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Abstract

Blockchains are gaining traction and acceptance, not just for cryptocurrencies but increas-
ingly as a general-purpose architecture for distributed computing. In this work we seek solutions
that allow a blockchain to act as a trusted long-term repository of secret information: Our goal
is to deposit a secret with the blockchain and specify how to use it (e.g., the conditions under
which it is released), and have the blockchain keep this information secret and use it only in the
requested manner (e.g., only release it once the conditions are met). This simple functionality
would be an enabler for many powerful applications, including signing statements on behalf of the
blockchain, using blockchain as the control plane for a storage system, performing decentralized
program-obfuscation-as-a-service, and many more.

We present a scalable solution for implementing this functionality on a public proof-of-stake
blockchain, in the presence of a mobile adversary controlling a small minority of the stake, using
proactive secret sharing techniques. The main challenge is that, on the one hand, scalability
requires that we use small committees to represent the entire stake, but, on the other hand, a
mobile adversary may be able to corrupt the entire committee if it is small. For this reason,
prior proactive secret sharing solutions are either non-scalable or insecure in our setting.

We solve this issue using “player replaceability”, where the committee is anonymous until
after it performs its actions, as in the Algorand blockchain. (Algorand uses player replaceability
to defend against DDoS attacks.) Our main technical contribution is a system that allows
sharing and re-sharing of secrets among the members of small dynamic committees, without
knowing who they are until after they perform their actions. Our solution handles a fully
mobile adversary corrupting less than 25% of the stake at any time, and is scalable in terms of
both the number of parties on the blockchain and the number of time intervals.

Blockchain, Mobile Adversary, Player Replacability, Proactive Secret Sharing



1 Introduction

Imagine posting an encrypted will to a blockchain to be opened only when the blockchain reaches
consensus that the subject died. More generally, consider using the blockchain as a secure
storage solution, allowing applications and clients to deposit potentially secret data and specify
the permissible use of that data. Some example applications include keeping a signature key
that can sign on behalf of the blockchain (or on behalf of a specific application), providing a
root of trust for key-management and certification solutions, allowing users and programs to
enforce policies specifying how their private data can be used, enabling program obfuscation
and encrypted computation as a service (using homomorphic encryption and consensus-enforced
conditional decryption), and many others. This basic functionality is an enabler for solutions that
treat the blockchain as a trusted party that performs complex tasks for its clients protected by the
integrity properties of the blockchain.

In this work we investigate the functionality of keeping a secret on the blockchain, in the context
of public proof-of-stake blockchains. In this context, to achieve a scalable solution we need the “will
of the blockchain” to be represented by a small committee. At the same time, we need our solution
to remain secure even against a mobile adversary that can corrupt different participants at different
times, as long as it corrupts no more than a set fraction of the total stake at any single time interval.
But this presents us with a challenge: If we use small committees, the adversary would have enough
“corruption budget” to corrupt them all.

One beautiful approach for addressing this challenge is using the player replacability property
of systems such as Algorand [CM19]. In such a system, committees are selected to reach consensus
on blocks. and each selected member is charged with sending a single message. Moreover, the
member remains completely anonymous before it sends that message. The attacker, not knowing
the identities of the selected members, cannot target them for corruption until after the committee
finishes its job. This idea is implemented using “cryptographic sortition” based on verifiable random
functions (VRFs) [MRV99].

Using this same approach for the purpose of keeping a secret is far from simple. How can one
share a secret among the members of a committee without knowing who they are? At first, this
may seem “obviously impossible.” It appears that to distribute a secret among the members of a
small unknown committee would require that any small committee be able to recover the secret.
But then also the committee of all corrupted players will be able to recover it. Luckily this naive
thinking is incorrect, as there are other aspects of a blockchain that let us solve this problem.

We note that a “solution” to the above problem can be devised [GG17] using the cryptographic
sledgehammers of witness encryption [GGSW13] and/or obfuscation [BGIT12, GGH"16]: The idea
is that “the committee votes to open the secret” can be made into an NP-statement, so we can
use witness-encryption relative to that statement. While this shows that polynomial-time solutions
may exist, we are interested in solutions that can be used in practice.

1.1 Using Proactive Secret Sharing

In this work we address the above challenges using proactive secret sharing techniques [OY91, CH94,
HJKY95]. In this approach, the secret is shared among members of a dynamic committee which is
refreshed every few rounds. Whenever the committee changes, a handover protocol is executed in
which members of the current committee re-share the secret among the members of the next one,
in a way that prevents the adversary from combining shares from different committees. Crucially,



our solution uses the “anonymous committee” technique mentioned before, so the attacker does
not know the identity of committee members until after they hand over fresh shares to a new
committee and erase their own. So by the time the attacker learns the identities, there is no point
in compromising these parties.

Early work on proactive secret sharing assumed a fixed committee (say of size N), where
parties are occasionally corrupted by the adversary and later recover and re-join the honest set.
A drawback of these protocols in our context is that they require all the members to participate
in every handover protocol. In the case of public proof-of-stake blockchains, this solution is not
scalable to a huge number of users since every stakeholder has to participate all the time.

The case of dynamic committees was addressed in a number of previous works (e.g., [SLLOS,
BDLO15, MZW™'19]), but these protocols do not ensure the anonymity of new committees. In our
setting we need a method of selecting the members in the next committee and sending messages to
them, without the senders knowing who the recipients are. Moreover, communication in our model
must be strictly one way, since the adversary learns a node’s identity once it sends any message. In
fact committee members are not even allowed to know the identities of their peers (since some of
them may be adversarial), so interactive protocols among the current members are also not allowed.
Designing a solution in this challenging context is the main contribution of this work.

1.2 Overview of Our Solution

Our solutions consists of time intervals (or periods) with a handover protocol at the beginning of
each one. In each period i, the secret is shared among members of a period-i committee, and the
committee changes from one period to the next. The committee at every period is small, consisting
of only ¢; members out of the entire universe of N users. This lets us reduce the complexity of
the handover protocol from Q(n) to O(¢;) broadcast messages, while retaining comparable security.
Our proactive solution is based on the Shamir secret sharing scheme [Sha79], and uses the following
components:

e We use the blockchain itself in several roles. First, it gives us a public-key infrastructure.
Namely, we assume that in each period ¢ we have a set of IV; parties and every party knows
the long-term public keys of the other parties. In addition, the blockchain provides us with a
broadcast mechanism. Namely, every party can broadcast a message to all other parties, which
would reach all of them in at most ¢ rounds (where ¢ is a known bound).

e We use a cryptographic sortition process for choosing random but verifiable committees. See
section 2.4.

e We use two PKE schemes, one for long-term keys and the other for ephemeral committee-specific
keys. The long-term PKE needs to be anonymous [BBDPO01], namely, ciphertexts under that
scheme do not disclose the public key that was used to generate them, see section 2.6. We also
need a specific combination of these schemes (see below) to be secure against receiver-selected-
opening attack, see section 2.5.

e We use non-interactive zero-knowledge (NIZK) proofs for statements about encrypted values
lying on a low-degree polynomial (under the ephemeral scheme). The number of values in each
one of these statements is small, essentially the size ¢; of the committees from above.
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Figure 1: Nominating and holding committees, the red dots represent corrupted parties.

The crux of our solution is a method for selecting the committee to hold the secret, allowing
the secret to be passed from one committee to the next while keeping members of the committee
anonymous. We use two different committees for that purpose:

o A holding committee that holds shares of the secret.

e A nominating committee whose role is to choose the holding committee (the nominating
committee does not hold shares).

Crucially, the nominating committee can be self-selected using cryptographic (verifiable) sortition,
since its members need not know any global secrets. Once self-selected, each member of the
nominating committee chooses one member of the future holding committee and publishes on the
blockchain information that allows the members of the current holding committee to re-share the
secret among the members of the next holding committee. Nothing in the information published
by the nominating committee or in the resharing actions should reveal the identity of any member
of the new holding committee to anyone other than the member itself. See fig. 1 for a pictorial
illustration of this process.

In more detail, every member of the nominating committee chooses one member of the holding
committee at random, then chooses and posts to the blockchain a new ephemeral public-key for that
party, along with an encryption of the corresponding ephemeral secret key under the party’s long-
term public key. We use anonymous encryption to ensure that the ephemeral keys and ciphertexts
do not betray the identities (or long-term keys) of the holding committee members. Only the
members selected by some nominator can learn which keys were encrypted under their long-term
public keys. Note that the ephemeral keys themselves may use a different encryption scheme,
which need not be anonymous. Only the ciphertext under the parties’ long-term keys must be
anonymous. '

Once the ephemeral keys of the next committee are posted, everyone knows the size of that
committee (call it ¢;). Each member of the current holding committee re-shares its share using
a t-of-c¢; Shamir scheme (for some agreed-upon threshold ¢), then uses the j’th ephemeral key to
encrypt the j’th share and broadcast all these encrypted shares along with a proof that the sharing
was done properly.

"However, the mobile adversary in our setting can see the public keys and ciphertexts and then decide who to
corrupt. Hence the combination of long-term and ephemeral schemes needs to be secure against selective opening
attacks.



Members of the next holding committee recover their ephemeral secret keys by decrypting the
posted ciphertexts using their long-term keys. Each member then collects all the shares that were
encrypted under its ephemeral key and uses them to compute its share of the global secret in the
new committee. Note that all these ciphertexts are publicly known, so they can serve also as a
commitment to the share, enabling the holding committee member to prove correct re-sharing in
the next iteration of the protocol. (If the ephemeral PKE scheme is also linearly-homomorphic,
then it may be possible to compress this commitment to a single ciphertext encrypting the share
of that party.)

An important feature of this solution is that it does not require the nominating committee to
prove anything about how they chose their nominees or how the ephemeral keys were generated.
(Note that proving the selection would be of limited value since even if we force corrupted members
of the nominating committee to abide by the protocol, they can corrupt the nominees as soon as they
are chosen.) Dispensing of any proofs in this step simplifies the protocol a great deal. Asking the
nominating committee to prove anything about their choice while maintaining anonymity would
have required the use of expensive SNARKs. In contrast, the statements being proven in our
solution (and their witnesses) are all short: Their size size depends only on the committee size, and
does not grow with the total stake or the history of the blockchain. Hence the NIZK complexity
in our solution is just polynomial in the security parameter, even if we were to use the most naive
ones.

