
Generalized Bitcoin-Compatible Channels
Lukas Aumayr∗, Oğuzhan Ersoy†, Andreas Erwig‡, Sebastian Faust‡,

Kristina Hostáková‡, Matteo Maffei∗, Pedro Moreno-Sanchez∗, Siavash Riahi‡
∗Security and Privacy Group, TU Wien, Austria

{lukas.aumayr, matteo.maffei, pedro.sanchez}@tuwien.ac.at
†Cyber Security Group, TU Delft, Netherlands

o.ersoy@tudelft.nl
‡Chair of Applied Cryptography, TU Darmstadt, Germany

{firstname.surname}@tu-darmstadt.de

Abstract—The widespread adoption of decentralized cryp-
tocurrencies, such as Bitcoin or Ethereum, is currently hindered
by their inherently limited transaction rate. One of the most
prominent proposals to tackle this scalability issue are payment
channels which allow mutually distrusted parties to exchange
an arbitrary number of payments in the form of off-chain
authenticated messages while posting only a limited number of
transactions onto the blockchain. Specifically, two transactions
suffice, unless a dispute between these parties occurs, in which
case more on-chain transactions are required to restore the
correct balance. Unfortunately, popular constructions, such as the
Lightning network for Bitcoin, suffer from heavy communication
complexity both off-chain and on-chain in case of dispute.
Concretely, the communication overhead grows exponentially and
linearly, respectively, in the number of applications that run in
the channel.

In this work, we introduce and formalize the notion of
generalized channels for Bitcoin-like cryptocurrencies. Gener-
alized channels significantly extend the concept of payment
channels so as to perform off-chain any operation supported
by the underlying blockchain. Besides the gain in expressive-
ness, generalized channels outperform state-of-the-art payment
channel constructions in efficiency, reducing the communication
complexity and the on-chain footprint in case of disputes to linear
and constant, respectively.

We provide a cryptographic instantiation of generalized chan-
nels that is compatible with Bitcoin, leveraging adaptor signatures
– a cryptographic primitive already used in the cryptocurrency
literature but formalized as a standalone primitive in this
work for the first time. We formally prove the security of our
construction in the Universal Composability framework. Further-
more, we conduct an experimental evaluation, demonstrating the
expressiveness and performance of generalized channels when
used as building blocks for popular off-chain applications, such
as channel splitting and payment-channel networks.

I. INTRODUCTION

Blockchain technologies have spurred increasing interest
over the last years, enabling secure payments, and more
generally computations, among mutually distrustful parties.
At the core of them lies a decentralized consensus protocol,
which establishes and maintains a distributed ledger that stores
all transactions. An inherent drawback of their decentralized
approach, however, is its poor transaction throughput, which,
for instance, in the case of Bitcoin is around ten transactions
per second, three orders of magnitude lower than credit card
networks. This severely limits the widespread adoption of

blockchain technologies and their potential to cater for a large
user base.

Among several recent proposals to tackle this scalability
problem [15, 30, 3], payment channels [4] have emerged as
one of the most promising and widely deployed solutions (see,
e.g., the Lightning network [28] in Bitcoin and the Raiden
Network [29] in Ethereum). A payment channel enables an
arbitrary number of payments between users while committing
only two transactions onto the blockchain, without compromis-
ing on security. In a bit more detail, focusing on Bitcoin and
its Unspent Transaction Output (UTXO) model, a payment
channel between Alice and Bob is first created by a single
on-chain transaction that locks bitcoins into a multi-signature
address controlled by both users. They can then pay to each
other (possibly many times) by exchanging authenticated off-
chain messages that represent an update of their share of coins
in the multi-signature address. The payment channel is finally
closed when a user decides to submit the last authenticated
distribution of coins to the blockchain.

Payment channels serve as a building block for a variety of
off-chain services, which aim at offering better connectivity, as
establishing a different channel for each possible payee would
be cumbersome and financially unsustainable (e.g., one would
have to lock coins in each channel). For instance, payment
channel networks (PCNs) [28, 23] link payment channels to
each other, forming a graph through which payments can be
routed along multi-hop paths. Payment channel hubs [17] offer
a different connectivity solution, with an untrusted third party
acting as proxy between any pair of users and yet unable to
compromise either the security or the privacy of transactions.
Payment channels also serve as building block for atomic
swaps [16] where two users can atomically trade their coins.

On a technical level, the key challenge in designing Bitcoin-
compatible payment channels is how to revoke old states: as
previously mentioned, the distribution of coins in the channel
changes over time due to payments between the end-points,
which poses the problem of how to prevent one of the two
parties from publishing an old, financially more advantageous,
state on the blockchain. The state-of-the-art approach, put
forward in the Lightning Network, is based on a punishment
mechanism which allows the cheated party to claim all coins
from the channel. The current cryptographic realization, how-

ever, suffers from two central drawbacks, which undermine its
ability to cater for the growing number of applications built
on top of them:

State duplication. In order to protect parties from each
other, the state of the channel is duplicated. Each copy has
a built in punishment mechanism for one of the parties.
State updates have to be propagated on both duplicates,
leading to cumbersome and expensive protocols. This issue
becomes even more pressing when users decide to use the
same channel for multiple applications (e.g., [11]), which they
need to update independently in parallel. For that, the channel
is recursively split into sub-channels (with each additional
application requiring a further sub-channel splitting), each of
which again contains two copies of the state to faithfully
point out the misbehaving user. This unfortunately makes
the number of transactions ruling the distribution of coins to
grow exponentially in k where k is the number of off-chain
applications built on top of each other.

Output-based revocation. Since each (sub-)channel can
be used to process multiple applications, each corresponding
(sub-)channel state may contain multiple outputs defining how
coins can be spent. The current punishment approach follows
a “punish-per-output” pattern which means that if an old state
appears on the blockchain, the cheated party has to claim
money from each output of the state separately, leading to
a possibly large number of on-chain transactions, linear in the
number of applications represented in the revoked state.

This state-of-affairs leads to the following question: is it
possible to design a simple, efficient, and expressive Bitcoin-
compatible payment channel, i.e., one that reduces the channel
state to be stored by each party as well as the revocation
overhead on the blockchain to a minimum, while supporting
a large class of off-chain applications?

a) Our contributions: In this work, we give a positive
answer to the above question, designing and formalizing a
novel payment channel scheme. Concretely, our contributions
are summarized below.
• We introduce the notion of generalized channels, which

generalizes payment channels to support any application
expressed in the scripting language of the underlying
blockchain, thereby enhancing their expressiveness. One
may view a generalized channel as a 2-party ledger for
off-chain operations offering the same functionality as the
underlying blockchain. Hence, our construction extends
the concept offered by state channels for Ethereum [24,
10] to cryptocurrencies with limited scripting capabilities
such as Bitcoin.

• We design a novel revocation mechanism, which relies
on adaptor signatures [22], to avoid state duplication
thereby reducing the number of states (and thus the
communication complexity) of off-chain protocols from
exponential to linear in the number of applications. Addi-
tionally, our revocation mechanism based on punish-then-
split enables revocation through a single output (and thus
a single transaction), thereby reducing the overhead on
the blockchain from linear to constant.

• We provide a cryptographic instantiation of generalized
channels based on ECDSA-based adaptor signatures as
well as Schnorr-based adaptor signatures. Our crypto-
graphic instantiation is thus supported by virtually all
cryptocurrencies, including Bitcoin.

• We formalize the security and functionality of generalized
channels as ideal functionalities in the Universal Com-
posability (UC) framework [6] and prove the security of
our construction in the UC framework. While doing so,
we provide the first (game-based) security definition for
adaptor signatures. We believe that the formalization of
adaptor signatures is of independent interest.

• We implemented our protocols and conducted an experi-
mental evaluation, demonstrating how to use generalized
channels to implement popular off-chain applications,
like payment channel network and channel splitting, and
characterizing the gains in performance as compared to
the construction from the Lightning Network.
b) Organization: The rest of the paper is organized as

follows. In Section II, we introduce the required background
and overview our solution. In Section III, we formally define
generalized channels and our model in the UC framework.
In Section IV, we introduce the adaptor signatures and
the (game-based) security definitions. In Section V, we de-
scribe our cryptographic instantiation of generalized channels.
In Section VI, we show how generalized channels can be
leveraged to build different off-chain applications. In Sec-
tion VII, we analyze the performance of generalized channels.
We conclude in Section VIII.

II. BACKGROUND AND SOLUTION OVERVIEW

A. Background and notation

Throughout this work, we use the following notation for
attribute tuples. Let T be a tuple of values which we call
attributes. Each attribute in T is identified using a unique
keyword attr and referred to as T.attr.

a) Outputs and transactions: In this work, we focus
on blockchains based on the Unspent Transaction Output
(UTXO) model, such as Bitcoin. In the UTXO model, coins
are held in outputs. Formally, an output θ is an attribute
tuple (θ.cash, θ.ϕ), where θ.cash denotes the amount of coins
associated to the output and θ.ϕ denotes the conditions that
need to be satisfied to spend the output. The condition θ.ϕ can
contain any script supported by the considered blockchain. We
say that a user P controls or owns an output θ if θ.ϕ contains
a signature verification w.r.t. the public key of P .

A transaction transfers coins across outputs meaning that
it maps (possibly multiple) existing outputs to a list of new
outputs. To avoid confusion, the existing outputs that fund
the transactions are called transaction inputs. Formally, a
transaction tx is an attribute tuple consisting of the follow-
ing attributes (tx.txid, tx.Input, tx.Output, tx.Witness). The
attribute tx.txid ∈ {0, 1}∗ is the identifier of the transaction
and is calculated as tx.txid := H([tx]), where H is a hash
function modeled as a random oracle and [tx] is the body of

the transaction defined as [tx] := (tx.Input, tx.Output). The
attribute tx.Input is a vector of strings identifying all inputs of
tx. The attribute tx.Output = (θ1, . . . , θn) is a vector of new
outputs. Finally, the attribute tx.Witness ∈ {0, 1}∗ contains
the witness of the transaction allowing to spend the inputs.

To ease the readability, we illustrate the transaction flows
throughout the paper in the form of charts. Let us here define
and explain the symbols and notation used in the charts. A
transaction is represented as a rectangle with rounded corners.
Doubled edge rectangles represent transactions published on
the blockchain, while single edge rectangles are transactions
that could be published on the blockchain but they are not
(yet). Transaction outputs are depicted as a box inside the
transaction. The value of the output is written inside the output
box and the output condition is written above the arrow coming
from the output.

Conditions of transaction outputs might be fairly complex
and hence it would be cumbersome to spell them out above
the arrows. Instead, for conditions that are used frequently, we
define the following abbreviated notation. If the output script
contains (among other conditions) signature verification w.r.t.
some public keys pk1, . . . , pkn, we write all the public keys
below the arrow and the remaining conditions above the arrow.
Hence, information below the arrow denotes “who owns the
output” and information above denotes “additional spending
conditions”. If the output script contains a check of whether a
given witness hashes to a predefined hash value h, we express
this by simply writing the hash value h above the arrow.
Moreover, if the output script contains a relative time lock,
i.e. a condition that is satisfied if and only if at least t rounds
passed since the transaction was published, we write the string
“+t” above the arrow. Finally, if the output script ϕ can be
parsed as ϕ = ϕ1 ∨ · · · ∨ ϕn for some n ∈ N, we add a
diamond shape to the corresponding transaction output. Each
of the subconditions ϕi is then written above a separate arrow.
An example is given in Fig. 1.

tx

x1

x2

h

pkA

+t

pkA, pkB

tx′ x

ϕ1

ϕ2

ϕ3

Fig. 1. (Left) Transaction tx is published on the blockchain. The output of
value x1 can be spent by a transaction containing a preimage of h and signed
w.r.t. pkA. The output of value x2 can be spent by a transaction signed w.r.t.
pkA and pkB but only if at least t rounds passed since tx was accepted
by the blockchain. (Right) Transaction tx′ is not published on the ledger. Its
only output, which is of value x, can be spent by a transaction whose witness
satisfies the output condition ϕ1 ∨ ϕ2 ∨ ϕ3.

b) Payment channels: A payment channel enables sev-
eral transactions between two users without committing every
single transaction to the blockchain. The cornerstone of pay-
ment channels is depositing coins into an output controlled
by two users, who then authorize new deposit balances in a
peer-to-peer fashion while having the guarantee that all coins
are refunded at a mutually agreed time. In a bit more detail, a
payment channel has three operations: open, update and close.

First, assume that Alice and Bob want to create a pay-
ment channel with an initial deposit of xA and xB coins
respectively. For that, Alice and Bob agree on a funding
transaction (that we denote by TXf) that sets as inputs two
outputs controlled by Alice and Bob holding xA and xB coins
respectively and transfers them to an output controlled by both
Alice and Bob. When TXf is added to the blockchain, the
payment channel between Alice and Bob is effectively open.

Assume now that Alice wants to pay α ≤ xA coins to
Bob. For that, they create a new commit transaction TXc
representing the commitment from both users to the new
channel state. The commit transaction spends the output of
TXf into two new outputs: (i) one holding xA − α coins
controlled by Alice; and (ii) the other holding xB + α coins
controlled by Bob. Finally, parties exchange the signatures on
the commit transaction. At this point, Alice (resp. Bob) could
add TXc to the blockchain. Instead, they keep it locally in
their memory and overwrite it when they agree on another
commitment transaction TXc representing a newer channel
state. This, however, leads to several commitment transactions
that can possibly be added to the blockchain. Since all of them
are spending the same output, only one can be accepted by the
blockchain. Since it is impossible to prevent a malicious user
from publishing an old commit transaction, payment channels
require a mechanism that punishes such behavior.

Lightning Network [28], the state-of-the-art payment chan-
nel network for Bitcoin, implements such mechanism by
introducing two commitment transactions per channel update,
each of which contains a punishment mechanism for one
of the users. In more detail (see also Fig. 2), the output
of TXAc representing Alice’s balance in the channel has a
special condition. Namely, it can be spent by Bob if he
presents a preimage of a hash value hA or by Alice if certain
number of rounds passed since the transaction was published.
During a channel update, Alice chooses a value rA, called the
revocation secret, and presents the hash hA := H(rA) to Bob.
Knowing hA, Bob can create and sign the commit transaction
TXAc with the built in punishment for Alice (analogously for
Bob and TXBc). During the next channel update, parties first
commit to the new state by creating and signing TX

A
c and TX

B
c,

and then revoke the old state by sending the revocation secrets
to each other thereby enabling the punishment mechanism. If
a malicious Alice now publishes the old commit transaction
TXAc, Bob can spent both of its outputs and hence claim all
coins locked in the channel.

B. Solution Overview

The goal of our work is to extend the idea of payment
channels such that parties can perform essentially any op-
eration that they could do on-chain and not only pay to
each other. Technically, this means that we want the commit
transaction to contain arbitrary many outputs with arbitrary
conditions (as long as they are supported by the underlying
blockchain). The main question we need to answer when
designing such channels, which we call generalized channels,
is how to implement the revocation mechanism in this case.

TXf

xA + xB

publishable
by A

publishable
by B

TXAc

xA

xB

TXBc
xB

xA

spendable by B
knowing rA

spendable by A
knowing rB

pkA, pkB

pkB

+∆

pkA

hA

pkB

pkA

+∆

pkB

hB

pkA

Fig. 2. A Lightning style payment channel where A has xA coins and B
has xB coins. The values hA and hB correspond to the hash values of the
revocation secrets rA and rB . The value of ∆ upper bounds the time needed
to publish a transaction on a blockchain.

a) Revocation per update: The first idea would be to ex-
tend the revocation mechanism of payment channels explained
above such that each output of TXAc contains a punishment
mechanism for Alice (analogously for Bob). This approach
is taken by the Lightning network [28] whose channels sup-
port (multiple) hash-time lock payments.1 While this solution
works, it has several disadvantages: (i) If one party, say Alice,
cheats and publishes an old commit transaction TXAc, Bob has
to spend all outputs of TXAc in order to punish Alice for her
misbehavior. Although Bob could group some of them within
a single transaction (up to the transaction size limit), he might
be forced to publish multiple transactions thereby paying high
transaction fees in order to punish Alice; (ii) such revocation
mechanism requires a high on-chain footprint not only for TXAc,
but also for Bob to get the coins from the outputs.

Our goal is to design a punishment mechanism whose on-
chain footprint and potential transaction fees are independent
of the channel state, i.e., the number and type of outputs
in the channel. To this end, we propose the punish-then-
split mechanism which separates the punishment mechanism
from the actual outputs. In a nutshell, the commit transaction
TXAc has now only one output dedicated to the punishment
mechanism which can be spent (i) immediately by Bob, if he
proves that the commit transaction was old (i.e. he knows the
revocation secret rA of Alice); or (ii) after certain number of
rounds by a split transaction TXAs controlled by both parties and
containing all the outputs of the channel (i.e. representing the
channel state). Hence, if TXAc is published on the blockchain,
Bob has some time to punish Alice if the commit transaction
was old. If Bob does not use this option, any of the parties
can publish the split transaction TXAs representing the channel
state. Analogously for TXBc.

b) One commit transactions per channel update: An-
other drawback of the Lightning style revocation mechanism
is the need for two commit transactions for the same channel

1Hash-time lock payment is a conditional payment that is performed
conditioned on the receiver presenting a preimage of a hash function before
a certain time.

state. While this is not an issue for simple payment channels,
for generalized channels it might cause redundancy in terms
of communication and computational costs. This comes from
the fact that generalized channels support arbitrary output
conditions and hence can be used as a source of funding for,
e.g., another off-chain channel as we discuss later in this work
(see Section VI). Such off-chain channel would, however,
have to “exist” twice. Once considering TXAc being eventually
published on-chain and once considering TXBc. Therefore, a
natural goal is to construct generalized channels that require
only one commit transaction.

The naive approach to design such a single commit transac-
tion TXc would be to simply “merge” the transactions TXAc and
TXBc. Such TXc could be spent (i) by Alice if she knows Bob’s
revocation secret; (ii) by Bob if he knows Alice’s revocation
secret or (iii) by the split transaction TXs representing the
channels state after some time. This simple proposal does
not work, however, since it allows parties to misuse the
punishment mechanism as follows. A malicious Alice could
publish an old commit transaction TXc and since she knows
Bob’s revocation secret, she could immediately try to punish
Bob. In order to prevent such undue punishment of honest
Bob, we need to make sure that Alice can use the punishment
mechanism only if it was Bob publishing TXc. In other words,
our punishment mechanism built in TXc requires the punishing
party to prove that (i) this commit transaction was old and (ii)
this commit transaction was published by the other party.

The main idea how to implement the requirement (ii), is to
force the party publishing TXc to reveal some secret, which we
call publishing secret, that could be used by the other party as a
proof. We achieve this by leveraging the concept of an adaptor
signature scheme – a signature scheme that allows a party to
pre-sign a message w.r.t. some statement Y of a hard relation.2

Such pre-signature can be adapted into a valid signature by
anyone knowing a witness for the statement Y . Moreover,
knowing both the pre-signature and the adapted full signature,
it is possible to extract a witness for Y . In our context, adaptor
signatures allow parties of the generalized channels to express
the following: “I give you my pre-signature on TXc which you
can turn into a valid signature and publish TXc on-chain. But
this will reveal your publishing secret to me.”

To conclude, our solution, depicted in Fig. 3, requires only
one commit transaction TXc per update. The commit transac-
tion has one output that can be spent (i) by Alice if she knows
Bob’s revocation secret rB and publishing secret yB ; (ii) by
Bob if he knows Alice’s revocation secret rA and publishing
secret yA or (iii) by the split transaction TXs representing the
channels state after some time. In the depicted construction
we assume that that the statement/witness pairs used for
the adaptor signature scheme are public/secret keys of the
blockchain signature scheme. Hence, testing if a party knows
a publishing secret can be done by requiring a valid signature
w.r.t. this public key. Let use emphasize that public/secret keys

2On a high level, a statement/witness relation is hard, if given a statement
Y is it computationally hard to find a witness y.

TXf

xA + xB

publishable by
A, reveals yA

publishable by
B, reveals yB

TXc

xA + xB TXs ...

x1

xn

spendable by B
knowing rA, yA

spendable by A
knowing rB , yB

pkA, pkB

pkB ,YA

hA

pkA,YB

hB

+∆

pkA, pkB

ϕ1

ϕn

Fig. 3. A generalized channel in the state ((x1, ϕ1), . . . , (xn, ϕn)). The
values hA and hB correspond to the hash values of the revocation secrets
rA and rB . The value of ∆ upper bounds the time needed to publish a
transaction on a blockchain. If TXc is published by A, publishing secret yA
corresponding to YA is revealed. If TXc is published by B, publishing secret
yB corresponding to YB is revealed.

can also be used for the revocation mechanism instead of
the hash/preimage pairs. This is actually preferable since the
punishment output script will only consist of signatures and
thereby we require less complex scripting language.

III. GENERALIZED CHANNELS

In this section we formalize the notion of generalized
channels and their functionality. We first introduce some basic
notation and our security model which closely follows the
previous works on off-chain channels [8, 9, 10].

A. Notation and security model

To formally model the security of our channel construction,
we use a synchronous version of the global UC framework
(GUC) [7] which extends the standard UC framework [6] by
allowing for a global setup. Monetary transactions are handled
by a global ledger L(∆,Σ), where ∆ is an upper bound on
the blockchain delay (number of rounds it takes to publish a
transaction) and Σ defines the signature scheme used by the
blockchain. We denote by P the set of all parties participating
in the protocols considered in this work. For more details about
our model, we refer the reader to Appendix B.

We define a generalized channel γ as an attribute tuple
(γ.id, γ.users, γ.cash, γ.st), where γ.id ∈ {0, 1}∗ is the iden-
tifier of the channel, γ.users ∈ P2 defines the identities of
the channel users, γ.cash ∈ R≥0 represents the total amount
of coins locked in this channel and γ.st = (θ1, . . . , θn) is the
state of the channel composed of a list of outputs. Each output
θi has two attributes: the value θi.cash ∈ R≥0 representing
the amount of coins and the function θi.ϕ : {0, 1}∗ → {0, 1}
representing the spending condition of the output. For conve-
nience, we define a function γ.otherParty : γ.users→ γ.users
defined as γ.otherParty(P) := Q for γ.users = {P,Q}.

B. Ideal Functionality

We capture the desired functionality of a generalized chan-
nel protocol as an ideal functionality F interacting with parties
from the set P , with the adversary S (called the simulator)

and observes the global ledger functionality L. In a bit more
detail, if a party wants to perform an action (such as open a
new channel), it sends a message to F who executes the action
and informs the party about the result. The execution might
leak information to the adversary who may also influence the
execution. The possible leakage and influence are modeled via
the interaction with S. Finally, F can observe the global ledger
and hence verify that a certain transaction appeared on-chain
or that a given party owns certain amount of coins. The latter
is done by checking if there exists an unspent output whose
condition requires signature of (only) the given party P . We
denote such script One–SigpkP

.
As a first step towards defining our functionality, we identify

the security and efficiency notions of interest that a generalized
channel functionality should provide. To this end, we use the
following terminology. A successful update/create means that
both parties in γ.users output the message UPDATED/CREATED.
In addition a state st is called enforced on the ledger if a
transaction with this state appears on the ledger.
Consensus on creation: A channel γ can be successfully
created if and only if both parties in the set γ.users agree.
Consensus on update: Parties in γ.users reach agreement
on channel update acceptance or rejection after an a-priori
bounded number of rounds (the bound may depend on the
blockchain delay ∆). Moreover, a channel γ can be success-
fully updated if and only if both parties in the set γ.users agree
with the update.
Instant finality with punish: If a channel γ is successfully
updated to the state γ.st and this is the latest successful update,
then an honest party P ∈ γ.users has the guarantee that either
γ.st can be enforced on the ledger or P can enforce a state
where she gets all γ.cash coins.
Optimistic update: If both parties in γ.users are honest, a
successful update takes a constant number of rounds (inde-
pendent of the blockchain delay ∆). In other words, if both
parties are honest, channel update is performed without any
blockchain interaction.

Having the guarantees identified above in mind, we now
design our ideal functionality F . We assume that F maintains
a set Γ, where it stores created channels in their latest state and
the corresponding funding transaction tx. We sometimes treat
Γ as a function which on input id outputs (γ, tx) s.t. γ.id = id
if such channel exists and ⊥ otherwise. To keep F generic, we
parameterized it by two values T and k – both of which must
be independent of the blockchain delay ∆. On a high level,
the value T upper bounds the maximal number of consecutive
off-chain communication rounds between channel users. Since
different parts of the protocol might require different amount
of communication rounds, the upper bound T might not be
reached in all steps. For instance, channel creation might
require more communication rounds than old state revocation.
To this end, we give the power to the simulator to “speed-
up” the process when possible. The parameter k defines the
number of ways the channel state γ.st can be published on
the ledger. As discussed in Section II, in this work we present
a protocol realizing the functionality for k = 1 (see Fig. 3).

