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Abstract. At Crypto ’99, Nguyen and Stern described a lattice based algorithm for solving the hidden
subset sum problem, a variant of the classical subset sum problem where the n weights are also hidden.
While the Nguyen-Stern algorithm works quite well in practice for moderate values of n, we argue that
its complexity is actually exponential in n; namely in the final step one must recover a very short basis
of a n-dimensional lattice, which takes exponential-time in n, as one must apply BKZ reduction with
increasingly large block-sizes.
In this paper, we describe a variant of the Nguyen-Stern algorithm that works in polynomial-time. The
first step is the same orthogonal lattice attack with LLL as in the original algorithm. In the second
step, instead of applying BKZ, we use a multivariate technique that recovers the short lattice vectors
and finally the hidden secrets in polynomial time. Our algorithm works quite well in practice, as we can
reach n ' 250 in a few hours on a single PC.

1 Introduction

The hidden subset-sum problem. At Crypto ’99, Nguyen and Stern described a lattice based
algorithm for solving the hidden subset sum problem [NS99], with an application to the cryptanalysis
of a fast generator of random pairs (x, gx (mod p)) from Boyko et al. from Eurocrypt ’98 [BPV98].
The hidden subset sum problem is a variant of the classical subset sum problem where the n weights
αi are also hidden.

Definition 1 (Hidden Subset Sum Problem). Let M be an integer, and let α1, . . . , αn be
random integers in ZM . Let x1, . . . ,xn ∈ Zm be random vectors with components in {0, 1}. Let
h = (h1, . . . , hm) ∈ Zm satisfying:

h = α1x1 + α2x2 + · · ·+ αnxn (mod M) (1)

Given M and h, recover the vector α = (α1, . . . , αn) and the vectors xi’s, up to a permutation of
the αi’s and xi’s.

Recall that the classical subset sum problem with known weights αi’s can be solved in polynomial
time by a lattice based algorithm [LO85], when the density d = n/ logM is O(1/n). Provided a
shortest vector oracle, the classical subset sum problem can be solved when the density d is less than
' 0.94. The algorithm is based on finding a shortest vector in a lattice built from h, α1, . . . , αn,M ;
see [CJL+92]. For the hidden subset sum problem, the attack is clearly not applicable since the
weights αi’s are hidden.

The Nguyen-Stern algorithm. The Nguyen-Stern algorithm for solving the hidden subset-
sum problem relies on the technique of the orthogonal lattice. This technique was introduced by
Nguyen and Stern at Crypto ’97 for breaking the Qu-Vanstone cryptosystem [NS97], and it has
numerous applications in cryptanalysis, for example cryptanalysis of the Ajtai-Dwork cryptosys-
tem [NS98b], cryptanalysis of the Béguin-Quisquater server-aided RSA protocol [NS98a], fault at-
tacks against RSA-CRT signatures [CNT10, BNNT11], attacks against discrete-log based signature
schemes [NSS04], and cryptanalysis of various homomorphic encryption schemes [vDGHV10, LT15,
FLLT15] and multilinear maps [CLT13, CP19, CN19].



The orthogonal lattice attack against the hidden subset sum problem is based on the following
technique [NS99]. If a vector u is orthogonal modulo M to the public vector of samples h, then
from (1) we must have:

〈u,h〉 ≡ α1〈u,x1〉+ · · ·+ αn〈u,xn〉 ≡ 0 (mod M)

This implies that the vector pu = (〈u,x1〉, . . . , 〈u,xn〉) is orthogonal to the hidden vector α =
(α1, . . . , αn) modulo M . Now if the vector u is short enough, the vector pu will be short (since the
vectors xi have components in {0, 1} only), and if pu is shorter than the shortest vector orthogonal
to α modulo M , we must have pu = 0, and therefore the vector u will be orthogonal in Z to all
vectors xi. The orthogonal lattice attack consists in generating with LLL many short vectors u
orthogonal to h; this reveals the lattice of vectors orthogonal to the xi’s, and eventually the lattice
Lx generated by the vectors xi’s. In a second step, by finding sufficiently short vectors in the lattice
Lx, one can recover the original vectors xi’s, and eventually the hidden weight α by solving a linear
system.

Complexity of the Nguyen-Stern algorithm. While the Nguyen-Stern algorithm works quite
well in practice for moderate values of n, we argue that its complexity is actually exponential in the
number of weights n. Namely in the first step we only recover a basis of the lattice Lx generated
by the binary vectors xi, but not necessarily the original vectors xi’s, because the basis vectors
that we recover can be much larger than the xi’s. In order to recover the xi’s, in a second step
one must therefore compute a very short basis of the n-dimensional lattice Lx, and in principle
this takes exponential-time in n, as one must apply BKZ reduction [Sch87] with increasingly large
block-sizes. In their practical experiments, the authors of [NS99] were able to solve the hidden subset
sum problem up to n = 90; for the second step, they used a BKZ implementation from the NTL
library [Sho] with block-size β = 20. In our implementation of their algorithm, with more computing
power and thanks to the BKZ 2.0 [CN11a] implementation from [fpl16], we can reach n = 170 with
block-size β = 30, but we face an exponential barrier beyond this value.

Our contributions. Our first contribution is to provide a more detailed analysis of both steps of
the Nguyen-Stern algorithm. For the first step (orthogonal lattice attack with LLL), we first adapt
the analysis of [NS99] to provide a rigorous condition under which the hidden lattice Lx can be
recovered. In particular, we derive a rigorous lower bound for the bitsize of the modulus M ; we
show that the knapsack density d = n/ logM must be O(1/(n log n)), and heuristically O(1/n), as
for the classical subset-sum problem.

We also provide a heuristic analysis of the second step of Nguyen-Stern. More precisely, we
provide a simple model for the minimal BKZ block-size β that can recover the secret vectors xi,
based on the gap between the shortest vectors and the other vectors of the lattice. While relatively
simplistic, our model seems to accurately predict the minimal block-size β required for BKZ re-
duction in the second step. We show that under our model the BKZ block-size must grow almost
linearly with the dimension n; therefore the complexity of the second step is exponential in n. We
also provide a slightly simpler approach for recovering the hidden vectors xi from the shortest lattice
vectors. Eventually we argue that the asymptotic complexity of the full Nguyen-Stern algorithm is
2Ω(n/ logn).

Our main contribution is then to describe a variant of the Nguyen-Stern algorithm for solving the
hidden subset sum problem that works in polynomial-time. The first step is still the same orthogonal
lattice attack with LLL. In the second step, instead of applying BKZ, we use a multivariate technique
that recovers the short lattice vectors and finally the hidden secrets in polynomial time, using m '
n2/2 samples instead of m = 2n as in [NS99]. Our new second step can be of independent interest,
as its shows how to recover binary vectors in a lattice of high-dimensional vectors. Asymptotically
the heuristic complexity of our full algorithm is O(n9). We show that our algorithm performs quite
well in practice, as we can reach n ' 250 in a few hours on a single PC.
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Cryptographic applications. As an application, the authors of [NS99] showed how to break the
fast generator of random pairs (x, gx (mod p)) from Boyko, Peinado and Venkatesan from Eurocrypt
’98. Such generator can be used to speed-up the generation of discrete-log based algorithms with
fixed base g, such as Schnorr identification, and Schnorr, ElGamal and DSS signatures. We show
that in practice our polynomial-time algorithm enables to break the Boyko et al. generator for values
of n that are beyond reach for the original Nguyen-Stern attack; however, we need more samples
from the generator, namely m ' n2/2 samples instead of m = 2n.

Source code. We provide in

https://pastebin.com/ZFk1qjfP

the source code of the Nguyen-Stern attack and our new attack in SageMath [Sag19], using the L2

implementation from [fpl16].

2 Background on lattices

Lattices and bases. In this section we recall the main definitions and properties of lattices used
throughout this paper; we refer to Appendix A for more details. Let b1, . . . ,bd ∈ Zm be linearly
independent vectors. The lattice generated by the basis b1, . . . ,bd is the set

L(b1, . . . ,bd) =

{
d∑
i=1

aibi | a1, . . . , ad ∈ Z

}
.

We say that a matrix B is a base matrix for the lattice generated by its rows b1, . . . ,bd. Two basis
B,B′ generate the same lattice if and only if there exists an unimodular matrix U ∈ GL(Z, d) such
that UB = B′. Given any basis B we can consider its Gram-determinant d(B) =

√
det(BBᵀ); this

number is invariant under base change. The determinant of a lattice L is the Gram-determinant of
any of its basis B, namely det(L) = d(B).

The dimension dim(L), or rank, of a lattice is the dimension as vector space of EL := SpanR(L),
namely the cardinality of its bases. We say that a lattice is full rank if it has maximal dimension.
We say thatM⊆ L is a sublattice of a lattice L if it is a lattice contained in L, further we say that
L is a superlattice of M. If dim(M) = dim(L), we say that M is a full-rank sublattice of L, and
we must have det(L) ≤ det(M).

Orthogonal lattice. Consider the Euclidean norm ‖ · ‖ and the standard scalar product 〈·, ·〉 of
Rm. The orthogonal lattice of a lattice L ⊆ Zm is

L⊥ := {v ∈ Zm | ∀b ∈ L, 〈v,b〉 = 0} = E⊥L ∩ Zm

We define the completion of a lattice L as the lattice L̄ = EL ∩ Zm = (L⊥)⊥. Clearly, L is a full
rank sublattice of L̄. We say that a lattice is complete if it coincides with its completion, i.e. L̄ = L.
One can prove that dimL + dimL⊥ = m and det(L⊥) = det(L̄) ≤ det(L); we recall the proofs in
Appendix A. By Hadamard’s inequality, we have det(L) ≤

∏d
i=1 ‖bi‖ for any basis b1, . . . ,bd of a

lattice L; this implies that det(L⊥) ≤
∏d
i=1 ‖bi‖ for any basis b1, . . . ,bd of L.

Lattice minima. The first minimum λ1(L) of a lattice L is the minimum of the norm of its non-zero
vectors. Lattice points whose norm is λ1(L) are called shortest vectors. The Hermite constant γd, in

dimension d, is the supremum of λ1(L)2/ det(L)
2
d over all the lattices of rank d. Using Minkowski

convex body theorem, one can prove that for each d ∈ N+, 0 ≤ γd ≤ d/4 + 1 .
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More generally, for each 1 ≤ i ≤ dimL, the i-th minimum λi(L) of a lattice L is the minimum of
the maxj {‖vj‖} among all sets {vj}j≤i of i linearly independent lattice points. Minkowski’s Second
Theorem states that for each 1 ≤ i ≤ d i∏

j=1

λi(L)

 1
i

≤ √γd det(L)
1
d .

Lattice reduction. We recall in Appendix A the definition of an LLL-reduced basis. LLL-reduced
bases have many good properties. In particular the first vector b1 of an LLL-reduced basis is not
much longer than the shortest vector of the lattice.

Lemma 1 (LLL-reduced basis). Let b1, . . . ,bd an LLL-reduced basis of a lattice L. Then ‖b1‖ ≤
2

d−1
2 λ1(L), and ‖bj‖ ≤ 2

d−1
2 λi(L) for each 1 ≤ j ≤ i ≤ d.

The LLL algorithm [LLL82] outputs an LLL-reduced basis of a rank-d lattice in Zm in time
O(d5m log3B), from a basis of vectors of norm less than B. This was further improved by Nguyen
and Stehlé in [NS09] with a variant based on proven floating point arithmetic, called L2, with
complexity O(d4m(d+ logB) logB) without fast arithmetic. In this paper, when we apply LLL, we
always mean the L2 variant. We denote by log the logarithm in base 2.