On the other hand, the lack of proofs by the nominating committee allows the adversary to
double dip: An adversary controlling an f fraction of the stake will have roughly an f fraction
of the nominating committee members (all of which can choose to nominate corrupted parties to
the holding committee), and another f fraction of the holding committee members nominated by
honest parties. Hence, our solution can only tolerate adversaries that control less than 25% of the
total stake. In the appendix we discuss a variant of the protocol that does require SNARKSs and is
resilient to a higher percentage of adversarial stake, but in a weaker adversary model.

We also comment that members of the holding committee must replace the secret key for
their long-term keys (and erase the old secret key) before they post their message in the protocol.
Otherwise the adversary can corrupt them and use the old secret key to decrypt everything that was
sent to them (in particular the shares that they received). This means that these “long-term keys”
are either forward-secure, or they are not really long-term but are used once and then discarded.

1.2.1 Aside: anonymous PKE and selective-opening

Our solution relies on the use of anonymous PKE in a setting with dynamic corruptions. This
brings up the question of whether anonymous PKE remains anonymous under selective-opening
attacks. Note that for secrecy, it is known that semantic-security does not implies secrecy against
selective-opening. For anonymity, however, we provide in appendix B.1 strong evidence that the
answer is yes. Namely anonymity in the static case implies also anonymity against selective opening.
However we do not fully resolve this question, it remains an interesting problem for future work.

1.3 Related Work

Secret sharing was introduced in the works of Shamir [Sha79] and Blakley [Bla79]. The proactive
setting stems from the mobile adversary model of Ostrovsky and Yung [OY91] followed by works
of Canetti-Herzberg and Herzberg et al. in the static setting [CH94, HIKY95, HJJT97]. The



dynamic setting where the set of shareholders changes over time was contemplated in several works,
cf., [DJ97, WWWO02, ZSvR05, STY05, SLL10, DGGK10, BDLO15]. We refer the reader to Maram
et al. [MZW19] for a detailed comparison of these works (in particular, see their Section 8 and
Table 4).

Several works also deal with dynamic shareholder sets in the context of blockchain. The Ekiden
design [CZK™19] provides privacy in smart contracts using a trusted execution environment (TEE).
They also use threshold PRFs to derive periodic contract-specific symmetric keys for encrypting
smart-contracts. Their scheme is described using a static committee but they suggest the use of
proactive secret sharing and rotating committees for increased security. Calypso [KAST18] uses
blockchain and threshold encryption to build an auditable access control system for the management
of keys and confidential data. That work contemplates the possibility of shareholder committees
changing periodically to accommodate the dynamic nature of participants in a blockchain setting.

Helix [ACG™18] selects per-block committees who agree on the next block in the chain using
a PBFT protocol. A main characteristic of Helix, originating with the Honey Badger BFT work
[MXCT16], is that selection of transactions for inclusion in a block is done while the transactions
are encrypted (and routed anonymously) hence avoiding biases in the selection. Only after the
transactions for inclusion are decided, Helix uses the shareholders committee to decrypt them
using threshold decryption. In addition, Helix uses the threshold decryption scheme to implement a
verifiable source of randomness that seeds the selection of the next committee (committee members
are selected with probability proportional to their reputation rank). However, in strong contrast
to our use of threshold schemes, in Helix the set of shareholders is static. Dfinity [HMW18] also
uses threshold cryptography (signatures in their case) and dynamic shareholder committees for
implementing a randomness beacon but the shared secret changes with each new committee.

Closest to our work is CHURP [MZW19] that builds proactive secret sharing over dynamic
groups in a blockchain environment. Their goal is to minimize communication in the “optimistic
runs” of the protocol. The crucial difference between their work and ours is that they simply
assume a bound of t corrupted committee members, without regard to how to ensure that such a
bound holds. In fact their techniques are inapplicable in our setting, as they crucially build on
active participation of the receiving committee in the handover protocol. As a result, in the mobile
adversary model that we consider their protocol is either non-scalable (requiring participation of
all the stakeholders) or insecure (if using small committees). In contrast, our main goal is to
maintain absolute secrecy of the new committee members during handover, to enable the use of
small committees.

2 Background and Definitions

2.1 Synchrony, Broadcast, and PKI

We use the blockchain as both a synchronization mechanism and a broadcast channel. For
synchrony, we assume that all parties know what is the current block number on the blockchain.
For communication, any party can broadcast a message to the blockchain at round ¢, and be assured
that everyone will receive it no later than round 7 + ¢ (where ¢ is a known bound). Moreover, a
party that received a message on the blockchain in round ¢ is ensured that all other parties received
the same message at the same round.

An important feature of our solution is that it uses broadcast as the only communication



mechanism. This solution is built around the premise that parties remain anonymous until they
post a message. This means in particular that a party can only receive a message if everybody else
also received it, else a network adversary could notice that party and target it for corruption.

Finally, we use the broadcast mechanism to implement the PKI that we need. Each party in
our system can simply broadcast a public key on the blockchain, hence letting everyone else know
about this key.

2.2 The Mobile Adversary Model

We use essentially the Ostrovsky-Yung adversary model from [OY91], with parties that are
occasionally corrupted by the adversary and can later recover and re-join the honest set. In our
setting of a public proof-of-stake blockchain, it takes some care to define what we mean by a party.
While it is possible to consider each token as a party, we find it more natural to keep the traditional
view of parties represented by cryptographic keys, where each key controls some number of tokens
(which are the stake of that key).

In our model the “corruption budget” of the adversary is expressed in tokens rather than in
parties. That is, we assume that the adversary can control up to some fraction of the total stake,
rather than some fraction of the keys. This can be formulated using a UC-like environment that
provides parties with tokens and move those tokens between them at will. As normal with honest-
majority protocols, our protocol will only be secure against environment /adversary pairs where the
adversary never corrupts parties controlling more than f-fraction of the overall tokens, with f a
parameter of the protocol (in our case f < 0.25).

The stake of compromised parties. Assuming that parties can recover from compromise may
seem questionable in our context. After all, if the adversary corrupts a party holding some stake,
can’t it just “take the money and run”? That is, can’t the adversary simply transfer all the stake
of a corrupted party into the adversary’s own coffers, thereafter forever controlling it?

The answer lies in the distinction between keys that control tokens (called spending/withdrawal
keys) and keys that are used in the consensus (called participation/validation keys): PoS blockchain
usually assume that stake-controlling keys are kept highly secure (e.g., offline, in a hardware device,
or using some secret-sharing mechanism), and are only accessed infrequently. The cryptographic
keys used for the consensus, on the other hand, must be accessed frequently and kept online. In
our model we therefore assume that the token-controlling keys are (almost) never compromised,
but the consensus keys are easier to corrupt. A corrupted party is one whose consensus key was
compromised, and it can later recover by (cleaning up the node and) using the token-controlling
key to choose and broadcast a new consensus key.

Epochs and periods. The speed in which the adversary can move between parties is captured
(for the most part) by breaking the lifetime of the system into epochs, and assuming that the set of
all the parties that are compromised at any time during the epoch controls at most some f fraction
of the total stake. (To simplify notations we assume that the total stake is held fixed during each
epoch. While not strictly needed, it makes is easier to talk about the total stake N; in the i’th
epoch.)

As is common in the proactive security literature, parties may be unaware of the fact that they
were compromised in the previous epoch, hence they must run some recovery procedure in every



epoch, just in case they were compromised. In our case, the only operation that all parties must
do every epoch is to choose a new consensus key pair and broadcast their new public key signed by
their token-controlling key. In addition, parties must also refresh their consensus keys each time
they participate in the periodic re-sharing protocol (and also if they participate in reconstructing
a shared secret, producing a threshold signature, etc.).

While epochs may be long (e.g., weeks or more), our solution enables a much more rapid refresh
of the shares (e.g. every few minutes). Importantly, this refresh operation is cheap, involving
only broadcast messages from the handful committee members. For example, rapid refresh of the
secret may be needed when that secret is used by a higher level application (e.g., to decrypt or
sign something). Every time the secret is used, the adversary can identify the current holding
committee and target them for corruption, hence the committee must rotate and the shares must
be refreshed. We thus further partition each epoch into periods, and the sharing of the secret is
refreshed every period.

Three different corruption modes. It is instructive to consider the type of corruptions we are
likely to confront in a PoS blockchain and their characteristics.

o Mostly static adversarial base. There may be a set of token keys that are held by the adversary,
and hence their consensus keys remain adversarial throughout. While that set (and the stake
that it holds) is not completely static, it may be reasonable to assume that it changes slowly.

e Somewhat dynamic node corruptions. A second type of adversarial parties represent nodes
where the stake key is held by honest participants but the consensus keys are subject to
compromise due to security breaches. These tend to be more dynamic from the first set,
but corruptions still require significant effort on the part of the attacker. It may be reasonable
to assume that corruption of new nodes usually takes significant time, possibly in the order of
full epochs.

o Fully dynamic fail-stop. A third set of “adversarial” nodes are fail-stop nodes, that are just
knocked off due to denial-of-service (DoS) attacks. It seems reasonable to assume that the
adversary can mount a DoS attack almost instantaneously and keep it going for a while.

Our main solution in section 3 only assumes a bound on the fraction of total stake held by
the adversary at any epoch, but it is only resilient to a compromise of less than 25% of the stake.
In contrast, in appendix A we sketch a variant of the solution that remains secure even against
adversaries that control higher stake (more or less 35%), but only if the adversary is slow-moving
and full corruption takes more than one epoch to inflict. (That protocol remains secure even when
the adversary can inflict fail-stop corruptions quickly.)

2.3 Proactive Secret Sharing

Recall that in Shamir secret sharing [Sha79], a secret o is shared among n parties with recovery
threshold ¢ (denoted t-of-n sharing) by choosing a random degree-(t — 1) polynomial whose free
term is o (over some field F of size at least n+ 1), associating publicly with each party i a distinct
point «; € F, then giving that party the value o; = F(a;). A collection of ¢ parties or more can
interpolate and recover the free term of F.

Proactive secret sharing [OY91, CH94, HJKY95] is a method of maintaining a shared secret in
the presence of a mobile adversary. In a proactive secret-sharing protocol, the secret is re-shared in



every time period in such a way that shares from different periods cannot be combined to recover
the secret. The only way to recover the secret is to obtain enough shares from the same period, a
task which is assumed to be beyond the adversary’s grasp. We included in section 1.3 some details
on different solutions to this problem in different setting.

