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Abstract

Building on the Gennaro & Goldfeder and Lindell & Nof protocols (CCS ’18), we present a threshold
ECDSA protocol, for any number of signatories and any threshold, that improves as follows over the state
of the art:

• Signature generation takes only 4 rounds (down from the current 8 rounds), with a comparable
computational cost. Furthermore, 3 of these rounds can take place in a preprocessing stage before
the signed message is known, lending to a non-interactive threshold ECDSA protocol.

• The protocol withstands adaptive corruption of signatories. Furthermore, it includes a periodic
refresh mechanism and offers full proactive security.

• The protocol realizes an ideal threshold signature functionality within the UC framework, in the
global random oracle model, assuming Strong RSA, semantic security of the Paillier encryption, and
a somewhat enhanced variant of existential unforgeability of ECDSA.

These properties (low latency, compatibility with cold-wallet architectures, proactive security, and com-
posable security) make the protocol ideal for threshold wallets for ECDSA-based cryptocurrencies.
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1 Introduction
Introduced by Desmedt [25] and Desmedt and Frankel [26], threshold signatures allow a number of signatories
to share the capability to digitally sign messages, so that a given message is signed if and only if a certain
threshold of the signatories agree to sign it. In more detail, a t-out-of-n threshold signature scheme is a
mechanism whereby a set of n signatories, presented with a message m, jointly and interactively compute a
signature σ such that (1) if at least t of the signatories agree to sign m, then the pair m,σ is accepted as a valid
by a pre-determined public verification algorithm, and (2) no attacker that controls up to t−1 signatories can
forge signatures – namely, it cannot come up with a pair m′, σ′ such that the verification algorithm accepts
σ′ as a valid signature on m′, if the latter was never signed before.

Threshold signatures are an instance of “threshold cryptography” which, in turn, is one of the main appli-
cation areas of the more general paradigm of secure multi-party computation. Threshold cryptography offers
an additional layer of security to the entity performing a cryptographic task that involves using a private
key, by distributing the capabilities that require using the secret key among multiple servers/devices. Indeed,
this way the system has no single point of failure. Examples include threshold El-Gamal, RSA, Schnorr,
Cramer-Shoup, ECEIS and others [50, 23, 49, 51, 13].

With the advent of blockchain technologies and cryptocurencies in the past decade, there has been a
strong renewed interest in threshold cryptography and threshold signatures in particular. Specifically, because
transactions are made possible via digital signatures, many stakeholders are looking to perform signature-
generation in a distributed way, and many companies are now offering solutions based on (or in combination
with) threshold cryptography.1

Threshold ECDSA. The digital signature algorithm (DSA) [41] in its elliptic curve variant (ECDSA)
[47] is one of the most widely used signature schemes. ECDSA has received a lot of attention from the
cryptography community because, apart from its popularity, it is viewed as somewhat “threshold-unfriendly”,
i.e. (naive) threshold protocols for ECDSA require heavy cryptographic machinery over many communication
rounds. Early attempts towards making threshold (EC)DSA practically efficient include Gennaro et al. [32]
in the honest majority setting and MacKenzie and Reiter [46] in the two-party setting. (Of course, threshold
ECDSA can be done using generic MPC protocols such as [35, 16]. Furthermore, these solutions would even
allow for non-interactive signing with preprocessing. However, they are prohibitively costly.)

In recent years, there has been an abundance of protocols for threshold ECDSA [33, 2, 31, 42, 45, 27, 28,
22, 20, 21] that support any number n of parties and allow any threshold t < n. The protocols that stand out
here in terms of overall efficiency are the ones by Gennaro and Goldfeder [31], Lindell et al. [45] and Doerner
et al. [28], and the recent work of Castagnos et al. [21].

We note that all recent protocols achieve competitive practical performance (with trade-offs between com-
putation and communication costs depending on the tools used). Furthermore, all recent protocols require at
least eight communication rounds, which for many modern communication settings (involving geographically
dispersed servers and/or mobile devices) is the most time-consuming resource.

1.1 Our Results.
We present a new threshold ECDSA protocol. The protocol builds on the techniques of Gennaro and Goldfeder
[31] and Lindell et al. [45], but provides new functionality, and has improved efficiency and security guarantees.
We first discuss the new characteristics of the protocol at high level, and then provide more details on the
construction and the analysis. Figure 1 provides a rough comparison between the main cost and security
guarantees of our scheme and those of Gennaro and Goldfeder [31], Lindell et al. [45], Doerner et al. [28], and
Castagnos et al. [21].

Non-Interactive Signing. As seen in Figure 1, in all of these protocols the signing process is highly
interactive, i.e. the parties exchange information in a sequence of rounds to compute a signature for a given
message. However, in many real-life situations it is desirable to have non-interactive signature generation,
namely have each signatory, having seen the message, generate is own “signature share” without having to
interact with any other signatory, and then have a public algorithm for combining the signature shares into a

1See https://www.mpcalliance.org/ for companies in the threshold cryptography space.
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Signing Protocol Rounds Group Ops Ring Ops Communication Proactive

Gennaro and Goldfeder [31] 9 10n 50n 10κ+ 20N (7 KiB) 7

Lindell et al. [45] (Paillier)†‡ 8 80n 50n 50κ+ 20N (7.5 KiB) 7

Lindell et al. [45] (OT)† 8 80n 0 50κ (190 KiB) 7

Doerner et al. [28] log(n) + 6 5 0 10 · κ2 (90 KiB) 7

Castagnos et al. [21]* 8 15n 0 100 · κ (4.5 KiB) 7

This Work: Interactive 4 10n 90n 10κ+ 50N (15 KiB) 3

This Work: Non-Int. Pre-Sign 3 10n 90n 10κ+ 50N (15 KiB) 3

This Work: Non-Int. Sign 1 0 0 κ (256 bits) 3

Figure 1: Comparison of our scheme with those of [31, 45, 28, 21] for signing. Costs are displayed per party for an
n-party protocol secure against n− 1 corrupted parties, for computational security of 128 bits and statistical security
of 80 bits. Ring operations contain two types of operations (mod N and N2) that we do not distinguish in the
table; operations modulo N2 represent less than a third of the total number of ring operations for all protocols. The
communication column describes the number of group elements (encoded by κ bits) and ring elements (encoded by N
bits) sent between each pair of parties; in parentheses we provide estimates, including the constant overhead, for concrete
implementation for the curve size of Bitcoin and the standard security recommendation of Paillier, i.e. κ = 256 and
N = 2048. (†Estimates for [45] include optimizations that do not preserve UC – c.f. Section 1.3. ‡Reported numbers are
different than [45] because of how ring operations are accounted for. *We note that [21] relies on somewhat incomparable
hardness assumptions, and it involves operations in a different group than the underlying elliptic curve – c.f. Section 1.3.)

single signature. For instance, such a mechanism is mandatory if one wants to use a “cold wallet” mechanism for
some of the signatories — which is a common practice in the digital currency realm for securing non-threshold
wallets. Indeed, a number of popular signature schemes do admit threshold protocols with non-interactive
signing (e.g. RSA [39], BLS [1]).

In our protocol, the signing process can be split into two phases: A first, preprocessing, phase that takes
3 rounds and can be performed before the message is known, followed by a non-interactive step where each
signatory generates its own signature share, after the message to be signed becomes known. To the best
of our knowledge, this is the first threshold ECDSA in the literature that has manageable performance and
allows for non-interactive signing with preprocessing. Furthermore, the non-interactive step is very efficient:
it boils down to computing and sending a single field-element (i.e. 256 bits for the Bitcoin curve). We mention
that a similar pre-signing capability for ECDSA was noticed by Dalskov et al. [22] who employed generic
(i.e. all-purpose) MPC to compute the ECDSA functionality in the context of securing DNSSEC Keys.

Round-Minimal Interactive Signing. We stress that, even in its interactive variant, our protocol is the
most round-efficient among the state-of-the-art protocols, and thus our protocol may notably improve the
performance of many applications that require ECDSA (e.g. cryptocurrency custody).

Proactive Key Refresh [48, 38, 14, 40]. While threshold signatures do provide a significant security
improvement over plain signature schemes, they may still be vulnerable to attacks that compromise all share-
holders one by one, in an adaptive way, over time. This vulnerability is particularly bothersome in schemes
that need to function and remain secure over long periods of time. Proactive security is designed to alleviate
this concern: In a proactive threshold signature scheme, time is divided into epochs, such that at the end of
each epoch the parties engage in a protocol for refreshing their keys and local states. The security guarantee
is that the scheme remains unforgeable as long as at most t − 1 signatories are compromised within a single
epoch, or more precisely in any time period that starts at the beginning of one key refreshment and ends at the
end of the next key refreshment. It is stressed that the public signature verification algorithm (and key) of the
scheme remains the same throughout.

Our protocol offers a two-round key refresh phase. The refreshment is the most expensive component of
our protocol: for standard choice of security parameters, computation requires roughly 400 + 330n+ n2 RSA
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ring operations (see Appendix C for more details). However, this may be manageable, given that the refresh
is done only periodically, and it can be scheduled at times of low use of the system.

We stress that none of the other protocols in Figure 1 support proactive key refreshing. In fact, these
protocols are not even known to provide traditional threshold security against an adversary that corrupts
parties adaptively as the system progresses.

The communication model. For simplicity of exposition we assume that the signatories are connected
via an authenticated (but lossy) broadcast mechanism. That is, the communication is public, and every
message sent can potentially be received by all parties. Still, the adversary can drop and delay messages
at will. We note that the use of authenticated communication is in fact essential for obtaining proactive
security. Indeed, without already-established authenticated communication, an adversary that formally “left”
a previously corrupted party and controls all the communication between the party and the rest of the network
can continue impersonating that party indefinitely [15].

Security & Composability. We provide security analysis of our protocols within the Universally Com-
posable (UC) Security framework [10]. For this purpose, we first formulate an ideal threshold signature
functionality which guarantees that legitimate signatures are verifiable by the standard ECDSA verification
algorithm, and, at the same time, guarantees ideal and unconditional unforgeability. We show that our pro-
tocols UC-realize this ideal functionality even in the presence of an attacker that adaptively corrupts and
controls parties under the sole restriction that at most t parties are corrupted in between two consecutive
refresh phases. This way, we can use universal composability to assert that the protocol remains unforgeable
even when put together with arbitrary other protocols. Such a strong property is of particular importance in
decentralized, complext and highly security sensitive distributed systems such as cryptocurrencies.

Security of the interactive protocol is proven assuming the unforgeability of ECDSA, the semantic security
of Paillier encryption and strong-RSA. It might appear a bit unsatisfying to have the unforgeability of ECDSA
as an underlying assumption, given that it is an interactive – and by no means “simple” – assumption. We do
this since this is the weakest assumption that one can hope for: indeed, recall that unforgeability of ECDSA
is not known to follow from any standard hardness assumption on elliptic curve groups (we do however know
that ECDSA is existentially unforgeable in the generic group model [6]).

Security of the non-interactive protocol is proven under the same assumptions, but with a somewhat
stronger unforgeability property of ECDSA, that considers situations where the adversary obtains, ahead of
time, some “leakage” information on the random string that the signer will be using for generating the upcoming
several signatures. Still, the adversary should not be able to forge signatures, even given this leakage. We call
this property enhanced unforgeability, and demonstrate that (a) ECDSA is enhanced unforgeable in the generic
group model, and (b) in some cases, enhanced ungorgeability of ECDSA follows from standard unforgeability
of ECDSA, in the random oracle model.

1.2 Our Techniques
Hereafter, Fq denotes the finite field with q elements and H : M → Fq denotes a hash function used for
embedding messages into the field with q elements. Furthermore, let (G, q, g) denote the group-order-generator
tuple associated with the ECDSA curve. We use multiplicative notation for the group-operation.

1.2.1 Background

Plain (Non-Threshold) ECDSA. Recall that an ECDSA signature for secret key x ∈ Fq and message
msg has the form (ρ, k · (m + ρx)) ∈ F2

q, where m = H(msg), ρ is the x-projection (mod q) of the point
gk
−1 ∈ G, and k is a uniformly random element of Fq. The verification algorithm accepts a signature (ρ, σ) as

valid for message msg ∈M with respect to public key X = gx ∈ G, if ρ is the x-projection of gmσ
−1 ·Xρσ−1

,
where m = H(msg).

Overview of the threshold ECDSA of Gennaro and Goldfeder [31]. We first describe the basic
protocol for the honest-but-curious case with security threshold t = n − 1, i.e. the case where all signatories
follow the protocol. Each signatory (henceforth, party) Pi chooses a random xi ∈ Fq and sends Xi = gxi to all
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other parties. The public key is defined as X = X1 · ... ·Xn ∈ G.2 The secret key then corresponds to the value
x = x1 + . . .+xn (it is stressed that no one knows x). In addition, each party Pi is associated with parameters
for an additively homomorphic public encryption scheme (specifically, Paillier encryption). That is, all parties
know Pi’s public encryption key, and Pi knows its own decryption key. We write enci, deci for the encryption
and decryption algorithm associated with Pi. It is stressed that all parties can run the encryption algorithm.

To sign a message msg, the parties P1, . . . ,Pn generate local shares k1, . . . , kn, respectively, of the random
value k = k1 + . . .+ kn, as well as local shares γ1, . . . , γn, respectively, of an ephemeral value γ = γ1 + . . .+ γn
which will be used to mask k. Using their respective encryption schemes, each pair of parties Pi, Pj computes
additive shares αi,j , α̂i,j for Pi and βj,i, β̂j,i for Pj , such that αi,j + βj,i = γjki and α̂i,j + β̂j,i = xjki. In more
detail, the share computation phase between Pi and Pj for computing αi,j and βj,i proceeds as follows (α̂i,j
and β̂j,i are analogously constructed). Party Pi sends Ki = enci(ki) to Pj , i.e. Ki an encryption of ki under his
own public key. Then, Pj samples a random βj,i from a suitable range, and, using the homomorphic properties
of the encryption scheme, Pj computes Di,j = (γj �Ki)⊕ enci(−βj,i),3 i.e. Di,j is an encryption of γjki−βj,i
under Pi’s public key. Finally, Pj sends Di,j to Pi who sets αi,j = deci(Di,j), and the share-computation
phase terminates. Upon completion, each party Pi can compute δi = γiki +

∑
j 6=i αi,j + βi,j , where δ1, . . . , δn

is an additive sharing of γk, ie. γk = δ1 + . . .+ δn.
Next, each Pi sends (gγi , δi) to all, and the parties compute gk

−1

= (
∏
i g
γi)(

∑
j δj)−1

, and obtain their
respective shares σ1, . . . , σn of σ = k(m + ρx), by setting σi = kim + ρ(xiki +

∑
j 6=i α̂i,j + β̂i,j), where

m = H(msg) is the hash-value of msg and ρ is the x-projection of gk
−1

. Finally, each Pi sends σi to all, and
the signature is set to (ρ, σ). To sum up, the protocol proceeds as follows from party Pi’s perspective, where
each item denotes a round:

1. Sample ki, γi and send Ki = enci(ki) to all.

2. When obtaining {Kj}j 6=i, set {Dj,i, D̂j,i}j 6=i as prescribed, and send (Dj,i, D̂j,i) to Pj , for each j 6= i.

3. When obtaining {(Di,j , D̂i,j)}j 6=i, set δi as prescribed, and send (Γi = gγi , δi) to all.

4. When obtaining {(Γj , δj)}j 6=i, set σi as prescribed, and send it to all.

Output. When obtaining {σj}j 6=i, set σ and ρ as prescribed, and output (ρ, σ).

The above protocol takes four rounds of communication. For security, it can be seen that, if everything was
computed correctly, then up to the point where the σi’s are released, no coalition of up to n− 1 parties gains
any information on the secret key x. Furthermore, releasing σi is equivalent to releasing the signature (ρ, σ).

However, if a corrupted party deviates from the specification of the protocol, then releasing an honest
party’s (maliciously influenced) signature-share σi may reveal information about the secret key share (poten-
tially the entirety of it). To mitigate this problem, Gennaro and Goldfeder [31] devise a special-purpose, clever
technique that allows the parties to verify the validity of the signature-shares before releasing them. However,
this alternative technique ends up adding five rounds of communication.

1.2.2 Our Approach

Using the above blueprint, we show how the parties can verify the validity of the signature shares without
adding any rounds on top of the 4 rounds of the basic protocol, and at a comparable computational cost to
that of [31]. Interestingly, we achieve this result by employing the “generic” (and often deemed prohibitively
expensive) GMW-approach of proving in zero-knowledge the validity of every computation along the way,
with optimizations owing to the nature of the signature functionality. Furthermore, our approach preserves
the natural property of the basic protocol, whereby the message is used only in the fourth and last round.
This, in turn, leads to our non-interactive variant. Proactive key-refresh phases are also built in a natural
way, on top of the basic protocol, with appropriate zero-knowledge proofs.

2For presentation purposes we use additive n-out-of-n secret-sharing of the private key, instead of n-out-of-n Shamir secret-
sharing that is prescribed in [31].

3We emphasize that ⊕ and � denote homomorphic evaluation of addition and (scalar) multiplication, respectively, rather than
standard addition and multiplication.
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For the analysis, we take a different approach than that taken by either [31] or [45]. Recall that Gennaro
and Goldfeder [31] only demonstrates that an adversary which interacts with a stand-alone instance of their
protocol and (non-adaptively) corrupts t < n parties cannot forge ECDSA signatures under the public key
chosen by the parties. On the other hand, Lindell et al. [45] show that their protocol UC-realizes the ECDSA
functionality, in the presence of an adversary that non-adaptively corrupts t < n parties. The latter is indeed
a stronger property than stand-alone unforgeability, in two ways: First , this result holds even when the
threshold signature protocol is part of a larger system. Second, secure evaluation of the ECDSA functionality
is significantly stronger than mere unforgeability. While the first strengthening is clearly needed, the second
is perhaps overly strong (for instance, it implies that the distribution of the secret randomness k is almost
uniform for all signatures, regardless of the message).

We take a mid-way approach: We formulate a threshold variant of the ideal signature functionality Fsign

of [11] and show that our protocol UC-realizes this functionality. This way, we obtain a result that holds even
when our threshold signature protocol is part of a larger system. On the other hand, we avoid the need to
show that our protocol UC-realizes the ECDSA functionality. This seemingly small difference turns out to be
crucial: For one, this is what allows us to prove security under adaptive (and even mobile [48]) corruption of
parties. It also allows for a number of significant simplifications in the protocol.

1.2.3 Protocol overview

We proceed with an overview of our protocol. For simplicity, we have omitted many of the details, especially
regarding the zero-knowledge proofs. We refer the reader to the subsequent technical sections for further
details. Let P = {P1, . . . ,Pn} denote the set of parties. Let (enci, deci) denote the Paillier encryption-
decryption algorithms associated with party Pi; the public key is specified below. Throughout, when we say
that some party broadcasts a message, we mean that the party simply sends the message to all other parties.

Key-Generation. As in the basic protcol, Each Pi samples a local random secret share xi ← Fq of the
(master) secret key x =

∑
i xi and then reveals Xi = gxi by committing and then decommitting to the

group-element in a sequential fashion. In addition, each party Pi broadcasts a Schnorr NIZK (non-interactive
zero-knowledge proof of knowledge) of xi.

Auxiliary Info & Key-Refresh. Each Pi locally generates a Paillier key Ni and sends it to the other
parties together with a NIZK that Ni is well constructed (i.e., that it is a product of suitable primes). Next,
each Pi chooses a random secret sharing of 0 =

∑
j x

j
i and computes Xj

i = gx
j
i and Cji = encj(x

j
i ), for every j,

including himself.4 Pi then broadcasts (Xj
i , C

j
i )j , together with a NIZK that the plaintext value of Cji modulo

q is equal to the exponent of Xj
i . The parties update their key shares by setting x∗i = xi+

∑
j deci(C

i
j) mod q

if all the proofs are valid and
∏
kX

k
j = idG, for every j.

