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Abstract. In this work we first provide a framework for defining a large subset of pairing-based
digital signature schemes which we call Partially Structure-Preserving Signature (PSPS) schemes.
PSPS schemes are similar in nature to structure-preserving signatures with the exception that in
these schemes messages are scalars from Zn

p instead of being source group elements. This class
encompasses various existing schemes which have a number of desirable features which makes them
an ideal building block for many privacy-preserving cryptographic protocols. They include the
widely-used schemes of Camenisch-Lysyanskaya (CRYPTO 2004) and Pointcheval-Sanders (CT-
RSA 2016). We then provide various impossibility and lower bound results for variants of this
class. Our results include bounds for the signature and verification key sizes as well as lower bounds
for achieving strong unforgeability. We also give a generic framework for transforming variants of
PSPS schemes into structure-preserving ones. As part of our contribution, we also give a number of
optimal PSPS schemes which may be of independent interest. Our results aid in understanding the
efficiency of pairing-based signature schemes and show a connection between this class of signature
schemes and structure-preserving ones.
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1 Introduction

Digital signatures are a fundamental cryptographic primitive which besides being useful in their own
right, they are used as an essential building block for various more complex protocols.

The emergence of pairing-based cryptography has been associated with the introduction of many
pairing-based digital signature schemes. One of the extinsviely used pairing-based signature schemes is
that of Camenisch and Lysyanskaya (CL) [25]. The scheme has a number of desirable features which
makes it an ideal building block for various privacy-preserving protocols, including group signatures,
e.g. [25, 17], anonymous credentials, e.g. [25], direct anonymous attestation, e.g. [30, 16], and e-cash [26].
Notably, the scheme besides having fully and perfectly randomizable signatures, it is compatible with
Pedersen-like commitment schemes [53] and thus it is possible to sign committed messages without
revealing them to the signer. A recent improvement to the CL scheme is the scheme put forward by
Pointcheval and Sanders (PS) [54], which besides enjoying better efficiency and preserving all of its
desirable features, it yields constant-size signatures regardless of the size of the message which overcomes
a downside of the CL scheme which was the linear growth of the signature when signing multiple messages.
Despite its relatively young age, the PS scheme has been used in the construction of various protocols.
A common feature to the structure of both aforementioned pairing-based schemes is that the signer
is generic, and when viewing the signature components as an exponentiation of the respective group
generator to a fraction of polynomials, the denominator polynomials are independent of the message.
This is to the contrary of other pairing-based schemes, e.g. [19, 20, 59, 55], which even though are based
on non-interactive intractability assumptions, they do not enjoy some of the desirable features of the CL
and PS schemes, e.g. the randomizability of the signatures, having a generic signer, the ease of being
combined with Pedersen-like commitments, and having a short verification key.

Gerbush et al. [38] introduced the dual-form signature framework as a tool for basing variants of
some existing pairing-based digital signatures, including those which fall into the PSPS class, on static
non-interactive intractability assumptions. For instance, [38], gave a variant of the CL scheme whose
security relies on a static assumption in the composite-order bilinear group setting. Similary, recently
[28] utilized the same framework to obtain variants of some pairing-based signature schemes, e.g. the PS
scheme, with security based on static intractability assumptions. The obtained variants are less efficient
than their original counterparts.



In quest to design protocols which dispense with relying on random oracles [33] despite the efficiency
degradation, the notion of Structure-Preserving Signatures (SPSs) was put forward by Abe et al. [4] but
earlier constructions conforming to the definition were given by [44, 43]. SPS schemes are also pairing-
based signature schemes with the extra requirement that the messages, the verification key and the
signatures consist of only source group elements. Verification of signatures in those schemes only involves
evaluating Pairing-Product Equations (PPEs) and checking group memberships. Such properties make
them compatible with widely-used constructs such as ElGamal encryption [31] and Groth-Sahai proofs
[46]. SPS schemes have numerous applications which include group signatures, e.g [4, 50], blind signatures,
e.g. [4, 35], attribute-based signatures, e.g. [32], tightly secure encryption, e.g. [47, 3], malleable signatures,
e.g. [11], anonymous credentials, e.g. [34, 23], network coding, e.g. [11], oblivious transfer, e.g. [43], direct
anonymous attestation, e.g. [15, 39], and e-cash, e.g. [12].

A numerous number of SPS schemes have been proposed in the 3 different bilinear groups settings. In
the most efficient bilinear group setting, i.e. the Type-3 setting (cf. Section 2), existing schemes include
[4, 5, 7, 29, 45, 39, 41]. A large subset of those constructions rely on security proofs in the generic group
model [57, 52]. Abe et al. [5] proved that a Type-3 signature must contain 3 bilateral elements and require
at least 2 PPEs for verification. Ghadafi [41] showed that by restricting the message space to the set
of Diffie-Hellman (DH) pairs (cf. Section 2) it is possible to circumvent the lower bound and obtain
optimal unilateral signatures consisting of 2 elements. Such variants provide some efficiency gains for
some protocols, including direct anonymous attestation [21] and attribute-based signatures [51]. Other
constructions for this message space include, e.g. [4, 39, 42].

Constructions of SPS schemes relying on non-interactive assumptions were given by [2, 22, 3, 49, 50,
48, 9, 37]. Chase and Kohlweiss [27] gave a transformation which utilizes a pairwise-independent hash
functions and NIZK proofs [18], the Gorth-Sahai proof system [46] in particular, to obtain structure-
preserving signatures based on standard assumptions, from some pairing-based signature schemes for
scalar messages. Unfortunately, the transformation is rather costly as the obtained schemes yield signa-
tures consisting of tens of group elements. Abe et al. [6] proved that the unforgeability of an optimal
Type-3 scheme (with 3 bilateral elements) cannot be based on a non-interactive intractability assump-
tion. More recently, Abe et al. [1] gave lower bounds for schemes for bilateral messages which are based
on non-interactive intractability assumptions. SPS constructions in the Type-2 setting (where there is
an efficiently computable unidirectional homomorphism between the source groups) were given in [8, 29,
13, 1]. Fully structure-preserving schemes where even the secret key consists of only group elements from
the source groups were given by [10, 45, 58].

Motivation & Our Contribution. While structure-preserving signatures and their efficiency are well
studied, e.g. lower bounds and optimal schemes exist for the 3 main bilinear groups settings, other types of
pairing-based signature schemes still have some open problems pertaining to their feasibility and bounds
for their efficiency are still lacking. For instance, it is not currently known whether efficient strongly
unforgeable generic-signer schemes which are compatible with Pedersen-like commitments, i.e. have a
similar structure to the CL and PS schemes, are possible. Moreover, it is not currently known whether
the recent efficient PS scheme (which yields unilateral signatures consisting of 2 elements, a verification
key consisting of 2 elements and require 1 PPE for verification) is optimal or whether it is possible to
improve efficiency while preserving all of its desirable features.

SPS schemes might be less desirable than pairing-based schemes for scalar messages for some applica-
tions due to the loss in efficiency. This is particularly the case for applications where relying on random
oracles is tolerated, applications requiring a stand-alone signature scheme, or applications not requiring
proof systems to hide the message. Towards a better understanding of the efficiency of pairing-based
signature schemes for scalar messages, we first define a framework for capturing a large class of such
schemes which we refer to as Partially Structure-Preserving Signature (PSPS) schemes. Other than the
messages being scalars from Znp rather than source group elements, PSPS schemes have similar properties
to structure-preserving signatures, including having a generic signer and signatures and verification keys
consisting of source group elements. We provide different variants of our definition. More precisely, we
define Strongly Partially Structure-Preserving (SPSPS) schemes and Linear-Message Strongly Partially
Structure-Preserving (LmSPSPS) schemes. The former requires that the PSPS scheme does not involve
the message in the denominator of any of the signature components whereas the latter additionally re-
quires that the message is embedded in the signature components in a linear manner. The CL and PS
schemes for example fall into the LmSPSPS class. We provide various lower bounds and impossibility
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results for LmSPSPS schemes. More precisely, we prove that existentially unforgeable under random-
message attacks (EUF-RMA) schemes must have at least 2 elements in the signature and that strongly
existentially unforgeable under chosen-message attacks (sEUF-CMA) schemes must have bilateral signa-
tures consisting of at least 3 elements. Also, we prove that optimal schemes, including one-time schemes,
cannot have a verification key consisting of fewer than 2 elements. We also prove that while an optimal
one-time EUF-CMA LmSPSPS scheme can have a 2-element bilateral verification key, an optimal EUF-
RMA LmSPSPS scheme (with unilateral signatures) cannot have a 2-element bilateral verification key.
In essence, this proves that the PS scheme is optimal in every respect.

As part of our contribution, we also construct 2 new optimal one-time sEUF-CMA LmSPSPS schemes
(with signatures consisting of a single element) and a new optimal EUF-CMA LmSPSPS scheme for a
vector of messages. We prove the security of the latter using a new interactive intractability assumption
which we show holds in the generic group model. The efficiency of our scheme matches that of the best
existing scheme [54] (whose security also relies on an interactive intractability assumption).

Finally, we show a connection between LmSPSPS schemes and SPS schemes by showing that if
a LmSPSPS scheme satisfies an extra requirement which is that the signature and verification key
components in either source group are disjoint, which for instance is satisfied by the CL and PS schemes
as well as our new scheme, such a scheme automatically yields an analogues SPS scheme where the
message space is the set of Diffie-Hellman pairs. The obtained SPS scheme has the same key pair as the
original LmSPSPS scheme and is unforgeable in the generic group model. Moreover, we give conditions
for when the obtained SPS scheme preserves the signature size and the verification overhead of the
corresponding LmSPSPS scheme. We also show some example instantiations of our framework.

Besides being a step closer towards a better understanding of the efficiency of pairing-based signature
schemes, our results uncover a link between LmSPSPS and SPS schemes.

Paper Organization. We provide some preliminary definitions in Section 2. In Section 3 we formally
define partially structure-preserving signature schemes. In Section 4 we give our feasibility results. In
Section 5 we present a new optimal LmSPSPS scheme and prove its security. In Section 6 we present
2 new optimal one-time LmSPSPS schemes and prove their security. Finally, in Section 7 we give our
transformation from LmSPSPS to SPS schemes and provide example instantiations.

Notation. We write y = A(x; r) when algorithm A on input x and randomness r outputs y. We write
y ← A(x) for the process of setting y = A(x; r) where r is sampled at random. We also write y ← S
for sampling y uniformly at random from a set S. A function ν(.) : N → R+ is negligible (in n) if for
every polynomial p(.) and all sufficiently large values of n, it holds that ν(n) < 1

p(n) . By PPT we mean

running in probabilistic polynomial time in the relevant security parameter. We use [k] to denote the
set {1, . . . , k} and [i, k] to denote the set {i, i + 1, . . . , k}. For vectors x,y ∈ Znp we denote by xy the
operation

∏n
i=1 x

yi
i .