2.4 Verifiable Random Functions and Cryptographic Sortition

A verifiable random function (VRF) [MRV99] is a pseudorandom function that enables the key
holder to prove (input, output) pairs. Technically it consists of key-generation, evaluation, and
verification: The key generation chooses public and secret keys, evaluation takes the secret key and
an input and returns the function value and a proof, and verification takes the public key, input,
value, and proof, and outputs accept or reject.

The security properties of a VRF are (a) pseudorandomness: the function value (sans proofs)
are pseudorandom, even given the public key; (b) completeness: the (value, proof) pairs that
are output by evaluation are accepted; and (c) uniqueness: it is infeasible to generate a public
key, an input, and two different (value, proof) pairs, which are both accepted by the verifier (wrt
these public key and input). Constructions of VRFs are known under various number theoretic
assumptions (such as RSA, DDH, or hardness in paring groups), with or without the random-oracle
heuristic.

VRFs can be used to implement cryptographic sortition, which is essentially a verifiable lottery
[CM19]. In its simplest form, there is a prescribed random process outputting yes with some
probability p or no with probability 1 — p. The parties are supposed to run this process in order
to self-select themselves to a committee. Each party has a VRF key pair, the parties all know
each other’s public keys, and there is a publicly known input value that they all agree on. Each
party computes the VRF on the public input using its secret key, thereby obtaining a random
seed that it can use to run the prescribed random process, and this random process tells the party
whether or not it was selected to the committee. Moreover the party can prove to everyone that
its self-selection was done properly, by exhibiting the seed value along with the VRF proof.

Ideally, we would like to model cryptographic sortition as a “perfect” lottery functionality that
chooses for each party whether or not it is included. (The functionality also tells everyone else
about that choice, once the party in question authorizes the disclosure.) However, there are many
setting (including ours) where the VRF implementation sketched above falls short of implementing
this “perfect” functionality. The reason is that the adversary has some influence over the public
input, making it possible for it to try many inputs until it finds one that it likes.

We therefore add to the model an initial phase where the adversary can reset the lottery
arbitrarily many times, each time getting the choices corresponding to the parties that it controls.
Eventually the adversary decides that it is happy with its choices, and then the lottery functionality
is activated for everyone. This functionality is described in fig. 2.

2.5 Selective-Opening Security for PKE

In a selective opening attack on an encryption scheme [DNRS03, CFGN96], the adversary is given
a set of n ciphertexts, encrypting n possibly related messages, and then chooses a t-size subset of
the ciphertexts to be opened. Ciphertexts are opened either by corrupting senders (revealing their
messages and encryption randomness) or by corrupting receivers (revealing their decryption keys).
The scheme is SOA-secure if the adversary learns nothing about the unopened messages beyond



Cryptographic Sortition
Parameters are probability p € (0,1) and a set of N parties Py, ..., Py.

1. Initialization. For eachi =1,..., N choose a random independent bit b; with Pr[b; = 1] = p.
The adversary can repeatedly request to see all the bits for the corrupted parties, and can
ask that all the bits will be chosen afresh. Once it is happy with its bits, the adversary can
end this phase and move to Phase 2.

2a. Lottery. Once initialization ends, every party P; can ask for its state, getting the bit b;.

2b. Verification. All parties begin in private mode, and any party can ask at any time for its
mode to be changed to public mode. A party P; can ask for the state of any other party P;,
getting L if P; is still in private mode or the bit b; if P; is in public mode.

Figure 2: The cryptographic sortition functionality.

what’s implied by the opened ones. This requirement can be formulated using either simulation or
indistinguishability [BHY09, BDWY12, HPW15]. Unfortunately, neither formulation follows from
semantic security [GM84, BHY09, BDWY12, HRW16].

Our protocol uses an encryption scheme that has selective opening security for receiver
corruptions, and the weaker indistinguishability-based notion suffices for our purposes.? We follow
Hazay et al.’s definitions of indistinguishability-based receiver-selective-opening security (RIND-
SO) [HPW15], which build on [DNRS03, BDWY12].

In the RIND-SO security game, the adversary sees a vector of ciphertexts, encrypting messages
that are drawn from some distribution D. It obtains the opening of a selected subset of them (by
obtaining secret keys), then receives from the challenger either the actual remaining plaintexts, or
fake remaining plaintexts that are drawn afresh from D conditioned on the opened plaintexts. (This
game requires that D be efficiently resamplable [BHK12], namely it should be feasible to draw from
D conditioned on the opened plaintexts.)

Definition 2.1 (Efficiently Resamplable Distribution). Let k,n > 0 and let D be a distribution
over ({0,1Y¥)". We say that D is efficiently resamplable if there is a PPT algorithm Resampp such
that for any Z C [n] and any partial vector m’; consisting of |Z| k-bit strings, Resampp(m’) returns
a vector m sampled from D|m/ — i.e., m is sampled from D conditioned on mz = m’.

Definition 2.2 (RIND-SO Security). For a PKE scheme PKE = (Gen,Enc,Dec), security
parameter \, and a stateful PPT adversary A, the RIND-S0 game EXp?%{SO(A, A) is as follows.

ZNote that dealing with sender corruptions is trivial in our setting, as we anyway need to assume secure erasure
because proactive security is impossible without it.
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The advantage of the adversary A is 2 - |Pr[b = b] — % . We say that the scheme is RIND-SO

secure if every PPT A only has advantage negligible in .

Constructions using complexity leveraging. While not following from standard semantic
security (against CPA), selective-opening security can be obtained from exponentially CPA-secure
encryption via complexity leveraging. Starting with an encryption scheme that has (at least)
subexponential security, one sets the security parameter A\ relative to t so that the IND-CPA
adversary’s advantage is exp(—w(tlog \)). With comparatively large probability exp(—O(tlog X)),
the simulator will correctly guess which subset of ¢ ciphertexts the adversary will open, and will have
no trouble opening them. Accordingly, the adversary’s advantage must also be exp(—w(tlog\)).

Constructions from non-committing encryption. Encryption schemes with selective-opening
security also can be built from receiver-non-committing encryption (RNCE) [CFGN96]. In a
receiver-non-committing encryption scheme, there is a simulator that can generate fake public keys
and ciphertexts, computationally indistinguishable from real ones, such that later the simulator
can open the ciphertext to any given message (by providing an appropriate secret key). Nielsen
[Nie02] used a counting argument to show that an RNCE scheme must have secret-key at least
as long as the total size of plainetxts that are encrypted to it. However, Hazay et al. [HPW15]
showed that RIND-SO security can be obtained from a weaker “tweaked” notion of RNCE, and
that a construction due to Canetti et al. [CHKO05] achieves the desired notion under the Decision-
Composite-residuosity (DCR) assumption.

2.6 Anonymous Public Key Encryption

For our solution we need to use anonymous public-key encryption [BBDPO1] to hide the link
between parties and their (ephemeral) keys. Namely, a ciphertext should not betray the public key
that was used to generate it. An anonymous PKE has the same key-generation, encryption, and
decryption routines as a standard PKE, and we need the same semantic-security guarantees (i.e.
CPA-security). In addition we need the following anonymity property:

Definition 2.3 (Anonymity [BBDPO1|). A PKE scheme & = (Gen,Enc,Dec) is said to be
anonymous if ciphertexts cannot be tied to the public key that was used to generate them. This
is formulated by the following game, between a challenger and the adversary:
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1. The challenger runs the key generation twice to get (pk;,sk;) < Gen(1*,$) for i = 0,1, and
sends pkg, pky to the adversary.

2. The adversary responds with a plaintext message m. *

3. The challenger chooses a secret bit b, encrypts m relative to pk, to get ct < Encp(m), and
sends ct to the adversary.

4. The adversary outputs a quess b’ for the bit b.

The advantage of the adversary is 2 - |Pr[b =b'] — % , and the scheme is anonymous if polynomial-

time adversaries only have negligible advantage (in the security parameter).

It is well known that most DL-based schemes and most LWE-based schemes are anonymous,
and there are many variations of factoring-based schemes that are also anonymous. As we
mentioned in the introduction, in our setting we use the anonymous PKE in a setting with selective
opening, raising the question of whether Definition 2.3 implies anonymity also in that setting.
Neither defining the question nor answering it is straightforward, we provide partial treatment in
appendix B.1, giving “strong evidence” that Definition 2.3 is indeed sufficient even against dynamic

corruptions.

2.7 Non-Interactive Zero-Knowledge Proofs

Let L be a language defined by the polynomial-time-computable relation R. That is, R is a subset
of {0,1}* x {0,1}* such that membership of (z,w) in R can be decided in time polynomial in ||,
and L = {z|3w : (z,w) € R}.

Definition 2.4 (Non-Interactive Zero-Knowledge Argument System). A non-interactive zero-
knowledge argument system for an NP-language L with relation R consists of PPT algorithms

(CRS,P,V) with the following properties:

e Completeness: For every (z,w) € R, it holds that:

Pr {a — CRS(1");V(0,z,P(0, ,w)) = 1} =1.

e Soundness: For every PPT function f:{0,1}P°%N) — {0,1}*\ L and all PPT algorithms P*,
there exists a negligible function v such that for all A:

Pr [a « CRS(1M:VO (0, f(0), PO (o)) = 1} < ()

where O : {0,1}* — {0,1}* is a random function.

e Zero-Knowledge: For all PPT adversaries A, there exists a PPT simulator S and a negligible
function v such that for all A:

Pr [a « CRS(1}); APEa0) (1A &) = 1} _Pr [0  CRS(1M); ASE2) (12 ) = 1] ) <v(\).

3This message need not be in the plaintext space relative to these keys. Note that in that case the anonymity
property implies that the scheme could also “encrypt” things outside of its plaintext space (although the result may
not be decryptable).
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2.8 Instantiating the Building Blocks for Our Solution

As we sketched in the introduction, our solution uses two PKE schemes, external one for the long-
term keys and internal one for the ephemeral keys. Denote these schemes by & (external) and
& (internal), and denote their combination by &;. Namely, & uses long-term keys from &, and
encrypts a message by choosing an ephemeral key pair for &, encrypting the ephemeral secret
key by the long-term public key, and encrypting the message by the ephemeral public key. The
properties of these schemes that we need (in addition to semantic security) are:

e &1 should be anonymous as per Definition 2.3.

e The combination & should be receiver-selective-opening secure (RIND-SO) as per Defini-
tion 2.2.

