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Abstract. The advances in machine learning have revealed its great
potential for emerging mobile applications such as face recognition and
voice assistant. Models trained via a Neural Network (NN) can offer ac-
curate and efficient inference services for mobile users. Unfortunately, the
current deployment of such service encounters privacy concerns. Directly
offloading the model to the mobile device violates model privacy of the
model owner, while feeding user input to the service compromises user
privacy. To address this issue, we propose, tailor, and evaluate Leia, a
lightweight cryptographic NN inference system at the edge. Unlike prior
cryptographic NN inference systems, Leia is designed with two mobile-
friendly perspectives. First, Leia leverages the paradigm of edge com-
puting wherein the inference procedure keeps the model closer to the
mobile user to foster low latency service. Specifically, Leia’s architecture
consists of two non-colluding edge services to obliviously perform NN
inference on the encoded user data and model. Second, Leia’s realization
makes the judicious use of potentially constrained computational and
communication resources in edge devices. In particular, Leia adapts the
Binarized Neural Network (BNN), a trending flavor of NN model with
low memory footprint and computational cost, and purely chooses the
lightweight secret sharing techniques to develop secure blocks of BNN.
Empirical validation executed on Raspberry Pi confirms the practical-
ity of Leia, showing that Leia can produce a prediction result with 97%
accuracy by 4 seconds in the edge environment.

1 Introduction

Recent flourishment of Machine Learning has promoted the Neural Network
(NN) powered mobile applications such as face detection cameras and speech
recognition assistants. A NN prediction service is typically deployed through
two scenarios. One scenario is the on-device NN prediction service, where the
application downloads the pre-trained model from a company who owns the
model, and performs an inference task over user’s data on mobile device [5].
Another scenario relies on the cloud service provider (e.g., Google Cloud AI [3]),
where user data and model are delivered to cloud who runs the NN inference task
and sends back the prediction result to the mobile device [6]. Unfortunately, both
scenarios are troublesome due to the increasingly raised privacy issues. User’s
data contains sensitive information about their daily activities. Uploading such
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data to cloud in plaintext can put individual’s privacy in danger [9, 19]. On the
other hand, from the aspect of model owners, their models are valuable and
often trained on proprietary data [8, 26, 30]. The unauthorized exposure of the
proprietary model and underlying confidential data inflects severe commercial
damages.

To alleviate the privacy issues, one approach seems plausible is to delegate
the inference tasks with encrypted model and user data to a centralized cloud
server. However, this approach relies on heavy cryptographic techniques like
(fully) homomorphic encryption (HE). An efficient alternative tends to use secure
multi-party computation (MPC) techniques with specialized designs that can
execute NN inference over encrypted user input data and/or encrypted models.
For example, Delphi [8], MiniONN [30] proceed the inference tasks between
the mobile device and the model owner, while continuous interaction is involved
between them during secure computation. Namely, both parties have to be online
and connected throughout the entire inference process. It is noteworthy that the
above rigid operational confinement might not be always feasible in cellular
networks. Other systems like XONN [35], Quotient [10] employ constant-round
secure 2-party computation protocols that result in less engagement of mobile
device and model owner. These systems still consume large bandwidth costs
due to the inherent drawbacks of the MPC techniques relied on, i.e., Garbled
Circuits. Later in Section 6, we demonstrate the large bandwidth saving by our
design compared to GC based realization.

Our Contributions: In this paper, we propose and enable Leia, a cryptographic
NN inference system executing at the edge. Leia takes the edge based architec-
ture as a starting point, harnessing the novelty from system, cryptographic and
machine learning domains. The combination endows Leia privacy assurance and
seamless embracement of NN powered mobile applications.

Our first insight is to leverage edge computing, wherein the processing keeps
the model closer to the mobile user so as to foster low latency service of NN
inference [1, 45]. However, devising edge based architecture is non-trivial for
Leia’s scenario. Both models and user’s data should fully be protected against
edge nodes during inference. Moreover, relaxing the constraint of the model
provider and mobile device being online is expedient because of the dynamic
network effects in cellular networks. To this end, we resort to the edge nodes as
two non-colluding computational services to fulfill the above privacy objective
and operational requirement simultaneously. The model provider encodes the
model and sends the encoded one to edge nodes only once. After that, the user
mobile device can submit the encoded input and obtain the encoded inference
result. Within the process, edge nodes obliviously perform inference without
further interacting with either the model provider or user mobile device.

The edge based paradigm entails judicious usage of computational and com-
munication resources. We thus choose the relatively lightweight secret sharing
techniques to offer Leia security guarantee. Yet, merely transforming the NN
inference procedure into cryptographic operations does not necessarily achieve
satisfied efficiency in communication and computation for mobile and edge de-
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vices. Instead, our second insight is the adoption of the Binarized Neural Network
(BNN), a special flavor of NN model with weights and activations are all con-
fined to ±1. Because the small BNN model can drastically reduce the memory
demand, and the beneath operations over binary values are more compatible
with cryptographic primitives, it thus becomes our natural choice. Thereby, we
subtly build Leia from ground up with secure layer functions, including the se-
cure linear layers (secure convolutional layer SCONV and secure fully connected
layer SFC), the secure batch normalization function (SecBN), the secure binary
activation function (SecBA), and the secure max pooling layer (SMP). They are
highly customized for the BNN and securely realized based on secret sharing
as the building blocks of Leia. We implement and deploy Leia to Raspberry Pi,
making Leia produce a 97% accurate prediction result by 4 seconds in the edge
environment.
Organization: The rest of the paper is organized as follows. Section 2 inves-
tigates related work. Section 3 introduces the preliminaries used in this paper.
Section 4 overviews the system architecture and threat model. Section 5 expati-
ates the protocol designs. Empirical evaluation is given in Section 6.

2 Related Works

Privacy-Preserving Neural Network Training and Inference: CryptoNet [21]
adapts the leveled HE to perform privacy-preserving NN inference in an out-
sourced environment. Despite some optimizations have been employed, Cryp-
toNet still suffers from intensive computational overheads due to heavy weight
HE. Some other systems [8,26,30] consider a different setting, in which the client
directly communicates with the model provider for inference, but does not want
to reveal her input. Gazelle [26] devises a 2PC-based secure NN inference frame-
work combining the lattice-based packed additive HE and Yao’s Garbled Circuits
(GC). After that, Delphi [8] and MiniONN [30] are proposed with careful op-
timization and achieve higher efficiency. Difference from our work, the above
systems require interactions between the client and model provider during se-
cure computation. Our work leverages edge computing relaxing both parties
from being actively online throughout the inference.

SecureML [32] proposes privacy-preserving NN training and inference based
on the generic MPC framework. The proposed protocol uses GC to conduct non-
linear activation function. Quotient [10] and XONN [35] rely on GC to design
privacy-preserving NN inference over quantized NN models with weights which
are restricted within {−1,+1, 0} and {−1,+1}, respectively. Such quantization
allows for the conversion from arithmetic operations to Boolean operations, and
thus are more compatible with the protocols realized with GC free-XOR op-
timizations. However, the GC-based protocols introduce prohibitive bandwidth
consumption which can be the bottleneck at the edge. This escalated consump-
tion may also incur considerable charges by cellular network service providers.
Our work subtly builds a privacy-assured collaborative inference protocol from
ground up, harnessing the novelty from both cryptographic and machine learning
literature. Our system originates a design where an all-binarized neural network



4 Liu, X.

inference procedure is securely carried out with customized layer functions under
lightweight MPC primitives, and thus is particularly suitable for the application
deployment for mobile devices. Empirical evidence shown in Section 6 confirms
that, for the equivalent functionalities, Leia’s realizations introduce 30-2500×
less bandwidth costs than the GC-based realizations. Very recently, Helen [43]
proposes a linear model learning protocol in a fully decentralized setting to
thwart the malicious parties.
Secure Multi-Party Computation Framework: Privacy-preserving machine
learning protocols can be carried out via generic MPC techniques, such as Gar-
bled Circuits [41], Secret Sharing [12,22], , and the frameworks mixed with multi-
ple primitives [18,31,33]. Among these, a line falls into devising machine learning
specified MPC frameworks, such as the two-party framework with a trusted party
to generate correlated randomness proposed in Chameleon [36], the three-party
frameworks proposed in ABY3 [31], SecureNN [39], and the four-party frame-
work in Trident [33]. For performance consideration, recent privacy-preserving
machine learning systems opt for specialized and optimized designs instead of
direct adoption of generic MPC frameworks [8, 10,35,43].
Binarized Neural Networks: Binarized neural networks (BNN) [16, 17], i.e.,
neural networks with weights and possible activations restricted to ±1, have been
applied in various domains, such as image classification [28,34], speech recogni-
tion [27]. It is also considered as a line of model quantization, which is a training
network with low precision weights and activations like fixed-point integers [23]
and ternary [24]. Note that normalization techniques [25,37] are widely adopted
in modern neural network training to avoid the activations growing too large to
unstablize the model. Our design employs batch normalization [25] to align with
the realization of BNN [17].

