A Trace Based $G F\left(2^{n}\right)$ Inversion Algorithm

Haining Fan
fhn@tsinghua.edu.cn

Abstract

By associating Fermat's Little Theorem based $G F\left(2^{n}\right)$ inversion algorithms with the multiplicative Norm function, we present an additive Trace based $G F\left(2^{n}\right)$ inversion algorithm. For elements with Trace value 0 , it needs 1 less multiplication operation than Fermat's Little Theorem based algorithms in some $G F\left(2^{n}\right)$ s.

Index Terms

Finite field, Inversion algorithm, Norm, Trace.

Efficient implementation of $G F\left(2^{n}\right)$ inversion is important for practical applications and can be found in, for example, Feng's algorithm [1] (received on March 13, 1987 and published in October 1989), which "requires the same number of multiplications as Itoh and Tsujii's algorithm" ${ }^{[2]}$ in [3] (received on July 8, 1987 and published in 1988). These algorithms are based on the fact that $G F\left(2^{n}\right)^{*}$ is a cyclic group of order $2^{n}-1$, i.e., $\forall A \in G F\left(2^{n}\right)^{*}$,

$$
A^{-1}=A^{2^{n}-2}=A^{2^{n-1}} \cdot A^{2^{n-2}} \cdot A^{2^{n-3}} \cdots A^{2^{2}} \cdot A^{2^{1}}=\prod_{i=1}^{n-1} A^{2^{i}}
$$

The complexities of Feng's algorithm and Itoh-Tsujii's algorithm are:

$$
\left\lfloor\log _{2}(n-1)\right\rfloor+H a m m i n g W e i g h t(n-1)-1 \text { multiplications and } n-1 \text { squarings. }
$$

The above A^{-1} expression itself is close to that of the multiplicative Norm function, which is defined as

$$
\operatorname{Norm}(A)=\prod_{i=0}^{n-1} A^{2^{i}}
$$

This viewpoint leads us to considering the additive absolute Trace function, which is defined as

$$
\operatorname{Tr}(A)=\sum_{i=0}^{n-1} A^{2^{i}}
$$

If $\operatorname{Tr}(A)=\sum_{i=0}^{n-1} A^{2^{i}}=0$, then we have $A=\sum_{i=1}^{n-1} A^{2^{i}}$ and can express A^{-1} as

$$
A^{-1}=A^{-2} \sum_{i=1}^{n-1} A^{2^{i}}=\sum_{i=1}^{n-1} A^{2^{i}-2}=\sum_{j=0}^{n-2}\left(A^{2}\right)^{2^{j}-1} .
$$

We now give some examples to show the computational produce of this formula for A such that $\operatorname{Tr}(A)=0$.

A. Example $G F\left(2^{3}\right)$

Because $0=\operatorname{Tr}(A)=A+A^{2}+A^{4}$, we have $A=A^{2}+A^{4}$ and $A^{-1}=1+A^{2}$.
This additive formula needs 0 multiplication, 1 addition and 1 squaring. But the multiplicative formula $A^{-1}=A^{6}=A^{2} A^{4}$ needs 1 multiplication and 2 squarings.

We note that the above " $1+$ " operation in a polynomial basis is only a bit NOT operation, and can be merged into a VLSI squarer.

B. Example $G F\left(2^{4}\right)$

Because $0=\operatorname{Tr}(A)=A+A^{2}+A^{4}+A^{8}$, we have $A=A^{2}+A^{4}+A^{8}$ and

$$
A^{-1}=1+A^{2}+A^{6}=1+A^{2}+A^{2} A^{4}
$$

This additive formula needs 1 multiplication, 2 additions and 2 squarings. But the multiplicative formula $A^{-1}=A^{14}=$ $A^{2} A^{4} A^{8}$ needs 2 multiplications and 3 squarings.

