
Tiramisu: Black-Box Simulation Extractable
NIZKs in the Updatable CRS Model

Karim Baghery1,2 and Mahdi Sedaghat1

1 imec-COSIC, KU Leuven, Leuven, Belgium
2 University of Tartu, Tartu, Estonia

karim.baghery@kuleuven.be, ssedagha@esat.kuleuven.be

Abstract. In CRYPTO’18, Groth et al. introduced the updatable CRS
model that allows bypassing the trust in the setup of NIZK arguments.
Zk-SNARKs are the well-known family of NIZK arguments that are
ubiquitously deployed in practice. In applications that achieve universal
composability, e.g. Hawk [S&P’16], Gyges [CCS’16], Ouroboros Crypsi-
nous [S&P’19], the underlying SNARK is lifted by the COCO framework
[Kosba et al.,2015] to achieve Black-Box Simulation Extractability (BB-
SE). The COCO framework is designed in the standard CRS model, con-
sequently, all BB-SE NIZK arguments built with it need a trusted setup
phase. In a promising research direction, recently subversion-resistant
and updatable SNARKs are proposed that can eliminate/bypass the
needed trust in schemes. However, none of the available subversion-
resistant/updatable schemes can achieve BB-SE, as Bellare et al.’s result
from ASIACRYPT’16 shows that achieving simultaneously Sub-ZK (ZK
without trusting a third party) and BB extractability is impossible.
In this paper, we propose Tiramisu 3, as a construction to build BB-
SE NIZK arguments in the updatable CRS model. Similar to the COCO,
Tiramisu is suitable for modular use in larger cryptographic systems and
allows building BB-SE NIZK arguments, but with updatable parameters.
Our results show that one can bypass the impossibility of achieving Sub-
ZK and BB extractability in the updatable CRS model. In new NIZKs, in
cost of updating, all parties can eliminate the trust on a third-party and
the protocol satisfies ZK and BB-SE. Meanwhile, we define public-key
cryptosystems with updatable keys and present an efficient construction
based on the El-Gamal cryptosystem which can be of independent inter-
est. We instantiate Tiramisu and present efficient BB-SE zk-SNARKs
with updatable parameters that can be used in protocols like Hawk,
Gyges, Ouroboros Crypsinous while allowing the end-users to update
the parameters and eliminate the needed trust.

Keywords: zk-SNARKs, updatable CRS, Black-Box Simulation Ex-
tractability, C∅C∅ framework, UC-Security

3 In Italian, Tiramisu literally means "pull me up, lift me up", or more literally "pull
it up". This work is done during a self-quarantine period of authors to reduce the
spread of COVID-19.

2 Karim Baghery and Mahdi Sedaghat

1 Introduction

Zero-Knowledge (ZK) [GMR89] proof systems, particularly Non-interactive
Zero-Knowledge (NIZK) arguments [BFM88] are one of the elegant tools
in the modern cryptography that due to their impressive advantages and
practical efficiency, they are ubiquitously deployed in practical applica-
tions [BCG+14,KMS+16,JKS16,KKKZ19]. A NIZK proof system allows a party
P (called prover) to non-interactively prove the truth of a statement to another
party V (called verifier) without leaking any information about his/her secret
inputs. For instance, they allow a prover P to convince a verifier V that for a
(public) statement x, he knows a (secret) witness w that satisfies a relation R,
(x,w) ∈ R, without leaking any information about w.

Generally, they are constructed to provide security against malicious parties,
meaning that the parties are restricted to follow the protocol. Typically, a NIZK
argument is expected to satisfy, (i) Completeness, which implies that an honest
prover always convinces an honest verifier (ii) Soundness, which ensures that
an adversarial prover cannot convince an honest verifier except with negligible
probability. (iii) Zero-Knowledge (ZK), which guarantees that an honestly gen-
erated proof does not reveal any information about the (secret) witness w. ZK
is the desired notion for the prover, and to prove ZK in an argument, one needs
to construct a new algorithm called simulator Sim that without getting access
to the witness w, but some secret information (related to public parameters)
or some extra power, can generate simulated proofs that are indistinguishable
from the real ones. On the other hand, soundness is the desired notion for ver-
ifier as it does not allow the prover to cheat. However, in most of the practical
cases, it is shown that bare soundness is not sufficient and it needs either to be
amplified [KMS+16] or the protocol needs to be supported by other cryptograph-
ical primitives [BCG+14]. To deal with such concerns, various constructions are
proposed that can achieve either of the following notions, which each one is an
amplified variation of soundness. (iv) Simulation Soundness, (SS), which ensures
that an adversarial prover cannot convince an honest verifier, even if he has seen
polynomially time simulated proofs (generated by Sim), except with negligible
probability. (v) Knowledge Soundness (KS), which guarantees that an adver-
sarial prover cannot convince an honest verifier, unless he knows a witness w
for statement x such that (x,w) ∈ R. (vi) Simulation Extractability (SE) (a.k.a.
Simulation Knowledge Soundness), which guarantees that an adversarial prover
cannot convince an honest verifier, even if he has seen polynomially time simu-
lated proofs, unless he knows a witness w for statement x.

The term knowledge in notions KS (in item v) and SE (in item vi) means
that a successful (adversarial) prover should know a witness. In constructions,
the concept of knowing is formalized by showing that there exists an extraction
algorithm Ext, which can extract the witness w (from either the prover or the
proof) in either non-Block-Box (nBB) or Black-Box (BB) manner. Typically,
nBB extraction can result in more efficient constructions, as it allows ExtA to
get access to the source-code and random coins of the adversary A. While, the
constructions that achieve BB extractability are less efficient, but they provide

Title Suppressed Due to Excessive Length 3

stronger security guarantees, as there exists only one Ext for any A. The term
simulation in notions SS (in item iv) and SE (in item vi) guarantees that the
proofs are non-malleable and an adversary cannot change an old (simulated)
proof to a new one such that the verifier will accept it. The notion SE pro-
vides the strongest security and also implies non-malleability of proofs as defined
in [DDO+01]. Moreover, in [Gro06], it is shown that SE is a sufficient require-
ment for a NIZK argument to deploy them in a Universally Composability (UC)
protocol [Can01].
NIZK Arguments and zk-SNARKs in the CRS Model. In the Common
Reference String (CRS) model [BFM88], the construction of NIZK arguments
requires a trusted setup phase that outputs some public parameters, known as
CRS, and shares with the parties. During the last two decades, there has been
considerable progress in constructing CRS-based NIZK arguments. Based on the
underlying assumptions, they are constructed either using standard assumptions
(a.k.a. falsifiable assumption) or non-standard assumption (a.k.a. non-falsifiable
assumption) [Nao03]. Although the early constructions mostly were based on the
standard assumptions, they were inefficient and impractical, e.g. Groth-Sahai
proofs [GS08].

Following this fact, at the beginning of the last decade, a line of research
initiated that focused on constructing NIZK arguments with shorter proofs and
more efficient verification. This direction, finally led to a very efficient family of
NIZK arguments, called zero-knowledge Succinct Non-interactive ARgument of
Knowledge (zk-SNARK) [Gro10,Lip12,PHGR13,BCTV13,Gro16,GM17,BG18],
[Lip19]. Zk-SNARKs have succinct proofs and efficient verifications 4. Their ef-
ficiency mainly comes from the fact that they all are constructed based on non-
falsifiable assumptions (e.g. knowledge assumptions [Dam91]) that allow having
succinct proofs, and also achieve nBB extractability. Meanwhile, in 2011, Gentry
and Wichs’s impossibility result [GW11] confirmed that NIZK arguments with
succinct proofs cannot be built based on falsifiable assumptions. Beside succinct
proofs (e.g. constant number of group elements), all initial constructions of zk-
SNARKs were designed to achieve completeness (in item i), ZK (in item iii) and
KS (in item v) with nBB extraction [Gro10,Lip12,PHGR13,BCTV13,Gro16].
As KS does not guarantee the non-malleability of the proofs, so in practice to
prevent man-in-the-middle attacks, users needed to support the protocol with
extra primitives. For instance, the cryptocurrency Zcash [BCG+14] does extra
efforts with hash functions to guarantee the non-malleability of transactions and
proofs. Following this concern, in 2017, Groth and Maller [GM17] presented a
zk-SNARK that can achieve SE (in item vi) with nBB extractability, conse-
quently guarantees non-malleability of proofs. Recent works in this direction
have led to construct more efficient schemes with the same security guaran-
tees [BG18,AB19,Lip19,KLO19].

4 In 2018, zk-SNARKs were listed as one of “10 Breakthrough Technologies of 2018”,
published by MIT technology review. Available on https://www.technologyreview.
com/lists/technologies/2018/.

https://www.technologyreview.com/lists/technologies/2018/
https://www.technologyreview.com/lists/technologies/2018/

4 Karim Baghery and Mahdi Sedaghat

Mitigating the Trust on the Setup Phase of zk-SNARKs. Due to con-
structing zk-SNARKs in the CRS model, both the prover and verifier are required
to trust the CRS generator. As a common approach to mitigate the trust, in 2015,
Ben Sasson et al. [BCG+15] proposed an efficient MPC protocol that can be used
to sample CRS of the majority of pairing-based zk-SNARKs. While using such
MPC protocol for CRS generation, both prover and verifier need to trust 1 out
of n parties, instead of trusting a single party entirely, where n denotes the
number of parties participated in the MPC protocol [BGM17,BGG19,ABL+19].

In a different research direction, in 2016, Bellare et al. [BFS16] stud-
ied the security of CRS-based NIZK arguments in the face of subverted pa-
rameters and presented some negative and positive results. They first de-
fined (vii) Subversion-Soundness, (Sub-SND), which ensures that the proto-
col guarantees soundness (in item ii) even if A has generated the CRS, and
(viii) Subversion-ZK, (Sub-ZK), which ensures that the protocol guarantees ZK
(in item iii) even ifA has generated the CRS. Then, they showed some of new def-
initions are not compatible and we cannot construct NIZK arguments that would
achieve Sub-SND together with (standard) ZK, and also constructions that will
satisfy Sub-ZK together with BB extractability (either KS or SE with BB extrac-
tion). Considering those results, two works [ABLZ17,Fuc18] showed that most of
pairing-based zk-SNARKs [PHGR13,BCTV13,Gro16], can be lifted to achieve
Sub-ZK (in item viii) and KS (in item v) with nBB extraction (nBB-KS). Then,
Baghery [Bag19c] showed that using the folklore OR technique [BG90] any zk-
SNARK that satisfies Sub-ZK and nBB-KS, can be lifted to achieve Sub-ZK and
SE (in item vi) with nBB extraction (nBB-SE). The latest result showed that
one can construct NIZK arguments that the prover does not need to trust the
CRS generator to achieve ZK, and the construction achieves nBB-SE.

Meanwhile, as an extension to the MPC approach and subversion security,
in 2018 Groth et al. [GKM+18] introduced a new variation of the CRS model,
called updatable CRS model. In this model, the CRS is updatable and both
prover and verifier can update the CRS and bypass the needed trust on a third
party. Groth et al. first defined, (ix) Updatable KS, (U-KS), which ensures that
the protocol guarantees KS (in item v) as long as the initial CRS generation or
one of CRS updates is done by an honest party, and (x) Updatable ZK, (U-ZK),
which ensures that the protocol guarantees ZK as long as the initial CRS gen-
eration or one of CRS updates is done by an honest party 5. Then, they pre-
sented a zk-SNARK that can achieve Sub-ZK and U-KS with nBB extraction
(U-nBB-KS). Namely, the prover achieves ZK without trusting the CRS genera-
tor and the verifier achieves nBB-KS without trusting the CRS generator but by
one-time CRS updating. Recent constructions in this direction have better effi-
ciency [MBKM19,GWC19]. In this direction, recently, Abdolmaleki, Ramacher,
and Slamanig [ARS20a] presented a construction, called Lamassu, and showed

5 Note that, as also shown in Lemma 2 in [GKM+18], Sub-ZK is a stronger notion than
U-ZK, as in Sub-ZK the protocol achieves ZK even if an adversary has generated
the CRS. But the later achieves ZK if the initial CRS generation or at least one of
CRS updates is done honestly.

Title Suppressed Due to Excessive Length 5

that using a similar folklore OR technique [BG90,DS16,Bag19c] any zk-SNARK
that satisfies Sub-ZK (in item viii) and U-nBB-KS (in item ix), can be lifted
to achieve Sub-ZK and U-nBB-SE. (xi) U-nBB-SE ensures that the protocol
guarantees SE (in item vi) with nBB extraction as long as the initial CRS gen-
eration or one of CRS updates is done by an honest party. Considering the
impossibility of achieving Sub-ZK and BB extraction at the same time [BFS16],
such constructions (either with universal string [ARS20a] or with two-phase up-
date [BGM17,BG18]) achieve the strongest notion with nBB extraction, but still
they cannot be deployed in UC-protocols directly.

Using zk-SNARKs in UC-Protocols. During the last decade, zk-SNARKs
have made huge impact in various applications [PHGR13,BCG+14,KMS+16],
[KMS+16,JKS16,Woo14,KKKZ19]. Some of those protocols including privacy-
preserving smart contract systems Hawk [KMS+16] and Gyges [JKS16], and
private proof-of-stake system Ouroboros Crypsinous [KKKZ19] are constructed
to achieve UC-security [Can01]. Thus, the composability of the deployed zk-
SNARK was imperative in designing the main protocol.

Universal Composability or UC is a very powerful security guarantee in con-
structing cryptographic primitives and protocols, which is proposed by Canetti
in [Can01]. A UC primitive/protocol does not interfere with other primi-
tives/protocols and can be composed arbitrary times with other protocols. To
prove that a cryptographic primitive achieves UC-security, one needs to show
that the target primitive securely realizes the ideal functionality defined for that
primitive [Can01]. In 2006, Groth [Gro06] showed that a NIZK argument that
can achieve BB-SE can realize the ideal NIZK-functionality FNIZK [GOS06]. This
basically showed that to be able to use NIZK arguments in UC-protocols, the tar-
get NIZK argument should achieve BB-SE. Following this result, in 2015 Kosba
at al. [KZM+15] proposed a framework called C∅C∅ along with several construc-
tions that allows lifting a sound NIZK argument to a BB-SE NIZK argument,
such that the lifted version can be deployed in UC-protocols. In summary, given
a sound NIZK argument for language L, the C∅C∅ defines a new extended lan-
guage L′ appended with some primitives and returns a NIZK argument that can
achieve BB-SE. The strongest construction of the C∅C∅ framework is reviewed
in App. A.

Unfortunately, the default security of zk-SNARKs is very weak to directly
deploy in UC-protocols. The reason is that zk-SNARK achieves nBB extraction
and the extractor ExtA requires to get access to the source code and random
coins of A, while in UC-secure NIZK arguments, the simulator of ideal-world
should be able to simulate corrupted parties. To do so, the simulator should
be able to extract witnesses without getting access to the source code of the
environment’s algorithm. Due to this fact, all those UC-secure applications that
use zk-SNARKs [KMS+16,JKS16,KKKZ19], use the C∅C∅ to lift the underlying
zk-SNARK to achieve BB-SE, equivalently UC-security [Gro06]. Note that the
lifted zk-SNARKs that achieve BB-SE are not witness succinct any more, but
they still are circuit succinct.