Heuristics. For a “random lattice” we expect λ1(L) ≈
√
ddet(L)

1
d by the Gaussian Heuristic and

all lattice minima to be approximately the same. Omitting the
√
d factor, for a lattice L generated

by a set of d “random” vectors in Zm for d < m, we expect the lattice L to be of rank d, and the short
vectors of L⊥ to have norm approximately (detL⊥)1/(m−d) ' (detL)1/(m−d) ' (

∏d
i=1 ‖bi‖)1/(m−d).

3 The Nguyen-Stern Algorithm

In this section we recall the Nguyen-Stern algorithm for solving the hidden subset sum problem.
We explain why the algorithm has complexity exponential in n and provide the result of practical
experiments. Then in Section 4 we will describe our polynomial-time algorithm.

Recall that in the hidden subset sum problem, given a modulus M and h = (h1, . . . , hm) ∈ Zm
satisfying

h = α1x1 + α2x2 + · · ·+ αnxn (mod M) (2)

we must recover the vector α = (α1, . . . , αn) ∈ ZnM and the vectors xi ∈ {0, 1}m. The Nguyen-Stern
algorithm proceeds in 2 steps:

1. From the samples h, determine the lattice L̄x, where Lx is the lattice generated by the xi’s.

2. From L̄x, recover the hidden vectors xi’s. From h, the xi’s and M , recover the weights αi.

3.1 First step: orthogonal lattice attack

The orthogonal lattice attack. The goal of the orthogonal lattice attack is to recover the hidden
lattice L̄x, where Lx ⊂ Zm is the lattice generated by the n vectors xi. Let L0 be the lattice of
vectors orthogonal to h modulo M :

L0 := Λ⊥M (h) = {u ∈ Zm | 〈u,h〉 ≡ 0 (mod M) }

Following [NS99], the main observation is that if 〈u,h〉 ≡ 0 (mod M), then from (2) we obtain:

〈u,h〉 ≡ α1〈u,x1〉+ · · ·+ αn〈u,xn〉 ≡ 0 (mod M)
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and therefore the vector pu = (〈u,x1〉, . . . , 〈u,xn〉) is orthogonal to the vector α = (α1, . . . , αn)
modulo M . Now if the vector u is short enough, the vector pu will be short (since the vectors
xi have components in {0, 1} only), and if pu is shorter than the shortest vector orthogonal to α
modulo M , then we must have pu = 0 and therefore u ∈ L⊥x .

Therefore, the orthogonal lattice attack consists in first computing an LLL-reduced basis of the
lattice L0. The first m − n short vectors u1, . . . ,um−n give us a generating set of the lattice L⊥x .
Then one can compute a basis of the lattice L̄x = (L⊥x )⊥. This gives the following algorithm, which
is the first step of the Nguyen-Stern algorithm; we explain the main steps in more details below.

Algorithm 1 Orthogonal lattice attack [NS99]
Input: h,M, n,m
Output: A basis of L̄x

1: Compute an LLL-reduced basis u1, . . . ,um of L0.
2: Extract a generating set of u1, . . . ,um−n of L⊥x .
3: Compute a basis (c1, . . . , cn) of L̄x = (L⊥x )⊥.
4: return (c1, . . . , cn)

Constructing a basis of L0. We first explain how to construct a basis of L0. If the modulus M is
prime we can assume h1 6= 0, up to permutation of the coordinates; indeed the case h = 0 is trivial.
More generally, we assume gcd(h1,M) = 1. We write u = [u1,u

′] where u′ ∈ Zm−1. Similarly we
write h = [h1,h

′] where h′ ∈ Zm−1. Since h1 is invertible modulo M , we get:

u ∈ L0 ⇐⇒ u1 · h1 + 〈u′,h′〉 ≡ 0 (mod M)

⇐⇒ u1 + 〈u′,h′〉 · h−11 ≡ 0 (mod M)

Therefore, a basis of L0 is given by the m×m matrix of row vectors:

L0 =

[
M

−h′ · h−11 [M ] Im−1

]
To compute a reduced basis u1, . . . ,um of the lattice L0 we use the L2 algorithm. The complexity

is then O(m5(m+ logM) logM) without fast arithmetic. We show in Section 3.2 below that for a
sufficiently large modulus M , the first m − n vectors u1, . . . ,um−n must form a generating set of
L⊥x .

Computing a basis of L̄x = (L⊥
x )⊥. From the vectors u1, . . . ,um−n forming a generating set

of the lattice L⊥x , we can compute its orthogonal L̄x = (L⊥x )⊥ using the LLL-based algorithm from
[NS97]. Given a lattice L, the algorithm from [NS97] produces an LLL-reduced basis of L⊥ in
polynomial time; we refer to Appendix B for a detailed description of the algorithm. Therefore we
obtain an LLL-reduced basis of L̄x = (L⊥x )⊥ in polynomial-time.

3.2 Rigorous analysis of Step 1

We now provide a rigorous analysis of the orthogonal lattice attack above. More precisely, we show
that for a large enough modulus M , the orthogonal lattice attack recovers a basis of L̄x in polynomial
time, for a significant fraction of the weight αi’s.

Theorem 1. Let m > n. Assume that the lattice Lx has rank n. With probability at least 1/2 over
the choice of α, Algorithm 1 recovers a basis of L̄x in polynomial time, assuming that M is a prime
integer of bitsize at least 2mn logm. For m = 2n, the density is d = n/ logM = O(1/(n log n)).
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The proof is based on the following two lemmas. We denote by Λ⊥M (α) the lattice of vectors
orthogonal to α = (α1, . . . , αn) modulo M .

Lemma 2. Assume that the lattice Lx has rank n. Algorithm 1 computes a basis of the lattice L̄x
in polynomial time under the condition m > n and

√
mn · 2

m
2 · λm−n

(
L⊥x
)
< λ1

(
Λ⊥M (α)

)
. (3)

Proof. As observed previously, for any u ∈ L0, the vector

pu = (〈u,x1〉, . . . , 〈u,xn〉)

is orthogonal to the vector α modulo M ; therefore if pu is shorter than the shortest non-zero vector
orthogonal to α modulo M , we must have pu = 0, and therefore u ∈ L⊥x . Since ‖pu‖ ≤

√
mn‖u‖,

given any u ∈ L0 we must have u ∈ L⊥x under the condition:
√
mn‖u‖ < λ1

(
Λ⊥M (α)

)
(4)

The lattice L0 is full rank of dimension m since it contains MZm. Now, consider u1, . . . ,um an
LLL-reduced basis of L0. From Lemma 1, for each j ≤ m− n we have

‖uj‖ ≤ 2
m
2 · λm−n(L0) ≤ 2

m
2 · λm−n

(
L⊥x
)

(5)

since L⊥x is a sublattice of L0 of dimension m− n. Combining with (4), this implies that when
√
mn · 2

m
2 · λm−n

(
L⊥x
)
< λ1

(
Λ⊥M (α)

)
the vectors u1, . . . ,um−n must belong to L⊥x . This means that 〈u1, . . . ,um−n〉 is a full rank sublattice
of L⊥x , and therefore 〈u1, . . . ,um−n〉⊥ = L̄x. Finally, Algorithm 1 is polynomial-time, because both
the LLL reduction step of L0 and the LLL-based orthogonal computation of L⊥x are polynomial-
time. ut

The following Lemma is based on a counting argument; we provide the proof in Appendix C.

Lemma 3. Let M be a prime. Then with probability at least 1/2 over the choice of α, we have
λ1(Λ

⊥
M (α)) ≥M1/n/4. ut

Combining the two previous lemmas, we can prove Theorem 1.

Proof (of Theorem 1). In order to apply Lemma 2, we first derive an upper-bound on λm−n
(
L⊥x
)
.

The lattice L⊥x has dimension m− n and by Minkowski’s second theorem we have

λm−n

(
L⊥x
)
≤ √γm−nm−n det

(
L⊥x
)
≤ mm/2 det

(
L⊥x
)

(6)

From detL⊥x = det L̄x ≤ detLx and Hadamard’s inequality with ‖xi‖ ≤
√
m, we obtain:

detL⊥x ≤ detLx ≤
n∏
i=1

‖xi‖ ≤ mn/2 (7)

which gives the following upper-bound on λm−n
(
L⊥x
)
:

λm−n

(
L⊥x
)
≤ mm/2mn/2 ≤ mm

Thus, by Lemma 2, we can recover a basis of L̄x when
√
mn · 2

m
2 ·mm < λ1

(
Λ⊥M (α)

)
.

From Lemma 3, with probability at least 1/2 over the choice of α we can therefore recover the
hidden lattice L̄x if: √

mn · 2
m
2 ·mm < M1/n/4

For m > n ≥ 4, it suffices to have logM ≥ 2mn logm. ut
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3.3 Heuristic analysis of Step 1

In the previous section we have shown that the orthogonal lattice attack provably recovers the
hidden lattice L̄x in polynomial time for a large enough modulus M , namely we can take logM =
O(n2 log n) when m = 2n. Below we show that heuristically we can take logM = O(n2), which
gives a knapsack density d = n/ logM = O(1/n). We also give the concrete bitsize of M used in
our experiments, and provide a heuristic complexity analysis.

Heuristic size of the modulus M . In order to derive a heuristic size for the modulus M , we use
an approximation of the terms in the condition (3) from Lemma 2.

We start with the term λm−n
(
L⊥x
)
. For a “random lattice” we expect the lattice minima to be

balanced, and therefore λm−n
(
L⊥x
)

to be roughly equal to λ1
(
L⊥x
)
. This means that instead of the

rigorous inequality (6) from the proof of Theorem 1, we use the heuristic approximation:

λm−n

(
L⊥x
)
' √γm−n det(L⊥x )

1
m−n

Using (7), this gives:

λm−n

(
L⊥x
)
/
√
γm−nm

n
2(m−n) (8)

For the term λ1
(
Λ⊥M (α)

)
, using the Gaussian heuristic, we expect:

λ1

(
Λ⊥M (α)

)
' √γnM

1
n

Finally the 2m/2 factor in (3) corresponds to the LLL Hermite factor with δ = 3/4; in practice we
will use δ = 0.99, and we denote by 2ιm the corresponding LLL Hermite factor. Hence from (3) we
obtain the heuristic condition:

√
mn · 2ι·m · √γm−n ·m

n
2(m−n) <

√
γnM

1/n

This gives the condition:

2ι·m
√
γm−n · n ·m

m
2(m−n) <

√
γnM

1/n

which gives:

logM > ι ·m · n+
n

2
log(n · γm−n/γn) +

mn

2(m− n)
logm (9)

If we take m = n + k for some constant k, we can take logM = O(n2 log n). If m > c · n for some
constant c > 1, we can take logM = O(m · n). In particular, for m = 2n we obtain the condition:

logM > 2ι · n2 +
3n

2
log n+ n (10)

which gives logM = O(n2) and a knapsack density d = n/ logM = O(1/n). In practice for our
experiments we use m = 2n and logM ' 2ιn2 +n log n with ι = 0.035. Finally, we note that smaller
values of M could be achieved by using BKZ reduction of L0 instead of LLL.

Heuristic complexity. Recall that for a rank-d lattice in Zm, the complexity of computing an
LLL-reduced basis with the L2 algorithm is O(d4m(d+logB) logB) without fast integer arithmetic,
for vectors of Euclidean norm less than B. At Step 1 we must apply LLL-reduction twice.

The first LLL is applied to the rank-m lattice L0 ∈ Zm. Therefore the complexity of the first
LLL is O(m5(m + logM) logM). If m = n + k for some constant k, the heuristic complexity is
therefore O(n9 log2 n). If m > c · n for some constant c, the heuristic complexity is O(m7 · n2).

The second LLL is applied to compute the orthogonal of L(U) where U is the matrix basis of the

vectors u1, . . . ,um−n ∈ Zm. From (5) and (8), we can heuristically assume ‖U‖ ≤ 2m/2·
√
m·m

n
2(m−n) .
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For m = n + k for some constant k, this gives log ‖U‖ = O(n log n), while for m > c · n for some
constant c > 1, we obtain log ‖U‖ = O(m). From Appendix B, the heuristic complexity of computing
the orthogonal of U is O(m5(m + (m/n) log ‖U‖)2). For m = n + k, the complexity is therefore
O(n7 log2 n), while for m > c · n, the complexity is O(m9/n2).

