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Abstract

The surge of interest in decentralization-enabling technologies sparked by the recent success of Bitcoin
and other blockchains has led to several new challenges in cryptography and protocol design. One such
challenge concerns the widely used digital signature scheme – ECDSA – that has in particular been
chosen to secure transactions in Bitcoin and several other blockchain systems. To empower decentralized
interoperability between such blockchains one would like to implement distributed custody over Bitcoin
accounts, which technically can be realized via a threshold ECDSA protocol. Even though several
threshold ECDSA protocols already exist, as we argue, due to lack of robustness in signature generation,
they are not well suited for deployment scenarios with large committees of parties, out of which a
significant fraction might be malicious or prone to DDoS attacks. We propose a new threshold ECDSA
protocol that improves upon the state-of-the-art solutions by enabling robustness and fault attributability
during signature generation. In addition to that, we improve the signing time and bandwidth of previous
solutions by moving expensive operations that are oblivious to the signed message to a separate setup
phase. Finally, we back our theoretical results via an empirical evaluation of our protocol in large-scale
experiments in LAN and WAN settings.

1 Introduction
There has been recently a surge of interest in blockchain technologies, tracing back to the significant success
of Bitcoin, the digital currency introduced by Nakamoto [Nak08]. The main postulate underlying blockchain
is that of decentralization, i.e., reducing the power and impact of central authorities in banking, finance,
economy and beyond. Nakamoto’s idea to achieve decentralization was to design a distributed system,
with hundreds, thousands or even millions participants that is able to replace central authorities. Thus,
consequently, the trust in these central coordinators is transferred towards the community of all participants
running the system and the technology that guarantees the system’s security.

The blockchain technology heavily builds upon classical work on reliable broadcast [Bra87], consensus
protocols [Lam78, CL99, DLS88], multi-party computation [BGW88, GM82, Bea91] and cryptographic prim-
itives such as digital signatures [RSA78], encryption [ElG85] or zero-knowledge proofs [BFM88]. On the other
hand, the interest in blockchain has also led to important new developments on all these topics, including the
recent work on efficient consensus protocols [MXC+16, YMR+19, GLSS19], signature aggregation [BGLS03],
verifiable delay functions [BBBF18, Wes19] and succinct non-interactive zero-knowledge proofs [Gro10]. Sig-
nificant progress has been also made in the field of threshold cryptography, whose main goal is to design
threshold versions of classical protocols for signing, encryption etc. Here, by a threshold protocol for, say,
signing we mean a protocol that is run by a possibly large group of parties, such that a signature under a par-
ticular message can be successfully generated if and only if a predetermined fraction of all the participating
parties agree for this to happen. Threshold protocols of this type has been known for a long list of central-
ized cryptographic protocols such as RSA signatures and encryption [DK01], ElGamal encryption, Schnorr
signatures [SS01] or BLS signatures [Bol03]. In contrast to that, the widely used DSA (Digital Signature
Algorithm) or its successor ECDSA (Elliptic Curve DSA) had no practical threshold variants. Gennaro et
∗The research was partially funded by the Aleph Zero Foundation.
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al. [GJKR01] introduced a protocol that requires 2N/3 out of N parties to sign a message, but is vulnerable
to an adversary controlling N/3 or more parties (which can steal the private key in this case). At this point
it was unclear whether one can achieve threshold optimality, i.e., a protocol that for a prespecified threshold
1 ≤ t ≤ N allows any t parties to sign, at the same time being resistant to an adversary controlling t − 1
parties. There has been a significant amount of work to achieve it in the simpler (yet still far from simple)
two-party case [MR04, Lin17, DKLS18] yet only in 2016, threshold-optimal protocols were obtained for the
general case [GGN16, BGG17], followed by more practical protocols by Gennaro and Goldfeder [GG18] and
by Lindell and Nof [LN18] in 2018.

The importance of ECDSA has been elevated by its use in the design of Bitcoin and several other
blockchains. More specifically, each Bitcoin account is associated with an ECDSA public key, and each
transaction sent from such an account is confirmed by an appropriate ECDSA signature. While the choice
of ECDSA as the Bitcoin signature scheme does not impact regular users, it is a key technical aspect when
it comes to interoperability with other blockchains, in particular building bridges that, roughly speaking,
allow to deposit BTC on a different blockchain (such as for instance Ethereum) and move it there freely,
or withdraw upon request. Technically, the issue with building such a bridge stems from limitations on the
Bitcoin side, most importantly, no suitable support for scripting (smart contracts). This effectively forces
such a system to emulate a single user of the Bitcoin blockchain. One particular approach to build such
a bridge between Bitcoin and Ethereum is wBTC [WBT19] which uses a trusted central authority to hold
custody over the corresponding Bitcoin account. Such a solution is not quite satisfactory though, as Bitcoin
and Ethereum were built to avoid central authorities in the first place, and thus having a decentralized
bridge would be preferred (see tBTC [Kee19] for an example of such a design). This is where threshold
ECDSA naturally comes into play. Unfortunately, the existing threshold ECDSA protocols are not quite
suitable for this purpose. The reason is that to generate a signature with a threshold t out of N , all the
protocols [GGN16, BGG17, GG18, LN18] require to first elect a subcommittee of t honest parties and only
then proceed with a signing protocol within this subcommittee. The issue becomes that even if a single party
out of these t parties crashes, or is malicious, then the signing protocol fails, without giving any feedback
on which party is responsible. This can be easily turned into attacks where an adversary controlling just a
single party (or a small number of them) impedes any attempt to sign a transaction and this way causes
significant funds to be blocked on an account with threshold custody.

In this work, building upon the work of Lindell and Nof [LN18], we present a new threshold ECDSA pro-
tocol that is designed with the above interoperability applications in mind and achieves several improvements
over previous solutions. In particular, it offers a robust signing protocol that does not require a choice of
an "honest subcommittee", as previous approaches do. On top of that, the presented protocol significantly
improves the running time and bandwidth of signing, by moving certain expensive operations to a setup
phase.

2 Our Results

2.1 DSA and ECDSA
To describe the DSA in the abstract, generic form, consider a group G of prime order q and a fixed generator
g ∈ G. The private key in DSA is an element x ∈ Zq chosen uniformly at random (where by Zq we denote
the field of integers modulo q) and the public key is y := gx ∈ G. To sign a message m ∈ Zq one performs
the following steps

1. Choose k ∈ Zq uniformly at random.
2. Compute r := H(gk) ∈ Zq, where H is an agreed upon mapping H : G→ Zq.
3. Compute s := k−1(m+ rx) mod q.
4. Return a signature (r, s) ∈ Z2

q.

Conversely, given a signature (r, s) of a message m, to verify its correctness one checks whether

H
(
gs
−1my−r

)
?
= r.
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The specific instantiation of DSA that we consider in this work (although the protocol we propose is general
and works for any group), is ECDSA, i.e., the case when G ⊆ Z2

p is an elliptic curve over a finite field Zp (of
prime size p) and the mapping H simply outputs the first coordinate (modulo q) of a point on this elliptic
curve. This variant is most relevant in practice because of its widespread use, for instance in Bitcoin and
Ethereum.

2.2 Threshold ECDSA and Decentralized Custody
Threshold cryptography allows for N parties to jointly control a single private key x in such a way that for
an agreed upon threshold 1 ≤ t ≤ N and whenever t or more parties agree to sign a message m, a valid
signature is created, whereas no subset of parties of cardinality < t is able to sign a message.

An important application of threshold ECDSA, which is the main motivation for this work, is decen-
tralized custody over digital assets. For concreteness, let us consider the example of Bitcoin: we would
like to design a secure, distributed system that operates outside of the Bitcoin Blockchain (for instance: on
Ethereum or on a different platform) and holds custody over a Bitcoin account (recall that Bitcoin addresses
are directly associated with public keys for ECDSA signatures). Such a system is controlled externally, say,
by a specific Ethereum smart contract, and its purpose is to (after an initial setup when a Bitcoin address
is generated), once in a while, sign messages – Bitcoin transactions – that are provided to it by the external
control mechanism. A canonical example where such a system is essential is in the design of a Decentralized
Bridge between Bitcoin and Ethereum, such as tBTC [Kee19].

A promising approach to designing such a system is to let a committee of, say, N = 100 parties hold a
threshold custody over a Bitcoin address. These parties could be chosen as trusted members of a specific
community or independent workers who after paying an entry deposit, serve as committee members in return
for some interest. If we set the threshold to say t = 67, then it would require more than 2/3 of the committee
to collude in order to steal the funds. At the same time, such a system is robust, in the sense that even when
1/3 of the committee members go offline (or crash), it does not cause the system to halt. Altogether, such
a system can be considered as relatively safe1, given that such a threshold custody over a Bitcoin address
(thus really over an ECDSA key) is possible to realize.

First of all, due to the technical limitations of the Bitcoin Script, it is not possible to realize such a
threshold custody via multisignatures (it would be also overly expensive to do so due to the large transaction
size). Secondly, even though several universal threshold schemes for ECDSA already exist (see [LN18, GG18,
CCL+20]) they do not allow for the construction of such a system, due to a specific way these protocols
operate. More specifically, each of the protocols [LN18, GG18, CCL+20] generates a t-threshold sharing of
a secret key x ∈ Zq, then, given a message m ∈ Zq and a subset S of exactly t out of the N parties, these t
parties run a Sign(m) protocol that results in one of:

1. a correct signature (r, s) of m in case all t parties in S honestly participate in the protocol,
2. an abort, in which case no information attributing this failure to a particular party is obtained.

The issue now becomes that the external control over the system needs to pick a subset of exactly t out of N
parties to attempt signing a message. Whenever such an attempt fails, it needs to try again with a different
subset. Clearly, it is virtually impossible to succeed in this if a malicious adversary controls even a couple,
say 5 parties, because it is hard to learn who the corrupt parties are, given such a poor feedback in case of
failure.

A desirable property of such a system would be the following form of robustness: upon a Sign(m) request,
all N parties are allowed to participate in a signing protocol (in contrast to a subset of t of them as in the
previous approaches described above) and whenever at least t of these parties behave honestly, the protocol
succeeds in generating a signature. In this paper we construct the first threshold ECDSA protocol that
operates in this mode.

1Certainly, it is still possible that a large enough fraction of the committee members collude and take control of the funds.
This possibility however is supposed to be countered on a different level, for instance by providing suitable incentives to
committee members.
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It is worth mentioning that in contrast to ECDSA, the BLS [BLS04] signature scheme (as well as some
others) has a particularly simple threshold variant which allows non-interactive signing. What this means is
that after a Sign(m) request, each party l ∈ [N ] simply broadcasts a piece of data sl(m), called a signature
share (whose correctness can be verified by any party) and any subset of t such signature shares can be
combined into a unique, correct signature of m. While full non-interactivity may not be possible to achieve
for ECDSA, the protocol presented in this paper is constructed in a way to make signing as close as possible
to non-interactive, and in particular offers a form identifiable abort and is also significantly faster in the
signing phase than state-of-the-art solutions.

2.3 Our Contribution
The main contributions of this paper are:

1. Building upon the work of Lindell and Nof [LN18], we construct the first dishonest majority threshold
ECDSA protocol that is robust in the signing phase, i.e., guarantees that the signature is successfully
generated even in the presence of a malicious adversary.

2. Our protocol enables fault attributability in the signing phase, i.e., allows to reveal identities of mis-
behaving parties.

3. Thanks to the novel idea of creating presignatures, our protocol is efficient and requires almost no
interaction in the signing phase.

4. We provide a complete simulation-based security proof of our protocol with respect to the standard
ECDSA functionality.

5. We have implemented our protocol and present results of large-scale experiments both in a LAN and
WAN settings that confirm its efficiency. For the first time, we demonstrate that a threshold ECDSA
protocol can scale to even N = 60 parties and beyond.

2.4 Our Protocol
Below we provide a succinct discussion of our protocol’s features. As before, N denotes the number of parties
and t is the security threshold.

1. Setup. In the setup phase, the parties generate a secret private key x and the public key y := gx,
as well as a predetermined2 number K of so-called presignatures. This phase requires full cooperation
of all parties in order to succeed, but unless the adversary controls at least t parties, no information
about x is leaked.

2. Signing. After a successful setup, whenever Sign(m) is requested, for some message m ∈ Zq, the
parties utilize a single presignature (which needs to be discarded afterwards) and run a protocol that
results in a signature (r, s) of m. For this protocol to succeed at least t parties need to behave honestly.