Pre-Signing. One technical innovation that differentiates our protocol from [31] is our use of the Paillier
cryptosystem as a commitment scheme. Namely, the process of encrypting values under the parties’ own
public keys yields a commitment scheme that is perfectly binding and computationally hiding (as long as
Paillier is semantically secure). Therefore, in the protocol we instruct each party to commit to γi and ki by
encrypting those values under their own keys and broadcast Gi = enci(γi) and Ki = enci(ki).5 Concurrently,
the parties initiate the share-computation phase (for xjki = αi,j +βj,i and γjki = α̂i,j + β̂j,i), while proving in
zero-knowledge that the values used in the multiplication are the same as the values encrypted in Gi, Ki, as
well as the exponent of the public key-share Xi = gxi . Finally, when the aforementioned share-computation
phase terminates, the parties communicate an additional message to obtain information for computing the
point R = gk

−1 ∈ G on the curve which corresponds to the nonce of the (future) signature, while proving in
zero-knowledge that the relevant message is consistent with the committed values Ki, Gi and Xi. At the end of
the presigning phase, each party Pi stores in memory the tuple (ki, χi, R), i.e. the share ki of k (i.e.

∑
i ki = k),

the share χi of kx (i.e.
∑
i χi = kx), and the nonce R = gk

−1 ∈ G.
4This instruction may appear rather superfluous, but it is important to our security analysis; it allows extraction of the

adversary’s randomness.
5Notice that the ciphertexts are computationally hiding and thus the adversary cannot correlate his own k’s and γ’s with the

honest parties’ values.
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The advantage of using the Paillier cryptosystem as a commitment scheme is twofold. On one hand, Paillier
ciphertexts are amenable to Schnorr-type proofs for proving the correctness of a prescribed computation. On
the other hand, in the security analysis, it allows the simulator to extract the adversary’s secrets, because the
corrupted parties’ Paillier keys are extracted during the preceding auxiliary information phase. We expand
on this point in the following subsection.

The main purpose of the ZK-proofs is to bypass the security pitfalls (also highlighted in [31] and [45])
that arise from using Paillier encryption (which resides in a ring of integers modulo an RSA modulus) to
derive group elements on the elliptic curve associated with ECDSA. In more detail, malicious choices of k’s
and γ’s may allow the adversary to probe bits of the honest parties’ secrets which may have devastating
effect. To remedy this, similarly to [31, 45], we use ZK-range proofs with purpose of “forcing” the adversary
to choose values from a suitable range, thus preventing the aforementioned attack. For this purpose we devise
new and more efficient range proofs, taking advantage of the use of Paillier encryption as a perfectly binding
commitment.

In summary, by virtue of the “Paillier commitments” and the accompanying ZK-proofs, party Pi is confident
that the tuple (R, ki, χi) is well-formed at the end of pre-signing phase, and there is no need for additional
communication rounds to verify the correctness of the tuple, as opposed to [31, 45, 28, 21].

Signing. Once a message msg is known, to generate a signature for pre-signing data (R, ki, χi), each Pi sets
m = H(msg), computes ρ = R|x-axis, and sends σi = kim+ρχi mod q to all parties. After receiving the other
parties’ sigmas, the parties output the signature (ρ,

∑
i σi) = (ρ, k(m+ ρx)).

1.2.4 Online vs Non-Interactive Signing

Online Signing. For interactive (online signing), the parties simply run the pre-signing stage followed by
the signing stage, for a total of 4 rounds.

Non-interactive Signing. To be able to sign non-interactively, the parties need to prepare some number
of pre-signatures in an offline stage. That is, for some pre-signing parameter L ∈ N, the parties run the
pre-signing phase L-times concurrently and obtain pre-signing data {(`, R`, k`i , χ`i)}`=1,...,L. Later, for each
signature request using pre-signing data (`, R`, k

`
i , χ

`
i) and message msg, the parties run the signing phase for

the relevant input to generate a signature. The parties then erase the pre-signing tuple (`, . . .). It is important
to make sure that, as part of the refresh stage, any unused pre-signatures are discarded.6

Remark 1.1. It is stressed that the security analysis of the non-iteractive protocol is different than the online
protocol, because the signature nonces (the R’s) are known well in advance of the corresponding messages to
be signed. As mentioned earlier, to prove security we rely on a stronger assumption about the unforgeability
of the underlying (non-threshold) scheme, and we present it in more detail in the next section.

1.2.5 Security

The present section assumes some familiarity with the ideal-vs-real paradigm and the UC-framework.

Real-vs-Ideal Paradigm & UC. We prove security via the real-vs-ideal paradigm and the Universal
Composability framework. Namely, we show that our protocol emulates an ideal process involving an idealized
version of the task at hand, and we prove that for every adversary attacking the protocol, there is an ideal
adversary (referred to as a simulator) that achieves the same goals. In the non-UC (standalone) framework,
this is done using the adversary’s code and by extracting the adversary’s secrets (typically via rewinding).

The UC-framework augments the above paradigm with an entity, called the environment, that interacts
with the adversary (in the real world) or the simulator (in the ideal world), together with the parties in
the computation. The goal of the environment is to guess which process (real or ideal) is executed. If no
environment can tell the difference between the real and ideal processes, it follows that the protocol is secure
even “in the wild”; i.e. even when it is composed arbitrarily with other (cryptographic or non-cryptographic)
components of some larger system.

6Alternatively, it is possible to keep the presigning data as long as it is appropriately refreshed, i.e. by re-randomizing the pair
(ki, χi).

9



One major technical difference between standalone-secure and UC-secure protocols is that, in the security
analysis of the latter, the simulator’s arsenal of extraction techniques lacks rewinding. This typically makes the
protocol more complicated because it requires tools that are amenable to so-called online extraction (see e.g.
the non-rewinding version of Schnorr’s NIZK proof of knowledge in Fischlin [29]). Disallowing the rewinding
technique in the security analysis is also one of the major obstacles towards achieving security against adaptive
party corruptions.

UC-Secure Threshold ECDSA vs Threshold Signature. One important difference between our se-
curity proof and the simulation-based security proof of [45, 28] is that our protocol UC-realizes a “generic”
ideal threshold signature functionality, rather than the ECDSA functionality per se. We opted for the former
for the following reasons. First, it captures more accurately the purpose of our protocol; our goal is to com-
pute unforgeable signatures that are verifiable with the ECDSA algorithm, rather than realizing the ECDSA
functionality itself. Second, and more importantly, it allows us to reintroduce the rewinding technique in the
security analysis, which greatly simplifies both the protocol and the security analysis, as we explain next.

Threshold Signature Ideal Functionality & UC-simulation. We define an ideal threshold signature
functionality modeled after the (non-threshold) signature functionality of Canetti [11]. The definition of the
functionality aims at capturing the essence of any threshold signature scheme. Namely (and very loosely):

1. Authorized sets of parties may generate valid signatures for any given message.

2. Unauthorized sets of parties cannot compute valid signatures for messages that were never signed before.

We stress that the ideal functionality is utterly oblivious to the format of the signature scheme (there are
effectively no private/public keys). Consequently, the UC simulator is straightforward: It runs the programs
of the uncorrupted parties without modification, interacting with the environment in away that is distributed
identically as in the real system — as long as the environment doesn’t manage to forge a signature.Indeed, as
long as the environment does not forge a signature, the simulation is perfect.

To demonstrate the validity of the simulation, it remains to show that the environment cannot forge
signatures for some message that was never signed before; this is the crux of our security proof. Before we
describe the proof, we stress that here we are only interested in demonstrating validity of the UC simulation,
by way of reduction to the hardness of the underlying assumptions. These reductions are allowed to “take
the environment offline” and employ the entire arsenal of extraction techniques, including rewinding. What’s
more, this approach gives full power to the proof over the random oracle, so that any reduction may suitably
program the environment’s queries to the random oracle, as long as these were never queried before.

Unforgeability Proof. We show unforgeability via reduction to the unforgeability of non-threshold ECDSA.
In more detail, we consider the following experiments involving a simulator attempting to simulate the envi-
ronment’s interaction with the honest parties.

1. In the first experiment, the simulator follows the specifications of the protocol except that:

(a) The simulator samples an ECDSA key-pair (x,X) and fixes the public key of the threshold protocol
to X (this is achieved by rewinding the environment).

(b) The simulator extracts the corrupted parties’ Paillier keys (this is achieved by programming the
random oracle).

(c) The simulator never decrypts the ciphertexts encrypted under the honest parties’ Paillier keys.
Rather, to carry on the simulation, the simulator extracts the relevant values from the corrupted
parties’ messages, using the Paillier keys extracted in Item 1b.

(d) To compute the honest parties’ ZK-proofs, the simulator invokes the zero-knowledge simulator to
generate valid proofs, and programs the random oracle accordingly.

2. The second experiment is identical to the first one except that:
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(a) At the beginning of the experiment, the simulator picks a random honest party that is henceforth
deemed as special (in fact, to handle adaptive corruptions, this random party is chosen afresh every
time the key-refresh phase is executed. If the environment decides to corrupt the special party,
then the experiment is reset to the last preceding key-refresh; by rewinding the environment).

(b) Every time an honest party is instructed to encrypt a value under the special party’s Paillier key
and send it to the corrupted parties, the simulator sends a random encryption of 0 instead.

3. The third experiment is similar to the second one, except that the simulation is carried out without
knowledge of the special party’s secrets, using a standard/enhanced ECDSA oracle.

We show that our scheme is unforgeable by showing that if an environment forges signatures in an execution
of our protocol, then the environment also forges signatures in all three experiments above, and from the third
experiment we conclude that the environment forges signatures for the plain (non-threshold) ECDSA signature
scheme, in contradiction with its presumed security.

The first two experiments are stepping stones towards proving that the environment forges in the third
experiment. In more detail, the real execution and the first experiment are statistically close as long as all the
ZK-proofs are sound (and the simulator extracts the right values). The first and the second experiment are
computationally close as long as the Paillier cryptosystem is semantically secure. Finally, the second and the
third experiment are identical (in a perfect sense).

Dealing w/ Adaptive Party Corruptions. To show that our protocol achieves security against adaptive
party corruption, it is enough to argue that experiments 2 & 3 terminate. Assuming CDR and strong-RSA,
our analysis yields that both experiments terminate in time quasi-proportional to the number of parties, and
the environment forges signatures in the third experiment, in contradiction with the presumed security of
plain ECDSA. Consequently, under suitable cryptographic assumptions, unless the environment corrupts all
parties simultaneously in-between key-refresh phases, our scheme is unforgeable.

Overall UC-Security of our Protocol. From the above, it follows that if the ECDSA signature scheme is
existentially unforgeable, then the online variant of our protocol UC-realizes the ideal signature functionality.
Similarly, if ECDSA is enhanced existentially unforgeable, then the offline variant of our protocol UC-realizes
the ideal signature functionality.

We remind the reader that existential unforgeability is defined via a game where a prospective forger is
given access to a signing oracle allowing the attacker to sign (arbitrary) messages of his own choosing. The
attacker wins the game if he manages to generate a valid signature for a previously unsigned message. We
define an enhanced variant of the unforgeability game where the data of the signature that is independent of
the message (i.e. gk

−1

, henceforth referred to as the signature’s nonce) can be queried by the attacker before
producing a message to be signed; that way the attacker can potentially choose messages for the signing oracle
that are correlated with the random nonce, which may be useful towards generating a forgery.

Evidence for Enhanced Unforgeability. To support our assumption that ECDSA is enhanced existen-
tially unforgeable, we show that it holds in the following idealized model:

1. In the random oracle model, as long as not too-many nonces are queried in advance, and standard
(non-enhanced) ECDSA is existentially unforgeable.

2. In the random oracle and generic group model, unconditionally.7

Both of the above are shown via reduction. For Item 1, the reduction simulates the random oracle and attempts
to guess the messages the adversary is going to request signatures for; this is why not too-many nonces may be
queried in advance, since the guessing probability decreases (super) exponentially. For Item 2, the reduction
simulates the group as if it were a free-group generated by two base-points G and X (corresponding to the
group-generator and ECDSA public key, respectively). Since the simulated (free) group is indistinguishable
from a generic group, it follows that any forgery exploits a weakness in the hash-function, which we rule out
by assumption.

7To be more precise, we show that any generic forger finds x, y such that H(x)/H(y) = e, for a random e ← Fq , where H
denotes the hash-function. We conjecture that the latter is hard also for the actual implementation of ECDSA involving SHA.
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1.2.6 Non-Interactive Zero-Knowledge

Our protocol makes extensive use of Non-Interactive Zero-Knowledge (NIZK) via the standard technique of
compiling three-move zero-knowledge protocols (also known as Σ-protocols) with the Fiat-Shamir transform
(FS), i.e. the Verifier’s messages are computed by the Prover himself by invoking a predetermined hash function.

In the random-oracle model, the Fiat-Shamir transform gives rise to NIZK proof-systems. Furthermore,
because we completely avoid the need for “online extraction” (c.f. Section 1.2.5), our use of the Fiat-Shamir
transform does not interfere with universal composability, and our protocol is UC as described.

We conclude the overview of our techniques by presenting a vanilla version of the (interactive) zero-
knowledge technique we employ. The technique is somewhat standard [3, 7, 8, 30, 46]; we spell it out here
for convenience. However, the analysis is somewhat complicated, and it is not crucial for understanding our
threshold signature protocol. Thus the present section may be skipped, if so desired.

Paillier & Strong-RSA. We recall that Paillier ciphertexts have the form C = (1 + N)xrN mod N2,
where N denotes the public key, x ∈ ZN the plaintext, and r is a random element of Z∗N . We further recall the
strong-RSA assumption: for an RSA modulus N of unknown factorization, for uniformly random y ∈ ZN , it
is infeasible to find (x, e) such that e > 1 and xe = y mod N . Finally, before we describe the zero-knowledge
technique, we (informally) define ring-Pedersen commitments.8

Definition 1.2 (Ring-Pedersen – Informal). Let N be an RSA modulus and let s, t ∈ Z∗N be non-trivial
quadratic residues. A ring-Pedersen commitment of m ∈ ZN with public parameters (N, s, t) is computed as
C = smtρ mod N where ρ← ZN .

Vanilla ZK Range-Proof. Consider the following relation:

R = {(C0, N0, C1, N1, s, t;α, β, r) | C0 = (1 +N0)αrN0 mod N2
0 ∧ C1 = sαtβ mod N1 ∧ α ∈ ±2`}.

In words, the Prover must show that the Paillier plaintext of C0 is equal to the hidden value in the ring-
Pedersen commitment C1, and that it lies in the range ±2` = [−2`,+2`] where 2` � N0, N1. It is assumed
that the Paillier modulus N0 was generated by the Prover and the ring-Pedersen parameters (N1, s, t) were
generated by the Verifier. We further assume that N0 and N1 were generated as products of suitable9 primes
and that s and t are non-trivial quadratic residues in Z∗N1

. This assumption does not incur loss of generality,
since in the actual protocol we instruct the parties to prove in zero-knowledge that all the parameters were
generated correctly.10

We now turn to the description of the ZK-proof for the relation R under its interactive variant (the actual
proof is compiled to be non-interactive using the Fiat-Shamir transform). We perform a Schnorr-type proof
as follows: the Prover encrypts a random value γ as D0 = (1 + N0)γρN0 mod N2

0 for suitable random ρ,
computes a ring-Pedersen commitment D1 = sγtδ mod N1 to γ for suitable random δ, and sends (D0, D1)
to the Verifier. The Verifier then replies with a challenge e ← ±2` and the Prover solves the challenge by
sending z1 = γ + eα. The Verifier accepts only if z1 is in a suitable range and passes two equality checks (one
for the encryption and one for the commitment). Intuitively, the Prover cannot fool the Verifier because “the
only way” for the Prover to cheat is knowing the order of Z∗N1

, which was secretly generated by the Verifier
and therefore would violate the strong-RSA assumption. In more detail:

1. The Prover computes D0 = (1 + N0)γρN0 mod N2
0 and D1 = sγtδ mod N1, for random elements

γ ← ±2`+ε, δ ← ±N1 · 2ε and ρ← Z∗N0
, and sends (D0, D1) to the Verifier.

2. The Verifier replies with e← ±2`.

3. The Prover computes 
z1 = γ + eα

z2 = δ + eβ

w = ρ · re mod N0

and sends (z1, z2) to the Verifier.
8We use the prefix “ring” to distinguish between “group” Pedersen commitments which reside in groups of known order.
9N0 and N1 should be bi-primes obtained as products of safe primes.

10In reality, for efficiency reasons, we prove much weaker statements that are sufficient for our purposes.
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• Verification: Accept if the z1 ∈ ±2`+ε and (1 + N0)z1wN = Ce0 · D0 mod N2
0 and sz1tz2 = Ce1 · D1

mod N1.

We remark that there is a discrepancy between the range-check of z1 and the desired range by a (multiplica-
tive factor) of 2ε, referred to as the slackness-parameter; this is a feature of the proof since the range of α is
only guaranteed within that slackness-parameter. We now turn to the analysis of the ZK-proof (completeness,
honest verifier zero-knowledge & soundness).

It is straightforward to show that the above protocol satisfies completeness and (honest-verifier) zero-
knowledge with some statistical error. The hard task is showing soundness [8, 30, 46]. Following the standard
paradigm, we show special soundness by extracting the secrets from two accepting transcripts of the form
(D0, D1, e, z1, z2, w) and (D0, D1, e

′, z′1, z
′
2, w

′) such that e 6= e′. Let ∆e, ∆z1 , ∆z2 denote the relevant dif-
ferences. We observe that if ∆e divides ∆z1 and ∆z2 (in the integers), then all the values can be extracted
without issue as follows: α and β are set to ∆z1/∆e ∈ ±2`+ε and ∆z2/∆e, respectively, and ρ can be extracted
from the equality (w · w′−1)N = (C0(1 +N0)−α)∆e mod N2

0 (which allows to compute a ∆e-th root of w/w′
modulo N1 c.f. Fact D.2). Thus, the soundness-proof boils down to showing that ∆e divides both ∆z1 and
∆z2 , unless the strong-RSA problem is tractable. Namely, there exists an algorithm S with black-box access
to the Prover that can solve the strong-RSA challenge t (the second ring-Pedersen parameter).11

To elaborate further, it is assumed that S knows λ such that tλ = s mod N1 and that λ is sampled from
[N2

1 ] (and not just [N1]). Thus, without getting too deep into the details, if ∆e ��| ∆z = λ∆z1 + ∆z2 , then S
can solve the strong-RSA challenge by computing Euclid’s extended algorithm on ∆e and ∆z. On the other
hand, if ∆e ��| ∆z1 or ∆z2 , we claim that ∆e | ∆z with probability at most 1/2. To see why, observe that there
exists at least another λ′ 6= λ in [N2

1 ] such that tλ = tλ
′

= s mod N1, because t has order φ(N1)/4 = O(N1)
and λ was sampled uniformly in [N2

1 ]. Since the Prover cannot distinguish between the two λ’s (in a perfect
information-theoretic sense), if ∆e ��| ∆z1 or ∆z2 , then the probability that ∆e divides λ∆z1 + ∆z2 is at most
1/2 (i.e. the Prover guessed correctly which of the λ’s the algorithm S knows).12 In conclusion, the probability
that extraction fails is at most twice the probability of breaking strong-RSA, which is assumed to be negligible.

Removing the Computational Assumption in the ZK-Proof. We point at that there is a somewhat
standard way [3, 4, 7] to tweak the above ZK-proof to obtain an unconditional extractor (that does not rely
on strong-RSA or any other hardness assumption), at the expense of higher communication costs.13 Consider
the relation

R = {(C0, N0;α, r) | C0 = (1 +N0)αrN0 mod N2
0 ∧ α ∈ ±2`}.

