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Low-Latency ASIC Algorithms of Modular
Squaring of Large Integers for VDF Applications
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Abstract—This study is an attempt in quest of the fastest hardware algorithms for the computation of the verifiable delay function
(VDF), a2T

mod N , proposed for use in various distributed protocols, in which no party is assumed to compute it significantly faster than
other participants. To this end, we propose a class of modular squaring algorithms suitable for low-latency ASIC implementations. The
proposed algorithms aim to achieve highest levels of parallelization that have not been explored in previous works in the literature,
which usually pursue more balanced optimization of speed and area. For this, we utilize redundant representations of integers and
introduce three modular squaring algorithms that work with integers in redundant forms: i) Montgomery algorithm, ii) memory-based
algorithm and iii) direct reduction algorithm for fixed moduli. All algorithms enable O(logk) depth circuit implementations, where k is the
bit-size of the modulus N in the VDF function. We analyze and compare gate level-circuits of the proposed algorithms and provide
estimates for their critical path delay and gate count.

Index Terms—Verifiable Delay Functions, Modular Squaring, Reduction, Montgomery, Redundant Representation
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1 INTRODUCTION

AVerifiable Delay Function (VDF) is an inherently sequen-
tial operation, which takes some prescribed and modifi-

able amount of time for its computation. The term verifiable
emerges from the fact that the computation needs to be verified
fairly quickly, without re-doing the entire costly operation. Any
function that is inherently sequential, cryptographically secure
and publicly and efficiently verifiable can be considered a VDF.

The two recent VDF constructions proposed by Pietrzak [1]
and Wesolowski [2] based on time-lock puzzles are analyzed by
Boneh et al. in [3]. The notion of time-lock puzzles, introduced
by Rivest, Shamir, and Wagner [4] in 1999, is built upon an
inherently sequential and cryptographically secure mathemati-
cal operation: exponentiation in a group of unknown order [5].
The exponent utilized for time-lock puzzles is of special form,
which transforms the exponentiation operation into repeated
squaring operations; e.g, a2T

mod N .
Since time-lock puzzles are constructed upon repeated

modular squaring operations, VDF constructions utilizing time-
lock puzzles rely on efficient implementations of low-latency
modular squaring algorithms, optimized for repeated-squaring
setting. As the entire exponentiation operation, rather than a
single modular squaring, calls for a low-latency design, any
redundant representation and lazy reduction technique can be
utilized to accelerate intermediate modular squaring compu-
tations. While there is a plethora of efficient implementations
of modular multiplication and modular squaring in the liter-
ature [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], they
mostly focus on throughput, utilizing the time-area metric for
measuring performance. Yet, for a VDF implementation, the
most important metric is time itself as the computation of VDF
should take the minimum amount of time possible.

There are well-studied high-level algorithms and methods
enabling efficient modular multiplication implementations.
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One of the most commonly used modular multiplication al-
gorithm is due to Montgomery [17]. The Montgomery mod-
ular multiplication algorithm realizes C ′ ≡ A ·B ·R−1 (mod N )
instead of the desired C = A ·B (mod N ) result. To compute
the desired result, pre- and post-processing steps are usually
required. Therefore, the Montgomery modular multiplication
algorithm is efficient only for applications involving many
modular arithmetic operations, such as exponentiation, due to
inherent pre-processing and post-processing overheads.

Barrett reduction [18] can also be utilized for implementing
modular multiplication operation. It computes the desired
outcome C = A ·B (mod N ) directly, which makes it a better
choice for a single modular multiplication scheme. Although
Barrett and Montgomery reduction algorithms are similar in
terms of complexity, they yield different performance figures in
different implementation settings [19], [20].

There are algorithms that allow lower circuit depth
than classical multiplication operation [21], [22]. Schonhage-
Strassen is an NTT-based method presented in 1971 that can
multiply two n-bit integers in O(n logn loglogn) time [23].
Harvey et al. presented an improved algorithm that can multi-
ply two n-bit integers in O(n logn4logn) operations [24], [25].
However, efficient low-latency hardware implementations of
these schemes do not exist in literature. While a theoretical log-
depth circuit algorithm is presented in [22], no practical low-
latency implementation of this algorithm has been reported in
the literature to the best of our knowledge.

Depending on specific application and computation plat-
form used for implementation, different constraints and design
goals can be adopted in the design and implementation of
a modular multiplication circuit. For instance, a low-power
design is usually targeted for implementations in resource-
constrained devices. For data center applications, an imple-
mentation with high throughput is usually the primary require-
ment. For typical client applications, a public-key operation
finished in milliseconds range is sufficient for a practical im-
plementation. Consequently, low-latency is hardly the predom-
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inant or the only design metric for most cases as others such as
cost and time-area are almost always taken into consideration.

In a typical application of VDF, verifiable lottery using a
randomness beacon [5], no participant is allowed to compute
VDF significantly faster than others. Namely, all participants
are supposed to be equipped with sufficiently fast hardware for
the VDF computation. Consequently, for the RSA-based VDF
construction [1], [5], [2], metrics such as throughput, power and
area become either irrelevant or less important emphasizing
the need for a low-latency design. This calls for more aggressive
acceleration techniques, which have not been explored in the
literature before except in [26]. In [26], the author discusses a
low-latency modular multiplication algorithm and construction
for a known modulus, targeting FPGA architecture for proof of
concept performance.
Contribution: In this paper, highly parallel, regularly struc-
tured, and bitwise modular squaring algorithms are explored
and proposed for efficient low-latency ASIC implementations.
The algorithms utilize various redundant representations to
reduce circuit depth. To this end, we first introduce a vari-
ant of the Montgomery reduction algorithm that works with
integers in redundant representations, requires no final sub-
traction and utilizes incomplete arithmetic [27]. Then, we
explore two other modular reduction algorithms: i) memory-
based reduction for variable moduli and ii) direct reduction
for fixed moduli. We study the modular multiplication algo-
rithm in [26], based on polynomial representation, originally
optimized for FPGA implementations and uses only memory-
based approach for modular reduction. We, then, introduce
three different modular squaring algorithms using polynomial
representation for low-latency ASIC implementations. We show
that the proposed algorithms enable O(logk) depth circuit
implementations for modular squaring operation on large k-
bit integers and amenable to highly regular and low fan-out
designs. We analyze all algorithms and provide estimates for
critical path delay and gate count.

The remainder of the paper is structured as follows: Sec-
tion 2 presents background information such as basic nota-
tions, bitwise integer operations and redundant representation
of integers. Section 3 presents two widely used classes of adder
tree constructions, Wallace and Dadda tree methods and pro-
vides an explicit algorithm for Dadda tree. Section 4 presents
three modular squaring methods for integers in Carry-Save
(C-S) representation which are suitable for low-latency circuit
implementations. Section 5 describes Redundant-Polynomial
(R-P) representation for integers and presents its utilization
in different modular squaring methods. Section 6 compares
the proposed algorithms and gives estimates for their ASIC
implementations. Section 7 concludes the paper.

2 BACKGROUND

Throughout the paper, a k-bit integer a is represented in radix 2
as a = (ak−1, . . . , a1, a0)2, where ai ∈ {0,1}. When a radix larger
than 2 is used, we use uppercase letters to represent the digits
of integers; e.g., (As−1, . . . , A1, A0), where Ai is the i th digit and
Ai < 2r with r > 1.

2.1 Bitwise Integer Multiplication

In a straightforward gate-level implementation of bitwise in-
teger multiplication, there are a total of k2 bitwise logical-

Algorithm 1 Bitwise Integer Multiplication Suitable for Hard-
ware Implementation

Input: a = (ak−1, . . . , a1, a0)
Input: b = (bk−1, . . . ,b1,b0)
Output: c = (c2k−1, . . . ,c1,c0) where c = a ·b

1: for i from 0 to (2k −1) do ti ← {Ø} end for
2: for i from 0 to (k −1) do . First Phase
3: for j from 0 to (k −1) do
4: ti+ j ← ti+ j ∪ (bi ∧a j )
5: end for
6: end for
7: t ← ADDERTREE(t ) . Second Phase
8: c ← CPA(t )

AND (∧) operations and sequential addition operations result-
ing in prohibitively long carry chains. Therefore, in hardware
realizations the multiplication operation is performed often in
two phases. Algorithm 1 elaborates this method. In the first
phase, all partial product bits are calculated using k2 logical-
AND gates in parallel and grouped in the partial product list
t as shown in Steps 2-6 of Algorithm 1. Here, a list is a two-
dimensional data structure with different sized columns. Fur-
thermore, for i = 0, . . . ,2k−1, ti s are the columns of the product
list t , where each column is a multiset of partial product bits of
the same weight. Each partial product bit is appended (using
the set union operation ∪) in the corresponding column and
no addition operation is performed in the first phase.