2 Preliminaries

In this section we provide some preliminary definitions.

2.1 Bilinear Groups

A bilinear group is a tuple P := (G,H,T, p,G, H̃, e) where G, H and T are groups of a prime order
p, and G and H̃ generate G and H, respectively. The function e is a non-degenerate bilinear map
e : G × H −→ T. We refer to G and H as the source groups whereas we refer to T as the target group.
We will use multiplicative notation for all the groups. To distinguish elements of H from those of G we
will accent the former with .̃ We let G× := G \ {1G} and H× := H \ {1H}. We limit our attention to
the efficient Type-3 setting [36], where G 6= H and there is no efficiently computable homomorphism
between the source groups in either direction. We assume there is an algorithm BG that on input 1κ, for
some security parameter κ ∈ N, outputs a description of a bilinear groups P.

We call a pair (M, Ñ) ∈ G × H a Diffie-Hellman (DH) pair [4] if it satisfies e(M, H̃) = e(G, Ñ). We
denote the set of DH pairs by DH.
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2.2 Digital Signatures

A digital signature scheme DS over a bilinear group P generated by BG for a message spaceM consists
of the following algorithms:

KeyGen(P): On input P, this algorithm outputs a pair of signing/verification keys (sk, vk).
Sign(sk,m): On input the secret signing key sk and a message m ∈M, this algorithm outputs a signature

σ on m.
Verify(vk,m, σ): On input the verification key vk, a message m ∈ M and a signature σ, this algorithm

outputs 0/1 indicating the invalidity/validity of σ on m w.r.t. vk.

Definition 1 (Correctness). A signature scheme DS over a bilinear group generator BG is (perfectly)
correct if for all κ ∈ N:

Pr

[
P ← BG(1κ); (sk, vk)← KeyGen(P);m←M;σ ← Sign(sk,m)

: Verify(vk,m, σ) = 1

]
= 1.

A signature scheme is said to be existentially unforgeable if it is hard to forge a signature on a new
message that has not been signed before where the adversary may request signatures on other mes-
sages before outputting her forgery. We distinguish between random-message (EUF-RMA) and adaptive
chosen-message (EUF-CMA) variants of existential unforgeability as defined below.

Definition 2 (EUF-RMA). A signature scheme DS over a bilinear group generator BG is Existentially
Unforgeable under a Random-Message Attack if for all κ ∈ N for all PPT adversaries A, the following
is negligible (in κ):

Pr

[
P ← BG(1κ); (sk, vk)← KeyGen(P); (σ∗,m∗)← ASign(sk)(P, vk)

: Verify(vk,m∗, σ∗) = 1 ∧ m∗ /∈ QSign

]
,

where Sign uniformly samples a message m from M and returns m and a signature σ on it, and QSign

is the set {mi}qi=1 of messages returned by Sign.

Strong Existential Unforgeability under a Random-Message Attack (sEUF-RMA) is defined similarly
and requires that the adversary cannot even output a new signature on a message that was chosen by
Sign.

Definition 3 (EUF-CMA). A signature scheme DS over a bilinear group generator BG is Existentially
Unforgeable under an adaptive Chosen-Message Attack if for all κ ∈ N for all PPT adversaries A, the
following is negligible (in κ):

Pr

[
P ← BG(1κ); (sk, vk)← KeyGen(P); (σ∗,m∗)← ASign(sk,·)(P, vk)

: Verify(vk,m∗, σ∗) = 1 ∧ m∗ /∈ QSign

]
,

where when queried on a message m from M, Sign returns a signature σ on m and QSign is the set
{mi}qi=1 of messages queried to Sign.

Strong Existential Unforgeability under an adaptive Chosen-Message Attack (sEUF-CMA) is defined
similarly and requires that the adversary cannot even output a new signature on a message that was
queried to the sign oracle.

2.3 Structure-Preserving Signatures

Structure-preserving signatures [4] are signature schemes defined over bilinear groups where the messages,
the verification key and signatures are all group elements from either or both source groups, and verifying
signatures only involves deciding group membership of the signature components and evaluating PPEs
of the form of Equation (1). ∏

i

∏
j

e(Ai, B̃j)
ci,j = Z, (1)

where Ai ∈ G and B̃j ∈ H are group elements appearing in P,m, vk, σ, whereas ci,j ∈ Zp and Z ∈ T are
public constants.

Generic Signer. We refer to a signer that can only decide group membership, evaluate the bilinear map
e, compute the group operations in groups G,H and T, and compare group elements as a generic signer.
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3 Partially Structure-Preserving Signatures

In this section we define a class of prime-order pairing-based digital signature schemes which we call
Partially Structure-Preserving Signature (PSPS) schemes. Informally, a PSPS scheme is a pairing-based
signature scheme for scalar messages from Znp for n ≥ 1 where the signature components and verification
key contain only source group elements and the signature components are computed by raising source
group elements to fraction of polynomials involving the secret key, the messages and the randomness
chosen as part of the signing process. We then define 2 variants of PSPS schemes to capture most of
the practical schemes existing in the literature. First, we define Strongly Partially Structure-Preserving
Signature (SPSPS) schemes which additionally require that the denominator polynomials used in com-
puting the signature components are independent of the messages to be signed. Then we define a further
variant of SPSPS which we refer to as Linear-Message Strongly Partially Structure-Preserving Signature
(LmSPSPS) schemes which additionally requires that the numerator polynomials are linear in the mes-
sage to be signed. The latter captures a large class of existing schemes over prime-order bilinear groups
for scalar messages, including variants of the CL and PS schemes. As discussed earlier, those schemes
have desirable features such as the public randomizability of signatures and their compatibility with
Pedersen-like commitment schemes which makes them an ideal building block for various cryptographic
protocols.

Definition 4 (Partially Structure-Preserving Signatures). A signature scheme DS over a bilinear
group generator BG is Partially Structure-Preserving Signature (PSPS) scheme if it satisfies all the
following:

• BG(1κ) generates a bilinear group description P := (G,H,T, p,G, H̃, e).
• The verification key vk consists of P and source group elements (X,Y ) ∈ Gµ × Hµ′ . WLOG we

assume that any other source group elements than the default group generators part of the setup are
part of the verification key.

• The message space is M := Znp for some n ≥ 1.

• A signature on a message m ∈ M is of the form σ := (S, T̃ ) ∈ Gν × Hν′ which is computed by
a generic signer by sampling a vector r ∈ Zn′p (independently of the message m) and computing

Si := G
αi(sk,m,r)

α′
i
(sk,m,r) and T̃j := H̃

βj(sk,m,r)
β′j(sk,m,r) for some formal multivariate polynomials αi, α

′
i, βj , β

′
j ∈

Fp[X1, . . . , Xµ, Y1, . . . , Yµ′ ,M1, . . . ,Mn, R1, . . . , Rn′ ] of total degree bounded by d(κ).
• Signature verification involves deciding group membership 1 and evaluating a set of pairing-product

equations of the following form:

ν∏
i=1

e(Si,

µ′∏
j=1

Ỹj)
ρ

1,i,j
(m)

ν′∏
i=1

e(

µ∏
j=1

Xj , T̃i)
ρ

2,i,j
(m)

ν∏
i=1

e(Si,

ν′∏
j=1

T̃j)
ρ

3,i,j
(m)

µ∏
i=1

µ′∏
j=1

e(Xi, Ỹj)
ρ

4,i,j
(m) = Z`,

(2)

where ρ
k,i,j
∈ Fp[M1, . . . ,Mn] are multivariate polynomials of total degree bounded by d′(κ) whereas

Z` ∈ T is a public constant. In the strict sense, one can necessitate that Z` = 1T.

Definition 5 (Strongly Partially Structure-Preserving Signatures). We say a signature scheme
DS over a bilinear group generator BG is Strongly Partially Structure-Preserving Signature (SPSPS) if
it is partially structure-preserving and additionally it holds that for all i ∈ [ν] and for all j ∈ [ν′], the
polynomials α′i and β′j are independent of the message vector M .

Definition 6 (Linear-Message Strongly Partially Structure-Preserving Signatures). We say a
signature scheme DS over a bilinear group generator BG is Linear-Message Strongly Partially Structure-
Preserving Signature (LmSPSPS) if it is strongly partially structure-preserving and additionally it holds
that for all i ∈ [ν] and for all j ∈ [ν′], αi and βj are linear in M , i.e. for all k ∈ [n], for all i ∈ [ν], for
all j ∈ [ν′], the degree of Mk in αi and βj is either 0 or 1 and for all η, η′ ∈ [n] neither of the polynomials
contain the monomial MηMη′ .

1 For the sake of generality, we allow membership checks of the forms Si ∈ G× and T̃j ∈ H×.
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We now define a subset of PSPS schemes which we call Disjoint Partially Structure-Preserving Sig-
nature (DPSPS) scheme. Informally, a DPSPS scheme is a PSPS scheme where the spans of the sets
of fraction of formal polynomials corresponding to the verification key and signature components in the
source groups are disjoint.

Definition 7 (Disjoint Partially Structure-Preserving Signatures). Let
γ1,i(SK)
γ′1,i(SK) for i ∈ [µ] and

γ2,j(SK)
γ′2,j(SK) for j ∈ [µ′] be the fraction of (formal) polynomials used to compute the verification key X ∈ Gµ

and Y ∈ Hµ′ (excluding the default source group generators), respectively. We say a signature scheme
DS over a bilinear group generator BG is a Disjoint Partially Structure-Preserving Signature (DPSPS)
scheme if it is partially structure-preserving and additionally meets the following requirement:

Span

({γ1,1(SK)

γ′1,1(SK)
, . . . ,

γ1,µ(SK)

γ′1,µ(SK)
,
α1(SK,M ,R)

α′1(SK,M ,R)
, . . . ,

αν(SK,M ,R)

α′ν(SK,M ,R)

})

∩ Span

({γ2,1(SK)

γ′2,i(SK)
, . . . ,

γ2,µ′(SK)

γ′2,µ′(SK)
,
β1(SK,M ,R)

β′1(SK,M ,R)
, . . . ,

βν′(SK,M ,R)

β′ν′(SK,M ,R)

})
= {0}·

We call a LmSPSPS scheme a Disjoint LmSPSPS (DLmSPSPS) scheme if it satisfies the above disjoint
requirement. Examples of schemes conforming to this requirement include the PS scheme and our new
scheme.