In addition we would like the internal scheme &; to be “secret-sharing friendly”, in the sense that it
allow efficient NIZK proofs that multiple values encrypted under multiple keys lie on a low-degree
polynomial. Below we sketch some possible instantiations, more details are deferred to future
versions of this manuscript.

DCR-based instantiation. One method of achieving the security properties is to use for & a
scheme which is both anonymous and receiver-non-committing (RNCE) and for & a scheme which
is just receiver-non-committing. This means that the combination &5 is also RNCE, and therefore
RIND-SO.

Since we only need the indistinguishability notion RIND-SO, we can use the weaker notion
of “tweaked” RNCE from [HPW15]. This method can be instantiated based on the decision-
composite-residuosity (DCR) assumption. We begin with the DCR-based RNCE scheme of Canetti
et al. [CHKO05], and apply the usual anonymization methods for factoring-based scheme to make
it also anonymous (e.g., add a random multiple of n, see [HT07]).

This instantiation is also reasonably sharing-friendly, we can have a secret holder provide a
Pedersen commitment to its secret, and prove that the encrypted shares are consistent with the
commitment. A detailed description of such a scheme including the necessary zero-knowledge
proofs can be found in [LNR18, Sec. 6.2.4], and can be made non-interactive using the Fiat-Shamir
heuristic.

DDH-based instantiation. A variation of the above can also be instantiated under DDH. In this
variant, we roughly replace Shamir secret sharing with a Shamir-in-the-exponent sharing (hence
the secret is a random group element ¢g°). This means that the share holders can recover ¢, but
not s itself. This supports applications that recover an individual secret but may not suffice for
more complex threshold functions. We can then use the DDH-based RCNE scheme from [CHKO05],
and since we do not expect to recover s itself then we do not have the limitation from [CHKO05] of
only encrypting short messages. This DDH-based scheme can be easily made anonymous, and also
allow simple NIZK proofs via the Fiat-Shamir heuristic.

Unfortunately, the above approach does not work as described due to the external-internal
structure of our PKE encryption. Indeed, while we don’t need to recover s in the internal PKE,
we do need to recover the secret key which is encrypted under the external scheme. We therefore

4The witness for such proof consists of the secret key for one of the keys and the encryption randomness for all
the others.
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replace the external-internal structure with a single anonymous PKE with randomizable keys, as
described in appendix A. Such a scheme can be constructed from the DDH-based RCNE scheme in
[CHKO05] and it has all the properties that we need (with the limitation that share holders recover
the secret ¢g° rather than the exponent s).

Lattice-based instantiation. A plausible direction for implementing our schemes with lattice-
based cryptography is to use a variant of Regev encryption [Reg09]. This cryptosystem is clearly
anonymous, and has reasonable (if somewhat long) zero-knowledge proofs. In that case, we can
even pack many ephemeral keys and the ciphertext that are encrypted under them, using a PVW-
like scheme [PVWO0S]|, and take advantage of the packing to make the proofs more efficient, as
described by Lyubashevsky and Neven in [LN17, Sec. 3]. (While we are not aware of LWE-based
constructions of RNCE, it seems very plausible that such constructions can be achived by adapting
leakage-resilience techniques that are used for in this domain.)

Heuristic instantiations. To achieve a fully practical scheme, one may need to resort to some
heuristic assumptions. One would start with external and internal schemes that have good NIZK
proofs (with an anonymous external scheme), and assume that the composed scheme is RIND-
SO secure. Such an assumption seems quite reasonable, as the only counter-example of a scheme
which is semantically secure but insecure for encrypting Shamir shares is very contrived (and uses
obfuscation) [HRW16]. Moreover the anonymity of the external scheme suggests that selective-
opening attacks on the internal scheme are much harder to mount.’

3 Our Proactive Secret Sharing Solution

The core of our design is the handover protocol, a proactive secret-sharing protocol in which the
committee holding a shares of a secret at period i transfers this secret in shared form to a new
holding committee of period i+ 1. If we knew the identities of the period (i+ 1) holding committee,
then they could use existing proactive secret-sharing mechanisms to transfer the secret. However,
in our setting the new committee members must remain anonymous, so prior solutions cannot be
used. To overcome this problem we introduce an intermediary committee called the nominating
committee, as described below.

We assume that each party in the network has a long-term public key for an anonymous PKE,
which is known to all other parties. The period ¢ holding committee holds shares for a t-of-c;
Shamir secret sharing of global secret o, where ¢; is the size of the committee. In addition, there
are commitments to these shares that are publicly known by all. The protocol consists of two
phases, a nomination phase and a proactive phase

The first step is a nomination phase, where a nominating committee nominates the period 7 + 1
holding committee. The members of the nominating committee are self-selected by cryptographic
sortition. For each seat on the nominating committee, the party holding that seat nominates one
seat for the holding committee. The period (i + 1) holding committee therefore comprises of ¢;11
seats, and each seat will hold one new share in the end of the protocol. Each nominator creates
an ephemeral key pair for its nominee, and encrypts the ephemeral secret key under the long-
term public key of that nominee. The ephemeral key pairs will be used to communicate with the

5 . . . . . .
°Drawing an analogy, the above assumption seems at least as reasonable as making circular-security assumptions
in the context of homomorphic encryption, which is a rather common practice.
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new committee without knowing who its members are, thereby transferring the new shares to the
period (¢ + 1) holding committee (and creating commitments for them). While the nominating
committee knows the identity of the new members, most of nominators are honest and therefore
most of the new holding committee members remain anonymous for the adversary. After all the
ephemeral keys are broadcast, the protocol enters the proactive phase.

Recall that the ephemeral secret keys are encrypted under the long-term public keys of members
of period (7 + 1) holding committee. Hence only these members can decrypt ciphertexts that were
encrypted under the corresponding ephemeral public key. Moreover since we use anonymous PKE,
them committee members remains anonymous to all other parties.

It the end of this phase, the period (i + 1) holding committee will hold shares for a t-of-
¢;+1 Shamir secret sharing of global secret ¢. Moreover, we will use ephemeral public keys and
ciphertexts as commitments to the plaintext values that are encrypted in them, which determine
the shares of the period (i + 1) holding committee member. This will later enable that member
to use NIZK proofs to prove that it re-shared its shares correctly. We now provide more details of
this protocol.

3.1 Nomination Phase

Self-selection. This phase begins with self-selection of a nominating committee using crypto-
graphic sortition. For a party p with stake N;i;, at the beginning of period (i + 1), the sortition
tosses Njy1, coins, each with HEAD probability C/N;11 — where N;y; is the total stake in this
period and C is a system parameter. Party p gets as many seats on the nominating committee as
the number of HEADs among its coins (hence the expected stake held by the entire nominating
committee is C).

Nominating next holding committee. For each seat on the nominating committee that
party p has, it chooses at random one of the N;;; tokens and assigns to (the owner of) that token
a seat on the period (i + 1) holding committee. Suppose that party q is assigned a seat. Let pk, be
its long-term public key for the anonymous PKE. For this seat, the nominating party p generates
a new ephemeral key pair (esk, epk), uses the long-term key pk, to encrypt esk, ct < Encpk, (esk),
and posts (epk, ct) to the blockchain. Then party p posts a sortition proof that it indeed has that
many seats on the nominating committee.

Once § rounds have passed in period (i + 1), all the ephemeral keys and ciphertexts, along with
the sortition proofs, will be visible on the blockchain. Let (epky,ct;),..., (ekai+l,ctci+l) be the
pairs whose sortition proofs are valid, ordered lexicographically by public keys. We number the
seats in period (i + 1) holding committee from 1 to ¢;41, such that the corresponding encrypted
key pair for seat k is (epky, cty). Note that the all honest parties have a consistent view of this list.

3.2 Proactive Phase

Previous-period committee members. We use a technique similar to [GRR98] to re-share
the secret among the ¢;11 seats on the period (7 + 1) holding committee. Recall that the shares of
period ¢ holding committee define a degree-(¢ — 1) polynomial F; with F;(0) = 0. WLOG each seat
j holds a share F;(j).

A party holding seat j on the period-i holding committee, with share F;(j), uses a t-of-c;41
Shamir secret-sharing to reshare that value. Namely it chooses a random degree-(t — 1) polynomial
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G such that G;(0) = F;(j), and sets 0 = G;(k) foreach k = 1,...,c;41. The party then encrypts
each Gj(k) under the k’th ephemeral public key, obtaining ctj, = Encepk, (0%). It will later post
that ciphertext on the blockchain, for the k’th seat on the holding committee of period i+ 1 to use
in computing its share of the global secret.

To ensure the integrity of this process we need a publicly verifiable secret sharing scheme [Sta96]
to re-share the shares, and moreover it has to be non-interactive. To that end, we use the
commitment that we have from the previous period to the shares F;(j), and a NIZK proof of
the statement that the sub-shares are generated properly. Specifically, let us denote by com; the
commitment from the previous round to the share F;(j), and let ct;1,...,ct;.,, be the ciphertexts
that the party holding seat j encrypted above. The party generates a NIZK proof for the statement
that (comj,ctj1,...,ctj.,, ) are commitment/encryptions of values that lie on a degree-(t — 1)
polynomial w.r.t evaluation points (0, 1,...,ciy1), respectively. Denote this proof by m; ;.

In addition, if there is some higher-level application that needs the use of the global secret (e.g.
to decrypt or sign anything), then party j also prepares the relevant messages for that application,
and we denote them by aux; ;.

Importantly, before sending any message, party j on the period ¢ holding committee chooses a
new long-term key-pair (denoted (sk;-, pk;)), and erases all the protocol secrets (including shares of
the global secret and all the secret keys).

Then party j broadcasts a single message, consisting of its evaluation point j, all the ciphertexts
ctj x that it encrypted, the NIZK proof m; ;, its new long-term public key pk;-, and whatever auxiliary
messages aux; j it prepared for higher-level applications.

Every party in the system. Each party p with long-term key pair (skj, pk,) must iterate
through all broadcast pairs (epky, cty) with valid sortition proofs. For every pair (epky, ctx), party p
tries to decrypt esky < Decg, (cty), and test whether it is the corresponding secret key for epky
(e.g., by encrypting and decrypting several random messages). If this is successful, the party p
owns seat k on the holding committee of period 7 + 1.

Next-period committee members. If party p has any seat on the holding committee of period
141, it waits for another § rounds and collects all messages that are broadcast by period ¢ holding
committee members. It orders those messages that include a valid NIZK proof lexicographically,
and chooses the first ¢ of them, corresponding to evaluation points ji, ..., ;. (Once again we note
that honest members of the period-(i+ 1) holding committee will agree on these messages and their
evaluation points.)