6 Karim Baghery and Mahdi Sedaghat

Problem statement. Currently several popular UC-secure protocols are using
BB-SE zk-SNARKs, which are built with the C∅C∅ framework. However, as the
C∅C∅ framework is built in the standard CRS model, so the output BB-SE NIZK
arguments require a trusted setup phase. In this research, we consider if it is
possible to construct an alternative to the C∅C∅ framework but in the updatable
CRS model, such that, similarly we will be able to build BB-SE zk-SNARKs but
with updatable parameters. Having updatable parameters can allow all parties
to bypass the imposed trust in the setup phase by individually updating the
CRS elements.

Our Contributions. The core of our results is, presenting Tiramisu as an
alternative to the C∅C∅ framework but in the updatable CRS model. Technically
speaking, Tiramisu allows one to build BB-SE NIZK arguments with updatable
parameters such that the parties in the protocol can update the parameters
themselves instead of trusting a third party. The construction is suitable for
modular uses in larger cryptographic protocols, which aim to build BB-SE NIZK
arguments, while avoiding to trust the parameter generators.

To construct Tiramisu, we start with the C∅C∅’s strongest construction and
lift it to a construction that works in the updatable CRS model. Meanwhile, to
attain fast practical performance, we consider the state-of-the-art constructions
proposed in the updatable CRS model and show that we can simplify the con-
struction of C∅C∅ and still achieve the same goal in the updatable CRS model.
Technically speaking, the strongest construction of the C∅C∅ framework, gets a
sound NIZK argument for the language L and lifts it to a new NIZK argument
for the extended language L′, that can achieve (strong) BB-SE. The language
L′ is an extension of L appended with some necessary and sufficient primitives,
including an encryption scheme to encrypt witness and a Pseudo-Random Func-
tion (PRF) along with a commitment scheme that commits to the secret key of
PRF (more details in App. A and Sec. 4). In composing the Tiramisu, we show
that due to the recent developments in building NIZK arguments with updatable
parameters, namely due to the existence of nBB-SE NIZK arguments with updat-
able parameters (either with a two-phase updatable CRS [Gro16,BGM17,BG18]
or with a universal updatable string [GKM+18,ARS20a,ARS20b]) we can sim-
plify the definition of L′ by removing the commitment and PRF but still achiev-
ing the same goal with simpler construction and updatable parameters. We show
that, Tiramisu also can be added as a layer on top of the construction pro-
posed in [ARS20a], called Lamassu, and act as a generic approach to lift any
sound NIZK argument to an U-BB-SE NIZK argument in the updatable CRS
model. However, later we observe that the arguments build with this approach
are less efficient currently. Fig. 1 illustrates how one can use the C∅C∅ and
Tiramisu to build BB-SE NIZK arguments in the standard and updatable CRS
models, respectively. Similar to the construction lifted by the C∅C∅ framework,
Tiramisu results in NIZK arguments that their proof size and verification time
are (quasi-)linear in the witness size, but still independent of the size of the cir-
cuit, which encodes L′. Currently, it seems to be an undeniable fact for achieving
BB-SE [GW11] and constructing UC-secure NIZK argument [Can01].

Title Suppressed Due to Excessive Length 7

Sound or non-BB Knowledge
Sound NIZK Arguments in the

Updatable CRS Model
Lamassu
[ARS20a]

Tiramisu
[Section 4]

SS or non-BB-SE NIZK
Arguments in the Updatable

CRS Model
BB-SE NIZK

Arguments in the
Updatable CRS

Model

SS or non-BB-SE
NIZK Arguments

in the Updatable
CRS Model

Sound or non-BB Knowledge
Sound NIZK in the CRS

Model

𝐂∅𝐂∅ Framework
[KZM+15]

BB-SE NIZK
Arguments in the

CRS Model

Fig. 1: Using the C∅C∅ framework and Tiramisu to build BB-SE NIZK argu-
ments in the standard and updatable CRS models. Tiramisu can be instantiated
with either ad-hoc constructions like [BGM17,BG18], or using the schemes that
are lifted with the Lamassu construction [ARS20a,ARS20b].

Constructing Tiramisu shows that one can bypass a known negative result
in the standard CRS model. In [BFS16], Bellare et al. observed that achieving
Sub-ZK and BB extractability is impossible at the same time. As BB extractabil-
ity requires the simulator to create a CRS with a trapdoor it withholds, then it
can extract the witness from a valid proof. But Sub-ZK requires that even if A
generates the CRS, it should not be able to learn about the witnesses from the
proof. However, if a NIZK argument achieves BB extractability, an adversary
(CRS subvertor) can generate the CRS like the simulator. So it has the trap-
door and can also extract the witness and break Sub-ZK. Considering the above
negative result, Tiramisu achieves the best possible combination with down-
grading Sub-ZK (in item viii) to U-ZK (in item x) while achieving updatable
BB extractability (either U-BB-SE or U-BB-KS). Fig. 2 illustrates the relation
between the notions U-ZK, U-BB-SE, and U-BB-KS that are achieved in con-
structions built with Tiramisu and other notions that typically are achieved in
other subversion-resistant or updatable NIZK arguments.

U-BB-SE −→ U-nBB-SE
Sub-ZK −→ U-ZK ↙ ↓ ↓ ↘

↘ ↙ U-BB-KS BB-SE −→ nBB-SE U-nBB-KS
ZK ↘ ↓ ↓ ↙

BB-KS −→ nBB-KS

Fig. 2: Relations between various notions in subversion-resistant or updatable
zk-SNARKs. Constructions build with Tiramisu can achieve updatable BB ex-
tractability (SE & KS) along with updatable ZK that are shown with Gray back-
ground. Sub: Subversion, ZK: Zero-Knowledge, U: Updatable, BB: Black-Box,
nBB: non-Black-Box, SE: Simulation Extractability, KS: Knowledge Soundness.

Tiramisu uses a semantically secure public-key cryptosystem with updat-
able keys that we define in this work. We show that such cryptosystems can be
constructed from key-homomorphic encryption schemes [AHI11]. We present a
variation of El-Gamal cryptosystem [ElG84] instantiated in the pairing-based
groups which fulfill the requirements of a cryptosystem with updatable keys. We

8 Karim Baghery and Mahdi Sedaghat

Table 1: A comparison of Tiramisu with related works that achieve a flavor
of zero-knowledge and simulation extractability. ZK: Zero-knowledge, U-ZK:
Updatable ZK, Sub-ZK: Subversion ZK, nBB-SE: Non-Black-Box Simulation
Extractable, BB-SE: Black-Box Simulation Extractable, U-nBB-SE: Updatable
Non-Black-Box Simulation Extractable, U-BB-SE: Updatable Black-Box Simu-
lation Extractable. X: Achieves the notion, ×: Does not achieve.

Zero-Knowledge Simulation Extractability
ZK U-ZK Sub-ZK nBB-SE BB-SE U-nBB-SE U-BB-SE

Tiramisu X X × X X X X
C∅C∅ [KZM+15,Bag19a] X × × X X × ×
[GM17,AB19,KLO19] X × × X × × ×

[Bag19c,Lip19] X X X X × × ×
[BGM17,BG18,ARS20a] X X X∗ X × X ×

*Theorem 4 in [ARS20a] (and Theorem 3 in [ARS20b]) states that their proposed construction
Lamassu, can achieve U-ZK and U-nBB-SE, but it can be shown that the same construction can

achieve Sub-ZK along with U-nBB-SE which is a stronger combination.

believe the new syntax can be of independent interest, particularity for build-
ing other primitives in the updatable CRS model, e.g. Quasi-Adaptive NIZK
arguments [DGP+19] or subversion-resistant commitment schemes [Bag19b].

Tab. 1 compares the NIZK arguments built with Tiramisu along with
existing schemes that can achieve a flavor of SE and ZK. As it can be
seen, since constructions built with C∅C∅ achieve BB extractability, there-
fore they cannot achieve S-ZK 6, and the constructions that achieve Sub-
ZK [BG18,Bag19c,Lip19,ARS20a,ARS20b] can achieve (U-)nBB-SE. In Sec. 5,
we discuss more details about efficiency of the BB-SE NIZK arguments built
with the C∅C∅ framework and Tiramisu .

The rest of the paper is organized as follows; Sec. 2 introduces notations and
presents necessary preliminaries for the paper. Sec. 3 defines the syntax of a
public-key cryptosystem with updatable keys and presents an efficient variation
of the El-Gamal cryptosystem as an instantiation. The proposed construction
Tiramisu and its security proofs are described in Sec 4. In Sec. 5, we present two
U-BB-SE NIZK arguments built with Tiramisu and discuss their deployment
in UC-secure applications. Finally, we conclude the paper in Sec 6.

2 Preliminaries

Next, we summarize our notations along with some preliminaries necessary for
the paper. Throughout, we suppose the security parameter of the scheme be λ

6 Note that in the abstracts of [ARS20a,ARS20b], authors state that the C∅C∅ frame-
work is compatible with subversion SNARKs, but not compatible with updatable
SNARKs. But, following the result of [BFS16], here we discuss and show that the
C∅C∅ framework cannot be compatible with subversion SNARKs, while it can be
upgraded to be compatible with updatable SNARKs.

Title Suppressed Due to Excessive Length 9

and negl(λ) denotes a negligible function. We use x←$X to denote x sampled
uniformly according to the distribution X. Also, we use [1 .. n] to denote the set
of integers in range of 1 to n.

Let PPT and NUPPT denote probabilistic polynomial-time and non-uniform
probabilistic polynomial-time, respectively. For an algorithm A, let im(A) be
the image of A, i.e., the set of valid outputs of A. Moreover, assume RND(A)
denotes the random tape of A, and r←$RND(A) denotes sampling of a ran-
domizer r of sufficient length for A’s needs. By y ← A(x; r) we mean given an
input x and a randomizer r, A outputs y. For algorithms A and ExtA, we write
(y ‖ y′) ← (A‖ExtA)(x; r) as a shorthand for "y ← A(x; r), y′ ← ExtA(x; r)".
Two computationally indistinguishable distributions A and B are shown with
A ≈c B.

In pairing-based groups, we use additive notation together with the bracket
notation, i.e., in group Gµ, [a]µ = a [1]µ, where [1]µ is a fixed generator of Gµ. A
bilinear group generator BGgen(1λ) returns (p,G1,G2,GT , ê, [1]1 , [1]2), where p
(a large prime) is the order of cyclic abelian groups G1, G2, and GT . Finally, ê :
G1 ×G2 → GT is an efficient non-degenerate bilinear pairing, s.t. ê([a]1 , [b]2) =
[ab]T . Denote [a]1 • [b]2 = ê([a]1 , [b]2).

2.1 Zk-SNARKs in the Updatable CRS Model

We adopt the definition of NIZK arguments in the updatable CRS model
from [GKM+18]. Let R be a relation generator, such that R(1λ) returns a
polynomial-time decidable binary relation R = {(x,w)}, where x is the state-
ment and w is the corresponding witness. We assume one can deduce λ from the
description of R. The relation generator also outputs auxiliary information ξR,
which both the honest parties and the adversary have access to it. ξR can be a
value returned by BGgen(1λ) [Gro16]. Consequently, we also give ξR as an input
to the honest parties; if needed, one can include an additional auxiliary input to
the adversary. Let LR = {x : ∃ w | (x,w) ∈ R} be an NP-language including all
the statements which there exist corresponding witnesses in relation R.

A NIZK argument ΨNIZK in the updatable CRS model for R consists of PPT
algorithms (K ~crs,CU,CV,P,V,Sim,Ext), such that:

– (~crs0, Π ~crs0) ← K ~crs(R, ξR): CRS generator is a PPT algorithm that given
(R, ξR), where (R, ξR) ∈ im(R(1λ)), first samples the trapdoors ~ts′0 and
~te
′
0 and then uses them to generate ~crs0 along with Π ~crs0 as a proof for its

well-formedness. Then, stores the trapdoors associated with ~crs0 including
the simulation trapdoor ~ts0 := ~ts

′
0, and the extraction trapdoor ~te0 := ~te

′
0.

Finally, it returns (~crs0, Π ~crs0) as the output.
– (~crsi, Π ~crsi) ← CU(R, ξR, ~crsi−1): CRS Updating is a PPT algorithm that

given the tuple of (R, ξR, ~crsi−1), where ~crsi−1 is an input CRS, returns
the pair of (~crsi, Π ~crsi), where ~crsi is the updated CRS and Π ~crsi is a proof
that guarantees the correctness of updating. Note that after each update,
the simulation and extraction trapdoors are updated, for instance ~tsi :=
~tsi−1 + ~ts

′
i, and ~tei := ~tei−1 + ~te

′
i.

10 Karim Baghery and Mahdi Sedaghat

– (⊥, 1) ← CV(~crsi, Π ~crsi): CRS Verification is a polynomial-time algorithm
that given a potentially updated ~crsi, and Π ~crsi returns either ⊥ on the
condition that the ~crsi is incorrectly formed (and updated) or 1.

– (π,⊥) ← P(R, ξR, ~crsi, x,w): Prove is a PPT algorithm that for
CV(~crsi, Π ~crsi) = 1, given the tuple of (R, ξR, ~crsi, x,w), such that (x,w) ∈ R,
outputs an argument π. Otherwise, it returns ⊥.

– (0, 1) ← V(R, ξR, ~crsi, x, π): Verify is a polynomial-time algorithm that for
CV(~crsi, Π ~crsi) = 1, given the set of parameters as (R, ξR, ~crsi, x, π), returns
either 0 (reject π) or 1 (accept π).

– (π) ← Sim(R, ξR, ~crsi, ~tsi, x): Simulator is a PPT algorithm that for
CV(~crsi, Π ~crsi) = 1, given the tuple (R, ξR, ~crsi, ~tsi, x), where ~tsi is the sim-
ulation trapdoor associated with the latest CRS, namely ~crsi, outputs a
simulated argument π.

– (w) ← Ext(RL, ξRL
, ~crsi, x, π, ~tei): BB Extractor is a polynomial-time algo-

rithm that, given (RL, ξRL
, ~crsi, x, π, ~tei) extracts the witness w, where ~tei

is the extraction trapdoor associated with the latest well-form CRS, namely
~crsi. In nBB extraction algorithms, the ~tei can be the source code and ran-
dom coins of the adversary.

In the CRS model, a NIZK argument for R has a tuple of algorithms
(K ~crs,P,V,Sim,Ext), while subversion-resistant constructions [BFS16] addition-
ally have a CV algorithm which is used to verify the well-formedness of CRS
elements to achieve S-ZK [BFS16,ABLZ17,Fuc18,Bag19c]. But as listed above,
in the updatable CRS model, a NIZK argument additionally has a CU algorithm
that allows the parties (prover or verifier) to update the CRS elements and inject
their own private shares to the CRS elements 7 and avoid trusting a third party.

