
Bracing A Transaction DAG with A Backbone
Chain

Shuyang Tang1

Shanghai Jiao Tong University, Shanghai, China
htftsy@sjtu.edu.cn

Abstract. Directed Acyclic Graph (DAG) is becoming an intriguing
direction for distributed ledger structure due to its great potential in
improving the scalability of distributed ledger systems. Among existing
DAG-based ledgers, one promising category is transaction DAG, namely,
treating each transaction as a graph vertex. In this paper, we propose
Haootia, a novel two-layer framework of consensus, with a ledger in the
form of a transaction DAG built on top of a delicately designed PoW-
based backbone chain. By elaborately devising the principle of transac-
tion linearizations, we achieve a secure and scalable DAG-based consen-
sus. By implementing Haootia, we conclude that, with a rotating com-
mittee of size 46 and a confirmation latency around 20 seconds, Haootia
achieves a throughput around 7500 TPS which is overwhelming com-
pared with all formally analyzed DAG-based consensus schemes to date
and all existing non-DAG-based ones to our knowledge.

Keywords: Blockchain · Consensus · Directed Acyclic Graph · Proof-
of-Work

1 Introduction

Since the emergence of Bitcoin [1] in 2008, various decentralized consensus
schemes have been brought about to realize a decentralized ledger in the per-
missionless environment. Most existing schemes adopt a blockchain, which is the
fundamental building block of the consensus of Bitcoin (i.e. Nakamoto Consen-
sus), to store and extend the ledger. However, blockchain is heavily limited in its
scalability. Specifically, its throughput of transactions is far from satisfactory and
transactions are confirmed at a slow rate due to possible chain forks. In recent
years, it has been proposed that alternative consensus schemes based on Direct
Acyclic Graphs (DAGs) have the potential of replacing blockchains for a signifi-
cantly improved scalability. Existing DAG-based consensus schemes can be clas-
sified into three categories according to their graph structures or two categories
accordingly to their vertex structures. Some DAG-based consensus schemes are
with ledgers in the form of a DAG with a main chain like GHOST [2], Inclusive
Blockchain [3], Conflux [4], and Byteball [5]. Some are with ledgers of a naive
DAG (where all nodes of the graph have no predetermined order) like IOTA [6],
Spectre [7], Phantom [8], Meshcash [9], and Graphchain [10]. Moreover, some are
with ledgers of parallel chains like Hashgraph [11], Nano [12], and Dexon [13].

Most of them are based on a DAG of blocks where each vertex of the graph
is a block of transactions assembled by miners like the GHOST (with a through-
put of 275), Conflux (with a throughput of 3200), or Nano (with a throughput
of 306). However, from our perspective, this approach is not fully merited from
the concurrency nature of DAGs and its throughput is limited due to duplicate
transactions. Few existing schemes adopt a graph of transactions where each
vertex corresponds to one transaction like IOTA. However, their security re-
mains unclear due to their overcomplicated DAG structure and are challenged
for possible attacks [14].

We aim to propose a consensus protocol that (1) is based on a DAG of
transactions (instead of blocks) which further leverages the concurrency nature
of DAGs and avoids duplicate transactions, (2) challenges the limited transaction
throughput as well as providing an instant confirmation for all transactions,
(3) and can be shown secure through a formal proof. To our knowledge, no
existing DAG-based consensus has fulfilled all three goals above. Targeted at
this purpose, we come to the following insights, forming the roadmap to the
Haootia protocol we are about to propose.

The goal of consensus is a hard-to-tamper linearly ordered log. The ultimate
goal of any distributed ledger has been controversial. Some believe it is the
verification and confirmation of transactions, while some believe that it is the
linearization of all transactions (known as state machine republication in the
distributed system literature). We adopt the second one in this paper, since in
most applications of any distributed consensus, as long as a linearly ordered list
of transactions is determined, it is feasible to finish transaction verification in
the application level via a deterministic rule. For example, illegal transactions
are taken out of consideration and within a set of conflict transactions, only
the one first appeared in the linear log is considered valid. The security of the
ledger is thereby essentially the hard-to-tamper property of the append-only log
of transactions. Likewise, the liveness of the consensus is in actual the property
that any newly appeared transaction is always comprised into such a transaction
log in time.

Instant confirmation can be provided by a permissioned consensus protocol among
a committee. In the cryptocurrency literature, multiple consensus schemes with
a dynamic committee elected among all miners in a decentralized manner have
been proposed and carefully analyzed in the past few years [15–17]. Specifically,
a dynamically rotated committee, usually consisting of proposers of a certain
interval of blocks in a blockchain, performs all transaction verifications and lin-
earizations via a permissioned consensus among the committee. In this way, a
permissioned consensus (like PBFT) can be also applicable to the permissionless
environment, and hence the scalability is greatly improved due to the lightweight
nature of permissioned consensus. We also adopt this methodology. However, dif-
ferent from existing committee-based consensus schemes, we aim to bring about
a total order to a DAG of transactions. To meet this end, we have the commit-
tee reach consensus only on a linear chain of key nodes. Each key node u newly

confirms a tree of nodes (we refer to such a tree as the increment tree of u).
In this way, by concatenating the reversed breath-first traverse sequence of the
increment trees of all these key nodes, an append-only total ordering of nodes is
attained.

A considerable committee size should be supported. The precondition of the safety
and liveness of permissioned consensus schemes like PBFT is a 2/3 honest rate
among consensus participants. This requires committee-based consensus schemes
to guarantee such a 2/3 honest rate for every committee to be elected for all the
time. Thereby, the size of the committee should be considerably great to reach
satisfactory security. However, in most existing committee-based permissionless
consensus schemes, the committee (of size k) is determined as the miners of k
newest confirmed blocks of a blockchain which limits the committee size. Since
the block generation rate is limited, to make the committee size great, there
has to be a long “term of office” for each lucky miner to serve as a committee
member, during which period they are exposed to adaptive attacks. To face this
issue, we adopt a new diagram of a generalize proof-of-work for the committee
election.

1.1 Our Contributions

We propose Haootia, a DAG-based consensus with a fast convergence speed and
considerable throughput provided by a dynamic committee with a considerable
size maintained by a backbone chain based on our generalized proof-of-work. The
basic security properties of Haootia are proved formally. By fully implementing
our proposed Haootia, we conclude that, with a rotating committee of size 46 and
a confirmation latency around 20 seconds, the throughput of Haootia fluctuates
around 7500 TPS which is overwhelming compared with either existing DAG-
based consensus schemes with formal security analyses or existing non-DAG-
based ones to our knowledge.

1.2 Background and Related Works

Starting from the emergence of Bitcoin [1], recent research of consensus mech-
anism has evolved from a permissioned environment (see [18–21]) to a permis-
sionless environment. Bitcoin’s Proof-of-Work (PoW) consensus mechanism ef-
fectively defends against Sybil attacks [22] and double-spending [1]. However,
its underlying Nakamoto consensus is notorious for its limited scalability. To
more fundamentally improve the scalability, committee-based consensus schemes
(see [15,16,23–26]) are introduced to separate leader election from ledger exten-
sion and have one or few (via sharding) dynamically rotating committees verify
and linearize transactions through a permissioned protocol like PBFT of [21].

To further overcome the drawbacks of classical blockchains [27,28] and, most
importantly, improve the throughput, DAG-based consensus schemes are pro-
posed by both commercial and academic sides. To our knowledge, existing DAG-
based consensus schemes can be classified into three categories. Namely, consen-
sus with ledgers in the form of a DAG with a main chain like [2–5], an arbitrary

DAG like [6–10], or parallel chains like [11,12]. These schemes are variant in their
design principles. Some of them are proposed in academic venues while others are
proposed by commercial powers. Some of their design components lack a rigor-
ous security analysis [14]. Prism [29,30] provides an extremely high throughput
but is controversial for possible attacks due to its complicated block structures.
In particular, the fairness and efficiency of existing DAG-based consensus are
rigorously analyzed by Birmpas et al. [31].

2 Overview of Our Protocol

The protocol is executed in epochs, each corresponding to a committee of leaders
elected from miners.

The Dynamic Committee. To elect the dynamic committee of considerable size
(of k) without bringing about a long exposure of adaptive attacks, we adopt
the new diagram of a generalized proof-of-work (GPoW) by introducing a back-
bone chain. The backbone chain differs from the Nakamoto blockchain in the
sense that

1. Each block contains multiple hash solutions (λk in expectation).
2. It does not directly confirm transactions, thereby, its rate of growth is no

longer a bottleneck of the throughput of transactions. As a result, it is al-
lowed to grow relatively slowly to decrease fairness loss from hash solution
losses (see later) brought about by latency.

3. To still assure the hard-to-tamper property, all nonce solutions regarding
the previous epoch are recorded in the block. Among these solutions, ac-
cording to a certain securely generated randomness, k of them are uniformly
randomly picked up as lucky solutions.

4. Each block corresponds to an epoch, designating the committee of the epoch.
Namely, proposers of lucky solutions in the block form the committee of the
corresponding epoch.

5. The block assembly phase for the next epoch as well as the nonce solution
reception is performed by the current committee via a permissioned PBFT
that guarantees our security requirements as long as a 2/3 honest rate among
the committee is assured.