We later show that DLmSPSPS schemes yield equivalent structure-preserving signature schemes. In
our transformation to structure-preserving signatures the disjoint requirement ensures that a generic
adversary against the obtained SPS scheme cannot feed elements she obtains from querying the sign
oracle back into the sign oracle. Thus, this restricts the messages the adversary against the SPS scheme
can query back into her sign oracle to being constant polynomials, i.e. scalars from Zp, similarly to the
generic adversary against the underlying DLmSPSPS scheme.

4 Impossibility results

In this section we provide some feasibility results for LmSPSPS schemes.

4.1 A bound on the number of signatures for LmSPSPS schemes

Here we prove, similirly to the case of structure-preserving signatures proven by Abe et al. [7], that a
EUF-RMA LmSPSPS scheme must have for each message superpolynomially many potential signatures.

Theorem 1. An EUF-RMA LmSPSPS scheme (against q > 1 sign queries) must have for each message
superpolynomially many potential signatures.

Proof. We can write the j-th signature component of the `-th signing query as:

Sj = G

∑
i

x
c
i,j y

c′
i,j r

c′′
i,j
`

(a
i,j

+
n∑
k=1

d
i,j,k

mk)

∑
i
b
i,j

x
e
i,j y

e′
i,j r

e′′
i,j
` or T̃j = H̃

∑
i

x
c
i,j y

c′
i,j r

c′′
i,j
`

(a
i,j

+
n∑
k=1

d
i,j,k

mk)

∑
i
b
i,j

x
e
i,j y

e′
i,j r

e′′
i,j
`

for some (fixed) ai,j , bi,j , di,j,k ∈ Zp, ci,j , ei,j ∈ Zµp , c′i,j , e
′
i,j ∈ Zµ′p , c′′i,j , e

′′
i,j ∈ Zn′p which are independent

of m.
If the scheme has only polynomially many potential signatures for a message vector, there is a

polynomial set {ri}poly(κ)i=1 from which the randomness vector r is chosen. Thus, with probability 1
poly(κ)2

we have that the 2 signatures σ1 = (S1, T̃ 1) and σ2 = (S2, T̃ 2) on message vectors m1 and m2,
respectively, were produced using the same vector r` ∈ Zn′p . Thus, we have that σ∗ = σ1−γ

1 σγ2 is a valid
forgery on the message m∗ = (1− γ)m1 + γm2 for any γ ∈ Z×p \ {1} and therefore such a scheme is not
EUF-RMA secure against an adversary which makes 2 (non-adaptive) sign queries. ut
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4.2 Impossibility of LmSPSPS schemes with one-element signatures

Here we prove that an EUF-RMA (aganist q > 1 sign queries) LmSPSPS scheme cannot have one-element
signatures. However, as we show in Section 6, one-time sEUF-CMA LmSPSPS schemes with one-element
signatures are possible.

Theorem 2. An EUF-RMA LmSPSPS scheme (against q > 1 sign queries) must have at least 2 ele-
ments in the signature.

Proof. WLOG let’s assume that a scheme yields one-element signatures of the form σ = S ∈ G. The
proof for the case where σ = T̃ ∈ H is similar. Since there is only one unknown in the verification
equation, i.e the signature S, it follows that 1 verification equation is sufficient for such a scheme. Thus,
the scheme would have a verification equation of the following form:

e(S,

µ′∏
j=1

Ỹj)
aj+

∑n
k=1 a

′
j,kmk

µ∏
i=1

µ′∏
j=1

e(Xi, Ỹj)
di,j+

∑n
k=1 d

′
i,j,kmk = Z, (3)

where a
j
, a′

j,k
, d

i,j
, d′

i,j,k
∈ Zp and Z ∈ T are public constants. By definition, we must have that for all

k ∈ [n] that a′j,k = 0.

Given 2 signatures σ∗1 = S1 on m1 and σ∗2 = S2 on m2, we have that σ∗ = σ1−γ
1 σγ2 is a valid forgery

on the message m∗ = (1− γ)m1 + γm2 for any γ ∈ Z×p \ {1} and therefore such a scheme is not EUF-
RMA secure against an adversary which makes 2 (non-adaptive) sign queries. ut

4.3 Impossibility of unilateral sEUF-CMA LmSPSPS schemes

Here we prove that the signatures of a sEUF-CMA LmSPSPS scheme secure against q > 1 sign queries
must have bilateral signatures.

Theorem 3. There is no sEUF-CMA (against q > 1 sign queries) LmSPSPS scheme with unilateral
signatures.

Proof. WLOG let’s assume that the signature is of the form σ = S ∈ Gν . The proof for the case where
σ = T̃ ∈ Hν′ is similar. Such a scheme would have a number of verification equations of the following
form:

ν∏
i=1

e(Si,

µ′∏
j=1

Ỹj)
ρi,j,`(m)

µ∏
i=1

µ′∏
j=1

e(Xi, Ỹj)
ρi,j,`(m) = Z` (4)

By definition, the denominator polynomials used in computing the signature components are independent
of the message to be signed. Also, since the signature is unilateral, i.e. the signature components only
appear on the LHS of the pairings, the numerator polynomials are linear in the randomness vector r
whereas the denominator polynomials are independent of the randomness vector. This means we can
write each signature component Si as

Si = G

z−
µ∑
j=1

µ′∑
k=1

τi,1,j,k(m)xjyk−
µ′∑
j=1

n′∑
k=1

τi,2,j,k(m)yjrk

µ′∑
j=1

a
i,j
yj

,

where τi,1,j,k, τi,2,j,k ∈ Fp[M1, . . . ,Mn] are multivariate polynomials and ai,j , z ∈ Zp are some fixed
constants. By Theorem 1 such a scheme must have superpolynomially many potential signatures. By
querying the sign oracle twice on any message vector m from the message space, with overwhelming
probability we obtain 2 distinct signatures σ1 = S1 and σ2 = S2. We have that σ∗ = σ1−γ

1 σγ2 is with
overwhelming probability a new signature on m for any γ ∈ Z×p \ {1}. ut
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4.4 Impossibility of sEUF-CMA SPSPS schemes with 2-element signatures

Theorem 3 proved that unilateral sEUF-CMA LmSPSPS schemes (regardless of the size of the signature)
do not exist. The following theorem proves that sEUF-CMA SPSPS schemes with 2-element bilateral
signatures do not exist. Note here that our result holds even without the restriction that the message
is linear. This sets a lower bound of 3 bilateral elements for the signature of an optimal sEUF-CMA
LmSPSPS scheme secure against q > 1 sign queries.

Theorem 4. There is no sEUF-CMA (against q > 1 sign queries) SPSPS scheme with 2-element bilat-
eral signatures.

Proof. First note that since the verification is a system of equations over 2 unknowns (the signature
components), one PPE equation is sufficient to verify the signatures. The signature is of the form σ =
(S, T̃ ) ∈ G × H whereas the verification key (including any public parameters) is of the form (X, Ỹ ) ∈
Gµ ×Hµ′ . Such a scheme would have a verification equation of the following form:

e(S,

µ′∏
j=1

Ỹj)
ρ1,j(m)e(

µ∏
j=1

Xj , T̃ )ρ2,j(m)e(S, T̃ )ρ3(m)

µ∏
i=1

µ′∏
j=1

e(Xi, Ỹj)
ρ4,i,j(m) = Z·

Note that if for any j ∈ [µ′], ρ1,j is not a constant polynomial or ρ3 is not a constant polynomial, it
means a message component appears in the denominator polynomial of the signature component S which
contradicts the definition. This means the verification equation can be written as:

e(S,

µ′∏
j=1

Ỹj)
aje(

µ∏
j=1

Xj , T̃ )ρ2,j(m)e(S, T̃ )c
µ∏
i=1

µ′∏
j=1

e(Xi, Ỹj)
ρ4,i,j(m) = Z·

First note that if for all j ∈ [µ′], aj = 0 and c = 0, the verification equation is independent of the
component S and hence by Theorem 2 such a scheme is not EUF-RMA secure. Thus, we must have that
either for some j ∈ [µ′] that aj 6= 0 or c 6= 0, which we consider below:

• Case for some j ∈ [µ′], aj 6= 0: After getting a signature σ = (S, T̃ ) on a (random) message vector

m, we can compute a new signature σ∗ = (S∗, T̃ ∗) on the same message vector as follows:

S∗ := S
aj

aj+γc

µ∏
i=1

X
−γρ2,i(m)

ai+γc

i T̃ ∗ := T̃
aj+γc

aj

µ′∏
i=1

Y
γai
aj

i ·

The new signature is a valid forgery and we have σ∗ 6= σ for any γ ∈ Z×p .

• Case aj = 0 for all j ∈ [µ′] and c 6= 0: After getting a signature σ = (S, T̃ ) on a (random) message

vector m, we can compute a new signature σ∗ = (S∗, T̃ ∗) on the same message vector as follows:

S∗ := S
1
γ

µ∏
i=1

X
(1−γ)ρ2,i(m)

γc

i T̃ ∗ := T̃ γ ·

The new signature is a valid forgery and we have that σ∗ 6= σ for any γ ∈ Z×p \ {1}.

This concludes the proof. ut

4.5 Lower bounds for the verification key of optimal schemes

We have seen that an optimal (w.r.t. signature size) EUF-RMA LmSPSPS scheme must have at least
2 elements in the signature. Here we prove that a scheme with ≤ 2 elements in the signature cannot
have a verification key consisting of 1 group element besides the default source group generators G and
H̃ even for the case when signing single messages, i.e. when n = 1. This in turn sets a lower bound
of 2 elements (other than the default source group generators) in the verification key for even optimal

8



one-time EUF-RMA schemes for single messages. Note some of our proofs below assume that the RHS
of the PPE equations in Equ (2) is Z` = 1T.2

Note that since the verification is a system of equations over ≤ 2 unknowns (the signature compo-
nents), one PPE equation is sufficient to verify the signatures. WLOG, we assume that any other source
group elements than the default group generators part of the setup are part of the verification key.

Theorem 5. There is no EUF-RMA LmSPSPS scheme (against q ≥ 1 sign queries) with signatures
consisting of ≤ 2 elements and one-element verification key.

Proof. The following 4 lemmata complete the proof.

Lemma 1. There is no EUF-RMA SPSPS scheme (against q ≥ 1 sign queries) with one verification
equation and unilateral signatures and a unilateral verification key containing elements from the same
source group.

Proof. Let’s consider the case where the signature and the verification key both belong to group G.
The proof for the opposite case is similar. The scheme yields a signature σ = (S1, . . . , Sν) ∈ Gν , has a
verification key vk = (X1, . . . , Xµ) ∈ Gµ where WLOG X1 = G, and has a verification equation of the
form

ν∏
i=1

e(Si, H̃)ρ1,i(m)

µ∏
i=1

e(Xi, H̃)ρ2,i(m) = Z·

for some polynomials ρ1,i and ρ2,i.

