
Automatic Search of Meet-in-the-Middle
Preimage Attacks on AES-like Hashing

Zhenzhen Bao2, Xiaoyang Dong3, Jian Guo2, Zheng Li4,
Danping Shi1,5, Siwei Sun1,5, and Xiaoyun Wang3

1 State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, China. {shidanping,sunsiwei}@iie.ac.cn

2 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore. {zzbao,guojian}@ntu.edu.sg

3 Institute for Advanced Study, Tsinghua University, China.
{xiaoyangdong,xiaoyunwang}@tsinghua.edu.cn

4 Faculty of Information Technology, Beijing University of Technology, China.
lizhengcn@bjut.edu.cn

5 School of Cyber Security, University of Chinese Academy of Sciences, China.

Abstract. The Meet-in-the-Middle (MITM) preimage attack is highly
effective in breaking the preimage resistance of many hash functions,
including but not limited to the full MD5, HAVAL, and Tiger, and reduced
SHA-0/1/2. It was also shown to be a threat to hash functions built on
block ciphers like AES by Sasaki in 2011. Recently, such attacks on AES
hashing modes evolved from merely using the freedom of choosing the
internal state to also exploiting the freedom of choosing the message
state. However, detecting such attacks especially those evolved variants is
difficult. In previous works, the search space of the configurations of such
attacks is limited, such that manual analysis is practical, which results in
sub-optimal solutions. In this paper, we remove artificial limitations in
previous works, formulate the essential ideas of the construction of the
attack in well-defined ways, and translate the problem of searching for
the best attacks into optimization problems under constraints in Mixed-
Integer-Linear-Programming (MILP) models. The MILP models capture
a large solution space of valid attacks and the objectives are for the
optimal. With such MILP models and using the off-the-shelf solver, it is
efficient to search for the best attacks exhaustively. As a result, we obtain
the first attacks against the full (5-round) and an extended (5.5-round)
version of Haraka-512 v2, and 8-round AES-128 hashing modes, as well
as improved attacks covering more rounds of Haraka-256 v2 and other
members of AES and Rijndael hashing modes.

Keywords: AES, Haraka v2, MITM, Preimage, Automatic search, MILP

1 Introduction

The hash function is one of the most important cryptographic primitives, due
to its wide and crucial applications such as digital signatures, verification of
message integrity and passwords etc. To support these applications, collision

resistance, preimage resistance, and second-preimage resistance form the three
basic security requirements for cryptographic hash functions. Unlike many public-
key cryptographic systems, whose security can be usually reduced to some
hard mathematical problems, most of the hash function standards in use could
not enjoy such a security reduction. The confidence of the security strength
of many symmetric-key primitives mainly relies on intensive and persistent
cryptanalysis from the research community. Hence, such effort is of utmost
importance, especially against the basic security properties of the standards
and the ones used in practice. In this paper, we mainly focus on preimage
resistance of hash functions built on the block cipher Advanced Encryption
Standard (AES) [13] and the like (we call them AES-like hashing for short).
Typical examples are the three PGV-modes [37] – Davies-Meyer (DM), Matyas-
Meyer-Oseas (MMO), and Miyaguchi-Preneel (MP), instantiated with AES. Both
PGV-modes and AES have long-standing security supported by rigorous and
massive cryptanalysis, including the recent quantum collision attacks [15, 22].
The MMO-mode instantiated with AES is standardized by Zigbee [1] and also
suggested by ISO [24] as a standard way of building hash function based on block
ciphers. Furthermore, many feature-rich cryptographic protocols, e.g., multi-party
computation protocols, use hash functions as building blocks and their instances
adopt AES-MMO due to its high efficiency when implemented with AES-NI.
Besides, since the standardization of AES, many new ciphers follow a similar
design strategy or using AES round function directly as building blocks to share
the security proof and implementation benefits, e.g., hash functions Grindahl [29],
ECHO [11], Grøstl [17], and Haraka v2 [30].

The MITM Preimage Attacks. Informally, preimage resistance refers to the
property that, for a hash function H and a target T given at random, it is
computationally difficult to find a message x, such that H(x) = T . Theoretically,
for a secure hash function with a digest of n bits in size, the expected number of
H evaluations required to find such an x is 2n. Any such algorithm with a time
complexity lower than 2n is considered as a preimage attack.

In [8], Aumasson et al. devised preimage attacks on step-reduced MD5 and full
3-pass HAVAL [50], in which the key technique can be viewed as the application of
local-collision combined with the Meet-in-the-Middle (MITM) approach. Sasaki
and Aoki in [40] formally proposed to combine the MITM and local-collision
approaches and successfully devised preimage attacks on full versions of 3, 4, and
5-pass HAVAL. Further, they in [6] proposed the splice-and-cut technique and
in [42] invented the concept of the initial structure, which add more strength
to the MITM attack, and successfully broke the preimage resistance of the full
MD5. These techniques were then formalized as bicliques [12, 26, 27], and further
evolved to differential views [16, 28]. Since these pioneering works, the MITM
preimage attack turned out to be very powerful and found many applications in
the last decade. It broke the theoretical preimage security claims of MD4 [18],
MD5 [42], Tiger [18, 46], HAVAL [19, 40] and round-reduced variants of many
other hash functions such as SHA-0 and SHA-1 [5, 16, 28], SHA-2 [4], BLAKE [16],

2

HAS-160 [21], RIPEMD and RIPEMD-160 [47], Stribog [2], Whilwind [3], and AES
hashing modes [9, 38,48]. Interestingly, the idea of MITM preimage attack also
leads to the progress of collision attacks against reduced SHA-2 [33].

The core of a MITM preimage attack on the hash function is generally a
MITM pseudo-preimage attack on its compression function (denoted by CF).
The basic idea of the attack on the CF is as follows (take the DM-mode as an
example). First, the iterative round-based computation of the CF is divided at
an intermediate round (starting point) into two chunks. One chunk is computed
forward (named as forward chunk), the other is computed backward (named
as backward chunk), and one of them is computed across the first and last
rounds via the feed-forward mechanism of the hashing mode, and they end at
a common intermediate round (matching point). In each of the chunks, the
computation involves at least one distinct message word (or a few bits of it),
such that they can be computed over all possible values of the involved message
word(s) independently from the message word(s) involved in the other chunk
(the distinct words are called neutral words). When an initial structure is used, it
covers few consecutive rounds at the starting point, within which the two chunks
overlapped and the neutral words for both chunks appear simultaneously, but
still, the computations of the two chunks on the neutral words are independent.

In [38], Sasaki applied such MITM preimage attack to AES-hashing modes.
Together with the partial matching technique, the attack successfully penetrated
7 out of the 10, 12, 14 rounds respectively for AES-128, AES-192, and AES-256.
Later, Wu et al. in [48] improved the complexities in multi-target setting. Different
from early MITM attacks on the MD-SHA family, their attacks select the neutral
bytes from the internal state and fix the material fed into the key/message-
schedule to an arbitrary constant. Recently, such attacks on AES hashing modes
evolved to not only using the freedom of selecting the internal state but also
exploiting the freedom of selecting the message state (key materials of the block
ciphers), and improved results are achieved in [9]. Due to the fact that there are
too many possible configurations (selection of neutral words, position of initial
structure and matching rounds, extra conditions imposed to limit propagation of
neutral words, etc.) to test out by bruteforce, all existing attacks cover only a
small portion of configurations, which were believed to potentially give better
cryptanalysis results according to the attackers’ intuition and experiences.

Automatic Tools. In the last decade, cryptanalysis has also made significant
progress from manual methods to those aided by dedicated computer programs
searching for best differential/linear paths etc. [34] and best attacks [14], then to
automatic tools such as Mixed Integer Linear Programming (MILP), Constrained
Programming (CP), Satisfiability Solvers (SAT), and Simple Theorem Prover
(STP). These automatic tools convert the problem of finding better cryptanalytic
attacks to optimization problems solvable by the tools, under certain constraints,
which ensure the validity of the attacks. They not only enlarge the possible solution
space covered by previous manual methods and dedicated search programs, but
also helped generalize and even re-define the attack models which in turn further
enlarge solution spaces. As a result, these tools have made significant advances

3

in cryptanalysis, such as differential/linear path search [31, 36, 45], cube(-like)
attacks [20,44], integral attacks based on division properties [49], three-subset
and Demirci-Selçuk meet-in-the-middle attacks [39, 43]. These usually lead to
attacks for more rounds and/or lower time/memory complexities. With these
available capacities, a more accurate security assessment is possible, and many
recent primitive designs [10, 30] benefited from these tools in determining the
round number and the security margin with better confidence.

It is important to note that, literally every problem in cryptanalysis, complex
or simple, can be converted into one under automatic tools. However, when the
problem is complex, tools may not be able to output solutions in real time. Hence,
different from the traditional manual cryptanalysis, the difficulty of tool-aided
cryptanalysis is to find a proper model, which balances the problem solving time
and size of solution space the model covers (number of attack configurations
in case of AES-like hashing). Obviously, a model covering larger solution space
comes with lesser constraints, which is harder to solve by the tools, but has bigger
chances to offer better cryptanalysis results. All our effort in this paper is to
convert the preimage finding problem into one under the MILP language, by a
model covering largest possible solution space, while keeping the model solvable
in practical time within our computation capacity in hands.

Our Contributions. In this paper, we manage to automatize the search for
the best MITM preimage attacks with MILP models. We focus ourselves on hash
functions built on AES and AES-like ciphers.

We extend the construction of attacks by removing the limitations taken by
previous works [9, 38, 48]. That includes releasing the boundaries of the initial
structure by applying the essential idea to every possible round; considering the
possibility of imposing degree of freedom both from the internal state and from
the message, which is done by allowing selecting neutral bytes from both of the
encryption state and key state, and for both directions of computation; considering
a desynchronized selection of neutral bytes in the encryption computation flow
and the key-schedule flow (meaning that we allow the key state, from which the
neutral bytes be selected, be at any possible round, instead of adhering to the
round at where neutral bytes are selected in the encryption state) as appeared
already e.g., in [9, 18].

We formalize the essential idea behind the advanced techniques used in the
MITM preimage attack, including the above mentioned extended form of initial
structure and the partial matching, using explicit-defined rules. In our formulation
of the MITM preimage attacks, we do not pre-set any hard boundaries for the
initial structures (i.e., the number of rounds and which rounds are covered), but
allow it to evolve automatically according to certain rules from well-defined and
potentially desynchronized starting states towards a clear objective. Thanks to
this formulation, the MITM preimage attack is ready to be transformed into
MILP models covering a larger solution space than previous works.

We refine the MILP model for the operations involved in AES-like round
functions to accurately capture all possible effects of them on the forward and
backward computation paths. For example, instead of separately treating the

4

Table 1: Results of applications of our tool compared with previous best results
Target #Round Time-1 Time-2 (DoF+, DoF−, DoM) in bits Ref.

AES-128
7/10 2120 2125 (8, 8, 32) [38]
7/10 2120−min(t,24) 2123 (8, 32, 32) [48]
7/10 2104 2117 (24, 32, 24) [9]
8/10 2120 2125 (16, 8, 8) Fig. 7

AES-192
7/12 2120 2125 (8, 8, 32) [38]
7/12 296 2113 (32, 32, 32) [9]
8/12 2112−min(t,16) 2116 (16, 32, 32) [9]
9/12 2120 2125 (8, 8, 8) Fig. 8

AES-256 7/14 2120 2125 (8, 8, 32) [38]
8/14 296 2113 (32, 32, 32) [9]
9/14 2120−min(t,24) 2123 (8, 32, 32) Fig. 9

Rijndael-256 9/14 2248 2253 (16, 16, 8) Fig. 11

7/10 2248 2248 (8, 8, 96) [30]Haraka-256 v2 9/10 2224 2224 (32, 32, 64) Fig. 12

8/10 2248 2248 (8, 8, 64) [30]
10/10 2224−min (t,32) 2224 (128, 32, 64) Fig. 13Haraka-512 v2
11/10 2240 2240 (128, 128, 16) Fig. 14

– Following [9], we use Time-1 to represent the time complexity of pseudo-preimage. Here, 2t is
the number of available targets for multi-target pseudo-preimage attacks; use Time-2 to represent
the complexity of using the (multi-target) pseudo-preimage attacks to do (second-)preimage
attacks when requiring an upper layer of meet-in-the-middle procedure of conversion for some
PGV-modes, and here a single target is given. For Haraka-512 v2, the conversion is not needed and
Time-2 should be the same with Time-1.
– The unit of complexity is one computation of the compression function.
– #Round is the number of AES-like round (one Haraka v2 round consists of two AES-like rounds).
– (DoF+, DoF−, DoM) is (the degree of freedom for forward computation, the degree of freedom
for backward computation, the degree of matching), please refer to Sect. 3.

AddRoundKey and MixColumns, we treat them as a whole (a composition trans-
formation) and formalize constraints that can result in all possible impacts from
the input states to the output state. In doing that, the models can capture the
solutions where the difference in the active cells in the key state and that in
encryption state be mutually (partially) canceled, which is impossible when treat
the two operations separately. Such treatment further enlarges the search space
to capture more potentially better attacks.

With such MILP models and using off-the-shelf solver, we apply the automatic
search to AES-like hashing. Improved attacks than the previous ones were obtained.
That includes the first preimage attacks on 8-round AES-128, 9-round AES-192,
9-round AES-256, 9-round Rijndael hashing modes, 4.5-round (9 AES-rounds)
Haraka-256 v2 and the full 5-round (10 AES-rounds) version and extended 5.5-
round (11 AES-rounds) version of Haraka-512 v2. The detailed results, together
with a comparison to the previous related works, are summarized in Table 1.

5

2 AES-like Hashing and MITM Preimage Attacks

Most current hash functions are based on compression functions (CF) with fixed
length input and output; and the support for variable-length messages can be
achieved through domain extenders. Here, we focus on the challenge of inverting
the CF, i.e., given one or multiple targets T , find input chaining value h and
message block M , such that CF(h,M) = T . Such attacks are called pseudo-
preimage attacks, in which the chaining value is free of choice. Pseudo-preimages
can be converted to (second-)preimages of hash functions using generic methods
(details can be found in Supplementary Material C).