We denote the expected time length of an epoch as Te (a predetermined param-
eter). In GPoW, the difficulty of the hash puzzle is lowered down such that in
the expectation it takes Te time for global miners to discover λk valid hash so-
lutions. During the epoch of a committee, committee members reach consensus
on a list of received valid hash solutions. With a delicately designed scheme,
they terminate the current epoch, negotiate on the next block (hence the next
committee) and finish the committee switchover as long as they receive λk valid
nonce solutions. With such a technique, as one fundamental building block, a dy-
namically rotating committee is attained securely. However, it is far from easy
to actually implement any step above without compromising security or even
liveness. Therefore, we have described the detailed protocol in Appendix. A for
readers interested in implementation details.

Intra-Committee Consensus. In this work, we adopt practical Byzantine fault-
tolerance (PBFT, [21]) as the intra-committee consensus that we are about to
utilize in the permissioned internal consensus of a committee. Since PBFT is
a mature tool implemented and testified already in many existing systems, we
sometimes take it as a black box assuring both safety and liveness, namely, they
always terminate in time and reach an honest agreement, as long as over 2/3
consensus participants are honest. Due to the permissioned nature of PBFT, the
committee is allowed to improve the network routing in the peer-to-peer network
by modifying their forwarding tables to speed up the intra-committee consensus.
Due to the properties above, in certain scenarios, we are allowed to treat the
committee as an entirety to avoid redundancy. For instance, an outcome s of a
PBFT among committee members can be described as “the committee outputs
s” rather than “having all honest committee members return to us s after they
execute the PBFT which can be testified by having over 2/3 valid signatures
attached to the outcome”.

Transaction Linearization. It is not trivial to achieve an append-only total-
ordering on transaction units of the growing DAG. In Haootia, motivated by
awards and fees, the committee outputs a chain of key nodes to finish the ulti-
mate linearization of all transactions.

1. The committee always outputs a key node appended to the key node chain
every certain time interval, no matter how its committee members are inter-
nally switched over. Each key node confirms a sequence of transactions. The
total order on the DAG is the concatenation of the sequences of transactions
confirmed by each key node.

2. The sequence of transactions confirmed by a key node is the reversed breath-
first traverse sequence of the increment tree of it.

3. The increment tree of a key node is a tree of transactions nodes.1 The tree
is defined to be all transaction nodes the key node connects to (i.e. there is
a path from the key node to it), but not yet connected to by previous key
nodes. The formal definition of the increment tree is the recursion tree of the
key node subtracted by the recursion tree of the previous key node, which
is shown in Sec. 3.

3 The Haootia Consensus

We firstly introduce notations and assumptions and thereafter describe the con-
sensus by three parts with the help of Fig. 1. Namely, the PoW-based committee
election protocol based on a backbone chain shown in Fig. 1 as three (with an
unfinished one) blocks in the lower part, the intra-committee consensus out-
putting the key node chain (solid units in red and blue in the figure), and the
transaction linearization protocol that confirms transaction nodes and brings
about a total-ordering to them.

1 We call it a tree, but it is actually a DAG which can be considered as a tree in
practice, see details in Sec. 3.

1

2

k

k+1

k+2

2k

2k+1

2k+2

3k

1

2

k

k+1

k+2

2k

2k+1

2k+2

3k

1

2

k

k+1

k+2

2k

2k+1

2k+2

3k

1

2

k

k+1

k+2

2k

2k+1

2k+2

Nonce solution

Transaction unit

Key unit

Fig. 1: A Full Ledger with λ = 3 (The DAG contains a linear chain of key nodes
in red and blue outputed by committees corresponding to each block of the
backbone chain. All key nodes newly confirm a distinct set of new transaction
nodes marked by a colored zone. Each assembled backbone block contains 3k
nonce solutions.)

3.1 Notations and Assumptions

[N] stands for the set {1, 2, . . . , N}. A direct graph is described as a pair G =
(V,E) where V is the vertex set and E is the edge set where each edge is
described as the pair of two vertices. For simplicity, we occasionally denote G.V
as the vertex set of graph G and G.E as the edge set of it. For a graph G = (V,E),
E+ stands for the transitive closure of E, i.e., for any u, v of V ,

(u, v) ∈ E+ ⇐⇒ ∃` ∈ N+. ∃(v0 = u, v1, v2, . . . , v` = v) ∈ V `+1.
(
∀i ∈ [`]. (vi−1, vi) ∈ E

)
.

If (u, v) ∈ E+, we say that v is reachable from u in the graph. The committee of
an epoch T is notated as comT . Each committee is of size k. As our protocol is
executed in epochs, we denote the previous (the next) epoch of an epoch T as
Tpre (Tnxt) to facilitate protocol descriptions. We adopt terminologies of nodes,
vertices and units interchangeably but they stand up for the same concept in
this paper. To face the data availability issue, we assume a partially synchronized
network with delays bounded by δ2.

The Directed Acyclic Graph In this part, we propose the outline of the
DAG-based ledger of transactions and show the linearization of transactions via
key nodes. The DAG consists of two parts of nodes: normal nodes (or transac-
tion nodes) proposed by each transaction proposers and key nodes proposed by
the committee. Motivated by potential rewards, each proposed node “refers to”
certain existing valid nodes on the DAG to take part in their “confirmation”.

2 Actually, any consensus protocols applicable to the permissionless network with an
uncertain number of participants should know the upper bound of network delays
as shown in [32].

This manifests in the DAG as edges pointing from the proposed node to nodes
to refer. However, a node is finally confirmed only when there exists a path from
a key node to it. Such an admissible directed acyclic graph describes the view
of the whole ledger. We not only require that the ledger is a DAG consisting of
properly linked key nodes and normal nodes but also ask the DAG to be succinct
to reduce redundant node confirmations. Formally, admissible directed acyclic
graphs are defined as follows.

Definition 1 (Admissible Directed Acyclic Graph). In this article, a di-
rected graph G = (V,E) is an admissible directed acyclic graph iff the vertex set
V = Vtx∪Vbone (Vtx∩Vbone = ∅) and the edge set E ⊆ V ×V satisfy the following
properties.

– Acyclic Graph. For all vertex u ∈ V , (u, u) /∈ E+.
– Succinctness. For all vertex (u, v) ∈ E, (u, v) /∈ (E \ (u, v))

+
.

– Ordered Key Units. All backbone nodes (nodes of Vbone) are linearly or-
dered, formally, Vbone =

{
u1, u2, . . . , u|Vbone|

}
satisfies that(

∀i ∈ [|Vbone| − 1] . (ui+1, ui) ∈ E
)
∧
(
∀i, j ∈ [|Vbone|]. i 6= j + 1⇒ (ui, uj) /∈ E

)
.

Moreover, to facilitate later proofs, we introduce the notion of fully admissible
DAG. Namely, a direct graph which is not only an admissible DAG according
the definition of Def. 1, but also having all its vertices reachable by at least one
key node of it.

Definition 2 (Fully Admissible DAG (FAD)). A direct graph G = (V,E)
with V = Vtx ∪ Vbone is a fully admissible DAG with the key node set Vbone if G
satisfies the following two properties.

– G is an admissible DAG with the key node set Vbone.
– For all v ∈ V , there exists a u ∈ Vbone that (u, v) ∈ E+.

We introduce two predicates. AD(G) denotes whether graph G is an admissible
DAG and FAD(G) denotes whether graph G is a fully admissible DAG.

3.2 Epochs and The Rotating Committee from Mining

As is shown in Fig. 1, the Haootia protocol consists of two layers: the upper
DAG-based ledger layer holding ordinary nodes (also referred to as transactions)
issued by transaction proposers as well as key nodes proposed by the underlying
committee; and the lower backbone chain layer designating the committee, which
is responsible for outputting key nodes to both linearize transactions and confirm
nonce solutions generated by miners.

The Haootia protocol executes in a succession of epochs, each with a commit-
tee assigned according to one backbone block. There are three main roles during
the epoch: transaction proposers, miners, and committee members. Transaction
proposers are ordinary users who send transactions in the DAG; miners are those
who participant in solving the hash puzzle regarding BT to earn themselves the

opportunity to be members of the next committee; comT on the other hand,
consists of the ones who successfully solve the puzzle in the last epoch and are
lucky to be chosen (uniformly randomly) as members of the current committee.

Each time when a new BT is generated by comTpre , epoch T begins. After a
nonce solution set solT of size λk is formed, k solutions are uniformly randomly
selected from it, the next committee is determiend as proposers of these solutions,
and the current epoch terminates by having the committee execute Πswitch.

Our protocol asks each miner to work on a hash puzzle regarding the block
BT that determined the current committee. All solutions are broadcast to the
network and reached consensus on by comT . During T , one of the core work for
comT is to continuously output key nodes in order for transaction linearization
in the DAG based ledger, which is realized through internal consensus via PBFT.
Meanwhile, comT also confirms 〈solution, T , pk, nc〉 tuples broadcast by miners
by containing then into key nodes, forming a solution set solT at the end of the
T , and then accordingly generate the next committee comTnxt enclosed in BTnxt .
After that, epoch Tnxt is triggered. The whole picture of switchover from epoch
T to Tnxt proceeds as follows.

1. During T , each miner P enumerates a nonce value nc. In case of satisfying
H(BT ||pkP ||nc) ∈ target, P broadcasts 〈solution, T , pkP , nc〉 to Z which is
then delivered to committee members.