Given a signature σ = (S1, . . . , Sν) on a random message m ∈ Zp, we can construct a new forgery
σ∗ = (S∗1 , . . . , S

∗
ν) on a different message m∗ 6= m by fixing some i ∈ [ν] and computing let S∗j := Sj for

all j ∈ [ν] \ {i} and S∗i :=
(
S
ρ1,i(m)
i

∏
j 6=i S

ρ1,j(m)−ρ1,j(m
∗)

j

∏µ
j=1X

ρ2,i(m)−ρ2,i(m
∗)

j

) 1
ρ1,i(m

∗)
. It is easy to

see that such a forgery is a valid signature on the message m∗. ut

Lemma 2. There is no one-time EUF-RMA LmSPSPS scheme with one verification equation, one-
element signatures and one-element verification key.

Proof. Note here that we assume that Z = 1T. The case where both the signature and verification key
lie in the same group follows from Lemma 1. Assume a scheme has a signature σ = S, a verification key
vk = Ỹ and a verification equation of the following form:

e(S, H̃a1+a
′
1mỸ a2+a

′
2 m) = e(G, H̃b1+b

′
1mỸ b2+b

′
2m)·

By definition, we must have that a′1 = a′2 = 0. Note that we cannot have that a1 = a2 = 0 as the
equation would be independent of the signature, or b′1 = b′2 = 0 as the equation would be independent
of the message.

Given a signature σ = S on a random message m, we can construct a forgery on m∗ = γm +

(γ−1)(b1a2−a1b2)
a2b′1−a1b′2

for any γ ∈ Zp \ {1} as σ∗ = S∗ := G
(γ−1)(b1b

′
2−b
′
1b2)

a2b
′
1−a1b

′
2 Sγ . This is a valid forgery unless

a2b
′
1 = a1b

′
2 which we deal with below:

• Case a2b
′
1 = a1b

′
2 6= 0 or b′1 = a1 = 0: Given a signature σ = S on a random message m, we can

construct a forgery σ∗ =∗ S := GγS1 on m∗ = m+ γa2

b′2
for any γ ∈ Z×p .

• Case b′2 = a2 = 0: Given a signature σ = S on a random message m, we can construct a forgery
σ∗ =∗ S := GγS1 on m∗ = m+ γa1

b′1
for any γ ∈ Z×p .

ut

Lemma 3. There is no SPSPS scheme with two-element bilateral signatures and one-element verification
key that is secure against a key-only attack.

2 Those proofs also hold if the discrete logarithm of Z` in the case Z` 6= 1T is known.
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Proof. Note here that we assume that Z = 1T. The signature is of the form σ = (S, T̃ ) ∈ G×H whereas
the verification key is either of the form Ỹ ∈ H or X ∈ G. We prove the first case but the proof for the
second case is similar. The scheme has a verification equation of the following form:

e(S, H̃ρ1(m)Ỹ ρ2(m))e(G, T̃ )ρ3(m)e(S, T̃ )ρ4(m) = e(G, H̃ρ5(m)Ỹ ρ6(m))

for some polynomials ρi for i ∈ [6].
Given the verification key, we can construct a forgery on a message m∗ as:

σ∗ = (S∗, T̃ ∗) := (Gγ , H̃
ρ5(m∗)−γρ1(m∗)
ρ3(m∗)+γρ4(m∗) Ỹ

ρ6(m∗)−γρ2(m∗)
ρ3(m∗)+γρ4(m∗) )·

ut

Lemma 4. There is no one-time EUF-RMA LmSPSPS scheme with two-element unilateral signatures
and a verification key consisting of one-element from the opposite source group.

Proof. Note here that we assume that Z = 1T. Let’s consider the case where the signature is of the form
σ = (S1, S2) ∈ G2 whereas the verification key is of the form Ỹ ∈ H. The proof for the opposite case is
similar. Such a scheme would have a verification equation of the form

e(Si, H̃
ai,1+a

′
i,1mỸ ai,2+a

′
i,2m) = e(G, H̃d1+d

′
1mỸ d2+d

′
2m)·

By definition, we must have that either a′
1,1

= a′
1,2

= 0 or a′
2,1

= a′
2,2

= 0. Let’s assume the former
case. Note that if a1,1 = a1,2 = 0, the equation is independent of S1 and hence as proven earlier the
scheme is not EUF-RMA secure against q ≥ 1 sign queries. Similarly, if a2,1 = a′2,1 = a2,2 = a′2,2 = 0, the
verification equation is independent of S2 and hence the scheme is not EUF-RMA secure against q ≥ 1
sign queries.

Given a signature σ = (S1, S2) on a random message m, by solving the following system of equations
in the 7 unknowns α

S1
, β

S1
, γ

S1
, α

S2
, β

S2
, γ

S2
, and m∗:

γ
S1
a1,1 + γ

S2
(a2,1 + a′2,1m

∗)− a1,1 = 0

γ
S1
a1,2 + γ

S2
(a2,2 + a′2,2m

∗)− a1,2 = 0

α
S1
a1,1 + d1 + d′1m+ α

S2
(a2,1 + a′2,1m

∗)− d1 + d′1m
∗ = 0

α
S1
a1,2 + α

S2
(a2,2 + a′2,2m

∗) + d2 + d′2m− d2 + d′2m
∗ = 0

β
S1
a1,1 + β

S2
(a2,1 + a′2,1m

∗)− a2,1 − a′2,1m = 0

β
S1
a1,2 + β

S2
(a2,2 + a′2,2m

∗)− a2,2 − a′2,2m = 0,

we can construct a new forgery σ = (S∗1 , S
∗
2 ) on a new message m∗ 6= m by setting S∗1 := G

α
S1 S

β
S1

2 S1

and S∗2 := G
α
S2 S

β
S2

2 where

α
S1

:=

(
d′2(a2,1 + a′2,1m

∗)− d′1(a2,2 + a′2,2m
∗)
)
(m∗ −m)

a1,2(a2,1 + a′2,1m
∗)− a1,1(a2,2 + a′2,2m

∗)

β
S1

:=
(a′2,1a2,2 − a2,1a′2,2)(m∗ −m)

a1,2(a2,1 + a′2,1m
∗)− a1,1(a2,2 + a′2,2m

∗)

α
S2

:=
(a1,2d

′
1 − a1,1d′2)(m∗ −m)

a1,2(a2,1 + a′2,1m
∗)− a1,1(a2,2 + a′2,2m

∗)

β
S2

:=
a1,2(a2,1 + a′2,1m)− a1,1(a2,2 + a′2,2m)

a1,2(a2,1 + a′2,1m
∗)− a1,1(a2,2 + a′2,2m

∗)

Thus, we can find a forgery unless a1,2(a2,1 + a′2,1m
∗)− a1,1(a2,2 + a′2,2m

∗) = 0 for all m∗ ∈ Zp. We have
2 cases to deal with the above as follows:
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• Case a1,1 = a2,1 = a′2,1 = 0: Note that as stated earlier, if a1,2 = 0 or a2,2 = a′2,2 = 0, the verification
equation is independent of one of the signature components and hence is not secure. We have 2 cases
as follows:
◦ Case d1 6= 0: Give a signature σ = (S1, S2) on a random message m ∈ Zp satisfying d1+d′1m 6= 0,

we have that σ∗ = (S∗1 , S
∗
2 ) where

S∗1 := G
−γa2,2(d1+d′1m

∗)
a1,2d1 S

d1+d′1m
∗

d1+d′1m

1 S∗2 := GγS2

is a valid signature on any message m∗ 6= m satisfying d1 + d′1m
∗ 6= 0 for any γ ∈ Z×p .

◦ Case d1 = 0: Given a signature σ = (S1, S2) on a random message m ∈ Z×p , we have that
σ∗ = (S∗1 , S

∗
2 ) where

S∗1 := G
d2(m−m∗)−γm(a2,2+a′2,2m

∗)
a1,2m S

a2,2(m∗−m)

a1,2m

2 S
m∗
m

1 S∗2 := GγS2

is a valid signature on the message m∗ 6= m for any γ ∈ Z×p .
• Case a2,2a1,1 = a1,2a2,1, a′2,2a1,1 = a1,2a

′
2,1 and a1,1 6= 0: If a1,2 = 0, we have a2,2 = a′2,2 = 0 and

hence we cannot have any of the following cases:
◦ d2 = d′2 = 0: Since verification would be independent of the key Ỹ .
◦ a2,1 = a′2,1 = 0: Since verification would be independent of S2.
◦ a′2,1 = d′1 = d′2 = 0: Since verification would be independent of m.

We have that σ∗ = (S∗1 , S
∗
2 ) where

S∗1 := G
a1,2γ(a2,1d

′
1−a
′
2,1d1)+a1,1

(
d2(a′2,1γ−d

′
1)+d′2(d1−a2,1γ)

)
a1,1(a1,1d

′
2−a1,2d

′
1) S∗2 := Gγ

is a valid forgery on m∗ :=
a1,1d2−a1,2d1

a1,2d′1−a1,1d′2
. The forgery is valid unless a1,2d

′
1 − a1,1d′2 = 0. We have 2

cases to deal with this as follows:
◦ Case a1,2d

′
1 = a1,1d

′
2 = 0: Given a signature σ = (S1, S2) on a random message m ∈ Zp, we have

that σ∗ = (S∗1 , S
∗
2 ) where

S∗1 := G
−γ(a2,1+a′2,1m

∗)+d′1(m∗−m)

a1,1 S
a2,1+a′2,1m

a11
2 S1 S∗2 := Gγ

is a valid forgery on any m∗ 6= m for any γ ∈ Z×p .
◦ Case a1,2d

′
1 = a1,1d

′
2 6= 0: Given a signature σ = (S1, S2) on a random message m ∈ Zp, we have

that σ∗ = (S∗1 , S
∗
2 ) where

S∗1 := G
−γa1,2(a2,1+a′2,1m

∗)+d′2a1,1(m∗−m)

a1,1a1,2 S

a2,1+a′2,1m
a1,1

2 S1 S∗2 := Gγ

is a valid forgery on any m∗ 6= m for any γ ∈ Z×p
If it is required that S∗i ∈ G×, we have to additionally handle the case that d1a

′
2,1 = a2,1d

′
1 and

d2a
′
2,1 = a2,1d

′
2. Note that we cannot have that a′2,1 = 0 as otherwise the signature will either be

independent of S2 or m. Given a signature σ = (S1, S2) on a random message m ∈ Z×p , we have

that σ∗ = (S∗1 , S
∗
2 ) := (Sγ1 , S2) is a valid forgery on any message m∗ =

a2,1(γ−1)+a′2,1γm
a′2,1

for any

γ ∈ Z×p \ {1}.
ut

This concludes the proof.