Then in the second phase (Step 7 of Algorithm 1), the
partial product bits are summed using efficient adder tree
constructions such as Wallace [28] or Dadda Trees [29]. The
result c is in the redundant C-S form, which means most of ci

consist of two bits: the carry bit ci ,1 and the save bit ci ,0. Since
the result c is in redundant form, it is transformed into non-
redundant form using fast carry propagation adders (CPAs)
[30], [31]. As our operands are very large, the CPA still creates
very long carry chains. In this paper, we propose algorithms
either to shorten the carry chain of CPA or eliminate CPA
altogether from the hardware implementation for low-latency
applications such as VDF, as stated in [26]. To this end, we
utilize various redundant forms for integers.

Example 1. Fig. 1 illustrates the operations of Algorithm 1 for
4-bit operands (k = 4). As observed from the figure, the
columns of the partial product list have different number
of bits.

×
a0a1a2a3

b0b1b2b3

c0c1c2c3c4c5c6c7

a0 ∧b0a1 ∧b0a2 ∧b0a3 ∧b0

a0 ∧b1a1 ∧b1a2 ∧b1a3 ∧b1

a0 ∧b2a1 ∧b2a2 ∧b2a3 ∧b2

a0 ∧b3a1 ∧b3a2 ∧b3a3 ∧b3

+

Fig. 1. The Operations of Algorithm 1 for k = 4
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2.2 Bitwise Integer Squaring

Algorithm 2 for integer squaring is a simplified version of
Algorithm 1 for the case b = a, in which ai∧b j = a j ∧bi for i 6= j .
As we have ai ∧a j +a j ∧ai = 2 · (ai ∧a j ) and multiplication by
2 is realized via a simple shift operation, the weight of (ai ∧a j )
becomes i + j +1, instead of i + j (see Step 5 of Algorithm 2).

Algorithm 2 Bitwise Integer Squaring

Input: a = (ak−1, . . . , a1, a0)
Output: d = (d2k−1, . . . ,d1,d0), where d = a2

1: for i from 0 to (2k −1) do ti ← {Ø} end for
2: for i from 0 to (k −1) do . First Phase
3: t2i ← t2i ∪ai

4: for j from (i +1) to (k −1) do
5: ti+ j+1 ← ti+ j+1 ∪ (ai ∧a j )
6: end for
7: end for
8: t ← ADDERTREE(t ) . Second Phase
9: d ← CPA(t )

Algorithm 2 shows that there is a total of (k2 +k)/2 logical-
AND operations, all of which can be performed in parallel.
Thus, the circuit delay for the first phase is equivalent to the
delay of an AND gate. For the second phase, the circuit delay is
determined by the delay of the adder tree, which is logarithmic
with respect to the input size k as shown in Section 3.

Example 2. Fig. 2 illustrates the operations of Algorithm 2 for
k = 4. Note that the column t1 in the partial product list is
an empty set.

×
a0a1a2a3

a0a1a2a3

d0d1d2d3d4d5d6d7

a0a1 ∧a0a2 ∧a0a3 ∧a0

a1a2 ∧a1a3 ∧a1

a2a3 ∧a2

a3

+

Fig. 2. The Operations of Algorithm 2 for k = 4

2.3 Redundant Representation of Integers

A positive integer in the interval [0, N ) can be represented
using as low as k = dlog2 Ne bits. Generally speaking, any
representation using more bits than this lower bound can
be referred as redundant representation. The most common
examples are Carry-Save and redundant signed digit (RSD)
representations [32].

In RSD representation [33], an integer a is viewed as
the difference between two positive integers, while in C-S
it is the sum of two such integers. In binary, we can write
a =∑k−1

i=0 (ai ,0 −ai ,1)2i and a =∑k−1
i=0 (ai ,0 +ai ,1)2i for RSD and

C-S representations, respectively. Redundant representations
are useful to defer additions (or subtractions) for avoiding
delays of long carry chains.

We can generalize the C-S representation to have an arbi-
trary number of bits for each weight as

a =
k−1∑
i=0

(ai ,0 +ai ,1 + . . .+ai ,iv )2i , (1)

where iv ≥ 0 is an integer. Also, we can combine all the bits with
the same weight into a set of bits; e.g., ai = {ai ,0, ai ,1, . . . , ai ,iv }
for i = 0, . . . ,k − 1. This new notation is especially useful to
denote the bits accumulated in the adder tree in the first phase
of Algorithms 1 and 2 before the addition operation.

Example 3. Using the new notation, the result of the first
phase of the bitwise squaring operation of a 4-bit integer
a, d = a2 in Example 2 can be written in generic redundant
representation as t0 = {t0,0}, t1 = {Ø}, t2 = {t2,0, t2,1}, t3 = {t3,0},
t4 = {t4,0, t4,1, t4,2}, t5 = {t5,0}, t6 = {t6,0, t6,1}, where t0,0 = a0,
t2,0 = a0 ∧ a1, t2,1 = a1, t3,0 = a0 ∧ a2, t4,0 = a0 ∧ a3, t4,1 =
a1 ∧a2, t4,2 = a2, t5,0 = a1 ∧a3, t6,0 = a2 ∧a3, and t6,0 = a3.

As shown in Example 3, the sets for each weight can
contain different number of bits. We adopt the notation
that |ti | is the number of elements in the set ti and |t | is
the number of sets in the redundant representation. Also,
DEPTH(t ) = max||t0|, |t1|, . . . , |ti ||. For example, the classical C-
S representation has DEPTH(t ) = 2 while the redundant repre-
sentation in Example 3 has depth 3. The actual summation
operation can be performed using adder tree constructions as
explained in Section 3.

3 ADDER TREE CONSTRUCTIONS

In [28], Wallace proposed adder tree circuits to eliminate long
carry chains in Algorithms 1 and 2 using counters, which are
combinational logic elements that output the number of ones
in their inputs. The two most common counters are (2×2) half
adder (HA) and (3×2) full adder (FA) counters. Other counters
include (7×3), (15×4), and (31×5) counters.

The Wallace tree consists of layers, in each of which we have
a different redundant representation of the same integer; e.g.,
the result of the squaring operation. A layer is of lower depth
than the previous layer and the last layer is of depth two. In
a layer, there are counters acting on the bits of the columns
of the partial product list t . As the counters in one layer
works in parallel, they are referred as parallel counters in [29].
Consequently, the delay of a Wallace tree layer is equivalent to
the delay of the slowest counter employed in the layer.

There are different adaptations of Wallace trees. For ex-
ample, the greedy Wallace tree working with HAs and FAs
combines the sets in redundant representation in each layer
into three-bit groups and apply each group to the inputs of
a FA. If there are two bits not included in any group, they are
applied to the input of a HA. When there is only a single bit left,
it will be copied to the next layer as is. Both FA and HA have
two outputs: carry and sum. The sum output will be copied to
the set with the same weight in the next layer while the carry
output will be appended to the set with one larger weight in
the next layer.

An alternative adaptation performs the grouping according
to the deepest set; e.g., tk−1 for k-bit multiplication. The bits of
this set are grouped in three. If there are two bits in any other
set corresponding to a three-bit group in the longest set, then
they are applied to the inputs of a HA. If there is a single bit
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in such situations, it will be copied to the next layer as is. If
there are one or two rows left after grouping, they will directly
be copied to the next layer, as well. The next example illustrates
this adaptation.

Example 4. The integer multiplication operation in Example 1
results in a redundant representation of depth 4 after the
first phase as shown in Fig. 3 (see Layer I). The Wallace
tree first reduces the depth to 3 and then to 2, as can be
observed in Layer II of the circuit and the resulting integer
in C-S form, respectively. The boxes with two and three dots
stand for HA and FA, respectively. The Wallace tree employs
3 HAs and 5 FAs, in total.

Layer I

Layer II

Fig. 3. The Wallace Tree Layers for k = 4

After the final layer of a Wallace tree, the resulting integer is
in redundant representation of depth two, which is the regular
C-S form. For the final result, a CPA is used to add carry and
save parts. As all HAs and FAs work independently and thus in
parallel to each other, the time delay of one layer of Wallace
tree is always equivalent to one FA delay.

