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Abstract. Verifying security of advanced cryptographic primitives such
as attribute-based encryption (ABE) is often difficult. In this work,
we show how to break eleven schemes: two single-authority and nine
multi-authority (MA) ABE schemes. Notably, we break DAC-MACS, a
highly-cited multi-authority scheme, published at TIFS. This suggests
that, indeed, verifying security of complex schemes is complicated, and
may require simpler tools. The multi-authority attacks also illustrate
that mistakes are made in transforming single-authority schemes into
multi-authority ones. To simplify verifying security, we systematize our
methods to a linear approach to analyzing generic security of ABE. Our
approach is not only useful in analyzing existing schemes, but can also be
applied during the design and reviewing of new schemes. As such, it can
prevent the employment of insecure (MA-)ABE schemes in the future.

Keywords: attribute-based encryption · cryptanalysis · multi-authority
attribute-based encryption · attacks.

1 Introduction

Attribute-based encryption (ABE) [30] is an advanced type of public-key encryp-
tion. Ciphertext-policy (CP) ABE [5] naturally implements a fine-grained access
control mechanism, and is therefore often considered in applications involving
e.g. cloud environments [26,36,39,37,22,23] or medical settings [29,25,27]. These
applications of ABE allow the storage of data to be outsourced to potentially
untrusted providers whilst ensuring that data owners can securely manage access
to their data. Many such works use the multi-authority (MA) variant [8], which
employs multiple authorities to generate and issue secret keys. These authorities
can be associated with different organizations, e.g. hospitals, insurance compa-
nies or universities. This allows data owners, e.g. patients, to securely share their
data with other users from various domains, e.g. doctors, actuaries or medical
researchers. Many new schemes are designed for specific real-world applications,
that cannot be sufficiently addressed with existing schemes.

Unfortunately, proving and verifying security of new schemes are difficult,
and, perhaps unsurprisingly, several schemes turn out to be broken. Some
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Table 1. Attacks on existing schemes. For each scheme, we list in which work it
was broken, which functionality was attacked, and whether it was later fixed. Also,
we provide the venue and number of citations for these schemes according to Google
Scholar. These measures were taken on 18 November 2020.

Scheme Broken in Attacked functionality Fixed? Venue Cit.

LRZW09 [20]
ZCL+13 [40]
XFZ+14 [35]

LHC+11 [21]
CDM15 [9]

Private access policies [21]
ISC

AsiaCCS
NC

203
104
46

HSMY12 [12] GZZ+13 [11] Basic U NC 176

YJR+13 [39]
HXL15 [15]
WJB17 [34]

Revocation [34] TIFS 474

HSM+14 [13]
HSM+15 [14]

WZC15 [31] Basic U
ESORICS

TIFS
30
128

JLWW15 [17] MZY16 [24] Distributed key generation [18] TIFS 161

NC = non-crypto venue/journal; U = unknown

schemes were shown to be generically broken with respect to the basic func-
tionality, and are therefore insecure. Others were only broken with respect to
additional functionality. Table 1 shows that many of these schemes have been
published at venues that include cryptography in their scope. This suggests that,
even for cryptographers, it is difficult to verify security of ABE. In addition, many
of these schemes are highly cited due to their focus on practical applications.
This popularity shows that the claimed properties of these schemes are high in
demand. It is thus important to simplify security analysis.

To simplify the design and analysis of complex primitives such as ABE,
frameworks have been introduced [33,3,1] based on the common structure of
many schemes. These frameworks allow for the analysis of the exponent space
of the schemes—called pair encoding—with respect to simpler security notions.
Interestingly, Agrawal and Chase [1] show that fully secure schemes can be con-
structed from pair encodings that are provably symbolically secure. Using this,
they show that any scheme that is not trivially broken implies a fully secure
scheme. Later, Ambrona et al. [2] expand their framework to a broader class of
schemes, and devise automated tools to prove symbolic security, subsequently
yielding provably secure schemes in the generic bilinear group model [6,7]. How-
ever, operating these tools still requires a considerable expertise (and in a dif-
ferent field). Additionally, these frameworks do not support practical extensions
of ABE such as multi-authority ABE (MA-ABE).

In any case, these works illustrate that proving generic security of a scheme
provides a meaningful first step in the analysis of a new scheme, and may even
imply stronger notions of security. Conversely, showing that a scheme is not
generically secure provides overwhelming evidence that a scheme is insecure,
regardless of the underlying group structure or accompanying security proofs.
As such, devising manual tools and heuristics to effectively analyze the generic
(in)security of schemes may further contribute to these frameworks. That is,
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finding a generic attack—assuming that one exists—is often much simpler than
verifying the correctness of a security proof. In fact, it is often the first step that
an experienced cryptographer takes when designing a new scheme.

1.1 Our contribution

We focus on simplifying the search for generic attacks (provided that they exist).
In a broader context, our goal is not necessarily to attack existing schemes, but
to propose a framework that simplifies the analysis—and by extension, design—
of secure ABE schemes. We do this by systematizing a simple heuristic approach
to finding attacks. Our contribution in this endeavor is twofold. First, we show
that eleven schemes are vulnerable to generic attacks, rendering them (partially)
insecure. Five of these are insecure in the basic security model. The other six
are insecure in the multi-authority security model—which also allows for the
corruption of one or more authorities—but are possibly secure if all authorities
are assumed to be honest. Essentially, these six schemes provide a comparable
level of security as single-authority schemes. Second, we systematize our meth-
ods to a linear approach to generic security analysis of ABE based on the com-
mon structure of many schemes. Similarly as the aforementioned frameworks,
we consider the pair encodings of the schemes. To this end, we also formal-
ize such pair encodings for multi-authority schemes. Furthermore, we describe
three types of attacks, which model the implicit security requirements on the
keys and ciphertexts, and simplify the search for generic attacks. They model
whether the master-key of the/an authority can be recovered, or whether users
can collude and decrypt ciphertexts that they cannot individually decrypt. In
the multi-authority setting, we also model the notion of corruption.

1.2 Technical details

Ciphertext-policy ABE. In CP-ABE, ciphertexts are associated with access
policies, and secret keys are associated with sets of attributes. A secret key is
authorized to decrypt a ciphertext if its access structure is satisfied by the asso-
ciated set. These secret keys are generated by a key generation authority (KGA)
from a master-key, which can be used to decrypt any ciphertext. Users with
keys for different sets of attributes should not be able to collude in collectively
decrypting a ciphertext that they are individually not able to decrypt. There-
fore, these keys need to be secure in two ways. First, the master-key needs to
be sufficiently hidden in the secret keys. Second, combining the secret keys of
different users should not result in more decryption capabilities.

A brief overview of the attack models. We propose three types of attacks,
which all imply attacks on the security model for ABE. This model considers
chosen-plaintext attacks (CPA) and collusion of users. Two of our attack models
only consider the secret keys issued in the first key query phase of the security
model, while the third model also considers the challenge ciphertext. Informally,
the attacks are:
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Fig. 1. The general attacks and how they relate to one another.
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– Master-key attack (MK): The attacker can extract the KGA’s master-
key, which can be used to decrypt any ciphertext.

– Attribute-key attack (AK): The attacker can generate a secret key for a
set S ′ that is strictly larger than each set Si associated with an issued key.

– Decryption attack (D): The attacker can decrypt a ciphertext for which
no authorized key was generated.

In addition, we distinguish complete from conditional decryption attacks.
Conditional attacks can only be performed when the collective set of attributes
possessed by the colluding users satisfies the access structure. In contrast, com-
plete attacks allow any ciphertext to be decrypted. Figure 1 illustrates the rela-
tionship between the attacks, and how the attacks relate to the security model.
We consider the first key query phase and the challenge phase, which output the
secret keys for a polynomial number of sets of attributes, and a ciphertext asso-
ciated with an access structure such that all keys are unauthorized, respectively.

The security models in the multi-authority setting are similar, but include the
notion of corruption. The attacker is allowed to corrupt one or more authorities
in an attack, which should not yield sufficient power to enable an attack against
the honest authorities. Sometimes, schemes employ a central authority (CA)
in addition to employing multiple attribute authorities. This CA is assumed to
perform the algorithms as expected, though sometimes, it may be corruptable.
In this work, we show how to model the corruption of attribute authorities and
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corruptable CAs, and how the additional knowledge (e.g. the master secret keys)
gained from corrupting an authority can be included in the attacks.