We have proved that an (optimal) scheme with two-element unilateral signatures must have at least
2 elements in the verification key besides the default source group generators. An intriguing question
is whether, similarly to the one-time EUF-CMA scheme we give in Section 6.2, a scheme with two-
element unilateral signatures and a two-element bilateral verification key exists. We answer this question
negatively by proving the following theorem.

Theorem 6. There is no EUF-RMA (against q > 2 sign queries) LmSPSPS scheme with two-element
unilateral signatures and a two-element bilateral verification key.

11



Proof. Let’s consider a scheme with signatures of the form σ = (S1, S2) ∈ G2 whereas the verification
key is of the form (X, Ỹ ) ∈ G×H. The proof for the opposite case is similar.

Such a scheme has a verification equation of the form

2∏
i=1

e(Si, H̃
ai,1+a

′
i,1mỸ ai,2+a

′
i,2m) = e(Gd1,1+d

′
1,1mXd2,1+d

′
2,1m, H̃)e(Gd1,2+d

′
1,2mXd2,2+d

′
2,2m, Ỹ )·

By definition, we must have that either a′1,1 = a′1,2 = 0 or a′2,1 = a′2,2 = 0 as otherwise the message
features in the denominator polynomial of a signature component. Let’s assume WLOG that a′1,1 =
a′1,2 = 0 as the other case is similar.

Such a scheme is not secure against an adversary that receives two signatures σ1 = (S1,1, S1,2) and
σ2 = (S2,1, S2,2) on two random distinct messages m1 and m2, respectively. We can construct a forgery
on a new message m∗ /∈ {m1,m2} as follows:

Define A1 =

[
a2,1 a1,1
a2,2 a1,2

]
, A2 =

[
a′2,1 a1,1
a′2,2 a1,2

]
and A3 =

[
a2,1 a′2,1
a2,2 a′2,2

]
Let α := (|A1|+|A2|m1)(m

∗−m2)
(|A1|+|A2|m∗)(m1−m2)

and

βs1,1 :=
m2 −m∗

m2 −m1
βs1,2 :=

m1 −m∗

m1 −m2

γs1,1 :=
|A3|(m∗ −m2 + (m2 −m1)α)

|A2|(m2 −m1)
γs1,2 := −γs1,1

γs2,1 := α γs2,2 := − (|A1|+ |A2|m2)(m∗ −m1)

(|A1|+ |A2|m∗)(m1 −m2)

We have that

S∗1 = S
βs1,1
1,1 S

βs1,2
2,1 S

γs1,1
1,2 S

γs1,2
2,2

S∗2 = S
γs2,1
1,2 S

γs2,2
2,2

We have that σ∗ = (S∗1 , S
∗
2 ) is a valid forgery on any message m∗ ∈ Zp \ {m1,m2,

−|A1|
|A2| } satisfying

|A1| + |A2|m∗ 6= 0. Thus, we obtain a forgery on a new message unless |A2| = 0 which is dealt with by
the following 3 cases:

• Case a1,1 = 0: We have 2 cases:

◦ Case a1,2 = 0: The verification equation is independent of the signature component S1 and hence
is not secure.

◦ Case a′2,1 = 0: Given signatures σ1 = (S1,1, S1,2) and σ2 = (S2,1, S2,2) on random messages m1

and m2, respectively, we have that σ∗ = (S∗1 , S
∗
2 ) where

S∗1 := Sγ1,1S
1−γ
2,1 S

−
a′2,2(γ2−γ)(m1−m2)

a1,2

1,2 S

a′2,2(γ2−γ)(m1−m2)

a1,2

2,2 S∗2 := Sγ1,2S
1−γ
2,2

is a valid forgery on m∗ = γm1 + (1− γ)m2 for any γ ∈ Z×p \ {1}.
• Case a′2,2 = 0 and a1,1 6= 0: Given signatures σ1 = (S1,1, S1,2) and σ2 = (S2,1, S2,2) on two random

messages m1 and m2, respectively, we compute

S∗1 := Sγ1,1S
1−γ
2,1 S

−
a′2,1(γ2−γ)(m1−m2)

a11
1,2 S

a′2,1(γ2−γ)(m1−m2)

a11
2,2 S∗2 := Sγ1,2S

1−γ
2,2

We have that σ∗ = (S∗1 , S
∗
2 ) is a valid forgery on m∗ = γm1 + (1− γ)m2 for any γ ∈ Z×p \ {1}.

• Case a′2,2a1,1 = a1,2a
′
2,1 6= 0: Given signatures σ1 = (S1,1, S1,2) and σ2 = (S2,1, S2,2) on two distinct

random messages m1 and m2, respectively, we compute

S∗1 := S
m2−m

∗
m2−m1
1,1 S

m1−m
∗

m1−m2
2,1 S

−
a′2,1(m∗−m1)(m∗−m2)

a1,1(m1−m2)

1,2 S

a′2,1(m∗−m1)(m∗−m2)

a1,1(m1−m2)

2,2

S∗2 := S
m2−m

∗
m2−m1
1,2 S

m1−m
∗

m1−m2
2,2

We have that σ∗ = (S∗1 , S
∗
2 ) is a valid forgery on any new message m∗ ∈ Zp \ {m1,m2}.

ut
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5 A new optimal LmSPSPS scheme

In this section, we give a new LmSPSPS scheme for signing a vector m ∈ Znp . The idea of the new scheme
is based on the signature scheme underlying the blind signature scheme in [40]. The efficiency of the new
scheme, whose unforgeability is based on a new interactive intractability assumption which we show
holds in the generic group model, matches that of the optimal PS scheme in every respect. Moreover, the
scheme possesses all the desirable features of the PS scheme, including having constant-size signatures
and fully perfectly randomizable signatures.

Given the description of a Type-3 bilinear group P output by BG(1κ), the scheme is as follows:

• KeyGen(P): Select x, y1, . . . , yn−1, z ← Z×p . Set X̃ := H̃x, Ỹi := H̃yi for all i ∈ [n−1] and Z̃ := H̃z.

Set sk := (x, y1, . . . , yn−1, z) and vk := (X̃, Ỹ1, . . . , Ỹn−1, Z̃) ∈ Hn+1.

• Sign(sk,m): Select r ← Z×p and set (S1, S2) := (Gr, G
r(x+m1+

∑n
i=2 miyi−1)

z ). The signature is σ :=

(S1, S2) ∈ G×2
.

• Verify(vk,m, σ): Return 1 if S1 6= 1G and e(S2, Z̃) = e(S1, X̃H̃
m1

n∏
i=2

Ỹ mii−1) and 0 otherwise.

• Randomize(vk,m, σ): Select r′ ← Z×p and return σ′ := σr
′
.

5.1 Security of the scheme

Correctness of the scheme is straightforward and easy to verify. Also, it is easy to verify that the scheme
conforms to the requirements of a DLmSPSPS scheme. We now define the following new interactive
intractability assumption to which we reduce the unforgeability of the scheme.

Definition 8. (New PSPS (NPSPS) Assumption) Let P = (G,H,T, p,G, H̃, e) be the description of a

Type-3 bilinear group generated by BG(1κ). Let X̃ := H̃x and Ỹ := H̃y for some x, y ← Z×p . Let ÔX̃,Ỹ (·)

be an oracle that when queried on m ∈ Zp, selects r ← Z×p and returns the pair (Gr, G
r(x+m)

y ) ∈ G2. The

NPSPS assumption holds (relative to BG) if for all PPT adversaries A given (P, X̃, Ỹ ) and unlimited

access to ÔX̃,Ỹ (·), the probability that A outputs a new pair (R∗, R∗
(x+m∗)

y ) ∈ G×2
for some m∗ ∈ Zp

which was not queried to ÔX̃,Ỹ (·) is negligible (in κ).

Remark 1. The assumption holds even if A additionally has access to either (but not both) X := Gx ∈ G
or Y := Gy ∈ G.

The following theorem proves the unforgeability of the scheme.

Theorem 7. The scheme is EUF-CMA if the NPSPS assumption is intractable.

Proof. Let A be an adversary against the unforgeability of the scheme, we use A in a blackbox manner
to construct an adversary B against the NPSPS assumption. B gets (P, X̃, Ỹ ) from her game. B chooses
y1, . . . , yn−1, α1, . . . , αn−1 ← Z×p and sets Z̃ := Ỹ and Ỹi := Ỹ αiH̃yi for all i ∈ [n− 1]. B initiates A on

vk := (X̃, Ỹ1, . . . , Ỹn−1, Z̃). Note that verification key is distributed identically to that of the scheme.

When A queries the sign oracle on a vector m ∈ Znp , B computes m′ := m1 +
n∑
i=2

yi−1mi and queries

her ÔX̃,Ỹ oracle on m′ to get a tuple (S1, S2) ∈ G. B computes S′2 := S2S
∑n
i=2 αi−1mi

1 and returns
σ := (S1, S

′
2) to A as a signature on m. This is a valid signature on m w.r.t vk since:

e(S′2, Z̃) = e(S

x+m1+
n∑
i=2

yi−1mi

z
1 S

n∑
i=2

αi−1mi

1 , Z̃)

= e(S
x+m1+

n∑
i=2

yi−1mi+z
n∑
i=2

αi−1mi

1 , H̃)

= e(S
x+(m1+

n∑
i=2

(yi−1+αi−1z)mi

1 , H̃)

= e(S1, X̃H̃
m1+

n∑
i=2

(yi−1+αi−1z)mi
, H̃)

= e(S1, X̃H̃
m1

n∏
i=2

Ỹ mii−1)·

13



Eventually, when A halts and outputs her forgery (m∗, σ∗), B computes m∗′ := m∗1 +
n∑
i=2

yi−1m
∗
i and

returns (σ∗,m∗′) as her output in her game.
It is easy to see that if σ∗ = (S∗1 , S

∗
2 ) is a signature on the new vector m∗ which was not queried to

the sign oracle, σ∗ is a valid NPSPS tuple on the new scalar m∗′ which B did not query her oracle ÔX̃,Ỹ
on.

We need to handle the case where m∗ /∈ {mi}qi=1 but m∗′ = m′i for some i ∈ [q] in which case A
wins her game but B will not be able to break the NPSPS assumption since the returned tuple is not on
a new scalar that was not queried to her oracle. Note that A’s view is independent of the yi’s and hence
the probability that this event happens is ≤ q

p which is negligible. ut

The following theorem proves the intractability of the NPSPS assumption in the generic group model.