When FA and HA are used, we can give a lower bound for
the number of layers L(h) to reduce a redundant representation
of depth h to depth 2 representation [32]:

L(h) ≥ log1.5(h/2). (2)

The multiplication of two k-bit integers and squaring of a k-
bit integer lead to trees of depth k and bk/2c+1, respectively.
Consequently, the lower bounds for the number of layers to
reduce the depths of k-bit multiplication and squaring to
2 are dlog1.5(k/2)e and dlog1.5((bk/2c+ 1)/2)e, respectively. For
example, the multiplication of two 2048-bit integers results in
a tree of depth 2048 while the squaring of a 2048-bit integer
leads to a shorter tree of depth b2048/2c + 1 = 1025. Conse-
quently, the lower bounds for the number of layers needed
to reduce the trees in multiplication of two 2048-bit integers
and squaring of a 2048-bit integer are dlog1.5(2048/2)e = 18 and
dlog1.5(1025/2)e = 16, respectively.

The number of layers is, in fact, determined by the com-
pression factor, which is the ratio of the number of inputs
to the number of outputs of the largest counter used in the
Wallace tree. For instance, when the largest counter is a FA,
then the compression factor is 1.5, which explains the base of
the logarithm in Equation 2.

In [29], Dadda observes that the compression factor in fact
determines the reduction amount in the depths of the tree
from one layer to the next. He, then, proposes a method to
minimize the number of counters used in one layer. To this end,
Dadda’s method utilizes an array of integers that is recursively
generated as D[0] = 2 and D[i ] = b1.5 ·D[i −1]c for i ≥ 1. This
array also determines how to reach a representation of depth 2
progressively.

Algorithm 3 ADDERTREE with Dadda’s Method [29]

Input: t = ({tk−1,0, . . . , tk−1,dk−1−1}, . . . , {t0,0, . . . , t0,d0−1})
Input: D = (D[0],D[1],D[2], . . .)
Output: t = ({tk−1,0, tk−1,1}, . . . , {t0,0, t0,1})

1: while MAXDEPTH(t ) > 2 do
2: β← FINDNEXTMAXDEPTH(DEPTH(t ),D)
3: ν← {Ø}
4: for i from 0 to (k −1) by 1 do
5: ti ← ti ∪ν
6: ν← {Ø}; σ← {Ø}
7: if DEPTH(ti ) >β then
8: ∆← DEPTH(ti )−β
9: f ←b∆/2c; h ←∆ mod 2

10: for j from 0 to (3 f −1) by 3 do
11: C ,S ← FA(ti , j , ti , j+1, ti , j+2)
12: σ←σ∪S; ν← ν∪C
13: end for
14: for j from 3 f to (3 f +2h −1) by 2 do
15: C ,S ← HA(ti , j , ti , j+1)
16: σ←σ∪S; ν← ν∪C
17: end for
18: for j from (3 f +2h) to (DEPTH(ti )−1) by 1 do
19: σ←σ∪ ti , j

20: end for
21: ti ←σ

22: end if
23: end for
24: end while

Example 5. The array D = {2,3,4,6,9,13,19,28,42,63,94,141, . . .}
and suppose k = 128. Then, Dadda’s method first reduces
the tree depth from 128 to 94. Then, it reduces from 94
to 63. The operation continued until the tree of depth 2 is
obtained.

Dadda’s method uses no more counters than sufficient to
reduce the depth of a tree layer to next smaller integer in D
than the current depth. The method is given in Algorithm 3,
where one iteration of the while loop stands for one layer of
Dadda tree.

Algorithm 3 determines the depth of the next layer β in
Step 2 using the FINDNEXTMAXDEPTH function, which com-
putes the maximum element in D that is smaller than the
depth of the current layer. Then, using FAs and HAs, the depth
of the next layer will be reduced to β. If the depth of a set ti

is already less than or equal to β, then no counter is used and
the set is copied to the next layer with no change. Otherwise,
counters are used to decrease the depth of ti to β (Steps 8-21
of Algorithm 3).

Example 6. Fig. 4 shows how Dadda’s method reduces the
depth of redundant result in Example 1 from 4 to 2. In
Layer I, where β = 3, 2 HAs are used to reduce t3 and t4

as these sets are likely to produce sets with depths greater
than 3 in the next layer if their depths are not reduced
otherwise. In Layer II, where β= 2, the three sets t3 − t5 are
reduced using 3 FAs and t2 is reduced using 1 HA. Dadda’s
method employs 3 HAs and 3 FAs, which results in smaller
circuit area than the one produced by the Wallace tree in
Example 4 (cf. 3 HAs and 5 FAs) and the circuit delay is
equivalent to the total delay of one FA and one HA.
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Layer I

Layer II

Fig. 4. The Dadda Tree Layers for k = 4

As it is likely to result in slightly smaller circuits, the function
ADDERTREE uses Dadda’s method in the subsequent sections
of the this paper.

4 MODULAR SQUARING ALGORITHMS WITH
CARRY-SAVE REPRESENTATION

In this section, we present three modular squaring methods
suitable for low-latency circuit implementations for the compu-
tation of the VDF function a2T

(mod N ). All the methods take
an integer a in C-S form and outputs the result c = a2 (mod N )
also in C-S form, where the modulus N is any odd integer.
Consequently, no CPA is needed and long carry chains are
completely avoided during the computation of a2T

(mod N ).
Only one CPA is used after the final modular squaring of the
exponentiation. Note that algorithms in this section employ
incomplete arithmetic similar to [27], which basically works
with inputs and outputs not fully reduced with modulus N , but
always in the equivalence class.

The first method is a variant of the Montgomery modular
multiplication algorithm, which is efficient for randomly cho-
sen variable moduli. The second method uses a memory-based
modular reduction algorithm, where memory cells can be used
to configure the circuit for different moduli. The third method
are used when the modulus is fixed. In all cases, we assume the
modulus is randomly chosen and has no special form as the
RSA setting is usually employed in VDF instances.

4.1 Montgomery Modular Squaring with Variable Mod-
ulus
The Montgomery algorithm [17] eliminates costly division op-
eration from the modular reduction and employs shift oper-
ations instead, which are free of cost in hardware implemen-
tations. It, however, computes abR−1 (mod N ) instead of ab
(mod N ), where gcd(R, N ) = 1 and R is chosen as a power
of two. This, on the other hand, leads to no complications,
especially in exponentiation operations as at the end, a simple
transformation operation suffices to obtain the result in the
correct form. For this the input a is first transformed into
the Montgomery form aR (mod N ) by multiplying it with
the precomputed constant R2 (mod N ) using the Montgomery
multiplication algorithm. Then, aR (mod N ) is raised to the
power of 2T , which results in a2T

R (mod N ). Finally, to obtain
the desired result a2T

(mod N ), a2T
R (mod N ) is multiplied by

1.
There are various methods to compute the Montgomery

multiplication [34] such as separate operand scanning (SOS),
coarsely integrated operand scanning (CIOS) etc. Here, we
employ the simple SOS method, which performs the integer
squaring first and then the Montgomery reduction operation.

Algorithm 4 Squaring Algorithm for Integers in C-S form

Input: a = ({ak,0, ak,1}, . . . , {a0,0, a0,1}), a < 2k+1

Output: d = a2 = ({d2k+1,0,d2k+1,1}, . . . , {d0,0,d0,1}), d < 22k+2

1: for i from 0 to (2k +1) do ti ← {Ø} end for
2: for i from 0 to k do . a2

1 +a2
0

3: t2i ← t2i ∪ai ,0 ∪ai ,1

4: for j from (i +1) to k do
5: ti+ j+1 ← ti+ j+1 ∪ (ai ,0 ∧a j ,0)∪ (ai ,1 ∧a j ,1)
6: end for
7: end for
8: for i from 0 to k do . 2a1a0

9: for j from 0 to k do
10: ti+ j+1 ← ti+ j+1 ∪ (ai ,0 ∧a j ,1)
11: end for
12: end for
13: d ← ADDERTREE(t )

Namely, given an integer a we first perform the integer squaring
d = a2 and then the Montgomery reduction

c = d +N (d N ′ mod R)

R
, (3)

where N ′ =−N−1 (mod R) and c = a2R−1 (mod N ). As R = 2m ,
the division by R in Equation 3 is a simple right shift operation
while mod R is equivalent to taking the least significant m bits
of the result. Also, the numerator in Equation 3 always produces
a number whose m least significant bits are all zero. Therefore,
shifting it to right by m bits (or equivalently dividing it by R)
does not result in loss of accuracy in the computation.