2. ΠcomT
epoch is executed by comT (with common input BT) and terminates with

a set of nonce solutions solT = {
〈
solution, T , pkPi , nci

〉
} received by the

committee comT .
3. Afterwards, ΠcomT

switch is executed by comT with common input solT and outputs
the next block BTnxt . As a component of BTnxt , the next committee comTnxt
is determined as proposers of k uniformly randomly selected items of solT .

To help with understanding, we present Fig. 2 as an outline of the execution
of the protocol in each terminal. Most of the time, each miner executes Πmine and
tries to solve the hash puzzle without taking part in the consensus work (like
in Tpre and Tnxt). When it luckily becomes the committee member of an epoch
(like T), it joins the intra-committee consensus Πconsensus (which is a succession
of ΠPBFT instances, illustrated in Sec. 3.3) to collaboratively grow the key node
chain and make agreements on received nonce solutions. When λk nonce solu-
tions pass through the intra-committee consensus, Πepoch triggers the switchover
protocol Πswitch and has the epoch terminate. Detailed protocols of each part of
Fig. 2 are presented in Appendix. A.

3.3 Key Node Chain from Intra-Committee Consensus

The intra-committee consensus is a permissioned consensus treated as a black
box in the other contexts of this section. We conservatively choose PBFT to
realize the black box since its real-world security has been testified by various
applications for decades. Due to the nature of permissoned consensus, every two
nodes of the committee are allowed to modify forwarding tables and make direct

Πconsensus

ΠmineΠmine

Πepoch

ΠPBFTΠPBFTΠPBFTΠPBFTΠPBFT

Πswitch

Tpre TnxtT

Fig. 2: Overview of The Full Protocol

connections. This approach significantly improves the scalability of the intra-
committee consensus. Unfortunately, this brings about certain vulnerability in
the face of adaptive DoS attacks. However, the risk is limited since the interval
of each epoch is short for such an attack.

Each proposed key node should contain two fields. One is a list of tip units
(vertices with zero in-degrees) that this key node points to in the DAG. The
other one is a set of (most likely one or zero) nonce solutions received and not
yet included by previous key nodes. By PBFT, such a key node is proposed
and agreed by the committee (if valid), appended to the key node chain (which
essentially linearizes the DAG as shown in Sec. 3.4), and thereafter broadcast to
the network. The security of PBFT guarantees correctness and liveness if over
2/3 members are honest.

When realizing PBFT, we ask members of comT to take turns to serve as
the primary to startup a PBFT instance by proposing a key node. In this way,
fairness loss caused by the possible censorship of nonce solutions is limited for the
following reasons. Firstly, the interval between key node proposals is small and
each nonce solution (except for those proposed very close to the termination
of the epoch) is always comprehended into a key unit by an honest primary.
Secondly, each nonce solution brings about around a 1

λ probability of winning a
committee slot, this quantity is small when λ is large.

3.4 Transaction Linearization on The DAG

In this part, we show how the key node chain uniquely determines an append-
only log of transaction units in an admissible DAG. Few terminologies are intro-
duced to facilitate descriptions. To begin with, each key node essentially confirms
all units confirmed by previous key nodes (via an edge pointing to the previous
key node) and a newly confirmed set of units (Fig. 5). We refer to all vertices
and edges within both sets (also, the key node itself) as a recursion tree. Note
that though we refer to it as a “tree”, it may contain nodes with more than one
parent node. However, this is in practice easy to solve by erasing other parental
links except for the one with the smallest lexicographic order (same to increment
trees). In our theoretical model, all definitions are still sound without erasing
them.

Definition 3 (Recursion Tree). The recursion tree Rec(p) = (V ′, E′) of an
admissible directed acyclic graph G = (V,E) (p is a key node of G) is defined as

the subgraph of G withV ′ = {p} ∪
{
u ∈ V

∣∣∣(p, u) ∈ E+
}

E′ =
{

(u, v) ∈ E
∣∣∣ u ∈ V ′} .

Increment tree, which can be regarded as the recursion tree “subtracted by”
vertices and edges already comprehended by previous recursion trees.

Definition 4 (Increment Tree). For an admissible DAG G = (V,E) with
backbone units Vbone, an increment tree for a backbone unit p ∈ Vbone is Inc(p) =

(Ṽ , Ẽ) with {
Ṽ = Rec(p).V \ Rec(pprev).V
Ẽ = {(u, v) ∈ Rec(p).E

∣∣v /∈ Rec(pprev).V },

where pprev ∈ Vbone is the unique backbone unit that (p, pprev) ∈ E.

Nodes of the increment tree of a key node are essentially the set of all its newly
confirmed transactions. Thereby, the newly confirmed linear log of transactions
is the reversed breadth-first traverse sequence of the increment tree.

Definition 5 (Reversed Breadth-First Traverse Sequence). The reversed
breadth-first traverse (RBF) sequence RBF(G) of a DAG G = (V,E) (or RBF(V,E))
is defined recursively.{

RBF(∅, ∅) = ε
RBF(V,E) = RBF

(
V \ Tip(V,E), {(u, v) ∈ E

∣∣u /∈ Tip(V,E)}
)
|| Lex

(
Tip(V,E)

)
,

where ε stands for the empty sequence, Tip(V,E) for the set of all vertices of
the DAG (V,E) with no in-degree, Lex(S) for the sorted sequence (in the lexico-
graphic order) of elements of the set S.

Clearly, the RBF of any increment tree is well-defined. Finally, we come to the
total ordering of all transaction nodes in the DAG, which is the concatenation
of all confirmed linear logs of all key nodes.

Definition 6 (Total Order in An Admissible DAG). We assume an ad-
missible DAG G = (V,E) with backbone units Vbone = {u1, u2, . . . , u`} that
(ui+1, ui) ∈ E holds for each integer i < `. The total order of each vertex is
defined as its position in the sequence

Total(G) = RBF(Inc(u1))||RBF(Inc(u2))|| . . . ||RBF(Inc(u`))

if it is included in Inc(ui) for any i ∈ [`], or infinity in the other case.

To facilitate further descriptions and analyses, we define several operations and
relations on graphs. Let A and B be two graphs (not necessarily DAGs),

A v B ⇐⇒ A.V ⊆ B.V
∧
A.E ⊆ B.E

∧
(∀u.∀v.u ∈ A.V ⇒ (u, v) ∈ B.E ⇒ (u, v) ∈ A.E) .

Let A = (A.V,A.E) and B = (B.V,B.E) be two pairs of a vertex set and an
edge set, A t B := (A.V ∪ B.V,A.E ∪ B.E). It is easy to observe that “v” is
a partial order that satisfies transitivity. In later proofs, we will utilize a few
lemmas in Appendix. B.

4 Security Analysis

4.1 Execution Model

comT

{Pj}

A Z

FNET

FGEN

BT , Gend(Tpre), sol

sol

sol

∆Gt

Gt

˜Gt

Gi

t

Fig. 3: The Execution Model

We provide an abstraction of the execution of our protocols. Recall that
we have assumed a network with delays bounded by δ time steps. Since the
intra-committee routing can be improved, we assume that the execution interval
of one PBFT is bounded by δc (δc < δ). We ideally regard the adversary as
a single party A capable of participating in the mining with an α fraction of
total hash power in an attempt of controlling a 1

3 fraction of committee slots
and delaying message transfers in the whole network. The graph view of A is
notated as Gt. We suppose that the environment Z(1κ) directs a system genesis
functionality FGEN and an ideal peer-to-peer network functionality FNET that
delivers all broadcasted messages instantly (we blame A for all network delays).
In particular, Z simulates the behavior of common nodes that add into the DAG
new transaction nodes ∆Gt over time and watch the ledger via Gt from FNET. To
formalize the mining, we assume a random oracle H. In this part, we assume a
dependable public-key infrastructure and hence the dependability of all possible
signature schemes and put certifications out of concern. Thereby the notation sol
in this part can be treated merely as a pair of a nonce value and pseudo-identity.
We assume that there exists a protocol ΠcomT

rand during which a committee with a
2/3 honest rate can negotiate a random number. To formalize network delays,
we regard that (1) for each participant in the current committee comT , the local
view of the DAG is delivered from A; (2) all updates to the DAG are firstly sent
to A and then delivered to the committee and Z within at most δ steps (recall
that δ is the upper bound of delay); (3) all solutions provided by miners in {Pj}
are firstly sent to A and delivered to all participants by FNET in δ steps. To
formally pose constraints on A, we define (A,Z)-complaint execution (Fig. 3)
as below.

Definition 7 ((A,Z)-Complaint Execution). In an (A,Z)-complaint execu-
tion model of our system, we consider following behaviors of A and Z.

Initial Stage. If the bootstrapping is safe (notated as IGEN), FGEN outputs the
initial committee comT0 for the initial epoch T0. Let solpool := ∅, G0 := (∅, ∅).

Epoch. For each epoch T , the epoch block BT and the DAG Gbegin(T) := Gend(Tpre)
(for T = T0, Gbegin(T) := 0) are at first sent to {Pj} by FNET. Afterwards, A
and Z act as follows for each time t ∈ [begin(T), end(T)].

1. Let deliversol ⊆ solpool be the set of solutions of A to be delivered to the
network FNET such that

∀(sol′, t′) ∈ (solpool \ deliversol). t− t′ < δ.

Pended solutions {sol|(sol, t) ∈ deliversol} are sent to FNET and broadcast to
{Pj} by FNET if it is not empty. Then, if A receives a new valid solution to
the hash puzzle sol, let solpool := solpool ∪ (sol, t).