For each seat k that it holds, Party p collects all the ciphertexts in those ¢ messages that were
encrypted under the k’th ephemeral key, namely ctj, x,...,ct;, x. It uses the ephemeral secret key
that it recovered above to decrypt them, obtaining the values o;, , = G;, (k) through 0, , = G;, (k).

Let Aj,, ..., Aj, be the Lagrange coefficients for evaluation points ji, ..., j;. (Namely, the X’s are
coefficients such that for every degree-(t — 1) polynomial F' it holds that F'(0) = ZZ:l N - F(jr)-)
The share of the global secret corresponding to seat k is then computed as

Z )\j . Uj,k-
JE{I1s gt}
Moreover, the ciphertexts ctj, ,...,ct;, » are kept and used as the commitment value to this share

(with the decommitment information being the ephemeral secret key esky).
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We note that if the ephemeral PKE is linearly-homomorphic, then we may be able to use a
shorter commitment, namely ct; = y Aj - ctj i, rather than all the individual ct;’s.

Crucially, we were able to transfer shares of the global secret to the members of the holding
committee of period ¢ + 1, without having them send any messages. Hence most of them remain
anonymous (from the point of view of the adversary), and cannot be targeted for corruption.

Correctness. To see that the values computed by the holding committee members are indeed
shares of the global secret, let us define the degree-(t — 1) polynomial

Fiy1 = Z Aj -Gy,

J€{d1,dt}

where G is the polynomial chosen by the (holder of) the j’th seat on the period-i committee. Then
on one hand we have

Fin(0)= Y XN-Gi0)= > XN-F@)=F(0) =0

J€{i1,-de} J€{g1,dt}

On the other hand, for each seat k on the holding committee of period (i + 1), we have

dooNcoE= > N-Gik) = Fra(k).

J€{g1, .t} J€{g1,-dt}

3.3 Security Analysis

To prove the security of this protocol, we need to show that the holding committees hold shares of
the global secret o, while o remains (pseudo)random from the adversary’s point of view throughout
the handover protocols in the various periods. Namely, we consider a game in which the adversary
is given either the global secret o or another random secret o’, and we need to show that it only has
a negligible advantage in guessing which is the case. As usual, the proof involves a game between
the adversary and a challenger, and a sequence of hybrids that are proven indistinguishable via
reductions to the hiding and anonymity properties of the encryption schemes, or to the soundness
and zero-knowledge properties of the NIZK proofs.

Hy: The real protocol. This is a game where the challenger plays the role of all the honest
parties, and in particular knows the global secret and all the shares. The adversary gets the
secret ¢ in this game.

Hi: Soundness of NIZK proofs. In the next hybrid, the challenger aborts if at any point the
honest parties accept a proof from the adversary even though the encrypted quantities in
question do not lie on a degree-t polynomial. The challenger can detect this because it knows
all the shares and it sees everything that the honest parties see. Using the soundness of the
NIZK proofs, we argue that the challenger only aborts with negligible probability.

Hy: Zero-knowledge proofs. Next the challenger uses the NIZK simulator to generate the
honest-party proofs. Since it is zero-knowledge, the adversary cannot detect the difference.
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H3:

Anonymous PKE. In this hybrid the challenger aborts if the holding committee contains ¢
or more corrupted seats, or fewer than t honest seats. We use the anonymity property of the
long-term PKE to argue that this happens only with a negligible probability. This argument
has two steps, first we show that the adversary does not corrupt too many parties on the
nominating committee, this follows directly from Chernoff bound since it has no information
about honest members of the nominating committee. Then we consider the set A of parties
that were nominated by honest members of the nominating committee. Since the nominating
committee is mostly honest, then this set A is rather large, roughly of size (1 — f)c of the total
¢ nominees.

We then argue that while the adversary’s view contains information about this set (since the
ephemeral keys are encrypted under their long-term public keys), the adversary still cannot
target members of A for corruption due to the anonymity of the long-term PKE scheme. This
argument, explored in appendix B.1, is far from simple. In essence we need to show that an
anonymous PKE remains anonymous even against a selective-opening attack. The same does
not hold for secrecy properties of the PKE, in that context it is known that semantically-secure
PKE may fail to maintain secrecy against selective-opening attacks (see below).

In appendix B.1 we formulate the property of a PKE remaining anonymous under selective-
opening together with a conjecture that any anonymous PKE is also anonymous under selective-
opening. While we were not able to prove it yet, we do provide strong evidence in support of this
conjecture. Specifically we consider semi-adaptive adversaries, that see all the public keys and
ciphertexts and then decide on a set of parties to open “in one shot.” This class already include
all the problematic aspects of selective-opening for secrecy, as well as all the negative examples,
yet we prove that any anonymous PKE is also anonymous against adversaries in this class. The
analysis for the general case boils down to analyzing a somewhat complex combinatorial game.
We believe that such a proof is possible, but leave it to future work.

: Secure encryption of shares. In this hybrid honest parties switch to encrypting the other

secret ¢’ rather than o (but the adversary still gets o). (Equivalently, we can have the adversary
getting o’ and the parties encrypting o.) We argue that the adversary cannot distinguish these
hybrids by reduction to the hiding property of the long-term and the ephemeral PKE.

The heart of the argument here is in showing that given n public keys epk;, and n ciphertexts
ct; that encrypt shares of a secret o under these keys, an adversary corrupting less than t keys
cannot distinguish o from a random and independent o’.

Here too we need to consider an adaptive adversary that can decide on the keys to corrupt after
seeing the ciphertexts, and the hiding property does not follow from semantic security of the
underlying scheme alone (see, e.g., [HRW16]). Instead, we need to assume that the encryption
enjoys selective-opening security for receivers [HPW15], as discussed in section 2.5. See more
details in Lemma B.2 in the appendix.

Finally we can undo the changes in hybrids Hs, Hs, arriving at a game where the adversary gets
o’ rather than o. The adversary’s inability to distinguish these hybrids imply that the secret is
(pseudo)random to it. Moreover, due to Hs we also know that there are enough honest members
in the holding committee to recover the secret when needed.
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3.4 Keeping the Committees Mostly Honest

Below we analyze the parameters of our scheme, specifically the fraction of corrupted stake that it
can withstand. Our analysis uses tail bounds for the binomial distribution, so we begin by stating
some properties of these bounds in the regime of interest. Let p € (0, 1) and let &k, n be integers with
pn < k < n, Our analysis is concerned with a setting where p = o(1) &~ C/n for some parameter C,
and we use following Chernoff bounds:

Pr[Bin(n,p) > pn(1 +¢€)] < exp(—npe?/(2+¢€)), and
Pr[Bin(n,p) < pn(l —€)] < exp(—npe?/2). (1)

Below we argue that the holding committee contains less than ¢ corrupted seats and at least
t honest seats (except with insignificant probability). Let N denote the total stake, and let f be
the fraction of stake controlled by the adversary. That is, we assume that the adversary controls
parties that hold no more than fNN tokens.

In this analysis we ignore computational issues such as anonymity against selective opening
that was mentioned above. We assume for simplicity that the adversary selects the keys to open
without any information about membership in the nominating- and holding-committees. In this
information-theoretic analysis we can make the following simplifying assumptions:

e The adversary is computationally unbounded, but still can only reset the sortition a bounded
number of times. Also it still needs to explicitly tell the challenger which parties are corrupted,
and they are subject to the corruption budget of fN tokens.

e Corrupted members of the nominating committee choose only corrupted members for the
holding committee, and

e The adversary corrupts all the f- NV tokens at the beginning of the handover protocol and these
remain unchanged throughout.

To see why we can make the last assumption (in this information-theoretic setting), observe that
any change in the number of corrupted seats that happens because the adversary make later choice
of who to corrupt, implies in particular that the adversary gained information about the not-yet-
corrupted members of the holding committee.

If we let ¢ denote the number of seats on the holding committee, ¢ denote the number of
corrupted seats, and t denote the threshold, then we need ¢ < t (for secrecy) and ¢ — ¢ >t (for
liveness). We show below how to set the parameter C' (that determines the expected committee
size) and the threshold t so as to get secrecy and liveness with high probability.

Recalling that our model of sortition allows the adversary to reset its choice many times, the
process that we want to analyze is as follows:

1. The adversary corrupts f - N tokens;

2. The adversary repeatedly resets the sortition until it is happy that enough of its corrupted
tokens are selected to the nominating committee;

3. With the sortition so chosen, the honest (and corrupt) tokens are selected to the nominating
committee;
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4. Each member of the nominating committee selects a holding-committee token, with the honest
ones selecting at random (and corrupted members always selecting other corrupted members).

Let ki, ks, ks be three security parameters for the analysis, as follows. We will assume the
adversary can the adversary can reset the sortition functionality in the process above at most 251
times.® We want to ensure secrecy except with probability 272 and liveness except with probability
27k3 We will use parameters €1, €2, €3, whose values we will fix later.

Let By = fC(1 + €1); By represents the maximum tolerable number of corrupted tokens in
the nominating committee. Let By = f(1 — f)C(1 + €2); By represents the number of additional
corrupted tokens in the holding committee. We will set the threshold at ¢ = By + By + 1. We then
set C, €1, €9, €3 to satisfy the following two conditions:

e Secrecy: Pr[p > t] <27
e Liveness: Pr[c— ¢ < t] <27,
The parameter €;. As described above, the adversary corrupts fN tokens, and then resets the

sortition functionality at most 2¥' times to try to get as many of these tokens selected to the

nominating committee as it can. The number of corrupted tokens in the nominating committee

for each of these 2% tries is a binomial random variable Bin(n = fN,p = %) We can set the

parameters C' and €; large enough so as to ensure that
Pr [Bin(fN,$) > fO(1+ )] < 27kl
in which case the union bound implies that
Pr[3 try with more than fC(1 + €;) corrupted tokens selected] < 27271,

Using Equation 1, a sufficient condition for ensuring the bound above is to set €; and C large

enough so as to get exp (—fN . % . 22:1) < 27ki=k2=1 o1 equivalently

(kl + ko + 1)(2 + 61) In2

C> Fer?