Below we recall various security requirements that a NIZK argument can
satisfy in the updatable CRS model [GKM+18,ARS20a] and refer App. B for the
standard and subversion-resistant notions.

Definition 1 (Perfect Updatable Completeness). A non-interactive ar-
gument ΨNIZK is perfectly updatable complete for R, if for all λ, all (R, ξR) ∈
im(R(1λ)), and (x,w) ∈ R,

Pr

(R, ξR)← R(1λ), (~crs0, Π ~crs0)← K ~crs(R, ξR),

({ ~crsj , Π ~crsj}ij=1)← A(R, ξR, ~crs0), {CV(~crsj , Π ~crsj) = 1}ij=0 :

(x, π)← P(R, ξR, ~crsi, x,w) ∧ V(R, ξR, ~crsi, x, π) = 1

 = 1 .

where Π ~crsi is a proof for the correctness of the initial CRS generation or CRS
updating.

Note that in the above definition and all the following ones, without loss
of generality, A can also first generate { ~crsj}i−1j=0 and then an honest updater
updates ~crsi−1 to ~crsi.
7 Analogously this can be considered equivalent to the setting that one uses an MPC
protocol(e.g. [BGM17]) with variable parties to generate the public parameters. Such
that, any party can join the parameter generation protocol in the future.

Title Suppressed Due to Excessive Length 11

Definition 2 (Updatable Zero-Knowledge). A non-interactive argument
ΨNIZK is statistically updatable ZK for R, if for all λ, all (R, ξR) ∈ im(R(1λ)),
and for all computationally unbounded A, εunb0 ≈λ εunb1 , where εb is equal to

Pr

(R, ξR)← R(1λ), ((~crs0, Π ~crs0) ‖ ~ts0 := ~ts

′
0)← K ~crs(R, ξR),

rs←$RND(Sub), (({ ~crsj , Π ~crsj}ij=1, ξSub) ‖ {~ts
′
j}ij=1)

← (Sub ‖ExtSub)(~crs0, Π ~crs0 , rs) :

{CV(~crsj , Π ~crsj) = 1}ij=0 ∧ AOb(·,·)(R, ξR, ξSub, ~crsi) = 1

 .

Here, the oracle O0(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and otherwise it re-
turns P(R, ξR, ~crsi, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) 6∈ R,
and otherwise it returns Sim(R, ξR, ~crsi, x, ~tsi := {~ts

′
j}ij=0), where ~tsi is the sim-

ulation trapdoor associated with ~crsi that can be computed using {~ts′j}ij=0. We
say ΨNIZK is perfect updatable ZK for R if one requires that ε0 = ε1.

Definition 3 (Updatable nBB Knowledge Soundness). A non-interactive
argument ΨNIZK is updatable non-black-box knowledge sound for R, if for every
PPT adversary A and any subvertor Sub, there exists a PPT extractor ExtA
s.t. for all λ,

Pr

(R, ξR)← R(1λ), (~crs0, Π ~crs0)← K ~crs(R, ξR), rs←$RND(Sub),

({ ~crsj , Π ~crsj}ij=1, ξSub)← Sub(~crs0, Π ~crs0 , rs), {CV(~crsj , Π ~crsj) = 1}ij=0,

rA←$RND(A), ((x, π) ‖w)← (A‖ExtA)
(R, ξR, ~crsi, ξSub; rA) : (x,w) 6∈ R ∧ V(R, ξR, ~crsi, x, π) = 1

 ≈λ 0 .

Here RND(A) = RND(Sub), and Π ~crs is a proof for correctness of CRS generation
or updating process. In the definition, ξR can be seen as a common auxiliary input
to A and ExtA that is generated by using a benign [BCPR14] relation generator
and ξSub can be auxiliary information provided by Sub to A.

Definition 4 (Updatable Simulation Soundness). A non-interactive ar-
gument ΨNIZK is updatable simulation soundness for R, if for any subvertor Sub,
and every PPT A, for all λ,

Pr

(R, ξR)← R(1λ), ((~crs0, Π ~crs0) ‖ ~te0)← K ~crs(R, ξR),

rs←$RND(Sub), ({ ~crsj , Π ~crsj}ij=1, ξSub)← Sub(~crs0, Π ~crs0 , rs),

{CV(~crsj , Π ~crsj) = 1}ij=0, (x, π)← AO(.)(R, ξR, ξSub, ~crsi) :

(x, π) 6∈ Q ∧ x 6∈ L ∧ V(R, ξR, ~crsi, x, π) = 1

 ≈λ 0 .

where Π ~crs is a proof for correctness of CRS generation/updating. Q is the set
of simulated statement-proof pairs generated by O(.).

Definition 5 (Updatable nBB Simulation Extractability). A non-
interactive argument ΨNIZK is updatable non-black-box simulation-extractable

12 Karim Baghery and Mahdi Sedaghat

for R, if for every PPT A and any subvertor Sub, there exists a PPT extractor
ExtA s.t. for all λ,

Pr

(R, ξR)← R(1λ), (~crs0, Π ~crs0)← K ~crs(R, ξR), rs←$RND(Sub),

({ ~crsj , Π ~crsj}ij=1, ξSub)← Sub(~crs0, Π ~crs0 , rs),

{CV(~crsj , Π ~crsj) = 1}ij=0, rA←$RND(A),

((x, π) ‖w)← (AO(.) ‖ExtA)(R, ξR, ξSub, ~crsi; rA) :
(x, π) 6∈ Q ∧ (x,w) 6∈ R ∧ V(R, ξR, ~crsi, x, π) = 1

 ≈λ 0 .

where Π ~crs is a proof for correctness of CRS generation or updating. Here,
RND(A) = RND(Sub) and Q is the set of simulated statement-proof pairs re-
turned by A’s queries to O.

Note that updatable nBB-SE implies updatable nBB knowledge soundness, as
in the former additionally A is allowed to make query to the proof simulation
oracle. It also implies updatable simulation soundness, as if there exists a witness
w s.t. (x,w) ∈ R, therefore the instance x belongs to the language [Gro06]. Next,
we extended the definition of updatable nBB-SE in definition 5 to the updatable
BB-SE which constructions with Tiramisu can achieve.

Definition 6 (Updatable Black-Box Simulation Extractability). A
non-interactive argument ΨNIZK is updatable black-box (strong) simulation-
extractable for R, if for every PPT A and any subvertor Sub, there exists a
PPT extractor Ext s.t. for all λ,

Pr

(R, ξR)← R(1λ), ((~crs0, Π ~crs0) ‖ ~te0 := ~te
′
0)← K ~crs(R, ξR),

rs←$RND(Sub), (({ ~crsj , Π ~crsj}ij=1, ξSub) ‖ {~te
′
j}ij=1)

← (Sub ‖ExtSub)(~crs0, Π ~crs0 , rs), {CV(~crsj , Π ~crsj) = 1}ij=0,

rA←$RND(A), (x, π)← AO(.)(R, ξR, ~crsi, ξSub; rA),

w← Ext(R, ξR, ~crsi; ~tei := {~te
′
j}ij=0) :

(x, π) 6∈ Q ∧ (x,w) 6∈ R ∧ V(R, ξR, ~crsi, x, π) = 1

≈λ 0 .

where Π ~crs is a proof for correctness of CRS generation/updating and ~tei is the
extraction trapdoor associated with the final CRS that can be computed using
{~te′j}ij=0. Here, RND(A) = RND(Sub) and Q is the set of the statment and
simulated proofs returned by O.

A key note about Def. 6 is that the extraction algorithm Ext is black-box and
unlike the nBB case, it works for all adversaries A. Consequently, updatable BB
simulation extractability implies updatable nBB simulation extractability (given
in Def. 5). One can also define Updatable Black-Box Knowledge Soundness (U-
BB-KS) as a weaker version of U-BB-SE, where in the case of U-BB-KS, A would
not have access to the oracle O(·).

Title Suppressed Due to Excessive Length 13

2.2 Public-key Cryptosystems

Definition 7 (Public-key Cryptosystem). A public-key cryptosystem ΨEnc

over the message space of M and ciphertext space of C, consists of three PPT
algorithms defined as follows,

– (pk, sk) ← KG(1λ): Key Generation is a PPT that given security parameter
1λ returns a key-pair (pk, sk).

– (c)← Enc(pk,m): Encryption is a PPT algorithm that given a public-key pk
and a message m ∈M, outputs a ciphertext c ∈ C.

– (⊥,m)← Dec(sk, c): Decryption is a deterministic algorithm that given a ci-
phertext c ∈ C and a secret-key sk, returns either ⊥ (reject) or m ∈M (suc-
cessful).

The primary security requirements for an encryption scheme is correctness
and INDistinguishability Under Chosen Plaintext Attacks (IND-CPA) that are
defined as below.

Definition 8 (Perfect Correctness). A public-key cryptosystem ΨEnc :=
(KG,Enc,Dec) satisfies perfect correctness, if

Pr
[
(pk, sk)← KG(1λ), c = Enc(pk,m) : Dec(sk, c) = m

]
= 1 .

where the probability is taken over the randomness of the encryption algorithm.

Definition 9 (IND-CPA Security). A public-key cryptosystem ΨEnc :=
(KG,Enc,Dec) satisfies IND-CPA, if for all PPT adversaries A,

Pr

[
(pk, sk)← KG(1λ), b←$ {0, 1}, (m0,m1)← A(pk),
b′ ← A(pk,Enc(pk,mb)) : b = b′

]
≈λ

1

2
.

El-Gamal Cryptosystem. One of the known IND-CPA secure cryptosystems is
proposed by El-Gamal [ElG84] that its algorithms (KG,Enc,Dec) work as below,

– (pk, sk) ← KG(1λ): Given the security parameter 1λ, generate an efficient
description of a cyclic group G of order p with generator g; sample sk←$Z∗p
and set h = gsk; return (pk, sk) := ((g, h), sk).

– (c) ← Enc(pk,m): Given pk := (g, h) and a message m ∈ M, sample a
randomness r←$Z∗p and return c := (c1, c2) := (m · hr, gr).

– (⊥,m) ← Dec(sk, c): Given sk and a ciphertext c := (c1, c2) := (m · hr, gr)
returns, m := c1/c

sk
2 = m · hr/gskr.

2.3 Key-Homomorphic Cryptosystems

Let ΨEnc = (KG,Enc,Dec) be a key-homomorphic cryptosystem and the secret
and public keys are chosen from the cyclic groups of (H,+) and (G, ·), respec-
tively.

14 Karim Baghery and Mahdi Sedaghat

Definition 10 (Secret-key to Public-key Homomorphisms [TW14]).
We say the cryptosystem ΨEnc over the message spaceM admits a secret-key to
public-key homomorphism if there exists a map µ : H→ G such that:

– µ is a homomorphism. i.e., for all sk, sk′ ∈ H, we have µ(sk+ sk′) = µ(sk) ·
µ(sk′);

– Every output (pk, sk)← KG(1λ), satisfies pk = µ(sk).

In particular, similar to Def. 8, such construction satisfies completeness if for a
valid secret key sk output by KG, the probability Pr[Dec(sk,Enc(µ(sk),m)) 6= m]
is negligible for all messages m ∈ M, where the probability is over the coins of
Enc. It satisfies perfect completeness if the probability is zero.

In the discrete logarithm setting, it is usually the case sk ∈ Z∗p and pk := gsk

such that g is the generator of a cyclic group G of prime order p, e.g., for El-
Gamal cryptosystem [ElG84].

Definition 11 (Key-Homomorphic Cryptosystems [AHI11]). We say
the cryptosystem ΨEnc over the message space M and ciphertext space C sat-
isfies key-homomorphism property, if there exists an efficient PPT algorithm
Adapt, that given a public-key pk, ciphertext c ∈ C, and a shift amount ∆ ∈ H.
Then Adapt returns a new public-key pk′ and a new ciphertext c′ ∈ C, namely
(pk′, c′)← Adapt(pk, c,∆), such that for every ∆ ∈ H, for all (pk, sk)← KG(1λ)
and message m ∈M we have,

(pk,Enc(pk · µ(∆),m)) ≈λ (pk′, c′)

where (pk′, c′)← Adapt(pk,Enc(pk,m), ∆) and the distribution is induced by the
random coins of Enc and Adapt.

For instance, an Adapt algorithm for El-Gamal [ElG84] cryptosystem (that
we later use in Sec. 3) can be written below,

– (pk′, c′) ← Adapt(pk, c,∆): Given pk := (g, h := gsk), c := (c1, c2) =
(mhr, gr), sample the shift parameter∆←$Z∗p, and computes pk′ := (g, h′ :=

h · g∆); c′ := (c′1, c
′
2) = (mhr · gr∆, gr); Return (pk′, c′).

2.4 Assumptions

Definition 12 (Bilinear Diffie-Hellman Knowledge of Exponent (BDH-
KE) Assumption). We say BGgen is BDH-KE secure for relation set R if for
any λ, (R, ξR) ∈ im(R(1λ)), and PPT adversary A there exists a PPT extractor
ExtA, such that,

Pr

(p,G1,G2,GT , ê, [1]1 , [1]2)← BGgen(1λ), r←$RND(A),
([α1]1 , [α2]2 ‖ a)← (A‖ExtA)(R, ξR; r) :

[α1]1 • [1]2 = [1]1 • [α2]2 ∧ a 6= α1

 ≈λ 0 .

Where ξR is the auxiliary information related to the underlying group.

The BDH-KE assumption [ABLZ17] is an asymmetric-pairing version of the
original knowledge assumption [Dam92].

Title Suppressed Due to Excessive Length 15

3 Public-Key Cryptosystems with Updatable Keys

As briefly discussed in Sec. 1, one of the key building blocks used in Tiramisu
is the cryptosystem schemes with updatable keys that we define in this section.
Such definitions recently are proposed for signatures [ARS20a], but to the best of
our knowledge this is the first time that this notion is defined for the public-key
cryptosystems. In contrast to subversion-resilient encryption schemes [ABK18]
that the key-generation phase might be subverted, here we consider the case that
the output of the key-generation phase is updatable and parties can update the
keys. We aim to achieve the standard security requirements of a cryptosystem
as long as either the original key generation or at least one of the updates was
done honestly.

3.1 Definition and Security Requirements

Definition 13 (Public-key Cryptosystems with Updatable Keys). A
public-key cryptosystem ΨEnc with updatable keys over the message space of M
and ciphertext space of C, consists of five PPT algorithms (KG,KU,KV,Enc,Dec)
that are defined as follows,

– (pk0, Πpk0 , sk0) ← KG(1λ): Key Generation is a PPT algorithm that given
the security parameter 1λ returns the corresponding key pair (pk0, sk0) and
Πpk0 as a proof of correctness.

– (pki, Πpki) ← KU(pki−1): Key Updating is a PPT algorithm that given a
valid (possibly updated) public key pki−1 (first time i = 1) outputs (pki, Πpki),
where pki denotes the updated public (with a hidden secret-key ski) and Πpki
is a proof for the correctness of the updating process.