Lightning style generalized channels (see Fig. 2) would be
a candidate protocol for k = 2. Before we present F(T, k)
formally, we discuss it on a high level and argue why it
captures the aforementioned security and efficiency properties.
In the text below, we abbreviate F := F(T, k).

a) Create: If F receives a message of the form (CREATE,
γ, tidP) from both parties in γ.users within T rounds, it
expects a channel funding transaction to appear on the ledger
L within ∆ rounds. Such transaction must spend both funding
sources (defined by transaction identifiers tidP , tidQ) and
containing one output of the value γ.cash. If this is true, then
F stores this transaction together with the channel γ in the
set Γ and informs both parties about the successful channel
creation via the message CREATED. Since a CREATE message
is required from both parties, “consensus on creation” holds.

b) Update: The channel update is initiated by one of the
parties P (called the initiating party) via a message (UPDATE,
id , ~θ, tstp). The parameter id identifies the channel to be
updated, ~θ represents the new channel state and tstp denotes
the number of rounds needed by the parties to setup off-chain
objects (e.g. new channels or hash-time lock contracts) that are
being built on top of the channel via this update request. The
update is structured into two phases: (i) the prepare phase, and
(ii) the revocation phase. Intuitively, the prepare phase models
the fact that both parties first agree on the new channel state
and get time to setup the off-chain objects on top of this new
state. The revocation phase models the fact that an update is
only completed once the two parties invalidate the previous
channel state. We detail these two phases in the following.

The prepare phase starts when F receives a vector of
transaction identifiers ~tid = (tid1, . . . , tidk) from S .3 In
the optimistic case it is completed within 3T + tstp rounds
and ends when the initiating party P receives an UPDATE–OK
message from F . The setup phase can be aborted by both the
initiating party P and the other party Q. In the ideal world
this is achieved by P not sending the SETUP–OK and by Q not
sending the UPDATE–OK message, respectively. This models
two things. Firstly, the fact that Q might not agree with the
proposed update and secondly, the fact that setting up off-
chain objects might fail in which case parties want to abort the
channel update. The abort may also result in a forceful closing
of the channel via the subprocedure ForceClose (which we
discuss further below). It happens when one of the parties has
sufficient information to enforce the new state on-chain, while
the other does not.

In order to complete the update, the revocation phase is
executed. The functionality expects to receive the REVOKE

message from both parties within 2T rounds, in which case it
updates the channel state in Γ(id) accordingly and informs
both parties about the successful updated via the message
UPDATED. If one of the messages does not arrive, the sub-
procedure ForceClose is called.

3For technical reasons, ideal functionality cannot sign transactions and thus
it can also not prepare the transaction ids (which is the task of the simulator).

To conclude, the possibility for forceful closing guarantees
the security property “consensus on update”. Moreover, in case
both parties are honest, the duration of an successful update
is independent of the ledger delay ∆, hence the efficiency
property “optimistic update” is satisfied.

c) Close: Any of the two parties can request closure of
the channel via the message (CLOSE, id), where id identifies
the channel to be closed. In case both parties request closure
within T rounds, peaceful closure is expected meaning that
a transaction, spending the channel funding transaction and
whose output corresponds to the latest channel state γ.st,
should appear on L within ∆ rounds. In case only one of
the parties requests closing, the functionality executes the
ForceClose subprocedure in which case such transaction is
supposed to appear on L within 3∆ rounds. In both cases, if
the funding transaction is not spent before a certain round, an
ERROR message is returned.

d) Punish: In order to guarantee “instant finality with
punishments”, parties continuously monitor the ledger and
apply the punishment mechanism if misbehavior is detected.
This is captured by the functionality in the part “Punish” which
is executed at the end of each round. The functionality checks
if a funding transaction of some channel was spent. If yes,
then it expects one of the following to happen: (i) a punish
transaction appears on L within ∆ rounds, assigning γ.cash
coins to the honest party P ∈ γ.users; or (ii) a transaction
whose output corresponds to the latest channel state γ.st
appears on L within 2∆ rounds, meaning that the channel
is peacefully or forcefully closed. If none of the above is
true, ERROR is returned. Hence, under the condition that no
ERROR was returned, the security property “instant finality with
punish” is satisfied.

e) Simplified formal description: Since we do not aim
to make any claims about privacy, we implicitly assume that
every message that F receives/sends from/to a party is directly
forwarded to S. When F expects S to set certain values,
such as the vector of tid ’s during the update process, and it
does not do so, we implicitly assume that ERROR is returned.
Moreover, we omit several natural checks that one would
expect F to make. For example, messages with malformed
or missing parameters should be ignored, channel instruction
should be accepted only from channel users, etc. We formally
define all those checks as a functionality wrapper Wchecks

in Appendix F. We use the following arrow notation in formal
description below. If we write m

t
↪−→ P , we mean “send the

message m to party P in round t.” and if we write m
t←−↩ P ,

we mean “receive a message m from party P in round t”.
In summary, our functionality formally defined below sat-

isfies the identified security and efficiency properties if no
ERROR occurs. In case of an ERROR, all guarantees may be lost.
Hence, we are interested only in those protocols realizing F
that never output an ERROR.

Ideal Functionality F(T, k)

We abbreviate Q := γ.otherParty(P) for P ∈ γ.users.

Create

Upon (CREATE, γ, tidP)
τ0←−↩ P , let S define T1 ≤ T and:

Both agreed: If already received (CREATE, γ, tidQ)
τ←−↩ Q, where

τ0−τ ≤ T1, wait if in round τ1 ≤ τ+∆+T1 a transaction tx, with
tx.Input = (tidP , tidQ) and tx.Output = (γ.cash, ϕ), appears
on the ledger L. If yes, set Γ(γ.id) := (γ, tx) and (CREATED, γ.id)
τ1
↪−→ γ.users. Else stop.

Wait for Q: Else store the message and stop.

Update

Upon (UPDATE, id , ~θ, tstp)
τ0←−↩ P , let S define T1, T2 ≤ T , parse

(γ, tx) := Γ(id) and proceed as follows:
1) In round τ1 ≤ τ0 + T , let S define ~tid s.t. | ~tid | = k. Then

(UPDATE–REQ, id , ~θ, tstp, ~tid)
τ1
↪−→ Q and (SETUP, id , ~tid)

τ1
↪−→

P .
2) If (SETUP–OK, id)

τ2≤τ1+tstp
←−−−−−−−↩ P , then (SETUP–OK, id)

τ2+T1
↪−−−−→

Q. Else stop.
3) If (UPDATE–OK, id)

τ2+T1←−−−−↩ Q, then (UPDATE–OK, id)
τ2+2T1
↪−−−−−→

P . Else distinguish:
• If Q honest or if instructed by S, stop (update rejected).
• Else execute ForceClose(id) and stop.

4) If (REVOKE, id)
τ2+2T1←−−−−−↩ P , (REVOKE–REQ, id)

τ2+2T1+T2
↪−−−−−−−→ Q.

Else execute ForceClose(id) and stop.

5) If (REVOKE, id)
τ2+2T1+T2←−−−−−−−↩ Q, set γ.st := ~θ and Γ(id) :=

(γ, tx). Then (UPDATED, id , ~θ)
τ2+2T1+2T2
↪−−−−−−−−→ γ.users and stop.

Else distinguish:
• If Q honest, execute ForceClose(id) and stop.
• If Q corrupt, and wait for ∆ rounds. If tx still unspent, then

set ~θold := γ.st, γ.st := {~θold , ~θ} and Γ(id) := (γ, tx).
Execute ForceClose(id) and stop.

Close

Upon (CLOSE, id)
τ0←−↩ P , let S define T1 ≤ T and distinguish:

Both agreed: If you received (CLOSE, id)
τ←−↩ Q, where τ0 − τ ≤

T1, let (γ, tx) := Γ(id) and distinguish:
• If in round τ1 ≤ τ + T1 + ∆ a transaction tx′, with
tx′.Output = γ.st and tx′.Input = tx.txid, appears on L, set
Γ(id) := (⊥, tx), (CLOSED, id)

τ1
↪−→ γ.users and stop.

• If tx is still unspent in round τ + T1 + ∆, output (ERROR)
τ+T1+∆
↪−−−−−→ γ.users and stop.

Wait for Q: Else wait for at most T1 rounds to receive
(CLOSE, id)

τ≤τ0+T1←−−−−−−↩ Q (in that case option “Both agreed” is ex-
ecuted). If such message is not received, execute ForceClose(id)
in round τ0 + T1.

Punish (executed at the end of every round τ0)

For each (γ, tx) ∈ Γ check if L contains tx′ with tx′.Input =
tx.txid. If yes, then distinguish:
Punish: For P ∈ γ.users honest, the following must hold: in

round τ1 ≤ τ0 + ∆, a transaction tx′′ with tx′′.Input = tx′.txid
and tx′′.Output = (γ.cash, One–SigpkP

) appears on L. Then

(PUNISHED, id)
τ1
↪−→ P , set Γ(id) := ⊥ and stop.

Close: Either Γ(id) = (⊥, tx) before round τ0 + ∆ (channels was
peacefully closed) or in round τ1 ≤ τ0 + 2∆ a transaction tx′′,
with tx′′.Output ∈ γ.st and tx′′.Input = tx′.txid, appears on
L (channel is forcefully closed). In the latter case, set Γ(id) :=

(⊥, tx) and (CLOSED, id)
τ1
↪−→ γ.users.

Error: Otherwise (ERROR)
τ0+2∆
↪−−−−→ γ.users.

Subprocedure ForceClose(id)

Let τ0 be the current round and (γ, tx) := Γ(id). If within ∆

rounds tx is still an unspent transaction on L, then (ERROR)
τ0+∆
↪−−−→

γ.users and stop. Else, latest in round τ0 + 3∆, m ∈ {CLOSED,
PUNISHED, ERROR} is output via Punish.

IV. ADAPTOR SIGNATURES

Before we proceed to the formalization of adaptor signa-
tures, we recall some basic notation and definitions.

a) Digital signatures: A signature scheme consists of
three algorithms Σ = (Gen,Sign,Vrfy), where: (i) Gen(1n)
gets as input 1n (n is the security parameter) and outputs the
secret and public keys (sk , pk); (ii) Signsk (m) gets as input
the secret key sk and a message m ∈ {0, 1}∗ and outputs the
signature σ; and (iii) Vrfypk (m;σ) gets as input the public key
pk , a message m and a signature σ, and outputs a bit b.

A signature scheme must fulfill correctness, i.e. it must hold
that Vrfypk (m;Signsk (m)) = 1 for all messages m and valid
key pairs (sk , pk). In this work, we use signature schemes that
satisfy the notion of strong existential unforgeability under
chosen message attack (or SUF–CMA). On a high level,
SUF–CMA guarantees that an adversary on input the public
key pk and with access to a signing oracle, cannot produce a
new valid signature on any message m.

b) Hard relation: We next recall the definition of a hard
relation R with statement/witness pairs (Y, y). Let LR be the
associated language defined as LR := {Y | ∃y s.t. (Y, y) ∈
R}. We say that R is a hard relation if the following holds:
(i) There exists a PPT sampling algorithm GenR(1n) that on
input 1n outputs a statement/witness pair (Y, y) ∈ R; (ii)
The relation is poly-time decidable; (iii) For all PPT A the
probability of A on input Y outputting y is negligible.

c) Non-interactive Zero-Knowledge proof of knowledge:
Finally we recall the definition of a non-interactive zero-
knowledge proof of knowledge with online extractors as
introduced in [12]. The online extractability property allows
for extraction of a witness y for a statement Y from a proof
π in the random oracle model and is useful for models where
the rewinding proof technique is not allowed, such as UC. We
will need this property in order to prove our ECDSA-based
adaptor signature scheme secure. More formally, a pair (P,V)
of PPT algorithms is called a non-interactive zero-knowledge
proof of knowledge with an online extractor for a relation R,
random oracle H and security parameter n if the following
holds: (i) Completeness: For any (Y, y) ∈ R, it holds that
V(Y,P(Y, y)) = 1 except with negligible probability; (ii) Zero
knowledge: There exists a PPT simulator S, which on input
Y can simulate the proof π for any (Y, y) ∈ R. (iii) Online
Extractor: There exist a PPT online extractor K with access
to the the sequence of queries to the random oracle and its
answers, such that given (Y, π), the algorithm K can extract
the witness y with (Y, y) ∈ R. It is shown in [12] how to
instantiate such proof system.

A. Adaptor Signature Definition

Adaptor signatures have been introduced by the cryptocur-
rency community to tie together the authorization of a trans-
action and the leakage of a secret value. An adaptor signature
scheme is essentially a two-step signing algorithm bound to a
secret: first a partial signature is generated such that it can be
completed only by a party knowing a certain secret, with the
complete signature revealing such a secret. More precisely, we
define an adaptor signature scheme with respect to a standard
signature scheme Σ and a hard relation R. For any statement
Y ∈ LR, a signer holding a secret key is able to produce a
pre-signature w.r.t. Y on any message m. Such pre-signature
can be adapted into a valid signature on m if and only if
the adaptor knows a witness for Y . Moreover, if such a valid
signature is produced, it must be possible to extract a witness
for Y given the pre-signature and the adapted signature.

Despite the fact that adaptor signatures have been used in
previous works (e.g. [22] [13] [25]), none of these works has
given a formal definition of the adaptor signature primitive and
its security. As a consequence, in the following we provide the
first formalization of adaptor signatures.

Definition 1 (Adaptor Signature Scheme). An adaptor signa-
ture scheme wrt. a hard relation R and a signature scheme Σ =
(Gen,Sign,Vrfy) consists of four algorithms ΞR.Σ = (pSign,
Adapt, pVrfy,Ext) defined as:
pSignsk (m,Y): is a PPT algorithm that on input a secret key

sk , message m ∈ {0, 1}∗ and statement Y ∈ LR, outputs
a pre-signature σ̃.

pVrfypk (m,Y ; σ̃): is a DPT algorithm that on input a public
key pk , message m ∈ {0, 1}∗, statement Y ∈ LR and
pre-signature σ̃, outputs a bit b.

Adapt(σ̃, y): is a DPT algorithm that on input a pre-signature
σ̃ and witness y, outputs a signature σ.

Ext(σ, σ̃, Y): is a DPT algorithm that on input a signature σ,
pre-signature σ̃ and statement Y ∈ LR, outputs a witness
y such that (Y, y) ∈ R, or ⊥.

In addition to the standard signature correctness, an adaptor
signature scheme has to satisfy pre-signature correctness. In-
formally, it guarantees that an honestly generated pre-signature
wrt. a statement Y ∈ LR is a valid pre-signature and can be
completed into a valid signature from which a witness for Y
can be extracted.

Definition 2 (Pre-signature correctness). An adaptor signature
scheme ΞR,Σ satisfies pre-signature correctness if for every
n ∈ N, every message m ∈ {0, 1}∗ and every state-
ment/witness pair (Y, y) ∈ R, the following holds:

Pr


pVrfypk (m,Y ; σ̃) = 1

∧
Vrfypk (m;σ) = 1

∧
(Y, y′) ∈ R

∣∣∣∣∣∣∣∣∣∣
(sk , pk)← Gen(1n)
σ̃ ← pSignsk (m,Y)
σ := Adaptpk (σ̃, y)
y′ := Extpk (σ, σ̃, Y)

 = 1.

We now define the security properties of an adaptor sig-
nature scheme. We begin with the notion of unforgeability

which is similar to the definition of existential unforgeability
under chosen message attacks but additionally requires that
producing a forgery σ for some message m is hard even given
a pre-signature on m w.r.t. a random statement Y ∈ LR. Let us
emphasize that allowing the adversary to learn a pre-signature
on the forgery message m is crucial since for our applications
unforgeability needs to hold even in case the adversary learns a
pre-signature for m without knowing a corresponding witness
for Y . We formally define the existential unforgeablity under
chosen message attack for adaptor signature (aEUF–CMA
security for short) in Definition 3.

Definition 3 (aEUF–CMA security). An adaptor signature
scheme ΞR,Σ is aEUF–CMA secure if for every PPT ad-
versary A there exists a negligible function ν such that:
Pr[aSigForgeA,ΞR,Σ

(n) = 1] ≤ ν(n), where the experiment
aSigForgeA,ΞR,Σ

is defined as follows:

aSigForgeA,ΞR,Σ
(n)

1 : Q := ∅
2 : (sk , pk)← Gen(1n)

3 : m← AOS(·),OpS(·,·)(pk)

4 : (Y, y)← GenR(1n)

5 : σ̃ ← pSignsk (m,Y)

6 : σ ← AOS(·),OpS(·,·)(σ̃, Y)

7 : return
(
m 6∈ Q ∧ Vrfypk (m;σ)

)

OS(m)

1 : σ ← Signsk (m)

2 : Q := Q∪ {m}
3 : return σ

OpS(m,Y)

1 : σ̃ ← pSignsk (m,Y)

2 : Q := Q∪ {m}
3 : return σ̃

As discussed above, adaptor signatures guarantee that a
valid pre-signature w.r.t. Y can be completed to a valid
signature if and only if the corresponding witness y for Y
is known. An additional property that we will require is
that any valid pre-signature w.r.t. Y (possibly produced by
a malicious signer) can be completed into a valid signature
using the witness y with (Y, y) ∈ R. Notice that this property
is stronger than the pre-signature correctness property from
Definition 2, since we require that even maliciously produced
pre-signatures can always be completed into valid signatures.
The next definition formalizes the above discussion.

Definition 4 (Pre-signature adaptability). An adaptor signa-
ture scheme ΞR satisfies pre-signature adaptability if for any
n ∈ N, any message m ∈ {0, 1}∗, any statement/witness pair
(Y, y) ∈ R, any key pair (sk , pk) ← Gen(1n) and any pre-
signature σ̃ ← {0, 1}∗ with pVrfypk (m,Y ; σ̃) = 1, we have:
Pr[Vrfypk (m;Adapt(σ̃, y)) = 1] = 1.

The aEUF–CMA security together with the pre-signature
adaptability ensure that a pre-signature for Y can be trans-
ferred into a valid signature if and only if the corresponding
witness y is known. The last property that we are interested
in is witness extractability. Informally, it guarantees that a
valid signature/pre-signatue pair (σ, σ̃) for message/statement
(m,Y) can be used to extract the corresponding witness y.

Definition 5 (Witness extractability). An adaptor signature
scheme ΞR is witness extractable if for every PPT adversary
A, there exists a negligible function ν such that the following

holds: Pr[aWitExtA,ΞR
(n) = 1] ≤ ν(n), where the experi-

ment aWitExtA,ΞR,Σ
is defined as follows

aWitExtA,ΞR,Σ
(n)

1 : Q := ∅
2 : (sk , pk)← Gen(1n)

3 : (m,Y)← AOS(·),OpS(·,·)(pk)

4 : σ̃ ← pSignsk (m,Y)

5 : σ ← AOS(·),OpS(·,·)(σ̃)

6 : y′ := Extpk (σ, σ̃, Y)

7 : return (m 6∈ Q ∧ (Y, y′) 6∈ R
8 : ∧ Vrfypk (m;σ))

OS(m)

1 : σ ← Signsk (m)

2 : Q := Q∪ {m}
3 : return σ

OpS(m,Y)

1 : σ̃ ← pSignsk (m,Y)

2 : Q := Q∪ {m}
3 : return σ̃

Let us stress that while the witness extractability experiment
aWitExt looks fairly similar to the experiment aSigForge, there
is one crucial difference; namely, the adversary is allowed to
choose the forgery statement Y . Hence, we can assume that he
knows a witness for Y so he can generate a valid signature on
the forgery message m. However, this is not sufficient to win
the experiment. The adversary wins only if the valid signature
does not reveal a witness for Y .

Definition 6 (Secure Adaptor Signature Scheme). An adaptor
signature scheme ΞR,Σ is secure, if it is aEUF–CMA secure,
pre-signature adaptable and witness extractable.

B. Schnorr-based Adaptor Signature

In this section we recall the Schnorr-based adaptor signature
construction put forward by Poelstra [26], and formally prove
that it satisfies our security definitions.

Let G = 〈g〉 be a cyclic group of prime order q and let
Rg ⊆ G × Zq be a relation defined as Rg := {(Y, y) | Y =
gy}. The adaptor signature construction is defined with respect
to the Schnorr signature scheme ΣSch for the group G and
the relation Rg . We implicitly assume that all algorithms of
the scheme (and the adversary) are parameterized by public
parameters pp := (g, q) and have access to a random oracle
H : {0, 1}∗ → Zq .

For completeness, let us briefly recall the Schnorr signa-
ture scheme ΣSch = (Gen,Sign,Vrfy). The key generation
algorithm samples x ← Zq uniformly at random and returns
X := gx ∈ G as the public key and x as the secret key. The
signing algorithm on input a message m ∈ {0, 1}∗ computes
r := H(X‖gk‖m) ∈ Zq and s := k + rx ∈ Zq , for a
k ← Zq chosen uniformly at random, and outputs a signature
σ := (r, s). The verification algorithm on input a message
m ∈ {0, 1}∗ and signature (r, s) ∈ Zq × Zq , verifies that
r = H(X‖gs ·X−r‖m).

To extend Schnorr signatures to an adaptor signature
scheme, we need a method to produce pre-signatures that de-
pend on the statement Y and reveal the corresponding witness
y once the full signature is published. To this end, the r-
component of a pre-signature is computed as H(X‖gkY ‖m),
and s is computed as in standard Schnorr. To adapt a pre-
signature into a complete signature, we need to adjust the
randomness in s to make it consistent with the randomness

k+y used in the r-component. This is done by adding y to s,
where y is a value s.t. gy = Y . Clearly, given s and the fixed s-
component, we can then efficiently compute the witness y. We
formally define the Schnorr-based adaptor signature scheme
ΞRg,ΣSch

in Fig. 4.

pSignsk (m,Y)

k ←$ Zq
r := H(X‖gkY ‖m)

s̃ := k + r · sk
return (r, s̃)

Ext(σ, σ̃, Y)

(r, s) := σ, (r̃, s̃) := σ̃

y′ := s− s̃
if (Y, y′) ∈ R
then return y′

else return ⊥

pVrfypk (m,Y ; σ̃)

(r, s̃) := σ̃

r′ := H(pk‖gs̃ · pk−r · Y ‖m)

return (r = r′)

Adapt(σ̃, y)

(r, s̃) := σ̃

s := s̃+ y

return (r, s)

Fig. 4. Schnorr-based adaptor signature scheme ΞRg,ΣSch
.

Theorem 1. If the Schnorr signature scheme ΣSch is
SUF–CMA-secure and Rg is a hard relation, then ΞRg,ΣSch

from Fig. 4 is a secure adaptor signature scheme in the ROM.

Remark 1. We note that ΣSch is SUF–CMA-secure under the
assumption that the discrete logarithm problem is hard [20].
However, since we prove the aEUF–CMA-security of ΞRg,ΣSch

by a reduction to SUF–CMA-security of ΣSch, we state the
SUF–CMA-security of ΣSch in Theorem 1.

In order to prove Theorem 1, we reduce both the unforge-
ability and the witness extractability of the adaptor signature
scheme to the strong unforgeability of the standard Schnorr
signature scheme. In this section, we provide a high level
overview of the main technical challenges. For a full proof
we refer the reader to Appendix E.

Suppose there exists a PPT adversary A that wins the
aSigForge (resp. aWitExt) experiment, then we design a
PPT adversary (also called the simulator) S that breaks the
SUF–CMA security. The main technical challenge in both
reductions is that S has to answer queries (m,Y) to OpS

by A. This has to be done with access to the Schnorr signing
oracle, but without knowledge of sk and the witness y. Thus,
we need a method to “transform” full signatures into valid
pre-signatures without knowing y, which seems to go against
the aEUF–CMA-security (resp. witness extractability).

To address this difficulty, we will use the programmability
of the random oracle. Concretely, upon a pre-sign query by A
on some message m, the simulator forwards this message to
its own signing oracle and sends the resulting full signature
back to A. To “convince” A that the reply looks like a valid
pre-signature, we program the random oracle for RO queries
made to verify the pre-signatures. This is possible since the
pre-signature and signature verification differ only in the inputs
to the hash function.

Finally, let us briefly explain why we need that the underly-
ing signature scheme is strongly unforgeable. In the reduction,
S needs to simulate a pre-signature on the target message
m for which a successful A will later produce a forgery. As
described above, this is achieved by querying the underlying
Schnorr signature oracle on message m. When A returns a
full signature for m as its forgery, S can only use this forgery
to break the strong unforgeability of Schnorr.

C. ECDSA-based Adaptor Signature

In this section we present an ECDSA-based adaptor signa-
ture construction that provably satisfies our security definition.
The construction presented here is similar to the construction
put forward by [25], however some modifications are needed
for the security proof.