Finally, we observe that sometimes it is unclear whether a multi-authority
scheme is supposed to provide security against corruption. Initially, multi-autho-
rity ABE was designed to be secure against corruption [8,19]. Not only does this
protect honest authorities from corrupt authorities, but it also increases security
from the perspective of the users. Conversely, not allowing corruption in the
security model provides a comparable level of security as single-authority ABE.
In some cases, the informal description of a scheme is ambiguous on whether
it protects against corruption. For instance, schemes are compared with other
multi-authority schemes that are secure against corruption, while the proposed
scheme is not, even though this is not explicitly mentioned [27,23].

Finding attacks, generically. We evaluate the generic (in)security of a scheme
by considering the pair encodings of a scheme [1,2]. Intuitively, the pair encoding
scheme of a pairing-based ABE scheme provides an abstraction of the scheme
to what happens “in the exponent”, without considering the underlying group
structure. In most pairing-based schemes, the keys and ciphertexts exist mainly
in two source groups, and during encryption, a message is blinded by a ran-
domized target group element. To unblind the message, decryption consists of
pairing operations to appropriately match the key and ciphertext components
and then lift these to the target group. For instance, let e : G × H → GT be a
pairing that maps two source groups G and H to target group GT , and let g ∈ G
and h ∈ H be two generators. Then, the keys and ciphertexts are of the form:

SK = hk(α,r,b), CT = (m · e(g, h)αs, gc(s,b)),

such that k and c denote the key and ciphertext encodings of the scheme, α
denotes the master-key, b is associated with the public key and r and s are the
random variables associated with the keys and ciphertexts, respectively.

On a high level, generic security of a scheme is evaluated by considering
whether e(g, h)αs can be retrieved from ciphertext CT and an unauthorized key
SK. Due to the additively homomorphic properties of groups G,H and GT , and
the multiplicative behavior of the pairing operation, we can also consider the
associated pair encoding scheme. That is, instead of retrieving e(g, g)αs from SK
and CT, we retrieve αs from k(α, r,b) and c(s,b). By multiplying the entries of
k and c, we emulate the pairing operations. By linearly combining the resulting
values (for which we require additions), we emulate the other available group
operations. As a result, such a “combination” of a key and ciphertext encoding
can be denoted by a matrix multiplication, i.e. E for which kEcᵀ = αs.

Pair encoding schemes allow us to evaluate the generic security of any scheme
that satisfies this structure, regardless of the underlying group structure. Unfor-
tunately, the structure of most multi-authority schemes differs from this struc-
ture. Therefore, we extend the existing definitions to additionally support these
multi-authority schemes. Furthermore, we split the key and ciphertext encodings
in two parts, so we can separately evaluate the stronger attacks, i.e. master-key
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Table 2. The schemes for which we provide attacks. For each scheme, we indicate on
which scheme it is based, which type of attack we apply to it and whether it is complete,
whether it uses collusion or corruption, whether the attack explicitly contradicts the
model in which the scheme is claimed to be secure. We also list the conference or journal
in which the scheme was published and how many times the paper is cited according
to Google Scholar. These measures were taken on 18 November 2020.

Scheme Based on CD Att. Col. Cor. Con. Venue Cit.

ZH10 [41,42]
ZHW13 [43]

- 7 AK 2 - X
NC
NC

112
123

NDCW15 [26] Wat11 [32] X D - - X ESORICS 46

YJ12 [36] - X MK - A X NC 155
YJR+13 [38,39]

WJB17 [34]
- X D - - X

NC, TIFS
NC

474
28

JLWW13 [16]
JLWW15 [17]

BSW07 [5] 7 AK 2 - X
NC

TIFS
174
161

QLZ13 [28] - X MK - - X ICICS 42
YJ14 [37] - X D - A X NC 240
CM14 [10] - X D - A U NC 42

LXXH16 [22]
MST17 [25]

Wat11 [32] X MK - CA
X
U

NC
AsiaCCS

110
25

PO17 [27] - X D - A U SACMAT 16M
u
lt
i-
a
u
th

o
ri
ty

A
B
E

MGZ19 I [23] LW11 [19] X MK - CA U Inscrypt 4

CD = complete decryption attack, Att = attack, MK = master-key attack,
AK = attribute-key attack, D = decryption attack; Col = collusion,

Cor = corruption, Con = contradicts proposed security model, U = unclear,
NC = not published at peer-reviewed crypto venue/journal

and complete decryption attacks, and the weaker attacks, i.e. attribute-key and
conditional decryption attacks. This further simplifies the analysis of schemes.

The attacked schemes. Table 2 lists the schemes for which we have found at-
tacks. Many of these schemes are published at venues that include cryptography
in their scope, or have been highly cited. Hence, even though many researchers
have studied these schemes, mistakes in the security proofs have gone unnoticed.
These attacks also illustrate that systematizing any generic attacks may actu-
ally have merit. Not only does it provide designers with simple tools to test their
own schemes with respect to generic attacks, but also reviewers and practition-
ers. Because most schemes are broken with respect to the strongest attacks, i.e.
master-key and complete decryption attacks, formalizing these models—which
are stronger but easier to verify—simplifies the search for generic attacks as well.

2 Preliminaries

Notations. If an element is chosen uniformly at random from some finite set
S, we write x ∈R S. If an element x is generated by running algorithm Alg,
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we write x ← Alg. We use boldfaced variables for vectors x and matrices M,
where x denotes a row vector and yᵀ denotes a column vector. Furthermore, xi
denotes the i-th entry of x. If the vector size is unknown, v ∈R S indicates that
for each entry: vi ∈R S. Finally, x(y1, y2, ...) denotes a vector, where the entries
are polynomials over variables y1, y2, ..., with coefficients in some specified field.
However, for conciseness, we often only write x. We refer to a polynomial with
only one term, or alternatively one term of the polynomial, as a monomial.

Access structures. We consider monotone access structures (see Appendix A
for a formal definition) [4]. If a set S satisfies access structure A, we denote this
as A |= S. For monotone access structures, it holds that if S ⊇ S ′ and A |= S ′,
then A |= S. We denote the i-th attribute in the access structure as atti ∼ A.

Pairings. We define a pairing to be an efficiently computable map e on three
groups G,H and GT of order p, such that e : G × H → GT , with generators
g ∈ G, h ∈ H such that for all a, b ∈ Zp, it holds that e(ga, hb) = e(g, h)ab

(bilinearity), and for ga 6= 1G, h
b 6= 1H, it holds that e(ga, hb) 6= 1GT

, where 1G′

denotes the unique identity element of the associated group G′ (non-degeneracy).

2.1 Formal definition of (multi-authority) ciphertext-policy ABE

We slightly adjust the more traditional definition of CP-ABE [5] and its multi-
authority variant [19]. Specifically, we split the generation of the keys in two
parts: the part that is dependent on an attribute and the part that is not. These
are relevant distinctions in the definitions of various attack models.

Definition 1 (Ciphertext-policy ABE). A CP-ABE scheme with some au-
thorities A1, ...,An (where n ∈ N) such that each Ai manages universe Ui, users
and a universe of attributes U =

⋃n
i=1 Ui consists of the following algorithms.

– GlobalSetup(λ) → GP: The global setup is a randomized algorithm that
takes as input the security parameter λ, and outputs the public global system
parameters GP (independent of any attributes).

– MKSetup(GP) → (GP,MK): The master-key setup is a randomized algo-
rithm that takes as input the global parameters GP, and outputs the (secret)
master-key MK (independent of any attributes) and updates the global pa-
rameters by adding the public key associated with MK.

– AttSetup(att,MK,GP) → (MSKatt,MPKatt): The attribute-key setup is a
randomized algorithm that takes as input an attribute, possibly the master-
key and the global parameters, and outputs a master secret MSKatt and public
key MPKatt associated with attribute att.