Notice that it’s the same as the previous relation except that we got rid of the ring-Pedersen commitment.
Then, by removing D1 and z2 from the protocol above, and restricting e← {0, 1} (instead of ±2`), we obtain
a zero-knowledge proof of knowledge with unconditional extraction and soundness error 1/2. Using the same
notation as before, notice that the new protocol guarantees that ∆e divides ∆z1 since ∆e ∈ {−1, 1}, and thus
divisibility is guaranteed without any hardness assumption. On the downside, a malicious Prover may always
cheat with probability 1/2 and thus the protocol must be repeated to achieve satisfactory soundness. Since
the protocol involves Paillier operations, this would incur a rather expensive (super-logarithmic) blowup factor
of the proof size.

1.2.7 Extension to t-out-of-n Access Structure

In this work we mainly focus on n-out-of-n multi-party signing, and do not explicitly consider the more general
t-out-of-n threshold signing for t < n. Such a protocol can be derived almost immediately from our protocol
herein for the online variant using Shamir secret-sharing, with relevant changes to the protocol’s components,
similarly to Gennaro and Goldfeder [31].

The same technique can also be applied for the non-interactive variant, but special care must be taken
regarding the preprocessed data that the parties store in memory. Specifically, each distinct set of “authorized”
parties (of size at least t) should generate fresh independent preprocessed data. A party taking part in different
authorized sets must not use the same preprocessed data between the sets. We stress that signing two distinct
messages using dependant shared preprocessed data can enable an attack revealing the private key.

11Parameter t is not completely random in ZN1 since it’s a quadratic residue, but this does not affect the analysis.
12The argument is more subtle because we need to show that ∆e cannot divide both values simultaneously (see Section 4.1).
13A similar trick in a different context appears in Lindell [42], from Boudot [3] and Brickell et al. [4]
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1.3 Additional Related Work
Threshold ECDSA. All recent protocols for threshold ECDSA follow (variants) of the blueprint described
in Section 1.2.1 where the parties locally generate shares k∗1 . . . k∗n of k [45, 28] or k−1 [31, 21] and then jointly
compute r = gk

−1 |x-axis and shares of k(m + rx) via a pairwise-multiplication protocol in combination with
the masking technique described at the beginning of the present section. Furthermore, all protocols take a
somewhat optimistic approach, where the correctness of the computed values in the multiplication is verified
only after the computation takes place; this is the main source of the round-complexity cost.

Security-wise, as mentioned previously, Gennaro and Goldfeder [31] show that their protocol satisfies a
game-based definition of security (i.e. unforgeability of their protocol) under standard assumptions (DDH,
CDR, strong-RSA, ECDSA). The protocol of Castagnos et al. [21] follows the same template, except that
it replaces Paillier with an encryption scheme based on class groups [20]. Specifically, they show that their
scheme is unforgeable assuming DDH and additional assumptions on class groups of imaginary quadratic fields,
specifically hard subgroup membership, low-order assumption and strong root.14

Lindell et al. [45] and Doerner et al. [28] show secure-function evaluation of the ECDSA functionality and
prove that their respective protocols UC-realize said functionality in a hybrid model with ideal commitment and
zero-knowledge, assuming DDH . However, as pointed out by the authors themselves, the practical subroutines
they recommend to replace the ideal calls do not preserve Universal Composability (even in the ROM). We
stress that our protocol satisfies Universal Composability as is (albeit in the Random Oracle model).

Concurrent Work. We discuss the contemporaneous works of Damgård et al. [24] and Gągol and Straszak
[37]. In [24], the authors consider threshold ECDSA in the honest-majority setting and they design a protocol
based on the earlier honest-majority protocol of Gennaro et al. [32]. The authors show that their protocol is
UC-secure with abort and they also show how to bootstrap their protocol to achieve fairness. The authors
also mention a non-interactive variant of their protocol by pre-processing all-but-one of the rounds, however
no security analysis is provided for the latter.

In [37], motivated by the application of MPC wallets with large number of signers, the authors design
a protocol based on [45] that also supports robustness in the form of identifiable abort by augmenting the
protocol with additional ZK-proofs, and they show that their protocol is secure in a hybrid model with ideal
commitments and zero-knowledge in the standalone (non-UC) setting. We stress that neither [24], nor [37]
support proactive refreshment of the keys, and these protocols are not known to provide traditional threshold
security against an adversary that corrupts parties adaptively as the system progresses.

Alternatives to Non-Interactive Signing. Recently there have been alternative proposals to achieve
MPC signing with compatibility for offline devices (cold wallets), by building on top of the MPC system –
rather than incorporating such a capability within the MPC system [43, 44]. In more detail, [43, 44] have two
types of trustees: singing trustees and decrypting trustees. The signing trustees are instructed to (jointly)
compute an encrypted signature that is later forwarded to the decrypting trustees who jointly decrypt the
the ciphertext and obtain the signature. While the communication between the signers and the dectyptors
is indeed only unidirectional, the overall process of signature generation is still slowed down by potentially
significant interaction. Furthermore, as soon as all signers are corrupted they can generate signatures on their
own, without the participation of any of the decryptors.

Bootstrapping authentication for proactive security. Kondi et al. [40] consider the case where some
signatories remain offline during a proactive refreshment phase, and furthermore do not have reliable au-
thenticated communication with the other signatories when they get back online. (Indeed, in the context of
cryptocurrency custody, it may be desirable for offline “cold” wallets to participate in the refreshment at their
own pace, which, in turn, may open the door to attacks.) They show how such a late signatory can regain
authenticated communication with the reset of the system by way of using the blockchain itself as an means to
authenticate the public keys of the other signatories. This solution can be seen as a way to use the blockchain
as a way to implement the persistent thresthold signature scheme in the Canetti et al. [15] solution.

14These assumptions may be viewed as analogues of CDR & strong-RSA for class groups.
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2 Preliminaries
Notation. Throughout the paper G denotes a group of prime order q, and Fq the finite field with q elements.
We let Z,N denote the set of integers and natural number, respectively. We use sans-serif letters (enc,dec, . . .)
or calligraphic (S,A, . . .) to denote algorithms. Secret values are always denoted with lower case letters
(p, q, . . .) and public values are usually denoted with upper case letters (A,B,N, . . .). Furthermore, for a
tuple of both public and secret values, e.g. an RSA modulus and its factors (N, p, q), we use a semi-colon to
differentiate public from secret values (so we write (N ; p, q) instead of (N, p, q)). For t ∈ ZN , we write 〈t〉 = {tk
mod N s.t. k ∈ Z} for the multiplicative group generated by t. For ` ∈ Z, we let ±` denote the interval of
integers {−|`|, . . . , 0, . . . , |`|}. We write x ← X for sampling x uniformly from a set X (or according to the
distribution X). Finally, let gcd : N2 → N and φ : N→ N denote the gcd operation and Euler’s phi function,
respectively.

2.1 Definitions
Definition 2.1. We say that N ∈ N is a Paillier-Blum integer iff gcd(N,φ(N)) = 1 and N = pq where p, q
are primes such that p, q ≡ 3 mod 4.

Definition 2.2 (Paillier Encryption). Define the Paillier cryptosystem as the three tuple (gen, enc, dec) below.

1. Let (N ; p, q)← gen(1κ) where p and q are κ/2-long primes and N = pq. Write pk = N and sk = (p, q).

2. For m ∈ ZN , let encpk(m; ρ) = (1 +N)m · ρN mod N2, where ρ← Z∗N .

3. For c ∈ ZN2 , letting µ = φ(N)−1 mod N ,

decsk(c) =

(
[cφ(N) mod N2]− 1

N

)
· µ mod N.

Definition 2.3 (ECDSA). Let (G, g, q) denote the group-generator-order tuple associated with a given curve.
We recall that elements in G are represented as pairs a = (ax, ay), where the ax and ay are referred to as the
projection of a on the x-axis and y-axis respectively, denoted ax = a|x-axis and ay = a|y-axis, respectively. The
security parameter below is implicitly set to κ = log(q).

Parameters: Group-generator-order tuple (G, q, g) and hash function H : M → Fq.

1. (X;x)← gen(G, q, g) such that x← Fq and X = gx.

2. For msg ∈M , let signx(m; k) = (r, k(m+ rx)) ∈ F2
q, where k ← Fq and m = H(msg) and r = gk

−1 |x-axis
mod q.

3. For (r, σ) ∈ F2
q, define vrfyX(m,σ) = 1 iff r = (gm ·Xr)σ

−1 |x-axis mod q.

2.2 NP-relations
Schnorr. For parameters (G, g) consisting of element g in group G, the following relation verifies that the
prover knows the exponent of the group-element X. For PUB0 of the form (G, g), define

Rsch = {(PUB0, X;x) | X = gx} .

Paillier Encryption in Range. For Paillier public key N0, the following relation verifies that the plaintext
value of Paillier ciphertext C is in a desired range I. Define

Renc =
{

(N0, I, C;x, ρ) | x ∈ I ∧ C = (1 +N0)xρN0 ∈ Z∗N2
0

}
.

Group Element vs Paillier Encryption in Range. For parameters (G, N) consisting of group G and
Paillier-Blum Modulus N , the following relation verifies that the discrete logarithm of X base g is equal to
the plaintext value of C and is in range I. For PUB1 of the form (G, N), define

Rlog =
{

(PUB1, I, C,X, g;x, ρ) | x ∈ I ∧ C = (1 +N)xρN ∈ Z∗N2 ∧ X = gx
}
.
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Paillier Affine Operation with Group Commitment in Range. For parameters (G, g,N0, N1) consist-
ing of element g and in group G and Paillier public keys N0, N1, the following relation verifies that a Paillier
ciphertext C ∈ Z∗

N2
0
was obtained as an affine-like transformation on C0 such that the multiplicative coefficient

(i.e. ε) is equal to the exponent of X ∈ G in the range I, and the additive coefficient (i.e. δ) is equal to the
plaintext-value of Y ∈ ZN1

and resides in the the range J . For PUB2 of the form (G, g,N0, N1), define Raff-g
to be all tuples (PUB2, I,J , C, C0, Y,X; ε, δ, r, ρ) such that

(ε, δ) ∈ I × J ∧ C = Cε0 · (1 +N0)δrN0 ∈ Z∗N2
0
∧ Y = (1 +N1)δρN1 ∈ Z∗N2

1
∧ X = gε ∈ G

Paillier Affine Operation with Paillier Commitment in Range. This is a variant of the previ-
ous relation, the only difference is that now ε is equal to the plaintext-value of X ∈ Z∗

N2
1

(rather than
the exponent of X ∈ G, as before). For PUB3 of the form (N0, N1), define Raff-p to be all tuples
(PUB3, I,J , C, C0, Y,X; ε, δ, r, ρ, µ) such that

(ε, δ) ∈ I × J ∧ C = Cε0 · (1 +N0)δrN0 ∈ Z∗N2
0
∧ Y = (1 +N1)δρN1 ∈ Z∗N2

1
∧ X = (1 +N1)εµN1 ∈ Z∗N2

1

2.2.1 Auxiliary Relations

Paillier-Blum Modulus. The following relation verifies that a modulus N is coprime with φ(N) and is the
product of exactly two suitable odd primes, where φ(·) is the Euler function.

Rmod = {(N ; p, q) | PRIMES 3 p, q ≡ 3 mod 4 ∧ N = pq ∧ gcd(N,φ(N)) = 1} .

Ring-Pedersen Parameters. The following relation verifies that an element s ∈ Z∗N belongs to the (mul-
tiplicative) group generated by t ∈ ZN .

Rprm =
{

(N, s, t;λ) | s = tλ mod N
}
.

No Small Factor Modulus. For parameter `, the following relation verifies that a modulus N can be
factored into two numbers greater than 2`.

Rfac =
{

(`,N ; p, q) | N = pq ∧ p, q > 2`
}
.

Remark 2.4. In what follows, to alleviate notation when no confusion arises, we omit writing the public
parameters described by PUB∗.

2.3 Sigma-Protocols
In this section we define zero-knowledge protocols with focus on interactive three-move protocols, known
as Σ-protocols. In Section 2.3.1, we compile these protocols using the random oracle via the Fiat-Shamir
heuristic to generate (non-interactive) proofs. We define two notions of Σ-protocols. The first one is “non-
extractable” zero-knowledge with standard soundness, i.e. for relation R and x such that there does not exist w
satisfying (x,w) ∈ R, the probability that a cheating Prover convinces the Verifier that x satisfies the relation
is negligible. The second definition augments the soundness property to enable extraction from two suitable
accepting transcripts; the latter property is known as special soundness.

Definition 2.5. A Σ-protocol Π for relation R is a tuple (P1,P2,V1,V2) of PPT algorithms such that

• P1 takes input κ = |x| and random input τ and outputs A, and V1 outputs its random input e.

• P2 takes input (x,w, τ, e) and outputs z, and V2 takes input (x,A, e, z) and (deterministically) outputs
a bit b.

Security properties:

– Completeness. If (x,w) ∈ R then with overwhelming probability over the choice of e← V1 (as a function
of |x|), for every A← P1(τ) and z ← P2(x,w, τ, e), it holds that V2(x,A, e, z) = 1.
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– Soundness. If x is false with respect to R (i.e (x,w) /∈ R for all w), then for any PPT algorithm P∗

and every A, the following holds with overwhelming probability over e ← V1 (as a function of κ): If
z ← P∗(x,A, e) then V2(x,A, e, z) = 0.

– HVZK. There exists a simulator S such that (A, e, z)← S(x) it holds and V2(x,A, e, z) = 1 for every x,
with overwhelming probability over the random coins of S. Furthermore, the following distributions are
statistically indistinguishable. For (x,w) ∈ R:

∗ (A, e, z) where e← V1 and A← P1(x,w, τ), and z = P2(x,w, τ, e).

∗ (A, e, z) where e← V1 and (A, z)← S(x, e).

We use Σ-protocols to prove that the Paillier-Blum modulus is well-formed (Rmod) and that the ring-
Pedersen Parameters are suitable (Rprm), we denote these Σ-protocols Πmod and Πprm, respectively (c.f. Sec-
tions 4.3 and 4.4). Note that for Πmod the first message A is empty, so we can assume that A is some constant
default string.

Definition 2.6. A Σ-protocol Πσ with setup σ and special soundness for relation R is a tuple (S,P1,P2,V1,V2)
of PPT algorithms satisfying the same functionalities and security properties of the Σ-protocol definition (w/o
setup and special soundness), with the following changes:

1. Setup algorithm S initially generates σ which is a common input to all other algorithms.

2. Soundness property is replaced with:

– Special Soundness. There exists an efficient extractor E such that for any x and P∗ the following holds
with overwhelming probability (over the choice of σ ← S): If (A, e, z), (A, e′, z′)← P∗(x,w, σ) such that
V2(x,A, e, z) = V2(x,A, e′, z′) = 1 and e 6= e′, then for w′ ← E(x,A, e, e′, z, z′) it holds that (x,w′) ∈ R.

We remark that the Schnorr proof of knowledge (c.f. Appendix B.1) is a Σ-protocol with special soundness
that does not take any setup parameter, and we denote the protocol Πsch (note σ is omitted). By contrast, our
protocols for Renc, Rlog, Raff-g and Raff-p (i.e. the range proofs) require a setup parameter in the form of an RSA
modulus N and ring-Pedersen parameters s, t ∈ Z∗N (c.f. Sections 4.1 and 4.2 and appendices B.2 and B.3),
and we denote the respective protocols as Πenc

σ , Πlog
σ , Πaff-g

σ and Πaff-p
σ , respectively . However, our threshold

signature protocol does not assume any trusted setup, and in reality the setup parameter is generated by the
parties themselves (a different one for each party). We expand on this point next.

Generating the Setup Parameter for the Range Proofs. Looking ahead to the security analysis of
our threshold signature protocol, we stress that although the above definition prescribes a trusted setup for
σ = (N, s, t), in actuality the setup parameter is generated by the Verifier (the intended recipient of the proof)
and is a accompanied by a ZK-proof that N is well formed (using Πmod and the compiler below) and that s,
t ∈ Z∗N are suitable (using Πprm and the compiler below). In particular, the Prover generates distinct proofs
(one for each Verifier using its personal σ) to prove the same statement x to multiple verifying parties.

Notation 2.7. In the sequel, we incorporate the setup parameter σ in the protocol description, and we write Π∗j
for the corresponding protocol using Pj ’s setup parameter (acting as the Verifier), for ∗ ∈ {enc, log, aff-g, aff-p},
and we omit mentioning the “trusted” algorithm S.

2.3.1 ZK-Module

Next, we present how to compile the protocols above using a random oracle via the Fiat-Shamir heuristic.
Namely, to generate a proof, the Prover computes the challenge e by querying the oracle on a suitable input,
which incorporates the theorem and the first message. Then, the Prover completes the transcript by computing
the last message with respect to e and communicates the entire transcript as the proof. Later, the Verifier
accepts the proof if it is a valid transcript of the underlying Σ-protocol and e is well-formed (verified by
querying the oracle as the Prover should have).

Formally, we define the compiler via the ZK-Module from Figure 2. Notice that on top of the standard
prove/verify operations, the ZK-module contains a commit operation for generating the first message A← P1

17



FIGURE 2 (ZK-ModuleM for Σ-protocols)

Parameter: Hash Function H : {0, 1}∗ → {0, 1}h.

• On input (com,Π, 1κ), interpret Π = (P1, . . .):

sample τ from the prescribed domain, compute A = P1(τ, 1κ) and output (A; τ).

• On input (prove,Π, aux, x;w, τ), interpret Π = (P1,P2, . . .):

compute A = P1(τ) and e = H(aux, x, A) and z = P2(x,w, τ, e) and output (A, e, z).

• On input (vrfy,Π, aux, x, ψ), interpret Π = (. . . ,V2) and ψ = (A, e′, z):

output 1 if V2(x,A, e′, z) = 1 and e′ = H(aux, x, A), and 0 otherwise.

Figure 2: ZK-ModuleM for Σ-protocols

of the ZK-Proof. This will be useful for the signature protocol later, and specifically for the security analysis
that requires extraction, because we force the adversary to commit to the first message of the (future) proof.
The properties of completeness, zero-knowledge, soundness and special soundness are analogously defined for
the resulting proof system.

Notation 2.8. Sometimes we omit writing the randomness τ in the tuple (prove,Π, aux, x;w, τ), indicating
that fresh randomness is sampled.

3 Protocol
Our ECDSA protocol consists of four phases; one phase for generating the (shared) key which is run once
(Figure 5), one phase to refresh the secret key-shares and to generate the auxiliary information required for
signing (i.e. Paillier keys & ring-Pedersen parameters – Figure 6), one to preprocess signatures before the
messages are known (Figure 7), and, finally, one for computing signature-shares once the messages are known
(Figure 8).

We present two variants for our protocol; one for online signing (Figure 3) and one for non-interactive
signing (Figure 4). The two protocols are different only in how the aforementioned components are combined.
Namely, for the online variant, the parties are instructed to run (sequentially) the presigning and signing
phases every time a new signature is requested for some message known to all parties. For the offline variant,
the presigning phase is ran ahead of time, before the message is known. Finally, for both protocols, the key
generation is executed upon activation, and the auxiliary info and key-refresh phase is executed according to
the key-refresh schedule.

Remark 3.1. Our protocol is parametrized by a hash function H, which is invoked to obtain a hash-values in
domains of different length (e.g the finite field with q elements or an `-size stream of bits). Formally, this is
captured by introducing multiple hash functions of varying length. However, to alleviate notation, we simply
write H for each (separate) hash function.