3. Attributability. Whenever Sign(m) fails, the identities of at least N − t + 1 parties that did not
execute the protocol correctly are publicly revealed. In fact, even an external party is able to identify
the faulty parties in the protocol by inspecting the public part of the protocol transcript.

The requirement that all parties behave honestly during the setup might seem strong, but as we argue
below, it is justifiable for the digital asset custody use cases we are focusing on, furthermore this is an
assumption also present in previous work3. A fail during the setup phase is not critical, because no funds
are ever transferred to an account before the setup has concluded successfully. Moreover, such a setup

2For simplicity of exposition we assume here that presignatures are generated in the setup phase. However, the protocol
does not require that and allows generating new presignatures also after one or more signatures have been generated.

3Both in [GG18] and [CCL+20] the key generation protocol can be aborted by a single dishonest party. In [LN18] the key
generation protocol is only specified for t = N and robustness is not claimed for t < N .
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can be rerun in case of failure, and it is fair to say that prior to a successful setup, parties do not have
any incentives to behave maliciously. It is only after the setup, when the parties jointly hold custody over
possibly significant funds and might attempt to steal them. However, the protocol offers strong security
and fault attributability post-setup: whenever a party attempts to cheat during signing, it will be publicly
caught in doing so.

In the simplest deployment scenario of such a protocol, the following rule can be adopted: whenever the
generated presignatures are about to run out and it is not possible to generate more (because of malicious
behavior of some parties), the system can fallback into transition mode. In such a case, the remaining
presignatures are used to transfer all the funds in custody to a new address handled by a possibly different
committee, whose setup has terminated successfully.

We provide a technical overview of the protocol in Section 3 and subsequently in Section 4 we describe
the protocol in full detail. We prove security of our protocol in the standard simulation-based framework.
In Section A we introduce an appropriate ECDSA ideal functionality FECDSA, formally state the security
claim for our protocol (see Theorem A.1) and finally give a bird-eye view of the security proof.

Finally, in Section 6 we present results of an empirical evaluation of our protocol.

2.5 Previous Work and Technical Discussion
From the perspective of digital asset custody, as explained in Section 2.2 we can distinguish two approaches to
building threshold ECDSA. Importantly, by "approach" we mean not only the method to solve the threshold
ECDSA problem, but also how to define the problem itself. In particular, as argued above, requiring simply
that "any set of t parties can sign, while any set of t−1 or less cannot" might not be the right formulation of
the problem when digital asset custody applications are considered. The above could be termed as "honest
signers"-style approach, because it essentially requires to pick a subset of t honest parties to sign a message.
This approach is followed by all the recent, practical, threshold-optimal protocols [GG18, LN18, CCL+20].
On the other hand the classical work of Gennaro et al. [GJKR01] has the following guarantee when it comes
to signing: all N parties take part in signing and whenever there are ≤ t−1 dishonest parties and ≥ 2t honest
parties, signing succeeds. In the literature, this property – that a protocol is guaranteed to succeed even in
the presence of malicious faults – is called roubustness. Such a "rubust" approach is highly desirable for our
applications, however the protocol in [GJKR01] has several downsides: it can only handle thresholds t ≤ N/3
and even in such a regime the adversary has an advantage, indeed N/3 malicious parties can steal the key
and break the protocol, while N/3 honest parties are not enough to sign messages (2N/3 are required). These
caveats come from limitations of error correction of polynomial codes that are at the core of [GJKR01] and
any protocol using this technique does not extend to the dishonest-majority case. In fact, it is well known
that no protocol can achieve robustness in the dishonest-majority case (see for instance [FLM86]) – in this
paper we aim to get as close as possible to robustness while being able to handle high thresholds.

Our protocol is inspired by the work of Lindell and Nof [LN18], most notably by the way multiplication
is performed in [LN18] (the use of ElGamal encryption). Based on these ideas we construct a protocol
that allows aborts in the setup phase and requires collaboration of all parties (thus same as [LN18, GG18,
CCL+20]), but after a successful setup, each message signing is robust. To give some rough idea about our
innovation, let us briefly explain how [LN18] (and [GG18, CCL+20]) work. In the key generation phase, a
Shamir secret sharing with threshold t of the private key x ∈ Zq is established using well-known techniques
(thus each party holds an evaluation of a random polynomial f ∈ Zq[X] of degree t− 1 such that f(0) = x).
To sign a message m, a subset of parties S ⊆ [N ] of cardinality t is elected (this election is not part of the
protocol) and based on their shares of the secret x and appropriate Lagrange interpolation coefficients, they
compute an additive sharing of x, i.e., each party l ∈ S holds a secret wl ∈ Zq such that

∑
l∈S wl = x.

These t parties then engage in a protocol that generates an additive sharing of a random value k ∈ Zq and
performs a series of multiplications and other arithmetic operations on the shared secret values and m to
obtain a signature (r, s). Importantly, all parties in S must act honestly in order for the signing to succeed.
Our protocol, in contrast, generates in the setup phase an additive sharing of the private key x ∈ Zq and
subsequently performs a certain number of "presignatures", each of which can be seen as precomputing all
the multiplications between secret values that are required in the signing but in a way that is oblivious
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to the message m being later signed. We refer to Section 3.1 for more details. These "presignatures" are
then converted from additively shared secrets to threshold-t shared secrets guarded with a special type of
homomorphic commitments.

Importantly, the presignatures generated in the setup are guaranteed to be correct, as they go through a
validation phase, which terminates successfully only if there are no faults (or malicious misbehavior) in the
setup. When it then comes to signing, because of the homomorphic properties of the commitment (we use
ElGamal commitments, as in [LN18]), each party’s commitment to the correct shares of the signature are
publically computable, and thus each party is forced to reveal the correct share – this is how we can guarantee
robustness. Thus, at a high level, while [LN18] guard multiplications with ElGamal commitments (and reveal
the results afterwards), in our protocol all the computations are guarded with ElGamal commitments,
and the values are revealed only at the very end.

When it comes to security, we construct a simulation-based proof, thus similarly as [LN18] obtain a
stronger notion of security than the game-based definition in [GG18] and [CCL+20]. The ECDSA ideal
functionality that we introduce is slightly different than in [LN18] as in particular ours incorporates the
robustness and fault attributability. When compared to [LN18] we also formalize the security of the mul-
tiplication protocol differently – instead of a definition based on Privacy and Input Indistinguishability (as
in [MPR06]) we formulate an ideal functionality FPrivMult and show in particular that the Oblivious-Transfer
based protocol of [DKLS18] realizes it.

2.6 Concurrent Work
Along with this paper, two other works on threshold ECDSA ([CMP20] by Canetti et al. and [DJN+20] by
Damgård et al.) have been made public on the Cryptology ePrint Archive within a one-day time window.
Interestingly, all three groups independently came up with the idea of presignatures and non-interactive
signing. In fact, even the term "presignature" is common in all these papers! This is a clear indication how
natural the idea is, and also perhaps that it has been overlooked for quite some time in the past.

Despite these similarities, the results achieved and techniques used in these works are quite different.
Canetti et al. [CMP20] give a new protocol based on the work of Gennaro and Goldfeder [GG18]. The novel
use of Paillier encryption as a commitment scheme allows them to generate presignatures, which in turn
enable non-interactive signing. (This is similar to our work, yet we use ElGamal commitments.) On top of
that, the protocol [CMP20] is equipped with a periodic refresh mechanism that makes it proactively secure.
On the other hand, [CMP20] does not offer fault attributability, achieving which is the main contribution of
our work.

The protocol of Damgård et al. [DJN+20] focuses on the honest majority case (i.e., when the number
of corruptions t is less than N/2) and offers significant gain in efficiency compared to previous work. It
comes in two versions: one that is heavily optimized for efficiency yet has no abort protection, and another
one that has a bit more overhead but is robust in the online phase. The latter one, thanks to the use of
Pedersen commitments to guard secret shares, allows, similarly as our protocol, to identify faulty parties
during signing.

In conclusion, all these are exciting developments on threshold ECDSA. The authors are certain that
more will come, as it is very likely that a careful combination of all the diverse ideas that appeared in these
works will result in an even more robust and efficient protocol.

3 Background and High Level Protocol Overview
The protocol is described with respect to a cyclic group G of prime order q, the security parameter λ in
our construction is the bit length of q, i.e, λ := log(q). We denote group elements using small letters of the
latin alphabet, typically g, h, u, v and throughout the paper g always denotes the fixed generator of G that
comes as part of the description of G. Scalars, i.e., elements of Zq are denoted by small letters of the latin
or greek alphabet, such as a, b, c, d, k, r, x, . . . , α, β, δ, τ, . . .. Even though the group G is abelian, we employ
the multiplicative convention when denoting the group operation.
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ElGamal Commitments. One of the most important components of the whole protocol are what we call
ElGamal commitments (also called "ElGamal encryptions in the exponent" by Lindell and Nof in [LN18]).

Given a private key d ∈ Zq, the public key for ElGamal commitments h is gd. With respect to this public
key, we define an ElGamal commitment to x ∈ Zq as

E(x) := (gr, hrgx) ∈ G2 for a uniformly random r ∈ Zq. (1)

As it follows from the above definition, a commitment to a value x ∈ Zq is not unique and involves a
randomizing element r ∈ Zq. We sometimes write E(x; r) to emphasize that r is the randomizing element in
the commitment. From now on, whenever we talk about ElGamal commitments, the public key is denoted
by h; it will be always clear from the context what public key is meant.

A crucial property of ElGamal commitments is that they are additively homomorphic, more precisely,
for x1, x2, r1, r2 ∈ Zq we have

E(x1; r1) · E(x2; r2) = E(x1 + x2; r1 + r2),

where " · " in the left hand side denotes coordinate-wise multiplication in G2. Consequently also, given a
commitment E(x) and a scalar α ∈ Zq, we can compute (without the knowledge of x ∈ Zq) a commitment
E(αx) by fast exponentiation.

Non-Malleable Commitments. Except for ElGamal commitments, we also need a different kind of
commitments that allow the parties to commit to any piece of data and guarantee non-malleability, i.e.,
roughly speaking, given a commitment C(d) to a piece of data d, it is computationally infeasible to generate
a commitment C(d′) for d′ that is in any non-trivial way related to d. A reader interested in the formalization
of this concept we refer the reader to the discussion of the FCom functionality in Section C. We offer a simple,
practical implementation of this component that is based on a hash function Hash(·) and can be formalized
in the Random Oracle model.

The commitment functionality consists of two procedures: Commit(·) and Decommit(·)

• To perform Commit(d) for a bitstring d ∈ {0, 1}?, a party generates r ∈ {0, 1}λ uniformly at random
and broadcasts C := Hash(d||r||k) to the public, where || is a special symbol used for concatenation
and k is the ID of the commiting party in binary form.

• To perform Decommit(C), the party brodcasts publically the piece of data d and the random bitstring
r and all the remaining parties check whether indeed Hash(d||r||k)

?
= C.

Note that such a scheme would not be non-malleable, if the ID of the party was not appended to the hashed
string, as an adversary could simply copy an honest commitment and decommit to the same data and random
string after an honest party has done that.

Zero Knowledge Proofs. In our protocol we frequently make use of Zero Knowledge Proofs (ZKPs) [BFM88].
Here we give an informal introduction to ZKPs, for a formal treatment we refer to Section C. In the context
of our protocol, ZKPs appear most commonly in the following situation: a party holds some secret piece of
data w that along with a public part d is used to compute F (w, d) – a result of applying a function F (·, ·) to
the private and public part. To make sure that a value y that the party broadcasts to the public is indeed
the result of such a computation, this party publishes a "certificate" π alongside y that "proves" that indeed
the party holds a secret w such that F (w, d) = y. A crucial requirement for such a certificate is that it is
computationally infeasible to recover any additional information about w from π.

A concrete example present in our PGER protocol is when submitting gw ∈ G, the party must include a
proof that it knows w ∈ Zq – this is called a zero knowledge proof of knowledge (ZKPoK) of the discrete
logarithm and can be realized using the Schnorr protocol [Sch89]. We provide a more in-depth discussion on
the formalization of zero knowledge proofs in Section C (see the FZK functionality) and how to generate such
proofs in the non-interactive setting based on Σ-protocols and the Fiat-Shamir heuristic [FS87]. Whenever
zero-knowledge proofs appear in our protocol pseudocode, we also include the name of the relation (see
Section C.4 for a list) for which this given proof is based.
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Network and Communication. Since we work in the dishonest majority scenario, this effectively rules out
asynchrony (due to well-known impossibility results), thus we employ a synchronous model of communication,
which allows for the protocol to proceed in well-defined rounds.