2.1 AES-like Hashing

Typically, the compression function of hash functions can be constructed from
block ciphers applying the secure PGV-modes [37]. When the underlying block
ciphers are AES-like, we call the hash functions as AES-like hashing. Concretely,
in AES-like hashing, the underlying compression function is based on AES-like
round functions as depicted in Fig. 2, where the state being manipulated is
organized into an Nrow ×Ncol two-dimensional array of c-bit cells. One AES-like
round function typically consists of the following operations:
• SubBytes. Substitute each cell according to an S-boxes S : F2c → F2c .
• ShiftRowsπt . Permute the cell positions according to the permutation πt.
• MixColumns. Update each column by left-multiplying an Nrow ×Nrow MDS

matrix (maximal distance separable matrix, with branch number Bn = Nrow +1,
i.e., as long as the input/output of the MDS matrix is non-zero, the sum of
non-zero elements in the input and output is at least Nrow + 1).

• AddRoundKey. XOR a round key or a round-dependent constant into the
state depending on whether the intended construction is keyed or not.

2.2 Advanced Techniques in Meet-in-the-Middle Preimage Attacks

Since the pioneering works on preimage attacks on MD4, MD5, and HAVAL [8,32,
40,41], the MITM approach has been applied and further developed for preimage
attacks on many other hash functions. This method develops into splice-and-
cut [6] MITM preimage attacks with support from initial structure [42] and
(indirect) partial matching techniques.

Initial Structures [42]. From the idea of local-collision, Sasaki and Aoki proposed
a novel concept – initial structure. The purpose of the initial structure is to skip
several steps/rounds at the beginning of chunks in a MITM attack so that the
attack covers more steps/rounds. It is a few consecutive starting steps, where
the two chunks overlapped. Although the two sets of neutral words, denoted by
N+ and N−, appear simultaneously at these steps, they are only involved in the
computation of one chunk each. Besides, one can add constraints to the values of
neutral words of one chunk, such that different values lead to constant impact on
the computation of the opposite chunk. Thus, a proper initial structure should

6

satisfy that, steps after the initial structure (forward chunk) can be computed
independently of N− and steps before the initial structure (backward chunk) can
be computed independently of N+.

Remark 1 (Related work – the formalism of Biclique). Notably, the initial struc-
ture was viewed as the most promising and underutilized technique for MITM
preimage attack in the subsequent years since its invention. In [27], authors
replaced the idea of initial structure with a more formal and general concept,
which is named biclique. With this formalism, one can view the structure in a
differential view, and built it by applying various tools available for collision
search and differential attacks. This concept of biclique has been applied to both
preimage attacks on hash functions (e.g., SHA-1, SHA-2 and Skein-512 [27,28])
and key-recovery attacks on block ciphers (e.g., AES and IDEA [12,26]).

In this paper, independent of the formalism using concept of biclique, and
instead of adhering to a formal definition, we apply the essential idea behind the
original concept of initial structure. We formalize the basic idea using explicit
rules and extend the initial structure to be less structured.

(Indirect-) Partial matching [6, 42]. In the two ending states for matching, as
long as there remain one common word of which the value can be computed
independently between the forward and backward chunks, the matching can be
performed. Further, apart from directly matching values of common words, any
determined relations between words in the states at the matching point can be
exploited to filter out miss-matched computations. For example, Sasaki in [38]
exploited the following property of the AES MixColumns to do indirect matching:
knowing any b bytes (b > 4) among the input and output of MixColumns on
one column, one can built a filter of b − 4 bytes. For example, in Fig. 1d, it
is possible to do partial matching between states #MC1 and #AK1, and each
column provides 2 + 3− 4 = 1 byte filter, as exemplified in Fig. 1b.

Multi-targets [18,48]. When multiple targets are available, it adds the degree of
freedom to the chunk where the targets are added to.

The Attack Framework. The procedure (Fig. 1) and complexities of the
MITM pseudo-preimage attack depend on the following configurations:

1. Chunk separation – the position of initial structure and matching points.
2. The neutral bytes – the selection and the constraints on the neutral bytes,

which determine the degrees of freedom for each chunk.
3. The bytes for matching – the deterministic relation used for matching, which

determines the filtering ability (degree of matching).

After setting up the configuration, the basic attack procedure goes as follows.
Denote the neutral bytes for the forward and backward chunk by N+ and N−:

1. Assign arbitrary compatible values to all bytes except those that depend on
the neutral bytes (e.g., the Gray cells in Fig. 1d).

7

Forward
chunk

Backward
chunk

Initial
structure

Forward
chunk

Target

Splice

CutPartial match

Message/key schedule

ma mama mambmb mb

ML ma mb

(a) The framework of the attack
Partial match between one column of #MC1 and #AK1:

MC i.e.,

[
#MC1[0]
−
#MC1[2]
−

]
=

[
e b d 9
9 e b d
d 9 e b
b d 9 e

]
×

[
−
#AK1[1]
#AK1[2]
#AK1[3]

]
⇒

d ·#MC1[0]
⊕

e ·#MC1[2]
=

d · (b ·#AK1[1] ⊕ d ·#AK1[2] ⊕ 9 ·#AK1[3])
⊕

e · (9 ·#AK1[1] ⊕ e ·#AK1[2] ⊕ b ·#AK1[3])

(b) Partial matching in (d)
Constraints on #MC4[1, 2, 3] to build the initial structure:

C

C

MC i.e.,

[
2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

]
×

[
0
#MC4[1]
#MC4[2]
#MC4[3]

]
=

[
C0
−
C1
−

]
⇒[

3 ·#MC4[1] ⊕ 1 ·#MC4[2] ⊕ 1 ·#MC4[3]
1 ·#MC4[1] ⊕ 2 ·#MC4[2] ⊕ 3 ·#MC4[3]

]
=
[

C0
C1

]
(c) Constraints on the initial structure in (d)

k−1

AK

#AK−1 k0
AK

#SB0

SB

#SR0

SR

#MC0

MC

#AK0

Partial Match

k1
AK

#SB1

SB

#SR1

SR

#MC1

MC

#AK1

k2
AK

#SB2

SB

#SR2

SR

#MC2

MC

#AK2

Initial Structure Start

Initial Structure End

k3
AK

#SB3

SB

#SR3

SR
C
C
C

#MC3

MC

#AK3

k4
AK

#SB4

SB

#SR4

SR

#MC4

MC
C

C
C

C

C

C
C

C

#AK4

k5
AK

#SB5

SB

#SR5

SR

#MC5

MC

#AK5

k6
AK

#SB6

SB

#SR6

SR

#AK6

#AT

T
forward backward constant uncertain

(d) An example attack on 7-round AES-hashing

Fig. 1: The MITM pseudo-preimage attack [38,48]

2. Obtain possible values of neutral bytes N+ and N− under the constraints on
them (e.g., in Fig. 1c). Suppose there are 2d1 values for N+, and 2d2 for N−.

3. For all 2d1 values of N+, compute forward from the initial structure to the
matching point to get a table L+, whose indices are the values for matching,
and the elements are the values of N+.

4. For all 2d2 values of N−, compute backward from the initial structure to the
matching point to get a table L−, whose indices are the values for matching,
and the elements are the values of N−.

5. Check whether there is a match on indices between L+ and L−.
6. In case of partial-matching exist in the above step, for the surviving pairs,

check for a full-state match. In case none of them are fully matched, repeat
the procedure by changing values of fixed bytes till find a full match.

The Attack Complexity. Denote the size of the internal state by n, the degree
of freedom in the forward and backward chunks by d1 and d2, and the number of
bits for the match by m, the time complexity of the attack is [9]:

2n−(d1+d2) · (2max(d1,d2) + 2d1+d2−m) ' 2n−min(d1,d2,m). (1)

2.3 Basic Rules Applied to MITM Attacks on AES-like Hashing

Sources of Degrees of Freedom. Shown by the complexity analysis, the
MITM attack benefits from larger degrees of freedom in both chunks and matching.

8

In early MITM preimage attacks on the MD-SHA family, the degree of freedom
comes from the message words. Whereas, in early MITM preimage attacks on
AES-like hashing [38,48], the degree of freedom comes from the bytes in encryption
states 6, and the attacks set the material fed into the key-schedule as arbitrary
constant. In [9], the authors proposed to introduce neutral bytes not only from the
encryption state but also from the key state. The principle is that, for one chunk,
one adds as much degree of freedom as possible to improve the computational
complexity, and at the same time, keeps their impacts on the opposite chunk
as little as possible to cover as many rounds as possible. To keep the analysis
manually doable, the authors in [9] proposed that the neutral bytes in key states
are all introduced for merely one chunk.

Ways to Control Impacts on the Opposite Chunk. For the ways to cancel
impacts from neutral words for one chunk on the opposite chunk, recall that early
preimage attacks on MD-SHA used the (cross) absorption properties of Boolean
functions by setting an input variable to a special value to absorb the difference
in another input variable. In the attack on AES-like hashing, the ways to control
the impacts of the neutral bytes is to add constraints on those neutral bytes
when they are inputs to the following operations. Note that adding constraints
means consuming the degree of freedom.
– AddRoundKey and XOR: one can restrict that the XOR of two neutral bytes be

constant. The rationale is to use the difference in one neutral byte (e.g., in
the key state) to absorb the difference in another neutral byte (e.g., in the
encryption state). That will consume one-byte degree of freedom.

– MixColumns (MC): Even if the input contains neutral bytes (active) for one
chunk, one can add restriction on their values, such that their impacts on
some output bytes of the MC be constant. Therefore, the opposite chunk can
be computed independently as long as the constant impacts are known. Take
the attack in Fig. 1d for example. In the computation from #MC4 to #AK4,
the values of Red cells in state #MC4 are restricted such that changing them
does not change impact on the Blue cells marked by C in #AK4 (exemplified
in Fig. 1c). This restriction consumes the degree of freedom that lies in neutral
bytes for backward chunk, but enables the independent forward computation.
Explicitly, if there are i neutral bytes for one chunk involved in the input of
MC, then we can control their impacts on j bytes of the output be constant by
consuming j bytes degree of freedom. For AES-like hashing, because the matrix
MC in MixColumns is MDS, there is a limitation for applying this control, that
is i+ Nrow − j ≥ Nrow + 1, i.e., i ≥ j + 1.

– MixColumns ◦ AddRoundKey (XOR-MC): in backward chunk, when there are
forward neutral bytes in both the key and the encryption state, to control
their impacts, one may first apply the above-mentioned way of restriction

6 In a hash function, there is no encryption and key-schedule. Here, focusing on hash
functions built on block ciphers, we use them to represent the two algorithms that
updating the chaining values and that updating the message words. For different
mode-of-operations, the correspondence might be different.

9

on AddRoundKey and then on MixColumns. Besides that, we apply restriction
on the composition transformation of AddRoundKey and MixColumns. The
rationale is that, the XOR operation in AddRoundKey is byte-wise. Only when
two bytes being at the same position in two states, the difference in one byte
can absorb the difference in the other byte. As for MixColumns, only when
two bytes being in the same state, the difference in one byte can absorb
the difference in the other byte. However, when considering the composition
MixColumns◦AddRoundKey, even when the neutral bytes for the forward chunk
lie in different states (some in the key state and some in the encryption state)
and in different byte positions, we can still use the difference of some neutral
bytes to absorb the difference of others. Sect. 4.1 and the listed attacks will
provide formal descriptions and concrete examples.
Explicitly, suppose that there are i forward neutral bytes in the key state, and
j forward neutral bytes in the encryption state, and they lie in columns with
a common index. Let k be the number of different byte positions considering
these neutral bytes together (i.e., k equals the Hamming weight of the ‘OR’
between the indicator vector of whether a position has a neutral byte in
the key state and that in the encryption state). Then, considering the MDS
property of MC in MixColumns, we can control the impacts of neutral bytes
on t bytes of the output by consuming t bytes degree of freedom as long as
k + Nrow − t ≥ Nrow + 1, i.e., k ≥ t+ 1.

Remark 2 (Relation with previous MITM attacks on AES hashing modes). Note
that the ways to control the impacts have already been used in previous MITM
preimage attacks on AES-like hashing [9, 38, 48], which is an essential element
for constructing the initial structure. In this paper, we consider the possibility
to impose such constraints to any round, and in this sense, the boundaries of
the initial structure disappear. Besides, as has been mentioned above, the ways
to select the neutral bytes were limited in previous works to make the analysis
doable by manual. In this paper, we remove these restrictions by allowing the
selection of neutral bytes in both encryption state and key state, and for both
forward and backward chunks.

In the subsequent sections, we will base on these ideas to get explicit rules for
selecting neutral bytes, consuming degree of freedom on neutral bytes to control
their impacts. Incorporating with other optimization techniques (e.g., partial
matching and multi-targets), we convert the problem of searching for the best
configurations into optimization problems under constraints in MILP-models.
With the obtained MILP-models and the off-the-shelf solver, we can search for
the best MITM attacks on AES-like hashing exhaustively.

Remark 3 (Relation with another work on using MILP to searching MITM
attack). In [39], Sasaki already applied the MILP formalization to search the
three-subset MITM attack on GIFT-64. In the tool, which rounds covered by an
initial structure are predefined. Neutral bits are all from the key state because the
goal is a key-recovery attack. Besides, because it is dedicated to GIFT-64 (with
a bit-permutation linear layer), the previously mentioned rules for optimizing

10

Key schedule

Encryption

Match
#E+ #E− #SENC

T

#SKSA

Nrow

Ncolc-bit

SB

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

SR MC
AK

Fig. 2: A high-level overview of the MITM preimage attack

MITM attacks on AES-like hashing are not included, which is essentially the
most challenging parts in our formalization.

3 Formulate the MITM Attack on AES-like Hashing

To search for MITM attacks on AES-like hashing, we now formulate the attack
with the general construction shown in Fig. 2.

Denote the starting states in the encryption data path and key-schedule data
path by #SENC and #SKSA, respectively (corresponding to the location of an initial
structure previously); and denote the ending states for the forward computation
and backward computation by #E+ and #E−, respectively (corresponding to
the previous matching). In the formalized attack, partial knowledge of #E+ and
#E− that is used for matching is supposed to be obtained by computing from
#SENC and #SKSA forward and backward, respectively 7.

Without loss of generality, we assume that the states in the encryption data
paths and the key-schedule both have n c-bit cells (with n = Nrow · Ncol). To
reference the cells of certain n-cell states, denote by BENC, BKSA, RENC, RKSA, C, and
D the ordered subsets of N = {0, 1, · · · , n− 1} whose elements are increasingly
ordered. Here, the BENC and BKSA refer to the neutral cells from the internal state
and message (or key state of the underlying block cipher) for the forward chunk,
and RENC and RKSA for the backward chunk. The C and D refer to the known and
active cells in the ending states #E+ and #E− of the forward and backward
chunks, respectively. For example, we may have C = {0, 2, 7}, and for a 16-cell
state #S, #S[C] is defined to be (#S[0],#S[2],#S[7]) or #S[0, 2, 7].