Recall the ECDSA signature scheme ΣECDSA =
(Gen,Sign,Vrfy) for a cyclic group G = 〈g〉 of prime order q.
The key generation algorithm samples x ←$ Zq and outputs
gx ∈ G as the public key and x as the secret key. The signing
algorithm on input a message m ∈ {0, 1}∗, samples k ←$ Zq
and computes r := f(gk) and s := k−1(H(m) + rx), where
H : {0, 1}∗ → Zq is a hash function modelled as a random
oracle and f : G → Zq .4 The verification algorithm on input
a message m ∈ {0, 1}∗ and a signature (r, s) verifies that
f(gs

−1H(m)Xs−1r) = r. One of the properties of the ECDSA
scheme is that if (r, s) is a valid signature for m, then so is
(r,−s). Consequently, ΣECDSA does not satisfy SUF–CMA
security which we need in order to prove its security. In order
to tackle this problem we build our adaptor signature from
the Positive ECDSA scheme which guarantees that if (r, s) is
a valid signature, then |s| ≤ (q − 1)/2. The positive ECDSA
has already been used in other works such as [2, 21]. This
slightly modified ECDSA scheme is not only assumed to be
SUF–CMA but also prevents having two valid signatures for
the same message after the signing process, which is useful
in practice, e.g. for threshold signature schemes based on
ECDSA. We note that the ECDSA verification accepts valid
positive ECDSA signatures and hence these signatures can
also be used in Bitcoin.

The adaptor signature scheme in [25] is presented with
respect to a relation Rg ⊆ G × Zq defined as Rg :=
{(Y, y) | Y = gy}. The main idea of the construction is
that a pre-signature (r, s) for a statement Y is computed
by embedding Y into the r-component while keeping the
s-component unchanged. This embedding however is rather
involved in ECDSA, since the value s contains a product of
k−1, r and the secret key. More concretely, to compute the pre-
signature for Y , the signer samples a random k and computes
K := Y k and K̃ := gk. It then uses the first value to compute
r := f(K) and sets s := k−1(H(m) + rx). To ensure that the
signer uses the same value k in K and K̃, a zero-knowledge
proof that (K̃,K) ∈ LY := {(K̃,K,) | ∃k ∈ Zq s.t. gk =
K̃ ∧Y k = K} is attached to the pre-signature. We denote the

4Since in ECDSA, the group G consists of elliptic curve points, the function
f is typically defined as the projection to the x-coordinate.

prover of the NIZK as PY and the corresponding verifier as
VY). The pre-signature adaptation is done by multiplying the
value s with y−1, where y is the corresponding witness for
Y . This adjusts the randomness k used in s to ky, and hence
matches with the r value.

Unfortunately, it is not clear how to prove security for the
above scheme for the following reason: Ideally, we would like
to reduce both the unforgeability and the witness extractability
of the scheme to the strong unforgeability of positive ECDSA.
More concretely, suppose there exists a PPT adversary A
that wins the aSigForge (resp. aWitExt) experiment, then we
design a PPT adversary (also called the simulator) S that
breaks the SUF–CMA security. The main technical challenge
in both reductions is that S has to answer queries (m,Y) to
OpS by A. This has to be done with access to the ECDSA
signing oracle, but without knowledge of sk and the witness
y. Thus, we need a method to “transform” full signatures into
valid pre-signatures without knowing y, which seems to go
against the aEUF–CMA-security (resp. witness extractability).

Due to this reason, we slightly modify this scheme. In
particular, we modify the hard relation for which the adaptor
signature is defined. Let R′g consist of pairs (Y, π), where
Y ∈ LRg

is as above, and π is a non-interactive zero-
knowledge proof of knowledge that Y ∈ LRg . Formally, we
define R′g := {((Y, π), y) | Y = gy ∧ Vg(Y, π) = 1} and
denote by Pg the prover and by Vg the verifier of the proof
system for LRg

. Clearly, due to the soundness of the proof
system, if Rg is a hard relation, then so is R′g .

It might seem that we did not make it any easier for the
reduction to learn a witness needed for creating pre-signatures.
However, we exploit the fact that we are in the ROM and
the reduction has to answer random oracle queries of the
adversary. Upon receiving a statement IY := (Y, π) for which
it must produce a valid pre-signature, it uses the random oracle
query table to extract a witness from the proof π. Knowing
the witness y and a signature (r, s), the reduction can compute
(r, s ·y) and execute the simulator of the NIZKY to produce a
consistency proof π. This concludes the protocol description
and the main proof idea. We refer the reader to Appendix E
for the detailed proof of the following theorem.

pSignsk (m, IY)

x := sk

(Y, πY) := IY

k ←$ Zq
K̃ := gk,K := Y k

r := f(K)

s̃ := k−1(H(m) + rx)

π ← PY ((K̃,K), k)

return (r, s̃,K, π)

pVrfypk (m, IY ; σ̃)

X := pk

(Y, πY) := IY

(r, s̃,K, π) := σ̃

u := H(m) · s̃−1

v := r · s̃−1

K′ := guXv

br := (r = f(K))

b := VY ((K′,K), π)

return (br ∧ b)

Ext(σ, σ̃, IY)

(r, s) := σ

(r̃, s̃, K, π) := σ̃

y′ := s−1 · s̃
if (IY , y

′) ∈ R′g
then return y′

else return ⊥
Adapt(σ̃, y)

(r, s̃,K, π) := σ̃

s := s̃ · y−1

return (r, s)

Fig. 5. ECDSA-based adaptor signature scheme.

Theorem 2. If the positive ECDSA signature scheme ΣECDSA

is SUF–CMA-secure and R′g is a hard relation, ΞR′g,ΣECDSA

from Fig. 5 is a secure adaptor signature scheme in the ROM.

V. PROTOCOL DESCRIPTION

We now present a concrete protocol, which we denote Π,
that realizes the channel functionality F(T, k) for T = 3
and k = 1. This is achieved by utilizing an adaptor signa-
ture scheme ΞR,Σ = (pSign,Adapt, pVrfy,Ext) for signature
scheme Σ = (Gen,Sign,Vrfy) used by the underlying ledger
and a hard relation R. Our protocol consists of four subproto-
cols: Create, Update, Close and Punish. Here we explain the
main ideas of the protocol. We refer the reader to Appendix C
for the formal descriptions. To simplify the exposition of the
discussion below, we assume here that statement/witness pairs
of R are valid key pairs of Σ.5

TXf
xA + xB

TXc

xA + xB TXs

xA

xB

pkA, pkB

pkB ,RA,YA

pkA,RB ,YB

+∆

pkA, pkB

pkA

pkB

1. Create [TXf]

tidA−−−→
tidB←−−−

2. Create [TXc]

RA,YA−−−−−→
RB ,YB←−−−−−

3. Create [TXs]

no
communication

6. Sign [TXf]

SignskA
([TXf])

−−−−−−−−→
SignskB

([TXf])

←−−−−−−−−

7. Publish TXf

5. Pre-sign [TXc]

pSignskA
([TXc],YB)

−−−−−−−−−−−→
pSignskB

([TXc],YA)

←−−−−−−−−−−−

4. Sign [TXs]

SignskA
([TXs])

−−−−−−−−→
SignskB

([TXs])

←−−−−−−−−

Fig. 6. Schematic description of the channel creation protocol.

a) Channel creation: In order to create a channel γ,
users of the channel, let us denote them A and B, have
to agree on the body of the funding transaction [TXf], mu-
tually commit to the first channel state defined by γ.st =
((xA, One–SigpkA

), (xB , One–SigpkB
)), and sign and pub-

lish the funding transaction TXf on the ledger. Once TXf
is published, the channel creation is completed. Looking at
Fig. 6, one can summarize the creation process as a step-by-
step creation of transaction bodies from left to right, and then
step-by-step signature exchange on the transaction bodies from
right to left. Let us elaborate on this in more detail.

Step 1: To prepare [TXf], parties need to inform each other
about their funding sources, i.e., exchange the transaction

5Statements in the ECDSA-based adaptor signature can be mapped to public
keys by dropping the second coordinate, i.e., the zero-knowledge proof.

identifiers tidA and tidB . Each party can then locally create
[TXf] with {tidA, tidB} as input and output requiring signature
of both A and B. Step 2: Parties can now start committing to
the initial channel state. To this end, each party P ∈ {A,B}
first generates a revocation public/secret as (RP , rP)← GenR
and publishing public/secret pair (YP , yP) ← GenR. The
public values RP and YP are sent to the other party. Each
party can now locally generate the body of the commit
transaction [TXc] which spends TXf and can be spent by a
transaction satisfying one of the following conditions:
Punish A: It is correctly signed w.r.t. pkB ,YA,RA;
Punish B: It is correctly signed w.r.t. pkA,YB ,RB ;
Channel state: It is correctly signed w.r.t. pkA and pkB , and

at least ∆ rounds have passed since TXc was published.
Steps 3+4: Using the transaction identifier of TXc, parties can
generate and exchange signatures on the body of the split
transaction TXs which spends TXc and whose output is equal to
γ.st (i.e., the coins that are owned by A and B). Step 5: Parties
are now prepared to complete the committing phase by pre-
signing the commit transaction to each other. This means that
party A executes the pSignskA

on message [TXc] and statement
YB and sends pre-signature to B (analogously for B). Step
6: If valid pre-signatures are exchanged (validity is checked
using the pVrfy algorithm), parties exchange signatures on the
funding transaction and post it on the ledger which completes
the channel creation.

The pre-signature adaptability property of Ξ guarantees that
after a successful channel creation, each party P is able to
adapt the pre-signature on [TXc] of the other party by using
the publishing secret value yP (corresponding to YP), sign
[TXc] herself and publish this transaction on the ledger. Unless
parties reveal the revocation secrets to each other, the only
way to spend the posted TXc is to publish TXs representing
the initial channel state.

b) Update: In order to update a created channel γ to a
new state, represented by a vector of output scripts ~θ, parties
have to (i) agree on the new commit and split transaction
that represent the new state and (ii) invalidate the old commit
transaction. Part (i) is very similar to the agreement on the
initial commit and split transaction as described in detail in
the creation protocol (Steps 2-5). There is one major difference
coming from the fact that the new channel state ~θ can contain
outputs that fund other off-chain applications (such as sub-
channels).6 In order to setup those applications, the identifier
of the new split transaction is needed. To this end, parties
first prepare the commit (Steps 2+3) to learn the desired
identifier which they output to the environment and wait for a
confirmation that all applications were setup correctly. If this
is the case, parties execute the second part of the committing
phase (Steps 4+5). To realize part (ii), i.e., activate the
punishment mechanism of the old commit transaction, parties
simply exchange the revocation secrets corresponding to the
previous commit transaction which completes the update.

6This is not the case during channel creation since we assume that the
initial channel state consist of two accounts only.

The question is what happens if one party misbehaves dur-
ing the update meaning that it stops communicating or sends
malformed messages. As long as none of the parties pre-signed
the new commit transaction, i.e. before Step 5, misbehavior
simply implies update failure. A more problematic case is
when the misbehavior occurs after at least one of the parties
pre-signed the new commit transaction. There are multiple
situations to be considered, for example, when one party pre-
signs the new commit but the other does not; or when one
party revokes the old commit and the other does not. In each
of those situations, an honest party ends up in a hybrid state
when the update is neither rejected nor accepted. To ensue
that parties reach an agreement on the update, our protocol
instructs an honest party in a hybrid situation to perform a
force close. This means that the honest party posts the commit
transaction representing the latest valid channel state on the
ledger. Let us emphasize that the above high level description
excludes some technical details which can be found in the
formal protocol description, see Appendix C.

c) Close: The naive way to implement the closing pro-
cedure is to let parties publish the latest commit transaction
parties agreed on, i.e. perform a force close. However, due
to the built-in punishment mechanism, parties have to wait
for a certain number of rounds after such commit transaction
is accepted by the ledger to publish the split transaction
representing the latest channel state.

Our protocol uses a slightly more efficient solution which
eliminates the redundant waiting time for honest parties. When
parties want to close a channel, they first run a “final update”.
On a high level, the final update preserves the latest channel
state but removes the punishment layer. More precisely, parties
agree on a new split transaction that has exactly the same
outputs as the last split transaction but spends the funding
transaction TXf directly (i.e., Steps 2+5 are skipped). Once
parties jointly sign the split transaction, they can publish it on
the ledger which completes the channel closure.

d) Punish: Since we are in the UTXO model, nothing
can stop a corrupt party from publishing old commit transac-
tions. However, the way we designed the commit transaction
enables the honest party to punish such malicious behavior
and get financially compensated. If an honest party A detects
that a malicious party B posted an old commit transaction
TXc, it can react by publishing a punishment transaction which
spends TXc and assigns all coins to A. In order to make such
punishment transaction valid, A must sign it under: (i) its
secret key skA, (ii) B’s publishing secret key yB , and (iii)
B’s revocation secret key rB . The knowledge of the revocation
secret rB follows from the fact that TXc was old, i.e. parties
revealed their revocation secrets to each other. The knowledge
of the publishing secret yB follows from the fact that it was
B who published TXc. Let us elaborate on this in more detail.
Since TXc was accepted by the ledger, it had to include a
signature of A. The only signature A provided to B on TXc
was a pre-signature w.r.t. YB . The unforgeability and witness
extractability properties of Ξ guarantee that the only way B
could produce a valid signature of A on TXc was by adapting

the pre-signature thereby revealing the secret key yB to A.
In Appendix H we prove the following theorem, which

essentially says that the Π protocol is a secure realization, as
defined according to the UC framework, of the F(3, 1) ideal
functionality.

Theorem 3. Let Σ be a SUF–CMA secure signature scheme,
R a hard relation and ΞR,Σ a secure adaptor signature
scheme. Then for any ledger delay ∆ ∈ N, the protocol Π
UC-realizes the ideal functionality F(3, 1).

VI. APPLICATIONS

The F ideal functionality for generalized channels allows
us to abstract from the implementation details of how a
generalized channel is created, updated and closed. We now
provide a generic guideline on how to interact with F in order
to build off-chain applications on top of a generalized channel.
Assume that Alice and Bob already created a channel γ via
F and now want to use it for several applications. For that,
parties have to carry out the following steps.
Initialize: Parties agree on the new state ~θ of γ and the upper
bound tstp on the time required to setup off-chain objects.
Hence, for each application parties need to agree on (i) the
amount of coins they want to invest in the application and the
funding condition; technically, this means that parties define
θi = (θi.cash, θi.ϕ), and (ii) the value ti denoting the maximal
amount of rounds that it takes to setup the corresponding
application. The value tstp is defined as maxi ti, thereby
defining the maximal amount of rounds that it takes to setup
all the applications in parallel.
Prepare: One party sends the message (UPDATE, id , ~θ, tstp)
to F in order to prepare the update. Upon receiving such
message, F responds with tid , an identifier of the transaction
containing the outputs ~θ.
Setup: The parties exchange the application-dependent infor-
mation required to fulfill the conditions {θi.ϕ} according to
the rules of each application.
Complete: Parties inform F about setup completion by
sending SETUP–OK and UPDATE–OK messages. Thereafter, F
requests both parties to revoke the old state of γ which they
do by invoking F on input the message REVOKE. F notifies
the users of the completed update via the message UPDATED.

To conclude, for each application that one wants to build on
top of a generalized channel, the following must be defined: (i)
the amount of coins and the funding conditions of the outputs
as required for the initialize step, (ii) the setup algorithm of
the application and an upper bound on the number of rounds
it takes, as needed for setup step. We remark that the prepare
and complete steps are common to all applications.

We now demonstrate how to use this generic process on
concrete examples by describing their initialize and setup
steps. To avoid any repetition, for each example, we assume
there is a channel γ between parties A and B owning αA and
αB coins and their public keys are pkA and pkB , respectively.

a) Channel splitting [11]: As discussed earlier in this
work, a generalized channel can be split into multiple sub-
channels that can be updated independently in parallel. As-
sume that the parties A and B want to split their channel γ
into two sub-channels γ0 and γ1 with the coin distributions
(βA, βB) and (αA−βA, αB−βB) respectively. In order to do
so, they follow the generic update algorithm described above
with the initialize and setup steps defined as follows:
Initialize Parties create two outputs each of which funds one
of the sub-channels:
• θ0.cash := γ0.cash, θ0.ϕ := One–SigpkA

∧ One–SigpkB

• θ1.cash := γ1.cash, θ1.ϕ := One–SigpkA
∧ One–SigpkB

and set the value tstp := 2 for the required setup steps.
Setup For each sub-channel, parties generate and sign the
commit and split transactions representing the initial channel
state. This procedure, explained in Section V, takes 2 rounds.

b) Payment-channel networks (PCNs) [28, 23, 22]: A
payment-channel network (PCN) enables transitive payments
between two users by leveraging a path of payment channels
between the sender and the receiver. The Lightning Network
implements a so-called multi-hop payment by means of a
script called hash-time lock contract (HTLC). In particular,
we denote by CheckHashy an output condition that can be
spent by providing a value r such that H(r) = y. Using
the same HTLC to update each channel in the payment path,
the Lightning Network ensures that the payment is correctly
carried out. In a bit more detail, the receiver sends to the
sender the value y and keeps locally the value r such that
H(r) = y. Then, the payment starts by updating each channel
from the sender to the receiver so that it locks the payment
amount into an output that can be spent under the condition
CheckHashy . When the channel with the receiver is updated
accordingly, the receiver is sure that he can redeem the coins
by revealing r. In addition, if the receiver never reveals the
value r, the sender eventually gets back the locked coins with
a timeout t condition, denoted by CheckAbsolutet.

The generalized channel construction presented in this work
can be used to implement PCNs. In particular, assume a
payment of β coins through a payment path formed by n
generalized channels. For each channel γ in the path, an update
with the following initialize and setup steps is performed.
Initialize Parties exchange the hash value y, decide on the
timeout value t, and create three outputs (one for the HTLC,
one for the balance of A and one for the balance B):
• θ0.cash := β, θ0.ϕ := (CheckHashy ∧ One–SigpkB

) ∨
(CheckAbsolutet ∧ One–SigpkA

)
• θ1.cash := αA − β, θ1.ϕ := One–SigpkA

• θ2.cash := αB , θ2.ϕ := One–SigpkB

Moreover, the parties set the value tstp := 0 as no setup is
needed (more precisely, each party has enough information to
prepare the transactions locally).

After the successful update of all channels on the path, the
payment of α coins in the PCN is successfully set. A similar
procedure can be carried out then to settle the payment when
the receiver releases the value r such that H(r) = y.

VII. PERFORMANCE ANALYSIS

We created a proof of concept implementation for the
CREATE, UPDATE, CLOSE and PUNISH operations. In a bit more
detail, we utilized the python-bitcoin-utils library to
create the required raw Bitcoin transactions encoded in the Bit-
coin scripting language Script. Furthermore, we successfully
deployed them on the Bitcoin testnet, demonstrating thereby
the compatibility with the current Bitcoin network. The source
code is publicly available.7

We evaluate the different operations for generalized chan-
nels using the following criteria: (i) the number of on- and
off-chain transactions required in the protocols; (ii) the total
amount of bytes that the on- and off-chain transactions sum
up to; and (iii) the estimated cost (i.e. the transaction fee) for
publishing the on-chain transactions required in each protocol.
We remark that the transaction fee in Bitcoin is dependent on
the transaction size. In our calculations, we use the price values
valid at the time of writing: the average transaction fee is 14
satoshis per byte8, or at the current exchange rate of 8869.67
USD per BTC9, 0.00124 USD per byte.

A. Evaluation of multi-hop payments in PCNs

a) Single multi-hop payment: Let us evaluate the sce-
nario, where we carry out one multi-hop payment, once on
top of a Lightning channel and once on top of a generalized
channel. To achieve this, we need three outputs, two containing
the values for each of the parties and one for the HTLC.

A first difference is that in Lightning channels we need to
store these outputs twice, once per commitment. If we were
to update a channel to have one HTLC, we would require
four off-chain transactions in the Lightning construction, two
commitments with three outputs each and one transaction for
the HTLC on each commitment. For the generalized channel
construction, the number of transactions required for such an
update is merely two, one for the commitment transaction and
one for the split containing the three outputs. Note that, in
the latter case, also the outputs need to be stored only once
and that the HTLC does not require an additional transaction.
The difference in off-chain transaction size is 1526 bytes for
Lightning compared to 818 bytes for generalized channels.

A second difference is that, in the Lightning case, we
need a punish mechanism per output. Hence, should an old
commitment transaction get published, we would require two
additional on-chain transactions with a total of 923 bytes
in Lightning compared to only two transactions with 663
bytes in the generalized channel construction (including the
commitment transaction in both cases). The difference for this
is 1.15 USD vs 0.82 USD.

b) Asymptotic analysis: Nodes participating in a pay-
ment channel network typically take part in several, let us say
n, multi-hop payments at once instead of just one. In this case,
the Lightning solution scales even worse, as it requires 2+2·n

7https://github.com/generalized-channels/gc
8https://bitcoinfees.info/
9https://coinmarketcap.com/currencies/bitcoin/

transactions or 706+2 ·n ·410 bytes of off-chain transactions.
With generalized channels, we only need 2 transactions with
a size of 695 + n · 123 bytes.

For punishment, the difference is even more pronounced, as
we reduce the asymptotic complexity from linear to constant.
Specifically, Lightning channels require 2 + n on-chain trans-
actions of 513+n·410 bytes, which cost around 0.64+n·0.51
USD. In generalized channels, the cost for punishment is
independent of the number of HTLCs that are constructed on
top of the channel. It requires 2 transactions with 663 bytes
resulting in a cost of 0.82 USD. These differences can be
observed in Table I for direct comparison.

TABLE I
EVALUATION OF LIGHTNING (LC) AND GENERALIZED CHANNELS (GC)

Operations on-chain off-chain
txs size cost # txs size

update (LC) 0 0 0 2 + 2 · n 706 + 2 · n · 410
update (GC) 0 0 0 2 695 + n · 123
punish (LC) 2 + n 513 + n · 410 0.64 + n · 0.51 0 0
punish (GC) 2 663 0.82 0 0

In Table I, both constructions carry n HTLCs. # txs refers to
the total number of transactions needed either on-chain or off-
chain, size refers to the total number of bytes in all required
on-/off-chain transactions, respectively, cost is in USD and
denotes the estimated cost of publishing the transactions.

B. Evaluation of channel splitting

The comparison between Lightning and generalized chan-
nels in the case of channel splitting is summarized in Table II.
Performing a split in a Lightning channel setting has the
drawback of not only doubling off-chain objects that are
potentially used on these sub-channels, but also the amount of
commitment transactions, i.e., we need to create commitments
for the sub-channels on both commitments of the initial chan-
nel. So if we were to split a channel, the required number of
commitment transactions is four (two for every commitment)
for each sub-channel with a total of 1412 bytes. In our
generalized channel construction it is just one commitment
and one split transaction per sub-channel, which is 695 bytes.

Once a split is performed, the sub-channels are expected
to behave as a normal channel. Say that we want to split
one of these sub-channels again into two: in the Lightning
solution there would now be eight commitments (two for each
of the four commitments) per sub-channel. Observe that after
every recursive split of a channel, the amount of commitment
transactions for the new sub-channel doubles for the Lightning
construction. In the generalized channel construction, instead,
we only need to keep track of one commitment transaction per
sub-channel, therefore the amount of new commitment trans-
actions per split is constant and not exponential. The difference
between storing one and eight commitment transactions is 695
bytes for the generalized vs. 2824 bytes for the Lightning
construction, not even counting any potential off-chain objects
that would need to be stored eight times in the latter case.
The amount of transactions needed for updates doubles for
every split as well. For n splits, the difference would be 2n+1

TABLE II
CHANNEL SPLITTING

txs per sub-channel size
first split (LC) 4 1412
first split (GC) 2 695
nth split (LC) 2n+1 353 · 2n+1

nth split (GC) 2 695

additional commitment transactions in the Lightning setting
against one new commitment and one new split transaction in
the generalized channel setting, per sub-channel.

VIII. CONCLUSION

Payment channels constitute one of the most promising
approaches to tackle the scalability issue of decentralized
blockchains. Despite the conceptually appealing design, which
in principle supports different types of off-chain applications,
existing constructions for Bitcoin-like cryptocurrencies suffer
from a heavy communication complexity as well as on-chain
footprint. This fundamentally undermines the potential of
payment channels to serve as building block for a variegated
multi-application off-chain ecosystem.

In this work, we formalize for the first time the notion
of generalized channels for Bitcoin-like cryptocurrencies, a
generalization of the concept of payment channels that pro-
vides off-chain support for any operation supported by the
underlying blockchain. Besides the gain in expressiveness
and the streamlined design of off-chain applications, general-
ized channels lead to a significant performance improvement,
reducing the communication complexity and the on-chain
footprint in case of disputes to linear and constant, respec-
tively, in the number of applications leveraging the channel.
Additionally, we provide a cryptographic instantiation of a
generalized channel compatible with Bitcoin with provable
security guarantees in the Universal Composability framework.
To this end, we also introduce the first formalization of adaptor
signatures, which we believe is of independent interest.