– UKeyGen(id,MK,GP) → SKid: The user-key generation is a randomized
algorithm that takes as input the identifier id, the master-key MK and the
global parameters GP, and outputs the secret key SKid associated with id.
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– AttKeyGen(S,GP,MK,SKid, {MSKatt}att∈S)→ SKid,att: The attribute-key
generation is a randomized algorithm that takes as input an attribute att
possessed by some user with identifier id, and the global parameters, the
master-key MK, the secret key SKid and master secret key MSKatt, and
outputs a user-specific secret key SKid,att.

– Encrypt(m,A,GP, {MPKatt}att∼A) → CTA: This randomized algorithm is
run by any encrypting user and takes as input a message m, access structure
A and the relevant public keys. It outputs the ciphertext CTA.

– Decrypt(SKid,S ,CTA) → m: This deterministic algorithm takes as input a
ciphertext CTA and secret key SKid,S = {SKid,SKid,att}att∈S associated with
an authorized set S, and outputs plaintext m. Otherwise, it aborts.

– MKDecrypt(MK,CT) → m: This deterministic algorithm takes as input a
ciphertext CT and the master-key MK, and outputs plaintext m.

The scheme is called correct if decryption outputs the correct message for a secret
key associated with a set of attributes that satisfies the access structure.

In the single-authority setting (i.e. where n = 1), the GlobalSetup, MKSetup
and AttSetup are described in one Setup, and the UKeyGen and AttKeyGen
have to be run in one KeyGen. In the multi-authority setting (i.e. where n > 1),
the GlobalSetup is run either jointly or by some CA. MKSetup can either be run
distributively or independently by each Ai. AttSetup can be run distributively or
individually by Ai for the managed attributes Ui. UKeyGen is run either distribu-
tively, individually for each Ai, or implicitly (e.g. by using a hash). AttKeyGen
is run by the Ai managing the set of attributes.

2.2 The security model and our attack models

Definition 2 (Full CPA-security for CP-ABE [5]). Let C = (GlobalSetup,
...,MKDecrypt) be a CP-ABE scheme for authorities A1, ...,An conform Defi-
nition 1. We define the game between challenger and attacker as follows.

– Initialization phase: The attacker corrupts a set I ( {1, ..., n} of au-
thorities, and sends I to the challenger. In the selective security game, the
attacker also commits to an access structure A.

– Setup phase: The challenger runs the GlobalSetup, MKSetup for all au-
thorities, and AttSetup for all attributes. It sends the global parameters
GP, master public keys {MPKatt}att∈U , and corrupted master secret keys
{MSKatt}att∈UI to the attacker, where UI =

⋃
i∈I Ui.

– Key query phase I: The attacker queries secret keys for sets of attributes
(id1,S1), ..., (idn1

,Sn1
). The challenger runs UKeyGen and AttKeyGen for

each (idj ,Sj) and sends SKid1,S1 ,...,SKidn1 ,Sn1
to the attacker.

– Challenge phase: The attacker generates two messages m0 and m1 of equal
length, together with an access structure A such that Sj ∪UI does not satisfy
A for all j. The challenger flips a coin β ∈R {0, 1} and encrypts mβ under
A. It sends the resulting challenge ciphertext CTA to the attacker.

– Key query phase II: The same as the first key query phase, with the
restriction that the queried sets Sn1+1, ...,Sn2 are such that A 6|= Sj ∪ UI .
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– Decision phase: The attacker outputs a guess β′ for β.

The advantage of the attacker is defined as |Pr[β′ = β] − 1
2 |. A ciphertext-

policy attribute-based encryption scheme is fully secure (against static corrup-
tion) if all polynomial-time attackers have at most a negligible advantage in this
security game.

We formally define our attack models in line with the chosen-plaintext attack
model above and Figure 1, such that CPA-security also implies security against
these attacks. Conversely, the ability to find such attacks implies insecurity in
this model. While this follows intuitively, we prove this in Appendix B.

Definition 3 (Master-key attacks (MKA)). We define the game between
challenger and attacker as follows. First, the initialization, setup and first key
query phases are run as in Definition 2. Then:

– Decision phase: The attacker outputs MK′.

The attacker wins the game if for all messages m, decryption of ciphertext CT←
Encrypt(m, ...) yields m′ ← MKDecrypt(MK′,CT) such that m = m′.

Definition 4 (Attribute-key attacks (AKA)). We define the game between
challenger and attacker as follows. First, the initialization, setup and first key
query phases are run as in Definition 2. Then:

– Decision phase: The attacker outputs SKS′ , where S ′ ) Sj for all j ∈
{1, ..., n1}, and S ′ ⊇

⋃n1

j=1 Sj.

The attacker wins the game if SKid′,S′ is a valid secret key for some arbitrary
identifier id′ and set S ′.

Definition 5 (Decryption attacks (DA)). We define the game between chal-
lenger and attacker as follows. First, the initialization, setup, first key query and
challenge phases are run as in Definition 2. Then:

– Decision phase: The attacker outputs plaintext m′.

The attacker wins the game if m′ = m. A decryption attack is conditional if
A |=

⋃n1

j=1 Sj. Otherwise, it is complete.

3 Warm-up: attacking DAC-MACS (YJR+13 [38,39])

We first give an example of how an attack can be found effectively by attacking
the YJR+13 [38,39] scheme, also known as DAC-MACS. DAC-MACS is a popu-
lar multi-authority scheme that supports key revocation. This functionality was
already broken in [15,34], but a fix for its revocation functionality was proposed
in [34]. We show that even the basic scheme—which matches the “fixed version”
[34]—is vulnerable to a complete decryption attack. We review a stripped-down
version of the global and master-key setups, the user-key generation and encryp-
tion. In particular, we consider only the parts that are not dependent on any
attributes. Also note that we use a slightly different notation for the variables:
(a, αk, βk, zj , uj , tj,k) 7→ (b, αi, bi, x1, x2, ri).
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– GlobalSetup: The central authority generates pairing e : G × G → GT over
groups G and GT of prime order p with generator g ∈ G, chooses random
integer b ∈R Zp and publishes as global parameters GP = (p, e,G,GT , g, gb);

– MKSetup: Authority Ai chooses random αi, bi ∈R Zp, and outputs master
secret key MSKi = (αi, bi) and master public key MPKi = (e(g, g)αi , g1/bi);

– UKeyGen: Upon registration, the user receives partial secret key SK =
(x1, g

x2) from the central authority, with a certificate that additionally in-
cludes x2. To request a key from authority Ai, the user sends this certificate.
The attribute-independent part of a user’s secret key provided by authority
Ai is SK′i = (gαi/x1+x2b+rib/bi , gribi/x1 , grib), where ri ∈R Zp;

– Encrypt: A message m is encrypted by picking random s ∈R Zp and com-
puting: CT = (m · (

∏
i e(g, g)αi)

s
, gs, gs/bi , ...).

Note that an authority Ai can individually generate gαi/x1+x2b+rib/bi , if x2
is known to the authority. In the specification of DAC-MACS, the central au-
thority generates a certificate containing x2 and the identifier of the user, such
that these are linked. In the conference version [38], this certificate is encrypted,
and can be decrypted only by the authorities. However, in the journal version
[39], this certificate is not explicitly defined to be hidden from the user. We
assume that x2 is therefore also known to the user. Then, after receiving the
certificate from the user, x2 is used by the authority Ai to link the secret keys
to this particular user. However, we show that knowing exponents x1, x2 en-
ables an attack. That is, any decrypting user is trivially able to decrypt any
ciphertext, without even needing to consider the attribute-dependent part of
the keys and ciphertexts. First, we show that we cannot perform a master-key
attack, i.e. retrieve αi. In particular, the partial secret keys are of the form
SK = (x1, g

x2 , x2, g
αi/x1+x2b+rib/bi , gribi/x1 , grib). We observe that master-key

αi only occurs in gαi/x1+x2b+rib/bi . Now, we can cancel out gx2b, because x2 is
known and gb is a global parameter. Unfortunately, we cannot cancel out grib/bi .

