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Abstract

By associating Fermat’s Little Theorem based GF (2n) inversion algorithms with the multiplicative Norm function, we present
an additive Trace based GF (2n) inversion algorithm. For elements with Trace value 0, it needs 1 less multiplication operation
than Fermat’s Little Theorem based algorithms in some GF (2n)s.

Index Terms

Finite field, Inversion algorithm, Norm, Trace.

Efficient implementation of GF (2n) inversion is important for practical applications and can be found in, for example,
Feng’s algorithm [1] (received on March 13, 1987 and published in October 1989), which “requires the same number of
multiplications as Itoh and Tsujii’s algorithm” [2] in [3] (received on July 8, 1987 and published in 1988). These algorithms
are based on the fact that GF (2n)∗ is a cyclic group of order 2n − 1, i.e., ∀A ∈ GF (2n)∗,

A−1 = A2n−2 = A2n−1

·A2n−2

·A2n−3

· · ·A22 ·A21 =
n−1∏
i=1

A2i .

The complexities of Feng’s algorithm and Itoh-Tsujii’s algorithm are:
⌊log2(n− 1)⌋+HammingWeight(n− 1)− 1 multiplications and n− 1 squarings.

The above A−1 expression itself is close to that of the multiplicative Norm function, which is defined as

Norm(A) =
n−1∏
i=0

A2i .

This viewpoint leads us to considering the additive absolute Trace function, which is defined as

Tr(A) =
n−1∑
i=0

A2i .

If Tr(A) =
∑n−1

i=0 A2i = 0, then we have A =
∑n−1

i=1 A2i and can express A−1 as

A−1 = A−2
n−1∑
i=1

A2i =

n−1∑
i=1

A2i−2 =

n−2∑
j=0

(A2)2
j−1.

We now give some examples to show the computational produce of this formula for A such that Tr(A) = 0.

A. Example GF (23)

Because 0 = Tr(A) = A+A2 +A4, we have A = A2 +A4 and A−1 = 1+A2.
This additive formula needs 0 multiplication, 1 addition and 1 squaring. But the multiplicative formula A−1 = A6 = A2A4

needs 1 multiplication and 2 squarings.
We note that the above “1+ ” operation in a polynomial basis is only a bit NOT operation, and can be merged into a VLSI

squarer.
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B. Example GF (24)

Because 0 = Tr(A) = A+A2 +A4 +A8, we have A = A2 +A4 +A8 and

A−1 = 1 +A2 +A6 = 1 +A2 +A2A4.

This additive formula needs 1 multiplication, 2 additions and 2 squarings. But the multiplicative formula A−1 = A14 =

A2A4A8 needs 2 multiplications and 3 squarings.

C. Example GF (25)

Because 0 = Tr(A) = A+A2 +A4 +A8 +A16, we have A = A2 +A4 +A8 +A16 and

A−1 = 1 +A2 +A6 +A14 = 1 +A2 +A2A4 +A2A4A8.

This additive formula needs 2 multiplications, 3 additions and 3 squarings. The multiplicative formula A−1 = A30 =

A2A4A8A16 = (A2A4)(A2A4)4 needs 2 multiplications and 4 squarings.

D. Example GF (26)

Because 0 = Tr(A) = A+A2 +A4 +A8 +A16 +A32, we have A = A2 +A4 +A8 +A16 +A32 and

A−1 = 1 +A2 +A6 +A14 +A30 = 1 + (A+A3)2 + [A7 +A15]2 = 1 + {(A+A3) + [(A+A3)4A3]}2.

This additive formula needs 2 multiplications, 3 additions and 4 squarings. The multiplicative formula A−1 = A62 =

A2A4A8A16A32 = [A(A2A4)(A2A4)4]2 needs 3 multiplications and 5 squarings.

E. Example GF (27)

Because 0 = Tr(A) = A+A2 +A4 +A8 +A16 +A32 +A64, we have A = A2 +A4 +A8 +A16 +A32 +A64 and

A−1 = 1+A2 +A6 +A14 +A30 +A62 = 1+A2 +(A3 +A7)2 + [A15 +A31]2 = 1+A2 + {(A3 +A7)+ [(A3 +A7)4A3]}2.

This additive formula needs 3 multiplications, 4 additions and 5 squarings. The multiplicative formula A−1 = A126 =

A2A4A8A16A32A64 = {(A ·A2A4)(A ·A2A4)8]}2 needs 3 multiplications and 6 squarings.