We assume there are point-to-point authenticated communication channels between each pair of parties
as well as a broadcast channel which is used to reliably broadcast a message to all parties. It is not hard to
argue that a broadcast channel can be emulated by point-to-point channels (see for instance [LN18]) when
it comes to realizing functionalities with abort (i.e., when even a single adversarial party can force abort).
However, as alluded before, the strength of our protocol stems from the fact that it cannot bet aborted during
the signing phase if the adversary controls less than N−t+1 parties. To achieve this, some form of consensus
regarding the public messages sent by all the parties is required (to judge which of them are cheating), which
in the case of honest majority is impossible (see [CL17]). Therefore, the broadcast channel assumption is in
fact necessary here (but only in the signing phase), yet for the type of applications we aim for (digital asset
custody, see Section 2.2), this requirement is not an issue. The parties report to the external control system,
and thus can use it as a broadcast channel (importantly, only O(1) messages per party need to be published
this way per one signature).

3.1 Protocol Overview
We start by explaining the basic idea behind the protocol in the case of t = N , i.e., all parties are required
to sign but also the adversary would need to compromise all parties in order to learn the secret key. This
case is slightly simpler to explain than the general one, because it does not require to run a "resharing"
phase, but otherwise all the essential ideas are already present for t = N .

At start, the parties generate an additive sharing of the private key x ∈ Zq, which essentially means
that x :=

∑
l∈[N ] xl, where xl is the uniformly random share generated by party l ∈ [N ]. Subsequently,

computing a signature for a message m ∈ Zq can be divided into two parts: presigning which is completely
oblivious to m and thus can be done during the setup, and the actual signing which uses data generated in
presigning to force honest behavior from parties.

Recall that a signature for a message m ∈ Zq is a pair (r, s), where s = k−1(xr+m), k is chosen uniformly
at random from Zq and r = H(gk). Thus, except for computing r, only arithmetic operations on elements
in Zq occur in this phase. Thus, to some extent, producing a signature can be seen as evaluating a specific
arithmetic circuit, i.e., it is a special case of MPC (Multi-Party Computation). Consequently, it makes sense
to explain our protocol by describing how the parties share elements in Zq and how they perform arithmetic
operations on them.

Sharing a value. A value a ∈ Zq is shared additively as a =
∑
l∈[N ] al such that al ∈ Zq is only known

to party l. On top of that, each party l ∈ [N ] publishes an ElGamal commitment E(al) to its share. Thus,
for a single variable a in the protocol, each party l knows its own share al and E(ak) for k 6= l, i.e. the
homomorphic commitments to the shares of all the other parties.

Adding two values. Whenever a sum of two values a ∈ Zq and b ∈ Zq is required, to obtain a new value
c := a+b, each party k ∈ [N ] performs the following operations locally: it computes ck := ak+bk as its share
of c and subsequently computes the commitments E(cl) = E(al)E(bl) for each l ∈ [N ], using the homomorphic
properties of ElGamal commitments.

Multiplying a value by a scalar. Whenever a value a ∈ Zq has to be multiplied by a publicly known
scalar α ∈ Zq to yield c := αa, each party k ∈ [N ] performs the following operations locally: it computes
ck = αak and subsequently computes the commitments E(cl) = E(al)

α using fast exponentiation in the group
G (thus performing roughly log q group multiplications).

Multiplying two values. While addition and multiplication by scalars are quite straightforward local
operations, multiplication, i.e., computing c := a ·b, where both a and b are shared values is highly nontrivial
and comprises a bulk of the technical core of this paper (building upon [LN18]). We refer to Section 5.1 for
a detailed description of the multiplication protocol.

9



It is worth emphasizing that the fact that arithmetic in our protocol is "guarded" by ElGamal commit-
ments is crucial for its security. In particular, replacing it by MPC protocols such as SPDZ [DPSZ12] would
not allow us to achieve security under the proposed model. Roughly speaking, this is a consequence of the
fact that signing a message is not purely an arithmetic task in Zq (because gk is revealed as well), and thus
it is not possible to show that the data revealed by honest parties reveals nothing to the adversary.

Given protocols to perform arithmetic in a distributed fashion, we are ready to present the main idea
behind the signing protocol. We describe it in a simplified form for clarity of exposition. In the presignature
phase (when the message m to be signed is not known yet), the parties start by sampling k via additive
sharing (similarly as x), i.e., k :=

∑
l∈[N ] kl and, in addition to that, each party l ∈ [N ] publishes an

ElGamal commitment E(kl) to its share. Now, after computing gk ∈ G (this is not hard and we omit it in
this overview) and then r := H(gk) (which can be publicly announced), the parties need to perform some
arithmetic to compute s, i.e., compute k−1 ∈ Zq (this reduces to multiplication4), then k−1x ∈ Zq and then
s := k−1xr+k−1m. Specifically, in the presignature phase, the parties compute r ∈ Zq and the following two
variables: e := k−1 and f := k−1x using the multiplication protocol (hence each party holds its own private
shares and the commitments of the remaining parties). At the end of the presignature phase, a specific check
based on ElGamal commitments is performed to ensure that all parties will be able to construct correct
signature shares.

Then in the signing phase, given a message m ∈ Zq the parties can easily obtain an additive sharing of
s := k−1(xr +m) because it is a linear function of the values computed in the presignature phase, i.e.,

s = k−1(xr +m) = (k−1x)r + k−1m = rf +me,

where both r and m are publicly known scalars. Consequently, the parties can compute locally an additive
sharing of s guarded by ElGamal commitments. Given such shares and commitments, each party k ∈ [N ]
now reveals its share sk ∈ Zq and proves in zero-knowledge that this is the same share as in the public
ElGamal commitment E(sk). At this point, it is no longer possible to provide a wrong share, since it is
verified against the commitment (which is guaranteed to be correct). Thus, the only possible way a party
can cheat is by not providing any share, in which case it is declared as "faulty."

Beyond the t = N case. The extension from t = N to any t ∈ {1, 2, . . . , N} is quite straightforward:
at the end of the presignature phase, each relevant (additively shared) variable is transformed into its
threshold shared version. More concretely, Shamir Secret Sharing is employed: for a value a ∈ Zq each party
l ∈ [N ] now holds the value f(l) ∈ Zq where f(X) ∈ Zq[X] is a (random) polynomial of degree t − 1 such
that f(0) = a. For both the additively shared variables and the threshold shared variables, we maintain
appropriate ElGamal commitments. The protocol for transforming additive shares into threshold shares
of a particular value is called resharing and is described in detail in Section 5.4. While multiplication of
threshold-shared values is rather non-trivial, all linear operations (addition and multiplication by scalars)
are simple and can be performed locally. Consequently, the signing phase (after threshold presignatures
are ready) is simple and efficient in the general case. Moreover, whenever a presignature is available and
at least t parties are honest, it is not possible for the adversary to interrupt the signing process, since the
published shares are guaranteed to be correct, and having at least t of them, the s value can be recovered
using polynomial interpolation.

4 Protocol Description
This Section is devoted to presenting a detailed description of the main protocol of this paper – PECDSA

that realizes threshold ECDSA.
Before we dive into that, let us make a comment regarding notation: when talking about variables such

as k, r or x in the protocol, occasionally a confusion might arise of whether we refer to the actual value of
4To compute an additive sharing of k−1 one can use the following Beaver’s trick: generate an additive sharing of a random

scalar γ ∈ Zq and perform a multiplication to obtain an additive sharing of δ := kγ. Then, each party reveals its share of δ so
that δ is recovered in the plain. Subsequently, δ−1 · γl is the lth party additive share of k−1.
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the variable (in Zq) or just the "name" of the variable. While in most cases the context is self-explanatory,
we still sometime try to avoid this confusion by writing "k" instead of k. This is often to emphasize that a
particular subprotocol which takes an identifier of a variable, is run for that variable, not for the underlying
value (which would anyway make no sense since the value is not known to any party).

4.1 General outline
The PECDSA protocol consists of three main subprotocols: GenKey(), Presign() and Sign(m), which we
describe in detail below. All the parties maintain two global variables presigned and signed (initially both
are 0) that count the number of produced presignatures and the number of produced signatures respectively.
In particular, at all times presigned ≥ signed and it is not possible to sign a new message if these values are
equal (since each signature consumes a single presignature).

• In GenKey() the parties generate an additive sharing of the private key x and the public key gx (this
is done within the call to a subprotocol PGER). Subsequently, the parties run the PAPresign.Setup()
subprotocol which generates a random h ∈ G for ElGamal commitments (in fact the underlying secret
key d ∈ Zq such that h = gd is additively shared among parties).

• The Presign() subprotocol results in generating a new presignature (that can be later used to generate
a signature), as a result the value of presigned is incremented by 1. A presignature is a set of shares
and commitments to 4 specific random values (k, ρ, η, τ) that are generated in a distributed fashion,
according to the following method:

– Generate k, ρ ∈ Zq uniformly at random.

– Compute η := k · x and τ := k · ρ.

The presignature for party k ∈ [N ] consists, for each a ∈ {k, ρ, η, τ} of shares ak ∈ Zq and ElGamal
commitments E(al) ∈ G2 for each l ∈ [N ]. Thus 4 shares and 4N commitments in total. After generat-
ing such a presignature by calling the PAPresign protocol, the resulting additively shared variables are
then turned into threshold-t shared variables by executing the PReshare(t) protocol. Since the ElGamal
commitments and zero-knowledge proofs are carried through all the stages of presigning, if the protocol
is not aborted, then all parties necessarily have correct presignatures at the end of this subprotocol.

• When executing the Sign(m) subprotocol, the parties are given a message m ∈ Zq as input. The parties
fetch from memory a yet unused presignature (k, ρ, η, τ) and run the PECDSA.ExpRevealThreshold("k")
protocol to compute R := gk and subsequently r = H(R) ∈ Zq. After that, the parties publicly reveal
the value of the τ variable by running the PECDSA.Reveal("τ") protocol. Subsequently, as explained in
the overview Section 3.1, the parties locally compute a threshold secret sharing of the value

s := τ−1(mρ+ rη) = (kρ)−1(mρ+ rρx) = k−1(m+ rx).

Finally, the parties run PECDSA.Reveal("s") to reveal the value of s and thus generate the signature
(r, s).

4.2 Auxiliary subprotocols
We proceed to formulate and discuss some auxiliary subprotocols that are used in PECDSA in Section 4.1.
These include 3 subprotocols (see Auxiliary subprotocols of PECDSA(t))–ExpRevealThreshold, Lin and Reveal–
that were omitted for clarity from the previous section, as well as the PGER protocol that is used both in
PECDSA and in PAPresign (see Section 5.1). We start by a brief description of ExpRevealThreshold, Lin and
Reveal, followed by pseudocode.
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Protocol PECDSA(t)

/* The instructions in all protocols are written from the perspective of party k ∈ [N ]. */

GenKey():
1. Set presigned = 0 and signed = 0.

2. Call PGER. As a result, key shares (gx1 , gx2 , . . . , gxN ) that together form the public key y := gx =
∏
l∈[N ] g

xl are
published. Also receive a private key share xk as output from PGER.

3. Call PAPresign.Setup() and store the generated public key for ElGamal commitments as h ∈ G.

Presign():
1. Call the PAPresign.Gen() protocol to receive: commitments E(kl), E(ρl), E(ηl), E(τl) for all l ∈ [N ], and private shares

kk, ρk, ηk, τk.

2. Call the PReshare(t) protocol on each of the variables k, ρ, η, τ to generate t-threshold sharings of these variables out
of the available additive sharings. Receive commitments E

(
k̂l

)
, E(ρ̂l), E(η̂l), E(τ̂l) for each l ∈ [N ], and the private

shares k̂k, ρ̂k, η̂k, τ̂k.

3. Increment presigned← presigned + 1 and set p := presigned for brevity.

4. Save all information (shares and commitments) regarding (k, ρ, η, τ) under presig[p].

Sign(m):
1. If signed ≥ presigned then exit (ignore this call to Sign(·)).
2. Let p := signed and increment signed← signed + 1.