Theorem 8. For a generic adversary A which makes qG group operation queries, qP pairing queries

and qO queries to the ÔX̃,Ỹ oracle, the probability that A breaks the NPSPS assumption is O(
q2
G+q2

P+q2
O

p )
where p if the prime order of the bilinear group.

Proof. Let qO be the number of queries to the ÔX̃,Ỹ oracle, qG be the number of group operation queries
and qP be the number of pairing queries the adversary makes in her game. We first prove that no
linear combinations of the formal Laurent polynomials in Zp[R1, . . . , RqO , X, Y

±1] yields a tuple that
constitutes a solution for the underlying NPSPS problem.

In the game, we keep 3 different lists LG, LH and LT for the Laurent polynomials corresponding
to group elements from groups G, H and T, respectively. At the end of the game, the total number of
(non-constant) Laurent polynomials used is |LG|+ |LH|+ |LT| ≤ 2 + qG + qP + 2qO.

Since both elements in the adversary’s output (R∗, S∗) are from G, it follows that r∗ and s∗ can only
be constructed using linear combinations of the Laurent polynomials corresponding to elements from G.
Thus, we must have that:

r∗ = ar +

qO∑
i=1

br,iri +

qO∑
i=1

cr,i(
rix

y
+
rimi

y
)

s∗ = as +

qO∑
i=1

bs,iri +

qO∑
i=1

cs,i(
rix

y
+
rimi

y
)

For the pair (R∗, S∗) ∈ G×2
to be a valid solution, we must have that:

s∗y = r∗x+ r∗m∗ (5)

Thus, we must have:

asy +

qO∑
i=1

bs,iriy +

qO∑
i=1

cs,i(rix+ rimi) =arx+

qO∑
i=1

br,irix+

qO∑
i=1

cr,i(
rix

2

y
+
rimix

y
)

+
(
ar +

qO∑
i=1

br,iri +

qO∑
i=1

cr,i(
rix

y
+
rimi

y
)
)
m∗

There is no term in y or riy on the RHS, so we must have as = 0, bs,i = 0 for all i ∈ [qO]. Thus, we have:

qO∑
i=1

cs,i(rix+ rimi) = arx+

qO∑
i=1

br,irix+

qO∑
i=1

cr,i(
rix

2

y
+
rimix

y
)

+
(
ar +

qO∑
i=1

br,iri +

qO∑
i=1

cr,i(
rix

y
+
rimi

y
)
)
m∗

There is no term rix
2

y on the LHS, so we must have that cr,i = 0 for all i ∈ [qO]. Also, no term in x on
the LHS, so we must have that ar = 0. Thus, we have:

qO∑
i=1

cs,i(rix+ rimi) =

qO∑
i=1

br,irix+

qO∑
i=1

br,irim
∗

14



The monomial rix implies cs,i = br,i for all i ∈ [qO]. Since we must have that that R∗ ∈ G×, we must
have r∗ 6= 0 and therefore we must have at least a single value of cs,i = br,i 6= 0. The monomial ri implies
cs,imi = br,im

∗ which means m∗ = mi for some i. Thus, the pair (R∗, S∗) is not a valid new pair.
Thus far we have proven that the adversary is unable to symbolically produce a valid tuple for a new

scalar. What remains is to bound the probability that the simulation fails. The adversary wins if for any
two different Laurent polynomials F and F ′ in any of the 3 lists evaluate to the same value. Note that
the only indeterminate in those Laurent polynomials with a negative power is Y . Thus, for any Laurent
polynomial F on any of those 3 lists, we can view F as a fraction of polynomials F = Fn

Fd
for some

polynomials Fn ∈ Zp[R1, . . . , RqO , X, Y ] and Fd ∈ Zp[Y ]. Note that Zp[Y ] ⊂ Zp[R1, . . . , RqO , X, Y ].
Thus, the equality check F (r1, . . . , rO, x, y, y

−1) − F ′(r1, . . . , rO, x, y, y
−1) = 0 can be substituted by

checking whether Fn(r1, . . . , rO, x, y)F ′d(y) − F ′n(r1, . . . , rO, x, y, )Fd(y) = 0. It follows that for F, F ′ ∈
LG we have deg(Fn) ≤ 2 and deg(Fd) ≤ 1. Thus, the probability that Fn(r1, . . . , rO, x, y)F ′d(y) −
F ′n(r1, . . . , rO, x, y)Fd(y) = 0 is ≤ 3

p . For F, F ′ ∈ LH, we have deg(Fn) ≤ 1 and deg(Fd) = 0. Thus,

the probability that Fn(r1, . . . , rO, x, y)F ′d(y)− F ′n(r1, . . . , rO, x, y)Fd(y) = 0 is ≤ 1
p . From this it follows

that for F, F ′ ∈ LT the probability that Fn(r1, . . . , rO, x, y)F ′d(y)− F ′n(r1, . . . , rO, x, y)Fd(y) = 0 is ≤ 4
p .

Summing over all choices of F and F ′ in each case we have that the probability ε of the simulation
failing for this reason is

ε ≤

(
|L1|

2

)
3

p
+

(
|L2|

2

)
1

p
+

(
|LT |

2

)
4

p
≤ 2(2 + qG + qP + 2qO)2

p
·

Thus, we have that the probability of the simulation failing is O(
q2
G+q2

P+q2
O

p ). Since by definition we

have that qO, qG and qp are all polynomial in κ whereas log p ∈ Θ(κ), it follows that the adversary’s
advantage is negligible. ut

6 Optimal one-time sEUF-CMA LmSPSPS schemes

In this section we give 2 constructions of optimal one-time LmSPSPS schemes. Both constructions yield
one-element signatures. To sign a vector m ∈ Znp , the first scheme has a verification key of size (n+1)|H|
whereas the second scheme has a verification key of size n|G|+ |H|

6.1 Scheme I

Given the description of Type-3 bilinear groups P output by BG(1κ), the scheme is as follows:

• KeyGen(P): Select x, y1, . . . , yn ← Z×p . Set sk := (x, y1, . . . , yn), vk := (X̃, Ỹ1, . . . , Ỹn) = (H̃x, H̃y1 , . . . ,

H̃yn) ∈ Hn+1.

• Sign(sk,m): To sign a message vector m ∈ Znp , compute σ = S := G
x+

n∑
i=1

miyi
. Return σ = S ∈ G.

• Verify(vk,m, σ = S): Return 1 iff e(S, H̃) = e(G, X̃
n∏
i=1

Ỹ mii ).

Correctness of the scheme follows by inspection and is straightforward to verify. We now prove the
one-time strong unforgeability of the scheme.

Theorem 9. The scheme is sEUF-CMA secure in the generic group model.

Proof. We prove that no linear combinations corresponding to polynomials in the discrete logarithms of
the group elements the adversary sees in the game correspond to a forgery.

At the start of the game, the only elements in H the adversary sees are H̃, X̃, Ỹ1, . . . , Ỹn, which
correspond to the discrete logarithms 1, x, y1, . . . , yn, respectively. Note the sign oracle produces no new

elements in H. When queried on a message m, the oracle will return signature S = G
x+

n∑
i=1

miyi
∈ G. The

forgery σ∗ = S∗ can only be a linear combination of the group elements from G, i.e. a linear combination
of G, S. Thus, we have

s∗ = αs + βs(x+

n∑
i=1

miyi)·
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For the forgery to be accepted, (s∗,m∗) has to satisfy s∗ = x+
n∑
i=1

m∗i yi. Therefore, we must have

αs + βsx+

n∑
i=1

βsmiyi = x+

n∑
i=1

m∗i yi·

There is no constant term on the RHS, so we must have that αs = 0. Thus, we have that

βsx+

n∑
i=1

βsmiyi = x+

n∑
i=1

m∗i yi·

The monomial x implies that βs = 1 from which it follows that we must have that m∗i = mi for all
i ∈ [n] which means the forgery can only be the same signature on m the adversary obtained from the
sign oracle.

Thus far we proved that no linear combinations of the formal polynomials lead to a forgery. What
remains is to bound the probability that the simulation fails due to 2 different polynomials evaluating
to the same value.

Note that the group element returned as a signature correspond to a polynomial of degree 1 and
the same holds for elements of the verification key. Hence the polynomial with the largest degree the
adversary sees in the game is of degree 2 (because of the pairing operation). Letting qG be the total
number of queries the adversary makes to the groups’ operation oracle and qP be the number of queries
the adversary makes to the pairing oracle, we have that the total number of (non-constant) polynomials
the adversary sees in the game is ≤ n+ 2 + qG + qP and hence the probability that the simulation fails is
≤ (n+ 2 + qG + qP )2/p. Since by definition we have that qO, qG and qp are all polynomial in κ whereas
log p ∈ Θ(κ), it follows that the adversary’s advantage is negligible.

ut

6.2 Scheme II

Given the description of Type-3 bilinear groups P output by BG(1κ), the scheme is as follows:

• KeyGen(P): Select x1, . . . , xn, y ← Z×p . Set sk := (x1, . . . , xn, y), vk := (X1, . . . , Xn, Ỹ ) = (Gx1 , . . . , Gxn ,

H̃y) ∈ Gn ×H.

• Sign(sk,m): To sign a message vector m ∈ Znp , compute σ = S := G

1+
n∑
i=1

ximi

y . Return σ = S ∈ G.

• Verify(vk,m, σ = S): Return 1 iff e(S, Ỹ ) = e(G
n∏
i=1

Xmi
i , H̃).

The scheme is optimal in every respect. Correctness of the scheme follows by inspection and is straight-
forward to verify. We now prove the one-time strong unforgeability of the scheme.

Theorem 10. The scheme is sEUF-CMA secure in the generic group model.

Proof. We prove that no linear combinations corresponding to polynomials in the discrete logarithms of
the group elements the adversary sees in the game correspond to a forgery.

At the start of the game, the only elements in H the adversary sees are H̃, Ỹ , which correspond to the
discrete logarithms 1, y respectively. Note the sign oracle produces no new elements in H. When queried

on a message m, the oracle will return a signature S = G

1+
n∑
i=1

ximi

y ∈ G. The forgery σ∗ = S∗ can only be
a linear combination of the group elements from G, i.e. a linear combination of G,S,X1, . . . , Xn. Thus,
we have

s∗ = αs + βs

(1 +
n∑
i=1

mixi)

y
+

n∑
i=1

γ
si
xi·
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For the forgery to be accepted, (s∗,m∗) has to satisfy s∗y = 1 +
n∑
i=1

m∗i xi. Therefore, we must have

αs + βs

(1 +
n∑
i=1

mixi)

y
+

n∑
i=1

γ
si
xi

 y=1 +

n∑
i=1

m∗i xi·

Therefore, we must have

αsy + βs(1 +

n∑
i=1

mixi) +

n∑
i=1

γ
si
xiy = 1 +

n∑
i=1

m∗i xi·

There is no terms of the form y or xiy for any i ∈ [n] on the RHS, so we must have that αs = 0 and
γ
si

= 0 for all i ∈ [n]. Thus, we have that

βs +

n∑
i=1

βsmixi = 1 +

n∑
i=1

m∗i xi·

The constant term implies that βs = 1. The monomial xi implies that βsmi = m∗i from which it follows
that we must have that m∗i = mi for all i ∈ [n] which means the forgery can only be the same signature
on m the adversary obtained from the sign oracle.