Before one can mount a MITM preimage attack, these four states: #SENC,
#SKSA, #E+, #E−, and six subsets BENC, BKSA, RENC, RKSA, C, D (BENC∩RENC = ∅
and BKSA ∩RKSA = ∅ for independence between chunks) must be specified.
7 Note that after finding out a formalized attack, adaptation will be made manually to
launch a concrete attack; the forward and backward computations may start from
the most decisive states instead of #SENC and #SKSA while keeping the complexity.

11

Note that to visualize these subsets and the attack, we will introduce a
coloring system in Sect. 4, where cells referenced by BENC and BKSA are Blue, and
cells referenced by RENC and RKSA are Red. The remaining cells in the starting
states referenced by GENC and GKSA are Gray, where GENC = N − BENC ∪RENC and
GKSA = N −BKSA ∪RKSA. Moreover, C references the Blue cells in the ending state
#E+, and D the Red cells in #E−.

In what follows, the degree of freedom (DoF) refers to number of cells, rather
than bits. We call λ+ = |BENC| + |BKSA| the initial DoF for the forward chunk,
and λ− = |RENC|+ |RKSA| the initial DoF for the backward chunk. For forward
and backward chunks being computed independently, these initial DoFs might
be consumed by adding constraints on neutral cells in #SENC and #SKSA. Thus,
neutral cells in the starting states may not take all 2c·λ+ and 2c·λ− values.

If the forward neutral cells (#SENC[BENC],#SKSA[BKSA]) (in Blue) in the starting
states can only take values in X ⊆ F|B

ENC|+|BKSA|
2c with |X| = (2c)d1 ≤ (2c)|BENC|+|BKSA|,

and the backward neutral cells (#SENC[RENC],#SKSA[RKSA]) (in Red) in the start-
ing states can only take values in Y ⊆ F|R

ENC|+|RKSA|
2c with |Y| = (2c)d2 ≤

(2c)|RENC|+|RKSA|, then after fixing the Gray cells (#SENC[GENC],#SKSA[GKSA]) in the
starting states to some constant in F(n−|BENC|−|RENC|)+(n−|BKSA|−|RKSA|)

2c , the attacker
can compute (2c)d1 different values of #E+[C] in the forward direction which only
depend on (#SENC[BENC],#SKSA[BKSA]). The attacker stores these (2c)d1 values in
a list L+. Similarly, the attacker can compute (2c)d2 different values of #E−[D]
in the backward direction which only depend on (#SENC[RENC],#SKSA[RKSA]). The
attacker stores these (2c)d2 values in a list L−. For the two lists L+ and L−, the
attacker can perform an m-cell matching. Then, |L+ × L−|/(2c)m pairs from
L+ × L− are expected to pass the test.

We callm the degrees of matching (denoted by DoM). Note that BENC and BKSA

indicate the sources of the degrees of freedom for the forward computation, and
RENC and RKSA indicate the sources of the degrees of freedom for the backward
computation. Since in the forward computation and backward computation,
(#SENC[BENC],#SKSA[BKSA]) and (#SENC[RENC],#SKSA[RKSA]) are restricted to X
and Y respectively, with |X| = (2c)d1 and |Y| = (2c)d2 , we call d1 the degrees of
freedom for the forward computation (denoted by DoF+) and d2 the degrees of
freedom for the backward computation (denoted by DoF−).

With this configuration, it is shown that the time complexity to find a full n-cell
match between the two ending states is (2c)n−min{d1,d2,m}. Therefore, for a valid
MITM preimage attack, we must have DoF+ ≥ 1, DoF− ≥ 1 and DoM ≥ 1. In the
following section, we will show how to automatically determine BENC, BKSA, RENC,
RKSA, C, and D with MILP such that the complexity (2c)n−min{DoF+,DoF−,DoM}

of the corresponding attack is minimized when the starting states and ending
states are given. Note that the choices of the starting states and ending states
are quite limited and thus can be enumerated automatically.

Remark 4. Our program enumerates all combinations of the locations of starting
and ending points in encryption, and all combinations of the locations of starting
points in the encryption and key-schedule algorithm. That is, for an N -round

12

targeted cipher, our program generates MILP-models for each of the possible
combinations {(initE

r , initK
r , matchr) | 0 ≤ initE

r < N, − 1 ≤ initK
r <

N, 0 ≤ initE
r < N, initE

r 6= matchr}, where initE
r is the location of starting

point in encryption, initK
r is that in key-schedule, and matchr is the location of

the matching point. To find the optimal attacks, the MILP solver solves them all.
Note 1 (Tricks for matching the ending states as indirect matching and matching
through MixColumns used in [4, 9, 18]). Note that in the MITM preimage attack
on AES-like hash functions, the last sub-key addition leading to #E− is close to
the boundary of the forward and backward computation as illustrated in Fig. 15a.
Therefore, to perform matching, one can decompose state as #K = #K+ +#K−,
and translate the computation in Fig. 15a into its equivalent form shown in
Fig. 15b, since MC(#E+) ⊕ #K = MC(#E+ ⊕ MC−1(#K+)) ⊕ #K−. Full
explanation can be found in Supplementary Material C.

In the following description of our modeling method, for simplicity, we let
the number of rows of the state Nrow be 4, and thus, the branch number of the
MixColumns Bn = Nrow + 1 be 5. However, the modeling method can be directly
applied to other AES-like hashing that formalized in Sect. 2.1.

4 Programming the MITM Preimage Attacks with MILP

To facilitate the visualization of our analysis, each cell can take one of the
four colors (Gray, Red, Blue, and White) according to certain rules, and a valid
coloring scheme in our model corresponds to a MITM pseudo-preimage attack.
The semantics of the colors of cells are listed as follows.
• Gray (G): known constant in both forward and backward chunk.
• Red (R): known and active in the backward chunk but unknown in the forward.
• Blue (B): known and active in the forward chunk but unknown in the backward.
• White (W): unknown in both the forward and backward chunk.

For the ith cell of a state #S, we introduce two 0-1 variables x#S
i and y#S

i

to encode its color, where (x#S
i , y#S

i) = (0, 0) represents W, (x#S
i , y#S

i) = (0, 1)
represents R, (x#S

i , y#S
i) = (1, 0) represents B, and (x#S , y#S) = (1, 1) represents

G. The encoding scheme is chosen such that x#S
i = 1 if and only if #S[i] is a

known cell for the forward computation, and y#S
i = 1 if and only if #S[i] is

a known cell for the backward computation. Under this encoding scheme, the
number of Blue cells and Gray cells (known cells for the forward computation)
in #S can be computed as

∑
i x

#S
i . Similarly, the number of Red cells and Gray

cells (known cells in the backward computation) in #S can be computed as∑
i y

#S
i . We also introduce an indicator 0-1 variable β#S

i for each cell such that
β#S
i = 1 if and only if the cell #S[i] is Gray, which can be described by the

following constraints
x#S
i − β#S

i ≥ 0
y#S
i − β#S

i ≥ 0
x#S
i + y#S

i − 2β#S
i ≤ 1

. (2)

13

Under these constraints, the number of Blue cells in #S can be computed as∑
i x

#S
i −

∑
i β

#S
i , and the number of Red cells in #S can be computed as∑

i y
#S
i −

∑
i β

#S
i . Moreover, the Blue cells in the starting states are used to

capture (#SENC[BENC],#SKSA[BKSA]), and the Red cells in the starting states are
used to capture (#SENC[RENC],#SKSA[RKSA]).

Constraints for the Starting States. For the starting states, we introduce
two additional variables λ+ and λ− that compute the so-called initial degrees
of freedom, where λ+ (the initial DoF for the forward computation) is defined
as the number of Blue cells in #SENC and #SKSA, and λ− (the initial DoF for
the backward computation) is defined as the number of Red cells in #SENC and
#SKSA. Putting the definitions into equations, we have{

λ+ =
∑
i x

#SENC

i −
∑
i β

#SENC

i +
∑
i x

#SKSA

i −
∑
i β

#SKSA

i

λ− =
∑
i y

#SENC

i −
∑
i β

#SENC

i +
∑
i y

#SKSA

i −
∑
i β

#SKSA

i

. (3)

Constraints for the Ending States. To be concrete, we describe the con-
straints for matching through the MixColumns operation of AES.

Property 1. Let (#E−[4j],#E−[4j+1],#E−[4j+2],#E−[4j+3])T and (#E+[4j],
#E+[4j+1],#E+[4j+2],#E+[4j+3])T be the jth columns of the ending states
#E− and #E+ that are linked by the MixColumns operation. When t (t ≥ 5)
out of the 8 bytes of the two columns are active, there is a filter of t− 4 bytes.

Since the time complexity of the attack is (2c)n−min{DoF+,DoF−,DoM}, we must
impose the constraint DoM ≥ 1 to ensure a valid attack. The known and active
bytes of the jth column of the ending state E+ for the forward computation
path from the starting states to E+ is the number of Blue cells, which can be
computed in our model as

∑3
i=0(x#E+

4j+i − β
#E+

4j+i). Similarly, the known bytes of
the jth column of the ending state E− for the backward computation path from
the starting states to E− is the number of Red cells, which can be computed as∑3
i=0(y#E−

4j+i − β
#E−
4j+i). Therefore, according to Property 1, we have the following

constraints (suppose each state has four columns):{
DoM =

∑3
j=0

(∑3
i=0(x#E+

4j+i − β
#E+

4j+i) +
∑3
i=0(y#E−

4j+i − β
#E−
4j+i)− 4

)
DoM ≥ 1

. (4)

Constraints for the States in the Computation Paths. This is an essential
part of this work. In this part, we extend the construction of attacks on the basis of
previous works. We refine and apply the critical idea behind the initial structure
to a greater extent, and explicitly describe more possible ways to propagate
the attributes (expressed in the four colors) of the cells that are involved in
computation paths in both the encryption and the key-schedule. Therefore, we

14

would like to devote one separate whole section (Sect. 4.1) for the details of this
part. Here we only give some high-level descriptions.

Let f be an operation that transforms a state #SIN into a state #SOUT. Then
the coloring scheme of (#SIN,#SOUT) must obey certain rules associated with
f and the direction of the computation in which f is involved, such that the
semantics of the colors are respected.

If we restrict the Red cells (#SENC[RENC],#SKSA[RKSA]) in the starting states to
some carefully constructed set Y defined in Sect. 3, it may be valid to transform
certain Red cells in #SIN to Gray cells (or even Blue cells) in #SOUT by some
operations along the forward computation path (starting from the starting states
to the ending state #E+). By doing so, impacts from the Red cells on the forward
computation are limited, meanwhile, the degrees of freedom of the Red cells in
the starting states should be reduced from λ−; similar situations happen along
the backward computation path (starting from the starting states to the ending
state #E−). In our MILP model, we must keep track of how much degrees of
freedom are consumed to ensure the remaining degrees of freedom for the forward
computation (DoF+) and for the backward computation (DoF−) always greater
or equal to one. The variables and constraints introduced for the above purpose
are detailed in Sect. 4.1.

The Objective Function. To minimize the time complexity of the attack,
min{DoF+,DoF−,DoM} should be maximized. To this end, we can introduce
an auxiliary variable vObj, impose the constraints

vObj ≤ DoF+

vObj ≤ DoF−

vObj ≤ DoM

and set the objective function to maximize vObj.
In the multi-target setting, we suppose that the degree of freedom for the chunk

to which the targets are added can be directly increased. Thus, for models where
the starting point (resp. matching point) is at the upper round than the matching
point (resp. starting point), DoF− (resp. DoF+) can be directly increased, the
objective is to maximize min{DoF+,DoM} (resp. min{DoF−,DoM}).

4.1 MILP Constraints for the States in the Computation Paths and
the Consumption of Degrees of Freedom

Recalling the formalized framework of MITM attack in Sect. 3, before we perform
the attack on a given target with predefined positions of starting states and
ending states, we have to determine BENC, BKSA, RENC, and RKSA for the starting
states #SENC and #SKSA. In our visualizations of the attacks, the Blue cells in the
starting states #SENC and #SKSA are meant to capture BENC and BKSA respectively.
Similarly, the Red cells in the starting states are used to capture RENC and RKSA,
and the Gray cells in the starting states are used to capture GENC, and GKSA.

15

Therefore, according to Eq. (3), the number of Blue cells and the number of
Red cells in the starting states correspond to the initial degrees of freedom λ+

and λ−, respectively. To control the impacts from neutral cells in one direction on
the opposite direction, along the computation paths leading to the ending states,
the initial degrees of freedom are consumed according to the coloring schemes.

Basically, forward computation consumes λ−, and backward computation
consumes λ+. The consumption of degrees of freedom is counted in cells. Let σ+

and σ− be the accumulated degrees of freedom that have been consumed in the
backward and forward computation paths, respectively. We have{

DoF+ = λ+ − σ+

DoF− = λ− − σ−
. (5)

That is, the remaining DoF for the forward computation is computed as the initial
DoF of the forward computation minus the DoF consumed by the backward
computation (from the starting state to the ending state #E−), and the remaining
DoF of the backward computation is computed as the initial DoF of the backward
computation minus the DoF consumed by the forward computation (from the
starting state to the ending state #E+). Since the complexity of the attack
is (2c)n−min{DoF+,DoF−,DoM}, we always require DoF+ ≥ 1 and DoF− ≥ 1.
Moreover, σ+ is computed as

∑
σ+(#SIN → #Sout) along the computation path

that consumes DoF for the forward computation, where σ+(#SIN → #SOUT) is
the DoF for the forward computation consumed by the transition from state #SIN
to #SOUT, and σ− is computed as

∑
σ−(#SIN → #SOUT) along the computation

path that consumes the DoF for the backward computation. To show how to
compute σ+ in our model, we will take the most complicated XOR-MC operation
as an example. For other operations, one can obtain the constraints similarly.

According to the semantics of the colors, the rules for coloring the input and
output states of an operation, and how they consume the degree of freedom to limit
the impacts should be different for the forward and the backward computation
paths. Therefore, for each type of operations, we will give two sets of rules for
different directions of the computation.

First of all, an invertible S-box preserves the color of the input cell, and
the ShiftRows permutes the coloring scheme of the input state according to
the permutations associated with the ShiftRows in both forward and backward
computations. Both S-box and ShiftRows operations can not be used to reduce
the impacts via consuming the degree of freedom. In the sequel, we will focus on
more nontrivial operations.