We summarize the complexities of the two LLL operations in Table 1; we see that the complexities
are optimal for m = c · n for some constant c > 1, so for simplicity we take m = 2n. In that case
the heuristic complexity of the first step is O(n9), and the density is d = n/ logM = O(1/n), as in
the classical subset-sum problem.

m logM LLL L0 LLL (L⊥x )⊥

� n O(n ·m) O(m7 · n2) O(m9/n2)

n2 O(n3) O(n16) O(n16)

2n O(n2) O(n9) O(n7)

n+ 1 O(n2 logn) O(n9 log2 n) O(n7 log2 n)

Table 1. Modulus size and time complexity of Algorithm 1 as a function of the parameter m.

3.4 Second step of the Nguyen-Stern Attack

From the first step we have obtained an LLL-reduced basis (c1, . . . , cn) of the completed lattice
L̄x ⊂ Zm. However this does not necessarily reveal the original vectors xi. Namely, because of the
LLL approximation factor, the basis vectors (c1, . . . , cn) can be much larger than the vectors xi,
which are among the shortest vectors in Lx. Therefore, to recover the original vectors xi, one must
apply BKZ instead of LLL, in order to obtain a better approximation factor.

In the following, we provide a heuristic analysis of the second step of the Nguyen-Stern algorithm,
based on a model of the gap between the shortest vectors of Lx (the vectors xi), and the “generic”
short vectors of Lx. While relatively simplistic, our model seems to accurately predict the minimal
block-size β required for BKZ reduction; we provide the result of practical experiments in the next
section. Under this model the BKZ block-size β must increase almost linearly with n; the complexity
of the attack is therefore exponential in n. In our analysis below, for simplicity we heuristically
assume that the lattice Lx is complete, i.e. L̄x = Lx.

Short vectors in Lx. The average norm of the original binary vectors xi ∈ Zm is roughly
√
m/2.

If we take the difference between some xi and xj , the components remain in {−1, 0, 1}, and the
average norm is also roughly

√
m/2. Therefore, we can assume that the vectors xi and xi − xj for

i 6= j are the shortest vectors of the lattice Lx.
We can construct “generic” short vectors in Lx by taking a linear combination with {0, 1}

coefficients of vectors of the form xi − xj . For xi − xj , the variance of each component is 1/2. If
we take a linear combination of n/4 such differences (so that roughly half of the coefficients with
respect the vectors xi are 0), the variance for each component will be n/4 · 1/2 = n/8, and for m
components the norm of the resulting vector will be about

√
nm/8. Therefore heuristically the gap

between these generic vectors and the shortest vectors is:√
nm/8√
m/2

=

√
n

2

Running time with BKZ. To recover the shortest vectors, the BKZ approximation factor 2ι·n

should be less than the above gap, which gives the condition:

2ι·n ≤
√
n

2
(11)
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which gives ι ≤ (log(n/4))/(2n). Achieving an Hermite factor of 2ιn heuristically requires at least
2Ω(1/ι) time, by using BKZ reduction with block-size β = ω(1/ι) [HPS11]. Therefore the running
time of the Nguyen-Stern algorithm is 2Ω(n/ logn), with BKZ block-size β = ω(n/ log n) in the second
step.

Recovering the vectors xi. It remains to show how to recover the vectors xi. Namely as explained
above the binary vectors xi are not the only short vectors in Lx; the vectors xi − xj are roughly
equally short. The approach from [NS99] is as follows. Since the short vectors in Lx probably
have components in {−1, 0, 1}, the authors suggest to transform the lattice Lx into a new one
L′x = 2Lx + eZ, where e = (1, . . . , 1). Namely in that case a vector v ∈ Lx with components in
{−1, 0, 1} will give a vector 2v ∈ L′x with components in {−2, 0, 2}, whereas a vector x ∈ Lx with
components in {0, 1} will give a vector 2x−e ∈ L′x with components in {−1, 1}, hence shorter. This
should enable to recover the secret vectors xi as the shortest vectors in L′x

Below we describe a slightly simpler approach in which we stay in the lattice Lx. First, we explain
why for large enough values of m, we are unlikely to obtain vectors in {0,±1} as combination of
more that two xi’s. Namely if we take a linear combination of the form xi−xj+xk, each component
will be in {−1, 0, 1} with probability 7/8, therefore for m components the probability will be (7/8)m.
There are at most n3 such triples to consider, so we want n3 · (7/8)m < ε, which gives the condition
m ≥ 16 log n− 6 log ε. With m = 2n and ε = 2−4, this condition is satisfied for n ≥ 60; for smaller
values of n, one should take m = max(2n, 16 log n+ 24).

Hence after BKZ reduction with a large enough block-size β as above, we expect that each of
the basis vectors (c1, . . . , cn) is either equal to ±xi, or equal to a combination of the form xi − xj
for i 6= j. Conversely, this implies that all rows of the transition matrix between (c1, . . . , cn) and
(x1, . . . ,xn) must have Hamming weight at most 4. Therefore while staying in the lattice Lx we
can recover each of the original binary vectors xi from the basis vectors (c1, . . . , cn), by exhaustive
search with O(n4) tests. In Appendix D we describe a greedy algorithm that recovers the original
binary vectors xi more efficiently.

Recovering the weights αi. Finally, from the samples h, the vectors xi’s and the modulus M ,
recovering the weights αi is straightforward as this amounts to solving a linear system:

h = α1x1 + α2x2 + · · ·+ αnxn (mod M)

Letting X′ be the n × n matrix with the first n components of the column vectors xi and letting
h′ be the vector with the first n components of h, we have h′ = X′ · α where α = (α1, . . . , αn)
(mod M). Assuming that X′ is invertible modulo M , we get α = X′−1h′ (mod M).

3.5 Practical experiments

Running times. We provide in Table 2 the result of practical experiments. The first step is the
orthogonal lattice attack with two applications of LLL. For the second step, we receive as input from
Step 1 an LLL-reduced basis of the lattice Lx. We see in Table 2 that for n = 70 this is sufficient to
recover the hidden vectors xi. Otherwise, we apply BKZ with block-size β = 10, 20, 30, . . . until we
recover the vectors xi. We see that the two LLLs from Step 1 run in reasonable time up to n = 250,
while for Step 2 the running time of BKZ grows exponentially, so we could not run Step 2 for n > 170.
We provide the source code of our SageMath implementation in https://pastebin.com/ZFk1qjfP,
based on the L2 and BKZ 2.0 [CN11a] implementations from [fpl16].

Hermite factors. Recall that from our heuristic model from Section 3.4 the target Hermite factor
for the second step of the Nguyen-Stern algorithm is γ =

√
n/2, which can be written γ = an with
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Step 1 Step 2

n m logM LLL L0 LLL L⊥x Hermite Reduction Total

70 140 772 3 s 1 s 1.021n LLL ε 6 s

90 180 1151 10 s 4 s 1.017n BKZ-10 1 s 18 s

110 220 1592 28 s 12 s 1.015n BKZ-10 3 s 50 s

130 260 2095 81 s 24 s 1.013n BKZ-20 10 s 127 s

150 300 2659 159 s 44 s 1.012n BKZ-30 4 min 8 min

170 340 3282 6 min 115 s 1.011n BKZ-30 438 min 447 min

190 380 3965 13 min 3 min 1.010n − − −
220 440 5099 63 min 29 min 1.009n − − −
250 500 6366 119 min 56 min 1.008n − − −

Table 2. Running time of the [NS99] attack, under a 3,2 GHz Intel Core i5 processor.

a = (n/4)1/(2n). We provide in Table 2 above the corresponding target Hermite factors as a function
of n.

In order to predict the Hermite factor achievable by BKZ as a function of the block-size β, we
have run some experiments on a different lattice, independent from our model of Section 3.4. For
this we have considered the lattice L ∈ Zn of row vectors:

L =


p
c1 1
c2 1
...

. . .

cn−1 · · · 1


for some prime p, with random ci’s modulo p. Since detL = p, by applying LLL or BKZ we expect
to obtain vectors of norm 2ιn(detL)1/n = 2ιn · p1/n, where 2ιn is the Hermite factor. We summarize
our results in Table 3 below. Values up to β = 40 are from our experiments with the lattice L above,
while for β ≥ 85 the values are reproduced from [CN11b], based on a simulation approach.

Block-size β 2 10 20 30 40 85 106 133

Hermite factor 1.020n 1.015n 1.014n 1.013n 1.012n 1.010n 1.009n 1.008n

Table 3. Experimental and simulated Hermite factors for LLL (β = 2) and for BKZ with block-size β.

In summary, the minimal BKZ block-sizes β required experimentally in Table 2 to solve Step
2, seem coherent with the target Hermite factors from our model, and the experimental Hermite
factors from Table 3. For example, for n = 70, this explains why an LLL-reduced basis is sufficient,
because the target Hermite factor is 1.021n, while LLL can achieve 1.020n. From Table 3, BKZ-10
can achieve 1.015n, so in Table 2 it was able to break the instances n = 90 and n = 110, but not
n = 130 which has target Hermite factor 1.013n. However we see that BKZ-20 and BKZ-30 worked
better than expected; for example BKZ-30 could break the instance n = 170 with target Hermite
factor 1.011n, while in principle from Table 3 it can only achieve 1.013n. So it could be that our
model from Section 3.4 underestimates the target Hermite factor. Still, we believe that our model
and the above experiments confirm that the complexity of the Nguyen-Stern algorithm is indeed
exponential in n.

4 Our polynomial-time algorithm for solving the hidden subset-sum problem

Recall that the Nguyen-Stern attack is divided in the two following steps.
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1. From the samples h, determine the lattice L̄x, where Lx is the lattice generated by the xi’s.

2. From L̄x, recover the hidden vectors xi’s. From h, the xi’s and M , recover the weights αi.

In the previous section we have argued that the complexity of the second step of the Nguyen-
Stern attack is exponential in n. In this section we describe an alternative second step with
polynomial-time complexity. However, our second step requires more samples than in [NS99], namely
we need m ' n2/2 samples instead of m = 2n. This means that in the first step we must produce
a basis of the rank-n lattice L̄x ⊂ Zm, with the much higher vector dimension m ' n2/2 instead of
m = 2n.

For this, the naive method would be to apply directly Algorithm 1 from Section 3.1 to the vector
h of dimension m ' n2/2. But for n ' 200 one would need to apply LLL on a m×m matrix with
m ' n2/2 ' 20 000, which is not practical; moreover the bitsize of the modulus M would need to
be much larger due to the Hermite factor of LLL in such large dimension (see Table 1). Therefore,
we first explain how to modify Step 1 in order to efficiently generate a lattice basis of L̄x ⊂ Zm for
large m. Our technique is as follows: instead of applying LLL on a square matrix of dimension n2/2,
we apply LLL in parallel on n/2 square matrices of dimension 2n, which is much faster. Eventually
we show in Section 5 that a single application of LLL is sufficient.

4.1 First step: obtaining a basis of L̄x for m� n

In this section, we show how to adapt the first step, namely the orthogonal lattice attack from
[NS99] recalled in Section 3.1, to the case m� n. More precisely, we show how to generate a basis
of n vectors of L̄x ⊂ Zm for m ' n2/2, while applying LLL on matrices of dimension t = 2n only. As
illustrated in Figure 1, this is relatively straightforward: we apply Algorithm 1 from Section 3.1 on
2n components of the vector h ∈ Zm at a time, and each time we recover roughly the projection of
a lattice basis of L̄x on those 2n components; eventually we recombine those projections to obtain
a full lattice basis of L̄x.

h h0 h1 h2 · · · hd

↓

L̄x C
(1)
0 C1 − → C0 C1 −

L̄x C
(2)
0 − C2 − → C0 − C′2 −

...
...