4.1.1 Squaring Operation for Integers in C-S Form
We propose Algorithm 4 to compute the square of an (k +1)-
bit integer a which is given in C-S form, namely a = a1 + a0,
and the square d = a2 is also in C-S form, d = d1 +d0. Also, we
assume a < 2N to avoid the final subtraction in Montgomery
reduction [35]. Therefore, the input of square operation is a
(k+1)-bit integer, a = a1+a0 < 2k+1, where a1, a0 < 2k+1. For the
reasons explained in Section 4.1.2, m = k+3 where k = dlog2 Ne
and R = 2m . Algorithm 4, basically, computes

a2 = (a1 +a0)2 = a2
1 +a2

0 +2a1a0, (4)

where a1 = ak,1, . . . , a1,1, a0,1 and a0 = ak,0, . . . , a1,0, a0,0 are carry
and save parts, respectively. Steps 2-7 of Algorithm 4 compute
the partial product list for a2

1 + a2
0 and are almost identical to

Algorithm 2 except that the computations for a2
1 and a2

0 are
performed together. On the other hand, Steps 8-12 compute
the partial product list for 2a1a0 and are almost identical to
Algorithm 1 except that ti+ j in Step 4 of Algorithm 1 is replaced
by ti+ j+1 in Step 10 of Algorithm 4. This is due to the fact
that the multiplication of a1a0 by 2 necessitates a right shift
operation by one bit. The partial product list is computed using
(k +1)(2k +3) logical-AND gates and has depth of 4b(k +1)/2c+
2. Finally, the last step of the algorithm reduces the resulting
partial product list to the C-S form using the Dadda’s method.
The Dadda tree uses (k +6) HAs and (2k2 +k −2) FAs.

Example 7. For k = 2048, Algorithm 4 results in a partial
product list t of depth 4098 before the last step using
8,398,851 logical-AND gates where it takes 20 layers of FAs
for its reduction to depth 2. And the Dadda tree in the
last step utilizes 8,390,654 FAs and 2,054 HAs. Finally the
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Algorithm 5 Montgomery Reduction Algorithm for Integers in
C-S form

Input: d = ({d2k+1,0,d2k+1,1}, . . . , {d0,0,d0,1}), d < 22k+2

Output: c = d ·2−m (mod N ),
Output: where c = ({ck,0,ck,1}, . . . , {c0,0,c0,1}), c < 2k+1

1: for i from 0 to (m −1) do µi ← {Ø} end for
2: for i from 0 to (m −1) do . I: µ= d N ′ mod R
3: for j from 0 to (m −1− i ) do
4: µi+ j ←µi+ j ∪ {N ′

i ∧d j ,0}∪ {N ′
i ∧d j ,1}

5: end for
6: end for
7: µ← ADDERTREE(µ)
8: µm−1,0 ←µm−1,0 ∧ (∼µm−1,1) . II: Trimming
9: µm−1,1 ←µm−1,1 ∧ (∼µm−1,0)

10: t ← d
11: for i from 0 to (k −1) do . III: t = d +N (d N ′ mod R)
12: for j from 0 to (m −1) do
13: ti+ j ← ti+ j ∪ {Ni ∧µ j ,0}∪ {Ni ∧µ j ,1}
14: end for
15: end for
16: t ← ADDERTREE(t )
17: for i from 0 to k do . III: c = d+N (d N ′ mod R)

R
18: ci ← tm+i

19: end for
20: c0 ← c0 ∪ {tm−1,1 ∨ tm−1,0} . IV: Final Correction
21: c ← ADDERTREE(c)

total delay of the squaring circuit is 20τFA +τAND, where
τFA and τAND are the delays of a FA and an AND gate,
respectively.

4.1.2 Montgomery Reduction for Integers in C-S Form

Here, we present a new variant of the Montgomery reduction
method in Algorithm 5 for integers in C-S form. The algorithm
takes a (2k + 2)-bit integer d in the C-S form and outputs a
(k+1)-bit integer c again in C-S form, where c ≡ dR−1 (mod N ),
c < 2N , R = 2m and m = k + 3. In Algorithm 5, N and N ′ =
−N−1 (mod R) are in non-redundant form, i.e. DEPTH(N ) =
DEPTH(N ′) = 1.

Algorithm 5 computes Equation 3 in several stages. In
Stage I (Steps 2-6), the algorithm computes the lower half (the
least significant m bits) of d N ′, where d is in C-S form while
DEPTH(N ′) = 1. The partial product list µ is computed using
m(m +1) logical-AND gates and has depth of 2m. The result µ
is reduced to the C-S form in Step 7.

Normally, µ < R in the original Montgomery reduction
algorithm; but in Algorithm 5, after Step 7, µ can be larger
than R as it is in C-S form. In case µ > R, the final result
of Algorithm 5 can be much larger than N . Comparison and
subtraction operations would necessitate conversion to non-
redundant representation using prohibitively expensive CPAs.
Thus, we employ a trimming stage in Stage II (Steps 8-9), which
resets the most significant bits of µ, µm−1,0 and µm−1,0, if they
are both 1. The trimming stage does not guarantee µ < R, but
decreases the difference µ− R in case µ > R still holds. As
we explain in the subsequent parts of this section, trimming
ensures that c < 2k+1 provided that a < 2k+1, where c = a2R−1

(mod N ). In Stage III (Steps 11-16), the algorithm multiplies µN
and appends the partial product list of the result to d in order
to compute d + N (d N ′ mod R). The resulting partial product

list t is computed using 2km logical-AND gates and has depth
of 2k + 2. The result t is reduced to the C-S form in Step 16
using Dadda tree.

After Step 16, the lower half (the least significant m bits) of t
is always zero and the result c is the upper half of t , which could
be copied to c directly if it were in the non-redundant form.
However, since t is in C-S form, there may be carry out from the
addition of carry and save parts of the lower half of t . The carry
is only possible if either of the most significant bits of t is 1, i.e.,
either tm−1,1 = 1 or tm−1,0 = 1. Thus, in Stage IV (Steps 20-21), 1
is appended to the set c0, which calls for another adder tree as
DEPTH(c) = 3 after Step 20. However, this can be performed in
one layer whose delay is only τHA (i.e., O(1)).

Now, we prove that Algorithm 5, using Equation 3, com-
putes the correct result c = dR−1 (mod N ) and c < 2k+1 given
a < 2k+1, where d = a2. Recall also that m = k +3, k = dlog2 Ne,
and R = 2m . After Step 7 of Algorithm 5, µ = d N ′ (mod R). As
µ is in C-S form, its value can be computed as µ0 +µ1. Then,
we can only guarantee µ < (2k+3 + 2k+3 = 2k+4) and therefore
it can be the case µ > R. Consequently, Equation 3 can result
in a value c greater than 2k+1, given a < 2k+1 or equivalently
d < 22k+2. Therefore, we need to trim µ to have c < 2k+1,
which is implemented in Steps 8-9 of Algorithm 5. If the trim
operation is applied, then we have µ< (2k+3 +2k+2). Therefore,
we can show

c <22k+2 +2k (2k+3 +2k+2)

2k+3
= 2k−1 +2k +2k−1 = 2k+1.

In other words, when a < 2k+1, Algorithms 4 and 5 produce the
result c < 2k+1.

Example 8. Table 1 lists the delay and the area costs of
Algorithm 4 and each stage of Algorithm 5 for k = 2048.

TABLE 1
Costs of Montgomery Modular Squaring Algorithm with C-S Form

(Algorithms 4 + Algorithm 5) for k = 2048

Operation Delay Logical gates HA FA

Alg. 4 20τFA+τAND 8,398,851 AND 2,054 8,390,654
Alg. 5 - I 20τFA+τAND 4,208,652 AND 2,050 4,200,451
Alg. 5 - II τAND +τNOT 2 AND + 2 NOT - -
Alg. 5 - III 20τFA+τAND 8,413,202 AND 2,055 8,413,193
Alg. 5 - IV τHA +τOR 1 OR 2,049 -

Total
60τFA+τHA+ 21,020,707 AND
τNOT +τOR+ + 2 NOT 8,208 21,004,298

4τAND + 1 OR

Note that Algorithm 5 does not require the final subtraction
operation as in [35], which proposes to use R = 2k+2 for a k-bit
modulus N to eliminate the final subtraction. Here, we need
to add one more bit to all operands and work with R = 2k+3.
This is especially important as the subtraction operation is
prohibitively expensive in C-S form.