XOR. The XOR operations exist in the AddRoundKey and the key/message-
schedule (if any). Here we need to distinguish two different directions. If the XOR
to be modeled is involved in the forward computation path from the starting
states to the ending state #E+, the coloring scheme of the input and output
cells of the XOR operation obeys the set of rules (denoted by XOR+-RULE, where
a “+” sign signifies the forward computation) shown in Fig. 3a. Similarly, if the

16

(-1)

*

(a) For the forward computation (XOR+-RULE)

(-1)

*

(b) For the backward computation (XOR−-RULE)

Fig. 3: Rules for XOR operations, where a “*” means that the cell can be any color

XOR to be modeled is involved in the backward computation path from the
starting states to the ending state #E−, the coloring scheme of the input and
output cells of the XOR operation obeys the set of rules named as XOR−-RULE,
which is visualized in Fig. 3b. Note that XOR−-RULE (Fig. 3b) can be obtained
from XOR+-RULE (Fig. 3a) by exchanging the Red cells and Blue cells, since the
meanings of Red and Blue are dual for the forward and backward computations.

Let #A[0], #B[0] be the input cells and #C[0] be the output cell. The set
of rules XOR+-RULE restricts (x#A

0 , y#A
0 , x#B

0 , y#B
0 , x#C

0 , y#C
0) to a subset of F6

2,
which can be described by a system of linear inequalities by using the convex
hull computation method [45], and the set of rules XOR−-RULE can be described
similarly.

Within each of the two sets of rules for XOR operations, only one coloring
scheme consumes the degree of freedom, e.g., the ⊕ → in Fig. 3a, which
describes the possibility that the difference in one cell cancels that in another.

MixColumns. For the MixColumns operation in the forward computation, we
have the following set of rules (denoted by MC+-RULE) for the coloring schemes
of the input and output columns. Examples of valid coloring schemes are shown
in Fig. 4.

I MC+-RULE-1. If there is at least one White cell in the input column, all the
output cells are White (one unknown cell in the input causes all cells in the
output be unknown);

I MC+-RULE-2. If there are Blue cells but no White cells and no Red cell in the
input column, then all the output cells are Blue (can perform full forward
computations);

I MC+-RULE-3. If all the input cells are Gray, then all the output cells are
Gray (can perform bi-direction computations on fixed constants);

I MC+-RULE-4. If there are Red and Blue cells but no White cells in the input
column, each output cell must be Blue or White. Moreover, a condition should
be fulfilled, that is, the sum of the numbers of Blue and Gray cells in the
input and output columns must be no more than 3 (i.e., 8− 5) (can partially
cancel the impacts from on within an input column by consuming λ−,
and perform partial forward computations. Because of the MDS property of
MixColumns, this is possible only when the condition is fulfilled);

I MC+-RULE-5. If there are Red cells but no White cells and no Blue cells in
the input column, then each output cell must be Red or Gray. Moreover, a

17

MC

-0

MC

-0

MC

-0

MC

-0

MC

-1

MC

-1

MC

-2

MC

-0

MC

-3

MC

-2

Fig. 4: Some valid coloring schemes for the MixColumns in the forward computation

condition should be fulfilled, that is, the number of Gray cells in the input
and output columns must be no more than 3 (i.e., 8−5) (can partially cancel
the difference within an input column by consuming λ−. Because of the MDS
property of MixColumns, this is possible only when the condition is fulfilled).

All the above rules can be described by linear inequalities.
First, we introduce three 0-1 indicator variables µ, υ, ω for the input column

and necessary constraints into the model to satisfy the following cases.

I µ = 1, υ = 0, ω = 0 if and only if MC+-RULE-1 is fulfilled;
I µ = 0, υ = 1, ω = 0 if and only if MC+-RULE-2 is fulfilled;
I µ = 0, υ = 1, ω = 1 if and only if MC+-RULE-3 is fulfilled;
I µ = 0, υ = 0, ω = 0 if and only if MC+-RULE-4 is fulfilled;
I µ = 0, υ = 0, ω = 1 if and only if MC+-RULE-5 is fulfilled.

This can be done as follows.
Let (#A[0],#A[1],#A[2],#A[3])T and (#B[0],#B[1],#B[2],#B[3])T be the

input and output columns. Without any restriction, there are 28 possible coloring
schemes for the input column since (x#A

0 , y#A
0 , · · · , x#A

3 , y#A
3) ∈ F8

2. We define
the set of vectors

{(x#A
0 , y#A

0 , · · · , x#A
3 , y#A

3 , µ) : (x#A
0 , y#A

0 , · · · , x#A
3 , y#A

3) ∈ F8
2}, (6)

where µ = 1 if and only if there exists i ∈ {0, 1, 2, 3} such that (x#A
i , y#A

i) =
(0, 0). This subset can be described by linear inequalities with the convex hull
computation method [45].

υ = 1 if and only if x#A
i = 1 for each i ∈ {0, 1, 2, 3}. This can be done by

linear inequalities {∑3
i=0 x

#A
i − 4υ ≥ 0∑3

i=0 x
#A
i − υ ≤ 3

. (7)

ω = 1 if and only if y#A
i = 1 for each i ∈ {0, 1, 2, 3}. This can be done by

similar inequalities as Eq. (7).
Now, with the help of these variables µ, ε, ω, we can convert MC+-RULE into a

system of inequalities:

∑3
i=0 x

#B
i + 4µ ≤ 4∑3

i=0 y
#B
i + 4µ ≤ 4∑3

i=0(x#A
i + x#B

i)− 5υ ≤ 3∑3
i=0(x#A

i + x#B
i)− 8υ ≥ 0∑3

i=0 y
#B
i − 4ω = 0

. (8)

18

MC−1

δ = 0
-0

MC−1

δ = 1
-0

MC−1

δ = 1
-0

MC−1

δ = 1
-0

MC−1

δ = 0
-2

MC−1

δ = 0
-3

MC−1

δ = 0
-3

MC−1

δ = 0
-3

Fig. 5: Some valid coloring schemes for the XOR-MC in the backward computation

Since the semantics of the Red cells and Blue cells are dual in the forward
and backward computation, the set of rules for backward computation (denoted
by MC−-RULE) can be obtained from MC+-RULE by exchanging the words Blue
and Red. We omit the details to save spaces.

XOR then MixColumns (XOR-MC). For the operation which maps the two
input columns (#A[0],#A[1],#A[2],#A[3])T and (#B[0],#B[1],#B[2],#B[3])T
to #C[0, 1, 2, 3] = MC−1(#A[0, 1, 2, 3] + #B[0, 1, 2, 3]), we have the following
rules for the coloring schemes of the input and output columns. Note that this
operation only appears in the backward computation for all the targets in this
paper. Therefore, we only specify the set of rules for XOR-MC for the backward
computation.

I XOR-MC-RULE-1. If there is at least one White cell in the input columns, all
the output cells are White (one unknown cell in the input causes all cells in
the output be unknown);

I XOR-MC-RULE-2. If there are Red cells but no White cells and no Blue cells
in the input columns, all output cells are Red (can perform full backward
computations);

I XOR-MC-RULE-3. If all input cells are Gray, then all output cells are Gray
(can perform bi-direction computations on fixed constants);

I XOR-MC-RULE-4. If there are Blue cells and Red cells but no White cells in
the input columns, each output cell must be Red or White. Moreover, when
combining the two input columns as a 4× 2 matrix, the number of rows with
one or two Blue cells plus the number of White cells in the output column
must be greater or equal to 5 (can partially cancel the impacts from on
within two input columns by consuming λ+, and perform partial backward
computations. Because of the MDS property of inverse MixColumns, this is
possible only when the condition is fulfilled);

I XOR-MC-RULE-5. If there are Blue cells but no Red cells and no White cells
in the input columns, each output cell must be Blue or Gray. Moreover,
when combining the two input columns as a 4 × 2 matrix, the number of
rows with one or two Blue cells plus the number of Blue cells in the output
column must be greater or equal to 5 (can partially cancel the difference
within two input columns by consuming λ+. Because of the MDS property
of MixColumns, this is possible only when the condition is fulfilled).

All the above rules can be described by similar linear inequalities for MC−-RULE.
Three 0-1 indicator variables µ, υ, ω also be introduced for the input columns.

19

µ = 1 if and only if there exists i ∈ {0, 1, 2, 3} such that (x#A
i , y#A

i) = (0, 0)
or (x#B

i , y#B
i) = (0, 0). υ = 1 if and only if x#A

i = 1 and x#B
i = 1 for each

i ∈ {0, 1, 2, 3}. ω = 1 if and only if y#A
i = 1 and y#B

i = 1 for each i ∈
{0, 1, 2, 3}. These constraints can be generated from that of MC-RULE. For example,
introduce µ#A (resp µ#B) for input column (#A[0],#A[1],#A[2],#A[3])T (resp
(#B[0],#B[1],#B[2],#B[3])T) and necessary constraints as Eq. (6). Then µ = 1
if and only if µ#A = 1 or µ#B = 1. Then

I µ = 1, υ = 0, ω = 0 if and only if XOR-MC-RULE-1 is fulfilled;
I µ = 0, υ = 0, ω = 1 if and only if XOR-MC-RULE-2 is fulfilled;
I µ = 0, υ = 1, ω = 1 if and only if XOR-MC-RULE-3 is fulfilled;
I µ = 0, υ = 0, ω = 0 if and only if XOR-MC-RULE-4 is fulfilled;
I µ = 0, υ = 1, ω = 0 if and only if XOR-MC-RULE-5 is fulfilled.

Another four 0-1 variables τ0, τ1, τ2, τ3 are introduced for each row, τi = 1 if and
only if #A[i] or #B[i] is Blue cell.

Now, with the help of these variables µ, ε, ω, τi for i ∈ {0, 1, 2, 3}, we can
convert XOR-MC-RULE into a system of inequalities:

∑3
i=0 x

#C
i + 4µ ≤ 4∑3

i=0 y
#C
i + 4µ ≤ 4∑3

i=0(y#C
i − τi)− 5ω − µ ≤ −1∑3

i=0(y#C
i − τi)− 8ω ≥ −4∑3

i=0 x
#C
i − 4υ = 0

. (9)

Remark 5. One may attempt to model the XOR-MC operation by applying
XOR−-RULE and MC−-RULE separately. This approach is valid but misses important
coloring schemes that may lead to better attacks. For example, considering the
input columns shown in Fig. 6, applying XOR−-RULE results in White cells after
the XOR operation. Subsequently, applying MC−-RULE, we will end up with a
full column of White cells. However, if we model the XOR-MC operation as a
whole, we can still preserve some Red cells from impact according to the sixth
sub-figure in Fig. 5. This coloring scheme can be explained by the equation
shown in Fig. 6, where the second term of the right-hand side of the equation is
known for the backward computation. Therefore, we can restrict the values of
(#B[0],#A[0],#A[1],#A[2],#A[3]) such that

e · (#A[0]⊕#B[0])⊕ b ·#A[1]⊕ d ·#A[2]⊕ 9 ·#A[3] = C0
d · (#A[0]⊕#B[0])⊕ 9 ·#A[1]⊕ e ·#A[2]⊕ b ·#A[3] = C2
b · (#A[0]⊕#B[0])⊕ d ·#A[1]⊕ 9 ·#A[2]⊕ e ·#A[3] = C3

(10)

where C0, C2, and C3 are constants, which implies that only #C[1] is unknown
for the backward computation (see the sixth sub-figure in Fig. 5). The principle
is to let the differences of multiple cells in two input columns mutually canceled
at particular output cells.

20

#A

#B

MC−1

#C

#C[0]
#C[1]
#C[2]
#C[3]

 =

e b d 9

9 e b d

d 9 e b

b d 9 e

×

#A[0]⊕#B[0]
#A[1]
#A[2]
#A[3]

⊕

e b d 9

9 e b d

d 9 e b

b d 9 e

×

0

#B[1]
#B[2]
#B[3]

Fig. 6: The inaccuracy of modeling XOR-MC in the backward computation by applying
XOR−-RULE and MC−-RULE separately.

Compute consumed DoF in XOR-MC-RULEs. In all of our applications, the XOR-
MC operation only appears in the backward computation and thus only consumes
the DoF for the forward computation. Let (#A[0], · · · ,#A[3]) and (#B[0], · · · ,#B[3])
be the two input columns and (#C[0], · · · ,#C[3]) be the output column. Given
a valid coloring scheme of #A, #B, and #C, the consumed DoF (measured in
cells)

σ+((#A[0, · · · , 3],#B[0, · · · , 3])→ #C[0, · · · , 3])

equals the number of Red and Gray cells (known cells of the output column in
the backward computation) when there is at least one Blue cell in the input
columns. Otherwise, the consumed DoF is zero.

Let δ be a 0-1 indicator variable such that δ = 1 if and only if there are no
Blue cells and no White cells in the input columns, which can be achieved by
imposing the following constraints on δ:

−δ +
∑3
i=0 y

#A
i +

∑3
i=0 y

#B
i ≤ 7

y#A
i ≥ δ, i ∈ {0, 1, 2, 3}
y#B
i ≥ δ, i ∈ {0, 1, 2, 3}

. (11)

Then we have σ+((#A[0, · · · , 3],#B[0, · · · , 3])→ #C[0, · · · , 3]) = −4δ+
∑3
i=0 y

#C
i .

In Fig. 5 we give some example coloring schemes of the XOR-MC operation
together with their consumed DoF. Similarly, the constraints describing how the
XOR and MC operations consume DoF can be deduced.

5 Applications

Equipped with the presented tool, we evaluated the security of hash functions
built on AES and AES-like ciphers, including all members of AES and the members
of Rijndael with 256-bit block-size [13] in PGV-modes (note the equivalence among
PGV-modes for the attacks as shown in [9]) and Haraka v2 [30].

For all targets, improved attacks are identified. In particular, our tool found
the first preimage attacks on 8-round AES-128 hashing modes, and on the full
5-round and the extended 5.5-round (10 and 11 AES-rounds) Haraka-512 v2. Due
to the page limit, we only describe two attacks in detail. The list of optimal

21

attacks we found is presented in Table 1. With the help of the visualizations of
these attacks, one can reconstruct concrete attacks and confirm the complexities.

The time for finding each of the optimal attacks is within hours, including
enumerating all possible combinations of the locations of starting and ending
points in encryption, and all possible combinations of the locations of starting
points in the encryption and key-schedule. For example, to get the presented
attack on 8-round AES-128 hashing modes, our program generated all possible
MILP-models and the MILP solver Gurobi solved them all, which took about
two hours on a PC with an Intel Core i7-7500U CPU and 8 GB memory.