2. Z sends to A a set of newly added transaction nodes ∆Gt = (∆Vt, ∆Et),
where ∆Et ⊆ ∆Vt × (Vt−1 ∪∆Vt) (∆Et = ∅ if t = 0). Let Vt := Vt−1 ∪∆Vt
(V0 := ∆V0), the view of A is updated Gt := Gt−1 t ∆Gt (G0 := ∆G0).
Then, A sets Git v Gt for each Pi ∈ comT such that(

t > 0⇒ Git−1 v Git
)∧(

t ≥ δ ⇒ ∆Gt−δ v Git
)∧(

Git v ttk=0∆Gk
)
.

Afterwards, Git is sent to Pi for each Pi ∈ comT .

3. There is a G̃t returned from comT updating the graph of verified transactions.
If over 2/3 committee members are honest, then they share a common view of

the DAG before time of δ (i.e. Git−δ v Gjt for all members Pi, Pj ∈ comT),

it guarantees that there is a w ≤ δc that G̃t+w is returned from comT at

time t + w that extends G̃t (G̃t+w 6= G̃t ∧ |G̃t+w.Vbone| = |G̃t.Vbone| + 1).

Moreover, Git−δ−δc v G̃t. This corresponds to the protocol that the proposal
of a newly added key node is asked to include all orphan nodes in its view δ

time ago. Moreover, G̃t should be in the form of

G̃t = G̃t−1 t ({u, v1, v2, . . . , v`} , {(u, v̂1) , (u, v̂2) , . . . , (u, v̂ˆ̀)}) (1)

that u is the newly added key unit, vi /∈ G̃t−1.V for all i ∈ [`] and v ∈ {vi}`i=1

for all v ∈ {v̂i}
ˆ̀
i=1. Each vertex v ∈ {vi}`i=1 should be reachable from u via

vertices of {vi}`i=1.

4. If A receives from comT an updated graph G̃t, it updates Gt := Gt−1 t G̃t.
Then, A selects a directed graph Gt v Gt that

FAD(Gt)
∧

(t > 0⇒ Gt−1 v Gt)
∧

(t ≥ δ ⇒ G̃t−δ v Gt) (2)

and sends it to Z. Due to the significant interval from the committee switchover,
for t = begin(T), we ask Gt := Gt−1.

5. A queries H with its spawned identity for αΩ times (with α < 1
3 − ε for a

marginal ε) and packs each one smaller than the target into a solution sol
and send it to FNET.

Switchover. The switchover protocol starts by comT instantaneously by the `th

key node proposal. At this point, A and Z act as follows.

1. A sends the full graph GendT to Z.
2. Upon receiving the next epoch block BTnxt (if comT has a 2/3 honest rate,

BTnxt includes λk nonces and determines the next committee as proposers of
k random nonces among them) generated by comT , it sends BTnxt to FNET

and so forth broadcast to all participants. We consider two steps above as
atomic actions without delay. The same effect can be emulated by practice
by having all honest participants pend for δ.

3. Let begin(Tnxt) := t+δ. To guarantee consistency, set Gt := Gend(T) for each
t that end(T) < t < begin(Tnxt). The new committee determined by BTnxt
receives from A begin(Tnxt) and starts consensus protocols by begin(Tnxt).
Set T ← Tnxt.

Note that ∆Gt, G
i
t are essentially set-theoretic graph segments instead of

actual graphs because some edges may connect vertices out of the vertex set. In
the model, Z simulates the view of all network nodes, the bootstrapping, and
the partially synchronized network together with A. A simulates all network
delays and an irrational adversary that attempts to take over 1/3 slots of the
next committee. The view of all participants is regarded as a DAG since all
vertices with outward edges pointing to unreceived nodes should be stored in a
pool instead of entering the view.

4.2 Security Goals

The best way of showing the security of our protocols is to prove the universally
composable (UC) security, however, this is unpractical due to the complication
of our protocols. Thereby, our proof focuses on two abstracted key properties,
namely, consistency and liveness3 in the abstracted execution model.

– Consistency. The consistency property asks that for any large polynomial
poly(·),

Total(Gs) 4 Total(Gt)

holds for all 0 < s ≤ t ≤ end(Tpoly(κ)) except for a probability negligible in
κ, we formalize this by

Pr
[
view

$← EXECΠ(1κ,A,Z) : Iconsistency(view, 1κ,A,Z)
]

= 1− negl(κ).

– Liveness. Likewise, the liveness property asks that for any large polynomial
poly(·),

∆Gt.V ⊆ {Total(Gt+3δ+δc)}
3 Note that though we have leveraged plenty UC-liked notations to facilitate descrip-

tions, our proof is not done under the UC model.

holds for all 0 < t ≤ end(Tpoly(κ)) except for a probability negligible in κ, we
formalize this by

Pr
[
view

$← EXECΠ(1κ,A,Z) : Iliveness(view, 1κ,A,Z)
]

= 1− negl(κ).

For simplicity, we omit all parameters of Iconsistency(view, 1κ,A,Z) and Iliveness(view, 1κ,A,Z)
in case of no ambiguity.

IGEN // IcomT0

��

// (IcomT0
epoch , I

comT0
switch) // IT0fairness // IcomT1

��

// . . .

IcomT0
consensus

� �

��

_? � � _? // IcomT1
consensus

��

// . . .

_? � � _? � � _? � � _? // (Iconsistency, Iliveness)

Table 1: Roadmap of Our Proof (Lemma.4-10)

4.3 The Proof

We break down the ultimate security goals to prove into subgoals defined as
follows (for any epoch T).

IcomT . At most xk/3y slots of comT are controlled by A.
IcomT
epoch. Epoch T terminates at the end of T and outputs the set of all valid

solutions broadcast by all participants of this epoch solT .
IcomT
switch. Given a common input of a set of solutions solT , the committee outputs

the next committee comTnxt randomly selected from participants according
to their numbers of proposed solutions in solT .

ITfairness. With a current committee comT , we say that the fairness of a GPoW
scheme is achieved iff it holds that for each party contributing γ fraction
of total hash rate within epoch T , the next committee comTnxt includes
(γ ± o(1)) · k members of its in expectation.

IcomT
consensus. The following properties hold for every time point t ∈ [begin(T), end(T)].

– There is a w ≤ δc that G̃t+w is returned from comT at time t + w that

extends G̃t (G̃t+w 6= G̃t).
– For any t′ < t− 2δ − δc, ∆Gt′ v Gt.
– G̃t−1 v G̃t.
– G̃t is a fully admissible DAG.

Proofs of all above subgoals of each epoch are moved to Appendix. B. Tab. 1
provides a roadmap showing the implication relation between these subgoals of
each epoch. Some of these subgoals can be mutually derived deterministically
as shown by normal arrows. The entailment from the fairness of PoW in an
epoch to the safety of the next committee is probabilistic, with an overwhelming
probability. Therefore, this step of implication is marked by a curved arrow.
Following this roadmap, we have finally proved the consistency and the liveness
of Haootia as below (with proofs in Appendix. B).

Theorem 1. (A,Z)-compliant execution guarantees both consistency and live-
ness with a safe bootstrapping.

5 Performance Evaluation

To evaluate the performance of Haootia consensus protocol, we fully implement
Haootia with Golang (version 1.10). Without regard to unit tests and Haootia
clients, our implementation consists of total 33349 lines of codes, where 4746 lines
are responsible for the committee’s PBFT module. Other important modules
related to the protocol itself include P2P network, committee election, ledger
verification, and total-ordering, etc.

During the experiment for performance, we deploy Haootia on remote servers
which locates at various places across the world. All servers are AWS EC2
t2.xlarge instances, where each of them is equipped with 4vCPU and 16GB
RAM. In every single experiment, all committee nodes start simultaneously, set
up a connected network, process a large number of transactions, and meanwhile
execute the consensus algorithm.

As we focus on the evaluation of blockchain consensus, we conduct multiple
modifications on the real-world implementation to get rid of unnecessary compu-
tation and network communication. Specifically, since the bottleneck of Haootia’s
performance lies in the committee’s election process (GPoW-based election) and
consensus process (PBFT), we set up only committee nodes to participate in
consensus-related procedures, while nodes of individual miners and transaction
producers are not included. Besides, to effectively simulate the large volume of
transactions, the transactions used in the experiments are prepared in advance
on servers. The technique of prepackaged transactions can bypass the limitation
of network bandwidth on AWS servers. Finally, we also disable the signature ver-
ification module, which generally occupies CPU cycles a lot while it is irrelevant
to the consensus process in essence.

We adopt two metrics throughout our experiments, throughput, and con-
firmation time, which are the most critical and universal indicators adopted
to assess the liveness and scalability of a blockchain system. Notice that since
committee size |comT | may affect system behaviours, we range committee size
|comT | in {4, 10, 19, 31, 46} and observe its effect on the overall performance of
Haootia. For each choice of committee size, the experiment is repeated for 10
times to ensure the credibility of the statistic. The experiment results are listed
as follows.