4.2 Memory-Based Modular Squaring with Variable
Modulus
In memory-based modular squaring operation, no sophisti-
cated reduction algorithms such as Montgomery’s method [17]
are needed. Instead, we can use lookup table approach for
reducing the upper part of the output bits of the integer
squaring (see Algorithm 4 for a < 2k and d < 22k ), namely
{d2k−1,0,d2k−1,1}, . . . , {dk,0,dk,1}. In particular, we can precom-
pute and store the integers (2i mod N ) for k ≤ i < 2k in a
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Algorithm 6 Lookup Table Generation Algorithm for k ≥ 16

Input: N = (Nk−1, . . . , N0), `= dlog2 ke+2
Output: Ti , j for i ∈ [0,k +2`) and j ∈ [0,k)

1: for i from 0 to (k +2`−1) do Ti ← {Ø} end for
2: for i from 0 to (k +2`−1) do
3: α← 2k+i (mod N )
4: for j from 0 to (k −1) do
5: Ti , j ← Ti , j ∪α j

6: end for
7: end for

lookup table, T . Then, after the integer squaring operation,
each lookup table cell goes to input of an AND gate with
corresponding di ,0 (as well as di ,1) for k ≤ i < 2k and appended
to the lower part of d .

There is, however, one small concern about the bit-size of
the final result c = d (mod N ) after the adder tree is applied
as c now requires more than k bits. The final result c still
needs to be reduced to k bits. However, this will require
another reduction operation. Therefore, to capture all bits of
the final result, we need a final result with (k +`)-bits, where
` is the number of extra bits necessary for avoiding extra
reduction operations. To this end, we again employ incomplete
arithmetic, where input and output of our modular squaring
algorithm are (k +`)-bit integers.

The algorithm for integer squaring operation, which are
identical to Algorithm 4 except for the input being now (k +`)-
bit long, outputs a (2k + 2`)-bit integer, d . The uppermost
(k + 2`)-bits of d0 and d1 are now reduced modulo N with
the help of the lookup table T and appended to the lower part
of d . This generates a partial product list of depth 2(k +2`)+2
requiring dlog2 (2k +4`+2)e extra bits for adder tree which
should be less than or equal to `. By dlog2 (2k +4`+2)e ≤ `, the
number of extra bits, `, is formulated as shown in Equation 5.

`=


dlog2 ke+4 if k ≤ 2

dlog2 ke+3 if 2 < k < 16

dlog2 ke+2 if k ≥ 16

(5)

Since the uppermost (k + 2`) bits of d are reduced, the
lookup table T has (k + 2`) entries where each entry is k-bit
long as shown in Algorithm 6. This explains the upper limit of
the iteration in Step 2 of Algorithm 6. Also, the memory cells are
appended to the partial product list via 2k(k +2`) logical-AND
gates. After the reduction operation, the adder tree reduces d
to its C-S form. All operations for modular reduction are given
in Algorithm 7.

4.3 Direct Modular Squaring with Fixed Modulus

In some VDF settings, the modulus N is generated once and
used thereafter. In this scenario, that N is fixed enables signif-
icant optimizations in the circuit complexity and time delay.
Direct modular squaring method uses the same approach as
the memory-based modular squaring method except for the
modular reduction operation. Since the modulus is fixed, then
only the nonzero bits of integers (2i mod N ) for k ≤ i < (2k+2`)
are hardwired in the modular reduction circuit. This means we
need no memory cells and only half of the AND gates (i.e.,
k(k + 2`)), on average. This also simplifies the final addition
operation in Step 9 of Algorithm 7 by reducing the depth of the
partial product list t from 2(k +2`)+2 to k +2`+2.

Algorithm 7 Memory-Based Modular Reduction Algorithm

Input: d = ({d2(k+`)−1,0,d2(k+`)−1,1}, . . . , {d0,0,d0,1}),
Input: T : Lookup table
Output: c ≡ d (mod N ),
Output: where c = ({ck+`−1,0,ck+`−1,1}, . . . , {c0,0,c0,1})

1: for i from 0 to (k −1) do ti ← di end for
2: for i from k to (k +`−1) do ti ← {Ø} end for
3: for j from k to (2k +2`−1) do
4: for i from 0 to (k −1) do
5: ti ← ti ∪ (T j−k,i ∧d j ,0)
6: ti ← ti ∪ (T j−k,i ∧d j ,1)
7: end for
8: end for
9: c ← ADDERTREE(t )

Example 9. Table 2 lists the delay and the area cost of Algo-
rithm 4 and Algorithm 7 with k = 2048 and ` = 13 for the
cases when the modulus is variable or fixed.

TABLE 2
Costs of Memory-Based and Direct Modular Squaring Algorithms with

C-S Form (Algorithm 4 + Algorithm 7) for k = 2048 and `= 13

Res. Memory-Based Direct

FA / HA 16,984,339 / 2,144 12,736,789 / 2,132
AND 16,992,607 12,745,055

M.Cells 4,247,552 –
Delay 40τFA +2τAND 38τFA +2τAND

5 MODULAR SQUARING ALGORITHMS WITH
REDUNDANT-POLYNOMIAL REPRESENTATION

In this section, we present a novel polynomial representation
for integers, referred as Redundant-Polynomial form, which
is a variant of redundant representation introduced here and
similar to the one in [26]. We also present its utilization in the
three modular squaring methods presented in Section 4.

The polynomial representation enables low-latency circuit
implementations of modular multiplication and squaring, tar-
geting applications with variable and fixed moduli. Whereas
an FPGA-optimized version is presented in [26], where the im-
plementation is optimized to utilize FPGA-specific full-custom
built-in blocks such as DSPs and Block RAMs effectively, the
polynomial representation can be profitably employed for im-
plementations on different target devices. In this paper, we
utilize a novel variant of modular squaring algorithm that is
tailored to be more suitable for ASIC implementations. Besides
using R-P form for input and output, we take advantage of the
inherent simplicity of a squaring operation and the fact that it
is used repeatedly for the exponentiation a2T

(mod N ) in the
VDF computation.

Each k-bit integer a can also be considered as an s-digit
integer with r -bit digits Ai , where s = dk/r e and A =∑s−1

i=0 Ai ·2r .
Similarly, the integer A can also be represented as a polynomial
A(x) =∑s−1

i=0 Ai · xi , where the radix x = 2r and Ai < 2r .
In the R-P form presented in [26], an integer A is repre-

sented using a polynomial A(x) of degree (s−1) with (r +1)-bit
coefficients Ai as shown in Equation 6.

A(x) =
s−1∑
i=0

Ai · xi =
s−1∑
i=0

Ai · xi +
s−1∑
i=0

ei · xi+1 (6)

Here, Ai = (Ai +xei ) < 2r+1 and where ei ∈ {0,1}.
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Algorithm 8 CSTOPOLY Algorithm

Input: a = ({ak−1,0, ak−1,1}, . . . , {a0,0, . . . , a0,1}),
Input: s = dk/r e where r : bit-size of a digit
Output: b = a = ({bk−1,0,bk−1,1}, . . . , {b0,0,b0,1})
Output: where bi ,1 = ei for i ≡ 0 (mod r ) and i 6= 0
Output: where bi ,1 = 0 for i 6≡ 0 (mod r ) and i = 0

1: for i from 0 to (s −1) do
2: C ← 0
3: for j from 0 to (r −1) do . r -bit CPA (CPAr )
4: C ,S ← FA(ai s+ j ,0, ai s+ j ,1,C )
5: bi s+ j ,0 ← S
6: end for
7: b(i+1)s,1 ←C
8: end for

Equation 6 is indeed a redundant form for integers similar
to C-S form, where only certain bits are represented by two bits.
More specifically in polynomial form for a k-bit integer a, we
have Ai = ({a(i+1)r−1,0,0}, . . . , {ai r+1,0,0}, {ai r,0, ai r,1}) for (s −1) ≥
i ≥ 1 and A0 = ({ar−1,0,0}, . . . , {a1,0,0}, {a0,0,0}) where a j ,0 = a j ,1 =
0 for j ≥ k and ai r,1 = ei for i = 1,2, . . . , s −1. Also, a = a1 + a0

where a1 = ak,1, . . . , a1,1, a0,1 and a0 = ak,0, . . . , a1,0, a0,0.

Example 10. For k = 9 and r = 3, C-S and R-P forms are shown
in Fig. 5. The bits representing the first, second and third
digits of the R-P form are shown with black, gray and blue
dots, respectively. As shown in the Fig. 5, the R-P form can
also be viewed as a modified version of C-S form.

C-S

R-P

Fig. 5. C-S and R-P Forms for k = 9 and r = 3

The basic idea of the polynomial representation is to con-
fine the carry propagation into r -bit digits and use only r -bit
CPA (CPAr ) circuits. During the VDF computation, therefore,
the intermediate results are kept in R-P form; but at the end,
the final result is converted to the non-redundant form using a
CPAk .