3 Background

3.1 Binarized Neural Networks

Binarized Neural Network [17] (BNN) comprises a sequence of linear and non-
linear layers, where the number of layers L indicates the depth of network.
The BNN inference takes as input a matrix (i.e., X ∈ Rnin×min) or a tensor
(i.e., X ∈ Rc×nin×min) representing the task-specific raw data, and produces a
prediction result based on a trained model (i.e., W ∈ {−1,+1}n×m or W ∈
{−1,+1}c×n×m). The parameters c, nin (and n), min (and m) represent the
number of channel, the width and height of input (and model), respectively. In
BNN, all weights are binarized as {−1,+1}, which makes the model significantly
smaller than the one of an equivalent network with high precision weights [34].
Linear Layers: The linear layers typically can be of two types: the fully con-
nected layers (FC) and the convolutional layers (CONV). Both types can be
formulated as the variances of the vector dot product (VDP(·, ·)) between two
vectors x ∈ Rn and w ∈ Rn as: VDP(x,w) =

∑n
k=1 wk · xk , where wk, xk

indicate the k-th element of vector x,w, respectively.
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Fig. 1. An illustration of the CONV layer.

The FC layer takes as input a matrix X (either representing the input raw
data or the output from previous layer), flattens the matrix into a single vector
x ∈ Rn, applies the weight matrix W ∈ {−1,+1}n×m and bias vector bias ∈
Rm, and outputs a vector z ∈ Rm. For k ∈ [1,m], it repeatedly proceeds the
zk = VDP(x,wk) + biask on the input vector x and each vector wk of the W ,
and the output zk is the k-th element of the resulting vector z. The layer output
z can be submitted to the non-linear operations.

The CONV layer is normally applied for image classification. It takes as input
an image tensor X ∈ Rcin×nin×min , applies the weight (aka filter) tensor W ∈
{−1,+1}co×cin×n×m and bias vector bias ∈ Rco , and outputs a feature map
tensor Z ∈ Rco×no×mo . For each input matrix X ∈ Rnin×min , the CONV layer
repeatedly moves the weight matrix W ∈ {−1,+1}n×m as a sliding window,
from left to right and top-down with given stride, until passing through the
entire image matrix. And inside each sliding window s, it flattens X and W
as vectors x and w, and proceeds zs = VDP(x,w) + biass to obtain zs as one
element in resulting matrix Z ∈ Rno×mo . Fig. 1 provides a concrete illustration
of how the CONV layers can be reformulated as the VDP(·, ·). For simplicity
purpose, it takes as input the toy-value 4×3 input matrix X, 2×2 weight matrix
W , and shows the procedure to calculate each element in resulting matrix Z
based on the VDP operations.
Binary Activation: The non-linear binary activation function (BA) is attached
on each neuron, and can be viewed as a portion of the linear layers. On each neu-
ron, the BA function takes as input the real-valued activation a ∈ R outputted
from previous operation, performs element-wise Sign(·) function, and outputs
the sign bit as the binarized activation a ∈ {−1,+1}.
Batch Normalization: Batch Normalization [25] (BN) is used to rectify the
distribution of each layer’s input so as to speed up the NN training procedure
and regularize the model. The procedure of the BN function during inference
performs as follows: (1) it performs element-wise normalization on each neuron’s
feature a via â = (a− µ)/σ where µ is the running mean and the non-zero σ is
running variance the of training dataset; and (2) it applies the scale parameter
γ ∈ R and the shift parameter β ∈ R to get the output z = γ · â+ β. Note, the
parameters µ, δ, γ, β are highly dependent on the trained data and can be used
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to deduce the data distribution, and they thus have to be carefully protected
during the secure computation.
Max Pooling Layer: Max pooling layer (MP) is normally applied straight
after the CONV layer to downsample the image. It takes the matrices outputted
from the CONV layer, slides a certain window on each matrix, and obtains the
maximum value within the window as an element of the output matrix.

3.2 Cryptographic Primitives

Correlated Oblivious Transfer: Oblivious Transfer (OT) is a fundamental
cryptographic primitive that can obliviously carry out two-party secure com-
putation. Given engaged two parties, a sender P0 holding its input a pair of
binary strings m0,m1 ∈ {0, 1}`, and a receiver P1 holding its input a choice bit
b ∈ {0, 1}, a 1-out-of-2 OT functionality for the `-bit strings allows the receiver
P1 to obtain mb, while ensuring that P0 learns nothing about b, and P1 learns
nothing about m1−b.

Correlated OT (COT) [11] is one particular OT flavor running between two
parties in a similar way with improved practicality. The main difference in a COT
is that, instead of inputting two messages directly, the sender constructs and
inputs a correlation function f∆(·) to link its two input messages m0 and m1 in
a way that m0 is a random value and m1 = f∆(m0). The m0 and mb ∈ {m0,m1}
are the output of COT under f∆(·). Note that the function f∆(·) is a correlation
robust random oracle H : {0, 1}` → {0, 1}` and can be instantiated using a
one-way hash function. We denote the above described COT functionality as
COT (m0, f∆(·); b). The n-times COT` (i.e., n×COT` ) can be run in parallel,
where each COT` is used for transferring the `-bit strings.
Arithmetic Sharing and Multiplication Triple: Arithmetic sharing [12]
produces two Arithmetic shares 〈x〉A0 and 〈x〉A1 of an `-bit secret value x in the
ring Z2` , where the reconstruction is performed via x = 〈x〉A0 + 〈x〉A1 (mod 2`).
A party P0 who wants to share x can generate the randomness r ∈R Z2` and
sends x− r (mod 2`) to the counterparty P1. At the end, P0 sets 〈x〉A0 = r and
P1 produces 〈x〉A1 = x−r (mod 2`). In this paper, all operations over Arithmetic
shares are performed under (mod 2`) unless explicitly mentioned.

Addition/subtraction over shares (〈z〉Ai = 〈x〉Ai ± 〈y〉Ai ), multiplication by a
public value (〈z〉Ai = η · 〈x〉Ai ) can be efficiently calculated by each party Pi at
local without any interaction. Multiplication over two shares (〈z〉A = 〈x〉A·〉y〉A)
requires assistance with pre-computed arithmetic-shared Multiplication Triple,
i.e., a type of Beaver’s Triple [13] in the format 〈c〉A = 〈a〉A · 〈b〉A. Each party
Pi sets 〈e〉Ai = 〈x〉Ai − 〈a〉Ai and 〈f〉Ai = 〈y〉Ai − 〈b〉Ai . Both parties interact to
reconstruct e and f . Party Pi then sets 〈z〉Ai = i·e·f+f ·〈a〉Ai +e·〈b〉Ai +〈c〉Ai . Note
that multiplication triples are data-independent and can be generated through
cryptographic approaches like additive HE and COT [11,18,30], or by a trusted
third party like in [39,44].
Boolean Sharing and Boolean AND Triple: Boolean sharing [18, 22] can
be viewed as the Arithmetic sharing over Z2. In this paper, we use GMW proto-
col [22] to evaluate the function represented as Boolean circuit. It produces two
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Fig. 2. System architecture.

Boolean shares JxK0 and JxK1 of a secret bit x between two parties P0 and P1,
respectively. Reconstruction of x is performed via x = JxK0⊕ JxK1. The addition
over Arithmetic shares in Z2 is reformulated as XOR operation (⊕), and is com-
puted locally by each party Pi (JzKi = JxKi⊕JyKi). Meanwhile, the multiplication
is replaced by the bitwise AND operation (∧) over Boolean shares, and is calcu-
lated with the assistance of pre-computed Boolean AND Triple JcK = JaK ∧ JbK.
Similar to multiplication triple, the AND triple can be generated via Random
OT (ROT) [11,31] or by a trusted third party.

4 System Overview

4.1 Architecture

Fig. 2 illustrates Leia’s system architecture, which involves three entities: the
mobile device, the model owner, and the two distinct edge nodes S0 and S1. In
practice, the model owner can be a ML-powered mobile application developing
company, who obtains a customized NN model based on proprietary data. It
resorts to Leia to provide secure inference service for its users without revealing
the model in cleartext. The mobile device of the user collects user’s data input
and asks the mobile application for inference tasks without revealing the private
user input. The two edge nodes can be deployed from separate edge computing
service providers like Azure IoT Edge [2] and AWS Lambda@Edge [4].

