2
0 + x2

3x
2
0 + x2

3x
3
0 + x3

3x
2
0

f23 = x3
2 + x3

1 + x3
0 + x3

3x
3
0 + x1

3x
3
0 + x3

3x
1
0

f33 = x1
2 + x1

1 + x1
0 + x1

3x
1
0 + x1

3x
2
0 + x2

3x
1
0

4.1 Target Implementation

It is reasonable to assume that the target implementation of the threshold S-box
would be a multi-cycle design. We assume that we have the following 12-clock
cycles to compute the protected S-box.

T0 : f10 → T1 : f11 → T2 : f12 → T3 : f13 → T4 : f20 → T5 : f21

↓
T6 : f22 → T7 : f23 → T8 : f30 → T9 : f31 → T10 : f32 → T11 : f33

The clock cycles are shown by T0 to T11, each output share being computed
in a different clock cycle.

4.2 Fault Location and Attack Outline

We consider a template building phase [2] wherein the faults are targeted at
the registers storing the masks x3

0 and x1
2. In order to build the templates for

obtaining the various bits of a nibble of the PRESENT cipher we consider the
following faults:

1. x0 by considering a fault pattern F0(x1
2, T4, T8)

2. x1 by considering a fault pattern F1(x3
0, T2, T6)

3. x2 by considering a fault pattern F2(x3
0, T0, T4)

4. x3 by considering a fault pattern F3(x3
0, T1, T5)

We explain how these fault campaigns work to retrieve the key bits of the
nibbles of the cipher state. We start with discussion on the fault F2.

4.3 Building the Templates

We demonstrate how to develop a template to obtain the nibble bit x2. Let
us consider a fault in the share x3

0 as per the fault model F2(x3
0, T0, T4). This

implies that we assume the fault to create a bit-flip in register x3
0 at time T0

and follow it with a release of the fault at time T4.
Note that a permanent fault in one of the shares for x0 will always result in

an effective fault in the final computation. However as we do not keep the fault
for the entire duration but rather keep the fault only during the computations
f10, f11, f12, f13, f20 as entailed in the fault model F1, the fault may conditionally
propagate depending on the nibble bits.

5



It may be emphasized that it is quite practical to assume that the attacker
can control the fault timing to affect this. We trigger a laser gun a fixed time
t0 before the start of the computation for the share f10 at time T0 when the
injection is needed. The injection causes a bit flip in the register holding the
share x3

0, and it creates another bit flip in the same register at a time t1 after
the first injection point. This can be obtained by standard fault injection lasers
even with a set-up with a single laser, and in particular using a more costly set-
up which has double lasers (which can target simultaneously two fault locations
- which in this case is the same target).

4.3.1 Leakage of x2

Thus, we compute the partial derivatives wrt. x3
0 to determine the conditions

on which the output shares would be faulted.

∂f10
∂x3

0

= x2
2

∂f11
∂x3

0

= x2
3

∂f12
∂x3

0

= x2
1

∂f13
∂x3

0

= x2
3

∂f20
∂x3

0

= (x3
2 + x1

2)

Thus, the fault propagates to the output iff f0, or f1, or f2, or f3 is faulted.
Thus, we have ∂f0

∂x3
0

= x2, ∂f1
∂x3

0
= x2

3, ∂f2
∂x3

0
= x2

1, ∂f3
∂x3

0
= x2

3.

Thus, we see the fault always propagates to the output iff x2 = 1 or x2
3 = 1 or

x2
1 = 1. Note, that if we fix the input x, the bit x2 = 1 occurs with probability

0 or 1, but the other (share) bits are true with a probability of 0.5 (as they
are randomly chosen on every encryption). Thus, if x2 = 1, the fault is always
propagated, else, sometimes the fault would not be propagated. This leaks x2.
This can be suitably performed to leak other bits too.

4.3.2 Leakage of x3

Now consider the fault F3(x3
0, T1, T5). This keeps the target register x3

0 same
but the duration is shifted to T1 to T5. Thus the transient fault affects the
computations f11, f12, f13, f20, f21.

Thus, in order to comprehend the conditions for the fault to propagate we
compute:

6



∂f0
∂x3

0

= x3
2 + x1

2

∂f1
∂x3

0

= x3

∂f2
∂x3

0

= x2
1

∂f3
∂x3

0

= x2
3

Thus, again the fault propagates to the output iff x3 = 1 or x3
2+x1

2 = x2
2 = 1

or x2
1 = 1 or x2

3 = 1, thus leaking the value of x3.

4.3.3 Leakage of x1

Similarly, we can control the fault timing to engulf the computations f12, f13, f20, f21, f22
by considering a fault campaign in the model F1(x3

0, T2, T6). Again note that
this is a shifted duration of the fault in the same target register x3

0. Thus, we
compute the following partial derivatives to determine the conditions for fault
propagation:

∂f0
∂x3

0

= x3
2 + x1

2

∂f1
∂x3

0

= x3
3 + x1

3

∂f2
∂x3

0

= x1

∂f3
∂x3

0

= x2
3

In this case the fault propagates to the output iff x1 = 1 or x3
2 + x1

2 = x2
2 or

x3
3 + x1

3 = x2
3 = 1, thus leaking the value of x1.

4.3.4 Leakage of x0

For x0, we need to consider the fault in a different share register namely x1
2

according to the model F0(x1
2, T4, T8). This creates the first flip during the

computation of f20 and then persist in the sequence f20, f21, f22, f23, f30 before
being released.

Like before we compute the following to determine the conditions for fault
propagation to the output:

7



∂f0
∂x1

2

= x0

∂f1
∂x1

2

= 0

∂f2
∂x1

2

= 0

∂f3
∂x1

2

= 0

Thus, depending on the value of x0, the fault propagates always or never,
clearly leaking the value of x0.