L̄x C
(d)
0 − Cd → C0 − C′d

↓

L̄x C0 C1 C′2 · · · C′d

Fig. 1. Computation of a lattice basis of L̄x.

More precisely, writing h = [h0, . . . ,hd] where m = (d+ 1) · n and hi ∈ Zn, we apply Algorithm
1 on each of the d sub-vectors of the form (h0,hi) ∈ Z2n for 1 ≤ i ≤ d. For each 1 ≤ i ≤ d this

gives us C
(i)
0 ‖Ci ∈ Zn×2n, the completion of the projection of a lattice basis of Lx. To recover the

m components of the basis, we simply need to ensure that the projected bases C
(i)
0 ‖Ci ∈ Zn×2n

always start with the same matrix C0 on the first n components; see Figure 1 for an illustration.
This gives Algorithm 2 below. We denote Algorithm 1 from Section 3.1 by OrthoLat.
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Algorithm 2 Orthogonal lattice attack with m = d · n samples
Input: h ∈ Zm,M, n,m = d · n
Output: A base matrix of L̄x

1: Write h = [h0, . . . ,hd] where hi ∈ Zn for all 0 ≤ i ≤ d.
2: for i← 1 to d do
3: yi ← [h0, hi]

4: C
(i)
0 ‖Ci ← OrthoLat(yi,M, n, 2n)

5: Qi ← C
(1)
0 · (C

(i)
0 )−1

6: C′i ← Qi ·Ci

7: end for
8: return [C0,C1,C

′
2, · · · ,C′d]

A minor difficulty is that in principle, when applying OrthoLat (Algorithm 1) to a subset yi ∈ Z2n

of the sample h ∈ Zm, we actually recover the completion of the projection of Lx over the correspond-
ing coordinates, rather than the projection of the completion L̄x of Lx. More precisely, denote by π a
generic projection on some coordinates of a lattice Lx. It is always true that π(Lx) ⊆ π(L̄x) ⊆ π(Lx).
Thus applying Algorithm 1 with a certain projection π we recover the completion π(Lx). Assuming
that the projection π(Lx) is complete, we obtain π(Lx) = π(Lx) = π(L̄x). Therefore, to simplify
the analysis of Algorithm 2, we assume that the projection over the first n coordinates has rank n,
and that the projection over the first 2n coordinates is complete. This implies that the transition

matrices Qi ← C
(1)
0 · (C

(i)
0 )−1 for 2 ≤ i ≤ d must be integral; in our practical experiments this was

always the case.

Theorem 2. Let m = d ·n for d ∈ N and d > 1. Assume that the projection of the lattice Lx ∈ Zm
over the first n components has rank n, and that the projection of Lx over the first 2n coordinates
is complete. With probability at least 1/2 over the choice of α, Algorithm 2 recovers a basis of L̄x
in polynomial time, assuming that M is a prime of bitsize at least 4n2(log n+ 1).

Proof. From Theorem 1, we recover for each 1 ≤ i ≤ d a basis C
(i)
0 ‖Ci corresponding to the

completed projection of Lx to the first n coordinates and the i+ 1-th subset of n coordinates, with
probability at least 1/2 over the choice of α. Let us denote by X the base matrix whose rows are
the vectors xi’s. By assumption the vectors xi are linear independent, the first n × n minor X0 is

invertible and the matrices C
(i)
0 for i = 1, . . . , d must generate a superlattice of X0. In particular,

there exists an invertible integral matrix Qi such that Qi · C(i)
0 = C

(1)
0 for each i = 1, . . . , d. So,

applying Qi = C
(1)
0 (C

(i)
0 )−1 to Ci we find C′i, which contains the i+ 1-th subset of n coordinates of

the vectors in a basis having C0 := C
(1)
0 as projection on the first n coordinates. This implies that

[C0,C1,C
′
2, · · ·C′d] is a basis of L̄x. ut

Heuristic analysis. For the size of the modulus M , since we are working with lattices in Z2n, we
can take the same modulus size as in the heuristic analysis of Step 1 from Section 3.3, namely

logM ' 2ιn2 + n log n

with ι = 0.035. The time complexity of Algorithm 2 is dominated by the cost of applying OrthoLat
(Algorithm 1) to each yi, which is heuristically O(n9) from Section 3.3. Therefore, the heuristic
complexity of Algorithm 2 is d · O(n9) = O(m · n8). In particular, for m ' n2/2, the heuristic
complexity of Algorithm 2 is O(n10), instead of O(n16) with the naive method (see Table 1). In
Section 5 we will describe an improved algorithm with complexity O(n9).
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4.2 Second Step: recovering the hidden vectors xi’s

By the first step we recover a basis C = (c1, . . . , cn) of the hidden lattice L̄x ∈ Zm. The goal of the
second step is then to recover the original vectors x1, . . . ,xn ∈ L̄x, namely to solve the following
problem:

Problem 1. Let X ← {0, 1}n×m. Given C ∈ Zn×m such that WC = X for some W ∈ Zn×n ∩
GL(Q, n), recover W and X.

We show that for m ' n2/2 the above problem can be solved in heuristic polynomial time,
using a multivariate approach. Namely we reduce the problem to solving a system of multivariate
quadratic equations and we provide an appropriate algorithm to solve it.

Heuristically we expect the solution to be unique up to permutations of the rows when m� n.
Indeed for large enough m we expect the vectors xi to be the unique vectors in L̄x with binary
coefficients. More precisely, consider a vector v = xi + xj or v = xi − xj for i 6= j. The probability
that all components of v are in {0, 1} is (3/4)m, so for n2/2 possible choices of i, j the probability
is at most n2 · (3/4)m, which for m ' n2/2 is a negligible function of n. Therefore we can consider
the equivalent problem:

Problem 2. Given C ∈ Zn×m of rank n, suppose there exist exactly n vectors wi ∈ Zn such that
wi · C = xi ∈ {0, 1}m for i = 1, . . . , n, and assume that the vectors wi are linearly independent.
Find w1, . . . ,wn.

We denote by c̃1, . . . , c̃m the column vectors of C, which gives: w1
...

wn


 c̃1 · · · c̃m

 =

 x1
...

xn



Multivariate approach. The crucial observation is that since all components of the vectors xi
are binary, they must all satisfy the quadratic equation y2 − y = 0. Therefore for each i = 1, . . . , n
we have:

wi ·C ∈ {0, 1}m ⇐⇒ ∀j ∈ [1,m], (wi · c̃j)2 −wi · c̃j = 0

⇐⇒ ∀j ∈ [1,m], (wi · c̃j)(wi · c̃j)ᵀ −wi · c̃j = 0

⇐⇒ ∀j ∈ [1,m], wi · (c̃j · c̃ᵀj ) ·w
ᵀ
i −wi · c̃j = 0

Given the known column vectors c̃1, . . . , c̃m, the vectors w1, . . . ,wn and 0 are therefore solutions
of the quadratic polynomial multivariate system

w · c̃1c̃ᵀ1 ·wᵀ −w · c̃1 = 0
...

w · c̃mc̃ᵀm ·wᵀ −w · c̃m = 0

(12)

In the following we provide a heuristic polynomial-time algorithm to solve this quadratic multi-
variate system, via linearization and computation of eigenspaces. More precisely, we first linearize
(12); then we prove that the wi’s are eigenvectors of some submatrices of the kernel matrix, and we
provide a method to recover them in polynomial time.
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Linearization. Since (c̃j)i = Cij , for all 1 ≤ j ≤ m, we can write:

y · c̃j c̃ᵀj · y
ᵀ =

n∑
i=1

n∑
k=1

yiykCijCkj =

n∑
i=1

n∑
k=i

yiyk(2− δi,k)CijCkj

with δi,k = 1 if i = k and 0 otherwise. In the above equation the coefficient of the degree 2 monomial
yiyk for 1 ≤ i ≤ k ≤ n is (2−δi,k)CijCkj . Thus, we consider the corresponding vectors of coefficients
for 1 ≤ j ≤ m:

rj = ((2− δi,k)CijCkj)1≤i≤k≤n ∈ Z
n2+n

2 (13)

We set R ∈ Z
n2+n

2
×m to be the matrix whose columns are the rj ’s and

E =

[
R

−C

]
∈ Z

n2+3n
2
×m;

We obtain that (12) is equivalent to{
[ z | y ] ·E = 0

z = (yiyk)1≤i≤k≤n ∈ Z
n2+n

2

(14)

For m > (n2 +n)/2 we expect the matrix R to be of rank (n2 +n)/2. In that case we must have
rank E ≥ (n2 + n)/2, and so dim ker E ≤ n. On the other hand, consider the set of vectors

W = {((wiwk)1≤i≤k≤n,w) ∈ Z
n2+3n

2 | w ∈ {w1, . . . ,wn}}

Since by assumption the vectors wi’s are linearly independent, Span(W) is a subspace of dimension
n of ker E. This implies that dim ker E = n, and that a basis of ker E is given by the set W. In the
following, we show how to recover W, from which we recover the matrix W and eventually the n
vectors xi.

Kernel computation. Since the set of n vectors in W form a basis of ker E, the first step is to

compute a basis of ker E over Q from the known matrix E ∈ Z
n2+3n

2
×m. However this does not

immediately reveal W since the n vectors of W form a privileged basis of ker E; namely the vectors
in W have the following structure:(

(wiwk)1≤i≤k≤n, w1, . . . wn) ∈ Z
n2+3n

2

To recover the vectors in W we proceed as follows. Note that the last n components in the
vectors inW correspond to the linear part in the quadratic equations of (12). Therefore we consider

the base matrix K ∈ Qn×n2+3n
2 of ker E such that the matrix corresponding to the linear part is the

identity matrix:

K =
[

M | In
]

(15)

where M ∈ Qn×n2+n
2 . A vector v = (v1, . . . , vn) ∈ Zn is then a solution of (14) if and only if

v ·K ∈ W, which gives:

v ·M = (vivk)1≤i≤k≤n

By duplicating some columns of the matrix M, we can obtain a matrix M′ ∈ Zn2×n such that:

v ·M′ = (vivk)1≤i≤n,1≤k≤n
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We write M′ = [M1, . . . ,Mn] where Mi ∈ Zn×n. This gives:

v ·Mi = vi · v

for all 1 ≤ i ≤ n.
This means that the eigenvalues of each Mi are exactly all the possible i-th coordinates of the

target vectors w1, . . . ,wn. Therefore the vectors wj ’s are the intersections of the left eigenspaces
corresponding to their coordinates.

Eigenspace computation. Consider for example the first coordinates wj,1 of the vectors wj . From
the previous equation, we have:

wj ·M1 = wj,1 ·wj

Therefore the vectors wj are the eigenvectors of the matrix M1, and their first coordinates wj,1
are the eigenvalues. Assume that those n eigenvalues are distinct; in that case we can immediately
compute the n corresponding eigenvectors wj and solve the problem. More generally, we can recover
the vectors wj that belong to a dimension 1 eigenspace of M1; namely in that case wj is the unique
vector of its eigenspace such that wj ·C ∈ {0, 1}m, and we recover the corresponding xj = wj ·C.

Our approach is therefore as follows. We first compute the eigenspaces E1, . . . , Es of M1. For
every 1 ≤ k ≤ s, if dimEk = 1 then we can compute the corresponding target vector, as explained
above. Otherwise, we compute M2,k the restriction map of M2 at Ek and we check the dimensions
of its eigenspaces. As we find eigenspaces of dimension 1 we compute more target vectors, otherwise
we compute the restrictions of M3 at the new eigenspaces and so on. We iterate this process until
we find all the solutions; see Algorithm 3 below.

Algorithm 3 Multivariate attack

Input: C ∈ Zn×m a basis of L̄x.
Output: x1, . . . ,xn ∈ {0, 1}m, such that wi ·C = xi for i = 1, . . . , n.