3.1 Key Generation
Next, we describe the key-generation phase. At its core, the key-generation consists of each party Pi ∈ P
sampling xi ← Fq and sending the public-key share Xi = gxi to all other parties, together with a Schnorr
proof of knowledge of the exponent. The public key is then set to X =

∏
j Xj . For malicious security, we

instruct the parties to commit (using the oracle) to their public-key share Xi as well as the first message Ai
of the Schnorr proof. Thus, the adversary cannot influence the distribution of the private-key by choosing an
X as a function of the honest parties’ public key shares, and the adversary is committed to the first message
of the Schnorr proof (i.e. Ai), which will be used to extract the witness later in the reduction.
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FIGURE 3 (Threshold ECDSA: Online Signing)

• Key-Generation: Upon activation on input (keygen, ssid, i) from Pi do:

1. Run the key generation phase from Figure 5 and obtain (srid,X, xi).

2. Run the auxiliary info. phase from Figure 6 on input (aux-info, ssid, srid,X, i) and do:

– When obtaining output (X,N , s, t) and (xi, pi, qi), set sid = (ssid, srid,X,N , s, t) and standby.

• Signing: On input (sign, sid, `, i,msg) from Pi, do:

1. Run the pre-signing phase from Figure 7 on input (pre-sign, sid, 0, i).

2. Set m = H(msg) and run the signing phase from Figure 8 on input (sign, sid, 0, i,m).

– When obtaining output standby.

• Key-Refresh: On input (key-refresh, ssid, srid,X, i) from Pi,

1. Run the auxiliary info. phase from Figure 6 on input (aux-info, ssid, srid,X, i).

2. Upon obtaining output (X,N , s, t) and (xi, pi, qi), do:

– Erase all pre-signing and auxiliary info of the form (ssid, . . .).
– Reset sid = (ssid, srid,X,N , s, t) and standby.

Figure 3: Threshold ECDSA: Online Signing

FIGURE 4 (Threshold ECDSA: Non-Interactive Signing)

• Key-Generation: Same as in Figure 3.

• Pre-Signing: On input (pre-sign, sid, L, i) from Pi, do:

1. Erase all pre-signing data (ssid, . . .).

2. Run the pre-signing phase from Figure 7 concurrently on inputs (pre-sign, sid, 1, i), . . ., (pre-sign, sid, L, i).

– When obtaining output standby.

• Signing: On input (sign, sid, `, i,msg) from Pi, do:

Set m = H(msg) and run the signing phase from Figure 8 on input (sign, sid, `, i,m).

– When obtaining output standby.

• Key-Refresh: Same as in Figure 3.

Figure 4: Threshold ECDSA: Non-Interactive Signing
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Upon obtaining all the relevant values, if no inconsistencies were detected, set X =
∏
j Xj and store the

secret key-share xi as well as the public key-shares X = (X1, . . . , Xn). For full details see Figure 5.
Remark 3.2. We observe that the protocol instructs the parties to (verifiably) broadcast some of their messages
(as opposed to messages which are “sent to all”, where equality verification is not required). For non-unanimous
halting [36], this can be achieved in a point-to-point network using echo-broadcasting with one extra round of
communication.

FIGURE 5 (ECDSA Key-Generation)

Round 1.

Upon activation on input (keygen, ssid, i) from Pi, interpret ssid = (. . . ,G, q, g,P ), and do:

– Sample xi ← Fq and set Xi = gxi .
– Sample sridi ← {0, 1}κ and compute (Ai, τ)←M(com,Πsch).
– Sample ui ← {0, 1}κ and set Vi = H(ssid, i, sridi, Xi, Ai, ui).

Broadcast (ssid, i, Vi).

Round 2.

When obtaining (ssid, j, Vj) from all Pj , send (ssid, i, sridi, Xi, Ai, ui) to all.

Round 3.

1. Upon receiving (ssid, j, sridj , Xj , Aj , uj) from Pj , do:
– Verify H(ssid, j, sridj , Xj , Aj , uj) = Vj .

2. When obtaining the above from all Pj , do:
– Set srid = ⊕jsridj .
– Compute ψi =M(prove,Πsch, (ssid, i, srid), Xi;xi, τ).

Send (ssid, i, ψi) to all Pj .

Output.

1. Upon receiving (ssid, j, ψj) from Pj , interpret ψj = (Âj , . . .), and do:

– Verify Âj = Aj .
– VerifyM(vrfy,Πsch, (ssid, j, srid), Xj , ψj) = 1.

2. When passing above verification from all Pj , output X =
∏
j Xj .

Errors. When failing a verification step or receiving a complaint from any other Pj ∈ P , report a complaint and halt.

Stored State. Store the following: srid, X = (X1, . . . , Xn) and xi.

Figure 5: ECDSA Key-Generation

3.2 Key-Refresh & Auxiliary Information
At a very high-level, the auxiliary info. and key-refresh phase proceeds as follows. Each party Pi samples a
Paillier modulus Ni obtained as a product of safe-primes, as well as ring-Pedersen parameters (si, ti). Then,
Pi samples a secret sharing (x1

i , . . . , x
n
i ) of 0 ∈ Fq, computes Y i = (X1

i = gx
1
i , . . . , Xn

i = gx
n
i ), and broadcasts

Y i, Ni, si, ti to all. After receiving all the relevant values, party Pi encrypts each xki under Pk’s Paillier public
key Nk (including his own) and obtains ciphertexts Cki , for all k, which he sends to all parties (the reasoning
is explained below). Then, each Pi refreshes to a new private key-shares x∗i = xi +

∑
` x

i
` mod q, updates

public key-shares of all parties X∗j = Xj ·
∏
`X

j
` , and stores new (N1, s1, t1), . . . , (Nn, sn, tn). For malicious

security, the aforementioned process is augmented with the following ZKP’s:

(a) Ni is a Paillier-Blum Modulus and it does not admit small factors.

(b) Ni can be factored into two factors no larger than
√
N · 2`+ε.
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(c) ZK-Proof that si belongs to the multiplicative group generated by ti in Z∗Ni
.

(d) The plaintext value of Cki modulo q is equal to the discrete logarithm of Xk
i .

Looking ahead to the security analysis, we point that our simulator extracts the Paillier keys of the malicious
parties in Item (a) and we can thus extract all the secret values from the ciphertexts {Cki }i,k without issue.
The steps described above are interleaved to obtain the two-round protocol from Figure 6.

Remark 3.3. For a more efficient key-refresh (which incurs an additional round of communication) we refer
the reader to the protocol of Canetti et al. [19].

3.3 Pre-Signing
We give a high-level overview of the pre-signing phase (Figure 7). Recall that at the end of the aux-info. phase,
each party Pi has a Paillier encryption scheme (enci, deci) with public key Ni, as well as ring-Pedersen
parameters si, ti ∈ ZNi

. Further recall that a ECDSA signature has the form (r = gk
−1 |x-axis, σ = k(m+ rx))

where Pi has an additive share xi of x.
For comparison, we also recall that the gist of the G&G protocol [31]. The parties (jointly) compute a

random point gk
−1

together with local additive shares ki, χi of k and k · x, respectively. Further recall that
gk
−1

is obtained from (gγ)δ
−1

, for some jointly computed random value δ = kγ, where γ is a (hidden) jointly
generated mask for k. In more detail, the protocol proceeds as follows:

1. Each party Pi generates local shares ki and γi, computes Paillier encryptions Ki = enci(ki) and Gi =
enci(γi), under Pi’s key, and broadcasts (Ki, Gi).

2. For each j 6= i, party Pi samples βi,j , β̂i,j ← Jε and computesDj,i = encj(γi·kj−βi,j) and D̂j,i = encj(xi·
kj − β̂i,j) using the homomorphic properties of Paillier. Furthermore, Pi encrypts Fj,i = enci(βi,j),
F̂j,i = enci(β̂i,j), sets Γi = gγi , and sends (Dj,i, D̂j,i, Fj,i, F̂j,i) to all parties.

3. Each Pi decrypts (and reduces modulo q) αi,j = deci(Di,j) and α̂i,j = deci(D̂i,j). and computes
δi = γi · ki +

∑
j 6=i αi,j + βi,j mod q, χi = xi · ki +

∑
j 6=i α̂i,j + β̂i,j mod q. Finally, Pi sets Γ =

∏
j Γj ,

∆i = Γki and sends δi,∆i to all parties.

When obtaining all δj ’s, party Pi sets δ =
∑
j δj mod q and verifies that gδ =

∏
j ∆j . If no inconsistencies

are detected, Pi sets R = Γδ
−1

and stores (R, ki, χi). For malicious security, the aforementioned process is
augmented with the following ZK-proofs:

(a) The plaintext of Ki lies in range Iε.

(b) The ciphertext Dj,i was obtained as an affine-like opperation on Kj where the multiplicative coefficient
is equal to the hidden value of Gi, and it lies in range Iε, and the additive coefficient is equal to hidden
value of Fj,i, and lies in range Jε.

(c) The ciphertext D̂j,i was obtained as an affine operation on Kj where the multiplicative coefficient is
equal to the exponent of Xi, and it lies in range Iε, and the additive coefficient is equal to hidden value
of F̂j,i, and it lies in range Jε.

(d) The exponent of Γi is equal to the plaintext-value of Gi.

Looking ahead to the security analysis, in order to simulate the protocol, it is enough to extract the k’s, γ’s,
and β’s of the adversary. Since the aforementioned values are encrypted under the malicious parties’ Paillier
keys, and the Paillier keys were extracted in previous phase, we can extract the desired values without issue.

Preparing Multiple Signatures. To prepare L signatures, the parties follow the steps above L times
concurrently. At the end of the presigning phase, each Pi stores the tuples {(`, R`, ki,`, χi,`)}`∈[L], and goes
on standby.
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FIGURE 6 (Auxiliary Info. & Key Refresh)

Round 1.

On input (aux-info, sid, i) from Pi, do:
– Sample two 4κ-bit long safe primes (pi, qi). Set Ni = piqi.

– Sample x1i , . . . , xni ← Fq subject to
∑
j x

j
i = 0. Set Xj

i = gx
j
i , Y i = (Xj

i )j , xi = (xji )j .

– Sample r ← Z∗Ni
, λ← Zφ(Ni), set ti = r2 mod Ni and si = tλi mod Ni.

– Sample ui ← {0, 1}κ and compute Vi = H(sid, i,Y i, ui).
– Compute ψi =M(prove,Πmod, (sid, i), Ni; (pi, qi))

– Compute ψ′i =M(prove,Πmod, (sid, i, ψi), Ni; (pi, qi)).
– Compute ψ′′i =M(prove,Πprm, (sid, i), (Ni, si, ti);λ).

Broadcast (sid, i, Vi, Ni, si, ti, ψi, ψ
′
i, ψ
′′
i ).

Round 2.

1. Upon receiving (sid, j, Vj , Nj , sj , tj , ψj , ψ
′
j , ψ
′′
j ) from Pj , do:

– Verify Nj ≥ 28κ.
– VerifyM(vrfy,Πmod, (sid, j), Nj , ψj) = 1.
– VerifyM(vrfy,Πmod, (sid, j, ψj), Nj , ψ

′
j) = 1.

– VerifyM(vrfy,Πprm, (sid, j), (Nj , sj , tj), ψ
′′
j ) = 1.

2. When passing above verification for all Pj , do for every Pk:
– Sample ρk ← Z∗Nk

, and set Cki = enck(xki ; ρk).

– Compute ψj,i,k =M(prove,Πlog
j , (sid, i), (Iε, C

k
i , X

k
i , g); (xki , ρk)) for every Pj .

– Compute πj,i =M(prove,Πfac
j , (sid, i), (`,Ni); (pi, qi)), for every Pj .

Send
(
sid, i,Y i, ui, πj,i,

(
ψj,i,k, C

k
i

)
k

)
to each Pj .

Output.

1. Upon receiving
(
sid, j,Y j , uj , πi,j ,

(
ψi,j,k, C

k
j

)
k

)
from Pj , do:

– Verify
∏
kX

k
j = idG.

– Verify H(sid, j,Y j , uj) = Vj andM(vrfy,Πfac
j , (sid, i), (`,Ni), πi,j) = 1.

– VerifyM(vrfy,Πlog
i , (sid, j), (Iε, C

k
j , X

k
j , g), ψi,j,k) = 1 for every k.

2. When passing above verification for all Pj , do:
– Set x∗i = xi +

∑
j deci(C

i
j) mod q.

– Set X∗k = Xk ·
∏
j X

k
j for every k.

Output (sid, i,X∗ = (X∗k)k,N = (Nj)j , s = (sj)j , t = (tj)j).

Errors. When failing a verification step or receiving a complaint from any other Pj ∈ P , report a complaint and halt.

Stored State. Store x∗i , pi, qi.

Figure 6: Auxiliary Info. & Key Refresh
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FIGURE 7 (ECDSA Pre-Signing )

Recall that Pi’s secret state contains xi, pi, qi such that Xi = gxi and Ni = piqi.

Round 1.

On input (pre-sign, sid, `, i) from Pi, interpret sid = (. . . ,G, q, g,P , srid,X,N , s, t), and do:

– Sample ki, γi ← Fq, ρi, νi ← Z∗Ni
and set Gi = enci(γi; νi), Ki = enci(ki; ρi).

– Compute ψ0
j,i =M(prove,Πenc

j , (sid, i), (Iε,Ki); (ki, ρi)) for every j 6= i.

Broadcast (sid, i,Ki, Gi) and send (sid, i, ψ0
j,i) to each Pj .

Round 2.

1. Upon receiving (sid, j,Kj , Gj , ψ
0
i,j) from Pj , do:

– VerifyM(vrfy,Πenc
i , (sid, j), (Iε,Kj), ψi,j) = 1.

2. When passing above verification for all Pj , set Γi = gγi and do:

For every j 6= i, sample ri,j , si,j , r̂i,j , ŝi,j ← ZNj , βi,j , β̂i,j ← J and compute:
– Dj,i = (γi �Kj)⊕ encj(−βi,j , si,j) and Fj,i = enci(βi,j , ri,j).
– D̂j,i = (xi �Kj)⊕ encj(−β̂i,j , ŝi,j) and F̂j,i = enci(β̂i,j , r̂i,j).
– ψj,i =M(prove,Πaff-p

j , (sid, i), (Iε,Jε, Dj,i,Kj , Fj,i, Gi); (γi, βi,j , si,j , ri,j , νi)).

– ψ̂j,i =M(prove,Πaff-g
j , (sid, i), (Iε,Jε, D̂j,i,Kj , F̂j,i, Xi); (xi, β̂i,j , ŝi,j , r̂i,j)).

– ψ′j,i =M(prove,Πlog
j , (sid, i), (Iε, Gi,Γi, g); (γi, νi)).

Send (sid, i,Γi, Dj,i, Fj,i, D̂j,i, F̂j,i, ψj,i, ψ̂j,i, ψ
′
j,i) to each Pj .

Round 3.

1. Upon receiving (sid, j,Γj , Di,j , Fi,j , D̂i,j , F̂i,j , ψi,j , ψ̂i,j , ψ
′
i,j) from Pj , do

– VerifyM(vrfy,Πaff-p
i , (sid, j), (Iε,Jε, Di,j ,Ki, Fj,i, Gj), ψi,j) = 1.

– VerifyM(vrfy,Πaff-g
i , (sid, j), (Iε,Jε, D̂k,j ,Ki, F̂j,i, Xj), ψ̂i,j) = 1.

– VerifyM(vrfy,Πlog
i , (sid, j), (Iε, Gj ,Γj , g), ψ′i,j) = 1.

2. When passing above verification for all Pj , set Γ =
∏
j Γj and ∆i = Γki , and do:

– For every j 6= i, set αi,j = deci(Di,j) and α̂i,j = deci(D̂i,j) and{
δi = γiki +

∑
j 6=i(αi,j + βi,j) mod q

χi = xiki +
∑
j 6=i(α̂i,j + β̂i,j) mod q

.

– For every j 6= i, compute ψ′′j,i =M(prove,Πlog
j , (sid, i), (Iε,Ki,∆i,Γ); (ki, ρi)).

Send (sid, i, δi,∆i, ψ
′′
j,i) to each Pj .

Erase all items in memory except for the stored state.

Output.

1. Upon receiving (sid, j, δj ,∆j , ψ
′′
i,j) from Pj , do:

– VerifyM(vrfy,Πlog
i , (sid, j), (Iε,Kj ,∆j ,Γ), ψ′′i,j) = 1.

2. When passing above verification for all Pj , set δ =
∑
j δj , and do:

– Verify gδ =
∏
j ∆j .

– Set R = Γδ
−1

and output (sid, i, R, ki, χi).
Erase all items except the stored state.

Errors. When failing a verification step or receiving a complaint from any other Pj ∈ P , report a complaint and halt.

Stored State. Store X, N , s, t and (xi, pi, qi).

Figure 7: ECDSA Pre-Signing
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Nota Bene. Recall that the public-key shares {Xi = gxi}i∈[n] are known to all parties, and let I = ±2`,
J = ±2`

′
, Iε = ±2`+ε and Jε = ±2`

′+ε denote integer intervals where `, `′ and ε are fixed parameters (to be
determined by the analysis). We represent integers modulo N in the interval {−N/2, . . . , N/2} (rather than
the canonical representation); this convention is crucial to the security analysis.

3.4 Signing
Once the (hash of the) messagem is known, on input (sign, `, i,m) for the `-th revealed point on the curve, the
signing boils down to retrieving the relevant data and computing the right signature share. Namely, retrieve
(`, R, k, χ) compute r = R|x-axis and send σi = km+rχ mod q to all. Erase the tuple (`, R, k, χ). See Figure 8
for full details.

FIGURE 8 (ECDSA Signing)

Round 1.

On input (sign, sid, `, i,m), if there is record of (sid, `, R, k, χ), do:

– Set r = R|x-axis and σi = km+ rχ.
– Send (sid, i, σi) to all Pj .

Erase (sid, `, R, k, χ) from memory.

Output.

Upon receiving (sid, j, σj) from all Pj , do:
– Set σ =

∑
j σj .

– Verify (r, σ) is a valid signature.
Output (signature, sid,m, r, σ).

Errors. When failing a verification step or receiving a complaint from any other Pj ∈ P , report a complaint and halt.

Figure 8: ECDSA Signing

4 Underlying Σ-Protocols
We present the Σ-protocols associated with the NP-relations of Section 2.2. The Schnorr ZK-PoK as well as
two of the protocols that are very similar to the ones below are moved to Appendix B.

4.1 Paillier Encryption in Range ZK (Πenc)
In Figure 9 we give a Σ-protocol for tuples of the form (I = ±2`, C; k, r0) satisfying relation Renc. Namely,
the Prover claims that he knows k ∈ ±2` such that C = (1 +N0)k · rN0

0 mod N2
0 . Let (N̂ , s, t) be an auxiliary

set-up parameter for the proof, i.e N̂ is a suitable (safe bi-prime) Blum modulus and s and t are random
squares in Z∗

N̂
(which implies s ∈ 〈t〉 with overwhelming probability).

Completeness. The protocol may reject a valid statement only if |α| ≥ 2`+ε − q2` which happens with proba-
bility at most q/2ε.

Honest Verifier Zero-Knowledge. The simulator samples z1 ← ±2`+ε, z2 ← Z∗N0
, z3 ← ±N̂ ·2`+ε, and S ← 〈t〉

by S = tλ mod N̂ where λ ← ±2` · N̂ , and sets A = (1 + N0)z1wN0 · K−e mod N2
0 and C = sz1tz3 · S−e

mod N̂ . We observe that the real and simulated distributions are 2 · q2−ε + 2−` ≈ 3q2−ε statistically close (by
choosing ` = ε as we do in the analysis). This follows from Facts D.6, D.7, which imply z1, z3 are (each) q2−ε
close to the real distribution, and S is 2−` close to the real distribution.
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FIGURE 9 (Paillier Encryption in Range ZK – Πenc)

• Setup: Auxiliary RSA modulus N̂ and Ring-Pedersen parameters s, t ∈ Z∗
N̂
.

• Inputs: Common input is (N0,K).
The Prover has secret input (k, ρ) such that k ∈ ±2`, and K = (1 +N0)k · ρN0 mod N2

0 .