5.1 Improved Attacks on AES and Rijndael Hashing Modes

Searching the attacks. We apply our method to AES hashing modes. With
our tool, many new attacks are found automatically. We list some examples for
each member of AES and also the members of Rijndael with 256-bit block-size [13]
(denoted by Rijndael-256) in Fig. 7, 8, 9, 10, and 11. Notably, apart from new
attacks with better complexities, an 8-round attack on AES-128 and 9-round
attacks on AES-192 and AES-256 hashing mode were found, which extend one
more round compared with previous attacks [9, 38,48].

To be clear, in the figures, some information are presented, such as which
states are the starting states (in the searching for the attacks, not necessarily
in the concrete attacks), how independent computation flows propagated in
the states, and where the two chunks meet. Besides, which rules are applied
to the states and how the degrees of freedom are consumed by the specific
coloring scheme in our MILP models are also exhibited. Furthermore, the initial
degrees of freedom (λ+, λ−), and the final configuration (DoF+,DoF−,DoM)
which determines the attack complexity are summarized at the bottom.

For example, from Fig. 7, it can be seen that, in the searching of our model, the
starting states are #SB4 and #k4, and the ending states are #MC1 and #SB2.
Also, we have BENC = [0, 5, 10, 15], BKSA = [0, 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14],
RENC = [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14], RKSA = ∅, C = [0, 2, 5, 7, 8, 10, 13, 15],
and D = [1, 2, 3]. Accordingly, the initial degrees of freedom for the forward
computation and backward computation are 17 and 12 respectively, and the
degree of matching is 2+3−4 = 1. The states #SB4, #k3, and #MC3 are enclosed
by a dashed light-green frame , which means that XOR-MC-RULE is applied to
them, and the specific coloring scheme consumes 12 cells of degrees of freedom for
the forward computation. Similarly, the XOR-MC-RULE is applied to states #SB3,
#k2, and #MC2, and that consumes 3 cells of degrees of freedom for the forward
computation. The states #MC4 and #AK4 are enclosed by a dashed light-purple
frame , which means MC+-RULE is applied to them, and that consumes 9 cells
of degrees of freedom for the backward computation. Similarly, the MC+-RULE
is applied to states #MC5 and #AK5, and that consumes 2 cells of degrees of
freedom for the backward computation. Accordingly, in the solution of our model,
DoF+ = 17− 12− 3 = 2 and DoF− = 12− 9− 2 = 1, which indicates that the
values of (#SB4[BENC],#k4[BKSA]) are restricted to a subset X of F17

28 with (28)2

elements, and the values of (#SB4[RENC],#k4[RKSA]) are restricted to a subset Y

22

of F12
28 with 28 elements. To be more concrete, X and Y should be chosen such

that the forward computation is irrelevant of (#SB4[RENC],#k4[RKSA]), and the
backward computation is irrelevant of (#SB4[BENC],#k4[BKSA]). Since the degrees
of freedom for the forward and backward computations (DoF+ and DoF−) are
derived rather formally without giving the actual contents of X and Y, some
readers may doubt whether such X and Y really exist. In the following (in the
precomputation phase and more details in Supplementary Material B.1), we
explicitly show in this example, how to obtain X and Y such that the required
properties are fulfilled, and under the configuration obtained by the MILP model,
how to launch the concrete attack.

The attack on 8-round AES-128 hashing (refer to Fig. 7)

The Precomputation Phase (precompute possible initial values of neutral bytes)

1. To be able to compute backward chunk independently of forward neutral
bytes, the forward neutral bytes should have constant impacts on the 12
C-marked Red bytes in #MC3 and on the 3 C-marked Red bytes in #MC2.
Therefore, denote the 12 constant impacts on 12 bytes in #MC3 by C1,0, C1,1,
C1,2, C1,3, C1,4, C1,5, C1,6, C1,7, C1,8, C1,9, C1,10, C1,11, we derive constraints on
forward neutral bytes, which is a system linear equation Eq. (12). Similarly,
denote the 3 constant impacts on 3 bytes in #MC2 by C2,0, C2,1, C2,2, we
derive constraints on forward neutral bytes, which is a system of linear
equation Eq. (13). In total, requiring impacts to be constant will impose 15
bytes constraints on forward neutral bytes (20 bytes) as shown in the system
of linear equation Eq. (16). Solving Eq. (16), one gets 240 solutions (where
40 = (20− 15)× 8).
In the following main procedure, the values of C1,0, C1,1,. . ., C1,11, and C2,0,
C2,1, C2,2 are fixed such that we only need to solve Eq. (16) once. However,
the main procedure will need to trail on many values of Gray bytes in k4 (i.e.,
k4[5, 10, 15]) to find full match. So here, we precompute values of forward
neutral bytes that correspond to each value of k4[5, 10, 15]. That can be done as
follows. For each of the 240 solution, k3 and #SB4[0, 5, 10, 15] are determined.
Compute k4 using k3, and store k4 and the values of #SB4[0, 5, 10, 15] in
table T1 indexed by the values of 3 Gray bytes k4[5, 10, 15].
• Note that there are 224 entries in T1, and the total size of T1 is about 240.
Under each index, there are about 216 elements. We can either use 216 or 28

of them. The total complexity of the full attack will be the same (because
DoF+ and DoM are all one byte). Thus, we use 28. Therefore, the complexity
of this procedure is 232, and the memory requirement is 232.

2. To be able to compute forward chunk independently of backward neutral
bytes, the backward neutral bytes should have constant impacts on the 2
C-marked Blue bytes in #AK5. Therefore, denote the 2 constant impacts on
2 bytes in #AK5 by C4,0 and C4,1, we derive constraints on backward neutral
bytes, which is a linear equation system Eq. (17). For each possible C4,0 and
C4,1, when solve Eq. (17), one gets 28 solutions.

23

In the following main procedure, we need to trail on many values of (C4,0, C4,1)
to find a full match. So here, we precompute values of backward neutral bytes
that correspond to each value of (C4,0, C4,1), store values of #MC5[1, 2, 3]
fulfilling Eq. (17) in table T2 indexed by the values of (C4,0, C4,1).
• There are 216 entries in T2, and the total size of T2 is 224. Under each index,
there are 28 elements.

The Main Procedure. During the following procedure, the values of C1,0, C1,1, . . .,
C1,11, and C2,0, C2,1,C2,2 are fixed.

1. For each of the 2x values of 9 Gray bytes in #AK4, for each index i of the
224 indexes of T1 (each i corresponds to each candidate value of the 3 Gray
bytes in k4), for each index j of the 216 indexes of T2 (each j corresponds to
each candidate value of the 2-byte impact on C-marked cells by in #AK5),
do: Initialize an empty table L1.
(a) For each of the 28 elements in T1[i], start from state #SB4 and k4,

compute forward (cells in Blue) with the knowledge of the fixed impact j
on #AK5 to the matching point #MC1. Compute the one-byte value m1
for matching (defined in left-hand side of the equation in Fig. 1b), and
use m1 as the index to store the values of (#SB4[0, 5, 10, 15], k4) into
L1[m1] (there is about 28−8 = 1 element in each L1[m1]).

(b) For each of the 28 elements in T2[j], start from state #MC5, compute
backward (cells in Red) with the knowledge of fixed value i (i.e., 3 Gray
bytes) in state k4 and the fixed impacts on #MC3 and #MC2 (i.e.,
C1,0, C1,1, C1,2, C1,3, C1,4, C1,5, C1,6, C1,7, C1,8, C1,9, C1,10, C1,11, C2,0, C2,1,
C2,2) to the matching point #AK1. Compute the one-byte value m2 for
matching (defined in right-hand side of the equation in Fig. 1b), and use
it to lookup the list L1:
i. For each of the elements in L1[m2] (expected to exist 28−8 = 1):

restart the forward and backward computations combining the knowl-
edge of values in both directions (the values of #SB4[0, 5, 10, 15],
k4, and #MC5) to the matching point (#MC1, #AK1), test for full
match on 128-bit state.

Complexity. The computational and memory complexity of the precomputation
phase is about 232. For the main procedure, in the inner loop, there will be
2(8+8−8) = 28 solutions left after the one-byte (8-bit) matching (m1 and m2)
in Step 1 (b) i. In order to find a 128-bit full match, one has to match the
other 120 bits. Hence, for the outer loop, it requires x + 24 + 16 = 120 − 8,
i.e., x = 72. Therefore, the time complexity for the main procedure is about
2(x+24+16)+8 = 2x+40 = 2120.

We implemented the full attack on this 8-round AES-128-hashing (with partial
matchings), which verified the complexity. The codes and results are available
via https://github.com/MITM-AES-like-Hashing/AES128_8R.

24

https://github.com/MITM-AES-like-Hashing/AES128_8R

Apart from the biclique attacks in [12]8, the best previous pseudo-preimage
attacks against AES-128 hashing modes remain as 7 rounds since 2011, with
a time complexity of 2120 by Sasaki [38] and improved to 2112 by Bao et al.
in 2019 [9]. Our attack presented here penetrates one more round. There is a
unique features observed from Fig. 7, which made the extra round possible. The
backward chunk covers one more round compared with that in [9, 38]. This is
only possible after the consumption of 12 and 3 Blue bytes of freedom degrees
(forward neutral bytes) in consecutive two rounds. Without the introduction of
DoF from key bytes in [9], this would not be possible. Note that the backward
chunk only outputs 3 bytes, which are just sufficient to form a filter of one byte
together with the 2 Blue bytes before the MixColumns at the matching point.

As depicted in Fig. 8, 9, 10, 11 and summarized in Table 1, when our search
models are applied to hashing modes based on other AES variants, they are also
able to improve by one round against AES-192 and AES-256 hashing as in [9].
Some configurations (e.g., Fig. 8, 10) are more involved, in which the key states
have neutral bytes for both forward and backward chunks. That might be hard
to be found by manual.

5.2 Improved Attacks on Haraka v2

Haraka v2 [30] is a family of hash functions designed to be efficient for short-input
and for post-quantum applications. It includes two versions, denoted by Haraka-
256 v2 and Haraka-512 v2, both output 256-bit hash digests and claim 256-bit
security against (second)-preimage attacks. They only process short-input (s-bit
string, denoted by x) and thus employ s-bit permutation (denoted by πs) in the
DM-mode as follows:

Haraka-256 v2(x) = πs(x)⊕ x and Haraka-512 v2(x) = trunc(πs(x)⊕ x)

where trunc truncates 512-bit state to 256-bit output.To achieve high performance
on platforms supporting AES-NI and share security analysis of AES, the round
function of the permutation πs first applies two layers of b AES-round-functions
in parallel on a state that can be evenly divided into b sub-states (each of which is
identical to the state of AES), then it applies a shuffle (denoted by mixs) among
the columns of the state. For Haraka-256 v2, s = 256, b = 2, and for Haraka-512
v2, s = 512, b = 4. For both of them, the number of rounds is 5 that involves 10
AES-rounds in sequential.

The modified versions of Haraka v2 are used in instantiations of SPHINCS+

(which replaces the DM-mode with Sponge-based construction) [23] and Gravity-
SPHINCS (which extends one round on top of the 5-round version) [7]. Gravity-
SPHINCS is one of the first round, and SPHINCS+ is one of the third round
alternate candidates of digital signatures in the NIST Post-Quantum Cryptogra-
phy Standardization Process.

8 Known for having broken full AES and AES hashing modes with slight advantage
over brute force.

25

The former version of Haraka (named as Haraka v1) was broken by Jean [25]
due to its weak round constants. Then an updated version Haraka v2 [30]
was published. The designers provide MITM preimage attacks on 3.5-round
Haraka-256 v2 and on 4-round Haraka-512 v2.

Searching the attacks. For both versions of Haraka v2, our tool produced
improved MITM preimage attacks. In particular, for Haraka-256 v2, our tool
found attacks that cover up to 4.5-round (9 AES-rounds). An example that
has the optimal complexity is visualized in Fig. 12, of which the complexity is
2256−8×min{DoF+, DoF−, DoM} = 2256−8×min{4, 4, 8} = 2224. Note that this attack
directly implies an attack cover 4-round (8 AES-rounds) with the same complexity.
For Haraka-512 v2, our tool finds attacks that penetrate the full 5-round (10
AES-rounds) and the extended 5.5-round (11 AES-rounds) version. The detailed
configuration of one of the attacks on the full 5-round (10 AES-rounds) is
visualized in Fig. 13. In the following, we present one of the searching results on
the extended 5.5-round (11 AES-rounds) and the concrete attack corresponding
to the configuration visualized in Fig. 14

From Fig. 14, it can be seen that in the searching of our model, the starting
state is #SB3, and the ending states are #MC10 and #AC10. Also, we have
BENC = [16 · i + j | i ∈ {0, 1, 2, 3}, j ∈ {0, 1, 5, 6, 10, 11, 12, 15}], RENC =
[16 · i + j | i ∈ {0, 1, 2, 3}, j ∈ {2, 3, 4, 7, 8, 9, 13, 14}], C = [16 · i + j | i ∈
{0, 3}, j ∈ {0, 7, 10, 13}] ∪ [16 · i + j | i ∈ {1, 2}, j ∈ {1, 4, 11, 14}], and D =
[16 · i + j | i ∈ {2}, j ∈ {0, 1, . . . , 7}]. Therefore, both of the initial degrees of
freedom for the forward computation and backward computation are 32, i.e.,
λ+ = λ− = 32, and the degree of matching is DoM = (1 + 4 − 4) × 2 = 2.
The MC−-RULE applied to states #MC2 and #AC2 consumes 16 cells of degrees
of freedom for the forward computation. And the MC+-RULE applied to states
#MC6 and #AC6 consumes 16 cells of degrees of freedom for the backward
computation. Accordingly, in the solution of our model, DoF+ = 32−16 = 16 and
DoF− = 32−16 = 16. This indicates that the values of #SB3[BENC] are restricted
to a subset X of F32

28 with 28×16 elements, and the values of #SB3[RENC] are
restricted to a subset Y of F32

28 with 28×16 elements. To be more concrete, X and Y
should be chosen such that the forward computation is irrelevant of #SB3[RENC]
and the backward computation is irrelevant of #SB3[BENC]. In summary, the
decisive parameters for the obtained attack is (DoF+,DoF−,DoM) = (16, 16, 2).
From these parameters, one can directly obtain that the time complexity of the
corresponding pseudo-preimage attack is (28)32−min{DoF+,DoF−,DoM} = 2240.

The concrete procedure of the preimage attack on the extended 5.5-round
Haraka-512 v2 is given in the following.