Thus far we have proven that the adversary is unable to symbolically produce a valid tuple for a new
scalar. What remains is to bound the probability that the simulation fails. The adversary wins if for
any two different Laurent polynomials F and F ′ in any of the 3 lists evaluate to the same value. Note
that the only indeterminate in those Laurent polynomials with a negative power is Y . Thus, for any
Laurent polynomial F on any of those 3 lists, we can view F as a fraction of polynomials F = Fα

Fβ
for

some polynomials Fα ∈ Zp[X,Y ] and Fβ ∈ Zp[Y ]. Note that Zp[Y ] ⊂ Zp[X,Y ]. Thus, the equality check
F (x, y, y−1)−F ′(x, y, y−1) = 0 can be substituted by checking whether Fα(x, y)F ′β(y)−F ′α(x, y)Fβ(y) =
0. It follows that for F, F ′ ∈ LG we have deg(Fα) ≤ 2 and deg(Fβ) ≤ 1. Thus, the probability that
Fα(x, y)F ′β(y)−F ′α(x, y)Fβ(y) = 0 is ≤ 3

p . For F, F ′ ∈ LH, we have deg(Fα) ≤ 1 and deg(Fβ) = 0. Thus,

the probability that Fα(x, y)F ′β(y) − F ′α(x, y)Fβ(y) = 0 is ≤ 1
p . From this it follows that for F, F ′ ∈ LT

the probability that Fα(x, y)F ′β(y)− F ′α(x, y)Fβ(y) = 0 is ≤ 3
p .

Summing over all choices of F and F ′ in each case we have that the probability epsilon of the
simulation failing for this reason is

ε ≤

(
|L1|

2

)
3

p
+

(
|L2|

2

)
1

p
+

(
|LT |

2

)
3

p
≤ 3(n+ 2 + qG + qP )2

2p
·

Thus, the probability of the simulation failing is O(
n2+q2

G+q2
P

p ). Since by definition we have that n,

qG and qp are all polynomial in κ whereas log p ∈ Θ(κ), it follows that the adversary’s advantage is
negligible. ut

7 From LmSPSPS schemes into SPS schemes

In this section we give a generic framework for transforming any disjoint LmSPSPS scheme into a
structure-preserving scheme for the message space DHn.

Let DLmSPSPS = (KeyGen,Sign,Verify) be a secure sEUF-CMA/EUF-CMA/sEUF-RMA/EUF-RMA
DLmSPSPS scheme. The following transformation yields a sEUF-CMA/EUF-CMA/sEUF-RMA/EUF-
RMA SPS scheme SPS = (KeyGen

SPS
,Sign

SPS
,Verify

SPS
).

• KeyGen
SPS

(P):
◦ Run (sk, vk)← KeyGen(P). Return (sk

SPS
:= sk, vk

SPS
:= vk).

• Sign
SPS

(
sk

SPS
,
(
(M1, M̃1), . . . , (Mn, M̃n)

))
:
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◦ Decompose the PPE equations of DLmSPSPS to the following form:

ν∏
i=1

e(Si,

µ′∏
j=1

Ỹj)
ai,j,`

ν∏
i=1

µ′∏
j=1

n∏
k=1

e(Si, Ỹj)
a′i,j,`,kmk

ν′∏
i=1

e(

µ∏
j=1

Xj , T̃i)
bi,j,`

ν′∏
i=1

µ∏
j=1

n∏
k=1

e(Xj , T̃i)
b′i,j,`,kmk

ν∏
i=1

e(Si,

ν′∏
j=1

T̃j)
ci,j,`

ν∏
i=1

ν′∏
j=1

n∏
k=1

e(Si, T̃j)
c′i,j,`,kmk

µ∏
i=1

µ′∏
j=1

e(Xi, Ỹj)
di,j,`

µ∏
i=1

µ′∏
j=1

n∏
k=1

e(Xi, Ỹj)
d′i,j,`,kmk = Z`·

◦ Initialize 2 empty lists E1 and E2 of triples representing PPE verification equations.
◦ For each signature component Sj ∈ G of DLmSPSPS:
∗ Parse Sj as:

Sj = G

q∑
i=1

x
c
i,j y

c′
i,j r

c′′
i,j

(
a
i,j

+
n∑
k=1

d
i,j,k

mk

)
∑
i bi,j

x
e
i,j y

e′
i,j r

e′′
i,j ·

∗ Define the set Î ⊆ [q] as the subset of indices i where ∃k ∈ [n] where di,j,k 6= 0 and let

Ĭ := [q] \ Î. Compute Sj of SPS as:

Sj =
(
G

∑
i∈Ĭ

a
i,j

x
c
i,j y

c′
i,j r

c′′
i,j ∏

i∈Î

n∏
k=1

M
di,j,kx

c
i,j y

c′
i,j r

c′′
i,j

k

) 1∑
i bi,j

x
e
i,j y

e′
i,j r

e′′
i,j ·

◦ For each signature component T̃j ∈ H of DLmSPSPS:

∗ Parse T̃j as:

T̃j = H̃

q∑
i=1

x
c
i,j y

c′
i,j r

c′′
i,j

(
a
i,j

+
n∑
k=1

d
i,j,k

mk

)
∑
i bi,j

x
e
i,j y

e′
i,j r

e′′
i,j ·

∗ Define the set Î ⊆ [q] as the subset of indices i where ∃k ∈ [n] where di,j,k 6= 0 and let

Ĭ := [q] \ Î. Compute T̃j of SPS as:

T̃j =
(
H̃

∑
i∈Ĭ

a
i,j

x
c
i,j y

c′
i,j r

c′′
i,j ∏

i∈Î

n∏
k=1

M̃
di,j,kx

c
i,j y

c′
i,j r

c′′
i,j

k

) 1∑
i bi,j

x
e
i,j y

e′
i,j r

e′′
i,j ·

◦ For each PPE verification equation of DLmSPSPS:
∗ For each pairing of the form e(Si, Ỹj)

a′i,j,`,kmk where a′i,j,`,k 6= 0:

· If Ỹj 6= H̃, append (if it does not already exist) S′i = Msi
k to S, replace the pairing with

e(S′i, Ỹj)
a′i,j,`,k and append (if it does not already exist) the tuple (S′i, Si, M̃k) to E1. Note

here that by definition it holds that Si is independent of the message mk so knowledge
of the discrete logarithm mk is not required to compute S′i.

· Otherwise, replace the above pairing with e(Si, M̃k)a
′
i,j,`,k .

∗ For each pairing of the form e(Xi, T̃j)
b′i,j,`,kmk where b′i,j,`,k 6= 0:

· If Xi 6= G, append (if it does not already exist) T̃ ′j = M̃
tj
k to T , replace the pairing with

e(Xi, T̃
′
j)
b′i,j,`,k and append (if it does not already exist) the tuple (T̃ ′j , T̃j ,Mk) to E2. Note

here that by definition it holds that T̃j is independent of the message mk so knowledge

of the discrete logarithm mk is not required to compute T̃ ′j .

· Otherwise, replace the pairing with e(Mk, T̃j)
b′i,j,`,k .

∗ For each pairing of the form e(Xi, Ỹj)
d′i,j,`,kmk where d′i,j,`,k 6= 0:
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· If Xi = G, replace the pairing with e(Mk, Ỹj)
d′i,j,`,k .

· If Xi 6= G but Yj = H̃, replace the pairing with e(Xi, M̃k)d
′
i,j,`,k .

· If Xi 6= G and Ỹj 6= H̃, append (if it does not already exist) S|S|+1 = Mxi
k to S, replace

the pairing with e(S|S|+1, Ỹj)
d′i,j,`,k and append the tuple (S|S|+1, Xi, M̃k) to E1.

∗ For each pairing of the form e(Si, T̃j)
c′i,j,`,kmk where c′i,j,`,k 6= 0: Note that by definition mk

cannot appear in the denominator of Si or T̃j . Also, we must have that at least one of the
signature components is independent of mk.
· If Si is independent of mk, append (if it does not already exist) S′i = Msi

k to S, replace the

pairing with e(S′i, T̃j)
c′i,j,`,k and append (if it does not already exist) the tuple (S′i, Si, M̃k)

to E1.
· Otherwise, append (if it does not already exist) T̃ ′j = M̃

tj
k to T , replace the pairing with

e(Si, T̃
′
j)
c′i,j,`,k and append (if it does not already exist) the tuple (T̃ ′j , T̃j ,Mk) to E2.

• Verify
SPS

(
vk

SPS
,
(
(M1, M̃1), . . . , (Mn, M̃n)

)
, σ
)

: Return 1 if all the following holds and 0 otherwise:

◦ All modified PPEs of DLmSPSPS verify correctly.
◦ For each tuple i in E1, it holds that:

e(E1[i][0], H̃) = e(E1[i][1],E1[i][2])·

◦ For each tuple i in E2, it holds that:

e(G,E2[i][0]) = e(E2[i][2],E2[i][1])·

◦ Any additional signature group membership required by DLmSPSPS verifies correctly.

◦

(
(M1, M̃1), . . . , (Mn, M̃n)

)
∈ DHn. 3

7.1 Efficiency

The main factor that determines how the size of the signature of the resulting SPS scheme grows com-
pared to the size of the signature of the original DLmSPSPS scheme is distinct pairings of the form
e(Si, Ỹj)

a′i,j,`,kmk where a′i,j,`,k 6= 0 and Yj 6= H̃, e(Xi, T̃j)
b′i,j,`,kmk where b′i,j,`,k 6= 0 and Xi 6= G, and

e(Si, T̃j)
c′i,j,`,kmk where c′i,j,`,k 6= 0 in the verification equations of the DLmSPSPS scheme. Each distinct

pairing of those 3 types incurs an extra signature component in H, G, and G/H depending on which
component is independent of the message, respectively, in the signature of the resulting SPS scheme on
top of those of the underlying DLmSPSPS scheme. Also, each distinct pairing of any of those 3 types
would add an additional PPE equation involving 2 pairings to the verification overhead of the SPS scheme
compared to the verification overhead of the underlying DLmSPSPS scheme. Each distinct pairing of the
form e(Xi, Ỹj)

d′i,j,`,kmk where Xi 6= G, Ỹj 6= H̃ and d′i,j,`,k 6= 0 incurs an additional signature compo-
nent in G and an additional PPE involving 2 pairings. Note that the latter cost is constant for multiple
signatures on the same message.