Generalized channels can be integrated today in the Light-
ning Network and other Bitcoin-compatible off-chain applica-
tions, thereby improving their performance. Most importantly,
we believe generalized channels pave the way for the design
of novel off-chain applications, such as Bitcoin-compatible
virtual channels and more efficient and expressive payment
channel hub constructions, a research direction we intend to
explore in the near future.

ACKNOWLEDGMENTS

This work was partly supported by the German Research
Foundation (DFG) Emmy Noether Program FA 1320/1-1,
by the DFG CRC 1119 CROSSING (project S7), by the
German Federal Ministry of Education and Research (BMBF)
iBlockchain project (grant nr. 16KIS0902), by the German
Federal Ministry of Education and Research and the Hessen
State Ministry for Higher Education, Research and the Arts
within their joint support of the National Research Center

for Applied Cybersecurity ATHENE, by the European Re-
search Council (ERC) under the European Unions Horizon
2020 research (grant agreement No 771527-BROWSEC), by
PROFET (grant agreement P31621), by the Austrian Research
Promotion Agency through the Bridge-1 project PR4DLT
(grant agreement 13808694); by COMET K1 SBA, ABC,
by CoBloX Labs and by the Austrian Science Fund (FWF)
through the Meitner program (project agreement M 2608-
G27).

REFERENCES

[1] C. Badertscher et al. “Bitcoin as a Transaction Ledger:
A Composable Treatment”. In: CRYPTO 2017, Part I.
Ed. by J. Katz and H. Shacham. Vol. 10401. LNCS.
Springer, Heidelberg, Aug. 2017, pp. 324–356.

[2] W. Banasik et al. “Efficient Zero-Knowledge Contingent
Payments in Cryptocurrencies Without Scripts”. In:
ESORICS 2016, Part II. Ed. by I. G. Askoxylakis et al.
Vol. 9879. LNCS. Springer, Heidelberg, Sept. 2016,
pp. 261–280. DOI: 10.1007/978-3-319-45741-3 14.

[3] S. Bano et al. “Consensus in the Age of Blockchains”.
In: CoRR abs/1711.03936 (2017). arXiv: 1711.03936.
URL: http://arxiv.org/abs/1711.03936.

[4] Bitcoin Wiki: Payment Channels. https://en.bitcoin.it/
wiki/Payment channels. 2018.

[5] D. Boneh et al. “Aggregate and Verifiably En-
crypted Signatures from Bilinear Maps”. In: EURO-
CRYPT 2003. Ed. by E. Biham. Vol. 2656. LNCS.
Springer, Heidelberg, May 2003, pp. 416–432.

[6] R. Canetti. “Universally Composable Security: A New
Paradigm for Cryptographic Protocols”. In: 42nd FOCS.
IEEE Computer Society Press, Oct. 2001, pp. 136–145.

[7] R. Canetti et al. “Universally Composable Security with
Global Setup”. In: TCC 2007. Ed. by S. P. Vadhan.
Vol. 4392. LNCS. Springer, Heidelberg, Feb. 2007,
pp. 61–85.

[8] S. Dziembowski et al. “General State Channel Net-
works”. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, October 15-19, 2018.
2018, pp. 949–966.

[9] S. Dziembowski et al. “Multi-party Virtual State Chan-
nels”. In: EUROCRYPT 2019, Part I. Ed. by V. Rijmen
and Y. Ishai. LNCS. Springer, Heidelberg, May 2019,
pp. 625–656. DOI: 10.1007/978-3-030-17653-2 21.

[10] S. Dziembowski et al. “Perun: Virtual Payment Hubs
over Cryptocurrencies”. In: 2019 IEEE Symposium on
Security and Privacy, SP 2019, San Francisco, CA,
USA, May 19-23, 2019. 2019, pp. 106–123.

[11] C. Egger et al. “Atomic Multi-Channel Updates with
Constant Collateral in Bitcoin-Compatible Payment-
Channel Networks”. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications
Security. CCS ’19. ACM, 2019, pp. 801–815.

[12] M. Fischlin. “Communication-Efficient Non-interactive
Proofs of Knowledge with Online Extractors”. In:
CRYPTO 2005. Ed. by V. Shoup. Vol. 3621. LNCS.
Springer, Heidelberg, Aug. 2005, pp. 152–168.

[13] L. Fournier. One-Time Verifiably Encrypted Signatures
A.K.A. Adaptor Signatures. https://github.com/LLFourn/
one-time-VES/blob/master/main.pdf. 2019.

[14] O. Goldreich. Foundations of Cryptography: Volume
1. New York, NY, USA: Cambridge University Press,
2006. ISBN: 0521035368.

[15] L. Gudgeon et al. SoK: Off The Chain Transactions.
Cryptology ePrint Archive, Report 2019/360. https : / /
eprint.iacr.org/2019/360. 2019.

[16] E. Heilman et al. The Arwen Trading Protocols (Full
Version). Cryptology ePrint Archive, Report 2020/024.
https://eprint.iacr.org/2020/024. 2020.

[17] E. Heilman et al. TumbleBit: An Untrusted Bitcoin-
Compatible Anonymous Payment Hub. Cryptology
ePrint Archive, Report 2016/575. http : / / eprint . iacr .
org/2016/575, accepted to the Network and Distributed
System Security Symposium (NDSS) 2017. 2016.

[18] J. Katz et al. “Universally Composable Synchronous
Computation”. In: TCC 2013. Ed. by A. Sahai.
Vol. 7785. LNCS. Springer, Heidelberg, Mar. 2013,
pp. 477–498. DOI: 10.1007/978-3-642-36594-2 27.

[19] A. Kiayias and O. S. T. Litos. A Composable Security
Treatment of the Lightning Network. Cryptology ePrint
Archive, Report 2019/778. https://eprint.iacr.org/2019/
778. 2019.

[20] E. Kiltz et al. “Optimal Security Proofs for Signa-
tures from Identification Schemes”. In: CRYPTO 2016,
Part II. Ed. by M. Robshaw and J. Katz. Vol. 9815.
LNCS. Springer, Heidelberg, Aug. 2016, pp. 33–61.
DOI: 10.1007/978-3-662-53008-5 2.

[21] Y. Lindell. “Fast Secure Two-Party ECDSA Signing”.
In: CRYPTO 2017, Part II. Ed. by J. Katz and H.
Shacham. Vol. 10402. LNCS. Springer, Heidelberg,
Aug. 2017, pp. 613–644.

[22] G. Malavolta et al. “Anonymous Multi-Hop Locks
for Blockchain Scalability and Interoperability”. In:
26th Annual Network and Distributed System Security
Symposium, NDSS 2019, San Diego, California, USA,
February 24-27, 2019. 2019. URL: https://www.ndss-
symposium . org / ndss - paper / anonymous - multi - hop -
locks-for-blockchain-scalability-and-interoperability/.

[23] G. Malavolta et al. “Concurrency and Privacy with
Payment-Channel Networks”. In: ACM CCS 17. Ed. by
B. M. Thuraisingham et al. ACM Press, 2017, pp. 455–
471.

[24] A. Miller et al. “Sprites: Payment Channels that
Go Faster than Lightning”. In: CoRR abs/1702.05812
(2017). URL: http://arxiv.org/abs/1702.05812.

[25] P. Moreno-Sanchez and A. Kate. Scriptless Scripts
with ECDSA. lightning-dev mailing list. https : / /
lists . linuxfoundation . org / pipermail / lightning - dev /
attachments/20180426/fe978423/attachment-0001.pdf.

[26] A. Poelstra. Lightning in Scriptless Scripts. mim-
blewimble team mailing list. https : / / lists . launchpad .
net/mimblewimble/msg00086.html.

[27] A. Poelstra. Scriptless scripts. https : / / download .
wpsoftware.net/bitcoin/wizardry/mw-slides/2017-05-
milan-meetup/slides.pdf. 2017.

[28] J. Poon and T. Dryja. The Bitcoin Lightning Network:
Scalable Off-Chain Instant Payments. Draft version
0.5.9.2, available at https://lightning.network/lightning-
network-paper.pdf. Jan. 2016.

[29] Update from the Raiden team on development progress,
announcement of raidEX. https://tinyurl.com/z2snp9e.
Feb. 2017.

[30] A. Zamyatin et al. SoK: Communication Across Dis-
tributed Ledgers. Cryptology ePrint Archive, Report
2019/1128. https://eprint.iacr.org/2019/1128. 2019.

APPENDIX

A. Related work

a) Adaptor signatures: Poelstra introduced the notion
of adaptor signatures. In a nutshell, an adaptor signature
(AS) is a modified version of a digital signature so that a
valid signature can be created only given a witness for a
cryptographic hardness assumption (e.g., discrete logarithm
problem) [27]. Adaptor signatures have been proven useful
in off-chain applications such as PCNs [22].

Given the utility of AS, there have been some attempts to
formally use them. For instance, Malavolta et al. [22] use AS
as building block to define and realize multi-hop payments
in PCNs. However, they do not define AS as a stand alone
primitive that can be then used in other works. Concurrent
to our work, Fournier [13] attempts to formalize AS as an
instance of one-time verifiable encrypted signatures. Yet, in
their definition the adversary is not given a pre-signature on
the challenge message in the unforgeability and extractability
games. However, in applications including our generalized
channels, the adversary learns a pre-signature on the message
for which it wishes to forge a signature.

Boneh et al. [5] define the notion of verifiably encrypted
signatures (VES). In this setting the signer wishes to show
the verifier that she has signed a message correctly without
revealing the signature. To this end VES can be used in
order to provide an encrypted signature to the verifier who
is guaranteed that the signature inside the encrypted message
is valid. In another similar work, Banasik et al. [2] introduce a
method that allows two parties (buyer and seller) to exchange a
digital asset using cryptocurrencies that do not support Turing
complete programs (smart contracts). The buyer is guaranteed
that he can extract the asset after some time even if the seller
does not cooperate. Neither of the those works provide a
construction that can realize the properties expected from an
AS.

b) Generalized channels: The authors in [19] provide
a formalization of the Lightning Network (LN) in the UC
framework. This formalization is however tailored to the
details of the current LN and cannot be leveraged to formalize

generalized channels as we propose in this work. State chan-
nels enable to execute arbitrary computations off-chain [8, 9,
24]. Moreover, the authors have also provided a formal model
in the UC framework. These constructions, however, require a
highly expressive scripting functionality (e.g., as in Ethereum)
that is not available in many cryptocurrency, including Bit-
coin. Generalized channels instead rely on simpler scripting
functionality supported by Bitcoin, Ethereum and many other
cryptocurrencies.

B. On the usage of the UC-Framework

To formally model the security of our construction, we use
a synchronous version of the global UC framework (GUC) [7]
which extends the standard UC framework [6] by allowing for
a global setup. Since our model is essentially the same as in
[8, 9], parts of this section are taken verbatim from there.

a) Protocols and adversarial model: We consider a
protocol π that runs between parties from the set P =
{P1, . . . , Pn}. A protocol is executed in the presence of an
adversary A that takes as input a security parameter 1n

(with n ∈ N) and an auxiliary input z ∈ {0, 1}∗, and who
can corrupt any party Pi at the beginning of the protocol
execution (so-called static corruption). By corruption we mean
that A takes full control over Pi and learns its internal state.
Parties and the adversary A receive their inputs from a special
entity – called the environment E – which represents anything
“external” to the current protocol execution. The environment
also observes all outputs returned by the parties of the protocol.

b) Modeling time and communication: We assume a
synchronous communication network, which means that the
execution of the protocol happens in rounds. Let us emphasize
that the notion of rounds is just an abstraction which simplifies
our model and allows us to argue about the time complexity
of our protocols in a natural way. We follow [9], which in turn
follows [18], and formalize the notion of rounds via an ideal
functionality Fclock representing “the clock”. On a high level,
the ideal functionality requires all honest parties to indicate
that they are prepared to proceed to the next round before the
clock is “ticked”. We treat the clock functionality as a global
ideal functionality using the GUC model. This means that all
entities are always aware of the given round.

We assume that parties of a protocol are connected via au-
thenticated communication channels with guaranteed delivery
of exactly one round. This means that if a party P sends
a message m to party Q in round t, party Q receives this
message in beginning of round t + 1. In addition, Q is sure
that the message was sent by party P . The adversary can see
the content of the message and can reorder messages that
were sent in the same round. However, it can not modify,
delay or drop messages sent between parties, or insert new
messages. The assumptions on the communication channels
are formalized as an ideal functionality FGDC . We refer the
reader to [9] its formal description.

While the communication between two parties of a protocol
takes exactly one round, all other communication – for exam-
ple, between the adversary A and the environment E – takes

zero rounds. For simplicity, we assume that any computation
made by any entity takes zero rounds as well.

c) Handling coins: We model the money mechanics
offered by UTXO cryptocurrencies, such as Bitcoin, via a
global ideal functionality L using the GUC model. Our
functionality is parameterized by a delay parameter ∆ which
upper bounded in the maximal number of rounds it takes to
publish a valid transaction, and a signature scheme Σ. The
functionality accepts messages from a fixed set of parties P .

The ledger functionality L is initiated by the environment E
via the following steps: (1) E instructs the ledger functionality
to generate public parameter of the signature scheme pp; (2) E
instructs every party P ∈ P to generate a key pair (skP , pkP)
and submit the public key pkP to the ledger via the message
(register, pkP); (3) sets the initial state of the ledger meaning
that it initialize a set TX defining all published transactions.

Once initialized, the state of L is public and can be
accessed by all parties of the protocol, the adversary A and
the environment E . Any party P ∈ P can at any time post
a transaction on the ledger via the message (post, tx). The
ledger functionality waits for at most ∆ rounds (the exact
number of rounds is determined by the adversary). Thereafter,
the ledger verifies the validity of the transaction and adds it
to the transaction set TX. The formal description of the ledger
functionality follows.

Ideal Functionality L(∆,Σ)

The functionality accepts messages from all parties that are in the
set P and maintains a PKI for those parties. The functionality
maintains the set of all accepted transactions TX and all unspent
transaction outputs UTXO. The set V defines valid output conditions.
Initialize public keys: Upon (register, pkP)

τ0←−↩ P and it is the
first time P sends a registration message, add (pkP , P) to PKI.
Post transaction: Upon (post, tx)

τ0←−↩ P , check that |PKI| = |P|.
If not, drop the message, else wait until round τ1 ≤ τ0 + ∆ (the
exact value of τ1 is determined by the adversary). Then check if:
1) The id is unique, i.e. for all (t, tx′) ∈ TX, tx′.txid 6= tx.txid.
2) All the inputs are unspent and the witness satisfies all the

output conditions, i.e. for each (tid , i) ∈ tx.Input, there exists
(t, tid , i, θ) ∈ UTXO and θ.ϕ(tx, t, τ1) = 1.

3) All outputs are valid, i.e. for each θ ∈ tx.Output it holds that
θ.cash > 0 and θ.ϕ ∈ V .

4) The value of the outputs is not larger than the value of the
inputs. More formally, let I := {utxo := (t, tid , i, θ) | utxo ∈
UTXO ∧ (tid , i) ∈ tx.Input}, then

∑
θ′∈tx.Output θ

′.cash ≤∑
utxo∈I utxo.θ.cash

5) The absolute time-lock of the transaction has expired, i.e.
tx.TimeLock ≤ now.

If all the above checks return true, add (τ1, tx) to TX, remove the
spent outputs from UTXO, i.e., UTXO := UTXO\I and add the outputs
of tx to UTXO, i.e., UTXO := UTXO ∪ {(τ1, tx.txid, i, θi)}i∈[n] for
(θ1, . . . , θn) := tx.Output. Else, ignore the message.

Let us emphasize that our ledger functionality is fairly
simplified. In reality, parties can join and leave the blockchain
system dynamically. Moreover, we completely abstract from
the fact that transactions are published in blocks which are
proposed by parties and the adversary. Those and other fea-
tures are captured by prior works, such as [1], that provide

a more accurate formalization of the Bitcoin ledger in the
UC framework [6]. However, interaction with such ledger
functionality is fairly complex. To increase the readability of
our channel protocols and ideal functionality, which is the
main focus on our work, we decided for this simpler ledger.

d) The GUC-security definition: Let π be a protocol with
access to the global ledger L(∆,Σ) and the global clock
Fclock . The output of an environment E interacting with a
protocol π and an adversary A on input 1n and auxiliary input
z is denoted as EXE

L(∆,Σ),Fclock

π,A,E (n, z). Let φF be the ideal
protocol for an ideal functionality F with access to the global
ledger L(∆,Σ) and the global clock Fclock . This means that
φF is a trivial protocol in which the parties simply forward
their inputs to the ideal functionality F . The output of an
environment E interacting with a protocol φF and a adversary
S (sometimes also call simulator) on input 1n and auxiliary
input z is denoted as EXE

L(∆,Σ),Fclock

φF ,S,E (n, z).
We are now ready to state our main security definition

which, informally, says that if a protocol π UC-realizes an
ideal functionality F , then any attack that can be carried
out against the real-world protocol π can also be carried out
against the ideal protocol φF .

Definition 7. We say that a protocol π UC-realizes an ideal
functionality F with respect to a global ledger L := L(∆,Σ)
and a global clock Fclock if for every adversary A there exists
an adversary S such that we have{

EXEL,Fclock

π,A,E (n, z)
}

n∈N,
z∈{0,1}∗

c
≈
{

EXEL,Fclock

φF ,S,E (n, z)
}

n∈N,
z∈{0,1}∗

(where “
c
≈” denotes computational indistinguishability of dis-

tribution ensembles, see, e.g., [14]).

To simplify exposition, we omit the session identifiers sid
and the sub-session identifiers ssid. Instead, we will use
expressions like “message m is a reply to message m′”. We
believe that this approach improves readability.

C. Additional material to channel protocol

We now formally describe the protocol for generalized
channels Π described on high level in Section V. The protocol
internally uses a secure adaptor signature scheme ΞR,Σ =
(pSign,Adapt, pVrfy,Ext) for the ledger signature scheme Σ
and a relation R. We assume that statement/witness pairs of
R are public/secret key of Σ. More precisely, we assume
there exists a function ToKey that takes as input a statement
Y ∈ LR and outputs a public key pk . The function is s.t. the
distribution of (ToKey(Y), y), for (Y, y) ← GenR, is equal
to the distributions of (pk , sk) ← Gen. We emphasize that
both ECDSA and Schnorr based adaptor signatures satisfy
this condition (ECDSA, the ToKey simply drops the NIZK,
for Schnorr ToKey is the identity function). We discuss how
to modify our protocol if this assumption does not hold in
Remark 2 below the formal protocol description. Before we
present our protocols, we introduce some conventions.

We assume that each party P ∈ P maintains a set ΓP of all
open channels together with auxiliary information about the

channel (such as the funding transaction, latest commit trans-
action and corresponding revocation secret etc.). In addition to
the channel set, we assume that each party maintains a set ΘP

containing all revoked commit transactions and corresponding
revocation secretes. Similarly to the the formal description
of the ideal functionality, we make use of a arrow notation
for sending and receiving messages. Moreover, our formal
description excludes some natural check an honest party
should make. Those checks are define as a protocol wrapper
in Appendix G. In the protocol description, we abbreviate
One–Sigpk1

∧ · · · ∧ One–Sigpkn
as Multi–Sigpk1,...,pkn

.
In order to distinguish between the communication between

parties and input/outputs from/to the environment, we use low-
ercase letter for the former and uppercase typewriter typestyle
for the latter. So for example “CREATE” denotes a message
from the environment while “createInfo” denotes a protocol
message.

Generalized channel protocol

Below, we abbreviate Q := γ.otherParty(P) for P ∈ γ.users.

Create

Party P upon (CREATE, γ, tidP)
t0←−↩ E :

1) Set id := γ.id, generate (RP , rP)← GenR, (YP , yP)← GenR

and send (createInfo, id , tidP ,RP ,YP)
t0
↪−→ Q.

2) If (createInfo, id , tidQ,RQ,YQ)
t0+1
←−−−↩ Q, create:

[TXf] := GenFund((tidP , tidQ), γ)

[TXc] := GenCommit([TXf], IP , IQ, 0)

[TXs] := GenSplit([TXc].txid‖1, γ.st)

for IP := (pkP ,RP ,YP), IQ := (pkQ,RQ,YQ). Else stop.
3) Compute sPc ← pSignskP

([TXc],YQ), sPs ← SignskP
([TXs])

and send (createCom, id , sPc , s
P
s)

t0+1
↪−−−→ Q.

4) If (createCom, id , sQc , s
Q
s)

t0+2
←−−−↩ Q, s.t. pVrfypkQ

([TXc],YP ;

sQc) = 1 and VrfypkQ
([TXs]; s

Q
s) = 1, sPf ← SignskP

([TXf])

and send (createFund, id , sPf)
t0+2
↪−−−→ Q. Else stop.

5) If (createFund, id , sQf)
t0+3
←−−−↩ Q, s.t. VrfypkQ

([TXf]; s
Q
f) = 1,

TXf := ([TXf], {sPf , sQf }) and (post, TXf)
t0+3
↪−−−→ L. Else stop.

6) If TXf is accepted by L in round t1 ≤ t0 + 3 + ∆, set TXc :=
([TXc], {SignskP

([TXc]),Adapt(s
Q
c , yP)}), TXs := ([TXs],

{sPs , sQs }), store ΓP (γ.id) := (γ, TXf, (TXc, rP ,RQ,YQ, s
P
c),

TXs) and (CREATED, id)
t1
↪−→ E .

Update

Party P upon (UPDATE, id , ~θ, tstp)
t0←−↩ E

1) Generate (RP , rP) ← GenR, (YP , yP) ← GenR and send
(updateReq, id , ~θ, tstp,RP ,YP)

t0
↪−→ Q.

Party Q upon (updateReq, id , ~θ, tstp,RP ,YP)
τ0←−↩ P

2) Generate (RQ, rQ)← GenR and (YQ, yQ)← GenR.
3) Set tlock := τ0 + tstp + 4 + ∆, extract TXf from ΓP (id) and

[TXc] := GenCommit([TXf], IP , IQ, tlock)

[TXs] := GenSplit([TXc].txid‖1, ~θ)

where IP := (pkP ,RP ,YP), IQ := (pkQ,RQ,YQ).
4) Sign sQs ← SignskQ

([TXs]), send (updateInfo, id ,RQ,YQ,

sQs)
τ0
↪−→ P , (UPDATE–REQ, id , ~θ, tstp, TXs.txid)

τ0+1
↪−−−→ E .

Party P upon (updateInfo, id , hQ, YQ, s
Q
s)

t0+2
←−−−↩ Q

5) Set tlock := t0 + tstp + 5 + ∆, extract TXf from ΓQ(id) and

[TXc] := GenCommit([TXf], IP , IQ, tlock)

[TXs] := GenSplit([TXc].txid‖1, ~θ),

for IP := (pkP ,RP ,YP) and IQ := (pkQ,RQ,YQ). If

VrfypkQ
([TXs]; s

Q
s) = 1, (SETUP, id , TXs.txid)

t0+2
↪−−−→ E . Else

stop.

6) If (SETUP–OK, id)
t1≤t0+2+tstp
←−−−−−−−−↩ E , compute

sPc ← pSignskP
([TXc],YQ)sPs ← SignskP

([TXs]) and

send (updateComP, id , sPc , s
P
s)

t1
↪−→ Q. Else stop.

Party Q

7) If (updateComP, id , sPc , s
P
s)

τ1≤τ0+2+tstp
←−−−−−−−−−↩ P , s.t.

pVrfypkP
([TXc],YQ; sPc) = 1 and VrfypkP

([TXs]; s
P
s) = 1,

output (SETUP–OK, id)
τ1
↪−→ E . Else stop.

8) If (UPDATE–OK, id)
τ1←−↩ E , pre-sign sQc ← pSign([TXc],YP)

and send (updateComQ, id , sQc)
τ1
↪−→ P . Else send

(updateNotOk, id , rQ)
τ1
↪−→ P and stop.

Party P

9) In round t1 + 2 distinguish the following cases:
• If (updateComQ, id , sQc)

t1+2
←−−−↩ Q, s.t. pVrfypkQ

([TXc],

YP ; sQc) = 1, output (UPDATE–OK, id)
t1+2
↪−−−→ E .

• If (updateNotOk, id , rQ)
t1+2
←−−−↩ Q, s.t. (RQ, rQ) ∈ R, add

ΘP (id) := ΘP (id) ∪ ([TXc], rQ,YQ, s
P
c) and stop.

• Else, execute the procedure ForceCloseP (id) and stop.
10) If (REVOKE, id)

t1+2
←−−−↩ E , parse ΓP (id) as (γ, TXf, (TXc, r̄P ,

R̄Q, ȲQ, s̄
P
Com), TXs) and update the channel space as ΓP (id) :=

(γ, TXf, (TXc, rP ,RQ,YQ, s
P
c), TXs), for TXs := ([TXs],

{sPs , sQs }) and TXc := ([TXc], {SignskP
([TXc]),Adapt(s

Q
c ,

yP)})., and send (revokeP, id , r̄P)
t1+2
↪−−−→ Q. Else, execute

ForceCloseP (id) and stop.