1: Let rj = ((2− δi,k)CijCkj)1≤i≤k≤n ∈ Z
n2+n

2 for 1 ≤ j ≤ m.

2: E =

[
r1 · · · rm
−C

]
∈ Z

n2+3n
2
×m

3: K←Ker E with K =
[
M | In

]
∈ Qn×n2+3n

2

4: Write M = [m̃ik]1≤i≤k≤n where m̃ik ∈ Qn.
5: Let Mi ∈ Qn×n with Mi = [m̃ik]1≤k≤n, using m̃ik := m̃ki for i > k.
6: L← [In]
7: for i← 1 to n do
8: L2 ← []
9: for all V ∈ L do

10: if rankV = 1 then
11: Append a generator v of V to L2.
12: else
13: Compute A such that V ·Mi = A ·V.
14: Append all eigenspaces U of A to L2.
15: end if
16: end for
17: L← L2

18: end for
19: X ← []
20: for all v ∈ L do
21: Find c 6= 0 such that x = c · v ·C ∈ {0, 1}m, and append x to X.
22: end for
23: return X

In order to better analyze this procedure, we observe that we essentially construct a tree of
subspaces of Qn, performing a breadth-first search algorithm. The root corresponds to the entire
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space, and each node at depth i is a son of a node E at depth i−1 if and only if it represents a non-
trivial intersection of E with one of the eigenspaces of Mi. Since these non-trivial intersections are
exactly the eigenspaces of the restriction of Mi to E, our algorithm does not compute unnecessary
intersections. Moreover, we know that when the dimension of the node is 1 all its successors represent
the same space; hence that branch of the algorithm can be closed; see Fig. 2 for an illustration.

2

1

1

1

0

1

1

1

In

M1

M2

M3

Fig. 2. Example of the tree we obtain for w1 = (2, 1, 1),w2 = (1, 0, 1),w3 = (1, 1, 1). The matrix M1 has an eigenspace
of dimension 1 E1,2 and one of dimension 2 E1,1. At the first iteration we obtain therefore w1. Then we compute the
restriction A of M2 to E1,1; it has two distinct eigenvalues 0 and 1, which enables to recover the eigenvectors w2 and
w3. All the nodes at depth 2 represent dimension one spaces, hence the algorithm terminates.

Analysis and reduction modulo p. Our algorithm is heuristic as we must assume that the

matrix R ∈ Z
n2+n

2
×m has rank (n2 + n)/2. In our experiments we took m = (n2 + 4n)/2 and this

hypothesis was always satisfied. The running time of the algorithm is dominated by the cost of
computing the kernel of a matrix E of dimension n2+3n

2 ×m. For m = (n2 + 4n)/2, this requires
O(n6) arithmetic operations. Thus we have shown:

Lemma 4. Let C ∈ Zn×m be an instance of Problem 2 and R ∈ Z
n2+n

2
×m the matrix whose columns

are the ri constructed as in (13). If R has rank n2+n
2 , then the vectors xi can be recovered in O(n6)

arithmetic operations.

In practice it is more efficient to work modulo a prime p instead of over Q. Namely Problem 1
is defined over the integers, so we can consider its reduction modulo a prime p:

WC = X (mod p)

and since X has coefficients in {0, 1} we obtain a system which is exactly the reduction of (12)
modulo p. In particular, we can compute K = ker E modulo p instead of over Q, and also compute
the eigenspaces modulo p. Setting R = R mod p, if R has rank n2+n

2 , then X can be recovered by
O(n6 · log2 p) bit operations.

Note that we cannot take p = 2 as in that case any vector wi would be a solution of wi ·C = xi
(mod 2), since xi ∈ {0, 1}m. In practice we took p = 3 and m = (n2 + 4n)/2, which was sufficient to
recover the original vectors x1, . . . ,xn. In that case, the heuristic time complexity is O(n6), while
the space complexity is O(n4). We provide the results of practical experiments in Section 7, and
the source code in https://pastebin.com/ZFk1qjfP.

5 Improvement of the algorithm first step

The first step of our new attack is the same as in [NS99], except that we need to produce m − n
orthogonal vectors in L⊥x from m = n(n + 4)/2 samples, instead of only m = 2n samples in the
original Nguyen-Stern attack. Therefore, we need to produce n(n+ 2)/2 orthogonal vectors in L⊥x ,
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instead of only n. In Section 4.1, this required m/n ' n/2 parallel applications of LLL to compute
those m−n vectors in L⊥x , and similarly n/2 parallel applications of LLL to compute the orthogonal
L̄x = (L⊥x )⊥ ∈ Zm. Overall the heuristic time complexity was O(n10).

In this section, we show that only a single application of LLL (with the same dimension) is
required to produce the m − n orthogonal vectors in L⊥x . Namely we show that once the first
n orthogonal vectors have been produced, we can very quickly generate the remaining m − 2n
other vectors, by size-reducing the original basis vectors with respect to an LLL-reduced submatrix.
Similarly a single application of LLL is required to recover a basis of L̄x. Eventually the heuristic
time complexity of the first step is O(n9), as in the original Nguyen-Stern algorithm. This implies
that the heuristic complexity of our full algorithm for solving the hidden subset sum problem is also
O(n9).

5.1 Closest vector problem

Size reduction with respect to an LLL-reduced sub-matrix essentially amounts to solving the ap-
proximate closest vector problem (CVP) in the corresponding lattice.

Definition 2 (Approximate closest vector problem). Fix γ > 1. Given a basis for a lattice
L ⊂ Zd and a vector t ∈ Rd, compute v ∈ L such that ‖t− v‖ ≤ γ‖t− u‖ for all u ∈ L.

To solve approximate-CVP, Babai’s nearest plane method [Bab86] inductively finds a lattice
vector close to a vector t, based on a Gram-Schmidt basis. Alternatively, Babai’s rounding technique
has a worse approximation factor γ but is easier to implement in practice.

Algorithm 4 Babai’s rounding method

Input: a basis b1, . . . ,bd of a lattice L ⊂ Zd. A vector t ∈ Zd.
Output: a vector v ∈ L
1: Write t =

∑d
i=1 uibi with ui ∈ R.

2: return v =
∑d

i=1buiebi

Theorem 3 (Babai’s rounding [Bab86]). Let b1, . . . ,bd be an LLL-reduced basis (with respect
to the Euclidean norm and with factor δ = 3/4) for a lattice L ⊂ Rd. Then the output v of the
Babai rounding method on input t ∈ Rd satisfies ‖t− v‖ ≤ (1 + 2d(9/2)d/2)‖t− u‖ for all u ∈ L.

5.2 Generating orthogonal vectors in L⊥
x .

We start with the computation of the orthogonal vectors in L⊥x . Consider the large m×m matrix of
vectors orthogonal to h1, . . . , hm modulo M corresponding to the lattice L0. Our improved technique
is based on the fact that once LLL has been applied to the small upper-left (2n)× (2n) sub-matrix
of vectors orthogonal to (h1, . . . , h2n) modulo M , we do not need to apply LLL anymore to get more
orthogonal vectors; namely it suffices to size-reduce the other rows with respect to these 2n already
LLL-reduced vectors. After size-reduction we obtain short vectors in L0, and as previously if these
vectors are short enough, they are guaranteed to belong to the orthogonal lattice L⊥x ; see Figure 3
for an illustration. Such size-reduction is much faster than repeatedly applying LLL as in Section
4.1. We describe the corresponding algorithm below.

The following Lemma shows that under certain conditions on the lattice L⊥x , Algorithm 5 outputs
a generating set of m − n vectors of L⊥x . More specifically, we have to assume that the lattice L⊥x
contains short vectors of the form [ ci 0 . . . 1 . . . 0 ] with ci ∈ Z2n; this assumption seems to be
always verified in practice. We provide the proof in Appendix E.
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L0 :

M

a2 1
...

. . .

a2n 1

a2n+1 1

...
. . .

am 1




a2n+1 1

...
. . .

am 1




1

. . .

1





Fig. 3. In the initial basis matrix the components of the first column are big. Then by applying LLL on the 2n× 2n
submatrix the corresponding components become small; this already gives n orthogonal vectors in L⊥x . Then by size-
reducing the remaining m−2n rows, one obtains small components on the 2n columns, and therefore m−2n additional
orthogonal vectors. In total we obtain m− n orthogonal vectors.

Algorithm 5 Fast generation of orthogonal vectors
Input: h ∈ Zm, M , n, m.
Output: A generating set of L⊥x ⊂ Zm

1: Let B ∈ Zm×m be a basis of row vectors of the lattice L0 of vectors orthogonal to h modulo M , in lower triangular
form.

2: Apply LLL to the upper-left (2n)× (2n) submatrix of B.
3: Let a1, . . . ,a2n ∈ Z2n be the 2n vectors of the LLL-reduced basis.
4: for i = 2n+ 1 to m do
5: Let ti = [−hih

−1
1 [M ] 0 · · · 0] ∈ Z2n

6: Apply Babai’s rounding to ti, with respect to (a1, . . . ,a2n). Let v ∈ Z2n be the resulting vector.
7: Let a′i = [(ti − v) 0 1 0] ∈ Zm where the 1 component is at index i.
8: end for
9: For 1 ≤ i ≤ n, extend the vectors ai to a′i ∈ Zm, padding with zeros.

10: Output the n vectors a′i for 1 ≤ i ≤ n, and the m− 2n vectors a′i for 2n+ 1 ≤ i ≤ m.

Lemma 5. Assume that the lattice L⊥x contains n linearly independent vectors of the form c′i =
[ ci 0 · · · 0 ] ∈ Zm for 1 ≤ i ≤ n with ci ∈ Z2n and ‖ci‖ ≤ B, and m − 2n vectors of the form
c′i = [ ci 0 . . . 1 . . . 0 ] ∈ Zm where the 1 component is at index i, for 2n+ 1 ≤ i ≤ m with ci ∈ Z2n

and ‖ci‖ ≤ B. Then if (γB + 1)
√
mn ≤ λ1

(
Λ⊥M (α)

)
where γ = 1 + 4n(9/2)n, Algorithm 5 returns

a set of m − n linearly independent vectors in L⊥x , namely n vectors a′i ∈ L⊥x for 1 ≤ i ≤ n, and
m− 2n vectors a′i ∈ L⊥x for 2n+ 1 ≤ i ≤ m.

Complexity analysis. Since the approximation factor γ for CVP is similar to the LLL Hermite
factor, we use the same modulus size as previously, namely logM ' 2ιn2 + n · log n with ι = 0.035.
As in Section 3.3 the complexity of the first LLL reduction with L2 is O(n5 log2M) = O(n9).

We now consider the size-reductions with Babai’s rounding. To apply Babai’s rounding we
must first invert a 2n × 2n matrix with logM bits of precision; this has to be done only once,
and takes O(n3 log2M) = O(n7) time. Then for each Babai’s rounding we need one vector matrix
multiplication, with precision logM bits. Since the vector has actually a single non-zero component,
the complexity is O(n log2M) = O(n5). With m = O(n2), the total complexity of size-reduction is
therefore O(n7). In Appendix F, we describe a further improvement of the size-reduction step, with
complexity O(n20/3) instead of O(n7).

Overall the heuristic complexity of Algorithm 5 for computing a generating set of L⊥x is therefore
O(n9), instead of O(n10) in Section 4.1.
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5.3 Computing the orthogonal of L⊥
x

As in the original [NS99] attack, once we have computed a generating set of the rank m− n lattice
L⊥x ⊂ Zm, we need to compute its orthogonal, with m = n(n+4)/2 instead of m = 2n. As previously,
this will not take significantly more time, because of the structure of the generating set of vectors
in L⊥x . Namely as illustrated in Figure 4, the matrix defining the m−n orthogonal vectors in L⊥x is
already almost in Hermite Normal Form (after the first 2n components), and therefore once the first
2n components of a basis of n vectors of L̄x = (L⊥x )⊥ have been computed (with LLL), computing
the remaining m− 2n components is straightforward.