Subsequently, we show that it is possible to perform a decryption attack. For
this, we also consider CT = (m ·e(g, g)αis, gs, gs/bi , ...). To retrieve e(g, g)αis, we
start by pairing gαi/x1+x2b+rib/bi and gs, and compute

e(gαi/x1+x2b+rib/bi , gs)x1 = e(g, g)αis︸ ︷︷ ︸+

to cancel︷ ︸︸ ︷
e(g, g)x1x2sb+x1risb/bi

Blinding value

e(gb, gs)x1x2

e(grib, gs/bi)x1

Hence, e(g, g)αis can be retrieved and thus the ciphertext can be decrypted.
Resisting this attack is not trivial. The main issue is that x2 is known to the user,
because x2 needs to be known by the authority to generate gαi/x1+x2b+rib/bi .
Otherwise, it cannot generate gx2b. To avoid the attack, the CA could encrypt
the certificate containing x2—like in the conference version [38]—so only the
authorities Ai can decrypt it, and the user does not learn x2. The attacker can
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however corrupt any authority, learn x2 and perform the attack. This still breaks
the scheme, because of its claimed security against corruption of authorities Ai.

This attack illustrates two things. First, it shows the simplicity of finding a
master-key or complete decryption attack—the two strongest attacks—provided
that one exists. In particular, in the analysis, we only have to consider the parts
of the keys that are not related to the attributes or additional functionality.
This strips away a significantly more complicated part of the scheme. Second,
we can systematically focus on the the goal of retrieving gαi or e(g, g)αis. Due to
the structure of the scheme, we can directly analyze the exponent space of the
key and ciphertext components. The pairing operation effectively allows us to
compute products of these values “in the exponent”. Therefore, we do not have
to consider the underlying group structure. Instead, we can attempt to retrieve
αis by linearly combining the products of the exponent spaces of the key and
ciphertext components. In addition, we can use the explicit knowledge of certain
variables “in the exponent” by using these variables in the coefficients.

Not only is finding such a generic attack simpler than verifying a security
proof, it may also help finding the mistake in the proof. As shown, the main
reason that our attack works is that x2 is known to the user. We use this obser-
vation to find the mistake in the security proof in the journal version [39], which
is loosely based on the selective security proof by Waters [32]. In the proof, the
challenger and attacker play the security game in Definition 2. The attacker is
assumed to be able to break the scheme with non-negligible advantage. The chal-
lenger uses this to break the complexity assumption by using the inputs to the
assumption in the simulation of the keys and challenge ciphertext. Roughly, the
challenger embeds the element that needs to be distinguished from a random
element in the complexity assumption in the challenge ciphertext component
e(g, g)αis. To ensure that e(g, g)αis cannot be generated trivially from e.g. gαi

and gs, the challenger cannot simulate the master secret key gαi . To simulate
the key gαi/x1+x2b+rib/bi , the part with gαi is canceled out by the gx2b part.
By extension, the challenger cannot fully simulate gx2b. Because gb needs to be
simulated (as it is part of the public key), it is not possible to simulate the secret
in x2. In [39], the authors attempt to solve this issue by generating x2 randomly,
and by implicitly writing it as the sum of the non-simulatable secret and an-
other random integer x′2 (which is thus unknown to the challenger). While this
allows the simulation of x2, this causes an issue in the simulation of gαi/x1+x2b.
Because the secret part in x2 is meant to cancel out the non-simulatable part,
gαi/x1+x2b needs to be simulated by computing gx

′
2b. This is not possible, since

x′2 is unknown to the challenger.

4 Systematizing our methodology

Our methodology consists of a systemized approach to finding attacks. It consists
of a more concise notation implied by the common structure of many ABE
schemes (Section 4.1). We model how learning explicit values “in the exponent”,
e.g. by corrupting an authority, can be used in the attacks (Section 4.2). We give
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our attack models in the concise notation (Sections 4.3, 4.4). Finally, we describe
a heuristic approach that simplifies the effort of finding attacks (Section 4.5).

4.1 The common structure implies a more concise notation

Many schemes have a similar structure, captured in frameworks that analyze the
exponent space through pair encodings [33,3]. We adapt their definitions of pair
encoding schemes to match our definition of CP-ABE (Definition 1), which also
covers the multi-authority setting. Pair encodings facilitate a shorter notation.

Definition 6 (Extended pair encoding implied by CP-ABE). Let au-
thorities A1,...,An manage universes Ui for each i, and set U =

⋃n
i=1 Ui as the

collective universe.

– GlobalSetup(λ): This algorithm generates three groups G,H,GT of order p
with generators g ∈ G, h ∈ H, and a pairing e : G × H → GT . It may also
select common variables b ∈R Zp. It publishes the global parameters

GP = (p,G,H,GT , g, h,U , ggp(b)),

where we refer to gp as the global parameter encoding.
– MKSetup(GP): This algorithm selects α ∈R Zp, sets master-key MK = α

and publishes master public key MPK = {e(g, h)α}.
– AttSetup(att,MK,GP): This algorithm selects integers batt ∈R Zp as secret

MSKatt = batt, and publishes

MPKatt = gmpka(batt,b),

where we refer to mpka as the master attribute-key encoding.
– UKeyGen(id,MK,GP): This algorithm selects user-specific random integers

ru ∈R Zp and computes partial user-key

SKid = hku(id,α,ru,b),

where we refer to ku as the user-key encoding.
– AttKeyGen(S,GP,MK,SKid, {MSKatt}att∈S): Let SKid = (hid,1, hid,2, ...).

This algorithm selects user-specific random integers ra ∈R Zp and computes
a key SKid,S = {SKid,att}att∈S , such that for all att ∈ S

SKid,att = (h
ka,1(att,ra,b,batt)
id,1 , h

ka,2(att,ra,b,batt)
id,2 , ...),

where we refer to ka,i as the user-specific attribute-key encodings.
– Encrypt(m,A,GP, {MPKatt}att∼A): This algorithm picks ciphertext-specific

randoms s = (s, s1, s2, ...) ∈R Zp and outputs the ciphertext

CTA = (A,m · e(g, h)αs, gc(A,s,b), gca(A,s,b,{batt}att∼A)),

where we refer to c as the attribute-independent ciphertext encoding,
and ca the attribute-dependent ciphertext encoding.
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– Decrypt((SKid,SKid,S),CTA): Let SKid = hku(id,α,ru,b) = (hid,1, hid,2, ...),

SKid,S = {(hka,1(att,ra,i,b,batt)
id,1 , h

ka,2(att,ra,i,b,batt)
id,2 ,...)}i∈{1,...,n},att∈S∩Ui , and

CTA = (A, C = m·e(g, h)αs,C = gc(A,s,b),Ca = gca(A,s,b,{batt}att∼A)). Define
SA = {att ∼ A | att ∈ S}, and matrices E, Eatt,S,A for each att ∈ S such
that

cEkᵀ
u +

∑
att∈SA

(c | ca)Eatt,S,A(ku | ka)ᵀ = αs.

Then, the plaintext m can be retrieved by recovering e(g, h)αs from C,Ca

and SKid,SKid,S , and m = C/e(g, h)αs.

– MKDecrypt(MK,CT): Let MK = α, MK′ = hmk(α,b) and CT = (C =
m · e(g, h)αs,C = gc(A,s,b),Ca = gca(A,s,b,{batt}att∼A)). Define vector e such
that ceᵀmk = αs. Then, m can be retrieved by computing

C/
∏
`

e(C`,MK′)e` ,

where C` and e` denote the `-th entry of C and e, respectively.

Each encoding enc(var) denotes a vector of polynomials over variables var.
Generators constructed by hash functions [5] are covered by this definition by
assuming that H(att) = gbatt for some implicit batt. Depending on the scheme,
MKSetup may be run distributively or by a single CA (in which case there is only
one public key e(g, h)α associated with the master-keys), or independently and
individually by multiple authorities Ai (in which case there are multiple public
keys e(g, h)αi , and we replace the blinding value e(g, h)αs by e(g, h)

∑
i∈I αis).

4.2 Modeling knowledge of exponents – extending Zp

The previously defined notation describes the relationship between the various
variables “in the exponent” of the keys and ciphertexts. The explicit values of
most variables are unknown to the attacker. In multi-authority ABE, authorities
provide the inputs to some encodings, and therefore know these values, as well
as their (part of the) master-key. Hence, corruption of authorities results in the
knowledge of some explicit values “in the exponent”. If the values provided by
honest authorities are not well-hidden, it might enable an attack on them.