From a high level point of view, Leia’s cryptographic NN inference service
is operated as follows. The model owner holds a BNN model and deploys the
encoded model matrix W to the two edge nodes S0 and S1, where W is secret-
shared (i.e., Boolean shares) into JW K0 and JW K1. Once the mobile device invokes
a NN inference request, the raw input will be protected as a secret-shared (i.e.,
Arithmetic shares) matrix 〈X〉A0 and 〈X〉A1 , and be submitted to corresponding
edge nodes. After that, the two nodes run secure collaborative inference proce-
dure (green box in Fig. 2), and send the encoded inference result 〈z〉A0 and 〈z〉A1
to the mobile device which can reconstruct the result (e.g., a label to classify the
user’s input). Leia’s secure inference procedure consists of a series of computa-
tional blocks in BNN. A typical block in Leia assembles several layer functions,
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including the secure convolutional layer (SCONV) or secure fully connected layer
(SFC), the secure batch normalization function (SecBN), the secure binary ac-
tivation function (SecBA) and the secure max pooling layer (SMP). Note that,
for efficient realization, we craft a secure normalized binary activation function
(SecNBA) combing the SecBN and SecBA functions (see details in Section 5.2).

4.2 Threat Model and Privacy Goal

Leia considers the following threat model: all entities are the semi-honest parties,
and the two edge nodes are non-colluding computing devices. More specifically,
every party will faithfully follow the prescribed secure NN inference protocol
yet trying to deduce the information from the transcripts exchanged during
the protocol execution individually. When corruption happens, a semi-honest
adversary can compromise at most one of the edge nodes and either the mobile
user or the model owner, while the other parties remain honest. This two-server
mode has been used in a group of previous works on privacy-preserving NN
inference [10,15,32]. In our practice, we can regard them as from two distinct and
well-established edge service providers (e.g., Microsoft Azure IoT Edge service
and Amazon Lambda@Edge service) who are not willing to risk reputation and
business model to cheat.

Leia guarantees both the privacy of mobile user’s data and the model pri-
vacy. It hides both the user’s data and the model values (e.g., the trained
weights and the batch normalization parameters) from being known by the
edge nodes. Meanwhile, Leia is consistent with the security guarantees in prior
work [8,10,30,32]. That is, the parameters of network architecture is considered
as hyper-parameters already known by the edge nodes, including the number
of layers, the sizes of weight matrices, and types of operations used in each
layer. Such hyper-parameters are data independent and not proprietary since
they are usually described in scientific and white papers. We are aware that
a malicious user can exploit the inference service as a blackbox oracle to per-
form attacks [20, 38] to extract auxiliary information from prediction results.
Like prior cryptographic inference systems [8,30,35,43], we emphasize that pro-
tecting against such attacks is a complementary problem beyond Leia’s security
scope [29]. Mitigation strategies can consider the adoption of differentially pri-
vate training algorithms [42].

5 Our Proposed Design

5.1 Secure Linear Layers

We present in this section the secure realizations of linear layers, i.e., the secure
convolutional layer (SCONV) and the secure fully connected layer (SFC). As
mentioned above, they can be expressed as some variants of VDP(x,w) + bias
over n-dimensional layer input vector x, weight vector w, and the bias ∈ R
attached on each neuron. Note that the hidden layer’s input is the activation a.
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Due to the inherit binarization property of BNN, all weights w and the hidden
layer input a are restricted as in {−1,+1}. Only except for the first layer, the
input is some real-valued vectors x ∈ Rn. Meanwhile, we encode the “-1” as “0”
and denote them as ab,wb ∈ {0, 1}n. Here, we make an important observation
from the machine learning literature [25] that the bias can be removed if applying
batch normalization, because the scale β in BN achieves the same effect as the
bias. Empirically open source learning framework follows this treatment like
PyTorch [7]. Thereby, in this paper, we keep consistent with the setting of recent
work in the machine learning domain [7,25] to set the bias as 0, so as to avoid the
involvement of real-valued bias and thus fitting better with the MPC techniques.

To realize the linear transformations in a privacy-preserving manner, our
design carefully protects both mobile user’s data (i.e., the input) and the BNN
model (i.e., the weights) with lightweight secret sharing techniques (Arithmetic
sharing and Boolean sharing). In particular, we introduce the secure Boolean-
VDP function, and the secure Boolean-Arithmetic-VDP function which performs
VDP over mixed share representations. They are the main building blocks to
realize the linear layers.

Input: Boolean shares of binary activation vector ab ∈ {0, 1}n, and binary weight
vector wb ∈ {0, 1}n.
Output: Arithmetic shares of Binary-VDP result z = VDP(ab,wb).

1. For each k ∈ [1, n], Si computes JtbkKi = JabkKi ⊕ JwbkKi; JpbkKi = JtbkKi ⊕ i, and
sets its share of the XNOR value as JpbkKi.

2. To convert the XNOR value from over Z2 to Z2` , Si proceeds the B2A(·)
gadget as follows:
(a) S0 sets 〈dk〉A0 = JpkK0, 〈ek〉A0 = 0, and S1 sets 〈dk〉1 = 0, 〈ek〉A1 = JpkK1.
(b) Thereafter, S0 and S1 compute 〈pk〉Ai = 〈dk〉Ai + 〈ek〉Ai − 2 · 〈dk〉A · 〈ek〉A.

3. To compute the PopCount value, Si proceeds the following steps:
(a) Si counts the number of “1” in the XNOR value via 〈p〉Ai =

∑n
k=1〈pk〉i;

(b) At the end, Si sets 〈z〉Ai = 2〈p〉A0 − i ∗ n.

Fig. 3. The secure Boolean-VDP function SecBVDP(·, ·) based on XNOR-PopCount.

Secure Hidden Layer VDP. The secure Boolean-VDP function (SecBVDP)
is used to compute VDP for the hidden layers. It takes as input a set of Boolean
shares of binary activation vector as JabKi and weight vector as JwbKi, respec-
tively, and outputs the Arithmetic shares 〈z〉Ai of their Boolean-VDP result,
where i ∈ {0, 1} is the identifier of each edge node server. We emphasis that the
activation vector is the output of the binary activation function in BNN, which
is thus naturally binarized. We note that the VDP operation on two plaintext bi-
nary vectors can be converted to a simpler XNOR-PopCount operations [17,34].
That is, for a,w ∈ {−1,+1}, the element-wise multiplication pk = ak · wk is
switched to bitwise-XNOR via pbk = XNOR(abk, w

b
k) = ¬(abk ⊕wbk) when ab,wb ∈

{0, 1}, where k ∈ [1, n]. Meanwhile, the accumulation over all multiplication re-
sults

∑n
i=1 pk for pk ∈ {−1,+1} is converted to PopCount, that is, counting the
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number of “1”s in the resulting binary vector pb = (pb1, p
b
2, ..., p

b
n) ∈ {0, 1} as p.

Ultimately, the result is 2p− n.

Following this convention, Fig. 3 expatiates the SecBVDP function on secret-
shared data. For every element of the binary input vector and weight vector, each
edge node Si computes at local JpbkKi = JabkKi⊕ JwbkKi⊕ i to perform the element-
wise XNOR over its shares. To perform the PopCount operation, a plausible
approach is letting each node Si summarize over its shares directly, i.e., 〈z〉i =∑n
k=1Jp

b
kKi. However, as the modular addition (i.e., XOR) on Boolean shares

is performed as JpbkK0 + JpbkK1 (mod 2), direct summarization cannot correctly
perform the modular addition over Z2` . Given an obvious example that JpbkK0 = 1
and JpbkK1 = 1 when JpbkK = 0, yet the reconstructed 〈z〉 is 2 instead of 0. Thereby,
the conversion from over Z2 to over Z2` (i.e., the B2A gadget) should be applied
to each Boolean-shared JpbkK. Let dk = JpbkK0 and ek = JpbkK1. The conversion
follows the expression 〈pbk〉A = 〈dk + ek − 2 ∗ dk ∗ ek〉A over Z2` . With this logic,
S0 and S1 conduct the conversion and obtain their shares 〈pbk〉Ai respectively.
Si then performs the summarization to obtain 〈p〉Ai as the result of PopCount.
Finally, Si computes 2〈p〉Ai − i∗n, given that the length of vector n is the system
parameter.