L⊥x :
1

. . .

1




Fig. 4. Structure of the generating set of L⊥x .

More precisely, from Algorithm 5, we obtain a matrix A ∈ Z(m−n)×m of row vectors generating
L⊥x , of the form:

A =

[
U
V Im−2n

]
where U ∈ Zn×2n and V ∈ Z(m−2n)×2n. As in Section 3.1, using the LLL-based algorithm from
[NS97] recalled in Appendix B, we first compute a matrix basis P ∈ Z2n×n of column vectors
orthogonal to the rows of U, that is U ·P = 0. We then compute the matrix:

C =

[
P
−VP

]
∈ Zm×n

and we obtain A · C = 0 as required. Therefore the matrix C of column vectors is a basis of
L̄x = (L⊥x )⊥.

6 Cryptographic applications

In [NS99], the authors showed how to break the fast generator of random pairs (x, gx (mod p))
from Boyko et al. [BPV98], using their algorithm for solving the hidden subset-sum problem. Such
generator can be used to speed-up the generation of discrete-log based algorithms with fixed base g,
such as Schnorr identification, and Schnorr, ElGamal and DSS signatures. The generator of random
pairs (x, gx (mod p)) works as follows. We consider a prime number p and g ∈ Z∗p of order M .

Preprocessing Step: Take α1, . . . , αn ← ZM and compute βj = gαj for each j ∈ [1, n] and store
(αj , βj).

Pair Generation: To generate a pair (g, gx mod p), randomly generate a subset S ⊆ [1, n] such
that |S| = κ; compute b =

∑
j∈S αj mod M , if b = 0 restart, otherwise computeB =

∏
j∈S βj mod

p. Return (b, B).

In [NS99] the authors described a very nice passive attack against the generator used in Schnorr’s
signatures, based on a variant of the hidden subset-sum problem, called the affine hidden subset-sum
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problem; the attack is also applicable to ElGamal and DSS signatures. Under this variant, there is
an additional secret s, and given h, e ∈ Zm one must recover s, the xi’s and the αi’s such that:

h + se = α1x1 + α2x2 + · · ·+ αnxn (mod M)

Namely consider the Schnorr’s signature scheme. Let q be a prime dividing p−1, let g ∈ Zp be a q-
th root of unity, and y = g−s mod p be the public key. The signer must generate a pair (k, gk mod p)
and compute the hash e = H(mes, x) of the message mes; it then computes y = k + se mod q; the
signature is the pair (y, e). We see that the signatures (yi, ei) give us an instance of the affine hidden
subset-sum problem above, with h = (yi), e = (−ei) and M = q.

In Appendix G, we recall how to solve the affine hidden subset-sum problem using a variant of
the Nguyen-Stern algorithm (in exponential time), and then using our multivariate algorithm (in
polynomial time).

7 Implementation results

We provide in Table 4 the result of practical experiments with our new algorithm; we provide the
source code in https://pastebin.com/ZFk1qjfP, based on the L2 implementation from [fpl16].
We see that for the first step, the most time consuming part is the first application of LLL to the
(2n)× (2n) submatrix of L0; this first step produces the first n orthogonal vectors. The subsequent
size-reduction (SR) produces the remaining m − n ' n2/2 orthogonal vectors, and is much faster;
for these size-reductions, we apply the technique described in Section 5, with the improvement
described in Appendix F, with parameter k = 4. Finally, the running time of the second LLL to
compute the orthogonal of L⊥x (as described in Appendix B) has running time comparable to the
first LLL. As explained previously we use the modulus bitsize logM ' 2ιn2+n·log n with ι = 0.035.

In the second step, we receive as input from Step 1 an LLL-reduced basis of the lattice L̄x. As
described in Algorithm 3 (Step 2), one must first generate a big matrix E of dimension roughly
n2/2 × n2/2, on which we compute the kernel K = ker E; as explained in Section 4.2, this can be
done modulo 3. As illustrated in Table 4, computing the kernel is the most time consuming part
of Step 2. The computation of the eigenspaces (also modulo 3) to recover the original vectors xi is
faster.

Step 1 Step 2

n m logM LLL L0 SR LLL L⊥x Kernel mod 3 Eigenspaces Total

70 2590 772 3 s 3 s 1 s 8 s 7 s 24 s

90 4230 1151 10 s 8 s 5 s 23 s 17 s 66 s

110 6270 1592 32 s 18 s 11 s 52 s 37 s 153 s

130 8710 2095 87 s 40 s 26 s 112 s 71 s 6 min

150 11550 2659 3 min 70 s 48 s 3 min 122 s 12 min

170 14790 3282 7 min 125 s 81 s 5 min 3 min 20 min

190 18430 3965 23 min 3 min 3 min 9 min 5 min 46 min

220 24640 5099 54 min 7 min 34 min 18 min 8 min 124 min

250 31750 6366 119 min 12 min 65 min 30 min 15 min 245 min

Table 4. Running time of our new algorithm, for various values of n, under a 3,2 GHz Intel Core i5 processor. We
provide the source code and the complete timings in https://pastebin.com/ZFk1qjfP.

Comparison with Nguyen-Stern. We compare the two algorithms in Table 5. We see that our
polynomial time algorithm enables to break the Boyko et al. generator for values of n that are
beyond reach for the original Nguyen-Stern attack. Namely our algorithm has heuristic complexity
O(n9), while the Nguyen-Stern algorithm has heuristic complexity 2Ω(n/ logn). However, we need
more samples from the generator, namely m ' n2/2 samples instead of m = 2n.
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n 90 110 130 150 170 190 220 250

Nguyen-Stern attack [NS99]
m 180 220 260 300 340 − − −

time 18 s 50 s 127 s 8 min 447 min

Our attack
m 4230 6270 8710 11550 14790 18430 24640 31750

time 66 s 153 s 6 min 12 min 20 min 46 min 124 min 245 min

Table 5. Timing comparison between the Nguyen-Stern algorithm and our algorithm, for various values of n, where
m is the number of samples from the generator.

Reducing the number of samples. In Appendix H we show how to slightly reduce the number
of samples m required for our attack, with two different methods; in both cases the attack remains
heuristically polynomial time under the condition m = n2/2−O(n log n). We provide the results of
practical experiments in Table 6, showing that in practice the running time grows relatively quickly
for only a moderate decrease in the number of samples m.

Method 1 Method 2

n m Eigenspaces Total Eigenspaces Total

190 17 670 13 min 43 min 2 min 39 min

190 17 480 18 min 57 min 4 min 55 min

190 17 290 29 min 71 min 5 min 50 min

190 17 100 68 min 99 min 8 min 54 min

190 16 910 182 min 217 min 15 min 66 min

190 16 720 − − 32 min 80 min

190 16 530 − − 72 min 116 min

Table 6. Running time of our new algorithm for n = 190, for smaller values of m, for the two methods described in
Appendix H.
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A Introduction to lattices

In this section we recall basics about lattices, following [Cas97], [Mar13] and [NV09]. More precisely,
after recalling the generic notion of basis and some related facts, we introduce integer lattices, the
concepts of orthogonal lattice and completion, and useful properties. Then we recall the notions of
minima and LLL reduced basis with the main bounds.

A.1 Lattices and bases

Definition 3. Let b1, . . . ,bd ∈ Rm be linearly independent vectors. The lattice generated by the
basis b1, . . . ,bd is the set

L(b1, . . . ,bd) =

{
d∑
i=1

aibi | a1, . . . , ad ∈ Z

}
.

We say that the matrix B is a base matrix for the lattice generated by its rows b1, . . . ,bd and
in that case we have

L(B) := L(b1, . . . ,bd) =
{

a ·B | a ∈ Zd
}
.

We say that two bases B and B′ are equivalent if they generate the same lattice L(B) = L(B′).

Lemma 6. Two basis b1, . . . ,bd and b′1, . . . ,b
′
d are equivalent if and only if there exists an uni-

modular matrix U ∈ GL(Z, d) such that UB = B′.

Given any basis B we can consider its Gram-determinant d(B) =
√

det(BBᵀ). The previous
Lemma implies that this number is invariant under base change, i.e. for any two basis B,B′ we have
d(B) = d(B′).
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Definition 4. The determinant of a lattice L is the Gram-determinant of any of its basis B, namely
det(L) = d(B).

Let b1, . . . ,bd be an ordered basis of a lattice L and b∗1, . . . ,b
∗
d its Gram-Schmidt orthogo-

nalization. Letting Q be such that B = QB∗, this transformation is orthogonal i.e. QQᵀ = Id.
Thus

d(B) =
√

det((QB∗)(QB∗)ᵀ) =
√

det(Q) det(B∗(B∗)ᵀ) det(Qᵀ) = d(B∗)

where ‖ ‖ is the Euclidean norm. Since the b∗i are orthogonal, det(L) = d(B∗) =
∏d
i=1 ‖b∗i ‖. Since

‖b∗i ‖ ≤ ‖bi‖, this implies Hadamard’s inequality:

det(L) ≤
d∏
i=1

‖bi‖.

The dimension or rank of lattice dim(L) is the dimension as vector space of EL := SpanR(L),
namely the cardinality of its bases. We say that a lattice is full rank if it has maximal dimension.
We say thatM⊆ L is a sublattice of a lattice L if it is a lattice contained in L, further we say that
L is a superlattice ofM. A sublattice is a subgroup, if dim(L) = dim(M) the index [L : M] is finite
and [L : M] = det(M)/ det(L); in this case we say that M is a full rank sublattice. Observe that it
must be that det(L) ≤ det(M).

If L(M) ⊆ L(B) is a sublattice, there exists a matrix Q with integers coefficients such that
QB = M. Indeed the rows of Q are the coordinates of the given basis of L(M) with respect to B,
since every point of the sublattice is also a point of L(B). If L(M) is a full rank sublattice, Q must
be invertible and Q−1 = 1

det(Q)Q̂ with Q̂ ∈ M(Z) the adjunct of Q and det(Q) ∈ Z. This implies

that det(Q) ·B = Q̂M, so

det(Q) · L(B) ⊆ L(M) ⊆ L(B) (16)

where we denote by λ · L the lattice of λ · v for v ∈ L.

In the case of sublattices we can have a basis of special shape.

Theorem 4 (Theorem I.B[Cas97]). Let L ⊆ Rm be a lattice of dimension d and m1, . . . ,md ∈ L
be linearly independent vectors. Then there exists a d×d lower triangular integral matrix V = (vi,j)
and b1, . . . ,bd a basis of L such that mi =

∑i
j=1 vi,jbj.

Corollary 1. Let L ⊆ Rm be a lattice of dimension d and M a sublattice of dimension r. A basis
m1, . . . ,mr of M can be completed to a basis m1, . . . ,md of L if and only if M is torsion-free, i.e.
for any c ∈ L such that

c = u1m1 + · · ·+ urmr

the real coefficients u1, . . . , ur must be integral.

Proof. The condition it is clearly necessary. To prove that it is sufficient, consider some vectors
nr+1, . . . ,nd ∈ L such that the lattice M + L(nr+1, . . . ,nd) is full rank in L. By Theorem 4 there
exists b1, . . . ,bd a basis of L such that mi =

∑i
j=1 vi,jbj . We can also suppose that vi,i > 0 and

0 ≤ vi,j < vi,i, since for the first condition it is enough to multiply both bi and mi by -1 and for
the second it is enough to inter-reduce the basis.