C. Example $G F\left(2^{5}\right)$

Because $0=\operatorname{Tr}(A)=A+A^{2}+A^{4}+A^{8}+A^{16}$, we have $A=A^{2}+A^{4}+A^{8}+A^{16}$ and

$$
A^{-1}=1+A^{2}+A^{6}+A^{14}=1+A^{2}+A^{2} A^{4}+A^{2} A^{4} A^{8}
$$

This additive formula needs 2 multiplications, 3 additions and 3 squarings. The multiplicative formula $A^{-1}=A^{30}=$ $A^{2} A^{4} A^{8} A^{16}=\left(A^{2} A^{4}\right)\left(A^{2} A^{4}\right)^{4}$ needs 2 multiplications and 4 squarings.

D. Example $G F\left(2^{6}\right)$

Because $0=\operatorname{Tr}(A)=A+A^{2}+A^{4}+A^{8}+A^{16}+A^{32}$, we have $A=A^{2}+A^{4}+A^{8}+A^{16}+A^{32}$ and

$$
A^{-1}=1+A^{2}+A^{6}+A^{14}+A^{30}=1+\left(A+A^{3}\right)^{2}+\left[A^{7}+A^{15}\right]^{2}=1+\left\{\left(A+A^{3}\right)+\left[\left(A+A^{3}\right)^{4} A^{3}\right]\right\}^{2}
$$

This additive formula needs 2 multiplications, 3 additions and 4 squarings. The multiplicative formula $A^{-1}=A^{62}=$ $A^{2} A^{4} A^{8} A^{16} A^{32}=\left[A\left(A^{2} A^{4}\right)\left(A^{2} A^{4}\right)^{4}\right]^{2}$ needs 3 multiplications and 5 squarings.

E. Example $G F\left(2^{7}\right)$

Because $0=\operatorname{Tr}(A)=A+A^{2}+A^{4}+A^{8}+A^{16}+A^{32}+A^{64}$, we have $A=A^{2}+A^{4}+A^{8}+A^{16}+A^{32}+A^{64}$ and $A^{-1}=1+A^{2}+A^{6}+A^{14}+A^{30}+A^{62}=1+A^{2}+\left(A^{3}+A^{7}\right)^{2}+\left[A^{15}+A^{31}\right]^{2}=1+A^{2}+\left\{\left(A^{3}+A^{7}\right)+\left[\left(A^{3}+A^{7}\right)^{4} A^{3}\right]\right\}^{2}$.

This additive formula needs 3 multiplications, 4 additions and 5 squarings. The multiplicative formula $A^{-1}=A^{126}=$ $\left.A^{2} A^{4} A^{8} A^{16} A^{32} A^{64}=\left\{\left(A \cdot A^{2} A^{4}\right)\left(A \cdot A^{2} A^{4}\right)^{8}\right]\right\}^{2}$ needs 3 multiplications and 6 squarings.

F. Example $G F\left(2^{8}\right)$

Because $0=\operatorname{Tr}(A)=A+A^{2}+A^{4}+A^{8}+A^{16}+A^{32}+A^{64}+A^{128}$, we have $A=A^{2}+A^{4}+A^{8}+A^{16}+A^{32}+A^{64}+A^{128}$ and
$A^{-1}=1+A^{2}+A^{6}+A^{14}+A^{30}+A^{62}+A^{126}=1+\left(A+A^{3}+A^{7}\right)^{2}+\left[A^{15}+A^{31}+A^{63}\right]^{2}=1+\left\{\left(A+A^{3}+A^{7}\right)+\left[\left(A+A^{3}+A^{7}\right)^{8} A^{7}\right]\right\}^{2}$.
This additive formula needs 3 multiplications, 4 additions and 6 squarings. But the multiplicative formula $A^{-1}=A^{254}=$ $A^{2} A^{4} A^{8} A^{16} A^{32} A^{64} A^{128}=\left\{A\left(A \cdot A^{2} A^{4}\right)^{2}\left(A \cdot A^{2} A^{4}\right)^{16}\right\}^{2}$ needs 4 multiplications and 7 squarings.