We model the “knowledge of exponents” in attacks by extending the space
from which the entries of E and Eatt,S,A are chosen: Zp (or some extension with
variables associated with S and A). In fact, the entries of these matrices may be
any fraction of polynomials over Zp and the known exponents. Let K be the set
of known exponents, then the extended field of rational fractions is defined as

Zp(K) = {ab−1 (mod p) | a, b ∈ Zp[K]},

where Zp[K] denotes the polynomial ring of variables K.
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4.3 Formal definitions of the attacks in the concise notations

We formally define our attack models (conform Definitions 7–9, depicted in Fig-
ure 1) in the concise notation. For each attack, K ⊆ {x, x1, x2, ...} denotes the
set of known variables. We use the following shorthand for a key encoding for a
user id with set S and for a ciphertext encoding for access structure A:

kid,S := (gp(b),mpka(batt,b),ku(id, α, ru,b) | ka,1(att, ra,b,batt) | ...),
cA := (gp(b),mpka(batt,b), c(A, s,b) | ca(A, s,b, {batt}att∼A)).

We first define the master-key attacks. In these attacks, the attacker has
to retrieve master-key mk(α,b), so any ciphertext can be decrypted conform
MKDecrypt. In many schemes, it holds that master-key mk is α (i.e. hα), though
in others, recovering e.g. mki = αi/bi for authorities Ai is required to decrypt
all ciphertexts. This is because ciphertext encoding c often contains s or sbi.

Definition 7 (Master-key attacks). A scheme is vulnerable to a master-
key attack if there exist (id1,S1), ..., (idn1

,Sn1
) and the associated key encodings

kidi,Si , and there exist ei ∈ Zp(K)`i , where `i = |kidi,Si | denotes the length of the
i-th key encoding, such that

∑
i kie

ᵀ
i = mk(α,b) ∈ Zp(α,b). Then, it holds that

for all attribute-independent ciphertext encodings c there exists e′ ∈ Z`′p (with
|c| = `′) such that mke′cᵀ = αs.

We formally define attribute-key attacks. In an attribute-key attack, the
attacker has to generate a secret key associated with a set S ′ that is strictly
larger than any of the sets Si associated with the issued keys.

Definition 8 (Attribute-key attacks). A scheme is vulnerable to an attri-
bute-key attack if there exist (id1,S1), ..., (idn1

,Sn1
) such that for the key encod-

ings kidi,Si , it holds that a valid key kid′,S′ (with user-specific randoms ru and ra
constructed linearly from the other user-specific randoms) can be computed such
that

⋃n1

i=1 Si ⊆ S ′ and Si ( S ′ for all i ∈ {1, ..., n1}. We say that kid′,S′ can be

computed, if there exist Ei ∈ Zp(K)`i×`, where ` = |kid′,S′ | and `i = |kidi,Si |, for

all Si such that kid′,S′ =
∑
i kidi,SiEi.

We formally define the complete and conditional decryption attacks. In a
decryption attack, the attacker decrypts a ciphertext for which it only has unau-
thorized keys. The attack is conditional if the collective set of attributes satisfies
the access structure associated with the ciphertext. Otherwise, it is complete.

Definition 9 (Complete/conditional decryption attacks). A scheme is
vulnerable to a decryption attack if there exist (id1,S1), ..., (idn1

,Sn1
) and A such

that A 6|= Si for all i, associated ciphertext encoding cA and key encodings kidi,Si ,

for which there exist Ei ∈ Zp(K)`i×`
′
, where `i = |kidi,Si | and `′ = |cA|, such

that
∑
i kidi,SiEic

ᵀ
A = αs. The attack is conditional if it holds that A |=

⋃
i Si.

Otherwise, it is complete.

It readily follows that master-key and attribute-key attacks imply decryp-
tion attacks. Specifically, master-key attacks and attribute-key attacks for which⋃n1

i=1 Si ( S ′ holds imply complete decryption attacks.
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4.4 Definitions of multi-authority-specific attacks

The multi-authority setting yields two additional difficulties in the design of
secure schemes. First, the corruption of authorities yields extra knowledge about
the exponent space. Second, the distributed nature of the master-key may enable
new attacks. Formally, we define attacks under corruption as follows.

Definition 10 (Attacks under corruption). A scheme is vulnerable to at-
tacks under corruption if an attacker can corrupt a subset I ( {1, ..., n} of
authorities A1, ...,An and thus obtain knowledge of variables K consisting of all
variables and (partial) encodings generated by the corrupt authorities, enabling
an attack conform Definitions 7, 8 or 9.

Oftentimes, the master-key is generated distributively by the authorities.
Hence, the blinding value is of a distributed form, e.g. e(g, h)αs = e(g, h)

∑
i αis.

If each partial blinding value e.g. e(g, h)αis can be recovered independently of the
user’s randomness, then the scheme is vulnerable to a multi-authority-specific
decryption attack under collusion. For instance, suppose the blinding value is
defined as (α1 + α2)s. If one user can recover α1s (but not α2s) and another
user can recover α2s (but not α1s), then the scheme is vulnerable to a multi-
authority-specific decryption attack. They can collectively recover (α1 + α2)s,
while clearly, they cannot do this individually. This type of attack was also
performed by Wang et al. [31] on the HSM+14 [13] and HSM+15 [14] schemes.

Definition 11 (Multi-authority-specific (MAS) decryption attacks).
Suppose the blinding value of the message is of the form

∑
i bvi(αi, s,b), where

αi denotes the master-key of authority Ai, and bvi represent elements in GT .
A scheme is vulnerable to a MAS-decryption attack if there exist a ciphertext
encoding cA and sets Si ⊆ Ui with key encodings kidi,Si for which there exist

Ei ∈ Zp(K)`i×`
′
, where `i = |kidi,Si | and `′ = |cA|, such that kidi,SiEic

ᵀ
A = bvi.

A MAS-decryption attack is also a decryption attack conform Definition 9.
The blinding value can be retrieved, while the individual sets are not authorized
to decrypt the ciphertext. Conversely, because such attacks do not exist in the
single-authority setting, they are weaker than regular decryption attacks.

4.5 Our heuristic approach

We devise a targeted approach, which can be applied manually (or automati-
cally), to finding attacks. As the definitions in the previous section imply, finding
an attack is equivalent to finding a suitable linear combination—where the linear
coefficients are the entries of e or E—of all products of the key and ciphertext
entries. While finding such coefficients is relatively simple, we note that finding
suitable inputs to the attacks may be more difficult. In particular, the number
of colluding users and the number of attributes associated with the keys and ci-
phertexts are effectively unbounded. However, we observe that it often suffices to
consider a limited number of inputs, and that for some attacks, only the user-key
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Table 3. The inputs of the attacks, and which encodings are needed.

Attack
Secret keys Ciphertexts

UK AK S AI AD A
Master-key X 7 - 7 7 -

Attribute-key X X S1 = {att1},S2 = {att2} 7 7 -
Complete decryption X 7 - X 7 -

Conditional decryption X X S1 = {att1},S2 = {att2} X X A = att1 ∧ att2

UK, AK = user-, attribute-key; AI, AD = attribute-independent, -dependent

and attribute-independent ciphertext entries need to be considered. Specifically,
Table 3 describes these inputs in terms of encodings, the sets of attributes, and
the access policy. Depending on the maximum number of monomials consisting
of common variables in any key entry, the attacker might need multiple secret
keys for the same set of attributes to recover certain coefficients. For instance,
suppose the attacker wants to retrieve α from α + r1batt1 + r′1b

′
att1 , where r1

and r′1 are known, user-specific random variables, and batt1 and b′att1 denote the
common variables associated with attribute att1. Because of the three unknown,
linearly independent monomials, this can only be done if the attacker has three
distinct keys for attribute att1. In general, the maximum number of keys with
the same set of attributes can be determined in this way, i.e. by counting the
maximum number of linearly independent monomials for each entry.