– (1,⊥)← KV(pki, Πpki): Key Verification is a polynomial-time algorithm that
given a potentially updated pki and Πpki , checks the validity of the updated
key. It returns either ⊥ on the condition that the pki is incorrectly formed
(and updated) otherwise it outputs 1.

– (c)← Enc(pki,m): Encryption is a randomize algorithm that given a poten-
tially updated public key pki and a message m ∈ M, outputs a ciphertext
c ∈ C.

– (⊥,m′) ← Dec(sk, c): Decryption is a deterministic algorithm that given
a ciphertext c ∈ C and a potentially updated secret key ski, returns either
⊥ (reject) or m′ ∈ M (successful). Note that in the standard public-key
cryptosystems (and in this definition before any updating) ski = sk0.

A primary requirements for a public-key cryptosystem with updatable keys
ΨEnc := (KG,KU,KV,Enc,Dec) can be considered as follows,

Definition 14 (Perfect Updatable Correctness). A public-key cryptosys-
tem ΨEnc with updatable keys is perfect updatable correct, if

Pr

(pk0, Πpk0 , sk0 := sk′0)← KG(1λ), rSub←$RND(Sub),

(({pkj , Πpkj}
i
j=1, ξSub) ‖ {sk

′
j}ij=1)← (Sub ‖ExtSub)(pk0, Πpk0 , rSub),

{KV(pkj , Πpkj) = 1}ij=0 : Dec(ski := {sk
′
j}ij=0,Enc(pki,m)) = m

 = 1 .

16 Karim Baghery and Mahdi Sedaghat

where sk′j is the individual secret-key of each party and pki is the final public-
key updated by all parties. The probability is taken over the randomness of the
encryption algorithm. Note that Sub can also first generate {pkj}i−1j=0 and then
an honest updater updates pki−1 to pki.

Definition 15 (Updatable Key Hiding). In a cryptosystem ΨEnc with up-
datable keys, for (pk0, Πpk0 , sk0 := sk′0)← KG(1λ) and (pki, Πpki)← KU(pki−1),
we say that the updatable key hiding (i.e. pk0 ≈λ pki) holds if one of the following
cases holds,

– the original pk0 was honestly generated and the KV algorithm returns 1,
namely (pk0, Πpk0 , sk0)← KG(1λ) and KV(pk0, Πpk0) = 1,

– the original pk0 verifies successfully with KV and the key-update was gen-
erated honestly once, namely KV(pk0, Πpk0) = 1 and ({pkj , Πpkj}

i
j=1) ←

KU(pk0) such that {KV(pkj , Πpkj) = 1}ij=1.

Definition 16 (Updatable IND-CPA). A public-key cryptosystem ΨEnc with
updatable keys satisfies updatable IND-CPA, if for all PPT subvertor Sub, for
all λ, and for all PPT adversaries A,

Pr

(pk0, Πpk0 , sk0 := sk′0)← KG(1λ), rSub←$RND(Sub),

({pkj , Πpkj}
i
j=1, ξSub)← Sub(pk0, Πpk0 , rSub), b←$ {0, 1},

(m0,m1)← A(pki, ξSub), b′ ← A(Enc(pki,mb)) :

{KV(pkj , Πpkj) = 1}ij=0 ∧ b′ = b

 ≈λ 1

2
,

where ξSub is the auxiliary information which is returned by the subvertor Sub.
Note that Sub can also generate the initial pk0 and then an honest key updater
KU updates it and outputs pki (associated with the secret key ski := {sk

′
j}ij=0),

and the proof Πpki (then we require that KV(pk0, Πpk0) = 1). Note that Sub can
also first generate {pkj}i−1j=0 and then an honest updater updates pki−1 to pki.

In the rest, we prove the following theorem which gives a generic approach
for building a public-key cryptosystem with updatable keys using the key-
homomorphic cryptosystems [AHI11].

Theorem 1 (Cryptosystem with Updatable Keys). Every correct, IND-
CPA secure, and key-homomorphic cryptosystem ΨEnc with an efficient extractor
ExtSub, satisfies updatable correctness, updatable key hiding and updatable IND-
CPA security.

Proof. To consider the updatable correctness, let the key updating and the key
verification algorithms KU and KV be defined as follows,

– (pki, Πpki) ← KU({pkj}i−1j=0): Given the public keys {pkj}i−1j=0, where the
pki−1 is the latest updated public-key, act as follows: choose ∆←$H; set
sk′i := ∆, where sk′i is the secret key of the updater; set pki = pki−1 · µ(∆)
and Πpki := µ(∆); Output (pki, Πpki), where pki denotes the updated public
and Πpki is a proof for the correctness of the updating process.

Title Suppressed Due to Excessive Length 17

– (1,⊥) ← KV({pkj , Πpkj}
i
j=0): Given a potentially updated pki along with

previous keys {pkj}i−1j=0, and Πpki (along with {Πpkj}
i−1
j=0), returns 1 either if

pki = pk0 or pki := pki−1 ·Πpki , otherwise it responses by ⊥.

It is straightforward to see that ski := ski−1 +∆ := ski−1 + sk′i, where ski is the
secret key associated with pki, ski−1 is the secret key associated with public-key
pki−1, and sk′i := ∆ is the secret-key of the updater. Consequently, due to the
existence of ExtSub, (which allows to extract all the secret keys injected in the
key updates by Sub, namely {sk′j}ij=1) the updatable correctness follows from
the correctness of ΨEnc.

Updatable key hiding directly comes from the key-homomorphic property (in
Def. 11) of the cryptosystem ΨEnc, and the algorithms KU and KV required in
Def. 15 act as defined above.

Next, we prove updatable IND-CPA security by a reduction to the IND-CPA
security of the cryptosystem ΨEnc. Suppose A is a successful adversary against
updatable IND-CPA of ΨEnc. Namely, let pk0 be the public-key generated by
challenger of ΨEnc, and ({pkj , Πpkj}

i
j=1) be the output of A on input pk0. Then,

if {KV(pkj , Πpkj) = 1}ij=1, so one can use the extractor ExtSub to extract {sk′j}ij=1

(the secret keys of Sub in each update) and also conclude that pki := pki−1 ·Πpki .
Next, for random bit b←$ {0, 1} taken by challenger, and (m0,m1) taken by
A, the challenger sends back cb = Enc(pki,mb) to A and with non-negligible
probability adversary A guesses b, correctly.

Now, consider a new adversary B for IND-CPA of ΨEnc that given pk0 sends it
to A and gets ({pkj , Πpkj}

i
j=1) and (m0,m1) from A. Then B sends (m0,m1) to

the challenger and gets cb = Enc(pk0,mb) which is encrypted with pk0. Next, the
adversary B uses ExtSub and extracts all {sk′j}ij=1 from A (subvertor Sub) and
uses them to compute sk. After that, executes (pki, c′b)← Adapt(pk0, cb, sk) and
sends c′b (which is encrypted with pki) to the adversary A and gets b′. Finally,
adversary B returns the same b′ to the challenger and wins the IND-CPA game
with the same probability that A wins the game updatable IND-CPA. The case
that first pki−1 is subverted and then one-time honest updating is done can be
shown analogously, which is omitted. ut

3.2 A Pubic-key Cryptosystem with Updatable Keys

In this section, we show that the El-Gamal cryptosystem [ElG84] instantiated in
a bilinear group (p,G1,G2,GT , ê, [1]1 , [1]2) can be represented as an encryption
scheme with updatable keys. In bilinear group based instantiation, in contrast
to the standard El-Gamal encryption (reviewed in Sec. 2.2)), the public key
consists of a pair ([x]1 , [x]2). Consequently, the algorithms of new variation can
be expressed as follows,

– (pk0, Πpk0 , sk0 := sk′0) ← KG(1λ): Given the security parameter 1λ,
first obtain (p,G1,G2,GT , ê, [1]1 , [1]2) ← BGgen(1λ); sample sk′0←$Z∗p
and return the corresponding key pair (pk0, sk0) := ((pk10, pk

2
0), sk0) :=

18 Karim Baghery and Mahdi Sedaghat

((
[
sk′0
]
1
,
[
sk′0
]
2
), sk′0) and Πpk0 := (Π1

pk0
, Π2

pk0
) := (

[
sk′0
]
1
,
[
sk′0
]
2
) as a proof

of correctness (a.k.a. well-formedness).

– (pki, Πpki) ← KU(pki−1): Obtain (p,G1,G2,GT , ê, [1]1 , [1]2) ← BGgen(1λ);
then for a given pki−1 := (pk10, pk

2
0) := (

[
ski−1

]
1
,
[
ski−1

]
2
), for i ≥ 1, sample

sk′i ←$Z∗p and output,

(pki, Πpki) := ((
[
ski−1 + sk′i

]
1
,
[
ski−1 + sk′i

]
2
), (
[
sk′i

]
1
,
[
sk′i

]
2
)),

where pki := (pk1i , pk
2
i) denotes the updated public-key associated with the

secret key ski := ski−1 + sk′i and Πpki := (Π1
pki
, Π2

pki
) := (

[
sk′i

]
1
,
[
sk′i

]
2
) is

the proof for correctness of the update.

– (1,⊥) ← KV({pkj}ij=0, Πpki): Obtain (p,G1,G2,GT , ê, [1]1 , [1]2) ←
BGgen(1λ), and then,
- for i = j = 0, by giving the public key pk0 := (pk10, pk

2
0) :=

([sk0]1 , [sk0]2), and the corresponding proof Πpk0 := (Π1
pk0
, Π2

pk0
) :=

(
[
sk′0

]
1
,
[
sk′0

]
2
), checks the following equations,[

Π1
pk0

]
1
• [1]2

?
= [1]1 •

[
pk20
]
2
,

[1]1 •
[
Π2

pk0

]
2

?
=
[
pk10
]
1
• [1]2 ,

[1]1 •
[
Π2

pk0

]
2

?
=
[
Π1

pk0

]
1
• [1]2 ,

- for i ≥ 1, by taking public key pki−1 := (pk1i−1, pk
2
i−1) :=

(
[
ski−1

]
1
,
[
ski−1

]
2
), a potentially updated public key pki :=

(pk1i , pk
2
i) := (

[
ski−1 + sk′i

]
1
,
[
ski−1 + sk′i

]
2
), and Πpki :=

(Π1
pki
, Π2

pki
) := (

[
sk′i

]
1
,
[
sk′i

]
2
), checks the following equations,[

pk1i−1 + Π1
pki

]
1
• [1]2

?
= [1]1 •

[
pk2i
]
2
,

[1]1 •
[
pk2i−1 + Π2

pki

]
2

?
=
[
pk1i
]
1
• [1]2 ,

[1]1 •
[
Π2

pki

]
2

?
=
[
Π1

pki

]
1
• [1]2 ,

in each case, if both the equations hold, it returns 1, otherwise ⊥.

– (c) ← Enc(pki,m): Obtain (p,G1,G2,GT , ê, [1]1 , [1]2) ← BGgen(1λ) and
then given a (potentially updated) public key pki := ([ski]1 , [ski]2), such
that ski := ski−1 + sk′i , and a message m ∈ M, samples a randomness
r←$Z∗p and outputs the corresponding ciphertext as below,

c := (c1, c2) := (m · [rski]1 , [r]1).

Title Suppressed Due to Excessive Length 19

– (⊥,m) ← Dec(ski, c): Obtain (p,G1,G2,GT , ê, [1]1 , [1]2) ← BGgen(1λ) and
then given a ciphertext c ∈ C and a potentially updated secret key ski =
ski−1 + sk′i it returns,

c1

csk2
=
m · [rski]1
[rski]1

= m.

In the proposed construction, for the case that {KV({pkj}ij=0, Πpki) =

1}ij=0, under the BDH-KE knowledge assumption (in Def. 12) with checking

[1]1 •
[
Π2

pkj

]
2

?
=

[
Π1

pkj

]
1
• [1]2 for 0 ≤ j ≤ i, there exists an efficient nBB

extractor ExtSub that can extract all sk′j from the subvertor Subj . Note that here
we considered the standard version of the El-Gamal cryptosystem, but we also
could take its lifted version, which encrypts gm instead of m.

4 Tiramisu: Constructing BB-SE NIZK Arguments in
the Updatable CRS Model

Next, we present Tiramisu , as a construction that allows to build NIZK argu-
ments in the updatable CRS model which can satisfy BB-SE (in Def. 6) and ZK
(in Def. 2). Our main goal is to construct an alternative to the C∅C∅ framework
but in the updatable CRS model, such that in new constructions the end-users
can bypass the blind trust on the setup phase by one-time updating the shared
parameters. Our starting point is the strongest construction of the C∅C∅ frame-
work (reviewed in App. A) that gets a sound NIZK argument and lifts it to
a BB-SE NIZK argument. To do so, given a language L with the correspond-
ing NP relation RL, the C∅C∅ framework defines a new language L′ such that
((x, c, µ, pks, pke, ρ), (r, r0,w, s0)) ∈ RL′ iff:

c = Enc(pke,w; r) ∧ ((x,w) ∈ RL ∨ (µ = fs0(pks) ∧ ρ = Com(s0; r0))) ,

where {fs : {0, 1}∗ → {0, 1}λ}s∈{0,1}λ is a pseudo-random function family,
(KGe,Enc,Dec) is a set of algorithms for a semantically secure encryption scheme,
(KGs,Sigs,Vfys) is a one-time signature scheme and (Com,Vfy) is a perfectly
binding commitment scheme.

As a result, given a sound NIZK argument ΨNIZK forR constructed from PPT
algorithms (K ~crs,P,V,Sim,Ext), the C∅C∅ framework returns a BB-SE NIZK
argument Ψ ′NIZK with PPT algorithms (K′~crs,P

′,V′,Sim′,Ext′), where K′~crs is the
CRS generator for new construction and acts as follows,

– (~crs′ ‖ ~ts′ ‖ ~te′) ← K′~crs(RL, ξRL
): Given (RL, ξRL

), sample (~crs ‖ ~ts) ←
K ~crs (RL′ , ξRL′); (pke, ske)← KGe (1

λ); s0, r0←$ {0, 1}λ; ρ := Com

(s0; r0); and output (~crs′ ‖ ~ts′ ‖ ~te′) := ((~crs, pke, ρ) ‖ (s0, r0) ‖ ske), where ~crs′

is the CRS of Ψ ′NIZK and ~ts′ and ~te′, respectively, are the simulation trapdoor
and extraction trapdoor associated with ~crs′.

20 Karim Baghery and Mahdi Sedaghat

Considering the description of algorithm K′~crs, to construct an alternative to
the C∅C∅ framework but in the updatable CRS model, a naive solution is to
construct three above primitives (with gray background) in the updatable CRS
model, and then define a similar language but using the primitives constructed in
the updatable CRS model. But, considering the fact that currently there exists
efficient NIZK arguments with updatable parameters, a more efficient solution is
to simplify the language L′ and construct more efficient BB-SE NIZK arguments
with updatable parameters.