10 20 30 40
Committee size

7400

7500

7600

7700

7800

7900
Th
ro
ug
hp
ut
 (
tr
an
sa
ct
io
n/
s)

average

min

max

(a) Throughput

10 20 30 40
Committee size

8

10

12

14

16

18

20

22

24

Co
nf
ir
ma
ti
on
 l
at
en
cy
 (
s)

average

min

max

(b) Confirmation Time

Fig. 4: Throughput and confirmation time of Haootia under different committee
sizes

Throughput & Comparisons. Throughput denotes the maximum capa-
bility for the system to consume transactions. In the experiment for Haootia, the
throughput is counted by the volume of confirmed units (transactions) in a period
when the consensus is stably running. The boxplot in Fig. 4(a) demonstrates the
average, minimum, and maximum throughput of Haootia under different com-
mittee sizes. We could observe that throughput of Haootia is around 7500 TPS
(transaction per second) with a confirmation latency around 20 seconds by a
committee of size 46, and its fluctuation not strongly related to the commit-
tee size. Compared with other common DAG-based consensus protocols such as
GHOST (about 275 TPS [4]) and Nano (about 306 TPS [33]), the scalability of
Haootia improves by one order of magnitude. Also, compared with existing non-
DAG-based protocols like Byzcoin (about one thousand TPS [16]) or Elastico
(about 2500 TPS [23]), our scheme has an overwhelming throughput.

Confirmation Time. Confirmation time, namely confirmation latency, de-
notes the client-side latency of processing a transaction. In the experiment, con-
firmation time is the interval from the committee receiving a transaction to a key
unit confirming the transaction. Similarly, the boxplot in Fig. 4(b) illustrates the
average, minimum, and maximum confirmation time of Haootia under different
committee sizes. The key observation of confirmation latency is that it is posi-
tively correlated with by committee size, ranging from about 10s to 25s, which
we ascribe to the increased BFT burden among committee members. Such con-
firmation performance can be regarded as instant confirmation, which implies
the strong liveness of Haootia.

6 Conclusion

In this work, we have proposed a novel consensus scheme for a DAG-based dis-
tributed ledger which achieves both consistency and liveness within any polyno-

mially large number of epochs with an overwhelming probability. In the future,
we look forward to having this scheme applied to multiple scenarios of our real
world. Also, we hope to have our scheme proved fully under the UC model
where the fact that our ideal world has successfully simulated the real world is
formally entailed. Appendix. C provides a rough explanation of the incentive-
compatibility of our scheme. We also expect to have the incentives of this scheme
rigorously and thoroughly analyzed.

References

1. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.
2. Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in

bitcoin. In International Conference on Financial Cryptography and Data Security,
pages 507–527. Springer, 2015.

3. Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. Inclusive block chain pro-
tocols. In International Conference on Financial Cryptography and Data Security,
pages 528–547. Springer, 2015.

4. Chenxing Li, Peilun Li, Wei Xu, Fan Long, and Andrew Chi-chih Yao. Scal-
ing nakamoto consensus to thousands of transactions per second. arXiv preprint
arXiv:1805.03870, 2018.

5. Anton Churyumov. Byteball: A decentralized system for storage and transfer of
value, 2016. https://byteball.org/Byteball.pdf.

6. Serguei Popov. The tangle. https://iota.org/IOTA_Whitepaper.pdf.
7. Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. SPECTRE: A fast and

scalable cryptocurrency protocol. IACR Cryptology ePrint Archive, 2016:1159,
2016.

8. Yonatan Sompolinsky and Aviv Zohar. PHANTOM: A scalable blockdag protocol.
IACR Cryptology ePrint Archive, 2018:104, 2018.

9. Iddo Bentov, Pavel Hubácek, Tal Moran, and Asaf Nadler. Tortoise and hares
consensus: the meshcash framework for incentive-compatible, scalable cryptocur-
rencies. IACR Cryptology ePrint Archive, 2017:300, 2017.

10. Xavier Boyen, Christopher Carr, and Thomas Haines. Graphchain: a blockchain-
free scalable decentralised ledger. In Proceedings of the 2nd ACM Workshop on
Blockchains, Cryptocurrencies, and Contracts, BCC@AsiaCCS 2018, Incheon, Re-
public of Korea, June 4, 2018, pages 21–33, 2018.

11. Leemon Baird. The swirlds hashgraph consensus algorithm: Fair, fast, byzantine
fault tolerance. Swirlds, Inc. Technical Report SWIRLDS-TR-2016, 1, 2016.

12. Colin LeMahieu. Nano: A feeless distributed cryptocurrency network. https:

//nano.org/en/whitepaper.
13. Tai-Yuan Chen, Wei-Ning Huang, Po-Chun Kuo, Hao Chung, and Tzu-Wei Chao.

Dexon: A highly scalable, decentralized dag-based consensus algorithm. arXiv
preprint arXiv:1811.07525, 2018.

14. Ethan Heilman, Neha Narula, Garrett Tanzer, James Lovejoy, Michael Colavita,
Madars Virza, and Tadge Dryja. Cryptanalysis of curl-P and other attacks on the
IOTA cryptocurrency. IACR Cryptology ePrint Archive, 2019:344, 2019.

15. Marko Vukolic. The quest for scalable blockchain fabric: Proof-of-work vs. BFT
replication. In Open Problems in Network Security - IFIP WG 11.4 International
Workshop, iNetSec 2015, Zurich, Switzerland, October 29, 2015, Revised Selected
Papers, pages 112–125, 2015.

https://byteball.org/Byteball.pdf
https://iota.org/IOTA_Whitepaper.pdf
https://nano.org/en/whitepaper
https://nano.org/en/whitepaper

16. Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus
Gasser, and Bryan Ford. Enhancing bitcoin security and performance with strong
consistency via collective signing. In 25th USENIX Security Symposium (USENIX
Security 16), pages 279–296, 2016.

17. Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permis-
sionless model. In 31st International Symposium on Distributed Computing, DISC
2017, October 16-20, 2017, Vienna, Austria, pages 39:1–39:16, 2017.

18. James N Gray. Notes on data base operating systems. In Operating Systems, pages
393–481. Springer, 1978.

19. Juan Garay and Aggelos Kiayias. SoK: a consensus taxonomy in the blockchain
era. Technical report, Cryptology ePrint Archive, Report 2018/754, 2018.

20. Flavio P. Junqueira, Benjamin C. Reed, and Marco Serafini. Zab: High-
performance broadcast for primary-backup systems. In 2011 IEEE/IFIP 41st In-
ternational Conference on Dependable Systems & Networks (DSN), pages 245–256.
IEEE, 2011.

21. Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Margo I.
Seltzer and Paul J. Leach, editors, Proceedings of the Third USENIX Symposium on
Operating Systems Design and Implementation (OSDI), New Orleans, Louisiana,
USA, February 22-25, 1999, pages 173–186. USENIX Association, 1999.

22. John R. Douceur. The sybil attack. In International workshop on peer-to-peer
systems, pages 251–260. Springer, 2002.

23. Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and
Prateek Saxena. A secure sharding protocol for open blockchains. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pages 17–30. ACM, 2016.

24. Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa
Syta, and Bryan Ford. Omniledger: A secure, scale-out, decentralized ledger via
sharding. In 2018 IEEE Symposium on Security and Privacy (SP), pages 583–598.
IEEE, 2018.

25. Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapidchain: Scaling
blockchain via full sharding. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2018, Toronto, ON, Canada,
October 15-19, 2018, pages 931–948, 2018.

26. Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant con-
firmation. In Advances in Cryptology - EUROCRYPT 2018 - 37th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II, pages 3–33, 2018.

27. Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulner-
able. In International Conference on Financial Cryptography and Data Security,
pages 436–454. Springer, 2014.

28. Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal selfish mining
strategies in bitcoin. In International Conference on Financial Cryptography and
Data Security, pages 515–532. Springer, 2016.

29. Vivek Kumar Bagaria, Sreeram Kannan, David Tse, Giulia C. Fanti, and Pramod
Viswanath. Prism: Deconstructing the blockchain to approach physical limits. In
Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors,
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2019, London, UK, November 11-15, 2019, pages 585–602.
ACM, 2019.

30. Lei Yang, Vivek Kumar Bagaria, Gerui Wang, Mohammad Alizadeh, David Tse,
Giulia C. Fanti, and Pramod Viswanath. Prism: Scaling bitcoin by 10, 000x. CoRR,
abs/1909.11261, 2019.

31. Georgios Birmpas, Elias Koutsoupias, Philip Lazos, and Francisco J. Mar-
molejo Cosśıo. Fairness and efficiency in dag-based cryptocurrencies. CoRR,
abs/1910.02059, 2019.

32. Rafael Pass and Elaine Shi. Rethinking large-scale consensus. In 30th IEEE Com-
puter Security Foundations Symposium, CSF 2017, Santa Barbara, CA, USA, Au-
gust 21-25, 2017, pages 115–129, 2017.

33. Federico Matteo Bencic and Ivana Podnar Zarko. Distributed ledger technology:
Blockchain compared to directed acyclic graph. In 38th IEEE International Con-
ference on Distributed Computing Systems, ICDCS 2018, Vienna, Austria, July
2-6, 2018, pages 1569–1570, 2018.

34. Miguel Castro, Barbara Liskov, et al. A correctness proof for a practical
byzantine-fault-tolerant replication algorithm. Technical report, Technical Memo
MIT/LCS/TM-590, MIT Laboratory for Computer Science, 1999.

35. Paul Feldman. A practical scheme for non-interactive verifiable secret sharing.
In 28th Annual Symposium on Foundations of Computer Science, Los Angeles,
California, USA, 27-29 October 1987, pages 427–437, 1987.