Similarly, the inputs to multi-authority specific attacks can be limited. First,
we consider the attacks under corruption. Corruption of any number of authori-
ties results in the additional knowledge of some otherwise hidden exponents, i.e.
the master keys and any random variables generated by these authorities. For
most schemes, it should be sufficient to consider one corrupted and one hon-
est authority in the attacks, though depending on how e.g. the master-key α is
shared, the number of corrupted authorities may need to be increased. Further,
we use the same descriptions of the inputs to the attacks as in the single-authority
setting, with the additional requirement that the input attributes are managed
by the honest authority. Second, we consider multi-authority specific (MAS) de-
cryption attacks. Corruption is not necessary in this setting, so we assume that
all authorities are honest. Additionally, we require at least two honest authorities
as input to finding any attack, so we let each authority manage one attribute.
Table 4 summarizes the additional inputs to the attacks in Table 3. Finally, it
may be possible that a corruptable central authority (CA) is part of the scheme,
in which case we also consider whether corruption of this CA enables an attack.

We describe a more targeted approach to finding an attack, i.e. the linear co-
efficients e and E, given the input encodings. The approach to finding an attack
is linear, as we attempt to retrieve the desired output (conform Definitions 7,
8 and 9) by making linear combinations of products of encodings. The simplest
attacks are the master-key and complete decryption attacks, as we only need to
consider the attribute-independent parts of the keys and ciphertexts. For these
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Table 4. The number of required honest authorities n and the attribute universes U1
and U2 managed by authorities A1 and A2, respectively, in the multi-authority setting.

Attack n U1 U2
Master-key 1 7 7

Attribute-key 1 {att1, att2} 7

Complete decryption 1 7 7

Conditional decryption 1 {att1, att2} 7

MAS-decryption 2 {att1} {att2}

attacks, the goal is to retrieve master-key α, or blinding value αs. Typically, α
occurs only in one entry of the keys, while s occurs only in one entry of the
ciphertext. Instead of trying all combinations of the key entries with the cipher-
text, we formulate a more targeted approach. First, consider the monomials to
be canceled, and then which combinations of the key and ciphertext entries can
make these monomials. In canceling the previous monomials, it might be that
new monomials are added, meaning that these in turn also need to be canceled.
This process repeats until all monomials are canceled, and α or αs remains,
unless such an attack does not exist. For attribute-key attacks, this effort is con-
siderably more difficult, as the target is less clear. However, it often suffices to
consider whether the same monomial occurs more than once in the key encoding.
For conciseness, we will only provide the non-zero coefficients in an attack.

5 Examples of our attacks demonstrating the approach

Using examples of attacks that we have found, we illustrate the way in which
our heuristic approach can be applied. In particular, this suggests the simplicity
of only considering the exponent space rather than also considering the under-
lying group structure. Furthermore, in our strongest attack models (i.e. master-
key and complete decryption), we often only need to consider the attribute-
independent variables, which strips away a large and significantly more difficult
part of the scheme. Because many schemes are broken in these models, we assert
that it has merit to manually analyze schemes with respect to these models.

5.1 Example without corruption: the YJR+13 [38,39] scheme

We perform the attack on YJR+13 in Section 3 in the concise notations.

– Type of attack: Complete decryption attack;
– Global parameters: gp = (gp1, ...) = (b, ...);
– Master keys Ai: mpki = bi;
– User-key: ku(α, r,b) = (αi/x1 + x2b+ rib/bi, ribi/x1, rib);
– Attribute-independent ciphertext: c(s,b) = (s, s/bi);
– Blinding value: αis;
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– Known exponents: K = {x1, x2} (by definition);

Note that this notation is not only more concise, it is also more structured. In
particular, it is clearly denoted what the goal is (i.e. retrieve the blinding value),
and what the relevant keys and ciphertexts look like without considering any
information about the underlying groups or attribute-dependent variables. Fur-
thermore, this allows us to strip away any additional functionality that further
complicates the structure—and by extension, the analysis—of the scheme.

Due to the concise notations, the previous attack can also be found more
simply than before. First, we sample a user-key (k1, k2, k3) ← ku(α, r,b), and
ciphertext (c1, c2)← c(s,b). To retrieve αis, we start by pairing k1 with c1:

x1k1c1 = αis+

to cancel︷ ︸︸ ︷
x1x2sb+ x1risb/bi,

Blinding value

x1x2gp1c1 x1k3c2

which yields two monomials to cancel. Subsequently, we can combine the other
components and our explicit knowledge of x1 and x2 in such a way that these
monomials can be canceled. This attack can be formulated in matrix notations:

αis = (k1, k2, k3, gp1)︸ ︷︷ ︸
ku


x1 0 0
0 0 0
0 −x1 0

−x1x2 0 0


︸ ︷︷ ︸

E

 c1
c2

gp1


︸ ︷︷ ︸

c

= x1k1c1 − x1k3c2 − x1x2gp1c1.

Because most of the entries of E are zero, we will only write the non-zero entries
of E in further attacks. Note that attacks found in the concise notations also
translate back to the original description, e.g. compare this attack with that
in Section 3. More generally, computing kjEi,jci in terms of pair encodings
corresponds to computing e(gci , hkj )Ei,j in the original description of the scheme.

5.2 Example with corruption: the YJ14 [37] scheme

The YJ14 [37] scheme is somewhat similar to the YJR+13 [39] scheme in the
secret keys. However, the decrypting user knows fewer exponents: instead of shar-
ing x2 in YJR+13 with the user, it is shared with the authorities Ai. Regardless,
corruption of one authority leads to the knowledge of x2, and thus enables an
attack. We define the encodings and attack as follows.

– Type of attack: Complete decryption attack, under corruption of one Ai;
– Global parameters: gp = (b, b′);
– Master secret key Ai: mski = (αi, x);
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– User-key: ku(αi, r,b) = (αi + xb+ rb′, r);
– Attribute-independent ciphertext: c(s,b) = (s, sb′, ...);
– Blinding value: (

∑
i αi)s;

– Known variables: K = {x} (by corrupting A′);
– The goal: Recover αis from (k1,i, k2,i)← ku(αi, r,b), (c1, c2)← c(s,b);
– The attack: αis = k1,ic1 − k2,ic2 − xmpk1c1. ut

5.3 Example without corruption: the JLWW13 [16] scheme

We also give an example of a conditional attribute-key attack enabled by two
colluding users. This illustrates the increased difficulty of executing more general
attacks, as they require us to evaluate the entire key. An additional difficulty
of executing an attribute-key attack is in finding an appropriate target key en-
coding. However, our possibilities as an attacker are considerably limited, as we
can only linearly combine the key components, and not multiply them. In fact,
as Table 2 shows, we could only find attribute-key attacks if a key consists of
recurring monomials. While it is difficult to prove that an attribute-key attack
does not exist, it is easy to verify whether a key consists of recurring monomials.

We attack the JLWW13 [16] and JLWW15 [17] schemes—also known as
AnonyControl—which have the same key generation. The JLWW15 [17] scheme
is different from JLWW13 in the encryption. It is however incorrect, because a
value of a single user’s secret key is used. The encodings are defined as follows.

– Type of attack: Conditional attribute-key attack, collusion of two users;
– Global parameters: gp = (b, b′),mpka(atti) = batti ;
– Secret keys: ku(α, r,b) = (α+ r), ka(atti, r, ri,b) = (ribatti + r, ri);

We show that the recurrence of r as a monomial in the user-key and attribute-
key encoding enables an attack. While it is relatively simple to show that this
cannot be exploited in a single-user setting, we show that sampling two keys
for two different sets of attributes S1 = {att1} and S2 = {att2} (as in Table 3)
enables the generation of a third key for both attributes, i.e. S3 = {att1, att2}.
For S1 = {att1}, we sample k ← ku(α, r,b), and (k1, k2) ← ka(att1, r, r1,b).
For S2 = {att2}, we sample k′ ← ku(α, r′,b), and (k′1, k

′
2)← ka(att2, r

′, r2,b).
The goal is to compute a key for set S3 = {att1, att2}. We aim to generate

attribute-keys for the user-key associated with S1, i.e. k, which links the keys
together with r. As such, to create a key for S3, we need to generate an attribute-
key for att2. We do this by computing: ka(att2, r, r2,b) = (k′1 + k − k′, k′2). ut

6 More attacks, on several other schemes

We present attacks on several existing schemes. For each scheme, we describe the
secret keys, and possibly the global parameters and master keys, the ciphertext,
and the form of the blinding value in the concise notation introduced in Section
4.1. Furthermore, we show whether collusion between users and corruption of any
entities are required for the attack. Such corruption results in extra knowledge
of exponents, so Zp is extended with the known variables conform Section 4.2.
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6.1 Single-authority ABE

The ZH10 [41] and ZHW13 [43] schemes. In these schemes, three gener-
ators are defined for each attribute att: a positive (att), a negative (¬att) and
a dummy ∗att value. For each user, the secret key consists of a part associated
with the positive or negative attribute and the dummy value.