After applying the adder tree to partial products in our
algorithms, we obtain the result in C-S form, which needs to
be converted to R-P form. Algorithm 8 shows the steps of this
conversion function, CSTOPOLY().

When the new R-P form is used, all algorithms in Section 4
can easily be adapted with minor modifications as discussed in
the next sections.

5.1 Squaring Operation for Integers in R-P Form
A low-latency integer multiplication algorithm with the polyno-
mial form is detailed in Algorithm 7 in [26], in which its FPGA-
optimized version is implemented. In an FPGA architecture,
there are special functional blocks such as DSP including a
full-custom 25× 18 signed multiplier [36]. In [26], the entire
integer multiplication algorithm was optimized to utilize this
basic building block in FPGA for a low-latency implementa-
tion. Since the entire algorithm is based on coefficient-wise
multiplications, a DSP block is utilized to realize a 17 × 17
core multiplication operation, which provides best utilization
for r = 16.

Algorithm 9 Squaring Algorithm for Integers in R-P Form

Input: a = ({ak,0, ak,1}, . . . , {a0,0, a0,1})
Output: d = a2 = ({d2k+1,0,d2k+1,1}, . . . , {d0,0,d0,1})

1: for i from 0 to (2k +1) do ti ← {Ø} end for
2: for i from r to (k −1) by r do . a2

1
3: t2i ← t2i ∪ai ,0

4: for j from (i + r ) to (k −1) by r do
5: ti+ j+1 ← ti+ j+1 ∪ (ai ,0 ∧a j ,0)
6: end for
7: end for
8: for i from 0 to k do . a2

0
9: t2i ← t2i ∪ai ,1

10: for j from (i +1) to k do
11: ti+ j+1 ← ti+ j+1 ∪ (ai ,1 ∧a j ,1)
12: end for
13: end for
14: for i from 0 to k do . 2a1a0

15: for j from r to (k −1) by r do
16: ti+ j+1 ← ti+ j+1 ∪ (ai ,0 ∧a j ,1)
17: end for
18: end for
19: t ← ADDERTREE(t )
20: d ← CSTOPOLY(t )

For ASIC implementation, utilizing core 17×17 multipliers
of non-redundant form is not always most inefficient, as these
multipliers results in long carry chains in the partial product
calculation stage. Therefore, carry propagation should be de-
ferred as long as possible. To this end, we propose Algorithm 9
to compute the square of a (k + 1)-bit integer a given in R-P
form, where a = a1 + a0 < 2k+1 and a1, a0 < 2k+1. The result
d is also in R-P form, where d = d1 + d0 < 22k+2. Note that
Algorithm 9 basically computes Equation 4.

Example 11. For k = 2048 and r = 8, Algorithm 9 results in
a partial product list t of depth 1,407 before the last two
steps using 2,657,665 logical-AND gates, where it takes 17
layers of FAs for its reduction to depth 2. And the operations
in the last two steps employ 2,649,472 FAs, 2,135 HAs and
513 CPA8s. Finally, the total delay of the squaring circuit is
17τFA +τAND +τCPA8

.

Note that all partial product bits are calculated using
logical-AND gates in parallel and the resulting bits are grouped
together in the partial product list t as shown in Steps 1-
18 of Algorithm 9. This is a totally different approach from
the one in Algorithm 7 in [26], which is based on digit-wise
multiplications.

As shown in Steps 2-13 of Algorithm 9, the partial product
bits generated by squaring of a1 and a0 are calculated using
s(s − 1)/2 and (k + 1)(k + 2)/2 logical-AND gates, respectively.
The partial product bits generated by the multiplication 2a0a1,
(see Steps 14-18 of Algorithm 9), need (s−1)(k+1) logical-AND
gates. The partial product list t has depth of s+b(k+1)/2c+b(s−
1)/2c+1 at most.

After the generation of the partial product list t , the al-
gorithm reduces the resulting list to the regular C-S form
using Dadda tree (Step 19 of Algorithm 9). The output of the
adder tree represents a (2k + 2)-bit integer in C-S form with
(2k +2)-bit carry and save parts, d1 and d0, respectively, where
d1,d0 < 22k+2. Therefore, the resulting integer is transformed
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to R-P form using CSTOPOLY function, which uses d(2k +2)/r e
CPAr ’s.

Example 12. Fig. 6 depicts an example implementation of
Algorithm 9 for k = 4 and r = 2.

a

a

a2
1

a2
0

2a1a0

A
D

D
E

R
T

R
E

E

x

+

+++++

d

Fig. 6. Example implementation of Algorithm 9 for k = 4 and r = 2

5.2 Modular Reduction for Integers in R-P Form
In this section, we investigate the utilization of the R-P form
in the three modular reduction methods already presented in
Section 4: Montgomery modular reduction with variable mod-
ulus, memory-based modular reduction with variable modulus
and direct modular reduction with fixed modulus.

5.2.1 Montgomery Reduction with Variable Modulus
For the R-P form, we utilize the Montgomery reduction algo-
rithm (see Algorithm 5) presented in Section 4 and propose
three alternative variations in the actual implementation. In the
R-P form, similar to the C-S form, the Montgomery reduction
algorithm takes (2k + 2)-bit integer d as input and outputs a
(k +1)-bit integer c where R = 2m and m = k +3.

Modular squaring operation with redundant representation
requires only its input and output to be in the identical
redundant form. Integers in the intermediate steps of modular
squaring can have different forms as long as the operation
generates the output in the same form as the input. For the
integers in R-P form, CSTOPOLY operation is applied after
ADDERTREE to convert the integer in C-S form to R-P form.
Therefore, CSTOPOLY applied in the intermediate steps of
modular squaring operation can be omitted as long as it is
applied to the final modular squaring result, c.

In modular squaring with Montgomery reduction for inte-
gers in R-P form, CSTOPOLY can be applied at three different
points. The first one is after squaring operation (see Step 20
of Algorithm 9). The second CSTOPOLY can be applied after
µ is calculated as shown in Step 7 of Algorithm 5. The third
conversion is applied after the output c is calculated, which
is performed in all cases. The first and second CSTOPOLY

operations can be skipped as explained next.
We investigate three different Montgomery reduction meth-

ods. In the first method (Method 1), CSTOPOLY operations after

TABLE 3
Costs of Montgomery Modular Squaring Algorithms with R-P Form

(Algorithm 9 + Algorithm 5) for k = 2048 and r = {4,8}

Res. Method 1 Method 2 Method 3

r = 4
FA 15,886,092 14,308,106 11,151,619
HA 8,475 6,962 6,983

CPA4 513 1,538 2,051
Logical 15,902,497 AND 14,848,283 AND 11,691,794 AND
Gates + 2 NOT + 1 OR + 2 NOT + 1 OR + 2 NOT + 1 OR

58τFA +τHA 57τFA +τHA 56τFA +τHA
Delay +4τAND +τOR +4τAND +τOR +4τAND +τOR+τNOT +τCPA4

+τNOT +2τCPA4
+τNOT +3τCPA4

r = 8
FA 15,263,116 13,422,474 9,740,931
HA 8,289 6,563 6,601

CPA8 257 770 1,027
Logical 15,279,521 AND 13,700,251 AND 10,018,706 AND
Gates + 2 NOT + 1 OR + 2 NOT + 1 OR + 2 NOT + 1 OR

57τFA +τHA 55τFA +τHA 53τFA +τHA
Delay +4τAND +τOR +4τAND +τOR +4τAND +τOR+τNOT +τCPA8

+τNOT +2τCPA8
+τNOT +3τCPA8

squaring and the calculation of µ are skipped. CSTOPOLY is only
applied after the Step 21 of Algorithm 5. In the second method
(Method 2), CSTOPOLY is performed after squaring and skipped
after the calculation of µ. Since d is in the R-P form after the
squaring, the partial product list µ in Stage I of Algorithm 5
is computed using m(m + 1)/2+mz − r z(z + 1)/2 logical-AND
gates and has depth of m+z where z = b(m−1)/r c. In the third
method (Method 3), all CSTOPOLY operations are performed.
The integer µ in C-S form is converted to R-P form using dm/r e
CPAr s after the Step 7 of Algorithm 5. Since µ is in R-P form, the
partial product list t generated in Stage III is computed using
k(m + z) logical-AND gates and has depth of k + z +2 at most
where z = b(m−1)/r c. Finally, the final modular squaring result
c in C-S form is converted to R-P form using d(k +1)/r e CPAr s.