1. Prover samples

α← ±2`+ε and


µ← ±2` · N̂
r ← Z∗N0

γ ← ±2`+ε · N̂
, and computes


S = sktµ mod N̂

A = (1 +N0)α · rN0 mod N2
0

C = sαtγ mod N̂

,

and sends (S,A,C) to the Verifier.

2. Verifier replies with e← ±q
3. Prover sends (z1, z2, z3) to the Verifier, where

z1 = α+ ek

z2 = r · ρe mod N0

z3 = γ + eµ

.

• Equality Checks: {
(1 +N0)z1 · zN0

2 = A ·Ke mod N2
0

sz1tz3 = C · Se mod N̂

• Range Check:
z1 ∈ ±2`+ε

The proof guarantees that k ∈ ±2`+ε.

Figure 9: Paillier Encryption in Range ZK – Πenc

Soundness. The soundness property follows from special soundness (see bellow) and the and the fact that the
set {(e, e′ ∈ (±q)2) s.t. e− e′ divides N0} is negligibly small compared to (±q)2 (since the divisors of N0 are
greater than 2` ≈ q).

Special Soundness. Let (S,A,C, e, z1, z2, z3) and (S,A,C, e′, z′1, z
′
2, z
′
3) denote two accepting transcripts and let

(∆e,∆z1 ,∆z2 ,∆z3) denote the relevant differences and assume that ∆e 6= 0 does not divide N0. Notice that if
∆e divides ∆z1 and ∆z3(in the integers), then all the values can be extracted without issue as follows: k and µ
are set to ∆z1/∆e and ∆z3/∆e. Finally, ρ can be extracted from the equality (z2/z

′
2)N0 = ((1 +N0)−k ·K)∆e

mod N2
0 and Fact D.2. Therefore, it suffices to prove the claim below.

Claim 4.1 (Fujisaki and Okamoto [30], MacKenzie and Reiter [46]). Assuming sRSA, it holds that ∆e | ∆z1

and ∆e | ∆z3 with probability at least 1− negl(κ).

Define the predicate ¬extract ≡ (∆e ��| ∆z1) ∨ (∆e ��| ∆z3). We show that if ¬extract occurs with noticeable
probability, then there is an algorithm S with black-box access to the Prover that can break sRSA with
noticeable probability. More precisely, we show how to break sRSA as follows. The strong-RSA challenge is
the second ring-Pedersen parameter t.15 We assume that S knows λ ∈ [N̂2] such that s = tλ mod N̂ , and λ
is uniform in [N̂2]. We emphasize that the choice of N̂2 rather than N̂ is crucial to the reduction.

Claim 4.2. If ∆e ��| (λ∆z1 + ∆z3), then sRSA breaks.

Proof of Claim 4.2. Define δ = 〈λ∆z1 + ∆z3 ,∆e〉 and let δe = ∆e/δ and δz = (λ∆z1 + ∆z3)/δ. Notice
that (Sνz tνe)δe = t mod N̂ , where (νe, νz) are the Bézout coefficients of δz and δe (i.e. νeδe + νzδz = 1),

15With probability 1/4, a uniform element in ZN̂ is a random quadratic residue, and therefore computing non-trivial roots of
t breaks sRSA, since t is a random quadratic residue.
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since Sδe = tδz . Deduce that the pair (Sνz tνe , δe) is a successful response to the strong-RSA challenge, if
∆e ��| (λ∆z1 + ∆z3).

To conclude, we rule out (bound the probability) that ∆e | λ∆z1 + ∆z3 and ¬extract; it suffices to bound the
probability that (∆e | λ∆z1 +∆z3)∧(∆e ��|∆z1).16 Write λ = λ0 +p0q0λ1, where (p0, q0) = ((p−1)/2, (q−1)/2)
. Since ∆z does not divide p0q0∆z1 (because 〈∆e, p0q0〉 = 1 with overwhelming probability) we remark that,
by Fact D.4, there exists a prime power ab such that ab | p0q0∆z1 , ab+1

��| ∆z1 , and ∆z = (λ0∆z1 + ∆z3) +
λ1p0q0∆z1 = 0 mod ab+1 and thus λ1 is uniquely determined modulo a. On the other hand, conditioned on
the Prover’s view, λ1 has full entropy since tλ = tλ0 mod N̂ , since t is a quadratic residue modulo N̂ , which
means that, if ∆e ��| ∆z1 , then the probability that ∆e | λ∆z1 + ∆z3 is at most 1

a + negl ≤ 1
2 + negl over the

Prover’s coins, where the negligible term is of the form (p+ q) · polylog(N̂)/N̂ . In conclusion, the probability
that ∆e ��| ∆z1 or ∆e ��| ∆z3 is at most the probability of solving the RSA challenge divided by (1/2 − negl),
which is negligible overall. In more detail,

Pr[¬extract] = Pr[∆e | (λ∆z1 + ∆z3) ∧ ¬extract] + Pr[∆e ��| (λ∆z1 + ∆z3) ∧ ¬extract]

= Pr[∆e | (λ∆z1 + ∆z3) ∧∆e ��| ∆z1 ] + Pr[sRSA]

≤ (1/2 + negl) · Pr[∆e ��| ∆z1 ] + Pr[sRSA]

≤ (1/2 + negl) · Pr[¬extract] + Pr[sRSA]

4.2 Paillier Operation with Group Commitment in Range ZK (Πaff-g)

In Figure 10 we give a Σ-protocol for tuples of the form (I = ±2`,J = ±2`
′
, C, Y,X;x, y, k, r0) satisfying

relation Raff-g. Namely, the Prover claims that he knows x ∈ ±2` and y ∈ ±2`
′
in range corresponding to

group-element X = gx (on the curve) and Paillier ciphertext Y = encN1(y) ∈ Z∗
N2

1
and C,D ∈ Z∗

N2
0
, such that

D = Cx(1 + N0)y · ρN0 mod N2
0 , for some ρ ∈ Z∗N0

. Let (N̂ , s, t) be an auxiliary set-up parameter for the
proof, i.e N̂ is a suitable (safe bi-prime) Blum modulus and s and t are random squares in Z∗

N̂
(which implies

s ∈ 〈t〉 with overwhelming probability).

Completeness. The protocol may reject a valid statement only if |α| ≥ 2`+ε − q2` or |β| ≥ 2`
′+ε − q2`′ which

happens with probability at most q/2ε−1, by union bound.

Honest Verifier Zero-Knowledge. The simulator samples z1 ← ±2`+ε, z2 ← ±2`
′+ε, z3 ← ±N̂ · 2`+ε, z4 ←

±N̂ · 2`+ε, w ← Z∗N0
and S, T ← 〈t〉 by S = tλ1 mod N̂ , T = tλ2 mod N̂ where λ1, λ2 ← ±2` · N̂ , and sets

A = Cz1(1+N0)z2wN0 ·D−e mod N2
0 and B = gz1X−e ∈ G and E = sz1tz3 ·S−e mod N̂ and F = sz2tz4 ·T−e

mod N̂ . We observe that the real and simulated distributions are at most 4q · 2−ε far apart, by union bound
and Facts D.6, D.7.

Soundness. The soundness property follows from special soundness (see bellow) and the and the fact that the
set {(e, e′ ∈ (±q)2) s.t. e− e′ divides N1} is negligibly small compared to (±q)2 (since the divisors of N1 are
greater than 2` ≈ q).

Special Soundness. Let (S, T,A,B,E, F, e, z1, z2, z3, z4, w, wy) and (S, T,A,B,E, F, e′, z′1, z
′
2, z
′
3, z
′
4, w

′, w′y) de-
note two accepting transcripts such that e 6= e′ and let ∆e, ∆z1 , ∆z2 , ∆z3 , ∆z4 denote the relevant differences,
and it is assumed that ∆e does not divide N1. Similarly to the previous range proof, we show that ∆e divides
(over the integers Z) each one of ∆z1 , ∆z2 , ∆z3 , ∆z4 and all the secrets can be extracted without issue. Using
the same argument as in the previous proof, we observe that the probability that ∆e does not divide ∆z1

or ∆z3 is at most Pr[sRSA]/( 1
2 − negl1) and the probability that ∆e does not divide ∆z2 or ∆z4 is at most

Pr[sRSA]/( 1
2 − negl2). Therefore, by union bound, we conclude that

Pr[¬extract1 ∨ ¬extract2] ≤ 2 · Pr[sRSA] ·
(

1

2
−max(negl1, negl2)

)−1

where ¬extractj denotes the event (∆e ��| ∆zj ∨∆e ��| ∆zj+2).
16Since ∆e �| ∆z3 and ∆e | λ∆z1 + ∆z3 implies ∆e �| ∆z1 .
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FIGURE 10 (Paillier Affine Operation with Group Commitment in Range ZK – Πaff-g)

• Setup: Auxiliary Paillier Modulus N̂ and Ring-Pedersen parameters s, t ∈ Z∗
N̂
.

• Inputs: Common input is (G, g,N0, N1, C,D, Y,X) where q = |G| and g is a generator of G.

The Prover has secret input (x, y, ρ, ρy) such that x ∈ ±2`, y ∈ ±2`
′
, gx = X, (1 +N1)yρN1

y = Y mod N2
1 , and

D = Cx(1 +N0)y · ρN0 mod N2
0 .

1. Prover samples α← ±2`+ε and β ← ±2`
′+ε and


r ← Z∗N0

, ry ← Z∗N1

γ ← ±2`+ε · N̂ , m← ±2` · N̂
δ ← ±2`+ε · N̂ , µ← ±2` · N̂

and computes



A = Cα · ((1 +N0)β · rN0) mod N2
0

Bx = gα ∈ G
By = (1 +N1)βrN1

y mod N2
1

E = sαtγ , S = sxtm mod N̂

F = sβtδ, T = sytµ mod N̂

and sends (S, T,A,B,E, F ) to the Verifier.

2. Verifier replies with e← ±q.
3. Prover Prover sends (z1, z2, z3, z4, w, wy) to the Verifier where

z1 = α+ ex

z2 = β + ey

z3 = γ + em

z4 = δ + eµ

w = r · ρe mod N0

wy = ry · ρey mod N1

• Equality Checks: 

Cz1(1 +N0)z2wN0 = A ·De mod N2
0

gz1 = Bx ·Xe ∈ G
(1 +N1)z2wN1

y = By · Y e mod N2
1

sz1tz3 = E · Se mod N̂

sz2tz4 = F · T e mod N̂

• Range Check: {
z1 ∈ ±2`+ε

z2 ∈ ±2`
′+ε

The proof guarantees that x ∈ ±2`+ε and y ∈ ±2`
′+ε.

Figure 10: Paillier Affine Operation with Group Commitment in Range ZK – Πaff-g
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4.3 Paillier-Blum Modulus ZK (Πmod)
In Figure 11 we give a Σ-protocol for tuples (N ; p, q) satisfying relation Rmod. The Prover claims that N is
a Paillier-Blum modulus, i.e. gcd(N,φ(N)) = 1 and N = pq where p, q are primes satisfying p, q ≡ 3 mod 4.
The following protocol is a combination (and simplification) of van de Graaf and Peralta [52] and Goldberg
et al. [34].

FIGURE 11 (Paillier-Blum Modulus ZK – Πmod)

• Inputs: Common input is N . Prover has secret input (p, q) such that N = pq.

1. Prover samples a random w ← ZN of Jacobi symbol −1 and sends it to the Verifier.

2. Verifier sends {yi ← ZN}i∈[m]

3. For every i ∈ [m] set:

– xi = 4
√
y′i mod N , where y′i = (−1)aiwbiyi for unique ai, bi ∈ {0, 1} such that xi is well defined.

– zi = y
N−1 mod φ(N)
i mod N

Send {(xi, ai, bi), zi}i∈[m] to the Verifier.

• Verification: Accept iff all of the following hold:

– N is an odd composite number.

– zNi = yi mod N for every i ∈ [m].

– x4i = (−1)aiwbiyi mod N and ai, bi ∈ {0, 1} for every i ∈ [m].

Figure 11: Paillier-Blum Modulus ZK – Πmod

Completeness. Probability 1 by construction.

Soundness. We first observe that the probability that yi admits an N -th root if 〈N,φ(N)〉 6= 1 is at most
1/ 〈N,φ(N)〉 ≤ 1/2. Therefore, with probability 2−m, it holds that 〈N,φ(N)〉 = 1, and, in particular, N is
square-free. Next, if N is the product of more than 3 primes, the probability that {yi,−yi, wyi,−wyi} contains
a quadratic residue (which is necessary for being a quartic), for every i, is at most (1/2)m, for any w.

On the other hand, if N = pq and either q or p ≡ 1 mod 4, then the probability that {yi,−yi, wyi,−wyi}
contains a quartic for every i is at most (1/2)−m for the following reason. Write L : Z∗N 7→ {−1, 1}2 such that
L(x) = (a, b) where a is the Legendre symbol of x with respect to p and b is the Legendre symbol of x with
respect to q. For fixed w, the table below upper bounds the probability that {yi,−yi, wyi,−wyi} contains a
quartic depending on the vallue of L(−1) and L(w); in red is the probability that it contains a square, and
in blue is the probability that a random square is also a quartic, since the set contains exactly one square in
those cases.

L(w) \ L(−1) (1, 1) (−1, 1) (1,−1) (−1,−1)
(1, 1) 1/4 1/2 1/2 1/2

(−1, 1) 1/2 1/2 1/2 1/2
(1,−1) 1/2 1/2 1/2 1/2

(−1,−1) 1/2 1/2 1/2 1/2

It follows that the probability that a square-free non-Blum modulus passes the above test is 2−m, at most.
Overall, the probability of accepting a wrong statement is at most 2−m+1.

Honest Verifier Zero-Knowledge. Sample a random γi and set z′i = γ4
i , and xi = γNi and y′i = z′Ni = x4

i

mod N . Sample a random u with Jacobi symbol −1 and set w = uN mod N . Finally sample iid random bits
(ai, bi)i=1...m and do:

– For each i ∈ [m], set yi = (−1)aiw−biy′i and zi = (−1)aiu−biz′i

– Output [w, {yi}i, {(xi, ai, bi), zi}i].
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Knowing that −1 is not a square modulo N with Jacobi symbol 1, the real and simulated distributions are
identical.

4.3.1 Extraction of Paillier-Blum Modulus Factorization

We stress that the above protocol is zero-knowledge only for honest Verifiers, which we strongly exploit in the
security analysis of our threshold signature protocol. Specifically, assuming the Prover solves all challenges
successfully, if the Verifier sends yi’s for which he secretly knows vi such that v2

i = (−1)aiwbiyi mod N , then,
for some i, the Verifier can deduce v′i such that v′i 6= vi,−vi mod N and v′2i = yi mod N with overwhelming
probability. Thus, a malicious Verifier may efficiently deduce the factorization of N using the pair (vi, v

′
i)

(c.f. Fact D.5).
We strongly exploit the above in the security analysis our protocol. Specifically, when the adversary queries

the random oracle to obtain a challenge for the ZK-proof that his Paillier-Blum modulus is well formed, the
simulator programs the oracle accordingly in order to extract the factorization of the modulus. Namely:

Extraction. Sample random {vi ← ZN}i∈[m] and iid bits {(ai, bi)}i∈[m] and set yi = (−1)aiw−biv2
i mod N .

Send {yi}i to the Prover. If N is a Paillier-Blum modulus, then −1 is not a square modulo N with Jacobi
symbol 1, and thus the yi’s are truly random, as long as w has Jacobi symbol −1.

Remark 4.3. We point out that the extraction technique will only work if N is a Paillier-Blum modulus. This
is the main reason why in the auxiliary info phase, we instruct the parties to “prove it twice”. That way, we
make sure that the modulus is Paillier-Blum, and then the simulator may accurately program the oracle to
extract.

4.4 Ring-Pedersen Parameters ZK (Πprm)
The Σ-protocol of Figure 12 for the relation Rprm is a ZK-protocol for proving that s belongs to the multi-
plicative group generated by t modulo N .

FIGURE 12 (Ring-Pedersen Parameters ZK – Πprm)

• Inputs: Common input is (N, s, t). Prover has secret input λ such that s = tλ mod N .

1. Prover samples {ai ← Zφ(N)}i∈[m] and sends Ai = tai mod N to the Verifier.

2. Verifier replies with {ei ← {0, 1}}i∈[m]

3. Prover sends {zi = ai + eiλ mod φ(N)}i∈[m] to the Verifier.

• Verification: Accept if tzi = Ai · sei mod N , for every i ∈ [m].

Figure 12: Ring-Pedersen Parameters ZK – Πprm

Completeness. Probability 1, by construction.

Soundness. Suppose that s /∈ 〈t〉. First observe that for any z ∈ φ(N), it holds that s−1 · tz /∈ 〈t〉. Next
notice that if A /∈ 〈t〉, then tz 6= A mod N , for every z. It follows that the adversary generates an accepting
transcript if he can guess correctly all the challenges, which happens with probability 2−m.

Zero-Knowledge. Sample {zi ← ±N/2}i∈[m] and {ei ← {0, 1}}i∈[m] and set Ai = s−ei · tzi . The real and
simulated distributions are statistically m · (1− φ(N)/N)-close.

Finally the Pedersen parameters can be generated as follows; sample τ ← Z∗N and λ← Zφ(N) and set t = τ2

mod N and s = tλ mod N .
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4.4.1 On the Auxilliary RSA moduli and the ring-Pedersen Parameters

The auxilliary moduli always belong to the Verifier and must be sampled as safe bi-prime RSA moduli.
Furthermore, the pair (s, t) should consist of non-trivial quadratic residues in ZN̂ . In the actual setup, we
sample N̂ as a Blum (safe-prime product) integer and s = τ2d mod N̂ and t = τ2 mod N for a uniform
τ ← ZN̂ . During the auxiliary info phase, the (future) Verifier proves to the Prover that s ∈ 〈t〉.

The second issue which was implicitly addressed in the proofs above is how to sample uniform elements in
〈t〉. The naive idea is to sample random elements in φ(N̂) by sampling elements in N̂ . However, if N̂ has small
factors,17 then small values close to zero will have noticeably more weight than other values, modulo φ(N̂).
To fix this issue, we instruct the Prover (and the simulator in the proof of zero-knowledge) to sample elements
from ±2` · N . That way, modulo φ(N̂), the resulting distribution is 1

2` -far from the uniform distribution in
φ(N), by Fact D.7.

Choice of Moduli. With respect to our ECDSA protocol, for the Πenc protocol, N0 is the Paillier modulus
of the Prover and and N̂ is the Paillier modulus of the Verifier. And for the Πaff-g protocol, N0, N̂ are the
Paillier modulus of the Verifier, which is “reciever” of the homomorphic evaluation, and N1 is the modulus of
the Prover, which is the homomorphic “evaluator”. Consult the Pre-Signing protocol at Figure 7 for all details.

5 Security Analysis
In this section we show that our protocol UC-realizes a proactive ideal threshold signature functionality (Ftsig

from Figure 14). The present section presumes familiarity with the UC framework (see Appendix A for a brief
overview). We adopt the random oracle model for our security analysis and we assume that all hash values
(e.g. for the Fiat-Shamir Heuristic) are obtained by querying the random oracle, defined next.

5.1 Global Random Oracle
We use the formalism of Canetti et al. [18], Camenisch et al. [9] for incorporating the random oracle model
within the UC framework. This formalism accounts for the fact that the random oracle is an abstraction of an
actual public hash function that is used globally across the analyzed system and its environment. Specifically
the random oracle is modeled as an ideal functionality that is globally accessible, both in the real system and
also in the ideal system. Canetti et al. [18], Camenisch et al. [9] provide a number of alternative formulations
for the functionality that represents the random oracle. Here we use the simplest (and most restrictive)
formulation, called the strict random oracle.18

The functionality takes inputs of arbitrary size and is parametrized by the output length h. When queried
on a new message m ∈ {0, 1}∗, the functionality returns a value uniformly chosen from {0, 1}h. All future
queries for m return the same value.