3. Load all information stored about a previously created presignature (k, ρ, η, τ) from presig[p].

4. Call PECDSA.ExpRevealThreshold("k") to reveal R := gk ∈ G and compute r = H(R) ∈ Zq .

5. Call PECDSA.Reveal("τ") to reveal τ ∈ Zq .

6. Call PECDSA.Lin("ρ", τ−1m, "η", τ−1r, "s") to compute

s := τ−1(mρ+ rη) = k−1(m+ rx).

7. Call PECDSA.Reveal("s").

8. output (r, s).

• In ExpRevealThreshold(a) the input a is a "name" of a threshold-shared variable (more specifically
it will always be instantiated for the "k" variable) and the expected output is the element ga. To
achieve it, each party l ∈ [N ] computes and publishes gâl (where âl is the share of the lth party) along
with a zero knowledge proof that the published element agrees with the public commitment E(âl).
Given t such elements (from different parties) it is then possible to recover ga by "interpolation in the
exponent." In case some parties do not deliver their respective shares, and there is not enough shares
for interpolation, they are declared as "faulty."

• The purpose of Lin(a, α, b, β, c) is to create a new threshold-shared variable "c" by taking a linear
combination of "a" and "b" with (public) scalar coefficients α, β ∈ Zq. As explained in Section 3.1 this
is a simple local computation, because no multiplication between two shared variables is required.

• The Reveal(a) works exactly as ExpRevealThreshold(a) except that now the value of a is revealed instead
of ga, thus parties broadcast their threshold shares âl and use regular interpolation to find a.

The purpose of the PGER protocol is to generate a uniformly random scalar a ∈ Zq and reveal ga to the
public. This protocol is used to generate the shared ECDSA private key x as well as the ElGamal private
key d (so that h := gd is the public key used for ElGamal commitments).

To achieve this, each party l ∈ [N ] generates its additive share al ∈ Zq uniformly at random and
subsequently publicly commits to gal and a ZKPoK of al (the discrete log of the committed value). After
all the parties have done that, the reveal phase follows. Crucially, at the moment of executing this protocol,
the ElGamal commitments are not yet avaialable (in fact, we need this protocol to generate the ElGamal
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Auxiliary subprotocols of PECDSA(t)

/* The instructions in all protocols are written from the perspective of party k ∈ [N ]. */

ExpRevealThreshold(a):
1. Publish gâk , where âk is the threshold share of a, together with a ZKP that it agrees with the ElGamal commitment

(REGRefresh).

2. Let F ⊆ [N ] be the set of parties that did not publish correct values (either did not publish anything before a
prespecified deadline or published an incorrect proof).

3. If N−|F | ≥ t then recover ga using Lagrange interpolation in the exponent and output it, otherwise fail announcing
F as the set of "faulty parties".

Lin(a, α, b, β, c):

1. Compute threshold share of c as ĉk = αâk + βb̂k where âk and b̂k are threshold shares of a and b respectively.

2. Compute ElGamal commitments to threshold shares {ĉl}l∈[N ], for l ∈ [N ] as

E(ĉl) = E(âl)
αE
(
b̂l

)β
where E(âl) and E

(
b̂l

)
are public.

Reveal(a):
1. Publish threshold share of a: âk together with a ZKP that it agrees with the ElGamal commitment (REGReveal).

2. Let F ⊆ [N ] be the set of parties that did not publish correct shares (either did not publish anything before a
prespecified deadline or published an incorrect proof)

3. If N − |F | ≥ t then recover the value of a using Lagrange interpolation and output it, otherwise fail and announce
F as the set of "faulty parties".

key), which explains why do we need to use some other commitments here.

Protocol PGER

/* The instructions in all protocols are written from the perspective of party k ∈ [N ]. */

GenExpReveal()

1. Generate a uniformly random ak ∈ Zq and publicly commit to (gak , πk) where πk is a non-interactive ZKPoK of ak
(RDLog).

2. After receiving all commitments from other parties, decommit to (gak , πk).

3. Wait for all the decommitments and continue only if all the proofs are correct.

5 Subprotocols of PECDSA

This section is devoted to presenting the subprotocols PAPresign and PReshare along with all their components.

5.1 Additive Presign Protocol PAPresign

The PAPresign protocol is run in PECDSA.Presign() in order to generate a new (additively shared) presignature
(we refer to Section 4.1 for a discussion on presignatures). Crucially, this requires multiplication of additively
shared variables which constitutes the core of this protocol. We start by providing brief descriptions of all
the PAPresign protocol methods:
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• The main goal of Setup() is generating a random public key h for ElGamal commitments. This is done
using the PGER protocol. For technical reasons (to allow modularity in the security proof) in the first
step of this subprotocol we require each party l ∈ [N ] to provide a ZKPoK of the logarithm of its
corresponding share gxl of the public ECDSA key. This step can be omitted if the PAPresign is called
from PECDSA, as the parties prove knowledge of their private shares there as well.

• AdditivePresign creates presignatures by calling Gen and Mult – we refer to Section 4.1 for a discussion
of (k, ρ, η, τ) and how are they later used.

• The purpose of Gen(a) is to generate a fresh random value for the variable "a". This is done by simply
generating a random share and publishing an ElGamal commitment to this share by each party. The
parties are also required to provide ZKPoK of their shares, otherwise the adversarial parties could use
honest parties’ commitments to create their own and possibly force a specific value of a, instead of a
random one.

• In the Mult(a, b, c) subprotocol, the parties hold an additive sharing of a and b and would like to
obtain an additive sharing of c := a · b. The idea of this subprotocol follows [LN18]: first the parties
involve in a multiplication protocol PPrivMult (we discuss it in Section 5.2) that guarantees privacy
(nothing is leaked to the adversary) but does not guarantee correctness (the adversary might inject
errors in the output). Let the output shares of PPrivMult be (c1, c2, . . . , cN ), the goal is to check that∑
l∈[N ] cl = a · b. For this, the parties make use of the ElGamal commitments to the shares of a, b

and c. First, they participate in a protocol whose result is an ElGamal commitment to the product
E(ab) and subsequently, the parties compute E(c), where c :=

∑
l∈[N ] cl. It is now not hard to see that

by denoting (u, v) := E(ab) · E(c)
−1, we have c = ab if and only if (h, u, v) is a Diffie-Hellman triple.

Consequently, the parties invoke the PCheckDH protocol whose purpose is checking whether (h, u, v) is
a Diffie-Hellman tuple.

5.2 Private Multiplication Protocol PPrivMult

The private multiplication we employ in our protocol is not new and appears the previous work on Multi-
Party Computation [BDOZ11, KPR18] and threshold ECDSA [GG18, LN18]. The main idea is to reduce
multiplication among N parties to a bunch of pairwise multiplications. More specifically, suppose that parties
hold shares (a1, a2, . . . , aN ) and (b1, b2, . . . , bN ) then the result of multiplication is( ∑

l∈[N ]

al

)
·
( ∑
l∈[N ]

bl

)
=
∑
l∈[N ]

albl +
∑

l,k∈[N ],l 6=k

albk.

Thus for each pair of different parties l, k ∈ [N ], these two parties implicitly share the values albk and akbl
multiplicatively. Thus what would be desirable is a two-party protocol that "converts" multiplicative
sharing to additive sharing in the following sense: for two distinct parties l, k ∈ [N ] with private inputs al
and bk respectively, the outputs are uniformly random αl→k (private output for party l) and βl→k (private
output for party k) such that αl→k + βl→k = albk. Given such a protocol, each party l ∈ [N ] can then set

cl := albl +
∑
k 6=l

αl→k +
∑
k 6=l

βk→l,

and by simple algebra it follows that
∑
l∈[N ] cl = ab, assuming all parties executed the protocol correctly.

Clearly, such a protocol does not guarantee correctness, as the adversary can manipulate the results of
the pairwise "conversions", but, as mentioned before, we do not aim for correctness here, only privacy.
Consequently, all that remains, is to design a protocol PMtA that realizes this conversion.

There are multiple ways to design the PMtA protocol that converts from multiplicative sharing to additive
sharing. Here we specifically sketch two solutions: one based on additively Homomorphic Encryption and
another based on Oblivious Transfer. Note that the pseudocode provided in this section is only to explain
the idea behind these approaches and is not sufficient for security against malicious faults! For details, we
refer to Section B.3 and to full implementations: to [LN18] for the Homomorphic-Encryption based protocol
and to [DKLS18] for the one based on Oblivious Transfer.
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Protocol PAPresign

Public input: Group elements (gx1 , gx2 , . . . , gxN ) that together form an ECDSA public key y := gx =
∏
l∈[N ] g

xl .
Private input: Each party l ∈ [N ] holds its private, additive share xl ∈ Zq of the ECDSA private key.
/* The instructions in all protocols are written from the perspective of party k ∈ [N ]. */

Setup():
1. Publish a ZKPoK of xk (RDLog).

2. After receiving correct ZKPoK from all parties, run the PGER protocol. As a result, public key shares
(gd1 , gd2 , . . . , gdN ) are published that together form the public key h := gd =

∏
l∈[N ] g

dl for ElGamal commitments.
Also receive the private share dk as output from PGER.

3. Run PCheckDH.Init() with private input dk and public input (gd1 , gd2 , . . . , gdN ).

AdditivePresign():
1. Call Gen("k")

2. Call Gen("ρ")

3. Call Mult("ρ", "x", "η")

4. Call Mult("k", "ρ", "τ")

Gen(a):
1. Sample ak, rk ∈ Zq uniformly at random and publish E(ak, rk) together with a ZKPoK of ak and rk (REGKnow).

2. After receiving correct commitments and proofs from all parties, continue. If any of the received proofs is incorrect,
abort.

Mult(a, b, c):
1. Compute E(b) :=

∏
l∈[N ] E(bl) from publicly available commitments E(bl) for l ∈ [N ].

2. Run the PPrivMult protocol with shares ak and bk and store the output as ck.

3. Choose a random rk ∈ Zq , and publish E(ck; rk) together with a ZKPoK of ck and rk (REGKnow).

4. Choose a random r′ and publish E(b · ak) = (E(b))ak · E(0; r′) together with a ZKP that E(b · ak) was computed
correctly (REGExp).

5. After receiving E(cl; rl) and E(b · al) with correct proofs from all parties l ∈ [N ], compute E(a · b) :=
∏
l∈[N ] E(b · ak)

and E(c) =
∏
l∈[N ] E(cl).

6. Run the PCheckDH.Query(u, v) protocol with input (u, v) := E(a · b) · E(c)−1; continue in case the output is accept
and abort in case the output is reject.

A PMtA protocol based on additively Homomorphic Encryption.

We start by sketching a protocol that appeared in [BDOZ11]. We again emphasize that this is only a
sketch and to make the protocol secure against active adversaries one has to enrich the protocol with zero-
knowledge proofs. The pseudocode is given in the table Protocol PMtA-HE. We assume that EncB and
DecB are respectively the encryption and decryption procedures for Bob’s key for additively homomorphic
encryption. For simplicity we assume that this scheme is homomorphic in Zq ([CCL+20] show how to achieve
that), i.e., for x, y ∈ Zq we have EncA(x+ y) = EncA(x) +A EncA(y), where +A is ciphertext addition.

It is not hard to see that if both Alice and Bob act honestly then tA + tB = α · β and the pair (tA, tB) is
uniformly distributed among such.

A PMtA protocol based on Oblivious Transfer.

In the tableProtocol PMtA-OT we sketch a variant of the Gilboa [Gil99] protocol for two-party multiplicative-
to-additive share conversion. As in the case of the previous protocol, also this one is presented here for the
sake of explaining the idea only and is not secure against active adversaries. For a variant that is secure we
refer the reader to [DKLS18].
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Protocol PPrivMult

Private input: Each party l ∈ [N ] holds its private, additive shares al, bl ∈ Zq of a and b respectively.
/* The instructions in all protocols are written from the perspective of party k ∈ [N ]. */

1. Run with party l (for every party l 6= k) an instance of PMtA as Alice, with input share ak. Let the output share be
αk→l.

2. Run with party l (for every party l 6= k) an instance of PMtA as Bob, with input share bk. Let the output share be
βl→k.

3. Compute the output share as
ck := akbk +

∑
l 6=k

αk→l +
∑
l6=k

βl→k.

Protocol PMtA-HE (Sketch only! Not secure against active adversaries.)

Private input: Alice holds α ∈ Zq and Bob holds β ∈ Zq .