Now, b1, . . . ,br satisfy a relation such that bi =
∑r

j=1 ui,jmj with ui,j ∈ R. Then by hypothesis
we must have bi =

∑r
j=1 ui,jmj with ui,j ∈ Z. Since ui,i = 1/vi,i the diagonal elements must be

one. This also means that vi,j = 0 for i 6= j because of the special form of the matrix V. Thus,
bi = mi for i ≤ r. Then mi = bi for i > r complete the m1, . . . ,mr to a basis of L. ut
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Integer lattices. Of particular interest are the sublattices of Zm, which are called integer lattice.
In this paper we deal only with integer lattices and, for the sake of simplicity, in the following by
lattice we always mean integer lattice.

Lattices can be considered as a discrete analogous of vector spaces. So, one can consider the
structure given by the standard scalar product 〈 , 〉 of Rm. Thus, it is natural to define the notion
of duality:

Definition 5. Let L ⊆ Zm be a lattice. Its dual lattice is

L∨ := {v ∈ Zm | ∀b ∈ L, 〈v,b〉 ∈ Z}

Observe that Zm = (Zm)∨. Consider now b1, . . . ,bd a basis of a lattice L. Its dual basis v1, . . . ,vd
with respect to the standard product must be a basis of L∨, indeed 〈vj ,bi〉 = 1 if i = j and 0
otherwise, therefore BVᵀ = Id. For uniqueness V = (BᵀB)−1B. This also implies that

det(L) · det(L∨) = 1.

The dual lattice contains a set of elements in Zm which are orthogonal to all the lattice points,
more precisely:

Definition 6. Let L ⊆ Zm be a lattice. Its orthogonal lattice is

L⊥ := {v ∈ Zm | ∀b ∈ L, 〈v,b〉 = 0} = E⊥L ∩ Zm

Note that (16) implies that the orthogonal of a lattice L is the same as the orthogonal of a full rank
sublattice M⊂ L.

We observed that it is not always true that a basis of sublattice can be completed to a basis of
a lattice. However, using the orthogonal we can always find a superlattice of the same dimension
which has such property. The idea is that via orthogonalization one “removes” the torsion from the
lattice. More precisely, we define the completion of a lattice L the lattice L̄ = EL ∩ Zm = (L⊥)⊥.
Clearly, L is a full rank sublattice of L̄. We say that a lattice is complete if it coincides with its
completion, i.e. L̄ = L.

From Corollary 1, we have that if E is a subspace of Rm of dimension r, then a basis b1, . . . ,br
of the lattice E ∩ Zm can be extended to a basis b1, . . . ,bm of Zm. This means that a basis of L̄
can always be extended to a basis of Zm. Using this fact we can prove the following:

Lemma 7. Let L ⊆ Zm be a lattice of dimension r. Then Zm = L̄ ⊕ (L⊥)∨.

Proof. Let us consider a basis b1, . . . ,br of L̄. We can extend it to a basis b1, . . . ,bm of Zm. Since
Zm = (Zm)∨, its dual basis v1, . . . ,vm is another basis of Zm, such that BVᵀ = Im. In particular,
vr+1, . . . ,vm is a basis of L⊥, and br+1, . . . ,bm is a basis of (L⊥)∨. ut

The dimension of a lattice and its dual coincide. Thus we obtain the following fact:

Corollary 2. Let L ⊆ Zm be a lattice. Then dimL+ dimL⊥ = m.

Another corollary of Lemma 7:

Corollary 3. Let L ⊆ Zm be a complete lattice. Then det(L⊥) = det(L).

Proof. We proved that Zm = L̄ ⊕ (L⊥)∨. Then det(L̄) · det(L⊥)∨ = 1 and therefore:

det(L̄) · 1

det(L⊥)
= 1.

ut
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A.2 Lattice minima, Minkowski’s theorem

In every lattice L we can find a non-zero vector v of minimal norm. The first minimum of L is
λ1(L) = ‖v‖. Lattice points whose norm is the first minimum are called shortest vectors.

The Hermite constant γd, in dimension d, is the supremum of λ1(L)2/ det(L)
2
d over all the

lattices of rank d. Using Minkowski convex body theorem, one can prove that for each d ∈ N+

0 ≤ γd ≤ d/4 + 1 .

More generally, one can define:

Definition 7. Let L be a lattice. For each 1 ≤ i ≤ dimL, the i-th minimum λi(L) is the minimum
of maxj {‖vj‖} among all the sets {vj}j≤i of i linearly independent lattice points.

Theorem 5 (Minkowski’s Second Theorem). Let L be a lattice of dimension d. For each
1 ≤ i ≤ d  i∏

j=1

λi(L)

 1
i

≤ √γd det(L)
1
d .

Short vectors of lattices are interesting for many applications. For a “random lattice” on can
predict the first minimum by the Gaussian Heuristic:

λ1(L)

det(L)
1
d

≈
√

d

2πe
.

A.3 LLL-reduced bases

Let b1, . . . ,bd an ordered basis of a lattice L of dimension d. Let b∗1, . . . ,b
∗
d be the Gram-Schmidt

orthogonalization, we define for 1 ≤ j < i ≤ d

µi,j =
〈bi,b∗j 〉
〈b∗j ,b∗j 〉

.

Definition 8 (LLL reduced basis). Given 1/4 < δ < 1, the basis b1, . . . ,bd is LLL reduced
(with factor δ) if the following properties hold:

1. Size reduced: |µi,j | ≤ 1/2 for 1 ≤ j < i ≤ d.

2. Lovász condition: ‖b∗j‖2 ≥ (δ − µ2j,j−1)‖b∗j−1‖2 for each 2 ≤ j ≤ d.

Traditionally one takes δ = 3/4 and LLL-reduced means reduced with respect to such factor; in
practice one takes δ = 0.99. An LLL-reduced basis has many good properties.

Theorem 6. Let b1, . . . ,bd a LLL reduced basis of the lattice L. Then

1. ‖b1‖ ≤ 2
d−1
2 λ1(L);

2. ‖bj‖ ≤ 2
d−1
2 λi(L) for each 1 ≤ j ≤ i ≤ d;

3. 2
1−i
2 λi(L) ≤ ‖bi‖ ≤ 2

d−1
2 λi(L);

4. det(L) =
∏d
j=1 ‖b∗j‖ ≤

∏d
j=1 ‖bj‖ ≤ 2

d(d−1)
4 det(L).

The LLL algorithm [LLL82] outputs an LLL-reduced basis of a rank-d lattice in Zm in time
O(d5m log3B), from a basis of vectors of norm less than B. This was further improved by Nguyen
and Stehlé in [NS09] with a variant based on proven floating point arithmetic, called L2, with
complexity O(d4m(d+ logB) logB) without fast arithmetic.
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B Computing the orthogonal lattice

To compute the orthogonal L⊥ of a lattice L ⊆ Zm of rank r one can apply the algorithm by Nguyen
and Stern [NS97] based on LLL, which in practice is faster than standard kernel computation.
Moreover, the output is an LLL-reduced basis of L⊥.

Letting U be a r ×m basis matrix of row vectors of L, the main idea is to consider the lattice

Lc(U) =
[
c ·Uᵀ | Im

]
where c is a positive integer constant. Lc(U) is a rank-m lattice of vectors in Zr+m. One first
applies LLL to Lc(U) to obtain a basis b1, . . . ,bm ∈ Zr+m. Then one recovers a basis of L⊥
by projecting on the last m coordinates of the first m − r vectors, i.e. π(b1), . . . , π(bm−r) where
π(v1, . . . , vm+r) = (vr+1, . . . , vm+r) ∈ Zm.

Lemma 8 ([CSV18]). Let U be basis of the lattice L ⊆ Zm of rank r. If b1, . . . ,bm ∈ Zr+m is an
LLL-reduced basis of Lc(U) with

c > 2
m−1

2 · λm−r(L⊥), (17)

then π(b1), . . . , π(bm−r) is an LLL-reduced basis of L⊥.

Heuristic analysis. For a “random lattice” L we expect the minima of L⊥ to be balanced, and
therefore λm−r

(
L⊥
)

to be roughly equal to λ1
(
L⊥
)
. This means that can we use the approximate

bound:
λm−r

(
L⊥
)
≤ √γm−r det(L⊥)

1
m−r

From Hadamard inequality, we obtain:

λm−r

(
L⊥
)
≤ √γm−r det(L⊥)

1
m−r ≤ √γm−r det(L)

1
m−r ≤

√
m · ‖U‖

r
m−r

where we denote by ‖U‖ the maximum Euclidean norm of the row vectors of U. This means that
for a “random lattice” it is sufficient to consider

c > 2
m
2 ·
√
m · ‖U‖

r
m−r . (18)

For a rank-d lattice in Zn, the complexity of computing an LLL-reduced basis with the L2

algorithm is O(d4n(d+ logB) logB) without fast integer arithmetic, for vectors of Euclidean norm
less than B. With d = m, n = r +m and B ≤ c‖U‖ ≤ 2m‖U‖m/(m−r), the heuristic complexity of
computing the orthogonal lattice of a rank-r lattice L(U) ∈ Zm is therefore:

O

(
m5

(
m+

m

m− r
log ‖U‖

)2)

C Orthogonal lattices mod M : proof of Lemma 3

We prove a lower bound in M1/n that applies for a significant fraction of the vectors α. More
precisely, we prove using a counting argument that for a prime M , with probability at least 1/2
over the choice of α, we have λ1(Λ

⊥
M (α)) ≥M1/n/4.

Given a non-zero vector s of dimension n with components strictly smaller than M , for prime
M , there is a fraction 1/M of vectors α ∈ ZnM , such that 〈s,α〉 = 0 (mod M). Therefore each
non-zero vector of norm B < M can be a shortest vector of Λ⊥M (α) for a fraction at most 1/M
of vectors α. Consider now all vectors s with ‖s‖ < B. There are at most (2B)n such vectors, so
they can be shortest vectors of a fraction at most (2B)n/M of vectors α. By taking B such that
(2B)n/M < 1/2, which gives B < (M/2)1/n/2, we get that for a fraction at least 1/2 of the choices
of α, we have

λ1

(
Λ⊥M (α)

)
≥ (M/2)1/n/2 ≥M1/n/4
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D Our greedy algorithm

Below we describe a greedy algorithm to recover the binary vectors generating the lattice Lx ⊂ Zm
given an LLL-reduced basis c1, . . . , cn of Lx. We denote by Check the function taking as input a
vector v, and returning v or −v if v ∈ {0, 1}m or v ∈ {0,−1}m respectively; otherwise it returns
None.

The algorithm first recovers the vectors ci = ±xj from the basis, and it stores them in a list
L. Then it looks for new binary vectors of the form cj ± v for v ∈ L, updating the list L. It stops
when no more vectors v have been added to the list L.

Algorithm 6 Recovering the xi’s
Input: c1, . . . , cn, n,m
Output: x1, . . . ,xn

1: L← [ ]
2: for j ← 1 to n do
3: Append Check(cj) to L
4: end for
5: for all v ∈ L do
6: for j ← 1 to n do
7: c← Check(cj − v)
8: if c and c 6∈ L then
9: Append c to L

10: end if
11: c← Check(cj + v)
12: if c and c 6∈ L then
13: Append c to L
14: end if
15: end for
16: end for
17: return L

E Proof of Lemma 5

We let L ⊂ Z2n be the lattice generated by the LLL-reduced basis of vectors a1, . . . ,a2n. By
assumption the lattice L contains n linearly independent vectors ci with ‖ci‖ ≤ B. Therefore we
must have for all 1 ≤ i ≤ n:

‖ai‖ ≤ 2n · λn(L) ≤ 2nB ≤ γB

This implies ‖a′i‖ = ‖ai‖ ≤ γB which gives ‖a′i‖
√
mn ≤ λ1

(
Λ⊥M (α)

)
for all 1 ≤ i ≤ n; this

corresponds to Condition 4 in Lemma 2. Therefore we must have a′i ∈ L⊥x for all 1 ≤ i ≤ n.