FIGURE 13 (The Global Random Oracle Functionality H)

Parameter: Output length h.

• On input (query,m) from machine X , do:

– If a tuple (m, a) is stored, then output (answer, a) to X .
– Else sample a← {0, 1}h and store (m, a).

Output (answer, a) to X .

Figure 13: The Global Random Oracle Functionality H
17If N has very small factors it’s not an issue. The more problematic range of parameters is (as a function of the security

parameter κ) N̂ = p̂q̂ where q ∼ poly(κ) and p ∼ 2κ/poly(κ)
18The fact that our analysis works even with the strict formalization of the random oracle means that it would work with any

of the other (more elaborate) variants discussed in Canetti et al. [18], Camenisch et al. [9].
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5.2 Ideal Threshold Signature Functionality
Next, we describe our ideal threshold signature functionality. The functionality is largely an adaptation of the
(non-threshold) signature functionality from Canetti [11], with an important addition to account for proactive
security. See Figure 14 for the formal description of the functionality.

High-Level Description. When activated by all parties, the functionality requests a public key X and a
verification algorithm V from the ideal-world adversary S. Then, when all parties invoke the functionality to
obtain a signature for some message m, the functionality requests a “signature” σ from S and records that σ
is a valid signature for m. Finally, when the functionality is asked to verify some signature σ for a message
m, the functionality either returns true/false if the pair (m,σ) is recorded as valid/invalid, or it applies the
verification algorithm V and returns its output.

Proactive Security. The functionality is augmented with a corrupt/decorrupt and key-refresh interface cap-
turing proactive security as follows: (1) the adversary may register parties as corrupted throughout the (ideal)
process, (2) the adversary may decide to decorrupt parties, and those parties are recorded as “quarantined”,
and (3) if the key-refresh interface is activated, then the functionality erases all records of quarantined players.
At any point in time, if the functionality records that all parties are corrupted/quarantined simultaneously,
then the functionality effectively cedes control of the verification process to the adversary.

5.3 Security Claims
We show that our protocol UC-realizes functionality (Ftsig from Figure 14. Our proof follows by contraposition;
under suitable cryptographic assumptions, we show that if our protocol does not UC-realize functionality Ftsig,
then there exists a PPT algorithm that can distinguish Paillier ciphertexts or there exists a PPT existential
forger for the standard/enhanced ECDSA algorithm, in contradiction with the presumed security of the Paillier
cryptosystem and the ECDSA signature scheme, respectively.

Theorem 5.1. Assuming semantic security of the Paillier cryptosystem, strong-RSA assumption, and exis-
tential unforgeability of ECDSA, it holds that the protocol from Figure 3 UC-realizes functionality Ftsig from
Figure 14.

Theorem 5.2. Assuming semantic security of the Paillier cryptosystem, strong-RSA assumption, and en-
hanced existential unforgeability of ECDSA, it holds that the protocol from Figure 4 UC-realizes functionality
Ftsig from Figure 14 in the presence of the global random oracle functionality H.

The rest of this section is dedicated to the analysis (simulators & proof) of Theorem 5.2. The analysis for
Theorem 5.1 is essentially identical.

5.3.1 Proof of Theorem 5.2

Theorem 5.2 is a corollary of the following two lemmas.

Lemma 5.3. If the protocol from Figure 4 does not UC-realize functionality Ftsig, then there exists an en-
vironment Z that can forge signatures for previously unsigned messages in an execution of the protocol from
Figure 4.

Proof. The claim is immediate, since the ideal-process simulation is perfect (c.f. Section 5.4).

Lemma 5.4. The following holds assuming strong-RSA. If there exists an environment Z that can forge
signatures for previously unsigned messages in an execution of the protocol from Figure 4, then there exists
algorithms R1 and R2 with blackbox access to Z such that at least one of the items below is true.

1. R1 wins the semantic security experiment for Paillier with probability noticeably greater than 1/2.

2. R2 wins the enhanced existential unforgeability experiment for (non-threshold) ECDSA with noticeable
probability.
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FIGURE 14 (Ideal Threshold Signature Functionality Ftsig)

Key-generation:

1. Upon receiving (keygen, ssid) from some party Pi, interpret ssid = (. . . ,P ), where P = (P1, . . . ,Pn).

– If Pi ∈ P , send to S and record (keygen, ssid,Pi).
– Otherwise ignore the message.

2. Once (keygen, ssid, j) is recorded for all Pj ∈ P , send (pubkey, ssid) to the adversary S and do:

(a) Upon receiving (pubkey, ssid,X,V) from S, record (ssid,X,V).

(b) Upon receiving (pubkey, ssid) from Pi ∈ P , output (pubkey, ssid,X) if it is recorded.
Else ignore the message.

Signing:

1. Upon receiving (sign, sid = (ssid, . . .),m) from Pi, send to S and record (sign, sid,m, i).

2. Upon receiving (sign, sid = (ssid, . . .),m, j) from S, record (sign, sid,m, j) if Pj is corrupted.
Else ignore the message.

3. Once (sign, sid,m, i) is recorded for all Pi ∈ P , send (sign, sid,m) to the adversary S and do:

(a) Upon receiving (signature, sid,m, σ) from S,
– If the tuple (sid,m, σ, 0) is recorded, output an error.
– Else, record (sid,m, σ, 1).

(b) Upon receiving (signature, sid,m) from Pi ∈ P :

– If (sid,m, σ, 1) is recorded, output (signature, sid,m, σ) to Pi.
– Else ignore the message.

Verification:

Upon receiving (sig-vrfy, sid,m, σ,X) from a party Q, send the tuple (sig-vrfy, sid,m, σ,X) to S and do:

– If a tuple (m,σ, β′) is recorded, then set β = β′.

– Else, ifm was never signed and not all parties in P are corrupted/quarantined, set β = 0. “Unforgeability”

– Else, set β = V(m,σ,X).

Record (m,σ, β) and output (istrue, sid,m, σ, β) to Q.

Key-Refresh:

Upon receiving key-refresh from Pi ∈ P , send key-refresh to S, and do:

– If not all parties in P are corrupted/quarantined, erase all records of (quarantine, . . .).

Corruption/Decorruption:

1. Upon receiving (corrupt,Pj) from S, record Pj is corrupted.
2. Upon receiving (decorrupt,Pj) from S:

– If not all parties are corrupted/quarantined do:

If there is record that Pj is corrupted, erase it and record (quarantine,Pj).

– Else do nothing.

Figure 14: Ideal Threshold Signature Functionality Ftsig
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Proof of Lemma 5.4. Let Z denote environment that can forge signatures for previously unsigned messages in
an execution of the protocol from Figure 4, and let T ∈ poly denote an upper bound on the number of times
the auxiliary-info phase is ran before the forgery takes place. Let N1, . . . , NT and (X,x) denote Pallier public
keys and ECDSA key-pair respectively, sampled according to the specifications of the protocol, and let R1 and
R2 denote the processes from Sections 5.4.1 and 5.4.2, respectively. Consider the following three experiments:

Experiment A. Run Z with R1 on parameters (X,x) and (Nk, ck)k=1,...,T where ck = encNk(1).

Experiment B. Run Z with R1 on parameters (X,x) and (Nk, ck)k=1,...,T where ck = encNk(0).

Experiment C. Run Z with R2 on parameter X.

In words, process R1, dubbed the Paillier-distinguisher, simulates an interaction of the honest parties with
the environment as follows. In the key-generation phase, R1 chooses the master-secret key x, and chooses the
honest parties secret keys such that the master public key is equal to X = gx (this step requires rewinding
the environment). Next, at the beginning of each key-refresh phase, R1 chooses a random honest party Pb
and proceeds as follows. For all honest parties except Pb, the simulation simply follows the instructions of
the protocol. For Pb, the simulation chooses Paillier keys drawn from N1 . . . , NT (viewed as a stack) and its
messages are computed by (1) extracting the environments’ secrets and (2) using the homomorphic properties
of the Paillier cryptosystem. To elaborate further on the latter, we highlight that R1 takes as input a sequence
of ciphertexts c1, . . . , cT , because Pb’s ciphertexts under his own key, say N t, are computed as transformations
on ct, rather than as fresh encryptions. Furthermore, all of Pb’s proofs are simulated using the relevant
simulator and programming the oracle accordingly. Pre-signing and signing are simulated in a similar fashion.

Depending on the underlying plaintext value of ct (either zero or one), the transcript of the interaction
of R1 with Z is either “true”, i.e. statistically close to the actual transcript of the real interaction between
honest parties and environment, or is “fake” because all of the special party’s ciphertexts are encryptions of
zero. Finally, we remark that the special party’s identity is rerandomized with every refresh-phase and the
experiment is reset (by rewinding) to the last refresh, if the environment requests to corrupt the special party.

Claim 5.5. Assuming strong-RSA, if Z outputs a forgery in an execution of the protocol from Figure 4 in
time τ with probability α, then Z outputs a forgery in experiment A in time τ · n log(n) with probability at
least α2 − negl(κ).

Claim 5.6. Assuming semantic security of the Paillier cryptosystem, if Z outputs a forgery in experiment
A in time τ with probability α, then Z outputs a forgery in experiment B in time τ with probability at least
α− negl(κ).

The second process R2, dubbed the ECDSA-Forger, simulates the interaction of the environment with the
honest parties using only the public key and an enhanced signing oracle for plain (non-threshold) ECDSA,
and it does not take any auxiliary input. The simulation proceeds as follows. In the key-generation phase,
R2 chooses the honest parties’ public keys such that the master public key is equal to X (this step requires
rewinding the environment). To be more precise, the simulator chooses values as prescribed for all-but-one
of the honest parties, and assigns public key share Xb = X ·

∏
j 6=bXj for the randomly chosen special party.

The remaining stages of the protocol are simulated in a similar fashion (by “compensating” for the unknown
values using the special party) with the following important difference:

• The presigning simulation invokes the enhanced oracle to obtain a point on the curve for (future) signing.

• The signing simulation requests signatures from the oracle for points that were released earlier.

Finally, similarly to the Paillier distinguisher, we remark that the special party’s identity is rerandomized with
every refresh-phase and the experiment is reset (by rewinding) to the last refresh, whenever the environment
requests to corrupt the special party.

Claim 5.7. If Z outputs a forgery in experiment B in time τ with probability α, then Z outputs a forgery in
experiment C in time τ with probability α.
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5.4 Simulators
UC Simulator. As mentioned in the introduction, the description of the ideal-process adversary is essen-
tially trivial. Namely, the simulator samples all values for the honest parties as prescribed, and follows the
instructions of the protocol, for every phase. In broad strokes:

1. At the end of the key generation phase, the simulator sends the obtained public key X together with
the ECDSA verification algorithm to the functionality.

2. At the end of each signing phase for some message msg, the simulator sends the computed signature
(r, σ) to the functionality.

3. When the environment decides to corrupt/decorrupt a certain party, the simulator forwards the request
to the functionality.

5.4.1 Paillier Distinguisher (R1)

The Paillier distinguisher R1 is parametrized by T and Paillier public keys and ciphertexts N1, . . . , NT and
C1, . . . , CT , and an ECDSA key-pair (X,x). Let ctr denote a counter variable initialized as ctr = 0. Let L
denote a list of query-answers that the simulator keeps in memory, initialized as an empty set. Algorithm R1

is defined by the following interaction with an environment Z.

Oracle Calls.

Upon receiving (query,m) = (query, ssid′, srid′, . . .) from Z, do:
1. If (ssid′, srid′) 6= (ssid, srid) return (answer, a = H(m)).
2. Else if m = ([sid, j, ψ], N) such thatM(vrfy,Πmod, N, ψ) = 1, then:

– Program the oracle and extract p, q such that N = pq (c.f. Section 4.3.1).
– Add the relevant tuple to L.

3. Else
(a) If (m, a) ∈ L, return (answer, a).
(b) Else sample a uniformly at random, return (answer, a) and add (m, a) to L.

Key-Generation.

The environment writes (keygen, ssid = (. . . ,P ), i) on the input tape of Pi, for each Pi and corrupts
a strict subset of parties C ( P . Invoke S1(ssid,C,L, X) and obtain output and obtain output b,
L, srid, {xk}k 6=b and X = (X1, . . .). Set xb = x−

∑
j 6=b xj mod q.

Aux-Info.

The environment writes (aux-info, sid, `, i) of Pi and corrupts a strict subset of parties C ( P .
Increment ctr = ctr + 1 and set aux = ({xi}i/∈C , N ctr, Cctr) Invoke S2(sid,L,C, aux) and obtain
output b and {Nj , sj , tj , (Cjk)k}j∈P and (pi, qi)i∈H . Reassign {xj = xj +

∑
k decj(C

j
k) mod q}k 6=b

and xb = x−
∑
k 6=b xk mod q.

Presigning.

The environment writes (pre-sign, sid, `, i) of Pi and corrupts a strict subset of parties C :=
C ∪ C ′ ( P . Sample kb and γb ← Fq and set x\b = (xj)j 6=b and aux = (cctr, kb, xb, γb). Invoke
S3(sid,L,C, b,x\b, aux) and obtain output {(sid, `, R, ki, χi)}i/∈C . .

Signing.

The environment writes (sign, sid, `,m, i) of Pi and corrupts a strict subset of partiesC := C∪C ′ (
P .

1. Retrieve R and {(ki, χi)}i/∈C , set r = R`|x-axis.
2. Hand over {(sid, i, σi = kim+ rχi)}i/∈C .
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Dynamic Corruptions.

– If Z corrupts Pi ∈H, then reveal that party’s (simulated) secret state.

– Else go back to (?) at the beginning of of the last invocation of simulator S2.

Erase all items added to L since then.

5.4.2 ECDSA Forger (R2)

Our ECDSA forger R2 is parametrized by a public key X, and is defined by the following interaction with an
environment Z and an enhanced ECDSA signing oracle for public key X. Let L denote a list of query-answers
that the simulator keeps in memory, initialized as empty.

Oracle Calls.

Upon receiving (query,m) = (query, ssid′, srid′, . . .) from Z, do:
1. If (ssid′, srid′) 6= (ssid, srid) return (answer, a = H(m)).
2. Else if m = ([sid, j, ψ], N) such thatM(vrfy,Πmod, N, ψ) = 1, then:

– Program the oracle and extract p, q such that N = pq (c.f. Section 4.3.1).
– Add the relevant tuple to L.

3. Else
(a) If (m, a) ∈ L, return (answer, a).
(b) Else sample a uniformly at random, return (answer, a) and add (m, a) to L.

Key-Generation.

The environment writes (keygen, ssid = (. . . ,P ), i) on the input tape of Pi, for each Pi and corrupts
a strict subset of parties C ( P . Invoke S1(ssid,C,L, X) and obtain output and obtain output b,
L, srid, {xk}k 6=b and X = (X1, . . .).

Aux-Info.

The environment writes (aux-info, sid = (ssid, srid, . . .), i) of Pi and corrupts a strict subset of
parties C ( P . Invoke S2(sid,L,C, aux) and obtain output b and {Nj , sj , tj , (Cjk)k}j∈P and
(pi, qi)i/∈C . Reassign {xj =

∑
k decj(C

j
k)}j 6=b and xb =⊥.

Presigning.

The environment writes (pre-sign, sid, `, i) of Pi and corrupts a strict subset of parties C :=
C ∪C ′ ( P . Set x\b = (xj)j 6=b, and do:

(a) Call the ECDSA oracle to obtain a point R ∈ G. Sample δ ← Fq and set aux = (R, δ).
(b) Invoke S3(sid,L,C, b,x\b, aux) and obtain output (sid, `, η0, η1) and (sid, `, R, ki, χi)i∈H .

Signing.

The environment writes (sign, sid, `,m, i) on the input tape of Pi and corrupts C := C ∪C ′ ( P .

– Retrieve (sid, `, η0, η1) and (sid, `, R, ki, χi)i∈H .
– Call the ECDSA oracle to sign m on point R to obtain signature (r, σ) and do:
(a) For Pi ∈H, compute σi as prescribed and hand over (sid, i, σi).
(b) For Pb, set σb = σ −mη0 − rη1 and and hand over (sid, b, σb).

Dynamic Corruptions.

– If Z corrupts Pi ∈H, then reveal that party’s (simulated) secret state.

– Else go back to (?) in round 2 of the auxiliary info simulator S2.

Erase all items added to L since then.

35



5.5 Standalone Simulators
Notation 5.8. Write Ssch,Smul,Sdec

j ,S log
j ,Senc

j ,Saff
j for the ZK-simulators of Πsch,Πmul,Πdec

j ,Πlog
j ,Πenc

j ,Πaff
j .

5.5.1 Key-Generation Simulator (S1)

The simulator S1(ssid,C,L, X) takes input the session identifier ssid, a list L, a set of parties C ( P and
proceeds as follows.

Round 1.

– Initialize ext = 0.

– Sample {Vi}i/∈C in the prescribed domain and send (ssid, i, Vi) to Z, for each Pi /∈ C.

Round 2.

(†) When obtaining (ssid, j, Vj) for all Pj ∈ C,

1. If ext = 0 compute all values as prescribed and hand over {(ssid, i, sridi, Xi, Ai, ui)}i/∈C to Z
2. Else choose Pb ← P \C uniformly at random and let H = P \C ∪ {Pb} and do:

(a) For Pi ∈H, sample all items as prescribed and hand over (ssid, i, sridi, Xi, Ai, ui) to Z.
(b) For special party Pb, set Xb = X ·

∏
j 6=bX

−1
j .

Invoke ZK simulator ψb = (Ab, . . .)← Ssch(Xb, . . .).
Hand over (ssid, b, sridb, Xb, Ab, ub) to Z, where (sridb, ub) are sampled as prescribed.

Add the relevant tuples to L.

Round 3.

When obtaining all tuples (ssid, j, sridj , Xj , Aj , uj),for every Pj ∈ C, add {ψj}j∈C to E and do:

Set srid = ⊕jsridj and hand over {(ssid, i, ψi)}i/∈C to Z. Add the relevant tuples to L

Output.

1. If ext = 0, set ext = 1 and go back to (†) in round 2. Delete the pairs added to L since that point.

2. Else, extract {xj}j /∈C .
Output b, L, srid, {xk}k 6=b.

5.5.2 Auxiliary Info. & Key-Refresh Simulator (S2)

The auxiliary info. simulator S2(sid,L,C, aux) takes input sid = (ssid, srid, . . .), a list L, a set of parties
C ( P , and auxiliary information aux =⊥ or aux = ({xi}i/∈C , N∗, C).

Round 1.

(?) Choose Pb ← P \C uniformly at random and set H = P \C ∪ {Pb}.
1. For each Pi ∈ C, do:

Sample all items as prescribed and hand over (sid, i,Ni, si, ti, Vi, ψi, ψ̂i, ψ
′
i) to Z.

2. For Pb, do:
(a) If aux =⊥, sample (Nb, pb, qb, sb, tb) as prescribed and Vb uniformly at random.
(b) If aux 6=⊥, set Nb = N∗ and sample (sb, tb) as prescribed and Vb uniformly at random.

Invoke 
ψb ← Smod(Nb, . . .)

ψ′b ← Smod(Nb, . . .)

ψ′′b ← Sprm(sb, tb, . . .)

Hand over (sid, b,Nb, sb, tb, Vb, ψb, ψ
′
b, ψ
′′
b ) to Z.
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Add the relevant pairs for the corresponding oracle calls to L.

Round 2.

When obtaining all tuples (sid, j, Vj , Nj , sj , tj , ψj , ψ
′
j , ψ
′′
j ), for every Pj ∈ C, do:

For each Pi /∈ C, do:
(a) If aux 6=⊥,

– Sample {xki }k uniformly subject to 0 =
∑
k x

k
i and set {Xk

i = gx
k
i }k.