The concrete attack on 11-AES-round Haraka-512 v2 (refer to Fig. 14)

1. For each of the 2x values of impacts (16-byte impacts on the C-marked Red
cells in #MC2 and 16-byte impacts on the C-marked Blue cells in #AC6),
do: Initialize two empty tables L1 and L2

26

(a) With the knowledge of the value of 16-byte impacts on the C-marked
Red cells in #MC2, we can collect 216×8 = 2128 possible values of Blue
bytes (neutral bytes for the forward) in #AC2 by solving sets of linear
equations column-by-column. For example, in the first column of #MC2

and #AC2, the two Blue bytes and 1-byte impact (denoted by C0) on the
C-marked cell have to meet: 9 ·#AC2[0]⊕ e ·#AC2[1] = C0. There are
16 sets of such linear equations, one set per column. For each column, we
obtain 28 solutions. Hence, it is expected to get 2128 solutions by solving
16 sets of linear equations with 32 variables in total. The number 2128 is
also the degrees of freedom for forward chunk.

(b) For each of the 2128 solutions for Blue bytes (neutral bytes for the forward)
in #AC2, compute forward with the knowledge of the 16-byte impacts on
the C-marked cells in #AC6 to the matching point #MC10, extract the
two-byte value for matching (denoted by m1), store the values of Blue
bytes in #AC2 in L1[m1].

(c) Similarly, collect 2128 possible values for Red bytes (neutral bytes for the
backward) in state #MC6 and compute backward to the matching point
#AC10, extract the two-byte value for matching (denoted by m2), store
the values of Red bytes in #MC6 in L2[m2].

(d) For entries with common index (i.e., 16-bit partial match) between L1
and L2, form pairs of values of Blue bytes in #AC2 and Red bytes in
#MC6; for each pair, restart the forward and backward computations
combining the knowledge of values in both direction, test for full match.
on 256 bits.

Complexity. In Step 1 (d), it is expected to find 2128+128−16 = 2240 matches on
16 bits. Among them, it is expected to left 1 solution that also match on the
other 240 bits, that implies a full match on 256 bits. Hence, to find a full match,
it is expected to need 2x outer loops where x = 0. The memory requirement
is 2 · 2128 to store L1 and L2. The time complexity of Step 1 (a) is no more
than 2128. The same complexity also applies to Step 1 (b) and Step 1 (c). The
time complexity of Step 1 (d) is approximately 216 × 22×112 = 2240 (L1 and L2
contains 216 entries each; each entry is expected to contain 2112 values. Under a
common 16-bit index, there are 22×112 pairs to check for full match.) Therefore,
the total time complexity is 2240.

Note that our attacks on Haraka v2 do not directly break the security of
SPHINCS+-Haraka and Gravity-SPHINCS-Haraka. For SPHINCS+-Haraka, the
security relies on a preimage resistance of 128-bit rather than 256-bit. For Gravity-
SPHINCS-Haraka, the security relies on a collision resistance of 128-bit rather than
preimage resistance, besides, the underlying Haraka v2 variants have increased
the AES-like rounds from 10 to 12, while our attacks cover at most 11 rounds.

6 Conclusions

In conclusion, we modeled the MITM preimage attack into the language of MILP,
generalized the attack model, and obtained better results in terms of number of

27

attacked rounds against AES-like hashing including the 8-round AES-128, 9-round
AES-192, 9-round AES-256, and 9-round Rijndael-256 hashing modes, 4.5-round
Haraka-256 v2, the full version (5-round) and the extended version (5.5-round) of
Haraka-512 v2.

References

1. Z. Alliance. ZigBee 2007 specification. Online: http://www.zigbee.org/, 2007.
2. R. AlTawy and A. M. Youssef. Preimage Attacks on Reduced-Round Stribog. In

D. Pointcheval and D. Vergnaud, editors, AFRICACRYPT 14, volume 8469 of
LNCS, pages 109–125. Springer, Heidelberg, May 2014.

3. R. AlTawy and A. M. Youssef. Second Preimage Analysis of Whirlwind. In D. Lin,
M. Yung, and J. Zhou, editors, Inscrypt 2014, volume 8957 of LNCS, pages 311–328.
Springer, 2014.

4. K. Aoki, J. Guo, K. Matusiewicz, Y. Sasaki, and L. Wang. Preimages for Step-
Reduced SHA-2. In M. Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS,
pages 578–597. Springer, Heidelberg, Dec. 2009.

5. K. Aoki and Y. Sasaki. Meet-in-the-Middle Preimage Attacks Against Reduced
SHA-0 and SHA-1. In S. Halevi, editor, CRYPTO 2009, volume 5677 of LNCS,
pages 70–89. Springer, Heidelberg, Aug. 2009.

6. K. Aoki and Y. Sasaki. Preimage Attacks on One-Block MD4, 63-Step MD5 and
More. In R. M. Avanzi, L. Keliher, and F. Sica, editors, SAC 2008, volume 5381 of
LNCS, pages 103–119. Springer, Heidelberg, Aug. 2009.

7. J.-P. Aumasson and G. Endignoux. Gravity-SPHINCS. Technical report, National
Institute of Standards and Technology, 2017. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-1-submissions.

8. J.-P. Aumasson, W. Meier, and F. Mendel. Preimage Attacks on 3-Pass HAVAL
and Step-Reduced MD5. In R. M. Avanzi, L. Keliher, and F. Sica, editors, SAC
2008, volume 5381 of LNCS, pages 120–135. Springer, Heidelberg, Aug. 2009.

9. Z. Bao, L. Ding, J. Guo, H. Wang, and W. Zhang. Improved Meet-in-the-Middle
Preimage Attacks against AES Hashing Modes. IACR Transactions on Symmetric
Cryptology, 2019(4):318–347, Jan. 2020.

10. C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki, P. Sasdrich,
and S. M. Sim. The SKINNY Family of Block Ciphers and Its Low-Latency Variant
MANTIS. In M. Robshaw and J. Katz, editors, CRYPTO 2016, Part II, volume
9815 of LNCS, pages 123–153. Springer, Heidelberg, Aug. 2016.

11. R. Benadjila, O. Billet, H. Gilbert, G. Macario-Rat, T. Peyrin, M. Robshaw, and
Y. Seurin. SHA-3 proposal: ECHO. Submission to NIST (updated), page 113, 2009.

12. A. Bogdanov, D. Khovratovich, and C. Rechberger. Biclique Cryptanalysis of the
Full AES. In D. H. Lee and X. Wang, editors, ASIACRYPT 2011, volume 7073 of
LNCS, pages 344–371. Springer, Heidelberg, Dec. 2011.

13. J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, 2002.

14. P. Derbez and P.-A. Fouque. Automatic Search of Meet-in-the-Middle and Impos-
sible Differential Attacks. In M. Robshaw and J. Katz, editors, CRYPTO 2016,
Part II, volume 9815 of LNCS, pages 157–184. Springer, Heidelberg, Aug. 2016.

15. X. Dong, S. Sun, D. Shi, F. Gao, X. Wang, and L. Hu. Quantum Collision Attacks
on AES-like Hashing with Low Quantum Random Access Memories. IACR Cryptol.
ePrint Arch., 2020:1030, 2020.

28

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

16. T. Espitau, P.-A. Fouque, and P. Karpman. Higher-Order Differential Meet-in-
the-middle Preimage Attacks on SHA-1 and BLAKE. In R. Gennaro and M. J. B.
Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 683–701.
Springer, Heidelberg, Aug. 2015.

17. P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger,
M. Schläffer, and S. S. Thomsen. Grøstl – a SHA-3 candidate. http://www.
groestl.info/Groestl.pdf, March 2011.

18. J. Guo, S. Ling, C. Rechberger, and H. Wang. Advanced Meet-in-the-Middle
Preimage Attacks: First Results on Full Tiger, and Improved Results on MD4 and
SHA-2. In M. Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 56–75.
Springer, Heidelberg, Dec. 2010.

19. J. Guo, C. Su, and W. Yap. An Improved Preimage Attack against HAVAL-3. Inf.
Process. Lett., 115(2):386–393, 2015.

20. Y. Hao, G. Leander, W. Meier, Y. Todo, and Q. Wang. Modeling for Three-Subset
Division Property Without Unknown Subset - Improved Cube Attacks Against
Trivium and Grain-128AEAD. In A. Canteaut and Y. Ishai, editors, EUROCRYPT
2020, volume 12105 of LNCS, pages 466–495. Springer, 2020.

21. D. Hong, B. Koo, and Y. Sasaki. Improved Preimage Attack for 68-Step HAS-160.
In D. Lee and S. Hong, editors, ICISC 09, volume 5984 of LNCS, pages 332–348.
Springer, Heidelberg, Dec. 2010.

22. A. Hosoyamada and Y. Sasaki. Finding Hash Collisions with Quantum Computers
by Using Differential Trails with Smaller Probability than Birthday Bound. In
EUROCRYPT 2020, pages 249–279, 2020.

23. A. Hulsing, D. J. Bernstein, C. Dobraunig, M. Eichlseder, S. Fluhrer, S.-L. Gazdag,
P. Kampanakis, S. Kolbl, T. Lange, M. M. Lauridsen, F. Mendel, R. Niederhagen,
C. Rechberger, J. Rijneveld, P. Schwabe, and J.-P. Aumasson. SPHINCS+. Technical
report, National Institute of Standards and Technology, 2019. available at https://
csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions.

24. ISO/IEC. 10118-2:2010 Information technology — Security techniques – Hash-
functions – Part 2: Hash-functions using an n-bit block cipher. 3rd ed., International
Organization for Standardization, Geneve, Switzerland, October, 2010.

25. J. Jean. Cryptanalysis of Haraka. IACR Trans. Symmetric Cryptol., 2016(1):1–12,
2016.

26. D. Khovratovich, G. Leurent, and C. Rechberger. Narrow-Bicliques: Cryptanalysis
of Full IDEA. In D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 392–410. Springer, Heidelberg, Apr. 2012.

27. D. Khovratovich, C. Rechberger, and A. Savelieva. Bicliques for Preimages: Attacks
on Skein-512 and the SHA-2 Family. In A. Canteaut, editor, FSE 2012, volume
7549 of LNCS, pages 244–263. Springer, Heidelberg, Mar. 2012.

28. S. Knellwolf and D. Khovratovich. New Preimage Attacks against Reduced SHA-1.
In R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012, volume 7417 of LNCS,
pages 367–383. Springer, Heidelberg, Aug. 2012.

29. L. R. Knudsen, C. Rechberger, and S. S. Thomsen. The Grindahl Hash Functions.
In A. Biryukov, editor, FSE 2007, volume 4593 of LNCS, pages 39–57. Springer,
Heidelberg, Mar. 2007.

30. S. Kölbl, M. M. Lauridsen, F. Mendel, and C. Rechberger. Haraka v2 - Efficient
Short-Input Hashing for Post-Quantum Applications. IACR Trans. Symm. Cryptol.,
2016(2):1–29, 2016. http://tosc.iacr.org/index.php/ToSC/article/view/563.

31. S. Kölbl, G. Leander, and T. Tiessen. Observations on the SIMON Block Cipher
Family. In R. Gennaro and M. J. B. Robshaw, editors, CRYPTO 2015, Part I,
volume 9215 of LNCS, pages 161–185. Springer, Heidelberg, Aug. 2015.

29

http://www.groestl.info/Groestl.pdf
http://www.groestl.info/Groestl.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
http://tosc.iacr.org/index.php/ToSC/article/view/563

32. G. Leurent. MD4 is Not One-Way. In K. Nyberg, editor, FSE 2008, volume 5086
of LNCS, pages 412–428. Springer, Heidelberg, Feb. 2008.

33. J. Li, T. Isobe, and K. Shibutani. Converting Meet-In-The-Middle Preimage
Attack into Pseudo Collision Attack: Application to SHA-2. In A. Canteaut, editor,
FSE 2012, volume 7549 of LNCS, pages 264–286. Springer, Heidelberg, Mar. 2012.

34. M. Matsui. On Correlation Between the Order of S-boxes and the Strength of DES.
In A. D. Santis, editor, EUROCRYPT’94, volume 950 of LNCS, pages 366–375.
Springer, Heidelberg, May 1995.

35. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. The CRC Press series on discrete mathematics and its applications.
CRC Press, 2000 N.W. Corporate Blvd., Boca Raton, FL 33431-9868, USA, 1997.

36. N. Mouha, Q. Wang, D. Gu, and B. Preneel. Differential and Linear Cryptanalysis
Using Mixed-Integer Linear Programming. In C. Wu, M. Yung, and D. Lin, editors,
Inscrypt 2011, volume 7537 of LNCS, pages 57–76. Springer, 2011.

37. B. Preneel, R. Govaerts, and J. Vandewalle. Hash Functions Based on Block
Ciphers: A Synthetic Approach. In D. R. Stinson, editor, CRYPTO’93, volume 773
of LNCS, pages 368–378. Springer, Heidelberg, Aug. 1994.

38. Y. Sasaki. Meet-in-the-Middle Preimage Attacks on AES Hashing Modes and an
Application to Whirlpool. In A. Joux, editor, FSE 2011, volume 6733 of LNCS,
pages 378–396. Springer, Heidelberg, Feb. 2011.

39. Y. Sasaki. Integer Linear Programming for Three-Subset Meet-in-the-Middle
Attacks: Application to GIFT. In A. Inomata and K. Yasuda, editors, IWSEC 18,
volume 11049 of LNCS, pages 227–243. Springer, Heidelberg, Sept. 2018.

40. Y. Sasaki and K. Aoki. Preimage Attacks on 3, 4, and 5-Pass HAVAL. In J. Pieprzyk,
editor, ASIACRYPT 2008, volume 5350 of LNCS, pages 253–271. Springer, Heidel-
berg, Dec. 2008.

41. Y. Sasaki and K. Aoki. Preimage Attacks on Step-Reduced MD5. In Y. Mu,
W. Susilo, and J. Seberry, editors, ACISP 08, volume 5107 of LNCS, pages 282–296.
Springer, Heidelberg, July 2008.

42. Y. Sasaki and K. Aoki. Finding Preimages in Full MD5 Faster Than Exhaustive
Search. In A. Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages
134–152. Springer, Heidelberg, Apr. 2009.

43. D. Shi, S. Sun, P. Derbez, Y. Todo, B. Sun, and L. Hu. Programming the Demirci-
Selçuk Meet-in-the-Middle Attack with Constraints. In T. Peyrin and S. Galbraith,
editors, ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages 3–34. Springer,
Heidelberg, Dec. 2018.

44. L. Song, J. Guo, D. Shi, and S. Ling. New MILP Modeling: Improved Conditional
Cube Attacks on Keccak-Based Constructions. In T. Peyrin and S. Galbraith,
editors, ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages 65–95. Springer,
Heidelberg, Dec. 2018.