Input: Arithmetic shares of integer input vector x ∈ Zn, Boolean shares of binary
weight vector wb ∈ {0, 1}n.
Output: Arithmetic shares of Binary-Integer-VDP result z = VDP(x,wb).

1. S0 and S1 engage in a n×COT`. For the k-th COT` for k ∈ [1, n], Si proceeds
the following steps to compute 〈xk〉A · JwbkK:

2. To securely compute 〈uk〉A = (JwbkK0⊕JwbkK1) ·〈xk〉A0 , such that Si gets 〈uk〉Ai :
(a) S0 acts as a sender, and S1 is the receiver;
(b) S0 constructs a correlation function f∆(s) = s+ (¬JwbkK0 · 〈xk〉A0 − JwbkK0 ·
〈xk〉A0 ), generates ru ∈R Z2` , and sets the m0 = ru;

(c) S0 and S1 run COT (m0, f∆(m0); bu);
(d) As the output, S1 obtains mbu = m0+bu ·(¬JwbkK0 ·〈xk〉A0 −JwbkK0 ·〈xk〉A0 );
(e) S0 sets 〈uk〉A0 = −m0 + JwbkK0 · 〈xk〉A0 , and S1 sets 〈uk〉A1 = mbu .

3. To securely compute 〈vk〉A = (JwbkK0⊕ JwbkK1) · 〈xk〉A1 , such that Si gets 〈v〉Ai :
(a) S1 acts as a sender, and S0 is the receiver;
(b) S1 constructs a correlation function g∆(s) = s+ (¬JwbkK1 · 〈xk〉A1 − JwbkK1 ·
〈xk〉A1 ), generates the randomness rv ∈R Z2` , and sets m0 = rv;

(c) S0 sets a choice bit bv = JwbkK0;
(d) S0 and S1 run COT (m0, g∆(m0); bv);
(e) As the output, S0 obtains mbv = m0+bv ·(¬JwbkK1 ·〈xk〉A1 −JwbkK1 ·〈xk〉A1 );
(f) S0 sets 〈vk〉A0 = mbv , and S1 sets 〈vk〉A1 = −m0 + JwbkK1 · 〈xk〉b1 .

4. At the end, Si sets 〈z〉Ai =
∑n
k=1(〈uk〉Ai + 〈vk〉Ai ).

Fig. 4. The secure Boolean-Arithmetic-VDP function SecBAVDP(·, ·) based on COT.

Secure First Layer VDP. As mentioned above, the two inputs of the first
layer are the real-valued matrix of the user’s data (e.g., image) and the bina-
rized weight matrix, which will be then submitted to some variants of VDP. To
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realize the first layer in a secure fashion, a common way seems plausible is to
protect both real-valued data matrix and binarized weight matrix via Arithmetic
sharing, and then perform VDP on Arithmetic-shared data. However, protecting
the weights as Arithmetic shares would substantially exaggerates the bandwidth
to transmit the model and wastes BNN’s advancement. Besides, the multipli-
cations over Arithmetic shares require the assistant of Beaver’s multiplication
triples [13], and generating the disposable triples incurs intensive bandwidth
costs that scale linear with the number of triples. As the bandwidth is the
bottleneck at the edge, overwhelming amount of communication leads to sig-
nificantly slippery slope on the overall performance and additional charges by
cellar network service provider.

To minimize the overall bandwidth costs at the edge, we craft the secure
Boolean-Arithmetic-VDP function (SecBAVDP) allowing for direct multiplica-
tion on mixed share representations. It takes as input the Boolean shares JwbK
of the binary weight vector w ∈ {0, 1}n and the Arithmetic shares 〈x〉A of
the real-valued input vector x ∈ Zn (normally integers for image classifica-
tion), and outputs the Arithmetic-shared result of VDP(x,wb) as 〈z〉A. Our
main observation is that, the element-wise multiplication 〈zk〉A = JwkK · 〈xk〉A
on each Boolean-shared weight and Arithmetic-shared input can be expressed
as 〈zk〉A = (JwbkK0 ⊕ JwbkK1) · (〈xk〉A0 + 〈xk〉A1 ). Such an expression can be ef-
ficiently undertook by two executions of COT` corresponding to the correla-
tion functions f∆ and g∆, respectively. The first COT` execution carries out
〈uk〉A = 〈(JwkK0 ⊕ JwkK1) · 〈xk〉A0 〉A, where S0 acts as the sender and S1 acts
as the receiver. By treating JwkK1 as the choice bit bu, the above logic can be
rewritten as bu · (¬JwbkK0 · 〈xk〉A0 − JwbkK0 · 〈xk〉A0 ) performed by COT`, and the
JwbkK0 · 〈xk〉A0 calculated by S0 at local. Similarly, the second COT` execution
carries out 〈vk〉A = 〈(JwkK0 ⊕ JwkK1) · 〈xk〉A1 〉A, where S1 acts as the sender
and S0 acts as the receiver, and JwkK0 is the choice bit. The details of the pro-
posed SecBAVDP function are given in Fig. 4. Proof of correctness is given in
Appendix A.1.

To perform the secure first layer VDP, we encode the weight vector w as a

tuple (+w
b
,−w

b
), where +w

b
,−w

b ∈ {0, 1}n. That is, when an element w = +1,
the corresponding tuple is +w ← 1 and −w ← 0; while when w = −1, it
is encoded as +w ← 0 and −w ← 1. As specified in Fig. 5, the secure first
layer VDP function (Sec1VDP) executes two times of the SecBAVDP function to
obtain +z = VDP(+w,x) and −z = VDP(−w,x). The final output is computed
as z = +z − −z.

Input: Arithmetic shares of integer input vector x ∈ Zn, Boolean shares of (+,−)
binary weight vectors +wb ∈ 1n and −wb ∈ 0n.
Output: Arithmetic shares of z = VDP(w,x).

1. S0 and S1 run to obtain 〈+z〉Ai = SecBAVDP(J+wbK, 〈x〉A).
2. S0 and S1 run to obtain 〈−z〉Ai = SecBAVDP(J−wbK, 〈x〉A).
3. Si computes 〈z〉Ai = 〈+z〉Ai − 〈−z〉Ai .

Fig. 5. The secure first layer VDP function Sec1VDP(·, ·).
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5.2 Secure Batch Normalization and Binary Activation

Rationale. Batch normalization and binary activation are usually applied as a
combination on each linear layer, directly following the linear transformation.
Only except the output layer, the prediction results are the output from the
batch normalization without binary activation. At a high level, the combination
of such two functions proceeds the functionality ab = sign(ε1 · a + ε2), where
ε1, ε2 are derived from the running mean µ, the running variance δ of training
dataset, and the trained the scale γ and the shift β as defined in [25]. During
our model training procedure over plaintext, we observe that the trained ε1, ε2
are real-valued, where their integer parts before radix point are usually very
small (i.e., 0 or 1) and the the fractional parts can last for a few digits (e.g.,
10 digits) with 5 more significant figures. To handle the real-valued numbers
in secure computation, a common way is to scale the ε1, ε2 to integers with a
certain precision factor 2q, followed by a ring conversion applied on secret-shared
a. Such a conversion is normally scaling up the 〈a〉A ∈ Z2` to 〈a′〉A ∈ Z2κ where
κ > `+ q. After sharing the ε1, ε2 in Z2κ as 〈ε1〉A, 〈ε2〉A ∈ Z2κ , the computation
〈y〉A = 〈ε1〉A ·〈a′〉A+〈ε2〉A can be securely carried out ∈ Z2κ . And the sign(〈y〉A)
can be securely realized via a most significant bit (MSB) extraction.

However, the limitations of such common way are two-fold. First, an addi-
tional ring conversion operation has to be applied on each neuron leading to
more computational costs. Second, the enlarged ring Z2κ leads to a more com-
plex bitwise MSB extraction. In general, this MSB extraction operation follows
the bit extraction protocol in [44]. It firstly decomposes the 〈y〉A ∈ Z2κ to its
Boolean-shared binary strings. Then it applies a bitwise full adder logic to ob-
tain the shared carry bit string whose highest bit is exactly the MSB of y. The
non-local operations require the interaction between the two edge nodes with
the complexity scales linear with the length of the bit string (i.e., κ). So, a larger
ring size leads to more bandwidth costs which is undesired at the edge.