– Type of attack: Conditional attribute-key attack, collusion of two users;
– Global parameters: gp = (b), mpka(atti) = (batti , b¬atti , b∗atti);
– Secret keys: Define att = att if att ∈ S and otherwise att = ¬att,

ku(
∑
ri, b) = ((

∑
atti∈U ri)b), and ka(atti, ri,b) = (rib+bbatti , rib+bb∗atti);

– Input: S1 = {att1,¬att2}, ku ← ku(r1+r2, b), (k1,i, k2,i)← ka,1(atti, ri,b),
S2 = {¬att1, att2}, with k′u ← ku(r′1 + r′2, b), (k′1,i, k

′
2,i)← ka(atti, r

′
i,b);

– The goal: Generate a key for S3 = {att1, att2};
– The attack: ku(r′1 + r′2,b) = k′u, ka(att1, r

′
1,b) = (k1,1 + k′2,1 − k2,1, k′2,1),

and ka(att2, r
′
2,b) = (k′1,2, k

′
2,2). ut

The NDCW15 [26] scheme. This scheme implements a tracing algorithm,
allowing the KGA to trace misbehaving users. To this end, some exponents are
known to the user. The keys considered below correspond to those given in the
second step of the key generation in [26] (which the user can compute).

– Type of attack: Complete decryption attack;
– Global parameters: gp = (b1, b2);
– User-key: ku(α,b) = ( α

b1+x3
+ x2

b2
b1+x3

, x1, x1b1);
– Attribute-independent ciphertext: c(s,b) = (s, sb1, sb2);
– Known variables: K = {x1, x2, x3} (by definition);
– The goal: Recover αs from (k1, k2, k3)← ku(α,b), (c1, c2, c3)← c(s,b);
– The attack: αs = x3k1c1 + k1c2 − x2c3. ut

6.2 Multi-authority ABE

The YJ12 [36] scheme. This scheme employs a certificate authority (CA),
assumed to be fully trusted, and (corruptable) attribute authorities (Ai), respon-
sible for the generation of the secret keys. For the key encodings, we assume that
the master public keys are generated as H(att)αi rather than as it was originally
proposed in [36]: gαiH′(att). The latter trivially enables complete attribute-key
attacks (because H′ is public), while the former ensures that H(att)αi = gαibatt

is such that batt is unknown to everyone and thus protects against these attacks.

– Type of attack: Complete master-key attack, corruption of one A;
– Global parameters: gp = (b′, 1/b′);
– Master secret key Ai: mski = (αi, b/b

′);
– User-key: k(αi, r,b) = (r, rb/b′ + αi/b

′);
– Attribute-independent ciphertext: c(s,b) = (sb′);
– Blinding value: (

∑
i αi)s, so mk(αi,b) = αi/b

′;
– Known exponents: K = {α′, b/b′} (by corrupting A′);
– The goal: Recover mk(αi,b) from (k1,i, k2,i)← k(αi, r,b);
– The attack: mk(αi,b) = k2,i − b/b′k1,i. ut
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The QLZ13 [28] scheme. This scheme supports hidden access structures and
a blind key generation. However, the secret keys trivially leak the master-keys.

– Type of attack: Complete master-key attack;
– Global parameters: gp = (b, b1, b

′, ...);
– User-key: ku(α, r,b) = (α+ rb+ b1

x+b′ , rb− r
′b1, (r

′ + 1
x+b′ )b1);

– Known variables: K = {x} (by definition);
– The goal: Recover α from (k1, k2, k3)← ku(α, r,b);
– The attack: α = k1 − k2 + k3. ut

The CM14 [10] scheme. This scheme is a multi-authority version of [32].

– Type of attack: Complete decryption attack, under corruption of one A;
– Master key pair of Ai: mpki = (bi), mski = (bi);
– User-key: ku(αi, r,b) = (αi+r

bi
, r);

– Attribute-independent ciphertext: c(s,b) = (sbi);
– Blinding value: (

∑
i αi)s;

– Known variables: K = {b1} (by corrupting A1);
– The goal: Recover αis from (k1,i, k2,i)← ku(αi, r,b), c1 ← c(s,b);
– The attack: αis = k1,ic1 − 1/b1k2,ic1 such that i 6= 1. ut

The LXXH16 [22] and MST17 [25] schemes. These schemes are similar.
The LXXH16 scheme employs a corruptable CA to run the global setup. In the
MST17 scheme, it is unclear which entity runs it and thus generates the b below.

– Type of attack: Complete master-key attack, under corruption of CA;
– Global parameters: gp = (b);
– User-key: ku(α, r,b) = (α+ rb, r);
– Known variables: K = {b} (by corrupting CA, and thus the global setup);
– The goal: Recover α from (k1, k2)← ku(α, r,b);
– The attack: α = k1 − bk2. ut

The PO17 [27] scheme. This scheme was proposed to address an issue of the
Cha07 [8] scheme, which requires that a user receives a key from each authority.
However, unlike Cha07, the PO17 scheme does not protect against corruption.
Thus, in terms of security, it is closer to any single-authority scheme.

– Type of attack: Complete decryption attack under corruption of one A;
– Master key pair of Ai: mpki = (bi), mski = (bi);
– User-key: ku(αi, r,b) = (αi−r

bi
, r);

– Attribute-independent ciphertext: c(s,b) = (sbi);
– Blinding value: (

∑
i αi)s;

– Known variables: b1 (by corrupting A1);
– The goal: Recover αis from (k1,i, k2,i)← ku(αi, r,b), c1 ← c(s,b);
– The attack: αis = k1,ic1 + 1/b1k2,ic1. ut
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Table 5. The schemes for which we found attacks, and the consequences of these. For
each scheme, we list whether a scheme is insecure in the basic (CPA-)security model,
or only under corruption of the central authority (CA) or attribute authorities (A).

Scheme Problem CPA-security

ZH10 [41,42], ZHW13 [43] Recurring monomials 7

NDCW15 [26] Known-exponent exploits 7

M
A
-A

B
E

YJ12 [36] Known-exponent exploits 7A
YJR+13 [38,39], WJB17 [34] Known-exponent exploits 7

JLWW13 [16], JLWW15 [17] Recurring monomials 7

QLZ13 [28] Recurring monomials 7

YJ14 [37] Known-exponent exploits 7A
CM14 [10] Known-exponent exploits 7A

LXXH16 [22], MST17 [25] Known-exponent exploits 7CA
PO17 [27] Known-exponent exploits 7A

MGZ19 I [23] Known-exponent exploits 7CA
7A, 7CA = none under corruption of A, CA

The first MGZ19 [23] scheme. This scheme employs multiple “central autho-
rities”—to remove the random oracle from [19]—and attribute authorities (AA).
The security model considers corruption of the AAs but not the CAs. The de-
scription of the scheme does not require the attribute authorities to be aware of
the CAs. However, we show that all CAs need to be trusted to ensure security.
In particular, we show that corruption of one of the CAs enables an attack.