Continuing the second solution, since currently there exists some ad-hoc con-
structions that allow two-phase updating (e.g.using the MPC protocol proposed
is [BGM17] for the variation of Groth’s zk-SNARK [Gro16] proposed in [BG18])
or even there exists a lifting construction to build updatable nBB-SE zk-SANRKs
in the updatable CRS model (e.g.Lamassu proposed in [ARS20a,ARS20b]),
therefore we simplify the original language L′ defined in C∅C∅ and show that
given a simulation sound NIZK argument with updatable parameters, we can
construct updatable BB-SE NIZK arguments simpler than the mentioned naive
way. To this end, we use the cryptosystem with updatable keys, which we defined
and constructed in Sec. 3.

4.1 Construction

Assume ΨEnc := (KG,KU,KV,Enc,Dec) be a set of algorithms for a semantically
secure cryptosystem with updatable keys (pki, ski). Similar to the C∅C∅ frame-
work, we define a new language L′ based on the main language L corresponding
to the input updatable nBB-SE NIZK ΨNIZK := (K ~crs,CU,CV,P,V,Sim,Ext).
The language L′ is embedded with the encryption of witness with the poten-
tially updated public key pki given in the CRS. Namely, given a language L with
the corresponding NP relation RL, we define L′ for a given random element
r←$Fp, such that ((x, c, pki), (w, r)) ∈ RL′ iff:

c = Enc(pki,w; r) ∧ (x,w) ∈ RL.

The intuition behind L′ is to enforce the P to encrypt its witness with a
potentially updated public key pki, given in the CRS, and send the ciphertext
c along with a simulation sound proof. Consequently, in proving BB-SE, the
updated ski of the defined cryptosystem ΨEnc is given to the Ext, which makes it
possible to extract the witness in a black-box manner. By sending the encryption
of witnesses, the proof will not be witness succinct anymore, but still, it is
succinct in the size of the circuit that encodes L′.

In security proofs, we show that due to updatable simulation soundness
(in Def. 4) of the underlying NIZK argument ΨNIZK, the updatable IND-CPA
security (in Def. 16) and perfect updatable completeness (in Def. 14) of ΨEnc

is sufficient to achieve BB-SE in the updatable NIZK argument Ψ ′NIZK for
the language L′. By considering new language L′, the modified construction
Ψ ′NIZK := (K′~crs,CU

′,CV′,P′,V′,Sim′,Ext′) for L′ can be written as in Fig. 3.

Title Suppressed Due to Excessive Length 21

CRS and trapdoor generation, (~crs′0, Π ′~crs0)← K′~crs(RL, ξRL): Given
(RL, ξRL) ∈ im(R(1λ)) act as follows: execute key generation of ΨEnc

as (pk0, Πpk0 , sk0 := ŝk0) ← KG(1λ); run CRS generator of NIZK ar-
gument ΨNIZK and sample (~crs0, Π ~crs0 , ~ts0 := ~̂ts0) ← K ~crs(RL′ , ξRL′),
where ~ts0 is the simulation trapdoor associated with ~crs0; set
(~crs′0 ‖Π ′~crs0 ‖ ~ts

′
0 ‖ ~te

′
0) := ((~crs0, pk0) ‖ (Π ~crs0 , Πpk0) ‖ ~ts0 ‖ sk0); where Π ′~crs0

is the proof of well-formedness of ~crs′0, ~ts
′
0 is the simulation trapdoor associated

with ~crs′0, and ~te
′
0 is the extraction trapdoor associated with ~crs′0; Return

(~crs′0, Π
′
~crs0

).

CRS Updating, (~crs′i, Π ′~crsi)← CU′(RL, ξRL , ~crs
′
i−1): Given (RL, ξRL) ∈

im(R(1λ)), and ~crs′i−1 as an input CRS, act as follows: Parse
~crs′i−1 := (~crsi−1, pki−1); execute (~crsi, Π ~crsi) ← CU(RL, ξRL , ~crsi−1); run
(pki, Πpki) ← KU(pki−1); set (~crs′i ‖Π ′~crsi) := ((~crsi, pki) ‖ (Π ~crsi , Πpki)), where
Π ′~crsi is the proof of well-formedness of ~crs′i; Return (~crs′i, Π

′
~crsi

). Note that after
each update, the simulation and extraction trapdoors are updated, for instance
~ts
′
i := ~ts

′
i−1 + ~̂tsi, and ~te

′
i := ~te

′
i−1 + ~̂tei := sk′i−1 + ŝki.

CRS Verify, (⊥, 1)← CV′(~crs′i, Π ~crs′i
): Given ~crs′i := (~crsi, pki), and Π ~crs′i

:=
(Π ~crsi , Πpki) act as follows: if CV(~crsi, Π ~crsi) = 1 and KV(pki, Πpki) = 1 return 1
(i.e., the updated ~crs′i is correctly formed), otherwise ⊥.

Prover, (π′,⊥)← P′(RL, ξRL , ~crs
′
i, x,w): Parse ~crs′i := (~crsi, pki); Return ⊥ if

(x,w) /∈ RL; sample r←$ {0, 1}λ; compute encryption of witnesses c =
Enc(pki,w; r). Then execute prover P of the input NIZK argument ΨNIZK and
generate π ← P(RL′ , ξRL′ , ~crsi, (x, c, pki), (w, r)); and output π′ := (c, π).

Verifier, (0, 1)← V′(RL, ξRL , ~crs
′
i, x, π

′): Parse ~crs′i := (~crsi, pki) and π′ := (c, π);
call verifier of the input NIZK argument ΨNIZK as V(RL′ , ξRL′ , ~crsi, (x, c, pki), π)
and returns 1 if ((x, c, pki), (w, r)) ∈ RL′ , otherwise it responses by 0.

Simulator, (π′)← Sim′(RL, ξRL , ~crs
′
i, x, ~ts

′
i): Parse ~crs′i := (~crsi, pki) and ~ts

′
i := ~tsi;

sample z, r←$ {0, 1}λ; compute c = Enc(pki, z; r); execute simulator of the input
NIZK argument ΨNIZK and generate π ← Sim(RL′ , ξRL′ , ~crsi, (x, c, pki), ~tsi); and
output π′ := (c, π).

Extractor, (w)← Ext′(RL, ξRL , ~crs
′
i, ~te

′
i, x, π

′): Parse π′ := (c, π) and ~te
′
i := ski;

extract w← Dec(ski, c); output w.

Fig. 3: Tiramisu : a construction for building BB-SE NIZK argument Ψ ′NIZK with
updatable parameters.

4.2 Efficiency

In the rest, we highlight the key criteria about the efficiency of BB-SE NIZK
arguments build with Tiramisu .

Considering new language L′, in new argument Ψ ′NIZK the CRS generation
(CRS updating and CRS verification) of the input argument ΨNIZK will be done
for a larger instance, and one also needs to generate (update and verify) the
key pairs of the updatable public-key cryptosystem. The corresponding circuit

22 Karim Baghery and Mahdi Sedaghat

of the newly defined language L′, expands by the number of constraints needed
for the encryption function. Recall that the language L′ is an appended form of
language L by encryption of witnesses. However, due to our simplifications in
defining language L′, the overhead in Tiramisu will be less than the case one
uses the C∅C∅ framework. Meanwhile, as we later show in Sec.5 the efficiency
of final constructions severely depends on the input NIZK argument.

The prover of the new construction Ψ ′NIZK needs to generate a proof for new
language L′ that would require extra computations. The proofs will be the proof
of input nBB-SE updatable NIZK argument ΨNIZK appended with the ciphertext
c which leads to having proofs linear in witness size but still succinct in the circuit
size. It is a known result that having proofs linear in witness size is an undeniable
fact to achieve BB extraction and UC-security [Can01,GW11].

As the verifier is unchanged, so the verification of new constructions will be
the same as NIZK ΨNIZK but for a larger statement.

4.3 Security Proof

Theorem 2 (Perfect Updatable Completeness). If the input NIZK argu-
ment ΨNIZK guarantees perfect updatable completeness for the language L, and
the public-key cryptosystem ΨEnc be perfectly updatable correct, then the NIZK
argument constructed in Sec. 4 for language L′, is perfectly updatable complete.

Proof. By considering the construction in Fig. 3, and the fact that both ΨNIZK

and ΨEnc are perfectly updatable correct (given in Def. 1 and Def. 14), one can
conclude the statement. Namely, if (~crs′0, Π ′~crs0)← K′~crs(RL, ξRL

), (~crs′i, Π ′~crsi)←
CU′(RL, ξRL

, { ~crs′j}i−1j=0) and
(
{CV(~crs′j , Π ~crs′j

) = 1}ij=0 ∧ (x,w) ∈ RL

)
, then

with probability 1, V′(RL, ξRL
, ~crs′i, x,P

′(RL, ξRL
, ~crs′i, x,w)) = 1.

Theorem 3 (Computationally Updatable Zero-Knowledge). If the in-
put NIZK argument ΨNIZK guarantees (perfect) zero-knowledge, and the public-
key cryptosystem ΨEnc be updatable IND-CPA and satisfy updatable key hiding,
then the NIZK argument constructed in Sec. 4 for language L′ satisfies compu-
tational updatable ZK.

Proof. Note that the updatable ZK property (in Def. 2) of the input NIZK ar-
gument ΨNIZK along with the updatable completeness of the encryption scheme
ΨEnc imply that for one-time honest CRS generation, namely (~crs′0, Π

′
~crs0
, ~ts
′
0 :=

~ts0)← K′~crs(RL, ξRL
), and arbitrary time acceptable 8 (possibly malicious) CRS

updating ({ ~crs′j , Π ′~crsj}
i
j=1, ξSub) ← Sub(~crs′0, Π

′
~crs0
, rs), there exists an nBB ex-

traction algorithm ExtSub, that given access to the source code and random
coins of Sub, under a knowledge assumption, can extract {~tsj}ij=1, namely
{~tsj ← ExtSub(~crs

′
j , Π

′
~crsj
, rs)}i−1j=1. So, given the ~ts0 provided by the honest CRS

generator (or an updater) along with the extracted trapdoors {~tsj}ij=1 from sub-
vertor, the simulator Sim of argument Ψ ′NIZK can compute ~ts′i using {~tsj}ij=0 (i.e.

8 By acceptable, we mean CV′ accepts them, namely {CV′(~crs′j , Π ′~crsj) = 1}ij=0.

Title Suppressed Due to Excessive Length 23

~ts
′
i =

∑i
j=0

~tsj) and simulate the proofs as described in Fig. 3, where ~ts′i is the
simulation trapdoor associated with final CRS ~crs′i.

In the rest, we write a series of hybrid experiments starting from an experi-
ment that encrypts a random value and uses the Sim, and finally getting to an
experiment that uses the real prover. While moving on between the experiments,
we show that they all are indistinguishable two-by-two. Consider the following
experiments,

EXPzk1 (simulator):
– Setup: (pk0, Πpk0 , sk0) ← KG(1λ), (~crs0, Π ~crs0 , ~ts0) ←

K ~crs(RL′ , ξRL′), rSub←$RND(Sub), ({pkj , Πpkj}
i
j=1, ξSub) ←

Sub(pk0, Πpk0 , rSub), ({(~crsj , Π ~crsj)}ij=1 ‖ {~tsj}ij=1) ←
(Sub ‖ExtSub)(~crs0, Π ~crs0 , rSub), Return (~crs′i ‖Π ′~crsi ‖ ~ts

′
i) :=

((~crsi, pki) ‖ (Π ~crsi , Πpki) ‖ {~tsj}
i
j=0);

– Define function O(x,w) : Abort if (x,w) 6∈ RL; Abort if for any j ∈ [0 .. i],
CV(~crsj , Π ~crsj) 6= 1; Abort if for any j ∈ [0 .. i], KV(pkj , Πpkj) 6= 1; Sample
z, r ← {0, 1}λ; c = Enc(pki, z; r); π ← Sim(RL′ , ξRL′ , ~crsi, (x, c, pki), ~ts

′
i);

– b← AO(x,w)(~crs′i, Π
′
~crsi

);
return b;fi

EXPzk2 (simulator with witness):

– Setup: (pk0, Πpk0 , sk0) ← KG(1λ), (~crs0, Π ~crs0 , ~ts0) ←
K ~crs(RL′ , ξRL′), rSub←$RND(Sub), ({pkj , Πpkj}

i
j=1, ξSub) ←

Sub(pk0, Πpk0 , rSub), ({(~crsj , Π ~crsj)}ij=1 ‖ {~tsj}ij=1) ←
(Sub ‖ExtSub)(~crs0, Π ~crs0 , rSub), Return (~crs′i ‖Π ′~crsi ‖ ~ts

′
i) :=

((~crsi, pki) ‖ (Π ~crsi , Πpki) ‖ {~tsj}
i
j=0);

– Define function O(x,w) : Abort if (x,w) 6∈ RL; Abort if for any j ∈ [0 .. i],
CV(~crsj , Π ~crsj) 6= 1; Abort if for any j ∈ [0 .. i], KV(pkj , Πpkj) 6= 1; Sample
r ← {0, 1}λ ; c = Enc(pki,w; r); π ← Sim(RL′ , ξRL′ , ~crsi, (x, c, pki), ~ts

′
i);

– b← AO(x,w)(~crs′i, Π
′
~crsi

);
return b;fi

Lemma 1. If the cryptosystem ΨEnc deployed in the above games satisfies up-
datable IND-CPA (in Def. 16) and updatable key hiding (in Def. 15), then we
have Pr[EXPzk2] ≈c Pr[EXPzk1].

Proof. The updatable key hiding properties of the cryptosystem ΨEnc guarantees
that pk0 ≈λ pki, and the updatable IND-CPA of ΨEnc implies that no PT algo-
rithm can distinguish an oracle that encrypts z ← {0, 1}λ and uses the simulator
Sim from the case that it encrypts witness w and uses Sim. ut

EXPzk3 (prover):

24 Karim Baghery and Mahdi Sedaghat

– Setup: (pk0, Πpk0 , sk0) ← KG(1λ), (~crs0, Π ~crs0 , ~ts0) ←
K ~crs(RL′ , ξRL′), rSub←$RND(Sub), ({pkj , Πpkj}

i
j=1, ξSub) ←

Sub(pk0, Πpk0 , rSub), ({(~crsj , Π ~crsj)}ij=1 ‖ {~tsj}ij=1) ←
(Sub ‖ExtSub)(~crs0, Π ~crs0 , rSub), Return (~crs′i ‖Π ′~crsi ‖ ~ts

′
i) :=

((~crsi, pki) ‖ (Π ~crsi , Πpki) ‖ {~tsj}
i
j=0);

– Define function O(x,w) : Abort if (x,w) 6∈ RL; Abort if for any j ∈ [0 .. i],
CV(~crsj , Π ~crsj) 6= 1; Abort if for any j ∈ [0 .. i], KV(pkj , Πpkj) 6= 1; Sample
r ← {0, 1}λ; c = Enc(pki,w; r); π ← P(RL′ , ξRL′ , ~crsi, (x, c, pki), (w, r)) ;

– b← AO(x,w)(~crs′i, Π
′
~crsi

);
return b;fi

Lemma 2. If the NIZK argument ΨNIZK used in above experiments satisfies up-
datable ZK, the for two experiments EXPzk3 and EXPzk2 we have Pr[EXPzk3] ≈c
Pr[EXPzk2].