Key Nodes

Fig. 5: The Recursion Tree

A Detailed Protocols

A.1 Design Components

Byzantine Fault-tolerance as a Subroutine. Haootia adopts PBFT [21,
34] protocol to reach consensus among comT . The PBFT protocol executes in
the partially synchronous network and guarantees safety and liveness provided
at most bn−13 c out of total n replicas are simultaneously faulty. For practical
considerations, we modify the client-server model which requires all the replicas
to reply to the client by asking only the primary to broadcast the final result
containing 2f + 1 valid signatures from comT to Z in the representation of the
whole committee.

For the purpose of protocol description, we assume k = 3f + 1, where k is
committee size |comT | and f is the maximum number of faulty members that

PBFT can tolerate. All members are ordered according to their position in comT
and identified by a unique integer in [k]. There is a succession of configurations
called views, the PBFT primary for view v is p such that p = v mod k, and all
others are backups. We call the whole committee comT as replicas under PBFT
setting.

Generally, each execution of PBFT protocol is initiated by the primary p
by multicasting to all backups a message to reach consensus on. Under normal
circumstances, after a three-phase interaction, the comT will reach agreement
and output a final result containing 2f+1 valid signatures from comT indicating
its validity (shown in Algo. 1). The liveness of PBFT is guaranteed by the view-
change protocol in case of a faulty primary, which is triggered by timeouts or
invalid messages are received from the primary by backups. In this case, backups
will start a view change process (depicted in Algo. 2) for reconfiguration until a
new primary is elected.

As is a mature tool, we will regard PBFT and its view change subroutine
as a black box assuring both safety and liveness. Each time PBFT is called,
it’s given inputs, which are later used by primary to propose messages and
backups to check the validity of the message. After its execution, a final result
of the specified form will be broadcast to Z. To resolve the censorship issue, our
protocol asks them to take turns to serve as the primary.

For a tuple 〈m0,m1, . . .〉, 〈m0,m1, . . .〉σP
denotes the tuple appended with a

signature on the tuple from P. Due to the nontriviality, for (and only for) the
descriptions of the protocols related to PBFT, we explicitly describe signatures
appended to each message tuple.

Random Number Negotiation. We assume an epoch randomness negotiation
protocol ΠcomT

rand that allows each committee to securely generate a randomness.
This protocol can be realized by a distributed random generation (DRG) based
on verifiable secret sharing (VSS) of [35].

Nextly, we will dive step-by-step into the Full protocol depicted in Fig. 2.

A.2 Haootia Consensus

Mining Protocol. Once receiving BT from Z, miners start executing mining
protocol ΠcomT

mine , trying to find nonce solutions for the hash puzzle determined by
BT in an effort to earn themselves a chance to enter comTnxt . During T , each
miner P enumerates a random value nc and check whether H(BT ||pkP ||nc) ∈
target holds. In case of satisfying, it broadcasts 〈solution, T , pkP , nc〉 to Z and
continues. The detailed protocol is shown in Algo. 3.

Consensus Protocol. On receiving BT from Z, participants of the network de-
code it and fetch current committee comT , then comT as a whole execute con-
sensus protocol ΠcomT

consensus and serves as an authority in the network during T .
It observes Z for newly coming transaction nodes in the DAG ledger and nonce
solutions broadcast by miners, and continuously executes PBFT protocol ΠcomT

PBFT

Algorithm 1 The PBFT Protocol

Protocol ΠcomT
PBFT

The PBFT protocol is executed by all k members of comT , with each identified by a unique
integer in {0, · · · , k−1}. There are three phases pre-prepare, prepare and commit. It proceeds
as follows.

1. Pre-prepare. Primary p:

(a) Multicasts to all backups a
〈
〈pre-prepare, T , v, d〉σp ,msg

〉
message. Here v indi-

cates the current view, msg is the message to reach a consensus on, and d is msg’s
digest

Backup i:

(a) When receives the
〈
〈pre-prepare, T , v, d〉σp ,msg

〉
message, it checks whether the

following conditions hold:
– The signature is correct and d is the digest for msg
– It is in view v
– msg proposed by p is valid

(b) If any of the above validation fails:
– Executes ΠcomT

view-change protocol with parameter v
(c) Else:

– Multicasts a
〈
prepare, T , v, σd

i , i
〉
σi

message to all other replicas. Here σd
i is its

signature on d
– Starts a timer T

2. Prepare. Replica i:
(a) For each

〈
prepare, T , v, σd

i , i
〉
σi

message received from other replicas:

– Checks the validity of it, i.e., whether the signature is valid and has the same view
and digest as the pre-prepare message

(b) If it has not accepted 2f+1 valid prepares (including its own) from different replicas
until T expires:
– Executes ΠcomT

view-change protocol with parameter v
(c) Else:

– Stops the timer T
– Multicasts a

〈
commit, T , v, σd

i , i
〉
σi

message to all other replicas

3. Commit. Primary p:
(a) Signature set σcomT ← ∅
(b) Adds its own signature σd

p on d to σcomT

(c) For each
〈
commit, T , v, σd

i , i
〉
σi

message received, checks the signature and digest,

and adds σd
i to σT if it is valid

(d) If it has received 2f + 1 valid commit messages (including its own) from different
replicas, broadcasts a 〈end PBFT, T , v,msg, σcomT 〉σp message to the network

Backup i:
(a) If it has received 2f+1 commit messages (including its own) that match the prepare

message, i.e., they have the same view and digest, starts a timer T
(b) If it has not received a valid 〈end PBFT, T , v,msg, σcomT 〉σp message until T expires,

executes ΠcomT
view-change protocol with parameter v

Algorithm 2 The View Change Protocol

Protocol ΠcomT
view-change

The view-change protocol takes as input the current view v and returns a new v′. For replica
i, the following steps are iterated each time ΠcomT

view-change is executed.

1. v← v + 1, p← v mod k
2. If i 6= p:

(a) Multicasts a 〈view-change, T , v, i〉σi message to all replicas
3. If i = p, i.e., it is the primary for v:

(a) View change set VcomT ← ∅
(b) Adds its own view change message 〈view-change, T , v, i〉σp to VcomT

(c) For each 〈view-change, T , v, i〉σi tuple received, it checks the view and signature,
and adds to VcomT if it is valid

(d) Once receiving 2f + 1 valid view-change messages (including its own) from different
replicas, it multicasts a 〈new-view, T , v,VcomT 〉σp message to all replicas

(e) Returns v
4. If i 6= p:

(a) When it has accepted 2f + 1 view-change tuples (including its own) from different
replicas for v, it starts a timer T

(b) It accepts the 〈new-view, T , v,VcomT 〉σp message for v provided:

– It is sent by p
– the signature is valid
– all 2f + 1 view-change tuples are valid for v

(c) Returns v if all of the above hold. If T expires before any valid new-view message is
received, continues the loop.

Algorithm 3 The Mining Protocol

Protocol ΠcomT
mine

The mining protocol is executed by all miners participating in the protocol, each of
pseudo identity P proceeds as follows.

1. x← 0
2. Check whether H(BT ||pkP ||x) ∈ target

– If it holds, broadcast 〈solution, T , pkP , nc = x〉 to Z
3. x← x+ 1, goto 2)

to generate key nodes referencing new tip nodes in the DAG as well as confirming
new nonce solutions.

Intra the committee, members of comT take turns to serve as the primary
and launch the PBFT process by proposing a key node referencing all the tip
nodes in the DAG ledger δ ago, also this key node has a special field holding
possibly new nonce solutions from miners. δ is the upper bound on the network
delay, thereby all other backups can check the validity of this reference relations
as they have the same view of the DAG ledger δ ago. Note here that the nonce
solutions to enclose don’t necessarily need to be δ ago, because each backup can
check the validity of a solution directly from its basic information.

Each time ΠcomT
PBFT is invoked by ΠcomT

consensus, a new key node 〈keynode, T , v′, ∆G,∆S, σcomT 〉
is generated under the consensus of comT . Here T denotes the current epoch, v′

denotes the view number after the execution of ΠcomT
PBFT (note it might might not

be the same with the initial one after each execution of ΠcomT
PBFT due to possible

view changes), ∆G denotes new reference edges and the key node vertice itself,
∆S denotes newly confirmed nonce solutions, and σcomT denotes the signature
set from comT indicating this key node’s validity.

From the upper DAG ledger point of view, this key node functions both for
the convergence of the ledger and transaction linearization. Immediately when
a transaction node is referenced directly or indirectly by a key node (according
to ∆G), its total order in G is uniquely determined (see Def. 6). In the case of
double-spending, if there is partial order between them, the later one is safely
rejected from entering into G. For those with no partial order, the one who
comes earlier in the total order is considered valid. Since PBFT is a determined
consensus protocol, once a transaction node is referenced (directly or indirectly)
by a key node, it reaches its finality, i.e., if it is valid now, it will never be double-
spent in the future. Moreover, as the consensus on a key node can take place very
fast among comT , transaction confirmation in Haootia can be achieved within
seconds.

Apart from transaction linearization in the DAG ledger, a key node also
confirms newly generated nonce solutions (∆S) by miners. As we will see later,
when enough solutions are received by comT , a switchover will take place and
a new block indicating the next epoch is generated by comT accordingly. The
detailed protocol execution is illustrated in Algo. 4.