(2)

The parameter ¢;. We next bound the number of additional corrupted tokens in the holding
committee due to Step 4 above. Here we have a total of (1— f)N honest tokens, each one is selected
to the nominating committee with probability C'/N and then each selected honest token chooses
a corrupted token to the holding committee with probability f. Hence the number of additional
corrupted tokens is a binomial random variable with n = (1 — f)N and p = fC/N (and, unlike
in the analysis of €1, this time the adversary gets only on attempt—there is no resetting, because
the adversary cannot predict how sortition will select honest parties). The expected number of
additional corrupted tokens is therefore f(1 — f)C, and we get a high-probability bound on it by
setting C' and ey large enough so as

Pr |Bin((1 — f)N, L&) > f(1 — f)C(1 + &) < 27F27L

5Since in practice the adversary has very limited time in which to reset the sortition (e.g. less than 5 seconds in
the Algorand network), it may be sufficient to use k1 = 64.
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Here too, we get a sufficient condition by applying Equation 1. For this we need to set e and C

large enough to get exp (—(1 —f)N - %) . ;j;) < 27k2=1 or equivalently

(ko +1)(2 + €2)In2

¢ f(1 = fe?

(3)

The parameter €3 and the liveness condition. The conditions from egs. (2) and (3) ensure
the secrecy condition except with probability 27%2. It remains to set e3 and C to ensure liveness.
Recall that the liveness condition holds as long as the number of honest tokens (¢ — ¢) on the
holding committee is at least t. Honest tokens come to the holding committee as follows: an honest
token (out of (1— f)N total) gets chosen to the nominating committee (with probability C'/N), and
then chooses an honest token (with probability 1 — f) to the holding committee. Thus, the number
of honest tokens is a binomial random variable with n = (1 — f)N and p = (1 — f)C/N. (Again,
the adversary gets only one attempt, because the adversary cannot predict how sortition will select
honest parties, so resetting doesn’t help.) Since the expected value of this random variable is
(1 — f)2C, it is sufficient to ensure that ¢t < (1 — f)2C(1 — e3) for some €3 > 0 such that

Pr(Bin((1 — /)N, (1 — /)C/N) < (1= £*C(1 - e)] < 274
By Equation 1, this holds when exp ( — (1 — f)N - (1 — f)C/N - e5?/2) <273 i,

2]{33 In2

> lGa-ne

(4)
Recalling that our threshold was set to
t=Bi+Ba+1=fCAl+e)+fl-f)O1+e)+1l = C-(2+e+e)f —(1+e)f?) +1,
the condition t < (1 — £)2C(1 — €3) is equivalent to:

_ l—-(A+ea+e)f+2+e)f?-3%
o =77

()

Putting it all together. Given the fraction f of corrupted parties and the security param-
eters ki, ko, ks, we need to find some setting of the other parameters C, €1, €2, €3 that satisfies
the bounds in egs. (2) to (5). Clearly this is not possible when f > 0.25 (since in that case
there is no e3 > 0 that satisfies the condition from Equation 4). But for f which is bounded
below 0.25, we can set the €’s to something like (1 — 4f)/c for some moderate constant ¢, and get
C = O((k1 + k2 + k3)/(1 = 4f)?).

For example, let us choose security parameters k1 = 64, and ks = k3 = 128. The following table
demonstrates the values of C' that work different assumptions about the fraction f of corrupted
parties (we omit the values of €1, €9, €3 for conciseness; they can be easily obtained by a numerical
search):

5% 10% 15% 20% 25% 30%
C 595 1040 2050 7759 26091 impossible
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4 Applications

The solutions presented in this paper are broadly applicable, both in blockchain-specific contexts
and for traditional uses of threshold cryptography. We describe a few example applications in
this section. Perhaps the most natural application is for signing global blockchain state, such as
accounts state or the content of particular blocks, as describe in the first two examples below. While
this type of information can be validated by inspecting the blockchain itself, a threshold signature
backed by blockchain consensus provides compact validation that saves the need to traverse the
blockchain.” Later in this section we show how our techniques can turn a public blockchain into a
“distributed trusted entity” that can be used as a service for general secure computation.

Blockchain Checkpointing. Blockchain “checkpoints” that validate the state of the blockchain
at some points in time can be used to improve efficiency and security, particularly for initialization
of new nodes joining the network. For example, Leung et al. [LSGZ19] described a “vault” system
that essentially creates a sub-chain of checkpoints over an existing blockchain (e.g. every 1000
blocks), resulting in a dramatic savings in storage and computation. That solution, however,
still has per-checkpoint storage cost proportional to the size of the committees that created that
checkpoints, and moreover the blockchain verification time is still asymptotically linear.

Our technique enables a simpler solution, where the blockchain maintains a secret signature key
and the holding committees use it to sign the blocks. This way, the checkpoints can be compressed
to essentially a single signature that can be validated by anyone with the public key. In more
details the blockchain is associated with a signature key-pair (pkp,skp), where pkg is included in
the genesis block and skp is maintained via our proactive secret sharing protocol. To generate
a checkpoint at an agreed-upon round ¢, each member j of the current holding committee (that
holds a share o of a t-of-n Shamir sharing of skp) uses o; to produce a signature share s; ; on the
current blockchain state, and propagates s; ; to the network. Subsequently, any blockchain user can
combine ¢ shares {s; j} non-interactively and obtain a signature s; on the state. Anyone can then
validate the blockchain state just by verifying that one signature. (In particular, a user joining the
network does not need to traverse the blockchain.)

Cross-Blockchain Token Bridge. Another attractive application in the blockchain context
is cross-blockchain validation of transactions or other blockchain state (e.g., for cryptocurrency
conversions, smart contracts that depend on two or more platforms, etc.). Naively, such token
bridges require trusted parties that vouch for the state of one blockchain on the other. Using our
technique, we can have the blockchain vouch for its own state, using the same signature mechanism
from above.

As an example, suppose a user wants to transfer an asset C' (e.g., a stablecoin) from a blockchain
A to a blockchain B. Blockchain 4 would have an account associated with a signature public key
pk 4, and the secret key skyq would be distributively managed by our secret sharing protocol. To
transfer an asset C, a user would send it to an account managed by pk 4. The asset would be locked,
and the user can obtain a short signature s under pk, that indeed she locked the asset. The user
can present the asset and signature to a smart contract running on blockchain B. That contract

"In essence, our technique can turn statements about the state of the blockchain into NP statements with short
witnesses, by having the holding committee sign them.
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has pk, hard-wired in it, it can verify that the asset is indeed locked on A just by checking the
signature, and then mint the asset C' to the user on B.

Cryptography as a Service. The protocols in this paper can be used more generally to have the
blockchain provide cryptographic services such as the storage of secrets [Sha79], (proactive) thresh-
old signatures and decryption [DF89, HJJT97, Rab98, Bol03], threshold PRFs/VPRFs/OPRFs,
[NPR99, JKKX17, BLMR13], and more. We refer to this as “threshold cryptography as a service”.
While such services can be provided by more conventional systems of a few servers, here the
guarantees are backed by the scale and security of blockchains and the post-compromise security
provided by proactive re-sharing.

Perhaps the simplest example is for storage of secrets, such as the will example from the
introduction. More generally the secret can be a symmetric key to encrypt/authenticate data, or a
private key for a signature scheme, or a PRF key to support a threshold verifiable PRF. Threshold
signature schemes can be deployed for purposes such as certification authorities, authentication of
credentials, notarized services, etc. Another application is a verifiable randomness beacon, e.g., as
used in [ACGT18, HMW18]. Yet another versatile primitive is threshold Oblivious PRFs which
can be used to implement secure storage systems ranging from password-authenticated secrets (e.g.,
custodial services) [JKKX17] to cloud key management [JKR19], private information retrieval and
search on encrypted data [FIPRO5], oblivious pseudonyms [Leh19], password managers [SJKS17],
and more.

MPC /obfuscation-as-a-service. An additional area that can make crucial use of threshold
systems is multi-party computation (MPC). As it happens, our handover protocol is similar in many
ways to the information-theoretic multiplication protocol from [GRR98]. In the full version of this
work we show how to use this observation to implement generic secure computation, letting the
current committee pass to the next one the sum/product of two secrets (as opposed to just passing
the individual secrets themselves). Hence the blockchain can carry out arbitrary computation on
behalf of its clients, without leaking anything but the end result. In effect, it lets the blockchain
act as a trusted party.

A particularly powerful form of MPC-as-a-service is using threshold decryption of homomorphic
encryption [BGG'18], which would enable applications akin to program obfuscation: Clients can
encrypt their programs, anyone could apply these encrypted programs to arbitrary inputs, and
the blockchain could decrypt the result (when accompanied by appropriate proofs). More limited
in scope but with more practical implementations, threshold decryption of linearly-homomorphic
encryption enable varied applications such as private set intersection [FNP04], asset management
and fraud prevention [GKB™19], and many more.
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A A Variant with Higher Resilience in a Weaker Adversary Model

As we explained in section 3, an adversary controlling f fraction of the stake can control roughly 2 f
fraction of the holding committee, so we need the threshold value to be t; > 2f - ¢;, and we need
need at least ¢; honest parties to recover the secret. It follows that our scheme can only handle
corruption ratio of f < 1/4.

One could hope to get a solution with higher resilient by having the nomination committee
use their VRF keys to select their nominees, and prove that they did so properly. In that case,
a corrupted member of the nominating committee is no longer free to select anyone it wants to
the holding committee, so we can hope that it will be forced to select an honest member. As we
explained in the introduction, however, in our mobile adversary model this extra restriction does
not help: A corrupted member of the nominating committee can use its VRF to select a member
of the holding committee, and if that member happens to be honest then the adversary can simply
corrupt it right then and there.

To make use of this additional restriction on the nomination process, we must therefore assume
that the adversary, while mobile, cannot move too quickly. Specifically, we must assume that a
attempted corruption that begins during the 7’th period cannot be completed until after the end
of the handover protocol in period i + 1.
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But for such a slow-moving adversary, we can use even a simpler protocol: The holding
committee can simply self-select, then announce themselves publicly, and then use any proactive
secret sharing protocol from the literature (for dynamic committees) to pass the secret from one
holding committee to the next. Indeed, such a slow-moving adversary will not be able to corrupt
the next holding committee until after they already passed the secret to the committee after them.

But is this slow-moving adversary model a realistic one? We claim that it is not: While fully
corrupting a target may be a slow process, the adversary can quickly mount DDoS attacks on
members of the holding committee if it knows who they are. A more realistic model will allow
the adversary to cause a fail-stop failures instantly, while limiting the speed at which it can fully
corrupt a party. In this model, it makes sense to require that the nominating committee use their
VRFs to select their nominees, and then prove that they did it properly.