1. Bob sends EncB(β) to Alice.

2. Alice samples tA ∈ Zq and responds with EncB(αβ − tA).

3. Bob decrypts it and sets tB = αβ − tA.

For this we will need the following variant of Oblivious Transfer (see also [Bea96]): Alice (as a dealer)
has two values δ0 ∈ Zq and δ1 ∈ Zq and Bob holds a bit b ∈ {0, 1}. As a result of OT we want Bob to learn
δb only (and in particular not learn δ1−b) and Alice should not learn Bob’s bit b.

Protocol PMtA-OT (Sketch only! Not secure against active adversaries.)

Private input: Alice holds α ∈ Zq and Bob holds β ∈ Zq .

1. Bob writes down β in base-2: β =
∑λ
i=0 βi2

i, with βi ∈ {0, 1} being individual bits, for i = 0, 1, . . . , λ.

2. For i = 0, 1, 2, . . . , λ Alice and Bob engage in Oblivious Transfer with Alice being the dealer with the following values:

• Alice’s values are δ0 = a+ γi and δ1 = γi for γi ∈ Zq chosen uniformly at random by Alice.

• Bob’s bit b := βi.

Let the values received by Bob from subsequent oblivious transfers be τ0, τ1, . . . , τλ.

3. Alice sets her share tA := −
∑λ
i=0 2iγi.

4. Bob sets his share tB :=
∑λ
i=0 2iτi.

It is not hard to see that in the PMtA-OT protocol if both Bob and Alice are honest then tA + tB =
αβ is a uniformly random additive sharing of the product of input shares. However, this variant of the
protocol unfortunately does not realize our FMtA ideal functionality presented in Section B.2 and needs
some adjustments, as in [DKLS18], to achieve that.

5.3 Checking Diffie-Hellman Tuples
The purpose of the PCheckDH protocol is: given a pair (u, v) ∈ G2 of group elements, check whether (h, u, v)
is a Diffie-Hellman triple, where h is a publicly known group element (used as the public key for ElGamal
commitments). Clearly, such a task is computationally hard to solve, hence without additional assumptions
we cannot hope to design an efficient protocol to solve this problem. The trick here is that the discrete log,
i.e. logg(h), is additively shared between parties. More precisely, each party l ∈ [N ] holds a scalar dl ∈ Zq
such that

∑
l∈[N ] dl = d and h = gd. Furthermore, the group elements {gdl}l∈[N ] are publicly known. This

additional information allows for the design of an efficient protocol that checks Diffie-Hellman triples [LN18].
Consider first the following simple protocol for checking Diffie-Hellman tuples. Note that our task is
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equivalent to checking whether ud = v. Thus, all that needs to be done is to raise u to the d-th power. To
this end, each party l ∈ [N ] broadcasts udl ∈ G along with a ZKP of correctness (i.e., that the power of u
in the broadcast element is the same as the power of g in the publicly known gdl). Subsequently all these
elements are multiplied together to yield ud, which is compared against v to find out whether (h, u, v) is a
Diffie-Hellman tuple.

While the above sketched protocol is certainly correct, unfortunately it is not provably secure. To fix
this, the parties first "re-randomize" the input (u, v) into another (u′, v′) such that if (h, u, v) is a DH tuple,
then (h, u′, v′) is a uniformly random DH tuple (for fixed h) and otherwise (u′, v′) is uniformly random in
G2. After such a randomization, the above protocol becomes secure.

Protocol PCheckDH

Public Input: A tuple (gd1 , gd2 , . . . , gdN ) representing shares of the public key h := gd =
∏
l∈[N ] g

dl .
Private Input: Each party l ∈ [N ] holds the respective private key dl ∈ Zq .

/* The instructions in all protocols are written from the perspective of party k ∈ [N ]. */

Init():
1. Publish a ZKPoK of the logarithm of gdk (RDLog).

2. Continue only after receiving correct proofs from all other parties.

Query(u, v):
1. Sample uniformly at random αk, βk ∈ Zq , compute (uk, vk) = (uαkgβk , vαkhβk ) and form πk: a non-interactive

ZKPoK of αk and βk (RRerand). Commit to (uk, vk, πk).

2. Upon receiving all commitments from other parties, publicly decommit.

3. Upon seing all decommited (ul, vl) along with correct ZKPoKs πl from all parties l ∈ [N ], compute u′ :=
∏
l∈[N ] ul

and v′ :=
∏
l∈[N ] vl.

4. Publish u′k := u′dk along with a ZKP that this value was correctly computed from u′ and gdk (REGExp).

5. Upon receiving all elements u′l along with ZKPs from all parties l ∈ [N ], check whether
∏
l∈[N ] u

′
l = v′: if this is the

case output accept else output reject.

5.4 Reshare Protocol PReshare

The PReshare(t) protocol has a parameter t ∈ {1, 2, . . . , N}, which indicates how many parties need to collude
in order to reveal all the shared values in the plain. The purpose of resharing is to convert an additively
shared value a to threshold sharing. What we mean by that is: at the beginning, each party l ∈ [N ]
holds an additive share al such that

∑
l∈[N ] al = a (and each such share is guarded via a public ElGamal

commitment E(al)), and as the output each party l ∈ [N ] learns its private share âl such that âl = f(l),
where f(X) ∈ Zq[X] is a uniformly random polynomial of degree at most t− 1 such that f(0) = a (and we
still require that each âl is guarded by an ElGamal commitment E(âl)).

The main idea behind the PReshare protocol is as follows: each party k ∈ [N ] generates its degree ≤ t− 1
polynomial fk ∈ Zq[X] uniformly at random such that fk(0) = ak. (This in principle resembles Feldman’s
VSS protocol [Fel87], but we also preserve ElGamal commitments at each step.) In the end, we would like to
use f(X) = f1(X) + f2(X) + . . .+ fN (X) to share a. Indeed the above f(X) satisfies the requirement that
f(0) = a, and as long as the adversary cannot generate its polynomials based on the ones by honest parties,
f(X) is also uniformly random subject to this condition. In order for each party k ∈ [N ] to learn its share
âk = f(k), after generating the polynomial fk(X), for every l ∈ [N ], the party k sends the evaluation fk(l)
to party l. Consequently, k receives N values fl(k) for each l ∈ [N ] and can compute f(k) =

∑
l∈[N ] fl(k).

To make this work, one has to make sure the adversary cannot choose its polynomial after seeing some
information about honest parties’ polynomials. Further, everything needs to be guarded with ElGamal
commitments, in order to recompute the required commitments for the new sharing scheme. Roughly
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speaking, taking care of commitments is not hard, as all transformations that are happening in this protocol
are linear, and hence "locally computable". For details we refer to the pseudocode below.

Protocol PReshare(t)

Public input: An element h ∈ G used to form ElGamal commitments and a tuple C = (c1, c2, . . . , cN ) of public ElGamal
commitments, i.e., cl ∈ G2 for each l ∈ [N ].
Private input: Each party l ∈ [N ] holds al, r̃l ∈ Zq such that E(al, r̃l) = cl.
/* The instructions in all protocols are written from the perspective of party k ∈ [N ]. */

1. Publish a proof of knowledge of values ak, r̃k such that E(ak, r̃k) = ck. (REGKnow)

2. Pick a random polynomial fk(X) =
∑t−1
ι=0 fk,ιX

i ∈ Zq [X] by setting fk,0 = al and choosing fk,ι uniformly at random
in Zq for ι = 1, 2, . . . , t− 1.

3. Compute commitments to coefficients of fk: Ck := {E
(
fk,ι, rk,ι

)
: ι = 0, 1, 2, . . . , t− 1} together with Πk: a ZKPoK

of committed values (REGKnow) and πl: a ZKP that E
(
fk,0, rk,0

)
commits to the same value as ck (REGRefresh).

4. Commit to (Ck,Πk, πk).

5. After receiving commitments from all other parties, decommit to (Ck,Πk, πk).

6. Upon receiving decommitments from all parties along with correct proofs, compute

E(fk(l), rk→l) :=
∏

0≤ι≤t−1

E
(
fk,ι, rk,ι

)lι for l ∈ [N ].

7. For each l ∈ [N ] recommit to fk(l) by sampling a fresh randomizing element r′k→l ∈ Zq and publishing E(fk(l), rk→l)
along with a zero-knowledge proof that it agrees with the previous commitment (REGRefresh).

8. Privately send the share
(
fk(l), r′k→l

)
to each party l.

9. After receiving the shares from other parties, verify that all of them agree with the public commitments, in case not,
abort. Otherwise, compute

sk =
∑
l∈[N ]

fl(k), r′k =
∑
l∈[N ]

r′l→k, and

E
(
sl, r

′
l

)
=
∏
i∈[N ]

E
(
fi(l), r

′
i→l
)

for each l ∈ [N ].

10. Recommit to sk by sampling a fresh randomizing element r′′k ∈ Zq and publishing E
(
sk, r

′′
k

)
along with a ZKP that

it agrees with the previous commitment (REGRefresh).

It might appear confusing to the reader why is step 1. in the above protocol necessary. Indeed, whenever
this protocol is run as part of PECDSA, then such zero-knowledge proofs as in step 1. has been already
published by each party. Therefore, it is correct to omit this step, as it is not necessary for the security of
PECDSA. The reason why we still write down this step in PReshare(t) is to allow modularity in our proofs.
Indeed, if one wants to consider the PReshare(t) in isolation from PECDSA (as we do in Section B.6), then we
have no control over h. In principle, A could know logg h, which destroys the secrecy property of E(·), while
in PECDSA this is not the case by the way h is chosen.

6 Experiments
In order to measure the practical performance of our protocol, we have implemented it in the Golang
programming language and run two types of experiments on the AWS platform:

• LAN experiments use m5.xlarge instances located in a single datacenter in Ireland,

• WAN experiments use m5.xlarge instances evenly distributed across four regions: Ohio, Virginia,
California and Oregon.
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Figure 1: The results of experiments: average time to generate a signature and presignature respectively
depending on the number of parties N . In all experiments the standard deviation is below 1% and thus is
not marked.

For each of these settings we have run the protocol with N = 10, 20, 30, 40, 50 and 60 parties. In all these
tests we used t = 4/5N as a representative "hard" threshold for threshold ECDSA protocols – it lies in the
dishonest majority regime, and yet is significantly lower than N , hence problematic for the "honest-signers"
type protocols (such as [GG18, LN18]). We also note that the cost of our protocol does not depend5 on t
(because the most expensive part is creating presignatures, which does not depend on t) and therefore we
do not vary t in our experiments.

In each of our experiments a new key was generated, and 1000 messages were signed using this key. We
separately report the time needed for generating a single presignature, and to sign a new message using a
presignature (averaged over these 1000 messages). The results are depicted in Figure 1.

The experiments show that indeed the signing protocol is highly efficient, as one would expect from its
low round complexity and little interaction requirement. The signing time is in fact mainly dominated by
unavoidable network latency, as follows from comparing the results in the LAN and WAN settings. On the
other hand, presignature generation requires a significant amount of CPU time. Overall, the experiments
are a clear indication that the protocol is capable of scaling to N = 100 or even more parties.
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A Formalization of Security
In this section, we state the main theorem of this paper about the security of the PECDSA protocol. This is
preceded by a formal introduction of the definition of security that we use. Finally, we offer an overview of
the structure of the proof of the security so that the actual proof in Section B is easy to navigate and the
reader can simply focus on the part of interest.
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A.1 The FECDSA Functionality
We pursue the security of our protocol according to the standard simulation-based definition with the
real/ideal model (see [Can00] and the introduction to the simulation technique [Lin16]).

Each functionality we describe interacts directly with honest parties (we denote them by J ⊆ [N ]) and
the adversary A who is in control of the remaining parties (we denote the dishonest parties by I := [N ] \J).
The threshold t determines how many dishonest parties are required to completely compromise security,
by recovering the private key and being able to sign unauthorized messages. Thus, when describing the
functionalities, we always assume that |I| ≤ t − 1 (and to further avoid trivial cases we assume |I| ≥ 1).
There is another interesting threshold, namelyN−t+1, if it is reached by the adversary (i.e., if |I| ≥ N−t+1),
then even though there might be not enough dishonest parties to steal the key, it is possible for the adversary
to prevent any message to be signed successfully – see point 7. in Sign(m) in the FECDSA(t) functionality.

Functionality FECDSA(t)

GenKey():
1. Sample x ∈ Zq (the private key) uniformly at random.