A.3 Committee Switchover

Epoch protocol. At the beginning of epoch T , an epoch protocol ΠcomT
epoch is launched

along with the consensus protocol ΠcomT
consensus by each committee member. comT as

an entirety executes ΠcomT
epoch to collect nonce soluitons contained in 〈keynode, T , v′, ∆G,∆S, σcomT 〉

from Z, and maintains a solution set solT accoringly. Once λk solutions are re-
ceived, all instances of ΠcomT

mine and ΠcomT
consensus are halted, and a switchover protocol

ΠcomT
switch is invoked to generate a new block BTnxtand the next committee comTnxt .

The detailed protocol is shown in Algo. 5.

Algorithm 4 The Consensus Protocol

Protocol ΠcomT
consensus

The consensus protocol of epoch T is executed by all k identities of comT . Each identity
proceeds as follows.

1. View number v← 0
2. Update its local DAG state G and solution set S from Z
3. Iterate the following steps until this protocol is halted by ΠcomT

epoch

(a) Execute ΠcomT
PBFT with inputs v,G, and S, receive 〈keynode, T , v′,∆G,∆S, σcomT 〉

from Z after its termination
(b) v← v′ + 1
(c) Update G and S from Z

Algorithm 5 The Epoch Protocol

Protocol ΠcomT
epoch

The epoch protocol is executed by all k identities of comT . Each identity proceeds as
follows.

1. Counter of nonce solutions ct← 0, solution set solT ← ∅
2. When receiving a tuple 〈keynode, T , v′,∆G,∆S, σcomT 〉 from Z each time, iterate

the following steps:
(a) solT ← solT ||∆S
(b) ct← ct + |∆S|
(c) if ct ≥ λk, end the loop

3. Halt ΠcomT
mine , and get the latest v′ before halting ΠcomT

consensus. Then launch ΠcomT
switch with

input solT and v′

Switch Protocol. After a solution set solT of size λk are received and confirmed
by comT , one last thing for comT is to reach agreement on comTnxt and generate
BTnxt accordingly. The key idea here is that k lucky solutions are chosen uni-
formly randomly from solT , and then the next committee comTnxt is determined
as the proposers of these lucky solutions.

To begin with, a random number r is negotiated using a ΠcomT
rand protocol. With

this random number, k positions in solT can be uniquely determined via a hash
function, and the corresponding miners who proposed these solutions are chosen
as committee members of comTnxt . Specifically, we use Hash(r||i) mod |solT |
to locate solutions for each i in [k], where the hash function is assumed to be
uniform random. As can be seen, there are chances that one specific solution is
chosen twice or more times, this is allowed and the corresponding miner (pk) is
regarded to have different identities in comTnxt identified by its unique 〈pk, loc〉,
where pk is miner’s public key and loc is its position in comTnxt .

After that, ΠcomT
PBFT is called by ΠcomT

switch for the comT to reach agreement on on a
new block BTnxt in the form of 〈B, T , v′, solT , comTnxt , σcomT 〉. Here T denotes
the current epoch, v′ denotes the view number after the execution of ΠcomT

PBFT,
solT denotes the solution set formed in epoch T , comTnxt denotes the committee
members of the next committee, so that participants in epoch Tnxt can fetch
comTnxt by decoding BTnxt , and σcomT denotes the signature set from comT
indicating this key node’s validity. For the integrity of GPoW blockchain, the
hash of previous block as well as some other metadata should also be included
into a block, but for simplicity they are omitted here.

As long as BTnxt is generated under the consensus of comT , participants can
see this update from Z, and then a new epoch Tnxt begins. The detailed protocol
is depicted in Algo. 6.

Algorithm 6 The Switchover Protocol

Protocol ΠcomT
switch

The switchover protocol is executed by all k identities of comT . A common input
solution set solT and view v derived from ΠcomT

epoch is shared by all k identities. Each
identity proceeds as follows.

1. A random number r is negotiated via protocol ΠcomT
rand

2. For each i ∈ [k] : positioni ← H(r||i) mod |solT |
3. For each i ∈ [k] : supposing solT [positioni] = 〈solution, T , pk′, nc〉, let

comTnxt [i]← pk′

4. v← v + 1
5. Executes ΠcomT

PBFT with input v, solT , comTnxt , waits till receiving
〈B, T , v′, solT , comTnxt , σcomT 〉 from Z

A.4 The Main Protocol

With all the components above, we are allowed to come into the final main
protocol by arranging them together. As is shown in Algo. 7, at the beginning
of each epoch T , each participant of the network fetches BT and starts mining
based on it (in case of an ordinary miner performing mining last epoch, it must
stop the old mining instance and start a new one). If this participant happens to
be one of the committee members at T , it will also fork a protocol instance for
both ΠcomT

consensus and ΠcomT
epoch if pk′, and then play the role of committee members

during T as mentioned above.

Algorithm 7 The Main Protocol

Protocol Πfull

The following steps are iterated each epoch T for each participant pk.

1. Receive from Z BT , decode it and fetch the current committee list comT
2. If any ΠcomT

mine instance is running, stop it and launch a new ΠcomT
mine based on BT

3. For each identity pk′ ∈ comT , fork a protocol instance for both ΠcomT
consensus and ΠcomT

epoch

if pk′ is a public key of itself

B More Proofs

Few lemmas on the DAG are useful to our security proofs. They are not proved
since their proofs are obvious inductions. However, it is a necessity to list them
here not only for rigorousness but also to facilitate the understanding of our
proofs.

Lemma 1 (∀G.∀H. FAD(H)⇒ (G v H)⇒ AD(G)). For any fully admissible
DAG H, all directed graphs G that G v H should be an admissible DAG.

Lemma 2 (∀G.∀H. (G v H) ⇒ (Total(G) 4 Total(H))). For any two DAGs
G and H that G v H, the totally ordered list of vertices in G should be a prefix
of the totally ordered list of vertices in H.

We introduce notation {s} to convert a sequence of elements s to a set. Obvi-
ously, with the nature of fully admissible DAGs where all vertices are reachable
from key nodes, the total order sequence attained should cover all vertices in the
graph.

Lemma 3 (∀G. FAD(G) ⇒ {Total(G)} = G.V). The total ordering log of a
fully admissible DAG contains exactly all vertices of it.

Lemma 4 (IcomT ⇒ (IcomT
epoch, I

comT
switch)). The 2/3 honesty of a committee comT

implies the safety of next committee election and committee switchover.

Proof. This is a direct result from the execution model. To explain this in real
practice, this part of the protocol is merely an explicit dispatch of PBFT. Recall
that a 2/3 honest rate has already provided the safety and liveness of the permis-
sioned BFT itself. Thereby, the safety of (ΠcomT

epoch ,Π
comT
switch) is directed guaranteed

(see more in Appendix. A).

Lemma 5 ((IcomT
epoch, I

comT
switch) ⇒ ITfairness). To each epoch T , the safety of next com-

mittee election and committee switchover implies the fairness of PoW in T .

Proof. Assuming that each query toH returns a satisfactory nonce (smaller than
the target) with probability p. Due to the safety and liveness of PBFT and the
assumption on ΠcomT

rand , each nonce successfully delivered to comT shares the same
probability of having its corresponding pseudo-identity enter the next committee.
We denote this probability as q. Due to the linearity of expectation, a party
(denoted by P) with γ fraction of total hash rate in the worst network delay can
take in expectation γΩ(T−δ)·pq slots in comTnxt since A at most delays a sol for
time δ before sending it to FNET and so forth comT . Likewise, in the worst case to
this party, all other parties suffer zero delays and thereby take (1−γ)ΩT ·pq slots
in expectation. Obviously, we have pq = k

γΩ(T−δ)+(1−γ)ΩT and we can derive

γΩ(T − δ) · pq = γ(T−δ)
γ(T−δ)+(1−γ)T · k = γ · (1− δ

T ·
1−γ

1−γ δT
) · k

& (γ − δ
T γ(1− γ)) · k = (γ −O(δT)) · k,

since γ(1−γ) ≤ 1
4 always holds. Therefore, the next committee comTnxt includes

(γ − o(1))k members of P in expectation for the worst network delay. In the
same way, we can derive that comTnxt includes (γ + o(1))k members of P in
expectation for the best network delay where P suffers no delay while solutions
from others are delayed for δ.

Lemma 6 (ITfairness
p⇒ IcomTnxt

). The fairness of PoW in an epoch T entails the
safety of the next committee comTnxt with an overwhelming probability.

Proof. Recall that we have assumed an adversary controlling α < 1/3−ε fraction
of total hash rate. Setting indicators Ii and Ji for each slot of the next committee.
Ii is 1 if this slot is owned by the adversary or 0 otherwise. We denote Y =∑
i∈[k] Ii as the random variable of total slots controlled by the adversary for

the next committee. From the fairness of PoW in T , E[Y] =
∑
i∈[k]E[Ii] = α̂k

where α̂ = α+ o(1) < 1/3. By Chernoff bound,

Pr[Y ≥ (1 + ξ)α̂k] ≤ exp
(
− [(1 + ξ) ln(1 + ξ)− ξ]α̂k

)
.

Letting ξ = 1
3α̂ − 1 > 0, it shows

Pr[Y ≥ k/3] ≤ exp
(
− (

1

3
ln

1

3α̂
− 1

3
+ α̂)k

)
= exp(−Θ(k)).

Therefore, the safety of the next committee is achieved except for a probability
negligible in κ since k = Θ(κ).

Lemma 7 ((T 6= T0 ⇒ IcomTpre
consensus), IcomT ⇒ IcomT

consensus). The safety of the consen-

sus protocol of the previous epoch Π
comTpre
consensus and the safety the current committee

comT (IcomT alone if it is the initial epoch T0) imply the safety of the consensus
protocol of the current epoch.