Observe that since we want to maintain the anonymity of the holding committee, then the
nominating committee proofs cannot simply reveal their VRF values (as those will let anyone
compute the identity of their nominee). Instead, each nominator will choose its ephemeral keys as
in our protocol from section 3, then prove that “there exists a member j such that the ciphertext
contains an encryption of the ephemeral secret key under the public key of member j, and moreover
7 is the member selected by my VRFE”. While this is an NP statement, it is not a short one anymore,
indeed its length is linear in the number of parties in the system. Hence to get a scalable solution
we need the nominating committee to use SNARKSs to prove these statements.

Anonymous PKE with randomizable keys. But this is still not enough, in this variant so far
the nominator knows the ephemeral secret key of its nominee, so in particular it can recover its share
of the global secret just like the nominee itself can. We therefore must replace our use of anonymous
encryption by a stronger primitive, that we call anonymous PKFE with key randomization. Namely,
we assume that given the long-term public key pk of some party, anyone can generate a derivative
public-key pk’ such that:

1. no one can recognize that pk’ was generated for pk,

2. Given pk’, anyone can encrypt a message which would be decryptable by the secret key of pk
and we have the usual semantically security, even against the party that generated pk'.

It is not hard to see that anonymous PKE with key randomization can be constructed from DDH
and LWE: Roughly the derivative key will be an encryption of zero under the long-term key, which
can be utilized for encryption using the homomorphism of these cryptosystems.

Specifically, for the DDH-based variant we can use Elgamal encryption where the long-term
public key is a pair g,h = ¢*) and the corresponding secret key is . To randomize this key, one
chooses another random integer y and output the derivative key (a,b) = (¢¥, h¥). Clearly, under
DDH (a,b) are pseudorandom even given (g, h), yielding the anonymity property that we need. On
the other hand (a,b) is itself an Elgamal public key relative to secret key x, so it can be used for
encryption.

For the LWE-based variant weuse Regev encryption, where the public key is a pseudorandom
matrix A (with many more columns than rows), and the corresponding secret key is a vector
§ = (5] — 1) such that §A = € (mod ¢) with |[€]| < ¢. To randomize the key, one chooses a
low-norm quare matrix R (say over {0,£1}) and output A* = A x R (mod q).

Using the fact that A is pseudorandom and the leftover hash lemma, it is easy to see that A*
is pseudorandom even given A, yielding the anonymity property that we need. On the other hand
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it still a valid public key relative to the same secret key §, since
SA* = §AR = éR with ||eR|| < ||€]| - || R]| < g.

Hence A* can be used for encryption.

A.1 Reworking the Parameters

Assuming the protocol from above and a slow-moving adversary, what fraction of the holding
committee can an adversary corrupt if it controls an f fraction of the overall stake? In this model,
a corrupted member of the nominating committee cannot freely choose its nominee but must apply
its VRF to see who it is, and also cannot corrupt it is it is not already corrupted. However, if
the would-be nominee is honest then the corrupted nominator can just refrain from nominating
altogether.

Under this attack scenario, if the overall fraction of corrupted parties is f and we have a
nominating committee with ¢ members of which f - ¢ are corrupted, then the expected membership
of the resulting holding committee would be c- (1 — f + f?) (i.e., all the nominees of honest parties
and only f fraction of the would-be nominees of corrupted parties). Of these members, we expect
the number of corrupted parties to be ¢ - f (since each nominator has an f fraction chance of
hitting a corrupted nominee). Hence the fraction of corrupted parties in the holding committee
would be about f/(1 — f + f?). Since we need this fraction to be strictly smaller than 1/2, we get
# < %, ie., f < 372—‘/5 ~ (.38, which is slightly better than the 0.25 resilience
that we have with our main protocol. (Of course this is an inaccurate estimate since all these
numbers are just expectations, but replacing expectations by high-probability bounds does not
make a significant difference.)

the constraint

B Proofs

B.1 Anonymous PKE and Corruptions on the Holding Committee

Recall that in the analysis of hybrid Hs, we considered an alternative game Hj in which honest
nominators choose at random two candidates for each seat on the holding committee, and then
toss a coin to decide which of these candidates to actually nominate. This process defines two
holding committees, the actual committee consisting of the nominees, and a “ghost” committee
consisting of the candidates that were not nominated. (The seats chosen by corrupted nominators
are included in both committees.)

In section 3.4 we proved that with overwhelming probability, the ghost committee in Hj contains
at least ¢ honest seats and fewer than ¢ corrupted ones. Here we argue that the same holds also
for the actual committee in Hj(and therefore in Hs, because it is chosen identically), due to the
anonymity property of the PKE that we use (for long-term keys).

The heart of the argument is showing that anonymous PKE remains anonymous also in the face
of selective opening. Specifically, we consider that an adversary seeing n keys and m < n ciphertexts
encrypted under m of these keys, and then “opening” ¢ = fn of these keys by corrupting their
owners and learning the secret keys (for some f < 1/2). We argue that for any constant ¢ > 0,
such an adversary only has a negligible (in m) probability of opening more than (f + €)m of the
keys under which ciphertext were encrypted. (In our setting, we would apply this to the set of
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keys held by uncorrupted parties that were not selected by currupted members of the nominating
committee.)

The setting that we care about is a challenger preparing n key-pairs, encrypting messages under
m of them (m < n), with an anonymous PKE. Then the challenger is giving the adversary all the
ciphertexts and keys, and the adversary can ask to open upto £ = f -n of them. By “opening” a
public key we mean the adversary asking for (and receiving) the corresponding secret key. (We can
assume wlog that the adversary always opens exactly ¢ of them.)

Let A denote the set of public keys under which messages were encrypted, and we want to bound
the probability that the adversary opens much more than f-m of the keys in A. Let t* = (1+¢€)fm
be the bound that we use. Using Chernoff bound you can show that when the adversary opens an
arbitrary subset D independent of A then it has only exponentially small probability of opening ¢
keys in A. We want to use the anonymity property of the PKE to say that the same holds for any
adversary strategy.

Assume an adversary that satisfies: Prfopens = t in A] = @ (a noticeable probability)

pko, pky pko, pky
D

OR

We want a reduction that can distinguishes left from right. i.e. pky = x,pky =y vs. pk1 = x,pkg =y

See the attached picture, showing a schematic view of the reduction. It gets two public keys
pko, pk; and an encryption of some message under one of them, and it needs to guess which one.
The problem is with the adaptive nature of the adversary: it can choose which keys to open after
it sees all the keys and ciphertexts. When we try to reduce to anonymity, the reduction has to
decide ahead of time where to put the public keys that it is challenged on, and will have to abort
(or rewind the adversary) if the adversary asks to open these keys.

Conjecture 1. If there is an efficient adversary that opens > t* keys in A with a noticeable
probability o then the PKFE in use is not anonymous.

Here we prove the above conjecture for a restricted adversary that “opens” all the keys at once.
That is, given the n public keys and m ciphertexts, the adversary outputs the set D of ¢ keys and
gets all the secret keys for it at once. Note that this “semi-adaptive” adversary already exhibits all
the problems with selective opening, in particular the negative examples (showing that semantic
security does not imply security under selective opening) apply also to these restricted adversaries.
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Lemma B.1. If there is an efficient semi-adaptive adversary that opens at least t* = (1 + €)fm
keys in A with a noticeable probability o, then the PKFE in use is not anonymous.

Proof. Fix an adversary A, denote by p; the probability of |D N A| =i for that adversary (for all
i=0,1,...,m), and assume that > ;.. p; = o = 1/poly(m).

We describe a reduction that uses this adversary to win the anonymous-PKE game with
noticeable probability. The reduction has a parameter 7 < m —1, and it gets two keys pkg, pk; and
a ciphertext ct encrypted under one of them. It chooses n — 2 more keys, selects a random subset
A" C [n] of size m — 1, and encrypts messages under the keys in A’. The reduction then gives the
adversary the n keys and m ciphertexts (in random order), and gets from the adversary the set D
of £ keys to open. If |[A'N D| > 7 and in addition pk; is opened but pk is not, then the reduction
outputs 1. Otherwise the reduction outputs 0.

Let = denote the key under which the message is encrypted (pky or pk;), and y denote the
other key (pky or pky, respectively). The crux of the proof is showing that when the probability
distribution (pg, p1,-..,Pm) is far from an (n,m, ¢)-hypergeometric distribution, there must exist
some 7 for which

5, Pr[reduction, outputs 1|z = pk;] — Pr[reduction, outputs 1|z = pkg]

is non-negligible (in m). Recall that the (n,m,)-hypergeometric distribution is (pf,p7,...,p5,)

such that
 def (1 l—1i / n
Pi =) \n-m L)

Observe that when x = pky, the reduction with 7 outputs 1 if [DNA| > 7+ 1 (i.e.,, > 7 for A’
and one more for pk;), and in addition = = pk; € D and y = pky ¢ D. Hence

l—1q

n—m

) (6)

m .
Pr[reduction, outputs 1|z = pk;] = Z pi - L. (1-
m
i=7+1

On the other hand when x = pkg, the reduction with 7 outputs 1 if |[D N A| > 7, and in addition
y =pky € D and = = pky ¢ D. Hence

l—1i

n—m

m .
Pr[reduction, outputs 1|z = pky| = Zpi (11— i) . (7)

; m

1=T

Let us denote u; = - - (1 — £=5) and v; = (1 — L) - =L, From Egs. 6 and 7 we have

n—m m n

Or = —prur+ Z pi(ui_vi) = <_p7‘(1_;)+ Z pz(:n_ﬁ)> - ) (8)

) . n—m
1=7+1 i=7+1
where the last equality follows because
i n—m-—-¥f+1 m—i £—1i i 14 m
ul — vl — —_ — . = (— — 7) . .
m n—m m  n—m m n’ n—m
Equation 8 yields a set of linear equations for expressing 5 = (00,01,-..,0m—1) in terms of

P = (po,p1,--.Pm). Let B be the m x (m+1) matrix representing these equations, namely 5= p-B.
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We observe that the (n,m,f)-hypergeometric distribution is the only probability distribution
yielding pB = 0. To see this, note that an adversary that chooses the set D at random among the
n keys induces the (n, m, ¢)-hypergeometric distribution on |D N A[, and for that adversary we have
6 = 0 for all 7. Moreover, it is easy to see that the matrix B above has full rank m. Hence the
solution space for B = 0 is of the form p-p*, where p* is the (n, m, £)-hypergeometric distribution
and p is a scalar. Clearly, the only vector in this space whose entries sum up to 1 is p* itself.