To this end, we propose two secure functions: 1) the secure normalized binary
activation function (SecNBA) for the first layer and hidden layers; and 2) the
secure batch normalization function (SecBN) in the output layer.
Secure Normalized Binary Activation. The SecBNA function combines the
secure batch normalization and the secure binary activation. We transform its
functionality into a simpler problem through

ab = sign(ε1) ∗ sign(a+ ε) (1)

, where ε = ε2/ε1, and the multiplication between the sign bits can be carried
out via XNOR operation. Through our careful examination, we observe that ε =
ε2/ε1 is real-valued number with large integer parts. We thus quantize ε directly
as integer and share it in Z2` , so as to circumvent the conversion between different
rings. It is noteworthy that our trained parameter ε1 in batch normalization can
be a negative value, and thus its sign bit sign(ε1) can not be ignored. We further
denote it as ζ = sign(ε1) and z = sign(a + ε), and the functionality of binary
normalized activation becomes ab = XNOR(ζ, z). Since ζ and ε are independent
of inference input, they thus can be pre-computed by the model owner.
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Input: Arithmetic shares of integer feature a ∈ Z, Arithmetic shares of prepro-
cessed parameter ε ∈ Z, Boolean shares of preprocessed parameter ζ ∈ {0, 1}.
Output: Boolean shares of binarized activation ab ∈ {0, 1}.

1. Si calculates 〈y〉Ai = 〈a〉Ai + 〈ε〉Ai .
2. Si decomposes 〈y〉Ai ∈ Z2` as a bit string 〈yk〉Ai , where k ∈ [1, `].
3. To extract the MSB of the 〈y〉Ai , Si proceeds the MSB(·) gadget as follows:

(a) For each k ∈ [1, `]: S0 sets JwkK0 = 〈yk〉A0 , JpkK0 = 〈yk〉A0 , and JqkK0 = 0,
and S1 sets JwkK1 = 〈yk〉A1 , JpkK1 = 0, and JqkK1 = 〈yk〉A1 ;

(b) S0 and S1 compute JdkKi = JpkK · JqkK in a batch to reduce the number
of rounds of interaction; Si sets Jc1Ki = Jd1Ki.

(c) For k ∈ [2, `− 1]: Si computes JdkKi = JdkKi + i at local;
(d) S0 and S1 compute JekKi = JwkK · Jck−1K + i, and JckKi = JekK · JdkK + i.
(e) Si computes Jy`Ki = Jw`Ki + Jc`−1Ki, and sets the Jy`Ki as the MSB of a.

4. To convert the MSB to the sign bit of a, Si sets JzKi = Jy`Ki + i.
5. Si calculates XNOR at local JabK = JzKi + JζKi + i.

Fig. 6. The secure binary normalized activation function SecNBA(·, ·, ·).

Fig. 6 details the secure realization of the SecNBA function following the
eq. 1. It takes as input the Arithmetic shares of the feature 〈a〉A that outputted
from the linear transformation, and outputs the Boolean shares of binarized
activation JabK. The computation comprises three atomic operations: 1) applying
the shares of the preprocessed 〈ε〉A to the shared feature 〈a〉A as 〈y〉A in step 1;
2) the extraction of the Boolean-shared sign bit JzK based on the MSB of 〈y〉A in
steps 2,3; and 3) the local XNOR operation over sign bit and shared JζK in step
4. Here, to extract the MSB of secret shares, the edge nodes S0 and S1 jointly
execute the MSB(〈a〉A) gadget to obtain their shares of MSB JylKi. This gadget
follows the bit extraction protocol in [44], which is able to efficiently extract
the MSB of the Arithmetic-shared values and produce a Boolean-shared MSB.
Since the MSB is 0 of non-negative values and 1 of the negative values, which
is exactly the one’s complement of a given sign bit, each node Si then performs
logical negation on each JylKi at local to obtain the shared sign bit JzKi.

Input: Arithmetic shares Z2κ of integer activation a ∈ Z, Arithmetic shares Z2κ

of the preprocessed parameters ε1, ε2 ∈ Zq.
Output: Arithmetic shares of normalized activation z ∈ Z.

1. To normalize the activation, S0 and S1 compute 〈z〉Ai = 〈ε1〉A · 〈aq〉A + 〈ε2〉Ai .

Fig. 7. The secure batch normalization function SecBN(·, ·, ·).

Secure Batch Normalization for Output Layer. The secure batch normal-
ization function (SecBN) is applied right after the secure linear transformations
in the output layer. As presented in Fig. 7, it takes as input the Arithmetic
shares of activation 〈a〉A outputted from linear transformation (i.e., SecBVDP)
and shares of two parameters 〈ε1〉A, 〈ε2〉A, and outputs the Arithmetic shares
of the normalized activation 〈z〉A. Here, the B2A gadget, i.e., the step 2 in the
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SecBVDP, performs the conversion from over Z2 to Z2κ , and thus the output of
SecBVDP is a feature already secret-shared in Z2κ . Note that this ring conversion
operation will not affect the following binary activation, as the output of SecBN
is the shared inference result. The parameters ε1, ε2 are already enlarged during
preprocessing, and secret shared in ∈ Z2κ . S0 and S1 apply a multiplication over
shares 〈ε1〉A · 〈a〉 followed by a local addition with 〈ε2〉A to obtain 〈z〉.

Input: Boolean shares of m-number of n-dimensional binary activation vectors
ab1, ...,a

b
m ∈ {0, 1}n, where the dimension n matches the size of pooling window.

Output: Boolean shares of m-number of binary pooling result zb1, ..., z
b
m ∈ {0, 1}.

1. For each t ∈ [1,m], Si proceeds the following steps to determine the shares
of maximum element in JabtKi = (Jabt,1Ki, ..., Jabt,nKi):

2. For all k ∈ [1, n]: Si computes JabkKi = JabkKi ⊕ i.
3. Si initializes JcbtKi = Jabt,1Ki.
4. For each k ∈ [2, n]: S0 and S1 compute JcbtKi = JcbtK ∧ Jabt,kK.
5. Then, Si computes Jzbt Ki = JcbtKi ⊕ i.

Fig. 8. The secure max pooling function SecMP(·).

5.3 Secure Binary Max Pooling Layer

The secure binary max pooling layer (SMP) is used to obtain the maximum
values among the secret-shared binary activations within a certain sliding win-
dow. The number of n binary activations within the window can be denoted
as a n-dimensional binary activation vector ab = (ab1, ..., a

b
n) ∈ {0, 1}n. And we

assume that there are overall m-number of vectors as ab1, ...,a
b
m. The MP layer is

normally applied right after a secure linear layer. We make an observation that
its functionality over plaintext ab can be realized as the bitwise-OR operation
on all bits of the vectors, i.e., the maximum value is zb = ab1 ∨ ab2 ∨ ... ∨ abn,
, so as to find if ab constitutes with any “1” bit. However, when realizing
functionality in a secure manner, the key takeaway is to achieve obliviousness,
i.e., for every step in a certain computation, both edge nodes have to proceed
equivalent operations. Through carefully examination, we transform the logic to
zb = ¬(¬ab1 ∧ ¬ab2 ∧ ... ∧ ¬abn) which is more compatible with our secret sharing
based realization.

With this philosophy in mind, we present in Fig. 8 the proposed secure max
pooling function (i.e., SecMP) design specialized for the two edge nodes case as
the main building block of the MP layer. It takes as input the Boolean shares
of m-number of n-dimensional binary activation vectors JabtK, determines the
maximum element for each vector, and outputs their Boolean shares as the
pooling result Jzbt K, where t ∈ [1,m]. For each shared vector JabtK, each edge node
Si for i ∈ {0, 1} computes the bitwise-XOR on its identifier i and its shares
Jabt,1Ki of all bits in JabtK at local. Si then initializes a temporary variable JcbtKi to
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Fig. 9. The oblivious realization of the secure max pooling function.

store the shares of first bit Jabt,1Ki, respectively. Afterwards, S0 and S1 perform

AND over all of its shares, i.e., JcbtKi = Jat,1Ki ∧ ... ∧ Jat,nKi. Each node sets
its output share Jzbt Ki as its identifier i XOR with JcbtKi. We emphasis that all
operations performed by the two nodes are identical, and thus endowing our
SecMP function obliviousness. Appendix A.2 provides the proof of correctness
of the SecMP function.