F. Example GF (28)

Because 0 = Tr(A) = A+A2+A4+A8+A16+A32+A64+A128, we have A = A2+A4+A8+A16+A32+A64+A128

and

A−1 = 1+A2+A6+A14+A30+A62+A126 = 1+(A+A3+A7)2+[A15+A31+A63]2 = 1+{(A+A3+A7)+[(A+A3+A7)8A7]}2.

This additive formula needs 3 multiplications, 4 additions and 6 squarings. But the multiplicative formula A−1 = A254 =

A2A4A8A16A32A64A128 = {A(A ·A2A4)2(A ·A2A4)16}2 needs 4 multiplications and 7 squarings.
There are 14 degree-8 irreducible polynomials over GF (2) whose roots are of Trace 0. Therefore, there are 112 Trace-0

elements in GF (28)−GF (24).

G. Bad example GF (29)

Because 0 = Tr(A) = A+A2 +A4 +A8 +A16 +A32 +A64 +A128 +A256, we have
A = A2 +A4 +A8 +A16 +A32 +A64 +A128 +A256 and

A−1 = 1 +A2 +A6 +A14 +A30 +A62 +A126 +A254

= 1 +A2 + [(A3 +A7 +A15) + (A31 +A63 +A127)]2

= 1 +A2 + [(A3 +A7 +A15) + (A3 +A7 +A15)8A7]2.

This additive formula needs 4 multiplications, 5 additions and 7 squarings. But the multiplicative formula A−1 = A510 =

A2A4A8A16A32A64A128A256 = [(A1A2A4A8)(A1A2A4A8)16]2 needs 3 multiplications and 8 squarings.
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H. 3-split example GF (211)

Because 0 = Tr(A) = A+A2 +A4 +A8 +A16 +A32 +A64 +A128 +A256 +A512 +A1024, we have
A = A2 +A4 +A8 +A16 +A32 +A64 +A128 +A256 +A512 +A1024 and

A−1 = 1 +A2 +A6 +A14 +A30 +A62 +A126 +A254 +A510 +A1022

= 1 + {(A1 +A3 +A7) + (A15 +A31 +A63) + (A127 +A255 +A511)}2

= 1 + {(A1 +A3 +A7) + [(A1 +A3 +A7)8A7] + [(A1 +A3 +A7)8A7]8A7}2.

This additive formula needs 4 multiplications, 5 additions and 9 squarings. The multiplicative formula A−1 = A2046 =

A2A4A8A16A32A64A128A256A512A1024 = [(A1A2A4A8A16)(A1A2A4A8A16)32]2 needs 4 multiplications and 10 squarings.

Finally, we note that:

1. It is easy to obtain the Trace of an element for practical applications where the GF (2n) generating irreducible polynomial
f(u) is often an irreducible trinomial or pentanomial, see [4] Section 5.1.45 and 5.1.46 or [5], [6] and [7] etc. For example,
if f(u) = u233 + u74 + 1 and x is a root of f(u), then Tr(

∑232
i=0 aix

i) = a0 + a159 needs only a single bit XOR [8].

2. Because (Tr(A)− 0)(Tr(A)− 1) = A2n −A, the number of GF (2n) elements with 0 Trace is 2n−1.

3. When Tr(A) =
∑n−1

i=0 A2i = 0, the expression A−1 =
∑n−2

j=0 (A2)2
j−1 is a summation of n− 1 terms. When Tr(A) =∑n−1

i=0 A2i = 1, the expression A−1 =
∑n−1

i=0 A2i−1 is a summation of n terms.

4. For composite field GF (2nm), we may use the Trace t from GF (2nm) to GF (2n), e.g., from GF (28) to GF (24). If
t ̸= 0 then we need to calculate t−1 in GF (2n).

5. We checked only n < 15.

EPILOGUE

This work was inspired by my course taught on 2020-4-15, “Rabin Cryptosystem & Factoring Polynomials over Finite
Fields”: To find a zero divisor in GF (p)[u] where p is odd, Cantor and Zassenhaus used A(pn−1)/2. For GF (2)[u], one may
use the Trace function [9].

Back to 2008, I found it is hard to explain the N -residue and the definition of Montgomery’s multiplication operation to
students. In 2009, I realized that the N -residue is just the generalized remainder defined in the following generalized division
algorithm [10], and then gave a systematic interpretation of the definition of Montgomery’s multiplication.

Theorem 1: ∀m > 0, a, R−1 ∈ Z s.t. gcd(m,R−1) = 1, there exist unique integers q, r with 0 ≤ r < m s.t. a = mq+R−1r.
Based on this generalized remainder, we also derived asymmetric Karatsuba-type multiplication formulae for the first time.

Teaching is interesting.
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