Proof. The updatable ZK of the NIZK argument ΨNIZK implies that the real
proof (generated by prover) in experiment EXPzk3 is indistinguishable from the
simulated proof (generated by simulator) in experiment EXPzk2 . ut

This completes proof of the theorem. More precisely, the Lemma 1 and 2 show
that Pr[EXPzk1] ≈ Pr[EXPzk2] and Pr[EXPzk2] ≈ Pr[EXPzk3], respectively. Since the
indistinguishability of the defined experiments is transitive then we can conclude,

Pr[EXPzk1] ≈c Pr[EXPzk3].

ut

Theorem 4 (Updatable Black-Box Simulation Extractability). If the
input NIZK argument ΨNIZK guarantees updatable correctness, updatable simu-
lation soundness and updatable zero-knowledge, and the public-key cryptosystem
ΨEnc satisfies updatable perfect correctness, updatable key hiding, and updatable
IND-CPA, then the NIZK argument constructed in Sec. 4 for language L′ satis-
fies updatable BB simulation extractability.

Proof. Recall that the notion of updatable BB-SE guarantees that for a one
time honest CRS generation/updating, even if A has seen an arbitrary num-
ber of simulated proofs, he cannot come up with a fresh valid proof unless he
knows the witness. The concept of knowing is formalized by showing that there
exists a BB extraction algorithm Ext that given extraction trapdoor generated
in the setup phase, it can extract the witness from the proof. In this setting, the
decryption function of cryptosystem ΨEnc plays the role of the mentioned Ext,
such that given the extraction trapdoor ~te′i (secret key) associated with the final
public key pki, can decrypt a valid c and obtain w. The key idea behind our
construction is that in order to provide ~te′i to the Ext, and ~ts

′
i to the Sim, we

use the extraction algorithm ExtSub constructed in the setup phase of ΨEnc and
ΨNIZK to extract the simulation and extraction trapdoors from the untrusted key

Title Suppressed Due to Excessive Length 25

generator or key updaters (maximum i parties) and then along with one hon-
estly sampled simulation and extraction trapdoors (without loss of generality,
sk0 and ~ts0) calculate ~te

′
i := {skj}ij=0, (e.g. ~te

′
i =

∑i
j=0 skj), and ~ts

′
i := {~tsj}ij=0,

(e.g. ~ts′i =
∑i
j=0

~tsj), and finally provide them to the Ext and Sim. Note that,
the updatable correctness of the cryptosystem ΨEnc and the updatable ZK of the
NIZK argument ΨNIZK guarantee the existence of such ExtSub for both primitives
that allow to extract the extraction trapdoors {skj}ij=1 and the simulation trap-
doors {~tsj}ij=1 from i malicious CRS updaters. Next, we go through a sequence
of hybrid experiences which two-by-two are indistinguishable. Starting from the
actual experiment of BB-SE, consider the following experiments,

EXPBB−SE1 (simulator):

– Setup: (pk0, Πpk0 , sk0) ← KG(1λ), (~crs0, Π ~crs0 , ~ts0) ←
K ~crs(RL′ , ξRL′), rSub←$RND(Sub), ({pkj , Πpkj}

i
j=1 ‖ {skj}ij=1) ←

(Sub ‖ExtSub)(pk0, Πpk0 , rSub), ({ ~crsj , Π ~crsj}ij=1 ‖ {~tsj}ij=1) ←
(Sub ‖ExtSub)(~crs0, Π ~crs0 , rSub), Return (~crs′i ‖Π ′~crsi ‖ ~ts

′
i ‖ ~te

′
i) :=

((~crsi, pki) ‖ (Π ~crsi , Πpki) ‖ {~tsj}
i
j=0 ‖ {skj}ij=0); where ~ts

′
i and ~te

′
i are

the simulation and extraction trapdoors associate with the last CRS, ~crs′i.
– Define function O(x): Abort if for any j ∈ [0 .. i], CV(~crsj , Π ~crsj) 6= 1; Abort

if for any j ∈ [0 .. i], KV(pkj , Πpkj) 6= 1; Sample r, z ← {0, 1}λ; c =

Enc(pki, z; r); π ← Sim(RL′ , ξRL′ , ~crsi, (x, c, pki), ~ts
′
i); Output π′ := (c, π)

– (x, π′)← AO(x)(~crs′i, ~te
′
i);

– Parse π′ := (c, π); extract witness w← Dec(c, ~te
′
i);

– if ((x, π′) 6∈ Q) ∧ (V(RL′ , ξRL′ , ~crs
′
i, (x, c, pki), π) = 1) ∧((x,w) 6∈ RL) :

return 1.
where Q shows the set of statement-proof pairs generated by O(x). fi

EXPBB−SE2 (simulator while encrypting w):

– Setup: (pk0, Πpk0 , sk0) ← KG(1λ), (~crs0, Π ~crs0 , ~ts0) ←
K ~crs(RL′ , ξRL′), rSub←$RND(Sub), ({pkj , Πpkj}

i
j=1 ‖ {skj}ij=1) ←

(Sub ‖ExtSub)(pk0, Πpk0 , rSub), ({ ~crsj , Π ~crsj}ij=1 ‖ {~tsj}ij=1) ←
(Sub ‖ExtSub)(~crs0, Π ~crs0 , rSub), Return (~crs′i ‖Π ′~crsi ‖ ~ts

′
i ‖ ~te

′
i) :=

((~crsi, pki) ‖ (Π ~crsi , Πpki) ‖ {~tsj}
i
j=0 ‖ {skj}ij=0); where ~ts

′
i and ~te

′
i are

the simulation and extraction trapdoors associate with the last CRS, ~crs′i.
– Define function O(x): Abort if for any j ∈ [0 .. i], CV(~crsj , Π ~crsj) 6= 1;

Abort if for any j ∈ [0 .. i], KV(pkj , Πpkj) 6= 1; Sample r ← {0, 1}λ ;
c = Enc(pki,w; r) ; π ← Sim(RL′ , ξRL′ , ~crsi, (x, c, pki), ~ts

′
i); Output π′ :=

(c, π)

– (x, π′)← AO(x)(~crs′i, ~te
′
i);

– Parse π′ := (c, π); extract witness w← Dec(c, ~te
′
i);

26 Karim Baghery and Mahdi Sedaghat

– if ((x, π′) 6∈ Q) ∧ (V(RL′ , ξRL′ , ~crs
′
i, (x, c, pki), π) = 1) ∧((x,w) 6∈ RL) :

return 1.
where Q shows the set of statement-proof pairs generated by O(x). fi

Lemma 3. If the cryptosystem ΨEnc used in above experiments be updatable
IND-CPA and updatable key hiding, then for two experiments EXPBB−SE2 and
EXPBB−SE1 , we have Pr[EXPBB−SE2] ≤ Pr[EXPBB−SE1] + negl(λ) .

Proof. Due to updatable key hiding of ΨEnc, pk0 ≈λ pki. The updatable
IND-CPA property of ΨEnc implies that after a one-time honest key genera-
tion/updating, no polynomial-time algorithm (adversary) can distinguish an or-
acle that encrypts randomly chosen value z with the public key pki and uses
the simulator Sim, from the case that it encrypts the true witness w with the
pki and again uses the simulator Sim, even if it has updated the public-key pki
arbitrary times, i.e. (i− 1) times. ut

EXPBB−SE3 (prover):

– Setup: (pk0, Πpk0 , sk0) ← KG(1λ), (~crs0, Π ~crs0 , ~ts0) ←
K ~crs(RL′ , ξRL′), rSub←$RND(Sub), ({pkj , Πpkj}

i
j=1 ‖ {skj}ij=1) ←

(Sub ‖ExtSub)(pk0, Πpk0 , rSub), ({ ~crsj , Π ~crsj}ij=1 ‖ {~tsj}ij=1) ←
(Sub ‖ExtSub)(~crs0, Π ~crs0 , rSub), Return (~crs′i ‖Π ′~crsi ‖ ~ts

′
i ‖ ~te

′
i) :=

((~crsi, pki) ‖ (Π ~crsi , Πpki) ‖ {~tsj}
i
j=0 ‖ {skj}ij=0); where ~ts

′
i and ~te

′
i are

the simulation and extraction trapdoors associate with the last CRS, ~crs′i.
– Define function O(x): Abort if for any j ∈ [0 .. i], CV(~crsj , Π ~crsj) 6= 1;

Abort if for any j ∈ [0 .. i], KV(pkj , Πpkj) 6= 1; Sample r ← {0, 1}λ; c =

Enc(pki,w; r); π ← P(RL′ , ξRL′ , ~crsi, (x, c, pki), (w, r)) ; Output π′ := (c, π)

– (x, π′)← AO(x)(~crs′i, ~te
′
i);

– Parse π′ := (c, π); extract witness w← Dec(c, ~te
′
i);

– if ((x, π′) 6∈ Q) ∧ (V(RL′ , ξRL′ , ~crs
′
i, (x, c, pki), π) = 1) ∧((x,w) 6∈ RL) :

return 1.
where Q shows the set of statement-proof pairs generated by O(x). fi

Lemma 4. If the NIZK argument is updatable simulation sound (in Def.4),
and the encryption scheme ΨEnc is perfect updatable correct (in Def.14) then
for two experiments EXPBB−SE3 and EXPBB−SE2 we have Pr[EXPBB−SE3] ≤
Pr[EXPBB−SE2] + negl(λ).

Proof. We note that if (x, π′) 6∈ Q, then the tuple (x, c, π) (from (x, π′)) is a valid
pair in the relation RL′ . The updatable simulation soundness property of the
NIZK argument ΨNIZK impels the non-malleability of proofs, consequently we
know that (x, π′) 6∈ Q.

On the other hand, perfect updatable correctness of the cryptosystem ΨEnc

implies that the decrypted witness w is unique for all valid ciphertexts, so due
to the soundness of the NIZK argument ΨEnc the probability that some witness
is valid for L′ and (x,w) 6∈ RL is negl(λ), namely Pr[EXPBB−SE3] ≤ 2−λ. ut

Title Suppressed Due to Excessive Length 27

Note that, in all the above experiments, the extractor is black-box and ex-
tracts the witness from an acceptable proof, without getting access to the source
code of the adversary. This completes the main proof. ut

Note that to bypass the impossibility of achieving Sub-ZK and BB ex-
tractability in NIZK arguments, observed by Bellare et al. [BFS16], one-time
honest key generation/updating on pki is a crucial requirement in the above theo-
rem. Roughly speaking, if the prover participates in the generating/updating pki
once, so due to the updatable key hiding and updatable IND-CPA of the cryp-
tosystem ΨEnc, even if adversary updates the keys arbitrary times still he/she
cannot learn any information about the final secret key ~te

′
i :=

∑i
j=0 skj and

consequently from the witness w used in generating π′ := (c, π).

Building Updatable Black-Box Knowledge Sound NIZK Arguments
with Tiramisu. The primary goal of Tiramisu is constructing BB-SE NIZK
arguments in the updatable CRS model. However, due to some efficiency rea-
sons, in practice one might need to build an Updatable Black-Box Knowl-
edge Sound (U-BB-KS) NIZK argument. In such cases, starting from either
an updatable sound NIZK or an U-nBB-KS NIZK (e.g. Groth et al.’s up-
datable zk-SNARK [GKM+18]), the same language L′ defined in Tiramisu
along with our constructed updatable public-key cryptosystem allows one to
build an U-BB-KS NIZK argument. Namely, given an updatable cryptosystem
ΨEnc := (KG,KU,KV,Enc,Dec) with updatable keys (pki, ski), and an updatable
sound NIZK ΨNIZK := (K ~crs,CU,CV,P,V,Sim) for language L with the corre-
sponding NP relation RL, we define the language L′ for a given random element
r←$Fp, such that ((x, c, pki), (w, r)) ∈ RL′ iff:

(c = Enc(pki,w; r)) ∧ ((x,w) ∈ RL).

Corollary 1. If the input NIZK argument ΨNIZK for RL guarantees updatable
correctness, updatable soundness and updatable zero-knowledge, and the public-
key cryptosystem ΨEnc satisfies updatable perfect correctness, updatable key hid-
ing, and updatable IND-CPA, then the NIZK argument for language L′ satis-
fies updatable correctness, updatable knowledge soundness and updatable zero-
knowledge.

The proof can be done similar to the proof of Theorem 4.

5 Instantiations and Application in UC-Protocols

To build an updatable BB-SE NIZK argument with Tiramisu (described in
Fig. 3), one requires two primitives. Namely, (1) a key updatable public-key cryp-
tosystem that satisfies perfect updatable correctness, updatable key hiding, and
updatable IND-CPA, and (2) a NIZK argument with updatable CRS that guar-
antees updatable simulation soundness or nBB simulation extractability. Next,
we instantiate ΨEnc and ΨNIZK, and obtain two U-BB-SE NIZK arguments. To

28 Karim Baghery and Mahdi Sedaghat

n-BB Knowledge Sound
zk-SNARK proposed in

[GKM+18]

Lamassu
[ARS20a]

Tiramisu
[This Work]

nBB-SE zk-SNARK proposed
in [BG18], while its CRS is

generated with the MPC
protocol proposed in [BGM17]

BB-SE NIZK
Arguments in the
Updatable CRS

Model
non-BB-SE
zk-SNARK

in the Updatable
CRS Model

Fig. 4: Instantiating the NIZK argument ΨNIZK in Tiramisu .

instantiate ΨEnc, we use the proposed variation of the El-Gamal cryptosystem
in Sec. 3. Whereas to instantiate the ΨNIZK, one can either use an ad-hoc con-
struction (e.g. [BG18] when its CRS is generated with [BGM17], which will have
a two-phase updating), or a construction lifted with Lamassu [ARS20a] (e.g.
using [GKM+18]). A graphical representation of two approaches that we instan-
tiate the input NIZK argument of Tiramisu is shown in Fig. 4. In a nutshell,
considering the above instantiations Tiramisu results in two BB-SE NIZK ar-
guments with updatable parameters.

Table 2: An efficiency comparison of BB-SE NIZK arguments built with the
C∅C∅ and Tiramisu . n′: Number of constraints (multiplication gates) used to
encode language L′, |pk|: Size of the public key of ΨEnc, λ: Security parameter,
Ei: Exponentiation in Gi, P : Paring operation, l′: the size of statement in new
language L′, w : the witness for new relation RL′ .