45. S. Sun, L. Hu, P. Wang, K. Qiao, X. Ma, and L. Song. Automatic Security
Evaluation and (Related-key) Differential Characteristic Search: Application to
SIMON, PRESENT, LBlock, DES(L) and Other Bit-Oriented Block Ciphers. In
P. Sarkar and T. Iwata, editors, ASIACRYPT 2014, Part I, volume 8873 of LNCS,
pages 158–178. Springer, Heidelberg, Dec. 2014.

46. L. Wang and Y. Sasaki. Finding Preimages of Tiger Up to 23 Steps. In S. Hong
and T. Iwata, editors, FSE 2010, volume 6147 of LNCS, pages 116–133. Springer,
Heidelberg, Feb. 2010.

47. L. Wang, Y. Sasaki, W. Komatsubara, K. Ohta, and K. Sakiyama. (Second)
Preimage Attacks on Step-Reduced RIPEMD/RIPEMD-128 with a New Local-

30

Collision Approach. In A. Kiayias, editor, CT-RSA 2011, volume 6558 of LNCS,
pages 197–212. Springer, Heidelberg, Feb. 2011.

48. S. Wu, D. Feng, W. Wu, J. Guo, L. Dong, and J. Zou. (Pseudo) Preimage Attack
on Round-Reduced Grøstl Hash Function and Others. In A. Canteaut, editor,
FSE 2012, volume 7549 of LNCS, pages 127–145. Springer, Heidelberg, Mar. 2012.

49. Z. Xiang, W. Zhang, Z. Bao, and D. Lin. Applying MILP Method to Searching
Integral Distinguishers Based on Division Property for 6 Lightweight Block Ciphers.
In J. H. Cheon and T. Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of
LNCS, pages 648–678. Springer, Heidelberg, Dec. 2016.

50. Y. Zheng, J. Pieprzyk, and J. Seberry. HAVAL - A One-Way Hashing Algorithm with
Variable Length of Output. In J. Seberry and Y. Zheng, editors, AUSCRYPT’92,
volume 718 of LNCS, pages 83–104. Springer, Heidelberg, Dec. 1993.

31

Supplementary Material

A Visualization of Attacks

A.1 MITM Preimage Attacks on AES and Rijndael Hashing Modes

A.2 MITM Preimage Attacks on Haraka v2

32

(−0 , −0)

k−1

AK

(−0 ,−0) (−0 ,−0)

#AK−1

k0

AK
#SB0

SB

#SR0

SR

#MC0

MC

#AK0

Match +1

k1

MC−1

#SB1

SB

#SR1

SR

#MC1

#E+

MC

#AK1

#Ē−

(−3 , −0)

k2

AK
#SB2

SB

#SR2

SR

C
C

C

#MC2

MC

#AK2

(−12 , −0)

k3

AK
#SB3

SB

#SR3

SR
C
C
C

C
C
C

C
C

C

C

C
C

#MC3

MC

#AK3

(−0 , −9) (−0 , −0)

k4

AK
#SB4

(+4 , +12)

#SENC

SB

#SR4

SR

#MC4

MC

#AK4

(−0 , −2) (−0 , −0)

k5

AK
#SB5

SB

#SR5

SR

#MC5

MC
C

C

#AK5

(−0 , −0) (−0 , −0)

k6

AK
#SB6

SB

#SR6

SR

#MC6

MC

#AK6

(−0 , −0)

k7

AK
#SB7

SB

#SR7

SR

#AK7

#AT

T

forward backward constant uncertain bypassed match

C

free from the impact of

C

free from the impact of

Match-RULE XOR-MC-RULE MC-RULE XOR+-RULE XOR−-RULE

k−1
(−0 ,

−0)

k0
(−0 ,

−0)

<<S

k1
(−0 ,

−0)

<<S

k2
(−0 ,

−0)

<<S

k3
(−0 ,

−0)

<<S

k4
(+13 ,

+0)#SKSA

<<S

k5
(−0 ,

−0)

<<S

k6
(−0 ,

−0)

<<S

k7
(−0 ,

−0)

<<S

Config: • (λ+, λ−) = (+17 , +12) • (DoF+, DoF−, DoM) = (+2 , +1 , +1)

Fig. 7: An MITM pseudo-preimage attack on 8-round AES-128 hashing. Note that,
because the use of XOR-MC-RULE, we do not introduce any variable in our MILP model
for states #AK2 and #AK3, and thus we bypass them.

33

(−1 , −0)

(−2 , −0)

(−0 , −0) (−0 , −0)(+0 , +16)

(−0 , −11) (−0 , −1)

(−0 , −3) (−0 , −1)

(−0 , −0) (−0 , −0)

(−0 , −0) (−0 , −0)

(−0 , −0) (−0 , −0)

#SB2 #SR2 #MC2 #AK2

k2

SB SR MC AK

#SB3 #SR3 #MC3 #AK3

k3

SB SR MC AK

#SB4 #SR4 #MC4 #AK4

k4

SB SR MC AK

#SB5 #SR5 #MC5 #AK5

k5

SB SR MC AK

#SB6 #SR6 #MC6 #AK6

k6

SB SR MC AK

#SB7 #SR7 #MC7 #AK7

k7

SB SR MC AK

#SB0 #SR0 #MC0 #AK0

k0

SB SR MC AK

#SB1 #SR1 #MC1 #AK1

k1

SB SR MC AK

#SB8 #SR8 #MC8

k8

SB SR AK

T

Match +1

#E−

#SB−1

k−1

#SENC

#E+

forward backward constant uncertain bypassed match

Match-RULE XOR-MC-RULE MC-RULE XOR+-RULE XOR−-RULE

Config: • (λ+, λ−) = (+4 , +19) • (DoF+, DoF−, DoM) = (+1 , +1 , +1)

(−0 ,

−0)
k−1 kL

0

(−0 ,

−0)
kR
0 k1

(+4 ,

+3)
k2 kL

3

(−0 ,

−2)
kR
3 k4

(−0 ,

−0)
k5 kL

6

(−0 ,

−0)
kR
6 k7

(−0 ,

−0)
k8 kR

9

<<S

<<S

<<S

<<S

<<S

<<S

#SKSA

In our MILP model, kL
0

is directly related to kL
3

instead of being decided
by k1. This is to ex-
ploit the partial linear-
ity of the key schedule.
Note that the above is
a valid configuration
and kL

0
is compatible

with k1 (without con-
suming DoF). That is
because in the last two
columns of k1, the XOR
of the two bytes in row
1 (start from 0) is con-
stant. Similarly, the
XOR of the two bytes
in row 3 is constant.

Fig. 8: An MITM pseudo-preimage attack on 9-round AES-192 hashing mode

34

(−0 , −0)

k−1

AK

(−0 ,−0) (−0 ,−0)

#AK−1

k0

AK
#SB0

SB

#SR0

SR

#MC0

MC

#AK0

Match +4

k1

MC−1

#SB1

SB

#SR1

SR

#MC1

#E+

MC

#AK1

#Ē−

(−0 , −0)

k2

AK
#SB2

SB

#SR2

SR

#MC2

MC

#AK2

(−3 , −0)

k3

AK
#SB3

SB

#SR3

SR

#MC3

MC

#AK3

(−0 , −0)

k4

AK
#SB4

SB

#SR4

SR

#MC4

MC

#AK4

(−0 , −0) (−0 , −0)

k5

AK
#SB5

(+0 , +12)

#SENC

SB

#SR5

SR

#MC5

MC

#AK5

(−0 , −8) (−0 , −0)

k6

AK
#SB6

SB

#SR6

SR

#MC6

MC

#AK6

(−0 , −0) (−0 , −0)

k7

AK
#SB7

SB

#SR7

SR

#MC7

MC

#AK7

(−0 , −0)

k8

AK
#SB8

SB

#SR8

SR

#AK8

#AT

T

forward backward constant uncertain bypassed match

Match-RULE XOR-MC-RULE MC-RULE XOR+-RULE XOR−-RULE

k−1 k0
(−0 ,

−0)

k1 k2
(−0 ,

−0)

<<S

S

k3 k4
#SKSA

(+4 ,

+0)

<<S

S

k5 k6
(−0 ,

−0)

<<S

S

k7 k8
(−0 ,

−0)

<<S

S

Config: • (λ+, λ−) = (+4 , +12) • (DoF+, DoF−, DoM) = (+1 , +4 , +4)

Fig. 9: Example I of the 9-round preimage attack on AES-256 hashing mode

35

(−0 , −0)

k−1

AK

(−0 , −0)

#AK−1

k0

AK
#SB0

SB

#SR0

SR

#MC0

MC

#AK0

(−0 , −0) (−0 , −0)

k1

AK
#SB1

#SENC

(+0 , +16)

SB

#SR1

SR

#MC1

MC

#AK1

(−0 , −8) (−0 , −0)

k2

AK
#SB2

SB

#SR2

SR

#MC2

MC

#AK2

(−0 , −6) (−0 , −2)

k3

AK
#SB3

SB

#SR3

SR

#MC3

MC

#AK3

(−0 , −0) (−0 , −0)

k4

AK
#SB4

SB

#SR4

SR

#MC4

MC

#AK4

(−0 , −0) (−0 , −0)

k5

AK
#SB5

SB

#SR5

SR

#MC5

MC

#AK5

(−0 , −0) (−0 , −0)

k6

AK
#SB6

SB

#SR6

SR

#MC6

MC

#AK6

k7

Match +1

#K+
MC−1

#K−

AK
#SB7

SB

#SR7

SR

#MC7

#E+

MC

#AK7

#Ē−

(−0 , −0)

k8

AK
#SB8

SB

#SR8

SR

#AK8

#AT

T

forward backward constant uncertain bypassed match

Match-RULE XOR-MC-RULE MC-RULE XOR+-RULE XOR−-RULE

k−1 k0
(−1 ,

−0)

k1 k2
#SKSA

(+2 ,

+3)

<<S

S

k3 k4
(−0 ,

−1)

<<S

S

k5 k6
(−0 ,

−1)

<<S

S

k7 k8
(−0 ,

−0)

<<S

S

Config: • (λ+, λ−) = (+2 , +19) • (DoF+, DoF−, DoM) = (+1 , +1 , +1)

Fig. 10: Example II of the 9-round preimage attack on AES-256 hashing mode

36

(−0 , −0) (−0 , −0)

(−0 , −2) (−0 , −0)(+16 , +4)

(−0 , −0) (−0 , −0)

(−0 , −0) (−0 , −0)

Match +1

(−0 , −0)

(−2 , −0)

(−12 , −0)

(−0 , −0)

#SB1 #SR1 #MC1 #AK1

k1

SB SR MC AK

#SB2 #SR2 #MC2 #AK2

k2

SB SR MC AK

#SB3 #SR3 #MC3 #AK3

k3

SB SR MC AK

#SB4 #SR4 #MC4 #AK4

k4

SB SR MC AK

#SB0 #SR0 #MC0 #AK0

k0

SB SR MC AK

#SB5 #SR5 #MC5 #AK5

k5

SB SR MC AK

#SB6 #SR6 #MC6 #AK6

k6

SB SR MC AK

#SB7 #SR7 #MC7 #AK7

k7

SB SR MC AK

#SB8 #SR8 #AK8

k8

SB SR MC AK

T

#AK−1

k−1

#SENC

#E+

forward backward constant uncertain bypassed match

Match-RULE XOR-MC-RULE MC-RULE XOR+-RULE XOR−-RULE

Config: • (λ+, λ−) = (+16 , +4) • (DoF+, DoF−, DoM) = (+2 , +2 , +1)

Fig. 11: Example of the 9-round preimage attack on Rijndael-256-128/192/256 hashing
mode

37

(−0 ,−0)

#SB0

SB

#SR0

SR

#MC0

MC

#AC0

(−0 ,−0)

#SB1

SB

#SR1

SR

#MC1

MC

#AC1

MIX

(−8 ,−0)

#SB2

SB

#SR2

SR

#MC2

MC

#AC2

(−0 ,−0)

#SB3

(+12 , +12)

#SENC

SB

#SR3

SR

#MC3

MC

#AC3

MIX

(−0 ,−8)

#SB4

SB

#SR4

SR

#MC4

MC

#AC4

(−0 ,−0)

#SB5

SB

#SR5

SR

#MC5

MC

#AC5

MIX

(−0 ,−0)

#SB6

SB

#SR6

SR

#MC6

MC

#AC6

(−0 ,−0)

#SB7

SB

#SR7

SR

#MC7

MC

#AC7

MIX

Match +8

#SB8

SB

#SR8

SR

#MC8

MC

#AC8 T

AT

forward backward constant uncertain Match-RULE MC−-RULE MC+-RULE

Config: • (λ+, λ−) = (+12 , +12) • (DoF+, DoF−, DoM) = (+4 , +4 , +8)

Fig. 12: Meet-in-the-middle attack on 4.5-round (or 9-AES-round) Haraka-256 v2
(matching at the last round).

38

(−0 ,−0)

#SB0

SB

#SR0

SR

#MC0

MC

#AC0

(−0 ,−0)

#SB1

SB

#SR1

SR

#MC1

MC

#AC1

MIX

(−32 ,−0)

#SB2

SB

#SR2

SR

C

C

C

C
C

C

C

C

C

C
C

C

C

C
C

C

C

C
C

C

C

C
C

C

C

C

C

C
C

C

C

C

#MC2

MC

#AC2

(−0 ,−0)

#SB3

SB

#SR3

SR

#MC3

MC

#AC3

MIX

(−0 ,−0)

#SB4

SB

#SR4

SR

#MC4

MC

#AC4

(−0 ,−0)

#SB5

(+48 , +4)

#SENC

SB

#SR5

SR

#MC5

MC

#AC5

MIX

(−0 ,−0)

#SB6

SB

#SR6

SR

#MC6

MC

#AC6

(−0 ,−0)

#SB7

SB

#SR7

SR

#MC7

MC

#AC7

MIX

Match +8

#SB8

SB

#SR8

SR

#MC8

MC

#AC8

(−0 ,−0)

#SB9

SB

#SR9

SR

#MC9

MC

#AC9

MIX

T

forward backward constant uncertain truncated truncated

C

free from the impact of Match-RULE MC−-RULE MC+-RULE

Config: • (λ+, λ−) = (+48 , +4) • (DoF+, DoF−, DoM) = (+16 , +4 , +8)

Fig. 13: An MITM preimage attack on full Haraka-512 v2. Note that in our MILP-
models, the position of the used hash bits are treated and used as constant in gray cell
of the target T , and the bits discarded are treated as ‘uncertain’ although we distinct
them using hatched pattern. However, in the attack procedure, the discarded bits are
free of choice such that the state cells in hatched pattern are free of matching.