For the purpose of easier understanding, Fig. 9 provides a concrete example
of the secure max pooling function over a 4-dimensional binary activation vector
ab = (1, 1, 0, 0). It illustrates the equivalence between the plaintext realization
based on bitwise OR and our proposed oblivious realization over secret shared
data. As shown, the plaintext max pooling function can be simply realized with
bitwise-OR operation over every bit of ab, so as to obtain the maximum bit, i.e.,
“1” in our example. Correspondingly, its secure version is obliviously proceeded
by the two edge nodes Si for i ∈ {0, 1}, who locally performs bitwise-XOR on its
identifier i and each bit of its share JzbKi, They then jointly compute the AND
over all the resulting bits as JcbKi. Finally, they compute bitwise-XOR on i and
JcbKi as its final output JzbKi. The reconstructed output JzbK = JzbK0⊕ JzbK1 = 1
is the same as the result given in clear value.

5.4 Secure Binarized Neural Network Inference Protocol

Given above layer functions, we now describe our secure binarized neural network
inference protocol φ in the following section. It comprises two phases: the pre-
processing phase performed by each entity individually, and the secure inference
phase jointly carried out by the two non-colluding edge nodes.
Preprocessing Phase. During the preprocessing phase, the mobile user, the
model provider, and edge nodes independently compute data that can be used
during the execution of secure inference. The mobile user holding a task-specific
raw input (e.g., an image for image classification) produces the real-valued (c-
)matrix(-ces) X ∈ Rnin∗min representing such an input, and produces the Arith-
metic shares of the matrix(-ces). He then deploys the corresponding shares to
each edge nodes S0 and S1, respectively. S0 and S1 will pad these shares with
0 to be fit with the weight size, and partition them as number of s vectors
〈x〉A = (〈x1〉A, ..., 〈xn〉A) based on the sliding window n (a hyper-parameter),
where s = (nin ∗min)/n. Besides, they will also prepare multiplication triples
and Boolean AND triples during vacant time.
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Secure BNN Inference Phase of Protocol φ:

1: for each layer j ∈ [1, L− 1] do
2: if j = 1, first layer (SCONV): then
3: for each channel c and window s do S0 and S1 run 〈(a)1s,c〉A ←

Sec1VDP(J(+wb
)1s,cK, J(−w

b
)1s,cK, 〈(x)s,c〉A) to get their shares of features.

4: end for
5: Si sums the features of all channels 〈(a)1s〉A =

∑c
ĉ=1〈(a)1s,c〉A as the

feature of s-th neuron.
6: else if j ∈ [2, L], remaining layers (SFC): then
7: Si flattens its shares of the feature matrix as a vector 〈a〉Ai .
8: for each element (wbk′)

j , k′ ∈ [1, n′] of the weight vector (wb)j do
9: S0 and S1 run to get their shares of neuron k feature 〈(ak)j〉A ←

SecBVDP(J(ab)j−1K, J(wbk)jK), where k ∈ [1, n].
10: end for
11: if j 6= L then S0 and S1 proceed to obtain their shares of binarized

activations J(ab)jkK← SecBNA(〈(ā)jk〉
A, 〈ε〉A, JζK) of neuron k.

12: elseS0 and S1 proceed to obtain their shares of normalized neuron k
feature 〈(ā)jk〉

A ← SecBN(〈(a)js〉A, 〈ε1〉A, 〈ε2〉A).
13: end if
14: end if
15: if apply the SMP layer then S0 and S1 run to get the shares of each

neuron k feature J(abk)jK← SecMP(J(abk)j−1K), where k ∈ [1,m].
16: end if
17: end for

Fig. 10. Secure BNN inference phase

For an L-layer BNN model, the model provider firstly transforms the bina-
rized weight matrix(-ces) corresponding to each layer j to the weight vector(-s)
wj ∈ {−1,+1}n, where j ∈ [1, L]. He then encodes the weight vector of the first

layer w1 to a tuple (+w
b
1,
−w

b
1) as above mentioned. The encoded weights are

prepared for our proposed efficient first linear layer VDP calculation. For the
weight vectors belong to the hidden layers, the model provider encodes them
based on their sign, i.e., +1 ← 1 and −1 ← 0. For secure batch normalization,
the model provider derives through ε1 = γ

δ , ε2 = β − γ·µ
δ , ε = ε2

ε1
= δβ

γ − µ,
where the running mean µ, the running variance δ, the scale β, and the shift γ
are defined in [25]. To this end, the model provider produces the Boolean shares
of all weight vectors and the Arithmetic shares of batch normalization parame-
ters, and then deploys the corresponding shares to the edge nodes S0 and S1 for
coordinate processing. Note that the parameters of number of layers L, sliding
window sizes n, pooling window size m, strides (normally is 1), channels c are
assumed as hyper-parameters that can be deployed in clear (like in [8, 30].

Secure BNN Inference Phase. During the inference phase, the two non-
colluding edge nodes S0 and S1 collaboratively proceed the BNN inference task
on given secret-shared user input vector 〈x〉A and model weight vectors 〈wj〉A
for each layer j ∈ [1, L] in a privacy assured manner. As the neural network
can have distinct architectures assembled with layer functions, we here in this
section takes one typical architecture as an example for demonstration purpose.
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Fig. 10 depicts the secure BNN inference phase that modularly composes the
above introduced layer functions performed on secret-shared data. It comprises
the SCONV layer as the first layer, and L− 1 number of the SFC layer, and can
apply the SMP layer after each linear layer. For each linear layer, the SecBN
and SecBA functions are applied followed by the linear transformation. For the
SCONV layer, the edge nodes S0 and S1 slides each window s with size n on
the shares of input matrix, and get an input vector (x)s,c within the window for
each channel c. They then execute the Sec1VDP layer function on the shared
and encoded weight vectors +wb

s,c,
−wb

s,c and (x)s,c, to obtain the features for
each channel. Such features are then summed across channels as (a)s to reduce
the channels from c to 1. Suppose j − 1 layer has n neurons and j layer has
n′ neurons. For each SFC layer, the edge nodes execute the SecBVDP on the
activations in the j − 1 layer and the weights in the j layer to get the feature
(ak)j for each neuron in the j layer. For every neuron’s feature, they apply the
SecNBA function to obtain the normalized and binarized activation (ab)j . All
binarized activation in the j layer will be submitted to the j + 1 layer as input.
Besides, they can apply the SMP layer to reduce the number of neurons through
execution of the SecMP function on every pooling window with size m. To this
end, they obtain the shares of inference result. They then send back the shares
of result to the mobile user who can reconstruct to get the prediction.

5.5 Security Guarantee

For our secure BNN inference protocol φ, we define security based on the Uni-
versally Composable (UC) security framework [14]. Under a general protocol
composition operation (universal composition), the security of φ is preserved.
Given a semi-honest admissible adversary A who can compromise at most one
of the two non-colluding edge nodes S0, S1 and either the mobile user or the
model owner. This reflects on the property that S0, S1 are non-colluding servers,
i.e., if S0 is compromised by A, S1 acts honestly; vice versa. Leia’s protocol
follows the security of the Arithmetic sharing [12], Boolean sharing [22] and
OT [11]. Leia properly protects the user data, model, Beaver’s Triples, and in-
termediate results outputted from layer functions as secret shares in Z2` and Z2,
and the correlation functions f∆, g∆ are correlation-robust. Given above, we ar-
gue that φ UC-realizes an ideal functionality F against A. The security captures
the property that the only data learned by any compromised parties are their
inputs and outputs from φ, but nothing about the data of the remaining honest
parties.

6 Performance Evaluation

6.1 Implementation and Setup

We implement a prototype of Leia in Java. All experiments are executed on Rasp-
berry Pi 4 Model B running Raspbian Linux 10 (buster) and equipped with Quad
core Cortext-A72 (ARM v8) 64-bit SoC @ 1.5GHz processor, 4GB RAM, and
gigabit ethernet. We choose FlexSC [40] as the code base of extended OTs [11]
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and implement our COT-based SecBAVDP function to compute the secure first
linear layer. Regarding Arithmetic sharing, we set the size of the ring as Z232

for the first layer and output layer, and Z216 for the remaining hidden layers.
The reported measurements make use of the MNIST and CIFAR-10 datasets,
i.e., the two common-used classification benchmarks in prior work [10, 35]. We
evaluate Leia on a variety of different BNN models, where the models M1 and
M2 are trained on MNIST, and the models C1 and C2 are trained on CIFAR-
10. (See Appendix. B for their detailed network architectures.) For training, we
use PyTorch backend with standard BNN training algorithm [17]. Besides, we
prepare and archive the disposal Beaver’s triples in files (300 triples each file).
The edge nodes can randomly select files to retrieve a set of triples upon the
demand of computation, and then delete the corresponding files to ensure their
randomness.