2. Send gx to A, A may choose to abort.

3. Publish gx.

4. Store presigned = 0, signed = 0.

5. Ignore future calls to GenKey().
Presign():

1. Ignore this call if GenKey() has not yet been called.

2. A may choose to abort.

3. Set presigned← presigned + 1.
Sign(m):

1. If GenKey() was not called yet or presigned ≤ signed, ignore this call.

2. signed← signed + 1.

3. Generate random k ∈ Zq .

4. Compute R = gk and r = Rx mod q.

5. Compute s = k−1(m+ rx).

6. Send (r, s) to A
7. A may choose to cause fail if |I| ≥ N − t+ 1, in which case

• A chooses a set F ⊆ I of at least N − t+ 1 adversarial parties and sends F to the FECDSA functionality.

• FECDSA terminates Sign(·) with fail and publicly announces F as the "faulty parties".

8. Publish (r, s).

To better understand the specifics of FECDSA, let us review what is a "typical" sequence of calls to this
functionality. At the very beginning GenKey() is called once. Subsequently, whenever there is need to sign
a message m, one can first call Presign() and then Sign(m) to generate a signature. It is important to note
that both GenKey() as well as Presign() can be aborted by the adversary (even if A controls a single party
only). For this reason, it might make more sense to act as follows: run a "setup phase" that consists of
GenKey() and 100 Presign() calls. After such a successful setup, it is now much harder for the adversary to
halt signing – indeed, to generate a signature for m, one just needs to call Sign(m) and signing succeeds
unless there are at least N − t+ 1 dishonest parties. After 100 messages are signed, one needs to top-up the
presignature pool in order to continue.

To compare our FECDSA functionality to that of Lindell and Nof [LN18], note first that in the case when
t = N they are functionally equivalent, since Presign can be erased in this case. The difference only appears
when t < N . While in this case the FECDSA functionality is not explicitly specified in [LN18], one way to
define it would be to have an additional parameter S ⊆ [N ] in the Sign(m) method that specifies the set of
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Figure 2: Dependency structure of functionalities used in the proof.

parties of cardinality t that are selected to sign m. Within Sign(m) the adversary A then controls parties
I ∩S and can cause abort whenever |I ∩S| ≥ 1. As already mentioned in Section 2, in practice, choosing S
is particularly problematic, and gives a simple attack vector that halts signing. In contrast, in our solution
after a successful setup, the signing process is "hard" to abort.

A.2 Security Result
The security of our protocol relies on the Diffie-Hellman assumption. Recall that each triple of the form
(ga, gb, gab) ∈ G3 for some scalars a, b ∈ Zq is called a Diffie-Hellman triple, and the problem of distinguishing
a random triple in G3 from a random Diffie-Hellman triple is called the Decisional Diffie-Hellman problem.

Theorem A.1. Suppose the Decisional Diffie-Hellman problem is hard in G, then the PECDSA protocol
securely computes the FECDSA functionality in the (FZK,FComZK)-Hybrid Model.

We note that the above assumes that we use the Oblivious-Transfer based implementation of PMtA. In case
Homomorphic Encryption is used instead, one additionally needs to assume the semantic security of Paillier
Encryption (or some other additively homomorphic encryption scheme that one can use instead of Paillier).

A.3 Proof Organization
We prove that PECDSA is secure under the simulation-based definition, showing that it securely computes the
FECDSA functionality. For the sake of making the proof cleaner, we introduce an intermediate functionality
FwECDSA (see Section B.8, w in wECDSA stands for "weak") that is somewhere in between FECDSA and our
protocol. Regarding FwECDSA, we show that it is "equivalent" to FECDSA in the sense that any adversary for
FwECDSA can be simulated by an adversary for FECDSA. Thus, any protocol securely computing FwECDSA

also securely computes FECDSA (see Lemma B.8). Given that fact, it is enough to show that PECDSA realizes
the FwECDSA functionality. Towards this end, for each of the PECDSA subprotocols, we define an associated
functionality that is securely computed by that protocol.

Figure 2 outlines the structure of dependencies among functionalities associated with PECDSA subpro-
tocols. The edge between a higher-level functionality Fh and lower-level functionality Fl indicates that the
protocol corresponding to Fh contains a call to the protocol corresponding to Fl. In such a case, after
proving that Fl is securely computed by its protocol, we prove the same for Fh, but working in Fl-hybrid
model (thus rely on the composition theorem, see [Can00]). Besides functionalities outlined in the figure, we
always work in the "basic" hybrid model with FCom,FComZK,FZK, see Section C for their definitions.

Note on Formalism. An important objective we want to achieve in this paper is to make the content
accessible to as many readers as possible without requiring deep background in cryptography and secure
computation. For this reason, we write our protocols in a slightly informal style while trying to provide
additional (sometimes perhaps redundant) intuition regarding various steps in the pseudocode. In particular,
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we do not employ the formalism based on Interactive Turing Machines (see e.g. [Can00]) when describing
protocols and functionalities. Instead, we use jargon of the form "call functionality F" (or "run protocol P")
to mean that all parties should send a particular message to F and make sure that it has a unique session
id, etc. (we do not keep track of session ids in functionalities). While it would certainly require significant
work to rewrite the protocol (and proofs) within the strictest formalism level based on ITMs, such work
would be merely automatic and not require any novel ideas. At this point, it is important to remark that
implementing such a protocol also requires a certain formalization of the pseudocode, but not quite of the
same type as the ITMs formalism used for security proofs. We hope that by keeping the formalism at this
level, the protocol description is easy to understand for developers interested in implementing it, and, at the
same time, the proofs are not hard to follow for security experts.

B Security proof

B.1 Notation and Conventions
Throughout this section, for the sake of brevity, we use the following conventions in notation

• We use I ⊆ [N ] for dishonest parties and J ⊆ [N ] for honest parties. The very nice convention
from [LN18] that we follows here is that we use i as a running index over dishonest parties, i.e., i ∈ I,
and we use j for honest parties, i.e., j ∈ J . We also use l as a running index over all parties, l ∈ [N ].

• Occasionally, if we have a vector of values {al}l∈[N ] and a subset S ⊆ [N ], we write aS in short for
{al}l∈S , i.e., the vector of all values corresponding to indices in S.

When describing functionalities with abort (thus all functionalities that are "used" in GenKey or Presign),
for brevity we occasionally neglect to explicitly mark all steps in which the adversary has the possibility to
abort. Indeed, an abort can happen at any step in the functionality where the adversary is supposed to
send some message.

B.2 Analysis of PMtA

We start by introducing the FMtA functionality. The parties in FMtA are Alice and Bob who given private
inputs α, β ∈ Zq respectively would like to compute tA, tB such that tA + tB = αβ and tA is uniformly
random in Zq. Since the protocols for realizing FMtA are not quite symmetric (the role of Alice and Bob
differ) we find it best to have two versions of the FMtA functionality: one when the adversary controls Alice
and one when it controls Bob.

Functionality FMtA (A controls Alice)

Private input: Alice holds α ∈ Zq and Bob holds β ∈ Zq

1. Bob sends β to FMtA

2. FMtA samples tA ∈ Zq and sends it to A (Alice)

3. A (Alice) sends (α, δ) ∈ Z2
q to FMtA

4. FMtA sends output tB = αβ + δ − tA to Bob

Recall that in Section 5.2, we did not provide any secure implementation of FMtA, but rather sketches of
protocols that are secure only against static adversaries. Here we prove that the Two-party Multiplication
protocol π1

2PMul in [DKLS18] based on Oblivious Transfer securely computes FMtA. We do not provide a
description of π1

2PMul in this paper as it would require significant space to introduce the required notation
and background on Oblivious Transfer, and instead we refer to the well-written paper [DKLS18]. We also
refer to [GG18, LN18, CCL+20] for a secure version of PMtA based on additively homomorphic addition.
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Functionality FMtA (A controls Bob)

Private input: Alice holds α ∈ Zq and Bob holds β ∈ Zq

1. Alice sends α to FMtA

2. FMtA samples tB ∈ Zq and sends it to A (Bob)

3. A (Bob) sends β ∈ Zq to FMtA

4. FMtA sends output tA = αβ − tB to Alice

Lemma B.1. The π1
2PMul protocol (with "cheat detected" replaced by "abort") from [DKLS18] securely com-

putes the FMtA functionality.

Proof. We inspect the F1
2PMul functionality introduced in [DKLS18] that is securely computed by π1

2PMul.

Functionality F1
2PMul

Private input: Alice holds α ∈ Zq and Bob holds β ∈ Zq .

1. Bob sends β to F1
2PMul.

2. F1
2PMul samples tA uniformly at random and sends it to Alice.

3. Alice sends (α, δ, c) to F1
2PMul.

4. If c > 0 and δ = 0, abort, otherwise:

5a. Toss c coins, if any of them output 1, send cheat detected to Bob and abort.

5b. compute tB = αβ + δ − tA and send it to Bob.

Intuitively, F1
2PMul is "stronger" than FMtA in the sense that every "cheating attempt" by Alice goes

through in FMtA. On the other hand, in F1
2PMul, an additional randomized test is performed (which succeeds

with probability at least 0.5, since c ∈ {1, 2, 3, ...}). To formalize this notion, one can write down a protocol
πMul in the F1

2PMul-hybrid model that invokes the F1
2PMul functionality and the cheat detected output is

interpreted as Alice’s abort. Subsequently, it is easy to show that πMul securely computes FMtA.

B.3 Analysis of PPrivMult

We start by introducing the FPrivMult ideal functionality that we would like the PPrivMult protocol to securely
compute.

Functionality FPrivMult

Private Input: Each party l ∈ [N ] holds a pair of shares al ∈ Zq and bl ∈ Zq .
1. Receive shares {aj , bj}j∈J from honest parties.

2. Receive {ai,j , bi,j}i∈I,j∈J from the adversary A
3. Receive δ from the adversary A.
4. Sample {cj}j∈J uniformly at random subject to:

∑
j

cj = δ +

∑
j

aj

∑
j

bj

+
∑
i,j

bjai,j +
∑
i,j

ajbi,j

5. send output cj to each honest party j ∈ J

To provide some intuition, let us first explain how an "honest" adversary would behave: A would simply
send ai,j = ai and bi,j = bi for each i ∈ I and j ∈ J (with ai and bi being the true shares of the dishonest

27



parties i ∈ I). Subsequently, A would sample uniformly at random ci ∈ Zq for each i ∈ I and set

δ :=

(∑
i

ai

)(∑
i

bi

)
−
∑
i

ci.

In such a case indeed {cl}l∈[N ] is a random vector satisfying
∑
l cl = (

∑
l al) (

∑
l bl).

The shape of this functionality, specifically the way A is allowed to cheat, is dictated by how the PPrivMult

protocol looks like. Indeed, nothing forces the adversary participating in PPrivMult to use the same set of
shares in every invocation of PMtA with different honest parties.

We analyze the PPrivMult protocol in the FMtA-hybrid model. To this end, we replace each execution of
PMtA by a call to the FMtA functionality. It will be convenient also to denote the call to FMtA corresponding
to the instance where party k ∈ [N ] acts as Alice and party l ∈ [N ] acts as Bob by Fk→lMtA. Thus, in particular,
in step 1. of PPrivMult party k ∈ [N ] interacts with Fk→lMtA and in step 2. party k interacts with F l→kMtA.

Lemma B.2. Protocol PPrivMult securely computes the FPrivMult functionality in the FMtA hybrid model.

Proof. Let A by any adversary for PPrivMult, we start by describing a suitable simulator S.

1. The simulator S interacts with A (acting as F i→jMtA) and sends A a uniformly random αi→j ∈ Zq and
(acting as F j→iMtA) sends to A a uniformly random βj→i ∈ Zq.

2. The simulator S (controlling the functionalities F i→jMtA and F j→iMtA for i ∈ I and j ∈ J) internally
intercepts the values ai,j , δi,j and bi,j that the adversary A sends to them.

3. The simulator S sends {ai,j , bi,j}i∈I,j∈J to FPrivMult.

4. The simulator S computes δ as follows:

δ :=
∑

i∈I,j∈J
δi,j −

∑
i,j

αi→j −
∑
i,j

βj→i

and sends δ to FPrivMult.

5. The simulator outputs whatever A outputs and halts.

It remains to show computational indistinguishability between the real execution and the ideal execution.
Actually, we show these two distributions are exactly the same.