39

(−0 ,−0)

#SB0

SB

#SR0

SR

#MC0

MC

#AC0

(−0 ,−0)

#SB1

SB

#SR1

SR

#MC1

MC

#AC1

MIX

(−16 ,−0)

#SB2

SB

#SR2

SR
C

C

C
C

C

C
C

C
C

C
C

C C
C

C
C

#MC2

MC

#AC2

(−0 ,−0)

#SB3

(+32 , +32)

#SENC

SB

#SR3

SR

#MC3

MC

#AC3

MIX

(−0 ,−0)

#SB4

SB

#SR4

SR

#MC4

MC

#AC4

(−0 ,−0)

#SB5

SB

#SR5

SR

#MC5

MC

#AC5

MIX

(−0 ,−16)

#SB6

SB

#SR6

SR

#MC6

MC
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
#AC6

(−0 ,−0)

#SB7

SB

#SR7

SR

#MC7

MC

#AC7

MIX

(−0 ,−0)

#SB8

SB

#SR8

SR

#MC8

MC

#AC8

(−0 ,−0)

#SB9

SB

#SR9

SR

#MC9

MC

#AC9

MIX

Match +2

#SB10

SB

#SR10

SR

#MC10

MC

#AC10

T

forward backward constant uncertain truncated truncated

C

free from the impact of

C

free from the impact of

Match-RULE MC−-RULE MC+-RULE

Config: • (λ+, λ−) = (+32 , +32) • (DoF+, DoF−, DoM) = (+16 , +16 , +2)

Fig. 14: An MITM preimage attack on the extended 5.5-round (11 AES-rounds) Haraka-
512 v2. Note that in our MILP-models, the position of the used hash bits are treated
and used as constant in gray cell of the target T , and the bits discarded are treated as
‘uncertain’ although we distinct them using hatched pattern. However, in the attack
procedure, the discarded bits are free of choice such that the state cells in hatched
pattern are free of matching.

40

B Details in the Attack on 8-round AES-128 Hashing

Remark. The generations of initial values of neutral bytes for the forward (Blue)
and the backward (Red) are two separate procedures. Between Red and Blue
bytes, there is no dependency. To generate initial values of neutral bytes, there
are two sets of equations – one is on the fixed impacts and the Blue bytes, the
other is on other fixed impacts and the Red bytes.

Note that by ‘fixed impacts’, we mean the constant impacts from one direction
on the other. E.g., the forward neutral bytes (Blue) have constant impacts on
the backward active bytes (Red). The values of impacts are not the values of
‘C’-marked cells, but a common value that will be XORed to the ‘C’-marked
cells in the MITM procedure. For the MITM procedure, the impacts on the
‘C’-marked cells are fixed before computations of both forward and backward
chunks. Knowing the fixed impacts, the forward computations and the backward
computations are also done independently before matching through MixColumns
(the fixed impacts are directly XORed to the corresponding states).

In Sect. B.1, we explain how to generate the initial values of forward neutral
bytes and backward neutral bytes by establishing equations and solving in
precomputation procedures. Note that all precomputations are done once, and
for all.

B.1 Solving Equations to Obtain Values of Neutral Bytes in the
8-Round Attack on AES-128 Hashing Mode

Obtain the values of the neutral bytes for forward chunk. In the 8-round
attack on AES-128 hashing mode (see Fig. 7), the values of the neutral bytes
for the forward computation should be the solutions of the following equations,
where C1,0, C1,1, . . . , C1,11, C2,0, C2,1, C2,2, and C3,0, C3,1, C3,2 are pre-determined
constants:

[e b d 9
9 e b d
d 9 e b
b d 9 e

]
×

 k3[0]⊕#SB4[0] k3[4] k3[8] k3[12]
k3[1] k3[5]⊕#SB4[5] k3[9] k3[13]
k3[2] k3[6] k3[10]⊕#SB4[10] k3[14]
k3[3] k3[7] k3[11] k3[15]⊕#SB4[15]

 =

[− C1,3 C1,6 C1,9
C1,0 C1,4 C1,7 −
C1,1 C1,5 − C1,10
C1,2 − C1,8 C1,11

]
(12)

[e b d 9
9 e b d
d 9 e b
b d 9 e

]
×

[
k2[4] k2[8] k2[12]
k2[5] k2[9] k2[13]
k2[6] k2[10] k2[14]
k2[7] k2[11] k2[15]

]
=

[e b d 9
9 e b d
d 9 e b
b d 9 e

]
×

[
k3[0]⊕ k3[4] k3[4]⊕ k3[8] k3[8]⊕ k3[12]
k3[1]⊕ k3[5] k3[5]⊕ k3[9] k3[9]⊕ k3[13]
k3[2]⊕ k3[6] k3[6]⊕ k3[10] k3[10]⊕ k3[14]
k3[3]⊕ k3[7] k3[7]⊕ k3[11] k3[11]⊕ k3[15]

]
=

[− − −
− − C2,2
− C2,1 −
C2,0 − −

]
(13)

[
k4[5]
k4[10]
k4[15]

]
=

[
k3[1]⊕ SRD(k3[14]) ⊕ k3[5]
k3[2]⊕ SRD(k3[15]) ⊕ k3[6] ⊕ k3[10]
k3[3]⊕ SRD(k3[0]) ⊕ k3[7] ⊕ k3[11] ⊕ k3[15]

]
=

[
C3,0
C3,1
C3,2

]
(14)

41

Combining the above constraints, we have the following system of equations:

9 · (k3[0]⊕#SB4[0]) ⊕ e · k3[1] ⊕ b · k3[2] ⊕ d · k3[3]
d · (k3[0]⊕#SB4[0]) ⊕ 9 · k3[1] ⊕ e · k3[2] ⊕ b · k3[3]
b · (k3[0]⊕#SB4[0]) ⊕ d · k3[1] ⊕ 9 · k3[2] ⊕ e · k3[3]

e · k3[4] ⊕ b · (k3[5]⊕#SB4[5]) ⊕ d · k3[6] ⊕ 9 · k3[7]
9 · k3[4] ⊕ e · (k3[5]⊕#SB4[5]) ⊕ b · k3[6] ⊕ d · k3[7]
d · k3[4] ⊕ 9 · (k3[5]⊕#SB4[5]) ⊕ e · k3[6] ⊕ b · k3[7]

e · k3[8] ⊕ b · k3[9] ⊕ d · (k3[10]⊕#SB4[10]) ⊕ 9 · k3[11]
9 · k3[8] ⊕ e · k3[9] ⊕ b · (k3[10]⊕#SB4[10]) ⊕ d · k3[11]
b · k3[8] ⊕ d · k3[9] ⊕ 9 · (k3[10]⊕#SB4[10]) ⊕ e · k3[11]

e · k3[12] ⊕ b · k3[13] ⊕ d · k3[14] ⊕ 9 · (k3[15]⊕#SB4[15])
d · k3[12] ⊕ 9 · k3[13] ⊕ e · k3[14] ⊕ b · (k3[15]⊕#SB4[15])
b · k3[12] ⊕ d · k3[13] ⊕ 9 · k3[14] ⊕ e · (k3[15]⊕#SB4[15])

b · (k3[0]⊕ k3[4]) ⊕ d · (k3[1]⊕ k3[5]) ⊕ 9 · (k3[2]⊕ k3[6]) ⊕ e · (k3[3]⊕ k3[7])
d · (k3[4]⊕ k3[8]) ⊕ 9 · (k3[5]⊕ k3[9]) ⊕ e · (k3[6]⊕ k3[10]) ⊕ b · (k3[7]⊕ k3[11])
9 · (k3[8]⊕ k3[12]) ⊕ e · (k3[9]⊕ k3[13]) ⊕ b · (k3[10]⊕ k3[14]) ⊕ d · (k3[11]⊕ k3[15])

k3[1]⊕ SRD(k3[14]) ⊕ k3[5]
k3[2]⊕ SRD(k3[15]) ⊕ k3[6] ⊕ k3[10]
k3[3]⊕ SRD(k3[0]) ⊕ k3[7] ⊕ k3[11] ⊕ k3[15]

=

C1,0
C1,1
C1,2

C1,3
C1,4
C1,5

C1,6
C1,7
C1,8

C1,9
C1,10
C1,11

C2,0
C2,1
C2,2

C3,0
C3,1
C3,2

(15)

Essentially, the coefficients in the first 15 rows of equation form a 15 × 20
matrix. That is:

9 e b d 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0
d 9 e b 0 0 0 0 0 0 0 0 0 0 0 0 d 0 0 0
b d 9 e 0 0 0 0 0 0 0 0 0 0 0 0 b 0 0 0
0 0 0 0 e b d 9 0 0 0 0 0 0 0 0 0 b 0 0
0 0 0 0 9 e b d 0 0 0 0 0 0 0 0 0 e 0 0
0 0 0 0 d 9 e b 0 0 0 0 0 0 0 0 0 9 0 0
0 0 0 0 0 0 0 0 e b d 9 0 0 0 0 0 0 d 0
0 0 0 0 0 0 0 0 9 e b d 0 0 0 0 0 0 b 0
0 0 0 0 0 0 0 0 b d 9 e 0 0 0 0 0 0 9 0
0 0 0 0 0 0 0 0 0 0 0 0 e b d 9 0 0 0 9
0 0 0 0 0 0 0 0 0 0 0 0 d 9 e b 0 0 0 b
0 0 0 0 0 0 0 0 0 0 0 0 b d 9 e 0 0 0 e
b d 9 e b d 9 e 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 d 9 e b d 9 e b 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 9 e b d 9 e b d 0 0 0 0

×

k3[0]
k3[1]
k3[2]
k3[3]
k3[4]
k3[5]
k3[6]
k3[7]
k3[8]
k3[9]
k3[10]
k3[11]
k3[12]
k3[13]
k3[14]
k3[15]
#SB4[0]
#SB4[5]
#SB4[10]
#SB4[15]

=

C1,0
C1,1
C1,2
C1,3
C1,4
C1,5
C1,6
C1,7
C1,8
C1,9
C1,10
C1,11
C2,0
C2,1
C2,2

(16)

Because the rank of this matrix is full (i.e., 15), the number of solutions for an
arbitrary vector of constants is 2(20−15)×8=40.

The last three rows in Eq. (15) impose 3 byte-constraints, which are non-
linear (through the AES SBox SRD) on k3[0], k3[14], and k3[15]. By experiment,
we verified that for each possible value of (C3,0, C3,1, C3,1), there are exactly
240−24 = 216 out of the 240 solutions made the three equation hold.

Obtain the values of the neutral bytes for backward chunk. Essentially,
the values of the neutral bytes for backward chunk can be obtained by solving
the following solutions (see Fig. 7, which is imposed on state #MC5 to make
the neutral bytes for backward chunk has two-byte constant influence on state

42

#AK5. Such constraint has been used in many previous attacks)[2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

]
×

 0
#MC5[1]
#MC5[2]
#MC5[3]

 =

[C4,0
−
C4,1
−

]
, i.e.,

[
3 ·#MC5[1] ⊕ 1 ·#MC5[2] ⊕ 1 ·#MC5[3]
1 ·#MC5[1] ⊕ 2 ·#MC5[2] ⊕ 3 ·#MC5[3]

]
=
[

C4,0
C4,1

]
(17)

Because of the property of MixColumns, this equation has 2(3−2)×8 solutions for
each possible values of C4,0 and C4,1. Thus, given C4,0 , C4,1 we can obtain 28

values for the neutral bytes for backward computations. The way to compute
them can either be using the Gaussian elimination to solve the linear equations,
or precompute them (as described in the above attack procedure) for all possible
values C4,0 and C4,1 and store in a table (T2 as described in the above attack
procedure) to reuse in the attack.

C Additional Techniques for MITM Preimage Attacks

Convert Pseudo-preimage Attacks to Preimage Attacks. For n-bit narrow-
pipe iterated hash function, by an unbalanced meet-in-the-middle approach, a
pseudo-preimage attack with a computational complexity of 2` (` < n − 2)
can be converted into a preimage attack with computational complexity of
2(n+`)/2+1 [35, Fact9.99]. Note that, here, the unbalanced meet-in-the-middle
approach is a more general procedure which is different with our focused meet-
in-the-middle technique used in the pseudo-preimage attack on the compression
function. It is a higher level of meet-in-the-middle procedure which calls our
meet-in-the-middle pseudo-preimage attack as sub-procedures. In [32], Leurent
improved this general unbalanced meet-in-the-middle method in the case where
given k targets, the complexity of a pseudo-preimage attack can be reduced
from 2` to 2`/k. The improved method uses these multi-target pseudo-preimage
attacks to form an unbalanced-tree, and uses the expandable message technique
to overcome the length padding. The overall time complexity of this improved
method can be ((n− `) · ln 2 + 1) · 2`. For more details, please refer to [8, 9, 32].

Tricks for matching the ending states as indirect matching and match-
ing through MixColumns used in [4,9,18]. In the MITM preimage attack
on AES-like hash functions, the last sub-key addition leading to #E− is close to
the boundary of the forward and backward computation as illustrated in Fig. 15a.
Therefore, to perform matching, one can decompose state as #K = #K+ +#K−,
and translate the computation in Fig. 15a into its equivalent form shown in
Fig. 15b, since MC(#E+)⊕#K = MC(#E+ ⊕MC−1(#K+))⊕#K−.

The decomposition of state #K moves all known cells of #K for the forward
computation (Blue and Gray cells) into #K+. Then #K− contains only Red
cells (known cells for the backward computation) and White cells (unknown cells
for both the forward and backward computation). The unknown cells for both
the forward and backward computation are placed at #K− rather than #K+

because they step into the encryption data path directly (unlike #K+ for which

43

#E+

MC

#E− #S

#K

(a) The sub-key addition at the
boundary of the matching states

#E+ #Ē+

MC

#Ē−

#K

#S

#K+

MC−1

#K−

(b) Equivalent transformation of the sub-key addition at
the boundary of the matching states

Fig. 15: Tricks for matching the ending states

the MC−1 operation has to be applied before #K+ goes into the encryption data
path), and thus keep the effect of unknown cells local. In contrast, one White
cell in #K+ would make one column of the state in the encryption data path
White. With this approach, the coloring scheme of #E+ is left intact, and some
Red cells in #E− are protected from being destroyed by the Blue cells in the
original #K. For example, the three Red cells in the last column of #S shown in
Fig. 15a are preserved by decomposing #K as presented in Fig. 15b.

44

	 Automatic Search of Meet-in-the-Middle Preimage Attacks on AES-like Hashing