6.2 Evaluation
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Table 1. Computation performance of atomic layer functions (in s).
# inputs SecBVDP SecBVDP SecBAVDP SecBAVDP SecNBA SecBN SecMP

3× 3 window 5× 5 window 3× 3 window 5× 5 window 2× 2 window

103 0.5 0.5 4.8 4.9 0.6 0.4 0.06

104 3.1 3.4 20.4 22.8 5.1 2.6 0.4

105 29.4 31.6 198.3 217.9 50.1 23.0 3.1

Microbenchmarks. We present performance benchmarks of secure layer func-
tions as the basic building blocks used for secure BNN inference. For demonstra-
tion purpose, we choose 3×3 and 5×5 sliding windows to show the performance
of the SecBVDP and the SecBAVDP functions, i.e., the secure VDP operations
over 9-dimensional vectors and 25-dimensional vectors, respectively. These two
window sizes are common-used and adapted to our CONV layer. Likewise, we
employ the 2×2 window to demonstrate the performance of the SecMP function.

We summarize the computational cost of the proposed secure layer functions
in Table 1. The time consumption of the SecBAVDP function consists of two
parts: 1) the constant initialization cost of the COT protocol (∼3s); and 2) the
time and bandwidth to compute VDP over mixed share representations raising
linearly with the number of calls. For the rest functions, their latencies ascend
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linearly in the growth of the number of executions yet with slight fluctuations.
Besides, we grasp 10K executions of each secure layer function, and utilize the
empirical cumulative distribution function (ECDF) to shed light on the distri-
bution of their unit execution time. As depicted in Fig. 11, for overwhelming
amount of executions, the unit executions of the SecBVDP function with 3 × 3
and 5 × 5 windows can be completed within 0.5ms. Fig. 12 displays the unit
execution time of the SecBAVDP function without the aforementioned constant
COT initialization cost. As shown, more than 90% executions take 1ms and
4.5ms for 3× 3 and 5× 5 windows, respectively. Fig. 13 exhibits the time costs
of single executions of the non-linear functions, i.e., the SecNBA, SecBN, SecMP
(with 2× 2 window) functions. All three functions can be done within 1ms.

Table 2. Communication performance of atomic layer functions (in KB).
SecBVDP SecBVDP SecBAVDP SecBAVDP SecNBA SecBN SecMP

3× 3 window 5× 5 window 3× 3 window 5× 5 window 2× 2 window
Leia 0.3 0.8 16.0 17.3 0.2 0.03 0.01

Baseline 22.1 24.4 468.0 1257.4 25.9 78.3 20.9

The communication costs of the secure layer functions are reported and com-
pared with the baseline in Table 2. We implement and evaluate the baseline
based on GC with its free-XOR and half-AND optimizations, which realizes the
equivalent functionality for each of the secure layer function. In general, Leia’s
realizations require 30− 79×, and 150− 2500× less communication for the lin-
ear and non-linear functions than the corresponding GC-based realizations. The
reported results testify that the prior constructions relying on GC [10,26,32,35]
require a network environment with high bandwidth. However, they might not
be fully suitable for our considered application scenario, i.e., the secure inference
deployed at resources limited edge environment with cellular network.

In particular, for the COT-based SecBAVDP function, we emphasis that the
adoption of such regime saves the overall bandwidth consumption at a system
level. Such retrenchment includes the cost of protecting each weight element as
32-bit shares in Z232 to a tuple of 1-bit shares in Z2, and the cost of generation
of multiplication triples in Z232 . As shown by the empirical result, the GC-
based realizations produce 30× and 73× bandwidth consumptions higher than
the Leia’s realizations for 9-dimensional and 25-dimensional vectors, respectively.
We further report the bandwidth costs of the realizations based on multiplication
triples as 270KB and 790KB, amounting to one magnitude larger than Leia’s
bandwidth.

Table 3. Performance of the SCONV function of first layer.
model input kernel feature stride padding #SecBAVDP time comm.

cin × nin ×min co × cin × s co × no ×mo s MB
M2 1×28×28 16×1×5×5 16×24×24 1 - 1× 18432 30 310

C1/C2 3×32×32 16×3×3×3 16×32×32 1 0 3× 28800 46 490

Linear Layers. We report the performance of secure linear transformations
(i.e., SCONV and SFC) below, which comprise the majority of Leia’S overall
inference overhead.
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Table 4. Performance of the SCONV function of hidden layers.
model input kernel feature stride padding #SecBVDP time comm.

cin × nin ×min co × cin × s co × no ×mo s MB
M2 16×12×12 16×16×5×5 16×8×8 1 - 16× 1024 0.9 12.5
C1 16×32×32 16×16×3×3 16×32×32 1 0 16× 16384 6.2 63.3
C2 16×32×32 32×16×3×3 32×32×32 1 0 16× 32768 14.5 126.6

Table 3 and Table 4 benchmark the performance of the SCONV layer func-
tion as the first layer and the hidden layer, respectively. The reported results are
in line with our specified network architectures of M2, C1, and C2.3 As C1 and
C2 consist plenty of convolutional hidden layers, we choose to show the perfor-
mance of their second layers (the most complicated hidden layers) for the ease of
demonstration. The complexity of the SCONV layer function is determined by a
set of parameters: 1) the number of input channels cin and output channels co;
2) the dimensions of input image; 3) the kernel size (i.e., the sliding window size
s), stride, and padding regime. These parameters directly reflect on the number
of invocations of SecBAVDP/SecBVDP as shown. The key takeaway here is our
runtime optimization of batch processing to amortize the overhead of executing
SecBAVDP/SecBVDP. In detail, we flatten the input matrices across multiple
channels yet within the same sliding window as a single vector, and conduct
SecBAVDP/SecBVDP over it in a batch. We take as an example the complexity
of C1’s hidden SCONV layer reported in Table 4. It is proceeded in the batch
integrating with 16-channel input matrices. As a result, the calls of SecBVDP
(3 × 3 window) are reduced from 230400 to 16384, speeding up the time from
68s to 6.2s accordingly.
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Fig. 14 and Fig. 15 depict the computational and communication overheads
of the SFC layer function as the first layer and hidden layers, respectively. They
are evaluated over a series of n×n fully connected layers, i.e., both the input and
weight are n-dimensional vectors. Followed by the growth of n, the time of the

3 M1 consists of only fully connected layers.
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hidden SFC layer ascends linearly attributed to our batch processing optimiza-
tion, while the bandwidth ascends quadratically with the growth of dimension
n. For the first SFC layer, the computational overhead is primarily dominated
by the constant COT initialization time, and the bandwidth growths with the
layer size.

Table 5. Performance summary of the trained networks.
network time (s) comm. (MB) time (ms) d time (s) e accuracy accuracy

edge edge mobile user model owner Leia plaintext
M1 a 4.0 19.7 0.4 0.05 97% 97%

M2 b 37.4 328.1 0.4 0.5 99% 99%
C1 c 126.25 919.4 1.1 5.1 69% 65%
C2 c 199 1829.9 1.2 15.7 81% 88%

a 2 SFC+SecNBA, 1 SFC+SecBN.
b 2 SCONV+SecNBA, 1 SFC+SecNBA, 2 SMP, 1 SFC+SecBN.
c 9 SCONV+SecNBA, 3 SMP, 1 SFC+SecBN.
d Cost of generating shares of an image during preprocessing.
e One-time cost of generating shares of the model during preprocessing.

Leia’s protocol. We evaluate the overall performance of Leia’s cryptographic
inference protocol on MNIST and CIFAR-10 datasets, and summarize the results
in Table 5. The online phase of Leia is executed at the edge. The networks M1
and M2 for MNIST dataset are relatively simple, and Leia can produce high-
quality prediction results within 4s and 37.4s, respectively. The more complex
C1 and C2 for CIFAR-10 dataset involve 10 layers of linear transformation, and
their executions require about 2min and 3.3min respectively. The workload of the
mobile user is light, which confirms that Leia is amiable to the resource limited
portable devices. The one-time overhead of the model owner is determined by the
model size. Such cost dost not aggravate workload on model owner, as generating
shares of the most complicated network C2 can be completed within 15.7s.