C∅C∅
with [Gro16]

Tiramisu
(with [GKM+18,ARS20a])

Tiramisu
(with [BGM17,BG18])

Trusted Setup? Yes No No
CRS Size ≈ 3n′G1 +n′G2 ≈ 30n′2G1 +9n′2G2 ≈ 3n′G1 +n′G2

CRS Verifier — ≈ 78n′2P ≈ 14n′P (batchable)

CRS Updater — ≈ 30n′2E1 +9n′2E2 ≈ 6n′E1 +n′E2

Prover ≈ 4n′E1 +n′E2 ≈ 4n′E1 +n′E2 ≈ 4n′E1 +n′E2

Proof Size o(w) + 3G1 +2G2 + λ o(w) + 4G1 +3G2 o(w) + 3G1 +2G2

Verifier 4P + l′E1 6P + l′E1 5P + l′E1

In BB-SE NIZK arguments built with Tiramisu , the parties have to up-
date the shared parameters individually once and check the validity of the
previous updates. This is basically the computational cost that the end-users
need to pay to bypass the trust in the standard CRS model. As an impor-
tant practical optimization, it can be shown that the prover can only update
the CRS ~crs′i := (~crsi, pki) partially, namely only pki. Tab. 2 summarizes the
efficiency of two BB-SE NIZK arguments built with Tiramisu and compares
them with a construction lifted by the C∅C∅ framework in the standard CRS
model. We instantiate C∅C∅ with the state-of-the-art zk-SNARK proposed by
Groth [Gro16] and instantiate Tiramisu with 1) the lifted version of [GKM+18]
with Lamassu [ARS20a], and 2) the variation of Grtoh’s zk-SNARK proposed

Title Suppressed Due to Excessive Length 29

in [BG18] in the case that its CRS is generated with the MPC protocol proposed
in [BGM17], consequently allows two-phase updating.

Both C∅C∅ and Tiramisu constructions result a linear proof in the witness
size, but they keep the asymptomatic efficiency of other algorithms in the in-
put NIZK. Consequently, instantiating Tiramisu with a more efficient nBB-SE
NIZK argument will result in a more efficient BB-SE NIZK argument. Therefore,
as also is shown in Tab. 2, suitable ad-hoc constructions result in more efficient
U-BB-SE NIZK arguments. We found constructing more efficient nBB-SE zk-
SNARKs as an interesting future research direction. Following, the impossibility
result of Gentry and Wichs [GW11], it is undeniable that achieving BB extrac-
tion will result in non-succinct proof. Consequently, in all the schemes in Table 2,
the proof size is dominated with the size of c which is a ciphertext of IND-CPA
cryptosystem and is o(w).

Using Updatable BB-SE NIZK Arguments in UC-Protocols. Follow-
ing the known result that BB-SE NIZK arguments can realize the ideal NIZK-
functionality FNIZK [GOS06,Gro06], the UC-protocols like Hawk [KMS+16],
Gyges [JKS16], and Ouroboros Crypsinous [KKKZ19], directly use the BB-SE
NIZK arguments constructed by the C∅C∅ framework. Consequently, under a
trusted setup phase, the deployed BB-SE NIZK argument securely composes
with other primitives in the main protocol. But, in BB-SE NIZK arguments
that are built with Tiramisu , the parties do not need to trust a third party,
instead, they need to update the CRS elements and give a proof Π ~crs for the
correctness of the initial key generation or updating. But, since the proof Π ~crs

relies on a knowledge assumption [Dam91], therefore in the lifted NIZK argu-
ments the setup phase (key generation/updating) can not achieve UC, as the
nBB extraction is not allowed in the UC framework. Albeit once the CRS ele-
ments are generated and updated by both prover and verifier, rest of the protocol
including proof generation and proof verification achieves UC-security. Techni-
cally speaking, in comparison with the realization of NIZK-functionality FNIZK

and CRS-functionality F ~crs described in [Gro06], U-BB-SE NIZK arguments con-
structed with Tiramisu only can realize NIZK-functionality FNIZK, and not F ~crs.
More details about such realizations will appear in the full version of the pa-
per. Due to construction of current subversion/updatable NIZK arguments that
rely on a knowledge assumption in the setup phase, this looks an avoidable fact
that one has to take either 1) a UC-secure setup phase while trusting a third
party, or 2) a non-UC secure setup phase but without a need for a trusted third
party. In practice, usually, the public parameters are generated once and used
for a long-time, therefore having a non-UC secure setup phase might be a more
desired option than having a UC-secure setup but with the need for a trusted
party for a long time.

30 Karim Baghery and Mahdi Sedaghat

6 Conclusion

BB-SE (in Def. 22) is shown [Gro06] to be sufficient to realize NIZK-functionality
FNIZK in the UC framework [Can01]. The majority of the available NIZK argu-
ments, including the most practical ones, zk-SNARKs, cannot achieve BB-SE.
Due to this fact, typically their security is amplified to achieve BB-SE before
using in UC-protocols [KMS+16,JKS16,KKKZ19]. By now, all such amplifica-
tions are done with the only available lifting framework, called C∅C∅ [KZM+15]
which is constructed in the standard CRS model and requires a trusted setup
phase.

As an alternative to the C∅C∅ , we constructed Tiramisu that allows build-
ing BB-SE NIZK arguments but in the updatable CRS model. BB-SE NIZK
arguments built with Tiramisu allow the parties (both prover and verifier) to
bypass the trust on a third party by one-time participation in the CRS genera-
tion/updating. We instantiated Tiramisu and presented two NIZK arguments
that achieve U-BB-SE without the need for a trusted third party. Meanwhile, as
a building block for Tiramisu , we defined the syntax of public-key cryptosys-
tems with updatable keys and presented a variation of the El-Gamal cryptosys-
tem [ElG84] as an efficient construction.

In practice, by deploying the constructed U-BB-SE NIZK arguments in
UC-protocols, such as Hawk [KMS+16], Gyges [JKS16], Ouroboros Crypsi-
nous [KKKZ19], the end-users can bypass the trust on the setup phase and
achieve UC security in the proof generation and proof verification. The extra cost
that end-users need to pay is a one-time updating the parameters plus checking
the others’ updates on parameters. Tiramisu comes with efficient algorithms CU
and CV for parameter updating and verification, respectively. Specifically about
UC-secure privacy-preserving smart contracts systems like Hawk [KMS+16], by
deploying an U-BB-SE NIZK argument in a two-party smart contract, both
parties can avoid trusting a third party if both individually update the public
parameters using CU and also check the other party’s update with CV.

We believe our proposed technique to build U-BB-SE NIZK arguments along
with the proposed updatable public-key cryptosystem can be of independent in-
terest, particularly in constructing other cryptographic protocols in the updat-
able CRS model.

Acknowledgement. This work was supported by CyberSecurity Research
Flanders with reference number VR20192203. In addition, this work was sup-
ported in part by the Research Council KU Leuven C1 on Security and Privacy
for Cyber-Physical Systems and the Internet of Things with contract number
C16/15/058.

Title Suppressed Due to Excessive Length 31

References

AB19. Shahla Atapoor and Karim Baghery. Simulation extractability in Groth’s
zk-SNARK. In Cristina Perez-Sola, Guillermo Navarro-Arribas, Alex
Biryukov, and Joaquin Garcia-Alfaro, editors, Data Privacy Management,
Cryptocurrencies and Blockchain Technology - ESORICS 2019 Interna-
tional Workshops, DPM 2019 and CBT 2019, Luxembourg, September 26-
27, 2019, Proceedings, volume 11737 of Lecture Notes in Computer Science,
pages 336–354. Springer, 2019.

ABK18. Benedikt Auerbach, Mihir Bellare, and Eike Kiltz. Public-key encryp-
tion resistant to parameter subversion and its realization from efficiently-
embeddable groups. In Michel Abdalla and Ricardo Dahab, editors,
PKC 2018, Part I, volume 10769 of LNCS, pages 348–377. Springer, Hei-
delberg, March 2018.

ABL+19. Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, Janno Siim, and
Michal Zajac. UC-secure CRS generation for SNARKs. In Johannes
Buchmann, Abderrahmane Nitaj, and Tajje eddine Rachidi, editors,
AFRICACRYPT 19, volume 11627 of LNCS, pages 99–117. Springer, Hei-
delberg, July 2019.

ABLZ17. Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, and Michal Zajac.
A subversion-resistant SNARK. In Tsuyoshi Takagi and Thomas Peyrin,
editors, ASIACRYPT 2017, Part III, volume 10626 of LNCS, pages 3–33.
Springer, Heidelberg, December 2017.

AHI11. Benny Applebaum, Danny Harnik, and Yuval Ishai. Semantic security
under related-key attacks and applications. In Bernard Chazelle, editor,
ICS 2011, pages 45–60. Tsinghua University Press, January 2011.

ARS20a. Behzad Abdolmaleki, Sebastian Ramacher, and Daniel Slamanig. Lift-and-
Shift: Obtaining simulation extractable subversion and updatable SNARKs
generically. In ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2020 (accepted to appear), avalable on: http:
// eprint. iacr. org/ 2020/ 062 , 2020.

ARS20b. Behzad Abdolmaleki, Sebastian Ramacher, and Daniel Slamanig. SoK:
Lifting transformations for simulation extractable subversion and updat-
able SNARKs. In 3rd ZKProof Workshop, Home Edition, 2020, avalable on:
https: // docs. zkproof. org/ pages/ standards/ accepted-workshop3/
sok-lifting_ transformations_ se_ snarks. pdf , 2020.

Bag19a. Karim Baghery. On the efficiency of privacy-preserving smart contract
systems. In Johannes Buchmann, Abderrahmane Nitaj, and Tajje eddine
Rachidi, editors, AFRICACRYPT 19, volume 11627 of LNCS, pages 118–
136. Springer, Heidelberg, July 2019.

Bag19b. Karim Baghery. Subversion-resistant commitment schemes: Definitions and
constructions. Cryptology ePrint Archive, Report 2019/1065, 2019. https:
//eprint.iacr.org/2019/1065.

Bag19c. Karim Baghery. Subversion-resistant simulation (knowledge) sound NIZKs.
In Martin Albrecht, editor, 17th IMA International Conference on Cryp-
tography and Coding, volume 11929 of LNCS, pages 42–63. Springer, Hei-
delberg, December 2019.

BCG+14. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anony-
mous payments from bitcoin. In 2014 IEEE Symposium on Security and
Privacy, pages 459–474. IEEE Computer Society Press, May 2014.

http://eprint.iacr.org/2020/062
http://eprint.iacr.org/2020/062
https://docs.zkproof.org/pages/standards/accepted-workshop3/sok-lifting_transformations_se_snarks.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop3/sok-lifting_transformations_se_snarks.pdf
https://eprint.iacr.org/2019/1065
https://eprint.iacr.org/2019/1065

32 Karim Baghery and Mahdi Sedaghat

BCG+15. Eli Ben-Sasson, Alessandro Chiesa, Matthew Green, Eran Tromer, and
Madars Virza. Secure sampling of public parameters for succinct zero
knowledge proofs. In 2015 IEEE Symposium on Security and Privacy,
pages 287–304. IEEE Computer Society Press, May 2015.

BCPR14. Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence
of extractable one-way functions. In David B. Shmoys, editor, 46th ACM
STOC, pages 505–514. ACM Press, May / June 2014.

BCTV13. Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Suc-
cinct non-interactive arguments for a von neumann architecture. Cryp-
tology ePrint Archive, Report 2013/879, 2013. http://eprint.iacr.org/
2013/879.

BFM88. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications. In Proceedings of the twentieth annual
ACM symposium on Theory of computing, pages 103–112. ACM, 1988.

BFS16. Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. NIZKs with an
untrusted CRS: Security in the face of parameter subversion. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume
10032 of LNCS, pages 777–804. Springer, Heidelberg, December 2016.

BG90. Mihir Bellare and Shafi Goldwasser. New paradigms for digital signatures
and message authentication based on non-interative zero knowledge proofs.
In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 194–
211. Springer, Heidelberg, August 1990.

BG18. Sean Bowe and Ariel Gabizon. Making groth’s zk-SNARK simulation ex-
tractable in the random oracle model. Cryptology ePrint Archive, Report
2018/187, 2018. https://eprint.iacr.org/2018/187.

BGG19. Sean Bowe, Ariel Gabizon, and Matthew D. Green. A multi-party protocol
for constructing the public parameters of the pinocchio zk-SNARK. In Aviv
Zohar, Ittay Eyal, Vanessa Teague, Jeremy Clark, Andrea Bracciali, Fed-
erico Pintore, and Massimiliano Sala, editors, FC 2018 Workshops, volume
10958 of LNCS, pages 64–77. Springer, Heidelberg, March 2019.

BGM17. Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party computa-
tion for zk-SNARK parameters in the random beacon model. Cryptology
ePrint Archive, Report 2017/1050, 2017. http://eprint.iacr.org/2017/
1050.

Can01. Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society
Press, October 2001.

Dam91. Ivan Damgård. Towards Practical Public Key Systems Secure against Cho-
sen Ciphertext Attacks. In Joan Feigenbaum, editor, CRYPTO 1991, vol-
ume 576 of LNCS, pages 445–456, Santa Barbara, California, USA, Au-
gust 11–15, 1991. Springer, Heidelberg, 1992.

Dam92. Ivan Damgård. Towards practical public key systems secure against chosen
ciphertext attacks. In Joan Feigenbaum, editor, CRYPTO’91, volume 576
of LNCS, pages 445–456. Springer, Heidelberg, August 1992.

DDO+01. Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Per-
siano, and Amit Sahai. Robust non-interactive zero knowledge. In Joe Kil-
ian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 566–598. Springer,
Heidelberg, August 2001.

DGP+19. Vanesa Daza, Alonso González, Zaira Pindado, Carla Ràfols, and Javier
Silva. Shorter quadratic QA-NIZK proofs. In Dongdai Lin and Kazue

http://eprint.iacr.org/2013/879
http://eprint.iacr.org/2013/879
https://eprint.iacr.org/2018/187
http://eprint.iacr.org/2017/1050
http://eprint.iacr.org/2017/1050

Title Suppressed Due to Excessive Length 33

Sako, editors, PKC 2019, Part I, volume 11442 of LNCS, pages 314–343.
Springer, Heidelberg, April 2019.

DS16. David Derler and Daniel Slamanig. Key-homomorphic signatures and ap-
plications to multiparty signatures. Cryptology ePrint Archive, Report
2016/792, 2016. http://eprint.iacr.org/2016/792.

ElG84. Taher ElGamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. In G. R. Blakley and David Chaum, editors,
CRYPTO’84, volume 196 of LNCS, pages 10–18. Springer, Heidelberg, Au-
gust 1984.

Fuc18. Georg Fuchsbauer. Subversion-zero-knowledge SNARKs. In Michel Abdalla
and Ricardo Dahab, editors, PKC 2018, Part I, volume 10769 of LNCS,
pages 315–347. Springer, Heidelberg, March 2018.

GKM+18. Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian
Miers. Updatable and universal common reference strings with applications
to zk-SNARKs. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part III, volume 10993 of LNCS, pages 698–728. Springer,
Heidelberg, August 2018.

GM17. Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of
knowledge from simulation-extractable SNARKs. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO 2017, Part II, volume 10402 of LNCS,
pages 581–612. Springer, Heidelberg, August 2017.