Party Q

11) Parse ΓQ(id) as (γ, TXf, (TXc, r̄Q, R̄P , ȲP , s̄
Q
Com), TXs). If

(revokeP, id , r̄P)
τ1+2
←−−−↩ P , s.t. (R̄P , r̄P) ∈ R, (REVOKE–REQ,

id)
τ1+2
↪−−−→ E . Else execute ForceCloseQ(id) and stop.

12) If (REVOKE, id)
τ1+2
←−−−↩ E as a reply, set

ΘQ(id) :=ΘQ(id) ∪ ([TXc], r̄P , ȲP , s̄
Q
Com)

ΓQ(id) :=(γ, TXf, (TXc, rQ,RP ,YP , s
Q
c), TXs),

for TXs := ([TXs], {sPs , sQs }), TXc := ([TXc], {SignskQ
([TXc]),

Adapt(sPc , yQ)}), and send (revokeQ, id , r̄Q)
τ1+2
↪−−−→ P . In the

next round (UPDATED, id)
τ1+3
↪−−−→ E and stop. Else, in round

τ1 + 2, execute ForceCloseQ(id) and stop.

Party P

13) If (revokeQ, id , r̄Q)
t1+4
←−−−↩ Q s.t. (R̄Q, r̄Q) ∈ R, then set

ΘP (id) := ΘP (id) ∪ ([TXc], r̄Q, ȲQ, s̄
P
Com) and (UPDATED, id)

t1+4
↪−−−→ E . Else execute ForceCloseP (id) and stop.

Close

Party P upon (CLOSE, id)
t0←−↩ E

1) Extract TXf and TXs from ΓP (id) and set:

[TXs] := GenSplit(TXf.txid‖1, TXs.Output)

2) Compute sPs ← SignskP
([TXs]) and send sPs

t0
↪−→ Q.

3) If sQs
t0+1
←−−−↩ Q s.t. VrfypkQ

([TXs]; s
Q
s) = 1, set TXs :=

([TXs], {sPs , sQs }) and send (post, TXs)
t0+1
↪−−−→ L. Else, execute

ForceCloseP (id) and stop.
4) Let t2 ≤ t1 + ∆ be the round in which TXs is accepted by L.

Set ΓP (id) := ⊥, ΘP (id) := ⊥ and send (CLOSED, id)
t2
↪−→ E .

Punish

Party P upon PUNISH
t0←−↩ E :

For each id ∈ {0, 1}∗ s.t. ΘP (id) 6= ⊥:
1) Parse ΘP (id) := {([TX(i)

c], r
(i)
Q ,Y

(i)
Q , s(i))}i∈m and extract γ

from ΓP (id). If for some i ∈ [m], there exist a transaction tx
on L such that tx.txid = TX

(i)
c .txid, then parse the witness as

(sP , sQ) := tx.Witness), where VrfypkP
([tx]; sP) = 1, and set

y
(i)
Q := Ext(sP , s

(i),Y
(i)
Q).

2) Define the body of the punishment transaction [TXpun] as:

TXpun.Input := tx.txid‖1,
TXpun.Output := {(γ.cash, One–SigpkP

)}

3) Sign sy ← Sign
y
(i)
Q

([TXpun]), sr ← Sign
r
(i)
Q

([TXpun]), sP ←
SignpkP

([TXpun]), and set TXpun := ([TXpun], sy , sr , sP). Then

(post, TXpun)
t0
↪−→ L.

4) Let TXpun be accepted by L in round t1 ≤ t0+∆. Set ΘP (id) :=

⊥, ΓP (id) := ⊥ and output (PUNISHED, id)
t1
↪−→ E .

Subprocedures

GenFund(~tid , γ) :
Return [tx], where tx.Input := ~tid and tx.Output :={(
γ.cash, Multi–Sigγ.users

)}
.

GenCommit([TXf], (pkP ,RP ,YP), (pkQ,RQ,YQ), t) :
Let (c, Multi–SigpkP ,pkQ

) := TXf.Output[1] and denote

ϕ1 := Multi–SigToKey(RQ),ToKey(YQ),pkP
,

ϕ2 := Multi–SigToKey(RP),ToKey(YP),pkQ
,

ϕ3 := CheckRelative∆ ∧ Multi–SigpkP ,pkQ
.

Return [tx], where tx.Input = TXf.txid‖1, tx.Output := (c, ϕ1 ∨
ϕ2 ∨ϕ3) and set tx.TimeLock to t if t > now and to 0 otherwise.

GenSplit(tid , ~θ):
Return [tx], where tx.Input := tid and tx.Output := ~θ.

ForceCloseP (id):
Let t0 be the current round.

1) Extract TXc and TXs from Γ(id).
2) Wait until round t1 := max{t0, TXc.TimeLock} and send

(post, TXc)
t1
↪−→ L.

3) Let t2 ≤ t1 + ∆ be the round in which TXc is accepted by the
blockchain. Wait for ∆ rounds to (post, TXs)

t2+∆
↪−−−→ L.

4) Once TXs is accepted by L in round t3 ≤ t2 + 2∆, set
ΘP (id) := ⊥ and ΓP (id) := ⊥ and output (CLOSED, id)

t3
↪−→

E .

Remark 2. In the protocol described in this section, we
assume statement/witness pairs of R are valid keys pair. This
assumption can be eliminated by modifying our protocol as
follows. When creating a new commit transaction, each party
samples the publishing pair (YP , yP)← GenR and chooses a
random revocation secret rP . Thereafter, it computes a hash
of both secrets as hP := H(rP) and HP := H(yP) and
sends YP and the hash values hP , HP to the other party.
In addition, it proves in zero knowledge the consistency of
YP and HP . The punishment mechanism for party P in the
commit transaction then expects (i) a preimage of hP (ii) a
preimage of HP and (iii) valid signature w.r.t. pkQ.

D. Towards fungibility

When designing applications using blockchains, one metric
to keep in mind is fungibility of transactions, which, on high
level, requires all output scripts on the ledger to look the
same. This is a way how to prevent miner blocking certain
applications, e.g. refusing to include any transaction belonging
to an off-chain channel. To this end, off-chain protocol designs
aim to (i) use signature verification only and (ii) reduce the
number of required signature for each transaction.

Threshold cryptography is a very useful tool when it comes
to combining signatures. For example, the number of required
signature in a funding transaction of a payment channel can
be reduced to one by leveraging a 2-of-2 threshold signature
scheme. On a high level, such scheme allows two parties
to jointly generate a key pair and jointly generate signatures
under those keys. Importantly, both parties have to participate
in the signing process to produce a valid signature. Hence,
for the cost of a more complex off-chain protocol, funding
transaction cannot be distinguished from a basic transaction
that assigns coins to a public key.

In order to achieve the same for our generalized channel
construction, we need a 2-of-2 threshold variant of an adaptor
signature scheme. Intuitively, such scheme allows two parties
to jointly generate a pre-signature that (i) could be completed
by an adopter knowing a witness of the statement embedded
in the signature and (ii) once completed, would be a valid
signature 2-of-2 signature. Let us emphasize that concrete
constructions (for both ECDSA and Schnorr) already exists
in the blockchain literature [22, 25, 27]. However, a formal
definition of the primitive and proofs of the schemes are
missing. We leave this as an interesting problem for future
research.

The Lightning network uses combined signatures, a prim-
itive formalized in [19], to achieve fungibility of transaction
needed for the punishment mechanism. Note that if one uses

standard signatures only, a punishing party has to sign the
transaction under (i) her own signing key to authenticate
herself and (ii) revocation secret key to prove that the other
party misbehaved. On high level, a combined signature scheme
allows to combine those two signatures into one while preserv-
ing the security guarantees of both involved parties.

E. Additional material on adaptor signatures

a) Notation and Preliminaries: We denote by N,Z,R the
set of all natural, integer and real numbers respectively. We
denote by x ←$ X the uniform sampling of the variable x
from the set X . Throughout this paper, n denotes the security
parameter and all our algorithms run in polynomial time in n.
By writing x← A(y) we mean that a probabilistic polynomial
time algorithm A (or PPT for short) on input y, outputs x. If A
is a deterministic polynomial time algorithm (DPT for short),
we use the notation x := A(y). A function ν : N → R is
negligible in n if for every k ∈ N, there exists n0 ∈ N s.t. for
every n ≥ n0 it holds that |ν(n)| ≤ 1/nk. Throughout this
work we implicitly assume that functions are negligible in the
security parameter.

b) Digital signatures: A signature scheme consists of
three algorithms Σ = (Gen,Sign,Vrfy) defined as follows:
Gen(1n): is a PPT algorithm that on input a security param-

eter n, outputs a key pair (sk , pk).
Signsk (m): is a PPT algorithm that on input a secret key sk

and message m ∈ {0, 1}∗, outputs a signature σ.
Vrfypk (m;σ): is a DPT algorithm that on input a public key

pk , message m ∈ {0, 1}∗ and signature σ, outputs a bit
b.

Every signature scheme must satisfy signature correctness
meaning that for every n ∈ N and every message m ∈ {0, 1}∗:

Pr
[
Vrfypk (m;Signsk (m)) = 1 | (sk , pk)← Gen(1n)

]
= 1.

The most common security requirement of a signature scheme
is existential unforgeability under chosen message attack
(EUF–CMA security for short). On high level, it guarantees
a malicious party, that does not know the private key, cannot
produce a valid signature on a message m even if he knows
polynomially many valid signatures on messages of his choice
(but different from m). We recall this notion in Definition 8.

Definition 8 (EUF–CMA security). A signature scheme Σ is
EUF–CMA secure if for every PPT adversary A there exists
a negligible function ν such that

Pr[SigForgeA,Σ(n) = 1] ≤ ν(n),

where the experiment SigForgeA,Σ is defined as follows:

SigForgeA,Σ(n)

1 : Q ← ∅
2 : (sk , pk)← Gen(1n)

3 : (m,σ)← AOS(·)(pk)

4 : return
(
m 6∈ Q ∧ Vrfypk (m;σ)

)

OS(m)

1 : σ ← Signsk (m)

2 : Q := Q∪ {m}
3 : return σ

Existential unforgeability does not say anything about the
difficulty of transforming a valid signature on m into another
valid signature on m. Hardness of such transformation is
captured by a stronger notion, called strong existential un-
forgeability under chosen message attack (or SUF–CMA for
short), which we recall next.

Definition 9 (SUF–CMA security). A signature scheme Σ is
SUF–CMA secure if for every PPT adversary A there exists
a negligible function ν such that

Pr[strongSigForgeA,Σ(n) = 1] ≤ ν(n),

where the experiment strongSigForgeA,Σ is defined as follows:

strongSigForgeA,Σ(n)

1 :Q ← ∅
2 :(sk , pk)← Gen(1n)

3 :(m,σ)← AOS(·)(pk)

4 :return
(
(m,σ) 6∈ Q ∧ Vrfypk (m;σ)

)

OS(m)

1 :σ ← Signsk (m)

2 :Q := Q∪ {m,σ}
3 :return σ

The advantage of the adversary A playing the game
strongSigForge is defined as follows:

AdvAstrongSigForge = Pr[strongSigForgeA,Σ(n) = 1]

c) Hard relation: We next recall the definition of a hard
relation R.

Definition 10 (Hard relation). Let R be a relation with
statement/witness pairs (Y, y). Let us denote LR the associated
language defined as LR := {Y | ∃y s.t. (Y, y) ∈ R}. We say
that R is a hard relation if the following holds:
• There exists a PPT sampling algorithm GenR(1n) that on

input the security parameter n outputs a statement/witness
pair (Y, y) ∈ R.

• The relation is poly-time decidable.
• For all PPT adversaries A there exists a negligible

function ν, such that:

Pr

[
(Y, y∗) ∈ R

∣∣∣∣ (Y, y)← GenR(1n),
y∗ ← A(Y)

]
≤ ν(n),

where the probability is taken over the randomness of
GenR and A.

d) Non-interactive Zero-Knowledge: A pair (P,V) of
PPT algorithms is called a non-interactive zero-knowledge
proof of knowledge with an online extractor for a relation
R, random oracle H and security parameter n (in the random
oracle model) if the following holds:
• Completeness: For any (Y, y) ∈ R and any π ←
PH(Y, y) there exists a negligible function ν such that
it holds that Pr[VH(Y, π) = 1] ≥ 1− ν(n).

• Zero Knowledge: There exists a PPT algorithm S, the
zero knowledge simulator, such that for any pair (Y, y)
and any PPT algorithm D the following distributions are
computationally indistinguishable:

– Let π ← PH(Y, y) if (Y, y) ∈ R and π ← ⊥ otherwise.
Output DH(Y, y, π).

– Let π ← S(Y, 1) if (Y, y) ∈ R and π ← S(Y, 0)
otherwise. Output DH(Y, y, π).

• Online Extractor: There exist a PPT algorithm K, the
online extractor, such that the following holds for any
algorithm A. Let (Y, π) ← AH(n) and HA be the
sequence of queries of A to H and Hs answers. Let
y ← K(Y, π,HA). Then it holds that

Pr[(Y, y) 6∈ R ∧ VH(Y, π) = 1] ≤ ν(n)

where ν is a negligible function in the security parameter.
e) Schnorr-based construction:

Theorem 4. Assuming that the Schnorr signature scheme ΣSch

is SUF–CMA-secure and Rg is a hard relation, the adaptor
signature scheme ΞRg,ΣSch

as defined in Fig. 4 is secure in
ROM.

As a first step we prove that our Schnorr adaptor signature
scheme satisfies pre-signature adaptability. In fact, we prove
a slightly stronger statement; namely, that any valid pre-
signature adapts to a valid signature with probability 1.

Lemma 1 (Pre-signature adaptability). The adaptor signature
scheme ΞRg,ΣSch

satisfies pre-signature adaptability.

Proof. Let us fix arbitrary y ∈ Zq , m ∈ {0, 1}∗, pk ∈ G and
(r, s̃) ∈ Zq × Zq . Let us define Y := gy and s := s̃ + y.
Assuming that pVrfypk (m,Y ; (r, s̃)) = 1, we have

r = H(pk‖gs̃pk−rY ‖m)

= H(pk‖gs̃+ypk−r‖m)

= H(pk‖gspk−r‖m)

which implies that Vrfypk (m; (r, s)) = 1.

Lemma 2 (Pre-signature correctness). The adaptor signature
scheme ΞRg,ΣSch

satisfies pre-signature correctness.

Proof. Let us fix arbitrary x, y ∈ Zq and m ∈ {0, 1}∗, and
define X := gx and Y := gy . For σ̃ = (r, s̃)← pSignx(m,Y)
it holds that r = H(X‖gk · Y ‖m) and s̃ = k + rx, for some
k ∈ Zq . Since

H(X‖gs̃X−rY ‖m) = H(X‖gk+rxg−xrY ‖m) = r,

we have pVrfyX(m,Y ; σ̃) = 1. By Lemma 1, this implies
that VrfyX(m,Y ;σ) = 1 for σ = (r, s) := (r, s̃ + y) =
AdaptX(σ̃, y). Finally,

Ext((r, s), (r, s̃), Y) = s− s̃ = (s̃+ y)− s̃ = y

which completes the proof.

Before we prove that the Schnorr-based adaptor signature
scheme satisfies unforgeability, we make the following simple
but useful observation.

Lemma 3. For any σ := (r, s) ∈ Zq × Zq and any y ∈ Zq it
holds that

Adapt(Adapt(σ, y),−y) = σ.

Proof. By definition of Adapt, for any r, s, y ∈ Zq we have

Adapt(Adapt((r, s), y),−y) = Adapt((r, s+ y),−y)

= (r, s+ y + (−y)) = (r, s)

This lemma, in particular, implies that knowing a witness
y one can not only adapt a valid pre-signature w.r.t. gy into a
valid signature but also the other way round.

Lemma 4 (aEUF–CMA security). Assuming that the Schnorr
signature scheme ΣSch is SUF–CMA-secure and Rg is a hard
relation, the adaptor signature scheme ΞRg,ΣSch

as defined in
Fig. 4 is aEUF–CMA secure.

Before we give the formal proof, let us give some intuition
about the main ideas of the proof. Our goal is to reduce the
unforgeability of the adaptor signature scheme to the strong
unforgeability of the standard Schnorr signature scheme, i.e.
we assume that there exists a PPT adversary A winning the
aSigForge experiment and design a PPT adversary (also called
the simulator) S winning the strongSigForge experiment. The
main technical challenge in the reduction is the simulation of
pre-sign queries. Since the reduction has access to the Schnorr
signing oracle, it may ask for a full signature on the given
message. However, it is not immediately clear how this helps
to produce a pre-signature w.r.t. a given statement without
knowing a witness. In fact, this might seem to go against
the intuition that it is infeasible to transform a valid pre-
signature to a full signature and vice versa without knowing
a corresponding witness.

We make use of the fact that the reduction simulates not
only the sign and pre-sign queries but also the queries to
the random oracle. The main trick in simulating pre-sign
queries is to simply forward the full signature to the adversary
and “convince” him that it is a valid pre-signature. In more
detail, we program the random oracle such that queries made
during pre-signature verification are answered as if they were
queries made during signature verification and vice versa. This
is possible since the pre-signature and signature verification
differ only in the string being hashed.

Let us emphasize that no oracle programming is needed for
the pre-signature on the forgery message m. This is because
the statement/witness pair (Y, y) is chosen by the reduction
simulating the aSigForge experiment. The reduction can hence
ask the Schnorr signing oracle for a signature σ on the message
m and adapt it into a valid pre-signature σ̃ itself by executing
Adapt(σ,−y). Now if the adversary outputs a valid signature
σ′, there are two options. Either σ′ 6= σ, in which case the
reduction learns a valid strongSigForge forgery, or σ′ = σ,
in which case the reductions failed. However, the latter case
happens only with negligible probability since it implies that
the adversary, given statement Y , found a witness y and hence
broke the hardness of the relation Rg .

Proof. We prove the lemma by defining several game hops.
Game G0G0G0: This game corresponds to the original

aSigForge, where the adversary A has to come up with a valid
forgery for a message m of his choice, while having access
to pre-sign oracle OpS and sign oracle OS. Since we are in
the ROM, the adversary (as well as all the algorithms of the
scheme) has additionally access to a random oracle H.

Pr[G0 = 1] = Pr[aWitExtA,ΞRg,ΣSch
(n) = 1]

Game G1G1G1: This game works exactly as G0G0G0 with the fol-
lowing exception. When the adversary outputs a forgery σ,
the game checks if completing the pre-signature σ̃ using the
secret value y results in σ. If yes, the game aborts.

G0G0G0

1 : Q := ∅
2 : H := [⊥]

3 : (sk , pk)← Gen(1n)

4 : m← AOS(·),OpS(·,·)(pk)

5 : (Y, y)← GenR(1n)

6 : σ̃ ← pSignsk (m,Y)

7 : σ ← AOS(·),OpS(·,·)(σ̃, Y)

8 : b := Vrfypk (m;σ)

9 : return (m 6∈ Q ∧ b)

OS(m)

1 : σ ← Signsk (m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x]←$ Zq
3 : return H[x]

OpS(m,Y)

1 : σ̃ ← pSignsk (m,Y)

2 : Q := Q∪ {m}
3 : return σ̃

G1G1G1

1 : Q := ∅
2 : H := [⊥]

3 : (sk , pk)← Gen(1n)

4 : m← AOS(·),OpS(·,·)(pk)

5 : (Y, y)← GenR(1n)

6 : σ̃ ← pSignsk (m,Y)

7 : σ ← AOS(·),OpS(·,·)(σ̃, Y)

8 : if Adapt(σ̃, y) = σ

9 : Abort
10 : b := Vrfypk (m;σ)

11 : return (m 6∈ Q ∧ b)

OS(m)

1 : σ ← Signsk (m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x]←$ Zq
3 : return H[x]

OpS(m,Y)

1 : σ̃ ← pSignsk (m,Y)

2 : Q := Q∪ {m}
3 : return σ̃

Claim: Let Bad1 be the event that G1G1G1 aborts. Then
Pr[Bad1] ≤ ν1(n), where ν1 is a negligible function in n.
Proof: We prove this claim using a reduction to the hardness
of the relation Rg . More concretely, we construct a simulator
S breaking the hardness the relation assuming he has access

to an adversary A that causes G1G1G1 to abort with non-negligible
probability. The simulator gets a challenge Y ∗, upon which it
generates a key pair (sk , pk)← Gen(1n) in order to simulate
A’s queries to the oracles H, OpS and OS. This simulation
of the oracles works as described in G1G1G1. Eventually, upon
receiving the challenge message m from A, S computes a pre-
signature σ̃ ← pSignsk (m,Y ∗) and returns the pair (σ̃, Y ∗) to
the adversary who outputs a forgery σ. Assuming that Bad1

happened (i.e. Adapt(σ̃, y) = σ), we know that due to the
correctness property, the simulator can extract y∗ by executing
Ext(σ, σ̃, Y ∗) to obtain a valid statement/witness pair for the
relation Rg , i.e. (Y ∗, y∗) ∈ Rg .

First, we note that the view of A is indistinguishable to his
view in G1G1G1, since the challenge Y ∗ is an instance of the hard
relation Rg and hence equally distributed to the public output
of GenR. Hence the probability of S can breaking the hardness
of the relation is equal to the probability of the Bad1 event. By
our assuption, this is non-negligible with is the contradiction
with the hardness of Rg . �

Since games G1G1G1 and G0G0G0 are equivalent except if event Bad1

occurs, it holds that Pr[G0 = 1] ≤ Pr[G1 = 1] + ν1(n).
Game G2G2G2: This game behaves like the previous game

with the only differences being in the OpS oracle. In this
game, the OpS oracle makes a copy of the list H before
executing the algorithm pSignsk . Afterwards the it extracts the
randomness used during the pSignsk algorithm, and checks if
before the execution of the signing algorithm a query of the
form pk‖K‖m or pk‖K ·Y ‖m was made to H by checking if
H ′[pk‖K‖m] 6= ⊥ or H ′[pk‖K · Y ‖m] 6= ⊥. If so the game
aborts.

G2G2G2

1 : Q := ∅
2 : H := [⊥]

3 : (sk , pk)← Gen(1n)

4 : m← AOS(·),OpS(·,·)(pk)

5 : (Y, y)← GenR(1n)

6 : σ̃ ← pSignsk (m,Y)

7 : σ ← AOS(·),OpS(·,·)(σ̃, Y)

8 : if Adapt(σ̃, y) = σ

9 : Abort
10 : b := Vrfypk (m;σ)

11 : return (m 6∈ Q ∧ b)

OS(m)

1 : σ ← Signsk (m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x]←$ Zq
3 : return H[x]

OpS(m,Y)

1 : H′ := H

2 : σ̃ ← pSignsk (m,Y)

3 : (r, s) := σ̃

4 : K := gs · pk−r

5 : if (H′[pk‖K‖m] 6= ⊥
6 : ∨H′[pk‖K · Y ‖m] 6= ⊥)

7 : Abort
8 : Q := Q∪ {m}
9 : return σ̃

Claim: Let Bad2 be the event that G2G2G2 aborts in OpS. Then
Pr[Bad2] ≤ ν2(n), where ν2 is a negligible function in n.
Proof: We first recall that pSignsk and Signsk compute K = gk

by choosing k uniformly at random from Zq . Since A is PPT ,
the number of queries it can make to H, OS and OpS is also

polynomially bounded. Let l1, l2, l3 be the number of queries
made to H, OS and OpS respectively, then we have:

Pr[Bad2] = Pr[H ′[pk‖K‖m] 6= ⊥ ∨H ′[pk‖K · Y ‖m] 6= ⊥]

≤ 2
l1 + l2 + l3

q
=: ν2(n)

Since l1, l2, l3 are polynomial in the security parameter, ν2 is
a negligible function. �

Since games G2G2G2 and G1G1G1 are equivalent except if event Bad2

occurs, it holds that Pr[G1 = 1] ≤ Pr[G2 = 1] + ν2(n).
Game G3G3G3: In this game, upon an OpS query, the game pro-

duces a valid full signature σ̃ = (r, s) = (H(pk‖K‖m), k +
rsk) and adjusts the global list H as follows: It assigns
the value stored at position pk‖K‖m to H[pk‖K · Y ‖m]
and samples a fresh random value for H[pk‖K‖m]. These
changes make the full signature σ̃ “look like” a pre-signature
to the adversary, since upon querying the random oracle on
pk‖K ·Y ‖m, A obtains the value H[pk‖K‖m]. The adversary
can only notice the changes in this game, in case the random
oracle has been previously queried on either pk‖K‖m or
pk‖K · Y ‖m. This case has been captured in the previous
game and hence it holds that Pr[G2 = 1] = [G3 = 1].