It is clear that the only case where the signature size and verification overhead (excluding the cost
for verifying the well-formedness of the messages of the SPS scheme) is identical in the DLmSPSPS and
the corresponding SPS schemes is when the verification of the DLmSPSPS scheme does not involve any
pairings of the above forms.

7.2 Security

Correctness of resulting SPS scheme follows from the correctness of DLmSPSPS scheme and the fact that
any added PPE to the verification of the SPS scheme will verify and this is easy to verify. We now prove
the following theorem regarding the unforgeability of the resulting SPS scheme.

Theorem 11. If DLmSPSPS is sEUF-CMA/sEUF-RMA/EUF-CMA/EUF-RMA, SPS is sEUF-CMA/sEUF-
RMA/EUF-CMA/EUF-RMA in the generic group model.

3 Batch verification techniques, e.g. [14, 24], can speed up this step.
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KeyGen(P)
x, y1, . . . , yn−1, z ← Zp.
X̃ := H̃x, Ỹi := H̃yi for i ∈ [n− 1], Z̃ := H̃z.
sk := (x, y1, . . . , yn−1, z).

vk := (X̃, Ỹ1, . . . , Ỹn−1, Z̃).
Return

(
sk, vk

)
.

Sign(sk,m)
Parse sk as (x, y1, . . . , yn−1, z).

r ← Z×p , S1 := Gr, S2 := G
r(x+m1+

n∑
i=2

miyi−1)

z .
Return σ := (S1, S2).

Verify(vk,m, σ)

Parse vk as (X̃, Ỹ1, . . . , Ỹn−1, Z̃).

If S1 = 1G ∨ e(S2, Z̃) 6= e(S1, X̃H̃
m1

n∏
i=2

Ỹ mii−1)

Then Return 0 Else Return 1.

Randomize(vk,m, σ = (S1, S2))

Parse vk as (X̃, Ỹ1, . . . , Ỹn−1, Z̃).

r′ ← Z×p , S′1 := Sr
′

1 , S
′
2 := Sr

′

2 .
Return σ′ := (S′1, S

′
2).

KeyGenSPS(P)
x, y1, . . . , yn−1, z ← Zp.
X̃ := H̃x, Ỹi := H̃yi for i ∈ [n− 1], Z̃ := H̃z.
sk

SPS
:= (x, y1, . . . , yn−1, z).

vk
SPS

:= (X̃, Ỹ1, . . . , Ỹn−1, Z̃).
Return

(
sk

SPS
, vk

SPS

)
.

SignSPS

(
sk

SPS
,
(

(M1, M̃1), . . . , (Mn, M̃n)
))

Parse sk
SPS

as (x, y1, . . . , yn−1, z).
r ← Z×p , S1 := Gr, S′1,i := Mr

i for all i ∈ [2, n],

S2 :=
(
GxM1

n∏
i=2

M
yi−1

i

) r
z .

Return σ
SPS

:= (S1, S2, S
′
1,2, . . . , S

′
1,n).

VerifySPS

(
vk

SPS
,
(

(M1, M̃1), . . . , (Mn, M̃n)
)
, σ

SPS

)
Parse vk

SPS
as (X̃, Ỹ1, . . . , Ỹn−1, Z̃).

Parse σ
SPS

as (S1, S2, S
′
1,2, . . . , S

′
1,n).

If S1 = 1G ∨ e(S′1,i, H̃) 6= e(S1, M̃i) for any i ∈ [2, n]

∨ e(S2, Z̃) 6= e(S1, X̃M̃1)
n∏
i=2

e(S′1,i, Ỹi−1)

Then Return 0 Else Return 1.

RandomizeSPS
(
vkSPS,

(
(M1, M̃1), . . . , (Mn, M̃n)

)
, σ

SPS

)
Parse σ

SPS
as (S1, S2, S

′
1,2, . . . , S

′
1,n).

r′ ← Z×p , S′1 := Sr
′

1 , S
′
2 := Sr

′

2 , S
′′
1,i := S′r

′

1,i for i ∈ [2, n].
Return σ′

SPS
:= (S′1, S

′
2, S
′′
1,2, . . . , S

′′
1,n).

Fig. 1. Transforming our new LmSPSPS scheme into a SPS scheme

Proof. Since DLmSPSPS is unforgeable, it holds that no generic adversary against it can obtain a forgery
using linear combinations of the (fraction of) polynomials corresponding to the group elements she sees
in the game. We prove that a generic adversary ASPS against the unforgeability of SPS does not see any
additional group elements other than what ADLmSPSPS can see in her game and hence it holds that no
linear combinations of the (fraction of) polynomials ASPS sees leads to a forgery against SPS.

At the start of the game (before the 1st sign query), the group elements that adversary ASPS sees
are the same as those ADLmSPSPS can see at the start of her game which include the public key (X, Ỹ ) ∈
Gµ × Hµ′ . By definition such a key is disjoint. Now at the first sign query on a valid message vector(

(M1,1, M̃1,1), . . . , (M1,n, M̃1,n)
)

, it follows that the discrete logarithm m1,i of the message component

(M1,i, M̃1,i) for all i ∈ [n] corresponds to a constant polynomial. The 1st sign query will return a

signature of the form σ1 = (S1, T̃ 1). By definition such a returned signature still conforms to the disjoint
requirement and thus such a sign query would not generate any new identical (fractions of polynomials) in
groups G and H which ASPS can feed back as a message into a subsequent sign query, i.e. all subsequent
sign queries are on message vectors corresponding to constant polynomials. We now argue that the
additional signature components on top of those supplied by the original DLmSPSPS scheme correspond
to elements that ADLmSPSPS could have obtained herself in her unforgeability game and hence ASPS does
not have any additional advantage over ADLmSPSPS after seeing those additional signature components.

• Additional elements of the form S′i = Msi
k that ASPS sees can be obtained by ADLmSPSPS by calling

her exponentiation oracle for G to get Smki . Note that (Gmk)si = (Gsi)mk .
• Additional elements of the form T̃ ′i = M̃ ti

k that ASPS sees can be obtained by ADLmSPSPS by calling

her exponentiation oracle for H to get T̃mki . Note that (H̃mk)ti = (H̃ti)mk .
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• Additional elements of the form S′j = Mxi
k that ASPS sees can be obtained by ADLmSPSPS by calling

her exponentiation oracle for G to get Xmk
i . Note that (Gxi)mk = (Gmk)xi .

KeyGen(P)
x, y1, . . . , yn ← Zp.
X̃ := H̃x, Ỹi := H̃yi for i ∈ [n].
sk := (x, y1, . . . , yn).

vk := (X̃, Ỹ1, . . . , Ỹn).
Return

(
sk, vk

)
.

Sign(sk = (x, y1, . . . , yn),m)

r ← Z×p , S1 := Gr, S2 := G
r(x+

n∑
i=1

miyi)
.

Return σ := (S1, S2).

Verify(vk,m, σ)

Parse vk as (X̃, Ỹ1, . . . , Ỹn).
Parse σ as (S1, S2).

If S1 = 1G ∨ e(S2, H̃) 6= e(S1, X̃
n∏
i=1

Ỹ mii )

Then Return 0 Else Return 1.

Randomize(vk,m, σ = (S1, S2))

r′ ← Z×p , S′1 := Sr
′

1 , S
′
2 := Sr

′

2 .
Return σ′ := (S′1, S

′
2).

KeyGenSPS(P)
x, y1, . . . , yn ← Zp.
X̃ := H̃x, Ỹi := H̃yi for i ∈ [n].

sk
SPS

:= (x, y1, . . . , yn), vk
SPS

:= (X̃, Ỹ1, . . . , Ỹn).
Return

(
sk

SPS
, vk

SPS

)
.

SignSPS

(
sk

SPS
,
(

(M1, M̃1), . . . , (Mn, M̃n)
))

Parse sk
SPS

as (x, y1, . . . , yn).
r ← Z×p , S1 := Gr, S′1,i := Mr

i for i ∈ [n],

S2 :=
(
Gx
∏n
i=1M

yi
i

)r
.

Return σ
SPS

:= (S1, S2, S
′
1,1, . . . , S

′
1,n).

VerifySPS

(
vk

SPS
,
(

(M1, M̃1), . . . , (Mn, M̃n)
)
, σ

SPS

)
Parse σ

SPS
as (S1, S2, S

′
1,1, . . . , S

′
1,n).

Parse vk
SPS

as (X̃, Ỹ1, . . . , Ỹn).

If S1 = 1G ∨ e(S2, H̃) 6= e(S1, X̃)
n∏
i=1

e(S′1,i, Ỹi)

∨ e(S′1,i, H̃) 6= e(S1, M̃i) for any i ∈ [n]
Then Return 0 Else Return 1.

RandomizeSPS
(
vk

SPS
,
(

(M1, M̃1), . . . , (Mn, M̃n)
)
, σ

SPS

)
Parse σ

SPS
as (S1, S2, S

′
1,1, . . . , S

′
1,n).

r′ ← Z×p , S′1 := Sr
′

1 , S
′
2 := Sr

′

2 , S
′′
1,i := S′r

′

1,i for i ∈ [n].
Return σ′

SPS
:= (S′1, S

′
2, S
′′
1,1, . . . , S

′′
1,n).

Fig. 2. Transforming the PS scheme [54] into a SPS scheme

It thus follows that ASPS does not see any additional group elements that ADLmSPSPS does not see
in her game. Since the forgery must be on a message in DHn, i.e. each message component corresponds
to a constant polynomial, and DLmSPSPS is unforgeable, i.e. no linear combinations of the elements
ADLmSPSPS sees lead to a forgery against DLmSPSPS, it follows that no linear combinations of the group
elements ASPS sees in her game leads to a forgery against SPS. ut

7.3 Example Instantiations

In this section we give some example instantiations of our transformation for the sake of illustration. The
first example shown in Fig. 1 shows how to transform our new LmSPSPS scheme into an SPS scheme
for a vector of messages which also captures the single-message SPS scheme from [41] as a special case.
The second example shown in Fig. 2 shows how to transform the PS scheme [54] into a SPS scheme for
a vector of messages which also captures the single-message SPS scheme from [39] as a special case.
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