GMR89. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof systems. SIAM Journal on computing,
18(1):186–208, 1989.

GOS06. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero
knowledge for NP. In Serge Vaudenay, editor, EUROCRYPT 2006, volume
4004 of LNCS, pages 339–358. Springer, Heidelberg, May / June 2006.

Gro06. Jens Groth. Simulation-sound NIZK proofs for a practical language and
constant size group signatures. In Xuejia Lai and Kefei Chen, editors,
ASIACRYPT 2006, volume 4284 of LNCS, pages 444–459. Springer, Hei-
delberg, December 2006.

Gro10. Jens Groth. Short pairing-based non-interactive zero-knowledge arguments.
In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages
321–340. Springer, Heidelberg, December 2010.

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In
Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 305–326. Springer, Heidelberg, May
2016.

GS08. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for
bilinear groups. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 415–432. Springer, 2008.

GW11. Craig Gentry and Daniel Wichs. Separating succinct non-interactive ar-
guments from all falsifiable assumptions. In Lance Fortnow and Salil P.
Vadhan, editors, 43rd ACM STOC, pages 99–108. ACM Press, June 2011.

GWC19. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK:
Permutations over lagrange-bases for oecumenical noninteractive argu-
ments of knowledge. Cryptology ePrint Archive, Report 2019/953, 2019.
https://eprint.iacr.org/2019/953.

JKS16. Ari Juels, Ahmed E. Kosba, and Elaine Shi. The ring of Gyges: Investi-
gating the future of criminal smart contracts. In Edgar R. Weippl, Stefan

http://eprint.iacr.org/2016/792
https://eprint.iacr.org/2019/953

34 Karim Baghery and Mahdi Sedaghat

Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, ACM CCS 2016, pages 283–295. ACM Press, October 2016.

KKKZ19. Thomas Kerber, Aggelos Kiayias, Markulf Kohlweiss, and Vassilis Zikas.
Ouroboros crypsinous: Privacy-preserving proof-of-stake. In 2019 IEEE
Symposium on Security and Privacy, pages 157–174. IEEE Computer So-
ciety Press, May 2019.

KLO19. Jihye Kim, Jiwon Lee, and Hyunok Oh. Simulation-extractable zk-SNARK
with a single verification. Cryptology ePrint Archive, Report 2019/586,
2019. https://eprint.iacr.org/2019/586.

KMS+16. Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos
Papamanthou. Hawk: The blockchain model of cryptography and privacy-
preserving smart contracts. In 2016 IEEE Symposium on Security and
Privacy, pages 839–858. IEEE Computer Society Press, May 2016.

KZM+15. Ahmed E. Kosba, Zhichao Zhao, Andrew Miller, Yi Qian, T.-H. Hubert
Chan, Charalampos Papamanthou, Rafael Pass, Abhi Shelat, and Elaine
Shi. C∅C∅: A Framework for Building Composable Zero-Knowledge Proofs.
Technical Report 2015/1093, IACR, November 10, 2015. http://eprint.
iacr.org/2015/1093, last accessed version from 9 Apr 2017.

Lip12. Helger Lipmaa. Progression-Free Sets and Sublinear Pairing-Based Non-
Interactive Zero-Knowledge Arguments. In Ronald Cramer, editor, TCC
2012, volume 7194 of LNCS, pages 169–189, Taormina, Italy, March 18–21,
2012. Springer, Heidelberg.

Lip19. Helger Lipmaa. Simulation-extractable SNARKs revisited. Cryptology
ePrint Archive, Report 2019/612, 2019. http://eprint.iacr.org/2019/
612.

MBKM19. Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic:
Zero-knowledge SNARKs from linear-size universal and updatable struc-
tured reference strings. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2111–2128.
ACM Press, November 2019.

Nao03. Moni Naor. On cryptographic assumptions and challenges (invited talk). In
Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 96–109.
Springer, Heidelberg, August 2003.

PHGR13. Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio:
Nearly practical verifiable computation. In 2013 IEEE Symposium on Se-
curity and Privacy, pages 238–252. IEEE Computer Society Press, May
2013.

TW14. Stefano Tessaro and David A. Wilson. Bounded-collusion identity-based
encryption from semantically-secure public-key encryption: Generic con-
structions with short ciphertexts. In Hugo Krawczyk, editor, PKC 2014,
volume 8383 of LNCS, pages 257–274. Springer, Heidelberg, March 2014.

Woo14. Gavin Wood. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper, 151:1–32, 2014.

A C∅C∅ : a Framework for Constructing BB-SE NIZK
Arguments in the CRS Model

In 2015, Kosba et al. [KZM+15] presented a framework, called C∅C∅, with sev-
eral constructions which allows to build BB-SE NIZK arguments. Their most

https://eprint.iacr.org/2019/586
http://eprint.iacr.org/2015/1093
http://eprint.iacr.org/2015/1093
http://eprint.iacr.org/2019/612
http://eprint.iacr.org/2019/612

Title Suppressed Due to Excessive Length 35

powerful construction gets a sound NIZK and lifts to a NIZK argument that
satisfies BB-SE (defined in Def. 22), which is shown to be a sufficient require-
ment for NIZK arguments to achieve UC-security [Gro06]. Here we review their
most powerful construction.
Construction. Given a sound NIZK, to achieve a UC-secure NIZK, the C∅C∅
framework applies several changes in all setup, proof generation and verification
procedures of the input NIZK. Initially, the framework defines a new language L′

based on the language L in underlying NIZK and some new primitives that are
needed for the transformation. Let (KGe,Enc,Dec) be a set of algorithms for a
semantically secure encryption scheme, (KGs,Sigs,Vfys) be a one-time signature
scheme and (Com,Vfy) be a perfectly binding commitment scheme. Given a
language L with the corresponding NP relation RL, define a new language L′

such that ((x, c, µ, pks, pke, ρ), (r, r0,w, s0)) ∈ RL′ iff:

(c = Enc(pke,w; r)) ∧ ((x,w) ∈ RL ∨ (µ = fs0(pks) ∧ ρ = Com(s0; r0))) ,

where {fs : {0, 1}∗ → {0, 1}λ}s∈{0,1}λ is a pseudo-random function family. Now,
a sound NIZK argument system ΨNIZK for R constructed from PPT algorithms
(KG,P,V,Sim,Ext) can be lifted to a BB-SE NIZK Ψ ′NIZK with PPT algorithms
(KG′,P′,V′,Sim′,Ext′) as follows.

CRS and trapdoor generation KG′(RL, ξRL
): Sample (~crs ‖ ~ts) ←

KG(RL′ , ξRL′); (pke, ske) ← KGe(1
λ); s0, r0←$ {0, 1}λ; ρ := Com(s0; r0);

and output (~crs′ ‖ ~ts′ ‖ ~te′) := ((~crs, pke, ρ) ‖ (s0, r0) ‖ ske).
Prover P′(RL, ξRL

, ~crs, x,w): Parse ~crs′ := (~crs, pke, ρ);
Abort if (x,w) /∈ RL; (pks, sks) ← KGs(1

λ); sample
z0, z1, z2, r1←$ {0, 1}λ; compute c = Enc(pke,w; r1); generate
π ← P(RL′ , ξRL′ , ~crs, (x, c, z0, pks, pke, ρ), (r1, z1, w, z2)); sign σ ←
Sigs(sks, (x, c, z0, π)); and output π′ := (c, z0, π, pks, σ).

Verifier V′(RL, ξRL
, ~crs′, x, π′): Parse ~crs′ := (~crs, pke, ρ) and

π′ := (c, µ, π, pks, σ); Abort if Vfys(pks, (x, c, µ, π), σ) = 0; call
V(RL′ , ξRL′ , ~crs, (x, c, µ, pks, pke, ρ), π) and abort if it outputs 0.

Simulator Sim′(RL, ξRL
, ~crs′, ~ts

′
, x): Parse ~crs′ := (~crs, pke, ρ) and

~ts
′

:= (s0, r0); (pks, sks) ← KGs(1
λ); set µ = fs0(pks); sam-

ple z3, r1←$ {0, 1}λ; compute c = Enc(pke, z3; r1); generate
π ← P(RL′ , ξRL′ , ~crs, (x, c, µ, pks, pke, ρ), (r1, r0, z3, s0)); sign σ ←
Sigs(sks, (x, c, µ, π)); and output π′ := (c, µ, π, pks, σ).

Extractor Ext′(RL, ξRL
, ~crs′, ~te

′
, x, π′): Parse π′ := (c, µ, π, pks, σ), ~te

′
:= ske;

extract w← Dec(ske, c); output w.

B Requirements of NIZKs in the CRS Model

Next, we provide security requirement of standard and subversion-resistant NIZK
arguments in the CRS model [Gro16,BFS16,ABLZ17,GM17,KZM+15]. A zk-
SNARK ΨNIZK in the CRS model for R consists of tuple of PPT algorithms

36 Karim Baghery and Mahdi Sedaghat

(K ~crs,P,V,Sim,Ext), that is expected to satisfy Completeness, ZK and Knowl-
edge soundness defined as bellow,

Definition 17 (Perfect Completeness [Gro16]). A non-interactive argu-
ment ΨNIZK is perfectly complete for R, if for all λ, all (R, ξR) ∈ im(R(1λ)),
and (x,w) ∈ R,

Pr [~crs← KG(R, ξR) : V(R, ξR, ~crsV, x,P(R, ξR, ~crsP, x,w)) = 1] = 1 .

Definition 18 (Statistically Zero-Knowledge [Gro16]). A non-interactive
argument ΨNIZK is statistically ZK for R, if for all λ, all (R, ξR) ∈ im(R(1λ)),
and for all NUPPT A, εunb0 ≈λ εunb1 , where

εb = Pr[(~crs ‖ ~ts)← KG(R, ξR) : AOb(·,·)(R, ξR, ~crs) = 1] .

Here, the oracle O0(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and otherwise it returns
P(R, ξR, ~crsP, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and
otherwise it returns Sim(R, ξR, ~crs, x, ~ts). ΨNIZK is perfect ZK forR if one requires
that ε0 = ε1.

Intuitively, a non-interactive argument ΨNIZK is zero-knowledge if it does not
leak extra information besides the truth of the statement.

Definition 19 (Computational Knowledge-Soundness [Gro16]). A non-
interactive argument ΨNIZK is computationally (adaptively) knowledge-sound for
R, if for every NUPPT A, there exists a NUPPT extractor ExtA, s.t. for all λ,

Pr

(R, ξR)← R(1λ), (~crs ‖ ~ts)← KG(R, ξR),

r ←r RND(A), ((x, π) ‖w)← (A‖ExtA)(R, ξR, ~crs; r) :
(x,w) 6∈ R ∧ V(R, ξR, ~crsV, x, π) = 1

 ≈λ 0 .

Here, ξR can be seen as a common auxiliary input to A and ExtA that is gener-
ated by using a benign [BCPR14] relation generator; A knowledge-sound argu-
ment system is called an argument of knowledge.

Besides the mentioned properties defined in Def. 17-19, a zk-SNARK has
succinctness property, meaning that the proof size is poly(λ) and the verifier’s
computation is poly(λ) and the size of the instance.

Next, we recall some stronger notions of NIZK arguments that usually are
needed in cases that one requires to achieve stronger security guarantees in the
NIZK argument.

Definition 20 (Simulation Soundness [Gro06]). A non-interactive argu-
ment ΨNIZK is simulation sound for R if for all NUPPT A, and all λ,

Pr

[
(R, ξR)← R(1λ), (~crs ‖ ~ts)← KG(R, ξR), (x, π)← AO(.)(R, ξR, ~crs) :

(x, π) 6∈ Q ∧ x 6∈ L ∧ V(R, ξR, ~crsV, x, π) = 1

]
≈λ 0 .

Here, Q is the set of simulated statement-proof pairs generated by adversary’s
queries to O, that returns simulated proofs.

Title Suppressed Due to Excessive Length 37

Definition 21 (Non-Black-Box Simulation Extractability [GM17]). A
non-interactive argument ΨNIZK is non-black-box simulation-extractable for R,
if for any NUPPT A, there exists a NUPPT extractor ExtA s.t. for all λ,

Pr

(R, ξR)← R(1λ), (~crs ‖ ~ts)← KG(R, ξR),

r ←r RND(A), ((x, π) ‖w)← (AO(.) ‖ExtA)(R, ξR, ~crs; r) :
(x, π) 6∈ Q ∧ (x,w) 6∈ R ∧ V(R, ξR, ~crsV, x, π) = 1

 ≈λ 0 .

Here, Q is the set of simulated statement-proof pairs generated by adversary’s
queries to O that returns simulated proofs.

It is worth to mention that non-black-box simulation extractability implies
knowledge soundness (given in Def. 19), as the earlier is a strong notion of the
later which additionally the adversary is allowed to send query to the proof
simulation oracle. Similarly, one can observe that nBB simulation extractability
implies simulation soundness (given in Def. 20) [Gro06].

Definition 22 (Black-Box Simulation Extractability [KZM+15]). A
non-interactive argument ΨNIZK is black-box simulation-extractable forR if there
exists a black-box extractor Ext that for all NUPPT A, and all λ,

Pr

(R, ξR)← R(1λ), (~crs ‖ ~ts ‖ ~te)← KG(R, ξR),

(x, π)← AO(.)(R, ξR, ~crs),w← Ext(R, ξR, ~crs, ~te, x, π) :

(x, π) 6∈ Q ∧ (x,w) 6∈ R ∧ V(R, ξR, ~crsV, x, π) = 1

 ≈λ 0 .

Similarly, Q is the set of simulated statement-proof pairs, and ~te is the extraction
trapdoor. A keynote about Def. 22 is that the extraction procedure is BB and
unlike the nBB case, the extractor Ext works for all adversaries.

A subversion-resistant zk-SNARK ΨNIZK in the CRS model for R consists of
tuple of PPT algorithms (K ~crs, CV ,P,V,Sim,Ext), that beyond Completeness,
ZK and Knowledge soundness it is expected to achieve Subversion ZK which is
defined as follows,

Definition 23 (Statistically Subversion Zero-Knowledge [ABLZ17]).
A non-interactive argument Ψ is statistically subversion ZK for R, if for any
NUPPT subvertor Sub there exists a NUPPT extractor ExtSub, such that for all
λ, all (R, ξ) ∈ im(R(1λ)), and for all NUPPT A, ε0 ≈λ ε1, where

Pr

[
r ←r RND(Sub), (~crs, ξSub ‖ ~ts)← (Sub ‖ExtSub)(R, ξ; r) :
CV(R, ξ, ~crs) = 1 ∧ AOb(·,·)(R, ξ, ~crs, ~ts, ξSub) = 1

]
.

Here, ξSub is auxiliary information generated by subvertor Sub, and the or-
acle O0(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and otherwise it returns
P(R, ξ, ~crsP, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and oth-
erwise it returns Sim(R, ξ, ~crs, ~ts, x). Ψ is perfectly subversion ZK for R if one
requires that ε0 = ε1.

	Tiramisu: Black-Box Simulation Extractable NIZKs in the Updatable CRS Model