G3G3G3

1 : Q := ∅
2 : H := [⊥]

3 : (sk , pk)← Gen(1n)

4 : m← AOS(·),OpS(·,·)(pk)

5 : (Y, y)← GenR(1n)

6 : σ̃ ← pSignsk (m,Y)

7 : σ ← AOS(·),OpS(·,·)(σ̃, Y)

8 : if Adapt(σ̃, y) = σ

9 : Abort
10 : b := Vrfypk (m;σ)

11 : return (m 6∈ Q ∧ b)

OS(m)

1 : σ ← Signsk (m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x]←$ Zq
3 : return H[x]

OpS(m,Y)

1 : H′ := H

2 : σ̃ ← Signsk (m)

3 : (r, s) := σ̃

4 : K := gs · pk−r

5 : if (H′[pk‖K‖m] 6= ⊥
6 : ∨H′[pk‖K · Y ‖m] 6= ⊥)

7 : Abort
8 : x := pk‖K‖m
9 : H[pk‖K · Y ‖m] := H[x]

10 : H[x]←$ Zq
11 : Q := Q∪ {m}
12 : return σ̃

Game G4G4G4: In this game the pre-signature in generated
upon A outputting the message m is generated by modifying
a full signature to a pre-signature. In other words upon
receiving the full signature σ = (r, s), where s = k + xr
and r = H(gx‖gk‖m) and given the pair (Y, y), the game
can modify the signature to the pre-signature by setting
σ̃ = Adapt(σ,−y). One way to see this transformation is that
k is modified to k′ = k − y.

G4G4G4

1 : Q := ∅
2 : H := [⊥]

3 : (sk , pk)← Gen(1n)

4 : m← AOS(·),OpS(·,·)(pk)

5 : (Y, y)← GenR(1n)

6 : σ′ ← Signsk (m)

7 : (r, s) := σ′

8 : σ̃ := Adapt(σ,−y)

9 : σ ← AOS(·),OpS(·,·)(σ̃, Y)

10 : if Adapt(σ̃, y) = σ

11 : Abort
12 : b := Vrfypk (m;σ)

13 : return (m 6∈ Q ∧ b)

OS(m)

1 : σ ← Signsk (m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x]←$ Zq
3 : return H[x]

OpS(m,Y)

1 : H′ := H

2 : σ̃ ← Signsk (m)

3 : (r, s) := σ̃

4 : K := gs · pk−r

5 : if (H′[pk‖K‖m] 6= ⊥
6 : ∨H′[pk‖K · Y ‖m] 6= ⊥)

7 : Abort
8 : x := pk‖K‖m
9 : H[pk‖K · Y ‖m] := H[x]

10 : H[x]←$ Zq
11 : Q := Q∪ {m}
12 : return σ̃

Since k is chosen uniformly at random and according to
Lemma 3, the view of the adversary is identical in this game
and the previous game and hence it holds that Pr[G3 = 1] =
[G4 = 1].

SSignSch,HSch

(pk)

1 : Q := ∅
2 : H := [⊥]

3 : m← AOS(·),OpS(·,·)(pk)

4 : (Y, y)← GenR(1n)

5 : σ′ := SignSch(m)

6 : (r, s) := σ′

7 : σ̃ := Adapt(σ,−y)

8 : σ ← AOS(·),OpS(·,·)(σ̃, Y)

9 : return (m,σ)

OS(m)

1 : σ := SignSch(m)

2 : (r, s) := σ

3 : K := gs · pk−r

4 : x := pk‖K‖m
5 : H[x] := HSch(x)

6 : Q := Q∪ {m}
7 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x] := HSch(x)

3 : return H[x]

OpS(m,Y)

1 : H′ := H

2 : σ̃ := SignSch(m)

3 : (r, s) := σ̃

4 : K := gs · pk−r

5 : if H′[pk‖K‖m] 6= ⊥
6 : or H′[pk‖K · Y ‖m] 6= ⊥
7 : Abort
8 : x := pk‖K‖m
9 : H[pk‖K · Y ‖m] := HSch(x)

10 : H[x] := HSch(pk‖K · Y ‖m)

11 : Q := Q∪ {m}
12 : return σ̃

Having shown that the transition from the original
aSigForge game (Game G0G0G0) to Game G4G4G4 is indistinguishable,
it remains to show that there exists a simulator that perfectly
simulates G4G4G4 and uses A to win the strongSigForge game.
In the following we describe in a concise way the simulator
code.

Simulation of oracle queries

Signing queries: Upon A querying the oracle OS on input
m, S forwards m to its oracle SignSch and forwards its
response to A.

Random Oracle queries: Upon A querying the oracle H on
input x, if H[x] = ⊥, then S queries HSch(x), otherwise
the simulator returns H[x].

Pre-Signing queries: 1) Upon A querying the oracle OpS

on input (m,Y), S forwards m to its oracle SignSch

and receives the signature σ̃ = (r, s) where r =
HSch(pk‖K‖m).

2) If H has been previously queried on the input
(pk‖K‖m) or (pk‖K · Y ‖m), S aborts.

3) S programs the random oracleH such that queries ofA
on the input pk‖K ·Y ‖m are answered with the value
of HSch(pk‖K‖m) and queries on the input pk‖K‖m
are answered with the value of HSch(pk‖K · Y ‖m).

4) The simulator returns σ̃ to A.
Challenge Phase: 1) Upon A outputting the message m as

the challenge message, S chooses values (Y, y) ←
GenR(1n) and queries the SignSch oracle on input
m. Let σ′ = (r, s) be the response, then S returns
σ̃ = (r, s− y) to A.

2) Upon A outputting a forgery σ, the simulator outputs
(m,σ) as its own forgery.

We emphasize that the main difference between the simula-
tion and G4G4G4 are syntactical, namely instead of generating the
public and secret keys and calculating the algorithm Signsk
and the random oracle H, the simulator S uses its oracles
SignSch and HSch. Therefore S perfectly simulates G4G4G4.

It remains to show that the forgery output by A can be used
by the simulator to win the strongSigForge game.
Claim: (m,σ) constitutes a valid forgery in game
strongSigForge.
Proof: In order to prove this claim, we have to show that the
tuple (m,σ) has not been output by the oracle SignSch before.
Note that the adversary A has not previously made a query
on the challenge message m to either OpS or OS. Hence,
SignSch is only queried on m during the challenge phase. As
shown in game G1G1G1 and according to Lemma 3, the adversary
outputs a forgery σ which is equal to the signature σ′ output
by SignSch during the challenge phase only with negligible
probability (in this case the simulation aborts). Hence, SignSch

has never output σ on query m before and consequently (m,σ)
constitutes a valid forgery for game strongSigForge. �

From the games G0G0G0 − G4G4G4 we get that Pr[G0G0G0 = 1] ≤
Pr[G4G4G4 = 1]+ν1(n)+ν2(n). Since S provides a perfect simula-
tion of game G4G4G4, we obtain: AdvAaSigForge ≤ AdvSstrongSigForge +
ν1(n) + ν2(n).

Lemma 5 (Witness Extractability). Assuming that Schnorr
signature scheme ΣSch is SUF–CMA-secure and Rg is a hard
relation, the adaptor signature scheme ΞRg,ΣSch

as defined in
Fig. 4 is witness extractable.

Proof. Before giving the formal proof, we first provide the
main intuition. In general this proof is very similar to the proof

of Lemma 4. Our goal is to reduce the witness extractability
of the adaptor signature scheme to the strong unforgeability of
the standard Schnorr signature scheme. More concretely, under
the assumption that there exists a PPT adversary A winning
the aWitExt experiment, we design a PPT adversary S that
wins the strongSigForge experiment.

The simulation of pre-sign queries is done exactly as in
the proof of Lemma 4. However, unlike in the aSigForge
experiment, in aWitExt A outputs the public value Y along-
side the challenge message m, meaning that the game does
not choose the pair (Y, y). Therefore, S does not learn the
witness y and hence cannot transform a full signature to a pre-
signature by executing Adapt(σ,−y). Fortunately, we can do
this transformation without knowledge of y by using the same
random oracle programmability as in the OpS oracle. More
concretely, S can program the random oracle such that queries
made during pre-signature verification are answered as if they
were queries made during signature verification and vice versa.
In other words the values H(gx‖K‖m) and H(gx‖KY ‖m)
(where K = gk, gx and Y are known to the simulator) are
swapped in the random oracle.

We note that it is not possible to program the random
oracle if at least one of the values gx‖K‖m or gx‖KY ‖m
have already been queried to H. However, since A is PPT,
and k is chosen uniformly at random from Zq (during the
signing and pre-signing processes) where q is exponential in
n, the probability that one of these values have previously
been queried to H is negligible in the security parameter n.

G0G0G0

1 :Q := ∅
2 :H := [⊥]

3 :(sk , pk)← Gen(1n)

4 :(m,Y)← AOS(·),OpS(·,·)(pk)

5 :σ̃ ← pSignsk (m,Y)

6 :σ ← A(σ̃)

7 :y′ := Extpk (σ, σ̃, Y)

8 :b1 := Vrfypk (m;σ)

9 :b2 := m 6∈ Q
10 :b3 := (Y, y′) 6∈ R
11 :return (b1 ∧ b2 ∧ b3)

OS(m)

1 :σ ← Signsk (m)

2 :Q := Q∪ {m}
3 :return σ

H(x)

1 :if H[x] = ⊥
2 : H[x]←$ Zq
3 :return H[x]

OpS(m,Y)

1 :σ̃ ← pSignsk (m,Y)

2 :Q := Q∪ {m}
3 :return σ̃

Game G0G0G0: This game corresponds to the original aWitExt,
where the adversary A has to come up with a valid forgery
for a message m of his choice such that extracting the secret
value given the forgery and the pre-sinature is not in relation
with the corresponding public key. A has access to oracles H,
OpS and OS, and since we are in the random oracle model,
we explicitly write the random oracle code H.

G1G1G1

1 :Q := ∅
2 :H := [⊥]

3 :(sk , pk)← Gen(1n)

4 :(m,Y)← AOS(·),OpS(·,·)(pk)

5 :σ̃ ← pSignsk (m,Y)

6 :σ ← A(σ̃)

7 :y′ := Extpk (σ, σ̃, Y)

8 :b1 := Vrfypk (m;σ)

9 :b2 := m 6∈ Q
10 :b3 := (Y, y′) 6∈ R
11 :return (b1 ∧ b2 ∧ b3)

OS(m)

1 :σ ← Signsk (m)

2 :Q := Q∪ {m}
3 :return σ

H(x)

1 :if H[x] = ⊥
2 : H[x]←$ Zq
3 :return H[x]

OpS(m,Y)

1 :H′ := H

2 :σ̃ ← pSignsk (m,Y)

3 :parse σ̃ as (r, s)

4 :K := gs · pk−r

5 :if H′[pk‖K‖m] 6= ⊥
6 : or H′[pk‖K · Y ‖m] 6= ⊥
7 : Abort
8 :Q := Q∪ {m}
9 :return σ̃

Game G1G1G1: This game behaves like G0G0G0 with the only
differences being in the OpS oracle. First a copy of the list H
is stored before executing the algorithm pSignsk in the oracle
OpS. Upon computing the pre-signature, the game extracts the
randomness used during the pSignsk algorithm, and checks if
before the execution of the signing algorithm a query of the
form pk‖K‖m or pk‖K · Y ‖m was made to H. This is done
by checking if H ′[pk‖K‖m] 6= ⊥ or H ′[pk‖K · Y ‖m] 6= ⊥.
If so the game aborts.
Claim: Let Bad1 be the event that G1G1G1 aborts in OpS, then
Pr[Bad1] ≤ ν(n), where ν is a negligible function in n.
Proof: We first recall that pSignsk and Signsk compute K = gk

by choosing k uniformly at random from Zq . Since A is PPT,
the number of queries it can make to H, OS and OpS are also
polynomially bounded. Let l1, l2, l3 be the number of queries
made to H, OS and OpS respectively, then we have:

Pr[Bad1] = Pr[H ′(pk‖K‖m) 6= ⊥
∨H ′(pk‖K · Y ‖m) 6= ⊥]

≤ 2
l1 + l2 + l3

q
≤ ν(n)

�
Since games G1G1G1 and G0G0G0 are equivalent except if event Bad1

occurs, it holds that Pr[G0G0G0 = 1] ≤ Pr[G1G1G1 = 1] + ν1(n).
Game G2G2G2: In this game, upon an OpS query, the game

produces a valid full signature such that σ̃ = (r, s) =
(H(pk‖K‖m), k + rsk) and modifies the global list H as
follows: It sets the value stored at position pk‖K‖m to
H[pk‖K · Y ‖m] and samples a fresh random value for
H[pk‖K‖m]. These changes make the full signature σ̃ look
like a pre-signature to the adversary, since upon querying
the random oracle on pk‖K · Y ‖m, A obtains the value
H[pk‖K‖m]. The adversary can only notice the changes in
this game, in case the random oracle has been previously
queried on either pk‖K‖m or pk‖K · Y ‖m. This case has
been captured in the previous game and hence it holds that
Pr[G1G1G1 = 1] = Pr[G2G2G2 = 1].

G2G2G2

1 :Q := ∅
2 :H := [⊥]

3 :(sk , pk)← Gen(1n)

4 :(m,Y)← AOS(·),OpS(·,·)(pk)

5 :σ̃ ← pSignsk (m,Y)

6 :σ∗ ← A(σ̃, Y)

7 :if Adapt(σ̃, y) = σ

8 : Abort

9 :y′ := Extpk (σ, σ̃, Y)

10 :b1 := Vrfypk (m;σ)

11 :b2 := m 6∈ Q
12 :b3 := (Y, y′) 6∈ R
13 :return (b1 ∧ b2 ∧ b3)

OS(m)

1 :σ ← Signsk (m)

2 :Q := Q∪ {m}
3 :return σ

H(x)

1 :if H[x] = ⊥
2 : H[x]←$ Zq
3 :return H[x]

OpS(m,Y)

1 :H′ := H

2 :σ̃ ← Signsk (m)

3 :parse σ̃ as (r, s)

4 :K := gs · pk−r

5 :if H′[pk‖K‖m] 6= ⊥
6 : or H′[pk‖K · Y ‖m] 6= ⊥
7 : Abort
8 :x := pk‖K‖m
9 :H[pk‖K · Y ‖m] := H[x]

10 :H[x]←$ Zq
11 :Q := Q∪ {m}
12 :return σ̃

G3G3G3

1 :Q := ∅
2 :H := [⊥]

3 :(sk , pk)← Gen(1n)

4 :(m,Y)← AOS(·),OpS(·,·)(pk)

5 :H′ := H

6 :σ̃ ← pSignsk (m,Y)

7 :parse σ̃ as (r, s)

8 :K := gs · pk−r

9 :if H′[pk‖K‖m] 6= ⊥
10 : or H′[pk‖K · Y ‖m] 6= ⊥
11 : Abort
12 :σ ← A(σ̃, Y)

13 :y′ := Extpk (σ, σ̃, Y)

14 :b1 := Vrfypk (m;σ)

15 :b2 := m 6∈ Q
16 :b3 := (Y, y′) 6∈ R
17 :return (b1 ∧ b2 ∧ b3)

OS(m)

1 :σ ← Signsk (m)

2 :Q := Q∪ {m}
3 :return σ

H(x)

1 :if H[x] = ⊥
2 : H[x]←$ Zq
3 :return H[x]

OpS(m,Y)

1 :H′ := H

2 :σ̃ ← Signsk (m)

3 :parse σ̃ as (r, s)

4 :K := gs · pk−r

5 :if H′[pk‖K‖m] 6= ⊥
6 : or H′[pk‖K · Y ‖m] 6= ⊥
7 : Abort
8 :x := pk‖K‖m
9 :H[pk‖K · Y ‖m] := H[x]

10 :H[x]←$ Zq
11 :Q := Q∪ {m}
12 :return σ̃

Game G3G3G3: In this game, we apply the exact same changes
made in game G1G1G1 in oracle OpS to the challenge phase
of the game. First a copy of the list H is stored before
executing the algorithm pSignsk during the challenge phase
of the game. Upon computing the pre-signature, the game
extracts the randomness used during the pSignsk algorithm,
and checks if before the execution of the pre-signing algorithm
a query of the form pk‖K‖m or pk‖K · Y ‖m was made
to H. This is done by checking if H ′[pk‖K‖m] 6= ⊥ or
H ′[pk‖K · Y ‖m] 6= ⊥. If so the game aborts.

Claim: Let Bad2 be the event that G2G2G2 aborts in Game3(n)
during the challenge phase, then Pr[Bad2] ≤ ν(n), where ν
is a negligible function in n.
Proof: This proof is analogous to the proof of claim E0e. �

Since games G3G3G3 and G2G2G2 are equivalent except if event Bad2

occurs, it holds that Pr[G2G2G2 = 1] ≤ Pr[G3G3G3 = 1] + ν(n).
Game G4G4G4: In this game, we apply the exact same changes

made in game G2G2G2 in oracle OpS to the challenge phase of
the game. As explained before the adversary receives a full
signature but by programming the random oracle, from A’s
point of view the signature looks like a pre-signature. It holds
that Pr[G4G4G4 = 1] = Pr[G3G3G3 = 1].

G4G4G4

1 :Q := ∅
2 :H := [⊥]

3 :(sk , pk)← Gen(1n)

4 :(m,Y)← AOS(·),OpS(·,·)(pk)

5 :H′ := H

6 :σ̃ ← Signsk (m)

7 :parse σ̃ as (r, s)

8 :K := gs · pk−r

9 :if H′[pk‖K‖m] 6= ⊥
10 : or H′[pk‖K · Y ‖m] 6= ⊥
11 : Abort
12 :x := pk‖K‖m
13 :H[pk‖K · Y ‖m] := H[x]

14 :H[x]←$ Zq
15 :σ ← A(σ̃, Y)

16 :y′ := Extpk (σ, σ̃, Y)

17 :b1 := Vrfypk (m;σ)

18 :b2 := m 6∈ Q
19 :b3 := (Y, y′) 6∈ R
20 :return (b1 ∧ b2 ∧ b3)

OS(m)

1 :σ ← Signsk (m)

2 :Q := Q∪ {m}
3 :return σ

H(x)

1 :if H[x] = ⊥
2 : H[x]←$ Zq
3 :return H[x]

OpS(m,Y)

1 :H′ := H

2 :σ̃ ← Signsk (m)

3 :parse σ̃ as (r, s)

4 :K := gs · pk−r

5 :if H′[pk‖K‖m] 6= ⊥
6 : or H′[pk‖K · Y ‖m] 6= ⊥
7 : Abort
8 :x := pk‖K‖m
9 :H[pk‖K · Y ‖m] := H[x]

10 :H[x]←$ Zq
11 :Q := Q∪ {m}
12 :return σ̃

Having shown that the transition from the original aWitExt
game (Game G0G0G0) to Game G4G4G4 is indistinguishable, it remains
to show that there exists a simulator that perfectly simulates
G4G4G4 and uses A to win the strongSigForge game. In the
following we describe in a concise way the simulator code.

Simulation of oracle queries

Signing queries: Upon A querying the oracle OS on input
m, S forwards m to its oracle SignSch and forwards its
response to A.

Random Oracle queries: Upon A querying the oracle H on
input x, if H[x] = ⊥, then S queries HSch(x), otherwise
the simulator returns H[x].

Pre-Signing queries: 1) Upon A querying the oracle OpS

on input (m,Y), S forwards m to its oracle SignSch

and receives the signature σ̃ = (r, s) where r =
HSch(pk‖K‖m).

2) If H has been previously queried on the input
(pk‖K‖m) or (pk‖K · Y ‖m), S aborts.

3) S programs the random oracleH such that queries ofA
on the input pk‖K ·Y ‖m are answered with the value
of HSch(pk‖K‖m) and queries on the input pk‖K‖m
are answered with the value of HSch(pk‖K · Y ‖m).

4) The simulator returns σ̃ to A.
Challenge Phase: 1) Upon A outputting the message and

public value (m,Y) as the challenge message, S
queries the SignSch oracle on input m. Let σ = (r, s) be
the response where r = HSch(pk‖K‖m), then S again
programs the random oracle H such that queries of A
on the input pk‖K ·Y ‖m are answered with the value
of HSch(pk‖K‖m) and queries on the input pk‖K‖m
are answered with the value of HSch(pk‖K · Y ‖m).

2) Upon A outputting a forgery σ, the simulator outputs
(m,σ) as its own forgery.

SSignSch,HSch

(pk)

1 :Q := ∅
2 :H := [⊥]

3 :(sk , pk)← Gen(1n)

4 :(m,Y)← AOS(·),OpS(·,·)(pk)

5 :H′ := H

6 :σ̃ ← SignSch(m)

7 :parse σ̃ as (r, s)

8 :K := gs · pk−r

9 :if H′[pk‖K‖m] 6= ⊥
10 : or H′[pk‖K · Y ‖m] 6= ⊥
11 : Abort
12 :x := pk‖K‖m
13 :H[pk‖K · Y ‖m]←$ HSch(x)

14 :H[x]←$ HSch(pk‖K · Y ‖m)

15 :σ ← A(σ̃, Y)

16 :return (m,σ)

OS(m)

1 :σ ← SignSch(m)

2 : parse σ as (r, s)

3 : K := gs · pk−r

4 : x := pk‖K‖m
5 : H[x]←HSch(x)

6 :Q := Q∪ {m}
7 :return σ

H(x)

1 :if H[x] = ⊥
2 : H[x]←$ HSch(x)

3 :return H[x]

OpS(m,Y)

1 :H′ := H

2 :σ ← SignSch(m)

3 :parse σ̃ as (r, s)

4 :K := gs · pk−r

5 :if H′[pk‖K‖m] 6= ⊥
6 : or H′[pk‖K · Y ‖m] 6= ⊥
7 : Abort
8 :x := pk‖K‖m
9 :y := pk‖K · Y ‖m

10 :H[y]←$ HSch(x)

11 :H[x]←$ HSch(y)

12 :Q := Q∪ {m}
13 :return σ̃

We emphasize that the main difference between the sim-
ulation and G4G4G4 are syntactical, namely instead of generating
the public and secret keys and calculating the algorithm Signsk
and the random oracle H, S uses its oracles SignSch and HSch.

It remains to show that the signature output by A can be
used by the simulator to win the strongSigForge game.
Claim: (m,σ) constitutes a valid forgery in game
strongSigForge.

Proof: In order to prove this claim, we have to show that
the tuple (m,σ) has not been output by the oracle SignSch

before. Note that the adversary A has not previously made a
query on the challenge message m to either OpS or OS. Hence,
SignSch is only queried on m during the challenge phase. If the
adversary outputs a forgery σ which is equal to the signature
σ̃ output by SignSch the adversary loses the game because this
would not be valid signature given the programmed random
oracle. Hence, A must output a valid signature σ 6= σ̃ and
SignSch has never output σ on query m before, consequently
(m,σ) constitutes a valid forgery for game strongSigForge. �

From the games G0G0G0 − G4G4G4 we get that Pr[G0G0G0 = 1] ≤
Pr[G4G4G4 = 1] + 2ν(n). Since S provides a perfect simulation of
game G4G4G4, we obtain: AdvAaSigForge ≤ AdvSstrongSigForge + 2ν(n).

f) ECDSA-based construction:

Theorem 5. Assuming that the positive ECDSA signature
scheme ΣECDSA is SUF–CMA-secure and R′g is a hard re-
lation, the adaptor signature scheme ΞRg,ΣECDSA

as defined in
Fig. 5 is secure in ROM.

As a first step we prove that our ECDSA adaptor signature
scheme satisfies pre-signature adaptability. In fact, we prove
a slightly stronger statement; namely, that any valid pre-
signature adapts to a valid signature with probability 1.

Lemma 6 (Pre-signature adaptability). The adaptor signature
scheme ΞR′g,ΣECDSA

satisfies pre-signature adaptability.

Proof. Let us fix arbitrary (IY , y) ∈ R′g , m ∈ {0, 1}∗, X ∈ G
and σ̃ = (r, s̃,K, π) ∈ Zq × Zq ×G×G× {0, 1}∗. Let

K̃ := gH(m)s̃−1

Xrs̃−1

and r = f(K).

Assuming that pVrfyX(m, IY ; σ̃) = 1, we know that there
exists k ∈ Zq s.t. K̃ = gk and K = Y k for (Y, πY) := IY .
Moreover,

By definition of Adapt, we know that Adapt(σ̃, y) = (r, s)
for s := s̃ · y−1. Hence, we have

f(gH(m)s−1

Xrs−1

) = f((gH(m)s̃−1

Xrs̃−1

)y)

= f(K̃y) = f(K) = r.

Lemma 7 (Pre-signature correctness). The adaptor signature
scheme ΞRg,ΣECDSA

satisfies pre-signature correctness.