– Set {Cki = enck(xki )}k 6=b and Cbi = Cx
b
i · encb(0).

– Invoke the ZK-simulator {ψj,i,b ← S log
j (Cbi , g,X

b
i . . .)}j 6=i and {πj,b ← S fac

j (Nb, . . .)}j 6=b.
Compute all other proofs as prescribed.

(b) If aux =⊥,
– Sample {xki }k 6=b and set {Xk

i = gx
k
b }k 6=b and Xb

i = idG · g−
∑

k 6=b x
k
i .

– Set {Cki = enck(xki )}k 6=b and Cbi = encb(0).
– Invoke {ψj,i,b ← S log

j (Cbi , X
b
i , . . .)}j 6=i, compute all other proofs as prescribed.

Sample uias prescribed and hand over the tuple (sid, i,Y i, ui, πj,i{ψj,i,k, Cki }k) for each j ∈ P .

Add the revant tuples to L.

Output.

Output {Nj , sj , tj , (Cjk)k}j∈P and (pj , qj)j /∈P , where pb, qb are defined only if aux =⊥.

5.5.3 Pre-Signing Simulator (S3)

The pre-signing simulator S3(sid,L,C, b,x\b, aux) takes inputs sid = (. . . ,P ,X,N , s, t), a list L and a set
of parties C ( P , an index b and x\b = (xj)j 6=b such that Pb /∈ C and gxj = Xj for j 6= b, and auxiliary
information aux = (R, δ) or aux = (c, xb, kb, γb).

Round 1.

1. For Pi ∈H, compute all items as prescribed and hand over (sid, i,Ki, Gi, ψ
0
j,i) to Z.

2. For Pb, sample set

Kb =

{
ckb · encb(0) if aux 6=⊥
encb(0) otherwise

Gb =

{
cγb · encb(0) if aux 6=⊥
encb(0) otherwise

Invoke the ZK-simulators ψ0
j,b ← Senc

j (Kb, . . .).

Hand over (sid, b,Kb, Gb, ψ
0
j,b) to Z and add the relevant tuples to L.

Round 2.

– Upon receiving (sid, j,Kj , Gj , . . .) retrieve (kj , γj)

– When obtaining all relevant tuples, do:

1. For Pi ∈ H, send the tuple (sid, i,Γi, Dj,i, Fj,i, D̂j,i, F̂j,i, ψj,i, ψ̂j,i, ψ
′
j,i) to Z, for each j 6= i,

where all values are computed as prescribed.

37



2. For Pb, sample {(α`,b, α̂`,b ← J 2}` 6=b and set D̂`,b = enc`(α̂`,b) and D`,b = encj(α`,b), and

F̂b,` =

{
ck`xb−α̂`,b · encb(0) if xb 6=⊥
encb(0) otherwise

Fb,` =

{
ck`γb−α`,b · encb(0) if γb 6=⊥
encb(0) otherwise

Γb =

{
gγb if γb 6=⊥
Rδ · g−

∑
j 6=b γj otherwise

Then, for each j 6= b, invoke the ZK-simulator
ψj,b ← Saff

j (Dj,b,Kj , . . .),

ψ̂j,b ← Saff
j (D̂j,b,Kj , . . .)

ψ′j,b ← S
log
j (Γb, g,Gb, . . .)

Hand over the tuple (sid, b,Γb, Dj,b, Fj,b, D̂j,b, F̂j,b, ψj,b, ψ̂j,b, ψ
′
j,b) , for each j 6= b.

Add the relevant pairs for the corresponding oracle calls to L.

Round 3. Upon receiving all (sid, j,Γj , Di,j , Fi,j , D̂i,j , F̂i,j , ψi,j , ψ̂i,j , ψ
′
i,j) for j 6= i, do:

1. If aux = (R, δ), Set ∆b = gδ ·
∏
j 6=b Γkj and set

η0 =
∑
j 6=b kj

η1 =
∑
j,i 6=b kixj +

∑
j 6=b α̂j,b + β̂j,b

δb = δ −
∑
j 6=b αj,b + βj,b +

∑
i,j 6=b kiγj

Invoke ZK-simulator ψ′′j,b ← S
log
j (∆b,Γ,Kb, . . .), for j 6= b.

Hand over {(sid, i, δi,∆i, ψ
′′
j,i)}j 6=i to Z, where {δi,∆i, ψ

′′
j,i}i∈H are computed as prescribed.

2. Else, retrieve {βj,k, β̂j,k}j,k, and set{
χb = kbxb +

∑
j 6=b(kbxj − β̂j,b) + (kjxb − α̂j,b)

δb = kbγb +
∑
j 6=b(kbγj − βj,b) + (kjγb − αj,b)

.

Invoke ZK-simulator ψ′′j,b ← S
log
j (∆b,Γ,Kb, . . .), for j 6= b.

Hand over {(sid, i, δi,∆i, ψ
′′
j,i)}j 6=i to Z, where {δi,∆i, ψ

′′
j,i}i∈H are computed as prescribed.

Output. Upon receiving all (sid, j, δj ,∆j , ψ
′′
i,j) for j 6= i, do:

1. If aux = (R, δ), output (sid, η0, η1) and (sid, `, R, ki, χi)i∈H .

2. Else, set R = Γ(
∑

j δj)−1

and output (sid, `, R, ki, χi)i/∈C .
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A Overview of the UC Model
We present a brief overview of the Universally Composable (UC) security framework [12]; see the full details
there.19 In the rest of this section we provide a quick reminder of the framework.

Recall that a definition of security within the UC framework consists of two main components: First,
one needs to specify the real model, namely the model of computation that represents the actual execution
environment, the capabilities of the entities executing the protocol, and the capabilities of the attackers under
consideration. Next, one needs to specify the ideal functionality, namely the expected behavior of the system,
as a function of the various inputs provided to the system (both legitimate an adversarial ones) and the
information gathered by the adversary. Crucially, “expected behavior” pertains both to correctness properties
regarding desired outputs, and also to secrecy properties regarding internal values that should not be observable
from the outside.

The UC framework also provides with a basic formal model for representing a system of communicating
computational element, as well as way to express protocols, or distributed programs. It also formalizes the
general concept of protocol π UC-realizing an ideal functionality F , with the interpretation that from the
point of view of any external entity, interacting with the protocol π is no worse than interacting with the
ideal functionality F. The framework also allows for a general security-preserving composition theorem that,
essentially, guarantees that any composite protocol ρ that was designed with the use of F as an idealized
component, will continue to preserve all its security properties even when the (potentially many) instances of
F are replaced by instances of π.

The model for executing protocol an n-party protocol π. For the purpose of modeling the protocols
in this work, we consider a system that consists of the following n + 2 machines, where each machine is a
computing element (say, an interactive Turing machine) with a specified program and and identity. First,
we have n machines with program π and identities P1, . . . ,Pn. Next, we have a machine A representing the
adversary an a machine Z representing the environment. All machines are initialized on a security parameter
κ and are polynomial in κ. The environment Z is activated first, with an external input z. Z activates the
parties, chooses their input and reads their output. A can corrupt parties and instruct them to leak information
to A and to perform arbitrary instructions. Z and A communicate freely throughout the computation. The
real process terminates when the environment terminates. Let REALπ,A,Z(1κ, z) denote the environment’s
output in the above process.

Communication between machines over a network is modeled by way of subroutine-machines that represent
the behavior of the actual communication network under consideration. In this work we assume for simplicity
that the parties are connected via an authenticated-but-lossy broadcast channel. This is modeled as follows:
The parties, P1, . . . ,Pn, all have a channel machine, C, as subroutine. when party Pi inputs a message m
to C, C records (Pi,m), and reports (Pi,m) to A. When some other party Pj queries C for new messages, C
informs A of the query, waits for A to determine a subset s of all the messages that were sent so far and not
yet delivered to Pj , and returns this subset to Pj .

Ideal Process. the ideal process is identical to the real process, with the exception that now the machines
P1, . . . ,Pn do not run π, Instead, they all forward all their inputs to a subroutine machine, called the ideal
functionality F . Functionality F then processes all the inputs locally and returns outputs to P1, . . . ,Pn. Let
IDEALF,S,Z(1κ, z) denote the environment’s output in the above process.

Definition A.1. We say that π UC-realizes F if for every real adversary A, there exists an ideal adversary
S such that for every environment Z it holds that

{REALπ,A,Z(1κ, z)}z∈{0,1}∗,κ∈N
c≡ {IDEALF,S,Z(1κ, z)}z∈{0,1}∗,κ∈N.

The Adversarial Model. The adversary can corrupt parties adaptively throughout the computation. Once
corrupted, the party reports all its internal state to the adversary, and from now on follows the instructions
of the adversary. We also allow the adversary to leave, or decorrupt parties. A decorrupted party resumes

19Specifically, [12, Section 2 in Version of 2020] presents a self-contained account of a simplified variant of the framework. This
variant fully suffices for the purpose of representing and analysing the protocols in this work.

43



executing the original protocol and is no longer reporting its state to the adversary. Still, the adversary knows
the full internal state of the decorrupted party at the moment of decorruption.

We note that this adversarial model is more realistic than the “static” variant where the identity of the
corrupted parties is determined in advance and never changes.

Handling global functionalities. As mentioned above, the basic model of executing some protocol π only
involves the parties of a single instance of π, in addition to Z and A. This restriction greatly simplifies the
analysis, but sometimes it is important to be able to formalize the concept of a protocol π that UC-realizes an
ideal functionality F in the presence of G, where G is some global construct that exists irrespective of π or F .
(For instance, G can be a reference string or a PKI. In our setting we will model a cryptographic hash function
as a global random oracle H. This way, we can guarantee that the analysis captures even cases where the
same hash function is used not only in the analyzed protocol but also in other parts of the system.) For this
purpose we slightly augment the model of computation, to include G in both the ideal and the real models.

In [17] it is shown how to augment the model of protocol execution of the general UC framework to
incorporate global functionalities. However in our case , namely for the basic model of [12, Section 2], it
is possible to capture UC with global functionalities within the plain UC framework. Specifically, having π
UC-realize ideal functionality F in the presence of global functionality G is represented by having the protocol
[π,G] UC-realize the protocol [F ,G] within the plain UC framework. Here [π,G] is the n + 1-party protocol
where machines P1, . . . ,Pn run π, and the remaining machine runs G. Protocol [F ,G] is defined analogously,
namely it is the n+ 2-party protocol where the first n+ 1 machines execute the ideal protocol for F , and the
remaining machine runs G.
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B More Sigma Protocols

B.1 Schnorr PoK (Πsch)
Figure 15 is a Σ-protocol for (X;x) in the relation Rsch.

FIGURE 15 (Schnorr PoK – Πsch)

• Inputs: Common input is (G, q, g,X) where q = |G| and g is generators of G.
The Prover has secret input x such that gx = X.

1. Prover samples α← Fq and sends A = gα to the verifier.

2. Verifier replies with e← Fq
3. Prover sends z = α+ ex mod q to the verifier.

• Verification: Verifier checks that gz = A ·Xe.

Figure 15: Schnorr PoK – Πsch

B.2 Group Element vs Paillier Encryption in Range ZK (Πlog)
Figure 16 is a Σ-protocol for the relation Rlog.

FIGURE 16 (Knowledge of Exponent vs Paillier Encryption – Πlog)

• Setup: Auxiliary safe bi-prime N̂ and Ring-Pedersen parameters s, t ∈ Z∗
N̂
.

• Inputs: Common input is (G, q,N0, C,X, g).
The Prover has secret input (x, ρ) such that x ∈ ±2`, and C = (1 +N0)x · ρN0 mod N2

0 and X = gx ∈ G.

1. Prover samples

α← ±2`+ε and


µ← ±2` · N̂
r ← Z∗N
γ ← ±2`+ε · N̂

, and computes


S = sxtµ mod N̂

A = (1 +N0)α ·RN0 mod N2
0

Y = gα ∈ G
D = sαtγ mod N̂

,

and sends (S,A, Y,D) to the verifier.

2. Verifier replies with e← ±q
3. Prover sends (z1, z2, z3) to the verifier, where 

z1 = α+ ex

z2 = r · ρe mod N0

z3 = γ + eµ

.

• Equality Checks: 
(1 +N0)z1 · zN0

2 = A · Ce mod N2
0

gz1 = Y ·Xe ∈ G
sz1tz3 = D · Se mod N̂

• Range Check:
z1 ∈ ±2`+ε

The proof guarantees that x ∈ ±2`+ε.

Figure 16: Knowledge of Exponent vs Paillier Encryption – Πlog
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B.3 Paillier Operation with Paillier Commitment ZK (Πaff-p)
Figure 17 is a Σ-protocol for the relation Raff-p.

FIGURE 17 (Paillier Affine Operation with Paillier Commitment ZK-Proof – Πaff-p)

• Setup: Auxiliary safe bi-prime N̂ and Ring-Pedersen parameters s, t ∈ Z∗
N̂
.

• Inputs: Common input is (N0, N1, D,C,X, Y ) where q = |G| and g a generator G.

The Prover has secret input (x, y, ρ, ρx, ρy) such that x ∈ ±2`, y ∈ ±2`
′
, (1 +N1)xρN1

x = X and (1 +N1)yρN1
y = Y and

D = Cx(1 +N0)y · ρN0 mod N2
0 .

1. Prover samples α← ±2`+ε and β ← ±2`
′+ε and

r ← Z∗N0
,

rx, ry ← Z∗N1
,

γ ← ±2`+ε · N̂ , m← ±2` · N̂
δ ← ±2`+ε · N̂ , µ← ±2` · N̂

and computes


A = Cα · ((1 +N0)β · rN0) mod N2

0

Bx = (1 +N1)αrN1
x , By = (1 +N1)βrN1

y mod N2
1

E = sαtγ , S = sxtm mod N̂

F = sβtδ, T = sytµ mod N̂

and sends (A,Bx, By, E, S, F, T ) to the verifier.

2. Verifier replies with e← ±q.
3. Prover sends (z1, z2, z3, z4, w, wx, wy) to the verifier where

z1 = α+ ex

z2 = β + ey

z3 = γ + em

z4 = δ + eµ

w = r · ρe mod N0

wx = rx · ρex mod N1

wy = ry · ρey mod N1

• Equality Checks: 

Cz1(1 +N0)z2wN0 = A ·De mod N2
0

(1 +N1)z1wN1
x = Bx ·Xe mod N2

1

(1 +N1)z2wN1
y = By · Y e mod N2

1

sz1tz3 = E · Se mod N̂

sz2tz4 = F · T e mod N̂

• Range Check: {
z1 ∈ ±2`+ε

z2 ∈ ±2`
′+ε

The proof guarantees that x ∈ ±2`+ε and y ∈ ±2`
′+ε.

Figure 17: Paillier Affine Operation with Paillier Commitment ZK-Proof – Πaff-p
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B.4 No Small Factor Proof (Πfac)
Figure 18 is a Σ-protocol for the relation Rfac.

FIGURE 18 (No Small Factor Proof)

• Setup: Auxiliary safe bi-prime N̂ and Ring-Pedersen parameters s, t ∈ Z∗
N̂
.

• Inputs: Common input RSA modulus N0. The Prover has secret input (p, q) such that p, q < ±
√
N0 · 2`.

1. Prover samples

α, β ← ±2`+ε ·
√
N0 and


µ, ν ← ±2` · N̂
ρ← ±2` ·N0 · N̂
r ← ±2`+ε ·N0 · N̂
x, y ← ±2`+ε · N̂

, and computes


P = sptµ, Q = sqtν mod N̂

A = sαtx mod N̂

B = sβty mod N̂

T = Qαtr mod N̂

,

and sends (P,Q,A,B, T, ρ) to the verifier.

2. Verifier replies with e← ±q
3. Prover sets ρ̂ = ρ− νp and sends (z, u, v) to the verifier, where

z1 = α+ ep

z2 = β + eq

w1 = x+ eµ

w2 = y + eν

v = r + eρ̂

.

• Equality Checks: Verifier set R = sN0tρ and checks
sz1tw1 = A · P e mod N̂

sz2tw2 = B ·Qe mod N̂

Qz1tv = T ·Re mod N̂

• Range Check:
z1, z2 ∈ ±

√
N0 · 2`+ε

The proof guarantees that each p, q > 2` (assuming 22`+ε ≈
√
N0).

Figure 18: No Small Factor Proof

Special Soundness. Analogously to the previous range proofs, the extractor can get p, q, µ, ν, ρ̂ to decommit P & Q
and Qptρ̂ = spqtνp+ρ̂ = sN0tρ. Notice that if N0 6= pq, then the binding property of Pedersen is broken which, in
turn, breaks strong RSA.

HVZK. Sample P,Q ← 〈t〉. Sample z1, z2 ← ±2`+ε ·
√
N0 and w1, w2 ← ±2`+ε · N̂ and v ← 2`+ε · N0 · N̂ and

ρ← 2` ·N0 · N̂ . Finally, sample e and set A,B and T accordingly.
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C Complexity Benchmarks
We provide computation and communication cost-analysis of our protocol’s components in Table 1, mostly
derived from the cost-analysis of each of our NIZKs, presented in Table 2. In Tables 3 and 4 we show concrete
values for the Pre-Signing and Aux Info. & Key Refresh, over all rounds (but not including communication
time) for Bitcoin’s EC secp256k1 (and corresponding parameters); our implementation (written in C) ran on
an Ubuntu Desktop with an Intel Quad-Core i7-7600 CPU @ 2.80GHz – without any optimization.

Component Rounds Computation Communication

Key Generation 3 (2 + 2n)G 4

Aux Info. & Key Refresh 2 (n+ 2n2)G + (400 + 321n+ 3n2)N + (n+ 2n2)N2 3865 + 16n+ 55n2

Pre-Signing 3 (4 + 9n)G + 57nN + (2 + 32n)N2 35 + 444n

Signing 1 0 1

Table 1: Costs for each of the n parties, over all rounds. G,N,N2 denote computing exponentiation in
the EC group G and rings ZN ,ZN2 , respectively. Communication corresponds to the amount of EC elements
transmitted (with ZN and ZN2 elements counted as respective 8, 16 EC elements to achieve required security).
Hash (random oracle) invocations are insignificant, so were omitted from computational costs, but were counted
as a single EC element for communication (which is in line with practice).

ZK-Proof Computation (Prover) Computation (Verifier) Communication

Πsch 1G 2G 2

Πenc 5N + 1N2 3N + 2N2 54

Πlog 1G + 5N + 1N2 2G + 3N + 2N2 55

Πaff-g 1G + 10N + 3N2 2G + 6N + 5N2 112

Πaff-p 11N + 4N2 6N + 7N2 136

Πmod 160N 80N 1280

Πprm 80N 160N 1280

Table 2: To ensure 80-bit statistical security and 128-bit computational security, we chose m = 80 in the
Πmod and Πprm. In the remaining ZK-Range-Proofs, `, `′, ε are respectively 1, 5, 2 factor of the Elliptic Curve
element bit-length (e.g. for the Bitcoin curve secp256k1, ` = 256, `′ = 1280, ε = 512).

n AI&KR Pre-Signing
2 2228 801

3 3032 1183

4 3896 1566

5 4820 1949

6 5804 2332

7 6848 2715

8 7952 3098

9 9116 3864

Table 3: Computation, in milliseconds

n AI&KR Pre-Signing
2 133 30

3 143 45

4 156 59

5 172 73

6 192 88

7 216 102

8 243 116

9 274 131

Table 4: Communication, in kilobytes
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D Number Theory & Probability Facts
Fact D.1. Suppose that λN = xk mod M such that x ∈ Z∗M . Then λ ∈ Z∗M .

Proof. There exists y ∈ Z∗M such that xy = 1 mod M . Therefore λ · (λN−1 · yk) = λN · yk = xkyk = 1
mod M .

Fact D.2. Suppose that λN = xk mod M , where k and N are coprime and x ∈ Z∗M . Then, there exists
y ∈ Z∗M such that yk = λ mod M .