– Type of attack: Complete master-key attack, under corruption of one CA;
– Master key pair Ai: mpka,i(attj) = (battj ), mski(attj) = (αi, battj );
– CAi generates: r;
– Secret key: ku(αi, r,b) = (r), ka(attj , αi, r,b) = (αi + rbattj );
– Known variables: K = {r} (by corrupting one CA);
– The goal: Recover αi from ki,j ← ka(attj , αi, r,b), mpki,j ←mpka,i(attj);
– The attack: αi = ki,j − rmpki,j . ut

7 Discussion

We have presented a linear, heuristic approach to analyzing security—consisting
of a more concise notation—and applied it to existing schemes. This approach
simplifies manually finding generic attacks provided that they exist. For future
work, it would be valuable to extend the approach to be provably exhaustive,
such that it follows with [2] that the scheme also implies a provably secure
scheme. In addition, it would be valuable to automatize finding attacks for the
multi-authority encodings like [2] does in the single-authority setting. To demon-
strate the effectiveness of our approach, we have shown that several existing
schemes are vulnerable to our attacks, either rendering them fully or partially
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insecure. Most of the attacks are similar in that they either exploit that one
monomial occurs more than once in the keys, or known exponents yield suffi-
cient knowledge to enable an attack. Table 5 lists each attacked scheme and the
associated fundamental problem that enables the attack. In general, schemes for
which we have found an attack without requiring corruption are structurally
more complicated than the single-authority schemes on which they are (loosely)
based. Schemes that are insecure against corruption are generally closer to their
(provably secure) single-authority variants, but knowing certain exponents en-
ables an attack. Possibly, a distributed generation of these exponents may pre-
vent this. For future work, it may be interesting to consider whether this yields
secure schemes.

Acknowledgments. The authors would like to thank the anonymous reviewers
for their helpful comments and suggestions.
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A Formal definition of access structures

Definition 12 ((Monotone) access structures [4]). Let {a1, ..., an} be a
set of attributes. An access structure is a collection A of non-empty subsets of
{a1, ..., an}. The sets in A are called the authorized sets, and the sets that are
not in A are called the unauthorized sets. An access structure A ⊆ 2{a1,...,an} is
monotone if for all B,C holds: B ∈ A and B ⊆ C, then also C ∈ A.

B Proofs of implications

For completeness, we give formal proofs of the implications between the def-
initions of the attacks (i.e. Definitions 2, 3, 4, and 5). More specifically, we
prove that the master-key attacks (MKA) and attribute-key attacks (AKA) im-
ply decryption attacks (DA), and decryption attacks imply selective chosen-
plaintext attacks (sCPA). Furthermore, it is a well-known fact that selective
chosen-plaintext attacks imply full chosen-plaintext attacks [30] (and conversely,
full CPA-security implies selective CPA-security). The relationship between the
attacks is summarized in Figure 2. For instance, if we can perform a master-key
attack (i.e. define a polynomial-time algorithm that computes a master-key that
can decrypt any ciphertext), then we can also perform a complete decryption at-
tack (i.e. define a polynomial-time algorithm that decrypts any ciphertext with
any number of unauthorized secret keys).

Lemma 1 (MKA implies complete DA). If some polynomial-time attacker
BMKA exists that can win the master-key attack (Definition 3) game, then a
polynomial-time attacker BCDA exists that can win the complete decryption attack
(Definition 4) game.

Proof. Let BCDA be the attacker that plays the complete decryption game with
the challenger. Suppose BMKA denotes a polynomial-time attacker that can win
the master-key attack game.

– Setup phase: The challenger runs the setup of the scheme, and sends the
master public key to attacker BCDA, which relays it to attacker BMKA.

– Key query phase I: Attacker BMKA generates sets S1, ...,Sn1 and sends
these to attacker BCDA, which relays these to the challenger. For each set
Si, the challenger generates a secret key SKSi and sends it back to attacker
BCDA, which relays it to attacker BMKA.

– Intermission: The decision phase of attacker BMKA yields as output the
master-key MK′, which is sent to attacker BCDA.

– Challenge phase: Attacker BCDA can then define any access structure A
such that A 6|= Si for all i ∈ {1, ..., n1}. The challenger encrypts a random
message m under this access structure, and sends the resulting challenge
ciphertext CT to attacker BCDA.

– Decision phase: Attacker BCDA uses MK′ to decrypt CT with the master-
key decryption algorithm MKDecrypt conform Definition 1, yielding plain-
text m′, and sends this to the challenger.
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Fig. 2. The relationship between our proposed attacks and chosen-plaintext attacks.

Master-key attack Attribute-key attack

Complete
decryption attack

Conditional
decryption attack

Selective CPA for ABE

Full CPA for ABE

S ′ =
⋃n

i=1 SiS′ )
⋃n

i=
1
Si

Because it was assumed that attacker BMKA wins the MKA-game, MK′ is
such that master-key decryption works on any ciphertext, and by extension
resulting in a correct recovery of plaintext, i.e. m′ = m. ut

Lemma 2 (AKA implies DA). If some polynomial-time attacker BAKA exists
that can win the attribute-key attack game, then a polynomial-time attacker BDA
exists that can win the decryption attack game. Furthermore, if the set S ′ for
which the attacker recovers a secret key is strictly larger than the collective set
of attributes used in the key query phase, then the decryption attack is complete.
Otherwise, it is conditional.

Proof. Let BDA be the attacker that plays the decryption game with the chal-
lenger. Suppose BAKA denotes a polynomial-time attacker that can win the
attribute-key attack game.

– Setup phase: The challenger runs the setup of the scheme, and sends the
master public key to attacker BDA, which relays it to attacker BAKA.

– Key query phase I: Attacker BAKA generates sets S1, ...,Sn1
and sends

these to attacker BDA, which relays these to the challenger. For each set, the
challenger generates a secret key SKSi and sends it back to attacker BDA,
which relays it to attacker BAKA.

– Intermission: The decision phase of attacker BAKA yields as output SKS′

for set S ′ such that S ′ ) Si for all i ∈ {1, ..., n1}. Then two cases may
occur, for which attacker BDA defines access structure A with A 6|= Si for all
i ∈ {1, ..., n1} as follows:
• S ′ =

⋃n1

i=1 Si, in which case the attack game becomes conditional, and
attacker BDA defines A such that A |= S ′;

• S ′ )
⋃n1

i=1 Si, in which case the attack game becomes complete, and
attacker BDA defines A such that A |= S ′ and A 6|=

⋃n1

i=1 Si.
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– Challenge phase: Attacker BDA sends A to the challenger, which generates
a random message m, encrypts it under the access structure A and sends
the resulting challenge ciphertext CT to attacker BDA.

– Decision phase: Because A |= S ′ holds, attacker BDA can decrypt CT with
secret key SKS′ , yielding plaintext m′.

Because it was assumed that attacker BAKA wins the AKA-game, SKS′ is
valid, and therefore decryption yields the correct plaintext, i.e. m′ = m. ut

Theorem 1 (DA implies Selective CPA). If some polynomial-time attacker
BDA exists that can win the decryption attack game, then a polynomial-time
attacker BsCPA exists that can win the selective chosen-plaintext attack game.

Proof. Let BsCPA be the attacker that plays the selective CPA game with the
challenger. Suppose BDA denotes a polynomial-time attacker that can win the
decryption attack game.

– Initialization phase: Attacker BsCPA commits to an access structure A to
be used in the challenge phase, and sends it to the challenger.

– Setup phase: The challenger runs the setup and sends the master public
key MPK to attacker BsCPA, which relays it to attacker BDA.

– Key query phase I: Attacker BDA then defines sets S1, ...,Sn1
such that

A 6|= Si for all i ∈ {1, ..., n1}. Depending on whether attacker BDA wins
complete or conditional attack games, it also ensures A 6|=

⋃n1

i=1 Si or A |=⋃n1

i=1 Si, respectively. Attacker BDA sends the sets to attacker BsCPA, which
relays them to the challenger. Then, the challenger generates secret keys
SKS1 , ...,SKSn1

and sends them back to attacker BsCPA, which relays them
to attacker BDA.

– Challenge phase: Attacker BsCPA generates two messages m0,m1 of equal
length and sends these to the challenger, which flips a coin β ∈R {0, 1},
encrypts one of the messagesmβ under the previously chosen access structure
and sends the resulting challenge ciphertext CT to attacker BsCPA, which
relays it to attacker BDA.

– Intermission: The decision phase of attacker BDA then yields as output the
plaintext m′, and sends it to attacker BsCPA.

– Key query phase II: This phase may be skipped. As such, decryption
attacks also imply selective CPA with non-adaptive key queries.

– Decision phase: Depending on whether m′ = m0 or m′ = m1, it outputs
guess β′.

From the assumed success of attacker BDA, it follows that m′ = mβ , from
which it follows that attacker BsCPA guesses correctly, i.e. β′ = β. ut
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