Note that because the adversary (in the real execution) interacts with F i→jMtA and F j→iMtA only (and with
F i→i′MtA for i, i′ ∈ I, but this interaction does nothing), the only messages it obtains in the protocol are the
uniformly random values αi→j and βj→i. Thus, the adversary can be thought of as a black-box

A(α, β) = (a, b, δ),

where for brevity we denote α = {αi→j}i∈I,j∈J and β = {βi→j}i∈I,j∈J , similarly a and b are suitable vectors,
and δ ∈ Zq.

In the ideal execution, the inputs α, β to the adversary are also uniformly random, so the distributions
of the adversary outputs match between the real execution and the ideal one. It remains to check whether
the outputs of the honest parties are also distributed the same way.

In the real execution, party j has output

cj = ajbj +
∑
l 6=j

αj→l +
∑
l 6=j

βl→j

= ajbj +
∑

j′∈J,j′ 6=j

(αj→j′ + βj′→j) +
∑
i∈I

αj→i +
∑
i∈I

βi→j

= ajbj +
∑

j′∈J,j′ 6=j

(αj→j′ + βj′→j) +
∑
i∈I

(ajbi,j − βj→i)

+
∑
i∈I

(bjai,j + δi,j − αi→j)
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thus
cj = ajbj +

∑
j′∈J,j′ 6=j

(αj→j′ + βj′→j) +
∑
i

δi,j

+
∑
i

(bjai,j + ajbi,j)−
∑
i

αi→j −
∑
i

βj→i

= τj +
∑
i

δi,j +
∑
i

(bjai,j + ajbi,j)−
∑
i

αi→j −
∑
i

βj→i

Where we denoted τj := ajbj +
∑
j′∈J,j′ 6=j (αj→j′ + βj′→j). Now, note that αj→j′ and βj′→j come from

interactions between two honest parties via FMtA, and, thus, are uniformly random subject to αj→j′+βj→j′ =
ajbj′ , hence ∑

j

τj =
(∑

j

aj

)(∑
j

bj

)
.

Moreover, {τj}j∈J are distributed uniformly subject to this constraint. (This might sound strange if |J | = 1
but is also correct.) Consequently, it follows that the outputs {cj}j∈J of honest parties in FPrivMult have
uniform distribution subject to∑

j

cj = δ +
(∑

j

aj

)(∑
j

bj

)
+
∑
i,j

bjai,j +
∑
i,j

ajbi,j .

B.4 Analysis of PCheckDH

We start by defining the FCheckDH ideal functionality.

Functionality FCheckDH

Public Input: A tuple (gd1 , gd2 , . . . , gdN ) representing shares of the public key h := gd =
∏
l∈[N ] g

dl .

Private Input: Each party l ∈ [N ] holds a share dl ∈ Zq . of the public key h := gd =
∏
l∈[N ] g

dl .

Init():
1. Receive the private input dl ∈ Zq from every party l ∈ [N ]. In case it does not agree with the public key gdl , abort.

2. Store d :=
∑
l∈[N ] dl.

Query(u, v):
1. If ud = v then publish accept, else publish reject.

Subsequently, we show that PCheckDH securely computes the FCheckDH functionality. To this end, we first
reformulate the PCheckDH protocol in the (FZK,FComZK)-hybrid model, below we list the necessary changes:

• In step 1 of Init the parties call FZK(RDLog)
• In steps 1,2,3 of Query the parties interact with FComZK(RRerand)
• In steps 4, 5 of Query the parties interact with FZK(REGExp).

Lemma B.3. The PCheckDH protocol securely computes the FCheckDH functionality in the (FZK,FComZK)-
hybrid model.

Proof. Let A be any adversary for PCheckDH, we start by describing a suitable simulator S.
Simulating Init()

1. S intercepts the values {di}i∈I the adversary A sends to FZK. In case for some i ∈ I the received value
does not agree with the public gdi , S simulates reject by FZK.
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Simulating Query(u, v)

At the very beginning, S receives the result, either accept or reject from the FCheckDH functionality. The
simulation is then performend according to one of the below recipes depending on this result.

The case of accept:

1. S samples (u′, v′) ∈ G2 as follows: choose γ ∈ Zq uniformly at random and set u′ := gγ and v′ := hγ .

2. S simulates FComZK sending accept to A for every j ∈ J .

3. S intercepts (ui, vi) along with (αi, βi) for each i ∈ I that A sends to FComZK and simulates the
execution of FComZK.

4. S picks any honest party j0 ∈ J and generates (uj , vj) ∈ G2 as follows:

• Sample ηj ∈ Zq uniformly at random and set (uj , vj) = (gηj , hηj ) for j ∈ J \ {j0}.

• Set uj0 := u′ ·
(∏

l 6=j0 ul

)−1
and vj0 := u′ ·

(∏
l 6=j0 vl

)−1
.

5. S simulates FComZK to decommit (uj , vj) for j ∈ J to the adversary A.

6. S computes u′j :=
(
gdj
)γ and publishes it internally to A. We note that S does not need to know dj to

compute u′j , it is enough to know gdj which is publicly available.

7. S simulates FZK sending accept for each j ∈ J to A.

8. S faithfully simulates FZK when interacting with A (publishing reject if necessary).

The case of reject:

1. S samples (u′, v′) ∈ G2 as follows: choose γ1, γ2 ∈ Zq uniformly at random and set u′ := gγ1 and
v′ := hγ2 .

2. S simulates FComZK sending accept to A for every j ∈ J .

3. S intercepts (ui, vi) along with (αi, βi) for each i ∈ I that A sends to FComZK and simulates the
execution of FComZK.

4. S picks any honest party j0 ∈ J and generates (uj , vj) ∈ G2 as follows:

• Sample αj , βj uniformly at random from Zq and set uj := uαjgβj and vj := vαjhβj for J \ {j0}.

• Set uj0 := u′ ·
(∏

l 6=j0 ul

)−1
and vj0 := v′ ·

(∏
l 6=j0 vl

)−1
.

5. S simulates FComZK to decommit (uj , vj) for j ∈ J to the adversary A.

6. S computes u′j :=
(
gdj
)γ1 and publishes it internally to A.

7. S simulates FZK sending accept for each j ∈ J to A.

8. S faithfully simulates FZK when interacting with A (publishing reject if necessary).

Having specified the simulator S, we now proceed to show the indistinguishability between the ideal and
simulated runs of the protocol. We begin by noting that in a real execution, since A needs to decide on
{(ui, vi)}i∈I before seeing any of (uj , vj) for j ∈ J then (u′, v′):

• either forms a uniformly random DH-tuple (h, u′, v′) in case (h, u, v) is a DH-tuple,
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• or is a uniformly random pair of elements of G in case (h, u, v) is not a DH-tuple.

In particular, the honest parties have only 1
q probability of outputting a false positive when the answer

should be reject, and always correctly output accept in case (u, v) should be accepted (unless the protocol
is aborted at any point). It is thus enough to show that the view of the adversary in the real execution is
identically distributed as his view in the simulation with S.

In both cases (accept and reject), the simulator computes {u′j}j∈J correctly given {(ul, vl)}l∈[N ] or in
other words, conditioned on {(ul, vl}l∈[N ] the view of the adversary in the real execution and in the simulation
are exactly the same. Consequently, it suffices to show that the distribution of {(uj , vj)}j∈J , conditioned on
the public input and (u, v) is the same in both scenarios. We do it separately for the accept and reject
cases.
Case of accept: In this case, (h, u, v) is a DH-tuple; thus, in the real execution, each (uj , vj) (for j ∈ J)
is distributed as follows: uj is uniformly random in G and vj = udj . In the simulated execution, it is easy
to see that (uj , vj) for j ∈ J \ {j0} are distributed also the same way. Finally, uj0 is chosen so as to satisfy
uj0
∏
l 6=j0 ul = u′, where u′ is uniformly random and independent of {ul}l 6=j0 . Hence, uj0 is also uniformly

distributed. It is also evident, from the formula according to which vj0 is chosen, that vj0 = udj0 . Hence the
distributions indeed coincide.
Case of reject: In this case, (h, u, v) is not a DH-tuple, which in turn implies that, in the real execution,
each (uj , vj) (for j ∈ J) is a uniformly random pair of group elements. As before, in the simulated execution,
for j 6= j0 we obtain a matching distribution of (uj , vj). Finally, by an analogous argument as for the accept
case, both uj0 and vj0 are uniformly random elements of G (because u′ and v′ are), independent of the
remaining {(uj , vj)}j∈J\{j0}.

B.5 FGER - GenExpReveal
The appropriate FGER functionality appears in the table Functionality FGER. We proceed to reformulate

Functionality FGER

1. Receive from A shares {ai}i∈I ⊆ Zq .

2. Generate uniformly at random shares {aj}j∈J ⊆ Zq
3. Send {gaj }j∈J to A. At this point A may choose to abort.

4. Send aj to party j for each j ∈ J .

PGER in a suitable hybrid model. The only modification to PGER one needs to make is that in steps 1. and
2. the parties interact with the FComZK(RDLog) functionality.

Lemma B.4. The PGER protocol securely computes the FGER functionality in the FComZK-hybrid model.

Proof. Let A be any adversary for PGER. We start by describing a suitable simulator S.

1. The simulator S receives from A shares {ai}i∈I by simulating CommitProof, acting as FComZK.

2. The simulator S sends the obtained shares to FGER.

3. S generates the honest shares {aj}j∈J uniformly at random.

4. S simulates FComZK to decommit to gaj for j ∈ J .

Indistiniguishability between ideal and simulated runs follows simply from the definition of FComZK and the
fact that the shares generated by A do not depend on {aj}j∈J (which are independent, uniformly random
in Zq each).
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B.6 Analysis of PReshare

To begin with, we define the FReshare(t) ideal functionality which describes what PReshare(t) is trying to
achieve.

Functionality FReshare(t)

Public input: An element h ∈ G used to form ElGamal commitments. A tuple C = (c1, c2, . . . , cN ) of ElGamal commit-
ments, i.e., cl ∈ G2 for each l ∈ [N ].

1. Receive input (al, r
′
l) ∈ Zq from each party l ∈ [N ].

2. Verify that E
(
al, r

′
l

)
= cl for each l ∈ [N ] and abort if this is not the case.

3. Compute a =
∑
l∈[N ] al and sample a uniformly random polynomial f ∈ Zq [X] of degree ≤ t− 1 such that f(0) = a.

4. Send âi := f(i) for i ∈ I to A.
5. A may choose to abort.

6. Send âj := f(j) to each party j ∈ J .
7. Sample rj ∈ Zq for every j ∈ J and publish E(âj ; rj).

8. Receive {ri}i∈I from A and publish E(âi; ri).

The next step is to reformulate the PReshare protocol so that it is stated in an appropriate hybrid model.
For this, the following modifications are required:

• In step 1. the parties invoke the FZK(REGKnow) functionality.
• In steps 3., 4. and 5. the parties interact with FComZK(REGKnow) and FComZK(REGRefresh).
• In step 7. the parties invoke FZK(REGRefresh).
• In step 10. the parties invoke FZK(REGRefresh).

Lemma B.5. For each t ∈ {1, 2, . . . , N}, the PReshare(t) protocol securely computes the FReshare(t) func-
tionality in the (FZK,FComZK)-hybrid model.

Proof. Let A be any adversary for PReshare(t), we start by describing a suitable simulator S.

1. S acts as FZK and sends 1 to A for each honest party j ∈ J confirming correctness of proofs of
knowledge of honest parties.

2. S intercepts the pairs (ai, r
′
i) sent by A to the FZK functionality. S sends (ai, r

′
i) as input for party

i ∈ I to the functionality FReshare(t).

3. S receives âi for i ∈ I from FReshare(t).

4. S simulates the FComZK functionality and intercepts the polynomials fi ∈ Zq[X] for i ∈ I committed
by A.

5. S defines the polynomials fj for j ∈ J as follows:

(a) For j 6= j0 the polynomial is sampled honestly, i.e., fj,0 = aj and fj,ι is uniformly random in Zq
for ι = 1, 2, . . . , t− 1.