Proof. Since k and N are comprime, there exists u, v ∈ Z such that ku + Nv = 1. Thus λku+Nv = λ, and
consequently (λu · xv)k = λku · (λN )v = λ mod M. For the penultimate equality, we apply Fact D.1 and we
remark that λu and xv are well defined in Z∗M .

Remark D.3. We stress that computing a k-th root of λ in Z∗M can be done efficiently via repeated application
of Euclid’s extended algorithm and exponentiation modulo M , i.e. computing the Bézout coefficients (u, v),
as well as λu mod M and xv mod M .

Fact D.4. Let a, c ∈ Z such that c ��| a. There exists a prime power pd such that pd−1 | a, pd ��| a and pd | c.

Proof. Any prime factor that divides c but not a will do (taking d = 1). If no such p exists, i.e. if every prime
factor of c divides a, let p1, . . . , pn denote the prime factors of a, and write a =

∏n
j=1 p

di
i and c =

∏n
j=1 p

d′j
j

(maybe some d′j = 0). If d′i ≤ di, for every i, then c | a. Therefore, there exists i such that d′i > di, and thus
(p, d) = (pi, di + 1) will do.

Fact D.5. Let N = pq be the product of two odd primes and let x, y and z ∈ Z∗N such that x2 = y2 = z
mod N and x 6= y,−y mod N . Then gcd(x− y,N) ∈ {p, q}.

Proof. Let u, v denote the Bézout coefficients of the extended Euclid’s algorithm such that up + vq = 1 and
notice that gcd(p, v) = gcd(q, u) = 1. By Chinese remainder theorem, since x 6= y,−y mod n, it follows that
x − y = 2cuq mod N or x + y = 2cvp mod N for unique element c ∈ Z∗p or c ∈ Z∗q , respectively. In either
case, the claim follows.

Fact D.6. Define i.i.d. random variables a, b chosen uniformly at random from ±R, and let δ ∈ ±K. It
holds that SD(a, δ + b) ≤ K/R .

Fact D.7. Let N be the product of exactly two arbitrary primes p and q. Let a ← Z`·N and b ← Zφ(N). It
holds that SD(a mod φ(N), b) ≤ 1

` .

Proof. Let Q = b` ·N/φ(N)c observe that SD(a mod φ(N), b) ≤ Pr[a ≥ Q ·φ(N)]. Thus, Pr[a ≥ Q ·φ(N)] ≤
Pr[a ≥ ` ·N − φ(N)] = φ(N)/(` ·N) ≤ 1

` .
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E Assumptions
Definition E.1 (Semantic Security). We say that the encryption scheme (gen, enc, dec) is semantically secure if
there exists a negligible function ν(·) such that for every A it holds that Pr[PaillierSec(A, 1κ) = 1] ≤ 1/2+ν(κ).

Definition E.2 (Existential Unforgeability). We say that a signature scheme (gen, sign, vrfy) is existentially
unforgeable if there exists a negligible function ν(·) such that for every A and every n ∈ poly it holds that
Pr[ExUnf(A, n, 1κ) = 1] ≤ ν(κ).

Definition E.3 (Strong-RSA). We say that strong-RSA is hard if there exists a negligible function ν(·) such
that for every A it holds that Pr[sRSA(A, 1κ) = 1] ≤ ν(κ).

FIGURE 19 (Semantic Security Experiment PaillierSec(A, 1κ))

1. Generate a key pair (pk, sk)← gen(1κ)

2. A chooses m0, m1 ∈M on input (1κ, pk).

3. Compute c = encpk(mb) for b← {0, 1}.
4. A outputs b′ on input (1κ, pk,m0,m1, c).

• Output: PaillierSec(A, 1κ) = 1 if b = b′ and 0 otherwise.

Figure 19: Semantic Security Experiment PaillierSec(A, 1κ)

FIGURE 20 (Existential Unforgeability Experiment ExUnf(A,H, n, 1κ))

1. Generate a key pair (pk, sk)← gen(1κ) and let (m0, σ0) = (∅, ∅).
2. For i = 1 . . . n(κ)

– Choose mi ← AH(1κ, pk,m0, σ0, . . . ,mi−1, σi−1)

– Compute σi = signpk(mi).

3. AH outputs (m,σ) on input (1κ, pk,m0, σ0, . . . ,mn(κ), σn(κ)).

• Output: ExUnf(A,H, n, 1κ) = 1 if vrfypk(m,σ) = 1 and m /∈ {m1, . . . ,mn(κ)} and 0 otherwise.

Figure 20: Existential Unforgeability Experiment ExUnf(A,H, n, 1κ)

FIGURE 21 (Strong-RSA Experiment sRSA(A, 1κ))

1. Generate an RSA modulus N ← N (1κ).

2. Sample c← Z∗N .
3. A outputs (m, e) on input (1κ, N,m).

• Output: sRSA(A, 1κ) = 1 if e > 1 and me = c mod N , and 0 otherwise.

Figure 21: Strong-RSA Experiment sRSA(A, 1κ)

E.1 Enhanced Existential Unforgeability of ECDSA
E.1.1 O(1)-Enhanced Forgeries

Lemma E.4. If ECDSA is existentially unforgeable, then there exists a negligible function ν such that for any
PPTM A, for every T ∈ poly(κ) and S ∈ O(1) it holds that Pr[EnhancedECDSA(A, S, T, κ) = 1] ∈ ν(κ).
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FIGURE 22 (ECDSA Multi-Enhanced Experiment EnhancedECDSA(A,H, S, T, 1κ))

0. Choose a group-order-generator tuple (G, q, g)← gen(1κ).

1. Generate a key-pair (x← Fq, X = gx) and let (R0,m0,σ0) = (∅, ∅, ∅).

2. For i = 1 . . . T

– Sample Ri = {Ri,j = gk
−1
i,j ← G}j≤S .

– For j = 1 . . . S

(a) Choose mi,j ← AH(G, g,R0,m0,σ0, . . . ,Ri−1,mi−1,σi−1,Ri,mi,<j , σi,<j)

(b) Compute σi,j = signx(mi,j ; ki,j).

Set mi = {mi,j}j and σi = {σi,j}j .

3. AH outputs (m,σ) on input (G, g,R0,m0,σ0, . . . ,RT ,mT ,σT ).

• Output: EnhancedECDSA(A,H, T,G) = 1 if vrfyX(m,σ) = 1 and m /∈ {mi,j}i,j and 0 otherwise.

Figure 22: ECDSA Multi-Enhanced Experiment EnhancedECDSA(A,H, S, T, 1κ)

Proof. Let Q ∈ poly denote the number of oracle queries that the adversary makes in between each signature
query. We show that any adversary that wins the experiment above with noticeable probability p yields an
efficient adversary that forges signatures with the same probability in the (plain) ECDSA experiment and
complexity most T ·QSlog(Q) ∈ poly queries. Define process R with black-box access to A as follows: choose
Q messages uniformly at random denoted {m′i}i∈[Q]. Then choose I∗ ⊂ [Q] of size S uniformly at random and
invoke the (plain) ECDSA oracle on m′i∗ , for every i∗ ∈ I∗. Write (Ri∗ ,Mi∗ = H(m′i∗), σi∗) for the signature.
Next do:

1. Hand over {Ri∗}i∗∈I∗ to A

2. For i = 1 . . . Q, each time A queries the oracle on mi, hand over (answer,Mi = H(m′i)).

3. When A queries the ECDSA oracle on mj∗ , do

– If j∗ 6= i∗ rewind the adversary and repeat.

– Else hand over σ.

Observe that Pr[∀i∗, i∗ = j∗] = 1

(Q
S)·S!

∈ O(1/QS) and that the reduction will guess every j∗ with probability

close to 1 after QS · log(Q) tries.

E.1.2 Multi-Enhanced Forgeries: Preliminaries

Brief overview of the Generic Group Model. Let (G, q, g) denote a group-order-generator tuple and
let G ⊂ {0, 1}∗ denote an arbitrary set of size q. The generic group model is defined via a random bijective
map µ : G→ G and a group-oracle O : G×G→ G such that µ(gh) = O(µ(g), µ(h)), for every g, h ∈ G. In
group-theoretic jargon, (G, ∗ ) is isomorphic to (G, · ) via the group-isomorphism µ, letting ∗ : G ×G → G
such that G ∗H = O(G,H).

EC-specific abstraction. We further assume that there exists an efficient 2-to-1 map τ : G→ Fq such that
τ(H) = τ(H−1). We further assume that this map is efficiently invertible τ−1 : Fq → {{G,H} s.t. G,H ∈
G} ∪ {⊥} such that

τ−1 : x 7→

{
{H,H−1} if ∃H s.t. τ(H) = x

⊥ otherwise
.
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Notation E.5. Define π such that π(X) = ∅ and π(X1, . . . , X`) = (X1, X2, X1X2) ‖π(X1X2, X3 . . . , X`), for
every X,X1, . . . X` ∈ G. Furthermore, for X ∈ G and k ∈ Fq let (ki)i≤q0 denote the binary representation of
k and define

(Xk) =

{
(X,X,X2, . . . , Xk/2, Xk/2, Xk) if k is a power of 2

(idG, X,X) ‖ (Xk1·2) ‖ . . . ‖ (Xkq0 ·2
q0

) ‖ π(Xk0 , . . . , Xkq02q0
) otherwise

,

where q0 = blog qc.

FIGURE 23 (ECDSA Experiment in Generic Group w/ Enhanced Signing Oracle)

• Group Oracle O:

– On input (X,Y ), return Z = X ∗ Y .

Set Q = Q ‖ (X,Y, Z).

• Signing oracle SO:

– On input pubkey, sample G← G and x← Fq and return (G,H = Gx).

– On input pnt-request, sample k ← Fq, return R = Gk
−1

, add R to R and record (R, k).

– On input (sign,msg, R), if R ∈ R retrieve (R, k) and do:

1. Return σ = k(m+ rx), for r = τ(R) and m = H(msg).
2. Set Q = Q ‖ (Gm/σ) ‖ (Hr/σ) ‖ (Gm/σ, Hr/σ, R).
3. Remove R from R and add (R,msg, σ) to S.

Figure 23: ECDSA Experiment in Generic Group w/ Enhanced Signing Oracle

Let A denote an algorithm interacting with O,SO in the experiment described in Figure 23. Consider the
tuple of all oracle calls Q = (Q1, . . . , Q3t) = (X1, Y1, Z1, . . . , Xt, Yt, Zt), where each pair (Xi, Yi) denotes the
input to O and Zi denotes the output.

Definition E.6. We say that Qi ∈ {Xj , Yj} is independent if (Qi, . . .) /∈ S and Qi /∈ {Qk, Q−1
k }, for every

k < i.

Lemma E.7 (Brown [5, 6]). The following holds with all but negligible probability for every efficient algorithm
A interacting with O. Let B1 . . . B` denote the independent elements of Q and let Q ∈ Q. Suppose that A
outputs two sequences (α1, . . . , α`) and (α′1, . . . , α

′
`) such that

Q =
∏
k≤`

Bαk

k =
∏
k≤`

B
α′k
k .

Then, with probability 1 − 1/poly(q) it holds that αi = α′i mod q, for every i ∈ [`]. Furthermore, if Q = Zj,
then α1, . . . , α` are efficiently computable from (Xi, Yi, Zi)i<j, the set S, and random oracle H.

E.1.3 Multi-Enhanced Forgeries: Proof

E.1.4 Multi-Enhanced Forgeries: Proof

Theorem E.8. Let A be an algorithm in the generic group experiment with enhanced signing oracle making
` queries to the random oracle. If A outputs a forgery with probability α, then there exists B making at most
` queries to the random oracle such that

Pr
e←Fq

[(x, y)← B(e) s.t. H(x)/H(y) = e] ≥ α/t2 − 1/poly(q),

where t is an upper bound on the total number of queries to the group and signing oracle.
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The above theorem follows from the claim below by straightforward averaging argument.

Claim E.9. Let A be an algorithm in the generic group experiment with enhanced signing oracle making `
queries to the random oracle. If A outputs a forgery with probability α, then there exists B making at most `
queries to the random oracle such that

Pr
e1,...,et←Fq

[(x, y)← B(e1, . . . , et) : ∃i s.t. H(x)/H(y) = ei] ≥ α/t− 1/poly(q)

where t is an upper bound on the total number of queries to the group and signing oracle.

Proof. Using the notation above, for a tuple of query calls Q = (Q1 . . .) and signed points S, let φ : G→ (Fq)∗
denote the (efficient) function that maps group-elements to their representation with respect to the independent
points of Q. Namely φ(Qi) =

∏
k B

αk

k as (uniquely except with negligible probability) determined by (Qj)j<i
and S. Consider the reduction from Figure 24 and let A denote a generic forger. In the end of the experiment,
assume A outputs x ∈ {0, 1}∗ and (F,ψ) such that F = GH(x)/ψ ∗Hτ(F )/ψ and (. . . , x, . . .) /∈ S. We begin by
showing that in the following cases (depending on F ), the transcript of the reduction yields a “collision” (x, y)
in the random oracle of the form H(x)/H(y) = e for e← Fq.

Case 1. F was returned to the adversary in Item 2 of the group operation simulation. Using the notation
from Figure 24, it holds that F = GαHβ = GH(x)/ψHf/ψ for f = α−1H(y)eβ. Consequently f/ψ = β and
H(x)/ψ = α and we deduce that H(x)/H(y) = (αψ) · (f−1α−1eβ) = e · (βψf−1) = e.

Case 2. F was returned to the adversary in Item 3 of the group operation simulation, and, for (R, y, σ) ∈ S,
it holds that F = GαHβRγ and αr−βm = 0. Using the notation from Figure 24, it holds that F = GαHβRγ

for τ(F ) = e · r and r = τ(R). Next, retrieve (R, y, σ) from S such that R = GH(y)/σHτ(R)/σ and deduce
that F = Gα+γm/σHβ+γr/σ. Deduce that β/r + γ/σ = f/ψ = er

ψ , and, since α = mβ/r, observe that
m(β/r + γ/σ) = χ/ψ which implies that e = χ/m = H(x)/H(y).

Case 3. F was chosen by the simulator in Item 1 of the signing operation simulation. It holds that F =
GαHβRγ = Gα+γm/σHβ+γr/σ = GH(x)/ψHf/ψ for σ set as prescribed in Item 1 of the signing operation
simulation i.e.

σ = γ(wrf−1 −m) · (α− wf−1β)−1

Therefore, letting χ = H(x), since χ/ψ = α+ γm/σ and f/ψ = β + γr/σ, it follows that

χ(β + γr/σ) = f(α+ γm/σ) ⇔

fα− χβ =
γ

σ
· (χr −mf) ⇔

fα− χβ =
γ

σ
· (χr −mf) ⇔

(fα− χβ)(χr −mf)−1 = (wrf−1 −m)−1(α− wf−1β) ⇔
(w − χ)(rα− βm) = 0

which implies H(x)/H(y) = e for w = H(y)e since rα− βm 6= 0.

Simulation Indistinguishability. Next we show that if the adversary forges in the real world, then the
adversary outputs a forgery in Figure 24. It is enough to argue that the (simulated) points and signatures
satisfy the same distribution as in the real world (when A interacts with a “real” group and signing oracle).

Notice that, when simulating the group-oracle, all the points are simply random uniform elements in G
(since R ← τ−1(r) for r ← Fq). The nontrivial part is to show that the signatures are well-distributed. In
the real world, σ = k(H(x) + rx) for a random k, so the signatures are simply uniform elements in Fq (since
in the GGM elements k and r = τ(R) are independent). We show that the sigmas’s are (almost) uniform
elements in Figure 24 by showing that the map w 7→ γ(wrζ−1 −m) · (α−wζ−1β)−1 is injective when γζ 6= 0
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and rα−mβ 6= 0. So, for u, v ∈ Fq, if

γ(urζ−1 −m) · (α− uζ−1β)−1 = γ(vrζ−1 −m) · (α− vζ−1β)−1 ⇔ (1)

(urζ−1 −m) · (α− vζ−1β) = (vrζ−1 −m) · (α− uζ−1β) ⇔ (2)
urα+mvβ = vrα+muβ ⇔ (3)

(u− v)(rα−mβ) = 0 (4)

Therefore, for random w, the (simulated) signature is uniform over Fq \ {αζβ−1}.20 By Lemma E.7, we
conclude that if A outputs a forgery in the real world, then A outputs a forgery in Figure 24 with probability
1− 1/poly(q).

Putting everything together. We conclude by calculating the probability that the transcript contains
a “collision” in the random oracle of the form H(x)/H(y) = e. Let (F, x, ψ) denote A’s forgery. If F was
returned to A in Item 2 of the group operation simulation (case 1), then clearly the transcript yields a suitable
collision. The other two cases are slightly more complicated because the reduction is required to guess the
attempted forgery. For instance, in Item 3 of the group-operation simulation (case 2), the reduction picks a
random (presigning) point R hoping that (F, x, ψ) together with (R,msg, σ) ∈ S will result in a “collision”.
Similarly, in Item 1 of the signing-operation simulation (case 3), the reduction chooses a random Z hoping
that F = Z.

In more detail, assume that F was first calculated of the form GαHβ
∏
iR

γi
i and deduce the following about

F = Gα
′
Hβ′Rγ

′
where R denotes the last point to be signed on m = H(msg) among {Ri}i. If α′r+ β′m = 0,

then R was chosen by the reduction in Item 3 of the group operation with probability at least 1/t (since t is
an upper bound on the number of group-queries), or, if α′r + β′m 6= 0, then F was chosen by the reduction
in Item 1 of the signing operation with probability at least 1/t (since t is an upper bound on the number of
presigning-queries).

In summary, it holds that the transcript contains a suitable collision with probability α/t− 1
poly(q) .

20αζβ−1 corresponds to the point where the function is undefined.
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FIGURE 24 (Reduction in Generic Group w/ Enhanced Signing Oracle)

• Input: e1, . . . , et ∈ Zq and λ ∈ N and PPTM A.

– Initialize: ctr = 1.

• Group operation simulation:

– On input (X,Y ) from A to the group-oracle, do:

1. If φ(Z) = φ(X ∗ Y ) for some Z ∈ Q, return Z.
2. Else If φ(X ∗ Y ) = GαHβ for α, β 6= 0 do:

(a) Sample y ← Fq and set w = ectr · H(y) and Z ← τ−1(α−1wβ).
If τ−1(α−1wβ) =⊥, repeat the above step. Otherwise, increment ctr and carry on.

(b) Return Z.
3. Else if φ(X ∗ Y ) = GαHβ∏

i≤`R
γi
i for Ri ∈ R and γi 6= 0 do:

(a) Choose i← [`] and set Z ← τ−1(ectr · ri), for ri = τ(Ri).
If τ−1(ectr · ri) =⊥, repeat the above step. Otherwise, increment ctr and carry on.

(b) Return Z.
4. Else return Z ← G.

Set Q = Q ‖ (X,Y, Z).

• Signing operation simulation:

– On input pubkey from A to the signing-oracle, return (G,H)← G2.

– On input pnt-request from A to the signing-oracle, return R← G, and add R to R.

– On input (sign,msg, R) from A to the signing-oracle, if R ∈ R set m = H(msg) and r = τ(R), and do:

1. Choose Z ← Q such that φ(Z) = GαHβRγ , for γ 6= 0 and βm− rα 6= 0.
(a) Sample y and set w = ectr · H(y) and σ = γ(wrζ−1 −m) · (α− wζ−1β)−1, for ζ = τ(Z).

Increment ctr.
(b) If no such Z exists set σ ← Fq.

2. Return σ and remove R from R, and add (R,msg, σ) to S.

Set Q = Q ‖ (Gm/σ) ‖ (Hr/σ) ‖ (Gm/σ, Hr/σ, R).

Figure 24: Reduction in Generic Group w/ Enhanced Signing Oracle
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