Proof. Let us fix arbitrary x, y ∈ Zq and m ∈ {0, 1}∗, and
define X := gx, Y := gy , πY ← Pg(Y) and IY := (Y, πY).
For σ̃ = (r, s̃,K, π) ← pSignx(m, IY) it holds that K̃ = gk,
K = Y k, r = f(K) and s̃ = k−1(H(m) + rx). Set

K̃ := gH(m)s̃−1

grs̃
−1x = gk.

By correctness of NIZKY we know that VY ((K̃,K), π) = 1
and hence we have pVrfyX(m, IY ; σ̃) = 1. By Lemma 6, this
implies that VrfyX(m;σ) = 1 for σ = (r, s) := Adapt(σ̃, y).
By definition of Adapt, we know that s = s̃ · y−1 and hence

Ext((r, s), (r, s̃), IY) = s−1 · s̃ = (s̃−1 · y−1) · s̃ = y.

Lemma 8 (aEUF–CMA security). Assuming that the positive
ECDSA signature scheme ΣECDSA is SUF–CMA-secure and
R′g is a hard relation, the adaptor signature scheme ΞRg,ΣECDSA

as defined in 5 is aEUF–CMA secure.

Proof. We prove unforgeability for the ECDSA-based adaptor
signature scheme by reduction to strong unforgeability of
positive ECDSA signatures. We consider an adversary A who
plays the aSigForge game, then we build a simulator S who
plays the strong unforgeability experiment for the ECDSA
signature scheme and uses A’s forgery in aSigForge to win its
own experiment. S has access to the signing oracle SignECDSA

and the random oracle HECDSA, which it uses to simulate
oracle queries for A, namely random (H), signing (OS) and
pre-signing (OpS) queries.

The main challenges in the oracle simulations arise when
simulating OpS queries, since S can only get full signatures
from its own signing oracle and hence needs a way to
transform those full signatures into pre-signatures for A. In
order to do so, the simulator faces two challenges, namely 1)
S needs to learn the witness y for statement Y for which the
pre-signature is supposed to be generated and 2) S needs to
simulate the zero knowledge proof π which proves randomness
consistency in the pre-signature.

More concretely, upon receiving a OpS query from A
on input a message m and an instance IY = (Y, πY), the
simulator queries its Sign oracle to obtain a full signature on
m. Further, S needs to learn a witness y, s.t. Y = gy , in order
to transform the full signature into a pre-signature for A. We
make use of the extractability property of the zero knowledge
proof πY , in order to extract y and consequently transform a
full signature into a valid pre-signature. Additionally, since a
valid pre-signature contains a zero knowledge proof for Lexp,
the simulator has to simulate this proof without knowledge of
the corresponding witness. In order to do so, we make use
of the zero knowledge property, which allows for simulation
of a proof for a statement without knowing the corresponding
witness.

G0G0G0

1 : Q := ∅
2 : H := [⊥]

3 : (sk , pk)← Gen(1n)

4 : m← AOS(·),OpS(·,·)(pk)

5 : (IY , y)← GenR(1n)

6 : σ̃ ← pSignsk (m, IY)

7 : σ ← A(σ̃, IY)

8 : b := Vrfypk (m;σ∗)

9 : return (m 6∈ Q ∧ b)

OS(m)

1 : σ ← Signsk (m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x]←$ Zq
3 : return H[x]

OpS(m, IY)

1 : σ̃ ← pSignsk (m, IY)

2 : Q := Q∪ {m}
3 : return σ̃

Game G0G0G0: This game corresponds to the original aSigForge
game, where the adversary A has to come up with a valid
forgery for a message m of his choice, while having access
to oracles H, OpS and OS. Since we are in the random oracle
model, we explicitly write the random oracle code H.

Pr[G0 = 1] = Pr[aWitExtA,ΞRg,ΣSch
(n) = 1]

G1G1G1

1 : Q := ∅
2 : H := [⊥]

3 : (sk , pk)← Gen(1n)

4 : m∗ ← AOS(·),OpS(·,·)(pk)

5 : (IY , y)← GenR(1n)

6 : σ̃ ← pSignsk (m∗, IY)

7 : σ∗ ← A(σ̃, IY)

8 : if Adapt(σ̃, y) = σ∗

9 : Abort
10 : b := Vrfypk (m∗;σ∗)

11 : return (m∗ 6∈ Q ∧ b)

OS(m)

1 : σ ← Signsk (m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x]←$ Zq
3 : return H[x]

OpS(m, IY)

1 : σ̃ ← pSignsk (m, IY)

2 : Q := Q∪ {m}
3 : return σ̃

Game G1G1G1: This game works exactly as G0G0G0 with the excep-
tion that upon the adversary outputting a forgery σ∗, the game
checks if completing the pre-signature σ̃ using the witness y
results in σ∗. In that case, the game aborts.
Claim: Let Bad1 be the event thatG1G1G1 aborts, then Pr[Bad1] ≤
ν(n).
Proof: This proof is analogous to the proof of G1G1G1 in lemma 4.
�

Since games G1G1G1 and G0G0G0 are equivalent except if event Bad1

occurs, it holds that Pr[G1G1G1 = 1] ≤ Pr[G0G0G0 = 1]+ν1(n), where
ν1 is a negligible function in n.

G2G2G2

1 : Q := ∅
2 : H := [⊥]

3 : (sk , pk)← Gen(1n)

4 : m∗ ← AOS(·),OpS(·,·)(pk)

5 : (IY , y)← GenR(1n)

6 : σ̃ ← pSignsk (m∗, IY)

7 : σ∗ ← A(σ̃, IY)

8 : if Adapt(σ̃, y) = σ∗

9 : Abort
10 : b := Vrfypk (m∗;σ∗)

11 : return (m∗ 6∈ Q ∧ b)

OS(m)

1 : σ ← Signsk (m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x]←$ Zq
3 : return H[x]

OpS(m, IY)

1 : parse IY as (Y, πY)

2 : y := K(Y, πY , H)

3 : if ((Y, πY), y) 6∈ R′g
4 : Abort
5 : σ̃ ← pSignsk (m, IY)

6 : Q := Q∪ {m}
7 : return σ̃

Game G2G2G2: This game only applies changes to the OpS

oracle as opposed to the previous game. Namely, during the
OpS queries, this game extracts a witness y by executing the
algorithm K on inputs the statement Y , the proof πY and the
list of random oracle queries H . The game aborts, if for the
extracted witness y it does not hold that ((Y, πY), y) ∈ R′g .
Claim: Let Bad2 be the event that G2G2G2 aborts during an OpS

execution, then it holds that Pr[Bad2] ≤ ν2(n) where ν2 is a
negligible function in n.
Proof: According to the online extractor property of the zero
knowledge proof, for a witness y extracted from a proof πY
of statement Y such that Vrfy(Y, πY) = 1, it holds that
((Y, πY), y) ∈ R′g except with negligible probability in the
security parameter. �

Since games G2G2G2 and G1G1G1 are equivalent except if event Bad2

occurs, it holds that Pr[G2G2G2 = 1] ≤ Pr[G1G1G1 = 1] + ν2(n).

G3G3G3

1 : Q := ∅
2 : H := [⊥]

3 : (sk , pk)← Gen(1n)

4 : m∗ ← AOS(·),OpS(·,·)(pk)

5 : (IY , y)← GenR(1n)

6 : σ̃ ← pSignsk (m∗, IY)

7 : σ∗ ← A(σ̃, IY)

8 : if Adapt(σ̃, y) = σ∗

9 : Abort
10 : b := Vrfypk (m∗;σ∗)

11 : return (m∗ 6∈ Q ∧ b)

OS(m)

1 : σ ← Signsk (m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x]←$ Zq
3 : return H[x]

OpS(m, IY)

1 : parse IY as (Y, πY)

2 : y := K(Y, πY , H)

3 : if ((Y, πY), y) 6∈ R′g
4 : Abort
5 : σ ← Signsk (m)

6 : parse σ as (r, s)

7 : s̃ := s · y
8 : u := H(m) · s−1

9 : v := r · s−1

10 : K̃ := guXv

11 : K := K̃y−1

12 : πS ← S((K̃,K), 1)

13 : Q := Q∪ {m}
14 : return (r, s̃,K, πS)

Game G3G3G3: This game extends the changes of the previous
game to the OpS oracle by first creating a valid full signature
σ by executing the Sign algorithm and then converting σ into a
pre-signature using the extracted witness y. Further, the game
calculates the randomness K̃ = gk and K = K̃y−1

from σ
and simulates a zero knowledge proof πS using K̃ and K.

Due to the zero knowledge property of the zero knowledge
proof, the simulator can produce a proof πS which is computa-
tionally indistinguishable from a proof π ← Pdh((K̃,K), k).
Hence, this game is indistinguishable from the previous game
and it holds that Pr[G3G3G3 = 1] ≤ Pr[G2G2G2 = 1] + ν3(n), where
ν3 is a negligible function in n.

Game G4G4G4: In this game, upon receiving the challenge
message m∗ from A, the game creates a full signature by
executing the Sign algorithm and transforms the resulting
signature into a pre-signature in the same way as in the
previous game during the OpS execution. Hence, the same

indistinguishability argument as in the previous game holds in
this game as well and it holds that AdvAG4G4G4

≤ AdvAG3G3G3
+ ν3(n),

where ν3 is a negligible function in n.

G4G4G4

1 : Q := ∅
2 : H := [⊥]

3 : (sk , pk)← Gen(1n)

4 : m∗ ← AOS(·),OpS(·,·)(pk)

5 : (IY , y)← GenR(1n)

6 : σ ← Signsk (m∗, IY)

7 : parse σ as (r, s)

8 : s̃ := s · y
9 : u := H(m∗) · s−1

10 : v := r · s−1

11 : K̃ := guXv

12 : K := K̃y−1

13 : πS ← S((K̃,K), 1)

14 : σ̃ := (r, s̃,K, πS)

15 : σ∗ ← A(σ̃, IY)

16 : if Adapt(σ̃, y) = σ∗

17 : Abort
18 : b := Vrfypk (m∗;σ∗)

19 : return (m∗ 6∈ Q ∧ b)

OS(m)

1 : σ ← Signsk (m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x]←$ Zq
3 : return H[x]

OpS(m, IY)

1 : parse IY as (Y, πY)

2 : y := K(Y, πY , H)

3 : if ((Y, πY), y) 6∈ R′g
4 : Abort
5 : σ ← Signsk (m)

6 : parse σ as (r, s)

7 : s̃ := s · y
8 : u := H(m) · s−1

9 : v := r · s−1

10 : K̃ := guXv

11 : K := K̃y−1

12 : πS ← S((K̃,K), 1)

13 : Q := Q∪ {m}
14 : return (r, s̃,K, πS)

Having shown that the transition from the original
aSigForge game (Game G0G0G0) to Game G4G4G4 is indistinguishable,
it remains to show that there exists a simulator that perfectly
simulates G4G4G4 and uses A to win the strongSigForge game.
In the following we describe in a concise way the simulator
code.

Simulation of oracle queries
Signing queries: Upon A querying the oracle OS on input

m, S forwards m to its oracle SignECDSA and forwards
its response to A.

Random Oracle queries: Upon A querying the oracle H
on input x, if H[x] = ⊥, then S queries HECDSA(x),
otherwise the simulator returns H[x].

Pre-Signing queries: 1) Upon A querying the oracle OpS

on input (m, IY), the simulator extracts y using the
extractability of NIZK, forwards m to oracle SignECDSA

and parses the signature that is generated as (r, s).
2) S generates a pre-signature from (r, s) by computing

s̃ := s · y.
3) Finally, S simulates a zero knowledge proof πS, prov-

ing that K and K̃ have the same exponent. The
simulator outputs (r, s̃,K, πS).

Challenge phase: 1) Upon A outputting the message m∗

as the challenge message, S generates (IY , y) ←
GenR(1n), forwards m∗ to the oracle SignECDSA and
parses the signature that is generated as (r, s).

2) The simulator generates the required pre-signature σ̃
in the same way as during OpS queries.

3) Upon A outputting a forgery σ∗, the simulator outputs
(m∗, σ∗) as its own forgery.

SSignECDSA,HECDSA

(pk)

1 : Q := ∅
2 : H := [⊥]

3 : m∗ ← AOS(·),OpS(·,·)(pk)

4 : (IY , y)← GenR(1n)

5 : σ ← SignECDSA(m∗, IY)

6 : parse σ as (r, s)

7 : s̃ := s · y
8 : u := H(m∗) · s−1

9 : v := r · s−1

10 : K̃ := guXv

11 : K := K̃y−1

12 : πS ← S((K̃,K), 1)

13 : σ̃ := (r, s̃,K, πS)

14 : σ∗ ← A(σ̃, IY)

15 : return (m∗, σ∗)

OS(m)

1 : σ ← SignECDSA(m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x]←$ HECDSA(x)

3 : return H[x]

OpS(m, IY)

1 : parse IY as (Y, πY)

2 : y := K(Y, πY , H)

3 : if ((Y, πY), y) 6∈ R′g
4 : Abort
5 : σ ← Signsk (m)

6 : parse σ as (r, s)

7 : s̃ := s · y
8 : u := H(m) · s−1

9 : v := r · s−1

10 : K̃ := guXv

11 : K := K̃y−1

12 : πS ← S((K̃,K), 1)

13 : Q := Q∪ {m}
14 : return (r, s̃,K, πS)

We emphasize that the main difference between the simula-
tion and G4G4G4 are syntactical, namely instead of generating the
public and secret keys and calculating the algorithm Signsk
and the random oracle H, the simulator S uses its oracles
SignECDSA and HECDSA.

It remains to show that the forgery output by A can be used
by the simulator to win the strongSigForge game.
Claim: (m∗, σ∗) constitutes a valid forgery in game
strongSigForge.
Proof: In order to prove this claim, we have to show that the
tuple (m∗, σ∗) has not been output by the oracle SignECDSA

before. Note that the adversary A has not previously made
a query on the challenge message m∗ to either OpS or OS.
Hence, SignECDSA is only queried on m∗ during the challenge
phase. As shown in game G1G1G1, the adversary outputs a forgery
σ∗ which is equal to the signature σ output by SignECDSA

during the challenge phase only with negligible probability.
Hence, SignECDSA has never output σ∗ on query m∗ before
and consequently (m∗, σ∗) constitutes a valid forgery for game
strongSigForge. �

From the games G0G0G0 − G4G4G4 we get that Pr[G0G0G0 = 1] ≤
Pr[G4G4G4 = 1] + ν1(n) + ν2(n) + 2ν3(n). Since S provides a
perfect simulation of game G4G4G4, we obtain:

AdvAaSigForge = Pr[G0G0G0 = 1]

≤ Pr[G4G4G4] + ν1(n) + ν2(n) + 2ν3(n)

≤ AdvSstrongSigForge + ν1(n) + ν2(n) + 2ν3(n).

Lemma 9 (Witness Extractability). Assuming that the positive
ECDSA scheme ΣpECDSA is SUF–CMA-secure and R′g is a
hard relation, the adaptor signature scheme ΞR′g,ΣpECDSA

as
defined in Fig. 5 is witness extractable.

Proof. Before providing the formal proof of witness ex-
tractability, we give the main intuition behind this proof. In
general this proof is very similar to the proof of lemma 8. Our
goal is to reduce the witness extractability of ΞR′g,ΣpECDSA

to the
strong unforgeability of the positive ECDSA signature scheme.
In other words, assuming that there exists a PPT adversary A
who wins the aWitExt experiment, we design a PPT adversary
S that wins the strongSigForge experiment.

During the reduction, the main challenge arises during
the simulation of pre-sign queries. This simulation is done
exactly as in the proof of lemma 8. However, unlike in the
aSigForge experiment, in aWitExt, A outputs the statement IY
for relation R′g alongside the challenge message m∗, meaning
that the game does not choose the pair (IY , y). Therefore,
S does not learn the witness y and hence cannot transform
a full signature to a pre-signature by computing s̃ := s · y.
Fortunately, it is possible to extract y from the zero-knowledge
proof embedded in IY . After extracting y, the same approach
used in order to simulate the pre-sign queries can be taken
here as well.

Game G0G0G0: This game corresponds to the original aWitExt
game, where the adversary A has to come up with a valid
signature σ for a message m of his choice, a given pre-
signature σ̃ and a given statement/witness pair ((Y, πY), y),
while having access to oracles H, OpS and OS, such that
((Y, πY),Ext(σ, σ̃, (Y, πY))) 6∈ R′g . Since we are in the
random oracle model, we explicitly write the random oracle
code H.

Pr[G0 = 1] = Pr[aWitExtA,ΞRg,ΣSch
(n) = 1]

Game G1G1G1: This game only applies changes to the OpS

oracle as opposed to the previous game. Namely, during the
OpS queries, this game extracts a witness y by executing the
algorithm K on inputs the statement Y , the proof πY and the
list of random oracle queries H . The game aborts, if for the
extracted witness y it does not hold that ((Y, πY), y) ∈ R′g .
Claim: Let Bad1 be the event that G1G1G1 aborts during an OpS

execution, then it holds that Pr[Bad1] ≤ ν1(n), where ν1 is a
negligible function in n.
Proof: According to the online extractor property of the zero
knowledge proof, for a witness y extracted from a proof πY
for statement Y such that Vrfy(Y, πY) = 1, it holds that
((Y, πY Y), y) ∈ R′g except with negligible probability. �
Since games G1G1G1 and G0G0G0 are equivalent except if event Bad1

occurs, it holds that Pr[G0G0G0 = 1] ≤ Pr[G1G1G1 = 1]+ν1(n), where
ν1 is a negligible function in n.

G0G0G0

1 :Q := ∅
2 :H := [⊥]

3 :(sk , pk)← Gen(1n)

4 :(m, IY)← AOS(·),OpS(·,·)(pk)

5 :σ̃ ← pSignsk (m, IY)

6 :σ ← AOS(·),OpS(·,·)(σ̃)

7 :y′ := Ext(σ, σ̃, IY)

8 :b1 := Vrfypk (m;σ)

9 :b2 := m 6∈ Q
10 :b3 := (IY , y

′) 6∈ R′g
11 :return (b1 ∧ b2 ∧ b3)

OS(m)

1 :σ ← Signsk (m)

2 :Q := Q∪ {m}
3 :return σ

H(x)

1 :if H(x) = ⊥
2 : H(x)←$ Zq
3 :return H(x)

OpS(m, IY)

1 :σ̃ ← pSignsk (m, IY)

2 :Q := Q∪ {m}
3 :return σ̃

G1G1G1

1 :Q := ∅
2 :H := [⊥]

3 :(sk , pk)← Gen(1n)

4 :(m∗, IY)← AOS(·),OpS(·,·)(pk)

5 :σ̃ ← pSignsk (m∗, IY)

6 :σ∗ ← AOS(·),OpS(·,·)(σ̃)

7 :y′ := Ext(σ∗, σ̃, IY)

8 :b1 := Vrfypk (m∗;σ∗)

9 :b2 := m∗ 6∈ Q
10 :b3 := ((IY), y′) 6∈ R′g
11 :return (b1 ∧ b2 ∧ b3)

OS(m)

1 :σ ← Signsk (m)

2 :Q := Q∪ {m}
3 :return σ

H(x)

1 :if H(x) = ⊥
2 : H(x)←$ Zq
3 :return H(x)

OpS(m, IY)

1 :parse IY as (Y, πY)

2 :y := K(Y, πY , H)

3 :if ((Y, πY), y) 6∈ R′g
4 : Abort
5 :σ̃ ← pSignsk (m, IY)

6 :Q := Q∪ {m}
7 :return σ̃

Game G2G2G2: This game extends the changes to OpS from the
previous game. In the OpS execution, this game first creates
a valid full signature σ by executing the Sign algorithm and
converts σ into a pre-signature using the extracted witness
y. Further, the game calculates the randomness K̃ = gk and
K = K̃y−1

from σ and simulates a zero knowledge proof πS
using K̃ and K. Due to the zero knowledge property of the
zero knowledge proof, the simulator can produce a proof πS
which is indistinguishable from a proof π ← Pdh((K̃,K), k).
Hence, this game is indistinguishable from the previous game.
It holds that Pr[G1G1G1 = 1] ≤ Pr[G2G2G2 = 1] + ν2(n), where ν2 is
a negligible function in n.

G2G2G2

1 :Q := ∅
2 :H := [⊥]

3 :(sk , pk)← Gen(1n)

4 :(m∗, IY)← AOS(·),OpS(·,·)(pk)

5 :σ̃ ← pSignsk (m∗, IY)

6 :σ ← AOS(·),OpS(·,·)(σ̃)

7 :y′ := Ext(σ∗, σ̃, IY)

8 :b1 := Vrfypk (m∗;σ∗)

9 :b2 := m∗ 6∈ Q
10 :b3 := (IY , y

′) 6∈ R
11 :return (b1 ∧ b2 ∧ b3)

OS(m)

1 :σ ← Signsk (m)

2 :Q := Q∪ {m}
3 :return σ

H(x)

1 :if H(x) = ⊥
2 : H(x)←$ Zq
3 :return H(x)

OpS(m, IY)

1 :parse IY as (Y, πY)

2 :y := K(Y, πY , H)

3 :if ((Y, πY), y) 6∈ R′g
4 : Abort
5 :σ ← Signsk (m)

6 :parse σ as (r, s)

7 :s̃ := s · y
8 :u := H(m) · s−1

9 :v := r · s−1

10 :K̃ := guXv

11 :K := K̃y−1

12 :πS ← S((K̃,K), 1)

13 :Q := Q∪ {m}
14 :return (r, s̃,K, πS)

Game G3G3G3: In this game we apply the exact same changes
made in game G1G1G1 in oracle OpS to the challenge phase of the
game. During the challenge phase, this game extracts a witness
y by executing the algorithm K on inputs the statement Y , the
proof πY and the list of random oracle queries H . The game
aborts, if for the extracted witness y it does not hold that
((Y, πY), y) ∈ R′g .

G3G3G3

1 :Q := ∅
2 :H := [⊥]

3 :(sk , pk)← Gen(1n)

4 :(m∗, IY)← AOS(·),OpS(·,·)(pk)

5 :parse IY as (Y, πY)

6 :y := K(Y, πY , H)

7 :if ((Y, πY), y) 6∈ R′g
8 : Abort
9 :σ̃ ← pSignsk (m, IY)

10 :σ ← AOS(·),OpS(·,·)(σ̃)

11 :y′ := Ext(σ∗, σ̃, IY)

12 :b1 := Vrfypk (m∗;σ∗)

13 :b2 := m∗ 6∈ Q
14 :b3 := ((Y, πY), y′) 6∈ R′g
15 :return (b1 ∧ b2 ∧ b3)

OS(m)

1 :σ ← Signsk (m)

2 :Q := Q∪ {m}
3 :return σ

H(x)

1 :if H(x) = ⊥
2 : H(x)←$ Zq
3 :return H(x)

OpS(m, IY)

1 :parse IY as (Y, πY)

2 :y := K(Y, πY , H)

3 :if ((Y, πY), y) 6∈ R′g
4 : Abort
5 :σ ← Signsk (m)

6 :parse σ as (r, s)

7 :s̃ := s · y
8 :u := H(m) · s−1

9 :v := r · s−1

10 :K̃ := guXv

11 :K := K̃y−1

12 :πS ← S((K̃,K), 1)

13 :Q := Q∪ {m}
14 :return (r, s̃,K, πS)

Claim: Let Bad2 be the event that G3G3G3 aborts during the
challenge phase, then it holds that Pr[Bad2] ≤ ν1(n), where
ν1 is a negligible function in n.

Proof: This proof is analogous to the proof of G1G1G1 in the proof
of lemma 9. �

Since games G2G2G2 and G3G3G3 are equivalent except if event Bad2

occurs, it holds that Pr[G2G2G2 = 1] ≤ Pr[G3G3G3 = 1]+ν1(n), where
ν1 is a negligible function in n.