Proof. – For simplification, we assume that t+w < end(T). In real-world, an
epoch is significantly long so a transaction proposed exactly by the termina-
tion of an epoch (and hence not confirmed before end(T)) can be regarded
as a tolerable miss. The liveness assumption of PBFT has guaranteed that
there is an output G̃t in time t if over 2/3 committee members are honest and
that they are reaching a consensus according to a shared view. Obviously,
the first condition is guaranteed by the safety of comT and the second con-
dition is essentially Git−δ v Gjt

4 for each Pi, Pj ∈ comT since the protocol
asks members to issue proposals in PBFT according to the view δ ago. Ac-
cording to the (A,Z)-compliant execution model, Git−δ v t

t−δ
r=0∆Gr. Also,

∆Gr v Gjr+δ holds for all 0 ≤ r ≤ t − δ. Therefore, tt−δr=0∆Gr v ttr′=δG
j
r′ .

From the rule (t > 0 ⇒ Gjt−1 v Gjt), we can observe ttr′=δG
j
r′ v Gjt by a

simple induction. By transitivity, Git−δ v (tt−δr=0∆Gr) v (ttr′=δG
j
r′) v Gjt

infers Git−δ v G
j
t .

– In the protocol, the proposal of a newly added key node is asked to include
all orphan nodes in its view (δ + δc) time ago. Namely, Git−δ−δc v G̃t.

From the model of (A,Z)-complaint execution, ∆Gt′ v Git−δ−δc holds for

all t′ < t− 2δ − δc. Thereby, we reach ∆Gt′ v G̃t for all t′ < t− 2δ − δc by
transitivity.

– The safety of PBFT has guaranteed that the outcome satisfies our predeter-
mined rule that at least one key node is proposed to link all orphan nodes
in a shared part of the view of DAG. Without loss of generality, we assume

that only one key node u is added into G̃t in time t after t − 1. With an

admissible execution guaranteed by the safety of comT , G̃t should be in the
form of

G̃t = G̃t−1 t ({u, v1, v2, . . . , v`} , {(u, v̂1) , (u, v̂2) , . . . , (u, v̂ˆ̀)}) (3)

hat vi /∈ G̃t−1.V for all i ∈ [`] and v ∈ {v1, v2 . . . , v`} for all v ∈ {v̂i}
ˆ̀
i=1.

From here, it is obvious that G̃t−1 v G̃t.
– First, we introduce two observations.

Observation i) G̃t is an admissible DAG if G̃t−1 is admissible. For conve-

nience, we set ˜Gbegin(T)−1 := GendTpre . To prove that G̃t is an admissible

DAG providing that G̃t−1 is admissible, we essentially need to prove three

properties: a) G̃t is a DAG; b) succinctness; c) key units are totally ordered.
Each of them can be easily observed from formula (3) by leveraging a simple
contradiction.
Observation ii) Gend(Tpre) = ˜Gend(Tpre). This is guaranteed from the com-
plaint execution model.

4 For rigorousness, we regard Gr = (∅, ∅) for all r < 0.

With this observation, the final proof is an obvious induction where the initial

step requires that ˜Gbegin(T)−1 := Gend(Tpre) = ˜Gend(Tpre) is a fully admissible

DAG (from the hypothesis IcomTpre
consensus). For the induction step, apart from the

first observation, we remain to show that all vertices are reachable from a

key node in G̃t = G̃t−1 t
(
{u, v1, v2, . . . , v`} ,

{
(u, v̂1) , (u, v̂2) , . . . ,

(
u, v̂ˆ̀

)})
.

We prove this by contradiction. Assume that v ∈ G̃t is not reachable from

any key node. Then, either v ∈ G̃t−1.V or v ∈ {u, v1, v2, . . . , v`}. For the

first case, it contradicts that G̃t−1 is a fully admissible DAG. The second
case directly contradicts the complaint execution model.

By assuming that IGEN implies IcomT0
, we are allowed to link up the first two

rows of the proof chain of Tab. 1.

Lemma 8 (Proof Chain Foundation). For arbitrary large polynomial poly(·),
assuming IGEN, (IcomTi

, IcomTi
epoch , I

comTi
switch , I

Ti
fairness) holds for all natural number i ≤

poly(κ) except for a probability negligible in κ.

Proof. According to previous lemmas, we are allowed to draw out the first row of
proof chain in Tab. 1. Each straight arrow in the figure stands for a deterministic
entailment and the curved line stands for an entailment for a probability 1 −
negl(κ) for some negligible function negl(κ). Thereby, it is easy to observe that
we need only to show that poly(κ) many probabilistic entailments are achieved.
This happens except for a negligible probability of 1 − (1 − negl(κ))poly(κ) ≈
negl(κ)poly(κ).

Lemma 9 ({IcomTi
}i∈[poly(κ)] ⇒ Iconsistency). The safety of all committees of

poly(κ) epoches starting from the initial epoch guarantees Iconsistency(view, 1κ,A,Z).

Proof. Recall that the consistency property asks that for any large polynomial
poly(·), Total(Gs) 4 Total(Gt) holds for all 0 < s ≤ t ≤ endTpoly(κ) .

– To begin with, we show that Gs v Gt within any epoch for all 0 < s ≤ t ≤
endTpoly(κ) . We show this in two steps. Firstly, from the compliant execution

model, T ∈ {T0, T1, . . . , Tpoly(κ)}, Gt−1 v Gt holds for all begin(T) < t ≤
end(T) (with the hypothesis of IcomT). Secondly, for any epoch any epoch
T ∈ {T1, T2, . . . , Tpoly(κ)}, it actually holds that Gend(Tpre) v Gbegin(T) since

Gend(Tpre) v Gend(Tpre) = Gbegin(T)−1 = Gbegin(T).

– It remains for us to show that Gs v Gt implies Total(Gs) 4 Total(Gt). This
is a direct application of Lemma. 2.

Lemma 10 ({IcomTi
}i∈[poly(κ)] ⇒ Iliveness). The safety of all committees of poly(κ)

epoches starting from the initial epoch guarantees Iliveness(view, 1κ,A,Z).

Proof. Recall that the liveness property asks that for any large polynomial
poly(·), ∆Gt.V ⊆ {Total(Gt+3δ+δc)} holds for all 0 < t ≤ end(Tpoly(κ)). {IcomTi

}

guarantees {IcomTi
consensus} and hence for any t′ < t − 2δ − δc, ∆Gt′ v Gt within

the first poly(κ) epoches. Along with Lemma. 3, we only need to show that
Gt−δ v Gt (note that Gt is a fully admissible DAG). The compliant execution

model guarantees that G̃t−δ v Gt and that Gt−δ = tt−δi=0G̃i. Also, G̃i−1 v G̃i

holds always. This results in Gt−δ = tt−δi=0G̃i = G̃t−δ v Gt.

Finally, we are allowed to conclude in the final proof of Thm. 1 which states
that (A,Z)-compliant execution guarantees both consistency and liveness with
a safe bootstrapping.

Proof. With a safe bootstrapping IGEN, according to Lemma. 8-10, (A,Z)-compliant
execution guarantees {IcomTi

}i∈[poly(κ)] and hence both Iconsistency and Iliveness with
an overwhelming probability, which are essentially properties of consistency and
liveness.

C Incentive Compatibility

A distributed ledger system requires to be incentive-compatible, nor participants
will have the motivation to deviate from the expected behaviors for higher re-
ward. In other words, the property of incentive compatibility is essentially a
prerequisite of the stability of a distributed ledger system. Hence in Haootia, we
have adopted an elaborate incentive mechanism and its incentive compatibility
is shown as follows.

Incentive Mechanism. The incentive mechanism of Haootia consists of two com-
ponents: transaction commission and committee reward. In terms of commission,
each transaction proposer needs to pay a commission in proportion to the size
of his/her transaction node. Such a transaction commission will be collected by
the transaction node who is the first to reference this transaction as a parent in
the DAG ledger. Here, the concept of first denotes the children with the smallest
total order (see Def. 6) among all the children of the given transaction. On the
other hand, the committee reward mechanism awards the committee members if
they behave honestly during the execution of the Haootia protocol. This reward
comes directly from block reward as compensation for their work for maintaining
and securing the whole system.

Transaction Proposer. For the convergence of DAG ledger and fast confirmation
of transaction nodes, we expect each transaction proposer to reference as many
and as recent tip nodes in the DAG leader as possible, which is achieved through
the transaction commission mechanism mentioned above. Since the commission
of nodes will be collected only by the first node referencing it, transaction pro-
posers are motivated to reference as recent tip nodes as possible. Meanwhile, to
get more rewards, they are encouraged to reference as many tip nodes as possi-
ble. Thus, each transaction proposer will apparently stick to our expectation to
obtain the highest commission reward.

Committee Member. During the execution of Haootia protocol, the committee
as an entirety outputs key nodes continuously to linearize transactions and con-
firm nonce solutions from miners, and when enough solutions are received it
launch a switchover to generate the next committee and hence the next block.
By behaving honestly, a committee member will get its reward as compensation
for its investment of computing resources in the mining. Otherwise, if it’s found
Byzantine faulty during the execution of Haootia protocol, it will risk losing all
of the rewards above. Thereby, rational committee members will honestly follow
the protocol.

	Bracing A Transaction DAG with A Backbone Chain