As the distribution p’ of the adversary A differs from p* (since « is noticeable), we thus have
5 # 0. We still need to prove, however, that § is noticeably far from zero. To that end, we look
again at Equation 8 and give a name to the sum at the right-hand side. For every 7 we denote:

. m . / m . o . de m . .
VTCIZpri(%_E):Zpi(%—f) and81mllarly%d:fzpi(é—f).

=T

Equation 8 can now be written as §; = (7,41 —p,(1— 1)), and of course by definition we have
Tr = pr(% — f) +7r+1. We similarly have v; = pi(% -+ 7:—}—1’ but here ’7;—1 —pr(1- %) = 0.
Note also that for 7 > fm the term - — f is non-negative. We next use the following two facts:

e By Chernoff bound, we have that 7. < > .5« pi is exponentially small in €f - m = ©(m).

e By our assumption on the adversary we have that

Yer = ZPZ(% —f) > sz'(%—f) :epr,-:efa,

P>t P>t P>t
which is non-negligible in m.

This means that v+ is exponentially (in m) larger than ., i.e. there exists some constant n > 0
such that v > (1 +n)™v5.

By the Claim B.1.1 below, we either have py_1 > (14n1)"(1—2)pj._;, or else 6«1 > %’Yt*,
which is non-negligible (in m). In the former case (of large p_1) we get

tr—1 N, « tr—1 .
Vo1 = pre_i( -+ = Q+n)m1 - §)pt*_1( - — )+ (1T +n)"v5
—
t* _ 1 >0

> (L4 (1= D

/N
= (1+n)m(1—§)%*_1-

— f)+ )

In that case we can apply Claim B.1.1 again to conclude that either pgx_o > (1+n)™(1 — 3)2]0;"*_2
or else d:«_o is non-negligible.

Repeating this process, we show by induction that either at least one of 0y _1,0¢+_2,..., 07y, is
non-negligible (in m), or else we have

vie [fmt* =1, pi> (140" (1 - )"

But the last case cannot happen, since it means that the p;’s sum up to more than one. That is
so because the hypergeometric distribution has probability at least 1/4 of exceeding the expected
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value [GM14]° i.e., dismPi = 1/4, and so

m t*—1
>pi > meLsz > Z L+n)™(1=n/2)"7'pf + (L+n)" sz
=0 i=fm 1=t* i=fm =t
1
> (L4n)™1-n/2™ Y pf > 1+n/4)m-1>1.
i>fm
This concludes the proof. ]

Claim B.1.1. For any 7 > fm, denote the ratio R,41 def ’YT+1/’Y:+1 and let n > 0 be an arbitrary
constant. Then either pr > R 1(1 — 3)p%, or else o > ﬁ%-ﬂ

Proof. Recall that for the hypergeometric distribution we have v;,; = p;(1— 1), and by definition
of RTH’S we have 7,11 = Ry 177, ;. Assume that p, < R 1(1 — 2)p}, and we need to show that

or > 3 (n m) Yr+1. By Equation 8 we have
n—m T * My, « T
or - m = Yr41—pr(l— E) > Reyivip — Rea(1 - 5)%(1 - E)
= Repa(774 —pr(1— %)) to Beprpr(l= ) = o Repivpp = 5 Yt
=0
Hence §, > %%H: as needed. d

B.1.1 The fully-adaptive setting

In the fully adaptive setting, the adversary can open the keys one at a time, rather than all at
once. Trying to apply the same reduction as above, the reduction no longer knows the full set
of opened keys, since it has to abort once the adversary asks to open one of the two challenge
ciphertexts (because it cannot answer that query). The reduction in this setting needs to decide
on its output based on which of the two challenge keys was opened (if any), and how many of the
keys in A’ and outsidse of A’ were opened at the time that the challenge key was requested. To
prove the conjecture, we would have to show that for any adversary that has significant probability
of opening more than t* keys in A, there is a decision rule that yields significant advantage for the
reduction.

As opposed to Lemma B.1 where the adversary’s strategy can be characterized by the
probabilities p; of opening ¢ keys in A, here the adversary has much more freedom in choosing
not just if but when to open certain keys. Specifically, in the event that exactly ¢ keys from A are
opened, we can consider the keys outside of A as residing in ¢+2 buckets: Buckets B; o, Bt 1,..., Bt
are the non-A keys that are opened after exactly 0,1,...,t keys from A, respectively, and B; o, are
the non-A keys that are never opened. An adversary strategy is now characterized by the same
pt’s as above, but in addition also by the expected sizes of the buckets By ;. (Hence we need O(m?)
variables to describe the adversary, as opposed to O(m) in the analysis in Lemma B.1.)

A plausible approach is to adopt the decision rule from Lemma B.1, where the reduction
outputs 1 if pk; is opened (and pk, is not) and there are more than some threshold 7 of other

8The proof in [GM14] is for the binomial distribution, but for our case of m < n we get the same result upto a
factor of 1+ o(1).
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keys in A’ that are opened before pk;. Trying to analyze the advantage of ¢, of this reduction (with
parameter 7) we can express it in terms of the O(m?) variables from above. We get terms similar
to above that correspond to the probability that only = or only ¥ is opened, but also other terms
corresponding to the case where both are opened, either x before y or vise versa. So far we were
not able to analyze the resulting system of equations.

B.2 Selective-Opening Security

We now use the receiver-selective-opening of the PKE that we use to prove that the secret
indeed remains secret. We note that we need the composite scheme with both long-term and
ephemeral keys to be receiver-selective-opening-secure. Namely, if & = (Gen, Enc,Dec) and
&' = (Gen’,Enc/,Dec’) are the schemes that we use for long-term keys and ephemeral keys,
respectively, then the scheme that we need to be receiver-selective-opening secure is the following
combination £” = (Gen” Enc”, Dec”):

Gen”($). This is just the long-term key-generation, Gen” = Gen.

Enc”(pk, m). To encrypt m under pk), run the ephemeral key generation to get (sk’, pk’) < Gen’($).
Then encrypt sk’ under pk to get ct’ < Enc(pk,sk’), and encrypt m under pk’ to get ct «+
Enc(pk’,m). The cipehrtext is (pk’, ct’, ct).

Dec”(sk, (pk’, ct’, ct)). To decrypt we set sk’ < Dec(sk, ct’) and then outpur m < Dec’(sk’, ct).

Assuming that the composite scheme £” is receiver-selected-opening secure as per Definition 2.2,
we prove that hybrid Hs and Hy are indistinguishable to the avdersary. The proof is inductive,
defining hybrids H3 = HY, H},..., H] = Hy, as follows: Recall that we have two global secrets
00,01, and the adversary gets o¢ and interacts with the protocol as in hybrid Hs. In H} the first i
handover protocols include encryptions of o1, and all the others include encryptions of oy.

Lemma B.2. Assuming that the composite scheme is receiver-selected-opening secure as per
Definition 2.2, hybrids i — 1 and i are indistinguishable.

Proof. (sketch) With all the periods but i fixed (and in particular the secrets og, o1 determined by
them), we let the input distribution D of the selective-opening attacker be as follows: First a bit o
is chosen at random, and the i’th handover protocol is run using secret o,. (Recall that the NIZK
proofs are simulated, hance we can run them even if the statements proved there are false.)

The attack proceeds as follows: the attacker chooses random g, 01 and runs the H} hybrid
game with these two secrets, playing the challenger all the way to period i — 1. At period i it
uses the selective-opening game with input distribution D to get the keys and cipehrtexts, which
it passes to the H} adversary. Similarly it asks to corrupt the same keys that the H) adversary
does, and at the end of the game it gets the either the messages that were not compromised or
freshly chosen messages from D conditioned on the compromized keys. Then it again runs the H:
hybrid game with these two secrets, playing the challenger from period 7 4+ 1 and on, and gets the
adversary’s output bit b. If the messages that it saw at the end of the selective-opening attack
correspond to the secret o; then the attacker outputs the bit b, and otherwise it outputs the bit
1 —b. To analyze this attack, consider the following six possibilities:
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is the event where the selective-opening attack game chooses the bit ¢ = 0 for the input
distribution (so shares of o( are encrypted), and the attacker gets the messages that were
actually encrypted in the uncompromized cipehrtexts.

is the event where the selective-opening attack game chooses the bit ¢ = 0 for the input
distribution (so shares of oy are encrypted), and the attacker gets randomly chosen messages
that happen to also correspond to a sharing of oy.

is the event where the selective-opening attack game chooses the bit ¢ = 0 for the input
distribution (so shares of g are encrypted), and the attacker gets randomly chosen messages
that happens to correspond to a sharing of the other secret oy.

is the event where the selective-opening attack game chooses the bit ¢ = 1 for the input
distribution (so shares of o are encrypted), and the attacker gets randomly chosen messages
that happens to correspond to a sharing of the other secret oy.

is the event where the selective-opening attack game chooses the bit ¢ = 1 for the input
distribution (so shares of o1 are encrypted), and the attacker gets randomly chosen messages
that happen to also correspond to a sharing of o7y.

is the event where the selective-opening attack game chooses the bit ¢ = 1 for the input
distribution (so shares of o) are encrypted), and the attacker gets the messages that were
actually encrypted in the uncompromized cipehrtexts.

Note that the view of the H:-adversary is identical in cases F1-F3, and similarly in cases Ey-Fg. We
denote by €; the probability of the Hi-adversary outputting 1 in cases Fj-Fj3, and the probability
that it outputs 1 in cases Fy-Fg is denoted e;. Hence the advantage of the Hj-adversary in
distinguishing Hi_l from H} is a = €1 — €a.

By construction, the probability that the selective-opening attacker outputs 1 conditioned on

cases F1, Eg where it is given the messages that are actually encrypted in the uncompromised
ciphertexts is (€1 + (1 — €2))/2. At the same time, the probability that the attacker outputs 1
conditioned on cases Fo-FE5 where it given instead freshly chosen messages is (61 +(1—€)+e+
(1 —€2))/4 = 1/2. Hence, the advantage of the selective-opening attacker is exactly

(e1+1—€)/2—-1/2 = (e1 —€2)/2 = a/2.
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