G4G4G4

1 :Q := ∅
2 :H := [⊥]

3 :(sk , pk)← Gen(1n)

4 :(m∗, IY)← AOS(·),OpS(·,·)(pk)

5 :parse IY as (Y, πY)

6 :y := K(Y, πY , H)

7 :if ((Y, πY), y) 6∈ R′g
8 : Abort
9 :σ ← Signsk (m∗)

10 :parse σ as (r, s)

11 :s̃ := s · y
12 :u := H(m∗) · s−1

13 :v := r · s−1

14 :K̃ := guXv

15 :K := K̃y−1

16 :πS ← S((K̃,K), 1)

17 :σ̃ := (r, s̃,K, πS)

18 :σ∗ ← AOS(·),OpS(·,·)(σ̃)

19 :y′ := Ext(σ∗, σ̃, IY)

20 :b1 := Vrfypk (m∗;σ∗)

21 :b2 := m∗ 6∈ Q
22 :b3 := ((Y, πY), y′) 6∈ R′g
23 :return (b1 ∧ b2 ∧ b3)

OS(m)

1 :σ ← Signsk (m)

2 :Q := Q∪ {m}
3 :return σ

H(x)

1 :if H(x) = ⊥
2 : H(x)←$ Zq
3 :return H(x)

OpS(m, IY)

1 :parse IY as (Y, πY)

2 :y := K(Y, πY , H)

3 :if ((Y, πY), y) 6∈ R′g
4 : Abort
5 :σ ← Signsk (m)

6 :parse σ as (r, s)

7 :s̃ := s · y
8 :u := H(m) · s−1

9 :v := r · s−1

10 :K̃ := guXv

11 :K := K̃y−1

12 :πS ← S((K̃,K), 1)

13 :Q := Q∪ {m}
14 :return (r, s̃,K, πS)

Game G4G4G4: In this game we apply the exact same changes
made in game G2G2G2 in oracle OpS to the challenge phase of
the game. In the challenge phase, this game first creates a
valid full signature σ by executing the Sign algorithm and
converts σ into a pre-signature using the extracted witness
y. Further, the game calculates the randomness K̃ = gk and
K = K̃y−1

from σ and simulates a zero knowledge proof πS
using K̃ and K. Due to the zero knowledge property of the
zero knowledge proof, the simulator can produce a proof πS
which is indistinguishable from a proof π ← Pdh((K̃,K), k).
Hence, this game is indistinguishable from the previous game.
It holds that Pr[G3G3G3 = 1] ≤ Pr[G4G4G4 = 1] + ν3(n), where ν3 is
a negligible function in n.

SSignECDSA,HECDSA

(pk)

1 :Q := ∅
2 :H := [⊥]

3 :(m∗, IY)← AOS(·),OpS(·,·)(pk)

4 :parse IY as (Y, πY)

5 :y := K(Y, πY , H)

6 :if ((Y, πY), y) 6∈ R′g
7 : Abort
8 :σ ← SignECDSA(m∗)

9 :parse σ as (r, s)

10 :s̃ := s · y
11 :u := H(m∗) · s−1

12 :v := r · s−1

13 :K̃ := guXv

14 :K := K̃y−1

15 :πS ← S((K̃,K), 1)

16 :σ̃ := (r, s̃,K, πS)

17 :σ∗ ← AOS(·),OpS(·,·)(σ̃)

18 :return (m∗, σ∗)

OS(m)

1 :σ ← SignECDSA(m)

2 :Q := Q∪ {m}
3 :return σ

H(x)

1 :if H(x) = ⊥
2 : H(x)←$ HECDSA(x)

3 :return H(x)

OpS(m, IY)

1 :parse IY as (Y, πY)

2 :y := K(Y, πY , H)

3 :if ((Y, πY), y) 6∈ R′g
4 : Abort
5 :σ ← SignECDSA(m)

6 :parse σ as (r, s)

7 :s̃ := s · y
8 :u := H(m) · s−1

9 :v := r · s−1

10 :K̃ := guXv

11 :K := K̃y−1

12 :πS ← S((K̃,K), 1)

13 :Q := Q∪ {m}
14 :return (r, s̃,K, πS)

Having shown that the transition from the original aWitExt
game (Game G0G0G0) to Game G4G4G4 is indistinguishable, it remains
to show that there exists a simulator that perfectly simulates
G4G4G4 and uses A to win the strongSigForge game. In the
following we describe in a concise way the simulator code.

Simulation of oracle queries

Signing queries: Upon A querying the oracle OS on input
m, S forwards m to its oracle SignECDSA and forwards
its response to A.

Random Oracle queries: Upon A querying the oracle H
on input x, if H[x] = ⊥, then S queries HECDSA(x),
otherwise the simulator returns H[x].

Pre-Signing queries: 1) Upon A querying the oracle OpS

on input (m, IY), the simulator extracts y using the
extractability of NIZK, forwards m to oracle SignECDSA

and parses the signature that is generated as (r, s).
2) S generates a pre-signature from (r, s) by computing

s̃ := s · y.
3) Finally, S simulates a zero knowledge proof πS, prov-

ing that it knows the exponent of K and K̃. The
simulator outputs (r, s̃,K, π).

Challenge phase: 1) Upon A outputting the message
(m∗, IY) as the challenge message, S extracts y using
the extractability of NIZK, forwards m∗ to the oracle
SignECDSA and parses the signature that is generated
as (r, s).

2) The simulator generates the required pre-signature σ̃
in the same way as during OpS queries.

3) Upon A outputting a forgery σ, the simulator outputs
(m∗, σ∗) as its own forgery.

We emphasize that the main difference between the simula-
tion and G4G4G4 are syntactical, namely instead of generating the
public and secret keys and calculating the algorithm Signsk
and the random oracle H, the simulator S uses its oracles
SignECDSA and HECDSA.

It remains to show that the signature output by A can be
used by the simulator to win the strongSigForge game.
Claim: (m∗, σ∗) constitutes a valid forgery in game
strongSigForge.
Proof: In order to prove this claim, we have to show that the
tuple (m∗, σ∗) has not been output by the oracle SignECDSA

before. Note that the adversary A has not previously made
a query on the challenge message m∗ to either OpS or OS.
Hence, SignECDSA is only queried on m∗ during the challenge
phase. If the adversary outputs a forgery σ∗ which is equal
to the signature σ output by SignECDSA during the challenge
phase, the extracted y would be in relation with the given
public value IY . Hence, SignECDSA has never output σ∗ on
query m∗ before and consequently (m∗, σ∗) constitutes a valid
forgery for game strongSigForge. �

From the games G0G0G0 − G4G4G4 we get that Pr[G0G0G0 = 1] ≤
Pr[G4G4G4 = 1] + 2ν1(n) + ν2(n) + ν3(n). Since S provides a
perfect simulation of game G4G4G4, we obtain:

AdvaWitExt = Pr[G0G0G0 = 1]

≤ Pr[G4G4G4 = 1] + 2ν1(n) + ν2(n) + ν3(n)

≤ AdvSstrongSigForge + 2ν1(n) + ν2(n) + ν3(n).

F. Simplifying functionality description
The formal description of the functionality F(T, k) as

presented in Section III is simplified. Namely, several natural
checks that one would expect an ideal functionality to make
when receiving a message are excluded from its description.
For example a functionality should ignore a message that is
malformed (e.g. missing or additional parameters), requests an
update of a channel that was never created, etc. We define all
those check using a wrapper Wchecks(T, k).

Functionality wrapper: Wchecks(T, k)

Below, we abbreviate F := F(T, k).
Create: Upon (CREATE, γ, tid)

τ0←−↩ P , where P ∈ γ.users, check
if: Γ(γ.id) = ⊥ and there is no channel γ′ with γ.id = γ′.id
being created; γ is valid according to the definition given in
Section III-A; γ.st = {(cP , One–SigpkP

), (cQ, One–SigpkQ
)} for

cP , cQ ∈ R≥0; and there exists (t, id , i, θ) ∈ L.UTXO such that
θ = (cP , One–SigP) for (id , i) := tid ;a If one of the above checks
fails, drop the message. Else proceed as F .
Update: Upon (UPDATE, id , ~θ, tstp)

τ0←−↩ P check if: γ := Γ(id) 6=
⊥; P ∈ γ.users; there is no other update being preformed; let ~θ =
(θ1, . . . θ`) = ((c1, ϕ1), . . . , (c`, ϕ`)), then

∑
j∈[`] ci = γ.cash

and ϕj ∈ L.V for each j ∈ [`]. If not, drop the message. Else
proceed as F .

Upon (SETUP–OK, id)
τ2←−↩ P check if: you accepted a message

(UPDATE, id , ~θ, tstp)
τ0←−↩ P , where t2 − t0 ≤ tstp + T and the

message is a reply to the message (SETUP, id , ~tid) sent to P in
round τ1 such that τ2 − τ1 ≤ tstp

b. If not, drop the message. Else
proceed as F .
Upon (UPDATE–OK, id)

τ0←−↩ P , check if the message is a reply to
the message (SETUP–OK, id) sent to P in round τ0. If not, drop the
message. Else proceed as F .
Upon (REVOKE, id)

τ0←−↩ P , check if the message is a reply to either
the message (UPDATE–OK, id) sent to P in round τ0 or the message
(REVOKE–REQ, id) sent to P in round τ0. If not, drop the message.
Else proceed as F .
Close: Upon (CLOSE, id)

τ0←−↩ P , check if γ := Γ(id) 6= ⊥ and
P ∈ γ.users. If not, drop the message. Else proceed as F .
All other messages are dropped.

aIn case more channels are being created at the same time, then none of
the other creation requests can use of the tid .

bSee Appendix B what we formally meant by “reply”.

G. Simplifying the protocol descriptions

Similarly as the descriptions of our ideal functionality,
the description of the protocol Π presented in Appendix C
excludes many natural checks that we would want an honest
party to make. Let us give a few examples of requests which an
honest party drops if received from the environment: (i) The
environment sends a malformed message to a party P (e.g.
missing or additional parameters); (ii) A party P receives an
instruction to create a channel γ but P 6∈ γ.users; (iii) A party
P receives an instruction to create a channel using the UTXO
defined by tid but this UTXO is not spendable by P etc. We
define all those check as a wrapper WchecksP.

Protocol wrapper: WchecksP

Party P ∈ P proceeds as follows:
Create: Upon (CREATE, γ, tid)

τ0←−↩ E check if: P ∈ γ.users;
ΓP (γ.id) = ⊥ and there is no channel γ′ with γ.id = γ′.id
being created; γ is valid according to the definition given in
Section III-A; γ.st = {(cP , One–SigpkP

), (cQ, One–SigpkQ
)} for

cP , cQ ∈ R≥0; there exists (t, id , i, θ) ∈ L.UTXO such that
θ = (cP , One–SigP) for (id , i) := tid . If one of the above checks
fails, drop the message. Else proceed as in Π.
Update: Upon (UPDATE, id , ~θ, tstp)

τ0←−↩ E check if: γ := ΓP (id) 6=
⊥; there is no other update being preformed; let ~θ = (θ1, . . . θ`) =
((c1, ϕ1), . . . , (c`, ϕ`)), then

∑
j∈[`] ci = γ.cash and ϕj ∈ L.V

for each j ∈ [`]. If on of the checks fails, drop the message.
Else proceed as in Π. Upon (SETUP–OK, id)

τ2←−↩ E check if: you
accepted a message (UPDATE, id , ~θ, tstp)

τ0←−↩ E , where t2 − t0 ≤
tstp +T and the message is a reply to the message (SETUP, id , ~tid)
you sent in round τ1 such that τ2 − τ1 ≤ tstp

a. If not, drop the
message. Else proceed as in Π.
Upon (UPDATE–OK, id)

τ0←−↩ E , check if the message is a reply to
the message (SETUP–OK, id) you sent in round τ0. If not, drop the
message. Else proceed as in Π.
Upon (REVOKE, id)

τ0←−↩ E , check if the message is a reply to either
(UPDATE–OK, id) or (REVOKE–REQ, id) you sent in round τ0. If not,
drop the message. Else proceed as in Π.
Create: Upon (CLOSE, id)

τ0←−↩ E , check if γ := ΓP (id) 6= ⊥. If
not, drop the message. Else proceed as in Π.

All other messages are dropped.

aSee Appendix B what we formally meant by “reply”.

H. Simulation
In this section we provide a proof for Theorem 3. In our

proof, we provide the code for a simulator, that simulates the
protocol ΠL(∆,Σ)(ΞR,Σ) in the ideal world having access to
the functionalities L and F . The main challenge in providing
a simulation in UC proofs usually arises from the fact that
the simulator is not given the secret inputs of the parties in
the protocol, which makes it difficult to provide a simulated
transcript that is indistinguishable to a transcript of a real
protocol execution. However, in our setting, parties do not
obtain any secret inputs, but only receive commands from the
environment E and hence the only challenge that arises during
simulation is handling different behavior of malicious parties.
For this reason, we omit the simulation for the case where both
parties are honest in the protocol. Furthermore, due to the same
reason, as long as the protocol can be simulated in the ideal
world, the ideal and real world executions are indistinguish-
able. We emphasize that the security of the protocol and its
realizability relies on the correctness and security properties
of underlying adaptor signature scheme, namely unforgeability
and witness extractability and adaptability.

Let us now explain the necessity of the adaptor signature
properties in more detail. Clearly, if the environment or mali-
cious parties are able to generate signatures on behalf of honest
parties, we create an adversary that can use them in order to
win the unforgeability game of the adaptor signature scheme.
Therefore, only the simulator can generate valid signatures
on behalf of the honest parties (the environment can do so
only upon guessing the correct signing keys, which happens
only with negligible probability). Witness Extractability is
necessary in order to punish the dishonest party who has
published an old commit transaction. Hence, if a malicious
party can publish a valid signature for which the extract
algorithm Ext, in step 1 of the simulation for the punish
procedure, does not output a correct witness, we can build
an adversary that can win the witness extractability game of
the adaptor signature scheme. Further, adaptability is required
in order to complete the pre-signature of the new commit
transaction. Therefore, if a malicious party can generate a pre-
signature that cannot be adapted, in step 8 of the simulation
for the update procedure, we can build an adversary who can
break the pre-signature adapatbility property. Last but not least,
the signatures generated upon adapting a pre-signature are
valid according to correctness and hence the punish transaction
generated in step 3 of the simulation for the punish procedure,
is signed correctly and will get accepted by the blockchain.

Remark 3. In the following proof, we use the witness ex-
tracted from an adaptor signature as a signing secret key.
We note that the proof extends naturally to the case where
the witness is used as a hash preimage even though this
requires an additional zero-knowledge proof, which guarantees
consistency of the hash value and the preimage.

Simulator for creating generalized channels

Let T1 = 3.

Case A is honest and B is corrupted

Upon A sending (CREATE, γ, tidA)
τ0
↪−→ F , if B does not send

(CREATE, γ, tidB)
τ
↪−→ F where |τ0− τ | ≤ T1, then distinguish the

following cases:

1) If B sends (createInfo, id , tidB ,RB ,YB)
τ0
↪−→ A, then send

(CREATE, γ, tidB)
τ0
↪−→ F on behalf of B.

2) Otherwise stop.
Do the following:
1) Set id := γ.id, generate a revocation public/secret pair

(RA, rA) ← GenR(pp), generate publishing public/secret
pair (YA, yA) ← GenR(pp) and send (createInfo, id , tidA,

RA,YA)
τ0
↪−→ B.

2) If you receive (createInfo, id , tidB ,RB ,YB)
τ0+1
←−−−↩ B, create

the body of the funding, the first commit and split transactions:

[TXf] := GenFund((tidA, tidB), γ)

[TXc] := GenCommit([TXf], IA, IB , 0)

[TXs] := GenSplit([TXc].txid‖1, γ.st)

where IA := (pkA,RA,YA) and IB := (pkB ,RB ,YB). Else
stop.

3) Pre-sign [TXc] w.r.t. YB and sign [TXs],

sAc ← pSignskA
([TXc],YB)

sAs ← SignskA
([TXs])

and (createCom, id , sAc , s
A
s)

τ0+1
↪−−−→ B.

4) If you receive (createCom, id , sBc , s
B
s)

τ0+2
←−−−↩ B, s.t.

pVrfypkB
([TXc],YA; sBc) = 1

VrfypkB
([TXs]; s

B
s) = 1

sign the funding transaction sAf ← SignskA
([TXf]) and

(createFund, id , sAf)
τ0+2
↪−−−→ B. Else stop.

5) If you (createFund, id , sBf)
τ0+3
←−−−↩ B s.t. VrfypkB

([TXf]; s
B
f) =

1, define TXf := ([TXf], {sAf , sBf }) and (post, TXf)
τ0+3
↪−−−→ L.

Else stop.
6) If TXf is accepted by L in round τ1 ≤ τ0 + 3 + ∆, add

ΓA(γ.id) := (γ, TXf, (TXc, rA,RB ,YB , s
A
c), TXs),

where TXs := ([TXs], {sAs , sBs }) and

TXc := ([TXc], {SignskA
([TXc]),Adapt(s

B
c , yA)}).

Simulator for updating generalized channels

Let T1 = 2 and T2 = 1 and let | ~tid | = 1.

Case A is honest and B is corrupted

Upon A sending (UPDATE, id , ~θ, tstp)
τ0
↪−→ F , proceed as follows:

1) Generate new revocation public/secret pair (RP , rP) ← GenR
and a new publishing public/secret pair (YP , yP)← GenR and

send (updateReq, id , ~θ, tstp,RA,YA)
τA0
↪−−→ B.

2) Upon (updateInfo, id , hB , YB , s
B
s)

τA0 +2
←−−−↩ B, set tlock :=

τA0 + tstp + 5 + ∆, extract TXf from ΓB(id) and

[TXc] := GenCommit([TXf], IA, IB , tlock)

[TXs] := GenSplit([TXc].txid‖1, ~θ),

for IA := (pkA,RA,YA) and IB := (pkB ,RB ,YB). If

VrfypkB
([TXs]; s

B
s) = 1, send (SETUP, id , TXs.txid)

τA0 +2
↪−−−→ E .

Else stop.

3) If A sends (SETUP–OK, id)
τA1 ≤τ

A
0 +2+tstp

↪−−−−−−−−−→ F , compute
sAc ← pSignskA

([TXc],YB)sAs ← SignskA
([TXs]) and send

(update–commitA, id , sAc , s
A
s)

τA1
↪−−→ B.

4) In round τA1 + 2 distinguish the following cases:

• If you receive (update–commitB, id , sBc)
τA1 +2
←−−−↩ B and

if B has not sent (UPDATE–OK, id)
τA1 +1
↪−−−→ F , then

send (UPDATE–OK, id)
τA1 +1
↪−−−→ F on behalf of B. If

pVrfypkB
([TXc],YA; sBc) = 0, then stop.

• If you receive (updateNotOk, id , rB)
τP2 +2
←−−−↩ B, where

(RB , rB) ∈ R, add ΘA(id) := ΘA(id) ∪ ([TXc], rB ,YB ,
sAc), instruct F to stop and stop.

• Else, execute the simulator code for the procedure
ForceCloseA(id) and stop.

5) If A sends (REVOKE, id)
τA1 +2
↪−−−→ F , then parse ΓA(id)

as (γ, TXf, (TXc, r̄A, R̄B , ȲB , s̄
A
Com), TXs) and update the chan-

nel space as ΓA(id) := (γ, TXf, (TXc, rA,RB ,YB , s
A
c), TXs),

for TXs := ([TXs], {sAs , sBs }) and TXc := ([TXc],
{SignskA

([TXc]),Adapt(s
B
c , yA)}). Then send (revokeP, id ,

r̄A)
τA1 +2
↪−−−→ B. Else, execute the simulator code for the pro-

cedure ForceCloseA(id) and stop.

6) If you receive (revokeB, id , r̄B)
τA1 +4
←−−−↩ B and if B has not

sent (REVOKE, id)
τB1 +2
↪−−−→ F , then send (REVOKE, id)

τB1 +2
↪−−−→ F

on behalf of B. Check if (R̄B , r̄B) ∈ R, then set

ΘB(id) :=ΘA(id) ∪ ([TXc], r̄B , ȲB , s̄
A
Com)

Else execute the simulator code for the procedure
ForceCloseA(id) and stop.

Case B is honest and A is corrupted

Upon A sending (updateReq, id , ~θ, tstp, hA)
τ0
↪−→ B, send

(UPDATE, id , ~θ, tstp)
τ0
↪−→ F on behalf of A, if A has not already

sent this message. Proceed as follows:

1) Upon (updateReq, id , ~θ, tstp,RA,YA)
τB0←−−↩ A, generate

(RB , rB)← GenR and (YB , yB)← GenR.
2) Set tlock := τB0 + tstp + 4 + ∆, extract TXf from ΓA(id) and

[TXc] := GenCommit([TXf], IA, IB , tlock)

[TXs] := GenSplit([TXc].txid‖1, ~θ)

where IA := (pkA,RA,YA), IB := (pkB ,RB ,YB).
3) Compute sBs ← SignskB

([TXs]), send (updateInfo, id ,RB ,

YB , s
B
s)

τB0
↪−−→ A.

4) If you (updateComP, id , sAc , s
A
s)

τB1 ≤τ
B
0 +2+tstp

←−−−−−−−−−−↩ A then send

(SETUP–OK, id)
τB1
↪−−→ F on behalf of A, if A has not sent this

message.

5) Check if pVrfypkP
([TXc],YQ; sPc) = 1 and

VrfypkP
([TXs]; s

P
s) = 1.

6) If B sends (UPDATE–OK, id)
τB1
↪−−→ F , pre-sign sBc ←

pSign([TXc],YA) and send (updateComQ, id , sBc)
τB1
↪−−→ A.

Else send (updateNotOk, id , rB)
τB1
↪−−→ A and stop.

7) Parse ΓB(id) as (γ, TXf, (TXc, r̄B , R̄A, ȲA, s̄
B
Com), TXs). If you

(revokeP, id , r̄A)
τB1 +2
←−−−↩ A, send (REVOKE, id)

τB1 +2
↪−−−→ F on

behalf of A, if A has not sent this message.

Else if you do not receive (revokeP, id , r̄A)
τB1 +2
←−−−↩ A or if

(R̄A, r̄A) 6∈ R, execute the simulator code of the procedure
ForceCloseB(id) and stop.

8) If B sends (REVOKE, id)
τB1 +2
↪−−−→ F , then set

ΘB(id) :=ΘB(id) ∪ ([TXc], r̄A, ȲA, s̄
B
Com)

ΓB(id) :=(γ, TXf, (TXc, rB ,RA,YA, s
B
c), TXs),

for TXs := ([TXs], {sAs , sBs }) and TXc := ([TXc],
{SignskB

([TXc]),Adapt(s
A
c , yB)}). Then (revokeB, id , r̄B)

τB1 +2
↪−−−→ A and stop. Else, in round τB1 +2, execute the simulator
code of the procedure ForceCloseB(id) and stop.

Simulator for closing generalized channels

Let T1 = 1.

Case A is honest and B is corrupted

Upon A sending (CLOSE, id)
τ0
↪−→ F , if B does not send

(CLOSE, id)
τ
↪−→ F where |τ0 − τ | ≤ T1, then distinguish the

following cases:

1) If B sends sBs
τ0
↪−→ A, then send (CLOSE, id)

τ0
↪−→ F on behalf

of B.
2) Otherwise execute the simulator code of the procedure

ForceCloseA(id) and stop.
1) Extract TXf and TXs from ΓA(id). Create the body of the final

split transaction [TXs] as follows

[TXs] := GenSplit(TXf.txid‖1, TXs.Output)

2) Compute the signature sAs ← SignskA
([TXs]) and send sAs

τ0
↪−→

B.
3) If you receive sBs

τ0+1
←−−−↩ B, s.t. VrfypkB

([TXs]; s
B
s) = 1, set

TXs := ([TXs], {sAs , sBs }) and send (post, TXs)
τ0+1
↪−−−→ L. Else,

execute the simulator code for the procedure ForceCloseA(id)
and stop.

4) Let τ2 ≤ τ1 + ∆ be the round in which TXs is accepted by the
blockchain. Set ΓA(id) = ⊥, ΘA(id) = ⊥.

Simulator for punishment of generalized channels

Case A is honest and B is corrupted

Upon A sending PUNISH
τ0
↪−→ F , for each id ∈ {0, 1}∗ such that

ΘP (id) 6= ⊥ do the following:
1) Parse ΘA(id) := {([TX(i)

c], r
(i)
B ,Y

(i)
A , s(i))}i∈m and extract γ

from ΓA(id). If for some i ∈ [m], there exist a transaction tx
on L such that tx.txid = TX

(i)
c .txid, then parse the witness as

(sA, sB) := tx.Witness), where VrfypkA
([tx]; sA) = 1, and set

y
(i)
B := Ext(sA, s

(i),Y
(i)
B).

2) Define the body of the punishment transaction [TXpun] as:

TXpun.Input := tx.txid‖1,
TXpun.Output := {(γ.cash, One–SigpkA

)}

3) Compute the signatures sy ← Sign
y
(i)
B

([TXpun]), sr ←
Sign

r
(i)
B

([TXpun]), sA ← SignpkA
([TXpun]), and set TXpun :=

([TXpun], sy , sr , sA). Then (post, TXpun)
τ0
↪−→ L.

4) Let TXpun be accepted by L in round τ1 ≤ τ0+∆. Set ΘA(id) =
⊥, ΓA(id) = ⊥.

Simulator for ForceCloseP (id)

Let τ0 be the current round
1) Extract TXc and TXs from Γ(id).
2) Wait until round τ1 := max{τ0, TXc.TimeLock} and send

(post, TXc)
τ1
↪−→ L.

3) Let τ2 ≤ τ1 + ∆ be the round in which TXc is accepted by the
blockchain. Wait for ∆ rounds to (post, TXs)

τ2+∆
↪−−−→ L.

4) Once TXs is accepted by the blockchain in round τ3 ≤ τ2 +2∆,
set ΘP (id) = ⊥ and ΓP (id) = ⊥.