The effectiveness is demonstrated via the accuracy comparison between Leia’s
prediction results and the plaintext’s results. For the M1 and M2 networks eval-
uated on MNIST dataset, Leia’s prediction results are accurate as the plaintext
(i.e., 97% and 99%, respectively). Besides, Leia achieves the accuracy of 69% and
81% for the C1 and C2 networks evaluated on CIFAR-10 dataset, amounting to
slight accuracy impactions compared with the plaintext results. Such variations
can be attributed to the quantization of batch normalization parameters.
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A Proof of correctness

A.1 Proof of the SecBAVDP function

Lemma 1. Let x and wb be an integer and binary vectors, respectively. They are
shared between parties S0 and S1 as Arithmetic shares 〈x〉A and Boolean shares
JwbK. Given a secure COT protocol with the correlation-robust functions f∆, g∆,
our two-party protocol SecBAVDP(〈x〉A, JwbK) over mixed share representations
correctly implements the Binary-Integer VDP functionality.
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Proof. The protocol SecBAVDP(〈x〉A, JwbK) correctly implements the logic 〈z〉A =∑n
k=1(JwbkK0⊕JwbkK1) ·(〈xk〉A0 +〈xk〉A1 ) with two executions of COT` correspond-

ing to the correlation functions f∆ and g∆, respectively.
For the COT` with f∆, S0 is the sender, and S1 is the receiver. We show

that the output of the k-th COT correctly carries out 〈uk〉A = 〈(JwkK0⊕ JwkK1) ·
〈xk〉A0 〉A. We have two cases:

1. If the choice bit JwbkK1 = 0:
Note, wbk = JwbkK0 ⊕ 0 = JwbkK0. Given the inputs ru ∈R Z2` , f∆(ru) from
S0, the choice bit bu = JwbkK1 = 0 from S1. After execution of the COT, S0

obtains 〈uk〉A0 = −ru. Meanwhile, S1 obtains 〈uk〉A1 = mbu = m0 = ru +
JwbkK0·〈xk〉0 = ru+wbk·〈xk〉0 obliviously. Upon reconstruction, uk = wbk·〈xk〉0.

2. If the choice bit JwbkK1 = 1:
Note, wbk = JwbkK0 ⊕ 1 = ¬JwbkK0. Given the inputs ru ∈R Z2` , f∆(ru) from
S0, the choice bit bu = JwbkK1 = 1 from S1. After execution of the COT, S0

obtains 〈uk〉A0 = −ru. Meanwhile, S1 obtains 〈uk〉A1 = m1 = ru + ¬JwbkK0 ·
〈xk〉0 = ru + wbk · 〈xk〉0 obliviously. Upon reconstruction, uk = wbk · 〈xk〉0.

The execution of the COT` with g∆ performs in a similar way, where S1 is the
sender, and S0 is the receiver. For the k-th COT, it takes as input rv ∈R Z2` ,
g∆(rv) from S1, and the choice bit bv = JwbkK0 from S0. Upon execution, S1

always obtains 〈vk〉A1 = −rv, and S0 obtains 〈vk〉A0 = m0 = rv + JwbkK1 · 〈x〉A1 or
〈vk〉A0 = m1 = rv+¬JwbkK1 ·〈x〉A1 obliviously. Upon reconstruction, vk = wbk ·〈x〉A1 .
Ultimately, zk = wbk · (〈x〉A0 + 〈x〉A1 ) = wbk · xk.

A.2 Proof of the SecMP function

Lemma 2. Let ab1, ...,a
b
m be m-number of n-dimensional binary activation vec-

tors, shared between parties S0, S1 as Boolean shares Jab1K, ..., JabmK. Given the
ring Z2, our two-party protocol SecMP(·) correctly implements the max pooling
functionality.

Proof. For the ease of demonstration and without loss of generality, the fol-
lowing proof of correctness takes one binary activation vector ab ∈ {0, 1}n
as an example. The protocol implements the logic zb = ab1 ∨ ab2 ∨ ... ∨ abn to
proceed the max pooling over binarized values, i.e., finding if the binary vec-
tor has “1” bit as mentioned above. Taken zb = xb ∨ yb as an example, the
bitwise-OR logic can be similarly reformulated as zb = ¬(¬xb ∧ ¬yb). For the
two-party protocol, each party Si (for i ∈ {0, 1}) holds its shares JxbKi, JybKi,
and attempts to obtain JzbKi as the result. The above logic can be correctly
expressed as JzbKi = i ⊕ ((i ⊕ JxbKi) ∧ (i ⊕ JybKi)), given the correctness of
¬xb = JxbK0 ⊕¬JxbK1 = (0⊕ JxbK0)⊕ (1⊕ JxbK1). Note, all operations above are
performed by each party without interaction.

B Model Architectures.
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Table 6. Model architecture of M1.
layers # SecBVDP/SecBAVDP padding

FC (input: 784, output: 128) + BN + BA 256 -
FC (input: 128, output: 128) + BN + BA 128 -

FC (input: 128, output: 10) + BN 10 -

Table 7. Model architecture of M2.
layers # SecBVDP/SecBAVDP padding

CONV (input: 1× 28× 28, kernel: 1× 16× 5× 5 feature: 16× 24× 24) + BN + BA 1×18432 -
MP (input: 16× 24× 24, window: 16× 2× 2 output: 16× 12× 12) - -

CONV (input: 16× 12× 12, kernel: 16× 16× 5× 5 feature: 16× 8× 8) + BN + BA 16×1024 -
MP (input: 16× 8× 8, window: 16× 2× 2 output: 16× 4× 4) + BN + BA - -

FC (input: 256, output: 100) + BN + BA 100 -
FC (input: 100, output: 10) + BN 10 -

Table 8. Model architecture of C1.
layers # SecBVDP/SecBAVDP padding

CONV (input: 3× 32× 32, kernel: 3× 16× 3× 3 feature: 16× 32× 32) + BN + BA 3×32768 0
CONV (input: 16× 32× 32, kernel: 16× 16× 3× 3 feature: 16× 32× 32) + BN + BA 16×16384 0
CONV (input: 16× 32× 32, kernel: 16× 16× 3× 3 feature: 16× 32× 32) + BN + BA 16×16384 0

MP (input: 16× 32× 32, window: 16× 2× 2 output: 16× 16× 16) - -
CONV (input: 16× 16× 16, kernel: 16× 32× 3× 3 feature: 32× 16× 16) + BN + BA 16×8192 0
CONV (input: 16× 16× 16, kernel: 16× 32× 3× 3 feature: 32× 16× 16) + BN + BA 16×8192 0
CONV (input: 16× 16× 16, kernel: 16× 32× 3× 3 feature: 32× 16× 16) + BN + BA 16×8192 0

MP (input: 32× 16× 16, window: 32× 2× 2 output: 32× 8× 8) - -
CONV (input: 32× 8× 8, kernel: 32× 48× 3× 3 feature: 48× 6× 6) + BN + BA 32×1728 -
CONV (input: 48× 6× 6, kernel: 48× 48× 3× 3 feature: 48× 4× 4) + BN + BA 48×1728 -
CONV (input: 48× 4× 4, kernel: 48× 64× 3× 3 feature: 64× 2× 2) + BN + BA 48×2304 -

MP (input: 64× 2× 2, window: 64× 2× 2 output: 64× 1× 1) - -
FC (input: 64, output: 10) + BN 10 -

Table 9. Model architecture of C2.
layers # SecBVDP/SecBAVDP padding

CONV (input: 3× 32× 32, kernel: 3× 16× 3× 3 feature: 16× 32× 32) + BN + BA 3×32768 0
CONV (input: 16× 32× 32, kernel: 16× 32× 3× 3 feature: 32× 32× 32) + BN + BA 16×32768 0
CONV (input: 32× 32× 32, kernel: 32× 32× 3× 3 feature: 32× 32× 32) + BN + BA 32×32768 0

MP (input: 32× 32× 32, window: 32× 2× 2 output: 32× 16× 16) - -
CONV (input: 32× 16× 16, kernel: 32× 48× 3× 3 feature: 48× 16× 16) + BN + BA 32×12288 0
CONV (input: 48× 16× 16, kernel: 48× 64× 3× 3 feature: 64× 16× 16) + BN + BA 48×16384 0
CONV (input: 64× 16× 16, kernel: 64× 80× 3× 3 feature: 80× 16× 16) + BN + BA 64×20480 0

MP (input: 80× 16× 16, window: 80× 2× 2 output: 80× 8× 8) - -
CONV (input: 80× 8× 8, kernel: 80× 96× 3× 3 feature: 96× 6× 6) + BN + BA 80×3456 -
CONV (input: 96× 6× 6, kernel: 96× 96× 3× 3 feature: 96× 4× 4) + BN + BA 96×1536 -

CONV (input: 96× 4× 4, kernel: 96× 128× 3× 3 feature: 128× 2× 2) + BN + BA 96×512 -
MP (input: 128× 2× 2, window: 128× 2× 2 output: 128× 1× 1) - -

FC (input: 128, output: 10) + BN 10 -