4.3.5 Fault Template for the TI S-box

Based on the above analysis we can define the fault template wherein one can
subject the TI-implemented S-Box to the above 4 faults F0 − F3, and relate
the inputs to the fault propagation. One can capture the template ’ by a table
with 16 entries, where each entry represents whether the fault propagates when
subjected to the above faults. To explain for a given input x = x3, x2, x1, x0,
we denote the entry of the template table T [x] = (p0, p1, p2, p3) (Table 2).
Here, pi denotes the expected number of times the fault according to model
Fi creates a faulty output, where 0 ≤ i ≤ 3. For each fault campaign we try
say N times. It is evident pi ∈ {0, · · · , n − 1}. It may be noted that the
templates induces partitions on the input space. It can be observed that the
fault propagation template induces partitions on the input space which can be
denoted as (0), (1), (2), (3), (4), (5), (6), (7), (8, 10), (9, 11), (12, 14), (13, 15).

In order to make the partitions completely unambiguous we can consider
another fault model F4(x2

0, T2, T10). Note here the duration of the fault model
is extended to 9 clock-cycles and the register faulted is x2

0.
Again, we compute the following partial derivatives to determine the condi-

tions for fault propagation:

∂f0
∂x2

0

= x1
2

∂f1
∂x2

0

= x1
3

∂f2
∂x2

0

= x1

∂f3
∂x2

0

= 1 + x2
3 + x3

3

Thus, the fault propagates to the output iff x1 = 1 or x1
2 = 1 or x1

3 = 1 or
x2
3 + x3

3 = 0. With this incorporation the final template is shown underneath.

8



x3 x2 x1 x0 p0 p1 p2 p3
0 0 0 0 0 3n/4 3n/4 7n/8
0 0 0 1 n 3n/4 3n/4 7n/8
0 0 1 0 0 n 3n/4 7n/8
0 0 1 1 n n 3n/4 7n/8
0 1 0 0 0 3n/4 n 7n/8
0 1 0 1 n 3n/4 n 7n/8
0 1 1 0 0 n n 7n/8
0 1 1 1 n n n 7n/8
1 0 0 0 0 n 3n/4 n
1 0 0 1 n n 3n/4 n
1 0 1 0 0 n 3n/4 n
1 0 1 1 n n 3n/4 n
1 1 0 0 0 n n n
1 1 0 1 n n n n
1 1 1 0 0 n n n
1 1 1 1 n n n n

Table 1: Fault Template for TI PRESENT S-box

x3 x2 x1 x0 p0 p1 p2 p3 p4
0 0 0 0 0 3n/4 3n/4 7n/8 n
0 0 0 1 n 3n/4 3n/4 7n/8 n
0 0 1 0 0 n 3n/4 7n/8 n
0 0 1 1 n n 3n/4 7n/8 n
0 1 0 0 0 3n/4 n 7n/8 n
0 1 0 1 n 3n/4 n 7n/8 n
0 1 1 0 0 n n 7n/8 n
0 1 1 1 n n n 7n/8 n
1 0 0 0 0 n 3n/4 n 3n/4
1 0 0 1 n n 3n/4 n 3n/4
1 0 1 0 0 n 3n/4 n n
1 0 1 1 n n 3n/4 n n
1 1 0 0 0 n n n 3n/4
1 1 0 1 n n n n 3n/4
1 1 1 0 0 n n n n
1 1 1 1 n n n n n

Table 2: Final Fault Template for TI PRESENT S-box

9



It may be noted that the templates for all the inputs are distinct, ie. for two
distinct inputs x 6= x′, T [x] 6= T [x′]. This shows that FTA2.0 provides a useful
and powerful template to determine the unshared input x with a high accuracy.

4.4 Template Matching

The template shown in Table 2 is used as a reference to ascertain the input
states by fault injection. As mentioned each of the 16 entries in the table are
distinct. In the template matching phase, we leverage this observation to extract
the unshared input of the S-box inputs from the fault templates.

During the template building phase we tune the fault injection to induce the
faults according to the fault models F0 to F3. The number of faulty outputs are
observed after performing N fault injections for each type of fault. The fault
signature is stored by a vector W = (w0, w1, w2, w3, w4), where each entity wi,
0 ≤ i ≤ 4 stores the number of faulty outputs. This vector is then correlated
with all the distinct rows, P = (p0, p1, p2, p3, p4). The internal state returned
is x = Corrmax(P,W ). The leakage of the unshared internal state of two
successive rounds of a block cipher can be used to obtain the round secret key.
Note that the attack, as proposed in the original paper [2] does not require
access to the plaintext or ciphhertext and hence can be used to target even a
middle round encryption operation.

5 Conclusions

The above discussion shows that while it is a common practice to consider share
bits to be stored in registers, the ability to create transient faults in such registers
for multiple-cycles, following a commonly known Double Bit Upset (DBU) fault
model can lead to Fault Template Attacks. These FTAs can be fine tuned during
the template building phase, and eventually launched during the attack phase
to leak the actual input unshared bits of the S-Box. This leaks intermediate
rounds of the cipher which can compromise the security of the block cipher.

References

[1] Michael Tunstall, Debdeep Mukhopadhyay, and Subidh Ali. Differential
fault analysis of the advanced encryption standard using a single fault. In
IFIP international workshop on information security theory and practices,
pages 224–233. Springer, 2011.

[2] Debapriya Basu Roy Sikhar Patranabis Sayandeep Saha, Arnab Bag and
Debdeep Mukhopadhyay. Fault template attacks on block ciphers exploiting
fault propagation. In Proceedings of Eurocrypt 2020.

10