For 2n + 1 ≤ i ≤ m, we consider the vector ti = [−hih−11 [M ] 0 · · · 0] ∈ Z2n, and the vector
t′i = [ti 0 · · · 1 · · · 0] ∈ Zm where the 1 component is at index i. We have t′i ∈ L0. Since by assumption
there exists a vector c′i = [ ci 0 · · · 1 · · · 0 ] ∈ L⊥x ⊂ L0, we must have t′i−c′i = [ti−ci 0 · · · 0] ∈ L0,
and therefore u := ti − ci ∈ L.

Let v ∈ L be the vector obtained from Babai’s rounding at Step 6, when given the vector ti as
input. Since the lattice basis a1, . . . ,a2n ∈ Z2n is LLL-reduced, from Theorem 3 we must have:

‖ti − v‖ ≤ γ‖ti − u‖ = γ‖ci‖ ≤ γB

where γ = 1 + 4n(9/2)n. Therefore letting a′i = [(ti − v) 0 1 0] ∈ Zm, we must have a′i ∈ L0 and
moreover ‖a′i‖ ≤ ‖ti − v‖ + 1 ≤ γB + 1. As previously this implies ‖a′i‖

√
mn ≤ λ1

(
Λ⊥M (α)

)
and

therefore we must have a′i ∈ L⊥x for all 2n+ 1 ≤ i ≤ m.
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F Optimization of the size-reductions

For the size-reductions, we describe a slightly faster algorithm, with complexity O(n20/3) instead of
O(n7). The idea is to first apply LLL to the (n/k) × (n/k) upper-left submatrix of the lattice L0.
Then the vectors are first size-reduced with respect to this small submatrix. Then LLL is applied
to the (2n) × (2n) upper-left submatrix as previously, and the vectors are then size-reduced with
respect to this larger submatrix.

The advantage is that for the first size-reduction, we are now working with a matrix of dimension
n/k instead of 2n. And in the second size-reduction, when working with the full 2n × 2n matrix,
we start with vectors with much smaller components, of size roughly (k/n) logM instead of logM .
Below we show that taking k = n1/3 is optimal.

For the first size-reduction, as previously one must first invert once a (n/k)× (n/k) matrix with
logM bits of precision, which takes O((n/k)3 log2M) time. The complexity of size-reducing each
vector is then O((n/k) log2M). Then the vectors have components of size roughly (k/n) logM bits.
Therefore for the second size-reduction one must first invert a 2n×2n matrix with (k/n) logM bits
of precision, which takes O(n3((k/n) logM)2) = O(nk2 log2M). For each vector the second size
reduction has complexity O(n2((k/n) logM)2) = O(k2 log2M).

We see that for m = O(n2) vectors to size-reduce, the cost of the two matrix inversions is
dominated by the cost of the size reductions, which take O(n2(n/k) log2M) and O(n2k2 log2M)
respectively. Therefore the optimum is to take n/k = k2, which gives k = n1/3. The time complexity
of the size-reduction step for the m = O(n2) vectors is then O(n20/3) instead of O(n7).

Note that in practice it is more efficient to size-reduce multiple vectors at a time, in order to
have a single matrix-matrix multiplication, rather than a sequence of vector-matrix multiplications.

G The Affine Hidden Subset Sum Problem

Definition 9 (Affine Hidden Subset Sum Problem). Let M be an integer, and let s, α1, . . . , αn
be random integers in ZM . Let x1, . . . ,xn ∈ Zm be random vectors with components in {0, 1} and
e = (e1, . . . , em) be a vector with random components in [0, 2t[ for t ∈ N. Let h = (h1, . . . , hm) ∈ Zm
satisfying:

h + se = α1x1 + α2x2 + · · ·+ αnxn (mod M) (19)

Given M , h and e, recover s, the vector α = (α1, . . . , αn) and the vectors xi’s, up to a permutation
of the αi’s and xi’s.

In the following, we first recall how to solve the affine hidden subset-sum problem using a
variant of the Nguyen-Stern algorithm. More precisely, the first step of the Nguyen-Stern algorithm
is modified as follows [NS99]. We denote by Lx,e the lattice generated by e and the vectors xi, and
by Lx the lattice generated by the vectors xi.

Algorithm 7 Orthogonal lattice attack (affine variant) [NS99]
Input: h, e,M, n,m
Output: A basis of L̄x

1: Compute an LLL-reduced basis u1, . . . ,um of L′0 := Λ⊥M (h, e)
2: Extract a generating set of u1, . . . ,um−n−1 of L⊥x,e
3: Compute an LLL-reduced basis (c1, . . . , cn+1) of L̄x,e = (L⊥x,e)⊥

4: return (c1, . . . , cn)

The two lemmas below show that the algorithm above recovers a basis of L̄x in polynomial
time, under certain conditions on the lattice Lx,e. Once a lattice basis of L̄x has been recovered,
one can apply as previously the second step of the Nguyen-Stern algorithm to recover the xi’s in
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exponential time, or the second step of our algorithm in heuristic polynomial-time. From the xi’s
one can eventually recover s and the αi’s by solving a linear system.

Lemma 9. Assume that the lattice Lx,e has rank n+ 1. Algorithm 7 computes at Step 3 a basis of
the lattice L̄x,e in polynomial time under the condition m > n and

√
mn · 2

m
2 · λm−n−1

(
L⊥x,e

)
< min

(
λ1

(
Λ⊥M (α)

)
,M2−t

)
(20)

Proof. As previously, the main observation is that if 〈u,h〉 ≡ 0 (mod M) and 〈u, e〉 ≡ 0 (mod M),
then we obtain:

〈u,h〉+ s〈u, e〉 ≡ α1〈u,x1〉+ · · ·+ αn〈u,xn〉 ≡ 0 (mod M) (21)

and therefore the vector pu = (〈u,x1〉, . . . , 〈u,xn〉) is orthogonal to the vector α = (α1, . . . , αn)
modulo M . As previously, when the vector

pu = (〈u,x1〉, . . . , 〈u,xn〉)

is shorter than the shortest vector orthogonal to α modulo M we must have pu = 0, and therefore
u ∈ L⊥x . Since ‖pu‖ ≤

√
mn‖u‖, given any u ∈ Λ⊥M (h, e) we must have u ∈ L⊥x under the condition:

√
mn‖u‖ < λ1

(
Λ⊥M (α)

)
Moreover, given u ∈ L′0, we have 〈u, e〉 = 0 (mod M). If u and e are short enough, the equality

will hold over Z. More precisely, if ‖u‖ · ‖e‖ < M , we must have 〈u, e〉 = 0. This means that if
‖u‖
√
m2t < M we must have 〈u, e〉 = 0.

The lattice L′0 = Λ⊥M (h, e) is full rank of dimension m since it contains MZm. Moreover given a
vector u ∈ L⊥x,e, from (21) we must have 〈u,h〉 = 0 (mod M); therefore L⊥x,e ⊆ L′0. Now, consider
u1, . . . ,um an LLL-reduced basis of L′0. For each j ≤ m− n− 1 we have

‖uj‖ ≤ 2
m
2 · λm−n−1(L′0) ≤ 2

m
2 · λm−n−1

(
L⊥x,e

)
(22)

since L⊥x,e is a sublattice of L′0 of dimension m− n− 1. This implies that when

√
mn · 2

m
2 · λm−n−1

(
L⊥x,e

)
< λ1

(
Λ⊥M (α)

)
the vectors u1, . . . ,um−n−1 must belong to L⊥x . Additionally, when:

√
m · 2m/2+t · λm−n−1

(
L⊥x,e

)
< M

the vectors u1, . . . ,um−n−1 are also orthogonal to e, so they must belong to L⊥x,e.

This means that 〈u1, . . . ,um−n−1〉 is a full rank sublattice of L⊥x,e, and therefore we obtain

〈u1, . . . ,um−n−1〉⊥ = L̄x,e. Finally, Algorithm 7 is polynomial-time, because both the LLL reduction
step of L′0 and the LLL-based orthogonal computation of L⊥x,e are polynomial-time. ut

Lemma 10. Assume that Lx,e is of rank n+ 1. Let (c1, . . . , cn+1) be an LLL-reduced basis of L̄x,e.
Then (c1, . . . , cn) is an LLL-reduced basis of L̄x, under the condition:

2n/2 ·
√
m ·mn/2 < det L̄x,e
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Proof. Since the n vectors xi are linearly independent and ‖xi‖ ≤
√
m, we have λn(L̄x,e) ≤

λn(Lx,e) ≤
√
m. Therefore for all 1 ≤ i ≤ n we have:

‖ci‖ ≤ 2n/2λn(L̄x,e) ≤ 2n/2
√
m

We claim that for all 1 ≤ i ≤ n, we must have ci ∈ L̄x. Otherwise, the vectors x1, . . . ,xn, ci generate
a full-rank sublattice L′ of L̄x,e; then from Hadamard’s inequality:

det L̄x,e ≤ detL′ ≤ ‖ci‖ ·
n∏
j=1

‖xj‖ ≤ 2n/2
√
m ·mn/2

which contradicts the hypothesis of the lemma. Therefore (c1, . . . , cn) is an LLL-reduced basis of
L̄x. ut

H Reducing the number of samples m

We describe a variant of the multivariate attack from Section 4.2 for smaller values of m. We

construct the same matrix R ∈ Z
n2+n

2
×m and E as in Section 4.2:

E =

[
E

−C

]
∈ Z

n2+3n
2
×m;

Since ker E contains the set of vectors

W = {((wiwk)1≤i≤k≤n,w) ∈ Z
n2+3n

2 | w ∈ {w1, . . . ,wn}}

and by assumption the vectors wi’s are linearly independent, we must have dim ker E ≥ n and
therefore rank E ≤ (n2 + n)/2. Therefore we expect rank E = min((n2 + n)/2,m) and finally we
expect:

dim ker E = max(n, (n2 + 3n)/2−m)

To recover the vectors in W we proceed as follows. The last n components in the vectors in W
correspond to the linear part in the quadratic equations of (12). Let ` = dim ker E with ` ≥ n. We

compute the base matrix K ∈ Q`×n2+3n
2 of ker E, with:

K =

[
M

In
0

]

where M ∈ Q`×n2+n
2 . A vector v = (v1, . . . , vn) ∈ Zn is then a solution of (14) if and only if there

exists vn+1, . . . , v` ∈ Q such that (v1, . . . , vn, vn+1, . . . , v`) ·K ∈ W. This gives:

(v1, . . . , vn, vn+1, . . . , v`) ·M = (vivk)1≤i≤k≤n (23)

First method. By working modulo 3 instead of over Q, we can do exhaustive search on the first t
coordinates (v1, . . . , vt) of v, with complexity 3t. In that case, using the first n+ (n−1) + . . .+ (n−
t+ 1) = t · n− t(t− 1)/2 columns of M, we obtain a linear system with t · n− t(t− 1)/2 equations
and ` unknowns. Therefore, for small t we expect to have a unique solution for t ' `/n. The
complexity is then 3`/n · poly(n). The complexity remains therefore polynomial if ` = O(n log n).
With ` = (n2 + 3n)/2−m, the complexity is therefore polynomial under the heuristic condition:

m = n2/2−O(n log n)
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Second method. A solution v = (v1, . . . , vn) ∈ Zn of (14) is such that v ·C ∈ {0, 1}m. By guessing
the first coordinate of v ·C we obtain an affine equation on v = (v1, . . . , vn), which gives n linearly
independent quadratic equations on (v1, . . . , vn). These equations could be added to R, but it is
more convenient to write linear equations on the extended vector ṽ = (v1, . . . , vn, vn+1, . . . , v`),
according to (23). More generally, by guessing the t first binary coordinates of v · C, we obtain
t · n equations on the ` unknown coordinates of ṽ. Therefore, as previously, we expect to obtain a
unique solution for t ' `/n, with complexity 2`/n ·poly(n). As previously, the complexity is therefore
polynomial under the heuristic condition m = n2/2 − O(n log n). However we expect the second
method to more more efficient since we are guessing binary values instead of ternary.
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