There are 14 degree-8 irreducible polynomials over $G F(2)$ whose roots are of Trace 0 . Therefore, there are 112 Trace- 0 elements in $G F\left(2^{8}\right)-G F\left(2^{4}\right)$.

G. Bad example $G F\left(2^{9}\right)$

Because $0=\operatorname{Tr}(A)=A+A^{2}+A^{4}+A^{8}+A^{16}+A^{32}+A^{64}+A^{128}+A^{256}$, we have
$A=A^{2}+A^{4}+A^{8}+A^{16}+A^{32}+A^{64}+A^{128}+A^{256}$ and

$$
\begin{aligned}
A^{-1} & =1+A^{2}+A^{6}+A^{14}+A^{30}+A^{62}+A^{126}+A^{254} \\
& =1+A^{2}+\left[\left(A^{3}+A^{7}+A^{15}\right)+\left(A^{31}+A^{63}+A^{127}\right)\right]^{2} \\
& =1+A^{2}+\left[\left(A^{3}+A^{7}+A^{15}\right)+\left(A^{3}+A^{7}+A^{15}\right)^{8} A^{7}\right]^{2}
\end{aligned}
$$

This additive formula needs 4 multiplications, 5 additions and 7 squarings. But the multiplicative formula $A^{-1}=A^{510}=$ $A^{2} A^{4} A^{8} A^{16} A^{32} A^{64} A^{128} A^{256}=\left[\left(A^{1} A^{2} A^{4} A^{8}\right)\left(A^{1} A^{2} A^{4} A^{8}\right)^{16}\right]^{2}$ needs 3 multiplications and 8 squarings.

H. 3-split example $G F\left(2^{11}\right)$

Because $0=\operatorname{Tr}(A)=A+A^{2}+A^{4}+A^{8}+A^{16}+A^{32}+A^{64}+A^{128}+A^{256}+A^{512}+A^{1024}$, we have
$A=A^{2}+A^{4}+A^{8}+A^{16}+A^{32}+A^{64}+A^{128}+A^{256}+A^{512}+A^{1024}$ and

$$
\begin{aligned}
A^{-1} & =1+A^{2}+A^{6}+A^{14}+A^{30}+A^{62}+A^{126}+A^{254}+A^{510}+A^{1022} \\
& =1+\left\{\left(A^{1}+A^{3}+A^{7}\right)+\left(A^{15}+A^{31}+A^{63}\right)+\left(A^{127}+A^{255}+A^{511}\right)\right\}^{2} \\
& =1+\left\{\left(A^{1}+A^{3}+A^{7}\right)+\left[\left(A^{1}+A^{3}+A^{7}\right)^{8} A^{7}\right]+\left[\left(A^{1}+A^{3}+A^{7}\right)^{8} A^{7}\right]^{8} A^{7}\right\}^{2}
\end{aligned}
$$

This additive formula needs 4 multiplications, 5 additions and 9 squarings. The multiplicative formula $A^{-1}=A^{2046}=$ $A^{2} A^{4} A^{8} A^{16} A^{32} A^{64} A^{128} A^{256} A^{512} A^{1024}=\left[\left(A^{1} A^{2} A^{4} A^{8} A^{16}\right)\left(A^{1} A^{2} A^{4} A^{8} A^{16}\right)^{32}\right]^{2}$ needs 4 multiplications and 10 squarings.

Finally, we note that:

1. It is easy to obtain the Trace of an element for practical applications where the $G F\left(2^{n}\right)$ generating irreducible polynomial $f(u)$ is often an irreducible trinomial or pentanomial, see [4] Section 5.1.45 and 5.1.46 or [5], [6] and [7] etc. For example, if $f(u)=u^{233}+u^{74}+1$ and x is a root of $f(u)$, then $\operatorname{Tr}\left(\sum_{i=0}^{232} a_{i} x^{i}\right)=a_{0}+a_{159}$ needs only a single bit XOR [8].
2. Because $(\operatorname{Tr}(A)-0)(\operatorname{Tr}(A)-1)=A^{2^{n}}-A$, the number of $G F\left(2^{n}\right)$ elements with 0 Trace is 2^{n-1}.
3. When $\operatorname{Tr}(A)=\sum_{i=0}^{n-1} A^{2^{i}}=0$, the expression $A^{-1}=\sum_{j=0}^{n-2}\left(A^{2}\right)^{2^{j}-1}$ is a summation of $n-1$ terms. When $\operatorname{Tr}(A)=$ $\sum_{i=0}^{n-1} A^{2^{i}}=1$, the expression $A^{-1}=\sum_{i=0}^{n-1} A^{2^{i}-1}$ is a summation of n terms.
4. For composite field $G F\left(2^{n m}\right)$, we may use the Trace t from $G F\left(2^{n m}\right)$ to $G F\left(2^{n}\right)$, e.g., from $G F\left(2^{8}\right)$ to $G F\left(2^{4}\right)$. If $t \neq 0$ then we need to calculate t^{-1} in $G F\left(2^{n}\right)$.
5. We checked only $n<15$.

EPILOGUE

This work was inspired by my course taught on 2020-4-15, "Rabin Cryptosystem \& Factoring Polynomials over Finite Fields": To find a zero divisor in $G F(p)[u]$ where p is odd, Cantor and Zassenhaus used $A^{\left(p^{n}-1\right) / 2}$. For $G F(2)[u]$, one may use the Trace function [9].

Back to 2008, I found it is hard to explain the N-residue and the definition of Montgomery's multiplication operation to students. In 2009, I realized that the N-residue is just the generalized remainder defined in the following generalized division algorithm [10], and then gave a systematic interpretation of the definition of Montgomery's multiplication.

Theorem 1: $\forall m>0, a, R^{-1} \in \mathbb{Z}$ s.t. $\operatorname{gcd}\left(m, R^{-1}\right)=1$, there exist unique integers q, r with $0 \leq r<m$ s.t. $a=m q+R^{-1} r$.
Based on this generalized remainder, we also derived asymmetric Karatsuba-type multiplication formulae for the first time.
Teaching is interesting.

REFERENCES

[1] G. Feng, "A VLSI architecture for fast inversion in $G F\left(2^{m}\right)$," IEEE Transactions on Computers, vol. 38, no. 10, pp. 1383-1386, Oct. 1989.
[2] N. Takagi, J. Yoshiki, and K. Takagi, "A fast algorithm for multiplicative inversion in $G F\left(2^{m}\right)$ using normal basis," IEEE Transactions on Computers, vol. 50, no. 5, pp. 394-398, May 2001.
[3] T. Itoh and S. Tsujii, "A fast algorithm for computing multiplicative inverses in $G F\left(2^{m}\right)$," Inform. Comp., vol. 78, pp. 171-177, 1988.
[4] G. L. Mullen and D. Panario, Handbook of Finite Fields. CRC Press, 2013.
[5] I. E. Shparlinski, "On the number of zero trace elements in polynomial bases for $\mathbb{F}_{2^{n}}$," Rev. Mat. Complut., pp. 177-180, 2005.
[6] O. Ahmadi and A. Menezes, "On the number of trace-one elements in polynomial bases for $\mathbb{F}_{2}{ }^{n}$," Designs, Codes and Cryptography, vol. 37, pp. 493-507, 2005.
[7] R. M. Avanzi, "Another look at square roots and traces (and quadratic equations) in fields of even characteristic," in Selected Areas in Cryptography, SAC-2007, 2007, pp. 138-154.
[8] B. King and B. Rubin, "Improvements to the point halving algorithm," in ACISP 2004, LNCS 3108, 2004, pp. 262-276.
[9] J. Gathen and D. Panario, "Factoring polynomials over finite fields: A survey," J. Symbolic Computation, vol. 31, pp. 3-17, 2001.
[10] H. Fan, J. Sun, M. Gu, and K. Lam, "Obtaining more Karatsuba-like formulae over the binary field," IET Information Security, vol. 6, no. 1, pp. 14-19, 2012.