Example 13. Table 3 lists the delay and the area costs of the
three Montgomery modular squaring methods (Algorithm 9
+ Algorithm 5) for k = 2048 and r = {4,8}. The third method
uses fewer number of FA, HA and AND gates at the expense
of extra CPAs. It also has fewer FAs on the critical path
because CSTOPOLY operations reduce the bits in the carry
part of the integer as the representation goes from C-S to
R-P.

5.2.2 Memory-Based Reduction with Variable Modulus
As already explained Section 4.2, we can use lookup tables for
reducing integers in R-P form employing Algorithm 9 followed
by Algorithm 7. Since input and output of our modular squaring
algorithm are (k+`)-bit integers as explained in Section 4.2, the
algorithm for integer squaring operation, which is identical to
Algorithm 9 except for the input being now (k + `)-bit long,
outputs a (2k + 2`)-bit integer, d , where ` is formulated as
shown in Equation 5.

Following the approach introduced in Section 5.2.1, we can
utilize R-P form in memory-based modular squaring algorithm
with two different variants. In the first method (Method 1),
CSTOPOLY after squaring is skipped and it is applied after the
final modular squaring result c is calculated (see Step 9 of
Algorithm 7). In the second method (Method 2), CSTOPOLY

is performed after squaring and applied to the upper part of
d , namely {d2k+2`−1,1,d2k+2`−1,0} . . . {dk,1,dk,0}, using d(k+2`)/r e
CPAr s. Since the upper part of d is in R-P form after squaring,
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the partial product list t generated after reduction is computed
using k(k +2`)+kb(k +2`−1)/2c logical-AND gates and it has
depth of k +2`+b(k +2`−1)/2c+2. Finally, the final modular
squaring result c in C-S form is converted to R-P form using
d(k +`)/r e CPAr s.

Example 14. Table 4 lists the delay and the area costs of
memory-based modular squaring operation (Algorithm 9
and Algorithm 7) for k = 2048, `= 13 and r = {4,8}.

TABLE 4
Costs of Memory-Based Modular Squaring Algorithms with R-P Form

(Algorithm 9 + Algorithm 7) for k = 2048, `= 13 and r = {4,8}

Res.
Method 1 Method 2

r = 4 r = 8 r = 4 r = 8

FA 11,806,016 11,174,563 8,619,330 7,457,445
HA 2,421 2,240 2,413 2,224

AND 11,814,280 11,182,825 8,627,592 7,465,705
M.Cells 4,247,552 4,247,552 4,247,552 4,247,552

CPA 516 a 258 b 1,035 a 518 b

2τAND 2τAND 2τAND 2τAND
Delay +38τFA +37τFA +37τFA +35τFA+τCPA4

+τCPA8
+2τCPA4

+2τCPA8
a :4-bit CPA. b :8-bit CPA.

5.2.3 Direct Reduction with Fixed Modulus
This method uses the same approach as the memory-based
squaring method except for the modular reduction operation.
In this method, we need no memory cells and only half
of the AND gates, on average. This also simplifies the final
addition operation in Step 9 of Algorithm 7. Also, we have
two variants due to reasons explained in Section 5.2.2: i) the
first method (Method 1) avoids CSTOPOLY operation after the
integer squaring operation (Algorithm 9) and ii) the second
method (Method 2) uses two applications of CSTOPOLY opera-
tion; one after the integer squaring and the other at the end of
the modular reduction.

Example 15. Table 5 lists the delay and the area cost of
direct modular squaring operation with fixed modulus
(Algorithm 9 and Algorithm 7) for k = 2048, ` = 13 and
r = {4,8}.

TABLE 5
Costs of Direct Modular Squaring Algorithms with R-P Form
(Algorithm 9 + Algorithm 7) for k = 2048, `= 13 and r = {4,8}

Res.
Method 1 Method 2

r = 4 r = 8 r = 4 r = 8

FA 7,558,466 6,927,013 5,965,124 5,067,431
HA 2,409 2,228 2,402 2,219

AND 7,566,728 6,935,273 5,973,384 5,076,713
CPA 516 a 258 b 1,035 a 518 b

36τFA 35τFA 35τFA 34τFA
Delay +2τAND +2τAND +2τAND +2τAND+τCPA4

+τCPA8
+2τCPA4

+2τCPA8
a :4-bit CPA. b :8-bit CPA.

6 RESULTS AND COMPARISON

In this section, we provide the results and comparison of the
algorithms presented in this work. To provide a fair compari-
son, we implemented the same algorithms for integers in non-
redundant form, as well. In Table 6, we present the delay and
area costs of the modular squaring methods proposed for the

integers in C-S and non-redundant forms for k = {1024,4096}.
Similarly, Table 7 presents the delay and area costs of the
modular squaring methods proposed for the integers in R-P
form for k = {1024,4096} and r = {8,16}. The key points are
summarized as follows:

• Algorithms utilizing C-S and R-P forms avoid long carry
chains. These representations show superior time per-
formance in comparison with non-redundant represen-
tation for modular squaring operation.

• R-P form requires at least one layer of CPAr units for
modular squaring due to the requirement that input
and output be in the same form. Since the carry part
of R-P form has many fewer number of bits than the
save part, adder trees generated using R-P form has less
depth than the adder trees in C-S form. Furthermore,
the design with R-P form uses less resources at the
expense of extra CPAs.

• Overall, R-P form has fewer number of FAs on the
critical path of the design than the C-S form at the
expense of additional CPAs. Thus, there is a trade-off
between CPA and FA delays. For instance, Montgomery
multiplication with C-S incurs about the delay of 63τFA
(see Table 6) whereas its R-P version does the delay of
61τFA +τCPA8

(see Method 1 in Table 7). Our experi-
ments with TMSC 65 nm technology indicate that both
C-S and R-P based designs feature similar critical path
delays whereas the latter consumes much less chip area
(see Fig. 7). This is due to the fact that highly optimized
CPA designs are available in ASIC libraries. However, it
is difficult to derive a definitive conclusion as to which
redundant form yields a lower latency circuit, which
depends on the technology and design optimization
efforts; and this can be the focus of a future study.

• Memory-based modular reduction algorithms incur
much lower gate count and result in significantly shorter
critical path compared to the Montgomery modular
reduction algorithms at the expense of chip area for
large number of memory cells. As memory access can
be done in parallel to the integer squaring operation,
memory access latency is not on the critical path. In
summary, memory based modular squaring algorithms
can be strong alternatives to Montgomery-based de-
signs subject to the overall cost of memory.

• The direct modular reduction methods offer the best so-
lution in terms of area and time performance; however,
they support only fixed moduli.

In order to provide a theoretical lower bound for the area
and time complexities of ASIC implementations, we synthe-
sized every building block (AND, OR, NOT, HA, FA, CPAs) used
in the proposed algorithms using the TSMC 65 nm standard
cell library. The time and area costs of different methods and
representations are plotted in Fig. 7 for k = 2048 and r = 8.

As expected, direct modular reduction algorithms yield the
best area and time performance for all representations since
they take the advantage of fixed moduli. For variable moduli,
memory-based modular reduction methods enjoy higher per-
formance than the Montgomery modular reduction algorithm
as far as the critical path delay is concerned. Memory-based
modular reduction methods, however, require memory cells;
and they are not included in the area cost. For each modu-
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TABLE 6
Delay and Area Costs of Modular Squaring Methods with C-S and Non-Redundant Forms for k = {1024,4096}

k Res.
C-S Form Non-Redundant Form

Montgomery Memory-Based Direct Montgomery Memory-Based Direct
10

24
FA 5,259,274 4,289,766 3,216,616 2,096,130 1,602,057 1,066,507
HA 4,112 1,108 1,096 3,073 1,085 1,078

Logical 5,267,491 AND
4,293,932 AND 3,220,780 AND 2,105,352 AND 1,607,234 AND 1,071,682 AND

Gates + 1 OR + 2 NOT
M.Cells – 1,073,152 – – 1,071,104 –

54τFA +τHA+ 47τFA +3τAND 31τFA +2τAND 30τFA +2τAND
Delay 4τAND +τOR 36τFA +2τAND 34τFA +2τAND +τCPA1026

+τCPA1035
+τCPA1035+τNOT +2τCPA2051

+τCPA2070
+τCPA2070

40
96

FA 83,951,626 67,555,652 50,663,750 33,550,338 25,307,158 16,865,304
HA 16,400 4,202 4,192 12,289 4,185 4,173

Logical 83,984,419 AND
67,572,118 AND 50,680,214 AND 33,587,208 AND 25,327,707 AND 16,885,851 AND

Gates + 1 OR + 2 NOT
M.Cells – 16,891,904 – – 16,883,712 –

63τFA +τHA+ 58τFA +3τAND 38τFA +2τAND 36τFA +2τAND
Delay 4τAND +τOR 42τFA +2τAND 41τFA +2τAND +τCPA4098

+τCPA4109
+τCPA4109+τNOT +2τCPA8195

+τCPA8218
+τCPA8218

Fig. 7. Area (NAND2-based) vs. Time (ns) Graph for the ASIC Imple-
mentations of Proposed Modular Squaring Methods with Redundant
and Non-Redundant Representations for k = 2048 and r = 8.

lar squaring method, constructions using C-S and R-P forms
show similar time performance while the latter form allows
lower area design. Both forms have 30% better time perfor-
mance than the baseline using non-redundant representation.
It should be again noted that these results are presented to
provide a lower bound for ASIC implementations and include
only standard cell area/delay information excluding routing
cost and memory. Current ASIC design tools fall short of
achieving the heavy requirements of these architectures.

6.1 Implementation Notes and Alternative Approaches

The adder trees, which constitute an important part of our
algorithms, are much larger in comparison with those in the
literature. Works on multiplier designs in the literature have
never explored adders tree constructions, which are deeper
than necessary for the word size of computers as they are
concerned with general-purpose computing and optimization
of time-area product. As our goal is to find a lower bound for
the latency of modular squaring of RSA-size operands, we, for
the first time in the literature, explored unconventionally large
adder trees optimized for low latency.

Furthermore, it may not be really practicable to construct
adder trees of the aforementioned sizes using available CAD
tools. Therefore, the actual realizations of the proposed designs
may call for a modular approach, in which modules are used to
compress only a part of the adder tree. As this requires several
iterations incurring extra overhead in latency, the modular
approach is likely to yield slower circuits.

An interesting algorithm [37] using the Chinese remainder
theorem turns the modular multiplication with large modulus
into many modular multiplications with much smaller moduli,
all of which can be performed in parallel. By leveraging even
larger number of small primes, parallelization can be further
utilized to achieve much lower latency values. However, certain
aspects of the algorithm should be investigated in more detail
for a possible ASIC implementation. While, it can indeed reduce
the adder tree depths, one major design issue of the algorithm
in [37] is its high fan-out and involved place-and-route require-
ments. For instance, a 2048-bit modular multiplication requires
modular multiplications with 422 small moduli, whose results
are inputs to subsequent 422 additions. Employing larger num-
ber of small moduli (e.g., 725 for further parallelization) will
increase the fan-out requirements by the same amount. Our
algorithms, on the other hand, are likely to enable low fan-
out designs (especially in the adder tree) and relatively simple
place-and-routing. As there is no hardware implementation
of the algorithm [37] in the literature, it is not possible to
provide its fair comparison with our algorithms. Nevertheless, it
would be highly valuable from research point of view to explore
its various hardware implementations, which is an interesting
future research subject.

7 CONCLUSION

In this work, we provided an in-depth study for utilization of
redundant representations of integers to accelerate modular
squaring operation, which is the core operation in VDF ap-
plications. Our analysis and the results indicate that redun-
dant representations potentially yield a significant reduction
in the critical path delay of the modular squaring hardware.
In particular, we introduced three different modular reduction
algorithms that work with redundant representations, which
are amenable to regular, low fan-out and low-latency ASIC
implementations. The direct reduction algorithm enjoys the
best time as well as best area performance with respect to
the other two; but it works for only fixed modulus. With vari-
able moduli, the Montgomery reduction algorithm stands the
best solution for memory-constrained designs while designs
can greatly benefit from memory-based reduction algorithm
provided that the required memory is available.
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TABLE 7
Delay and Area Costs of Modular Squaring Methods with R-P Form for k = {1024,4096} and r = {8,16}

Res.
Montgomery Memory-Based Direct

Method 1 Method 2 Method 3 Method 1 Method 2 Method 1 Method 2

k = 1024, r = 8
FA 3,822,284 3,360,714 2,437,443 2,821,339 1,881,309 1,748,189 1,278,175
HA 4,268 3,436 3,470 1,236 1,226 1,224 1,216

CPA8 129 386 515 130 261 130 261
Logical 3,830,497 AND 3,434,075 AND 2,510,802 AND

2,825,499 AND 1,885,467 AND 1,752,347 AND 1,282,331 AND
Gates + 1 OR + 2 NOT + 1 OR + 2 NOT + 1 OR + 2 NOT

M.Cells – – – 1,073,152 1,073,152 – –
51τFA +τHA+ 50τFA +τHA+ 49τFA +τHA+ 33τFA+ 32τFA+ 31τFA+ 30τFA+

Delay 4τAND +τOR+ 4τAND +τOR+ 4τAND +τOR+ 2τAND+ 2τAND+ 2τAND+ 2τAND+
τNOT +τCPA8

τNOT +2τCPA8
τNOT +3τCPA8

τCPA8
2τCPA8

τCPA8
2τCPA8

k = 1024, r = 16
FA 3,750,508 3,256,042 2,267,043 2,747,694 1,741,104 1,674,544 1,170,738
HA 4,745 3,862 3,944 1,684 1,674 1,672 1,662

CPA16 65 194 259 65 131 65 131
Logical 3,758,721 AND 3,296,571 AND 2,307,570 AND

2,751,854 AND 1,745,262 AND 1,678,702 AND 1,175,406 AND
Gates + 1 OR + 2 NOT + 1 OR + 2 NOT + 1 OR + 2 NOT

M.Cells – – – 1,073,152 1,073,152 – –
51τFA +τHA+ 50τFA +τHA+ 49τFA +τHA+ 33τFA+ 32τFA+ 31τFA+ 30τFA+

Delay 4τAND +τOR+ 4τAND +τOR+ 4τAND +τOR+ 2τAND+ 2τAND+ 2τAND+ 2τAND+
τNOT +τCPA16

τNOT +2τCPA16
τNOT +3τCPA16

τCPA16
2τCPA16

τCPA16
2τCPA16

k = 4096, r = 8
FA 61,000,460 53,649,162 38,946,051 44,455,724 29,673,262 27,563,822 20,170,544
HA 16,599 13,087 13,135 4,417 4,409 4,407 4,396

CPA8 513 1,538 2,051 514 1,030 514 1,030
Logical 61,033,249 AND 54,728,987 AND 40,025,874 AND

44,472,184 AND 29,689,720 AND 27,580,280 AND 20,189,048 AND
Gates + 1 OR + 2 NOT + 1 OR + 2 NOT + 1 OR + 2 NOT

M.Cells – – – 16,891,904 16,891,904 – –
61τFA +τHA+ 60τFA +τHA+ 59τFA +τHA+ 40τFA+ 39τFA+ 39τFA+ 37τFA+

Delay 4τAND +τOR+ 4τAND +τOR+ 4τAND +τOR+ 2τAND+ 2τAND+ 2τAND+ 2τAND+
τNOT +τCPA8

τNOT +2τCPA8
τNOT +3τCPA8

τCPA8
2τCPA8

τCPA8
2τCPA8

k = 4096, r = 16
FA 59,853,196 51,977,098 36,224,643 43,300,509 27,461,279 26,408,607 18,486,945
HA 18,469 14,742 14,832 6,038 6,028 6,028 6,013

CPA16 257 770 1,027 257 515 257 515
Logical 59,885,985 AND 52,532,379 AND 36,779,922 AND

43,316,969 AND 27,477,737 AND 26,425,065 AND 18,505,449 AND
Gates + 1 OR + 2 NOT + 1 OR + 2 NOT + 1 OR + 2 NOT

M.Cells – – – 16,891,904 16,891,904 – –
61τFA +τHA+ 60τFA +τHA+ 59τFA +τHA+ 40τFA+ 39τFA+ 39τFA+ 37τFA+

Delay 4τAND +τOR+ 4τAND +τOR+ 4τAND +τOR+ 2τAND+ 2τAND+ 2τAND+ 2τAND+
τNOT +τCPA16

τNOT +2τCPA16
τNOT +3τCPA16

τCPA16
2τCPA16

τCPA16
2τCPA16

We also provided figures for area and time complexities of
the proposed hardware algorithms in terms of number of basic
building blocks such as logical gates, half- and full-adders and
carry propagation adders. These figures are intended to serve
as lower bounds for the future studies on ASIC implementa-
tions of modular squaring operation, which is urgently needed
for the adoption of the verifiable delay function in practical
applications.
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