(b) For j = j0 the polynomial satisfies the following constraints:

• fj0,0 = aj0 ,
• fj0(i) = âi −

∑
l∈[N ],l 6=j0 fl(i) for all i ∈ I

The above specify |I| + 1 linearly independent constraints. To specify the polynomial fj0 com-
pletely, S also chooses fj0,ι uniformly at random, for ι = 1, 2, . . . , t− |I| − 1.
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We note that S does not know any aj for j ∈ J , and, hence, S cannot compute fj [X]; nevertheless,
each of these polynomials is now uniquely specified, and, furthermore, each of their coefficients can be
expressed in the form

β0 +
∑
j∈J

βjaj , (2)

where β0 and {βj}j∈J are field elements known to (efficiently computable by) S.

6. S computes correct, random commitments Cj to the coefficients of polynomials fj [X]. This is done
using the public commitments cj = E(aj , r̃j) and the fact (2) by taking advantage of the homomorphic
properties of E(·). To make these commitments random, S multiplies each of them by a random
commitment to 0 ∈ Zq.

7. S simulates FComZK to decommit to Cj for each j ∈ J and proves that these commitments are correctly
formed.

8. S computes the commitments to the evaluations of all polynomials as in the protocol.

9. S simulates FZK to refresh the commitments E(fj(i), rj→i) for i ∈ I and j ∈ J (for which it does not
know rj→i) to E

(
fj(i), r

′
j→i
)
with uniformly random r′j→i.

10. For each j ∈ J and i ∈ I, S acting as j sends the share (fj(i), r
′
j→i) to A.

11. S receives the shares A sends to honest parties, and simulates abort if any turns out incorrect.

12. S computes (using the public commitments) commitments to âk :=
∑
l∈[N ] fl(k) for every k ∈ [N ],

again using the fact that each of these values is of the form (2).

13. S simulates FZK to refresh the commitments to âj for j ∈ J from the public ones (to which S does
not know the randomizing elements) to E

(
âj , r

′′
j

)
for uniformly random r′′j ∈ Zq.

We prove that the distributions over views of A in the real execution and in the simulation are equal, i.e.,
the simulation is perfect. To this end, note first that after the polynomials fj [X] for j ∈ J and fi[X] for
i ∈ I are specified, from the viewpoint of A, S perfectly emulates the execution of honest parties, by sending
correct commitments and correct shares with uniformly random randomizing elements (even though S does
not know all the coefficients of fj [X] for j ∈ J). The only potential source of distinguishability is the
distribution from which {fj [X]}j∈J are drawn in a real execution versus the simulated one. We proceed to
comparing these two distributions.

Real Execution: Recall that in the real execution, each coefficient fj,ι for j ∈ J , ι = 1, 2, . . . , t − 1 is
sampled uniformly at random, while fj,0 is set to aj .

Simulation: In the simulation, the distributions of fj [X] for j 6= j0 are the same as in the real execution.
Consider now the method of choosing fj0 :

• fj0,0 = aj0 ,

• fj0,ι is uniformly random for ι = 1, 2, . . . , t− |I| − 1,

• First, for i ∈ I, S computes values b̃i :=
∑
l 6=j0 fl(i) which depend, in particular, on the choice of

A’s polynomials. Next, independently of b̃i’s, {ãi}i∈I ∈ ZIq are sampled uniformly at random by the
functionality FReshare. Next, S puts the remaining constraints fj0(i) = b̃i − ãi on fj0 .

Consequently, fj0 is determined by setting fj0,0 = aj0 and sampling fj0,ι for ι = 1, 2, . . . , t − |I| − 1 and
fj0(i) for i ∈ I uniformly at random (because b̃i − ãi is uniformly random). From the super-invertibility of
Vandermonde matrices (see for instance [DN07]) it now easily follows that this results in the same distribution
as choosing all fj0,ι for ι = 1, 2, . . . , t − 1 independently, uniformly at random (we use the fact that the
underlying field is large enough, i.e., N � q).
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B.7 Analysis of PAPresign

We define the appropriate functionality in the table Functionality FAPresign. Before stating a result on the

Functionality FAPresign

Public input: Group elements (gx1 , gx2 , . . . , gxN ) that together form an ECDSA public key y := gx =
∏
l∈[N ] g

xl .

Setup()

1. Receive xl from each party l ∈ [N ]. If any of these inputs does not match with the public gxl , abort.

2. Sample uniformly at random d ∈ Zq and publish h := gd the public key for ElGamal commitments.

AdditivePresign()

1. Receive from the adversary A the following 4 sets of shares {ki}i∈I , {ρi}i∈I , {ηi}i∈I and {τi}i∈I .
2. Compute "honest shares" as follows:

• Sample uniformly at random shares {kj}j∈J and compute k :=
∑
l∈[N ] kl

• Sample uniformly at random shares {ρj}j∈J and compute ρ :=
∑
l∈[N ] ρl

• Compute η := ρx and sample shares {ηj}j∈J uniformly at random subject to
∑
j∈J ηj = η −

∑
i∈I ηi

• Compute τ := ρk and sample shares {τj}j∈J uniformly at random subject to
∑
j∈J τj = τ −

∑
i∈I τi

3. Generate {r(k)j , r
(ρ)
j , r

(η)
j , r

(τ)
j }j∈J uniformly at random and send commitments E

(
kj ; r

(k)
j

)
, E
(
ρj ; r

(ρ)
j

)
, E
(
ηj ; r

(η)
j

)
,

E
(
τj ; r

(τ)
j

)
for j ∈ J to A

4. A may decide to abort, in case of continue, A sends its blinding elements {r(k)i , r
(ρ)
i , r

(η)
i , r

(τ)
i }i∈I to FAPresign

5. Publish all the commitments E
(
kl; r

(k)
l

)
, E
(
ρl; r

(ρ)
l

)
, E
(
ηl; r

(η)
l

)
, E
(
τl; r

(τ)
l

)
for l ∈ [N ].

security of PAPresign, we need to reformulate this protocol in an appropriate hybrid model. Below are listed
the required modifications to PAPresign:

• In step 1. of Setup() the parties interact with FZK(RDLog).
• In step 2. of Setup() instead of running the PGER protocol, the parties interact with FGER.
• In step 3. of Setup() instead of running PCheckDH.Init(), the parties interact with FCheckDH by calling
FCheckDH.Init().

• In step 1., 2. od Gen(·) the parties interact with FZK(REGKnow).
• In step 2. of Mult(·, ·, ·) the parties invoke the FPrivMult functionality instead of running the PPrivMult

protocol.
• In step 3. of Mult(·, ·, ·) the parties interact with FZK(REGKnow).
• In step 4. of Mult(·, ·, ·) the parties interact with FZK(REGExp).
• In step 6. of Mult(·, ·, ·) instead of PCheckDH.Query(·, ·), the parties interact with the FCheckDH func-

tionality by calling FCheckDH.Query(·, ·).

Lemma B.6. The PAPresign protocol securely computes the FAPresign functionality in the (FCheckDH,FPrivMult,FGER,FZK)-
hybrid model.

Proof. Let A be any adversary for PAPresign. We start by describing a suitable simulator S.
Simulation of Setup():

1. S simulates the FZK and accepts all proves of honest parties and honestly simulates FZK when inter-
acting with A.

2. S honestly simulates the FGER functionality.

Simulation of Gen("a") for a ∈ {ρ, k}:

34



1. S intercepts the values ai, ri for i ∈ I that the adversary A sends to FZK and stores them.

2. S sends uniformly random pairs of group elements (uj , vj) ∈ G2 as commitments to A for every j ∈ J ,
and simulates accept acting as FZK.

Simulation of Mult("a","b","c") (for (a, b, c) equal to either (k, ρ, τ) or (x, ρ, η), depending on the call):

1. S interacts with A by faithfully simulating FZK.

2. S intercepts the values {ãi,j , b̃i,j}i∈I,j∈J and δ that A sends to the FPrivMult functionality.

3. For each j ∈ J , S sends to A (and simulates accept acting as FZK) a uniformly random commitment
(these were supposed to commit to shares cj for j ∈ J)

4. S intercepts the values c̃i for i ∈ I that A sends to FZK

5. S sends |J | random pairs of group elements to A and simulates accept by FZK (these were supposed
to commit to ajb).

6. (executed only for (a, b, c) = (k, ρ, τ)) S simulates the FCheckDH functionality and publishes accept
(otherwise reject) if and only if both the conditions below hold:∑

i∈I
ãi,j =

∑
i∈I

ai for every j ∈ J, (3)∑
i∈I

b̃i,j =
∑
i∈I

bi for every j ∈ J. (4)

7. (executed only for (a, b, c) = (x, ρ, η)) S computes δ̃j ∈ Zq and δ̃ ∈ Zq as follows:

δ̃ :=

(∑
i∈I

ai

)(∑
i∈I

bi

)
− δ −

∑
i∈I

c̃i

δ̃j :=
∑
i∈I

b̃i,j −
∑
i∈I

bi

where {ai, bi}i∈I are the values stored by S that have been obtained by S during Gen() calls (i.e., Gen(x)
and Gen(ρ)). Subsequently, S simulates the FCheckDH functionality and publishes accept (otherwise
reject) if and only if both the conditions below hold:∑

i∈I
ãi,j =

∑
i∈I

ai for every j ∈ J, (5)∑
j∈J

aj δ̃j = δ̃. (6)

We note that in the latter equation, S knows δ̃ and all δ̃j for j ∈ J and all gaj for j ∈ J . Consequently
S can verify condition (6) by doing computations in the exponent.

Simulation of a call to the FReshare functionality (regarding variable "a"):

1. S intercepts the values (ai, r
′
i) for i ∈ I that A sends to the FReshare functionality and verifies that

they agree with the public commitments. If not, S simulates abort by FReshare.

2. S sends uniformly random shares {âi}i∈I to A.
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3. S publishes uniformly random pairs of elements of G in place of E(âj , rj) that FReshare is supposed to
publish.

4. S receives the randomizing elements {ri}i∈I from A and publishes the commitments E(âi, ri) for i ∈ I.

Finally, whenever S encounters a reject when simulating FZK it sends abort to FECDSA, copies A output
and terminates.

We now proceed to the proof that the output distribution generated by an execution with S in the ideal
world is computationally indistinguishable from the distribution generated by A in a real-world execution.
We proceed via a sequence of games:
Game 0: Ideal execution with the simulator S defined above.

Game 1: In this game, we modify FAPresign so that it sends all honest parties’ inputs xj , dj to S at the
beginning of the execution. Additionally FAPresign sends to S honest parties’ shares kj , ρj , ηj , τj together
with their randomizing elements r(k)j , r

(ρ)
j , r

(η)
j , r

(τ)
j just after they are sampled. Since S is unchanged,

distributions generated by Games 0 and 1 are identical.

Game 2: The simulator S faithfully simulates FCheckDH in the execution of PAPresign.Mult(”k”, ”ρ”, ”τ”).
Let us denote

δ̃ :=
(∑
i∈I

ai

)(∑
i∈I

bi

)
− δ −

∑
i∈I

c̃i

δ̃j :=
∑
i∈I

b̃i,j −
∑
i∈I

bi

δ̃′j :=
∑
i∈I

ãi,j −
∑
i∈I

ai

In Game 1, instead of simulating FCheckDH honestly, S checks whether both the following conditions hold:

∑
i∈I

ãi,j =
∑
i∈I

ai for every j ∈ J, (7)∑
i∈I

b̃i,j =
∑
i∈I

bi for every j ∈ J. (8)

In contrast, in Game 2 (and the real execution), a call to FCheckDH terminates with accept iff:

(∑
j∈J

aj

)
·
(∑
i∈I

b̃i,j

)
+
(∑
j∈J

bj

)
·
(∑
i∈I

ãi,j

)
+
(∑
j∈J

aj

)
·
(∑
i∈I

bj

)
+ δ =

∑
j∈J

cj

After subtracting (
∑
l∈[N ] al)(

∑
l∈[N ] bl) = (

∑
l∈[N ] cl), it simplifies to:

∑
j∈J

aj δ̃j +
∑
j∈J

bj δ̃
′
j = δ̃. (9)

Equations (7) and (8) translate to δ̃′j = 0 and δ̃j = 0 for every j ∈ J , so the condition checked in Game 1

is strictly stronger. Additionally, while δ̃′j , δ̃j , and δ̃ are set by A, aj and bj has been randomly sampled, and
none of the messages that the adversary has seen depends on them. Hence, the probability of A choosing
δ̃′j , δ̃j , and δ̃ such that FCheckDH rejects in Game 1 and accepts in Game 2 is negligible, and, as a consequence,
the distributions of outputs in both games are computationally indistinguishable.
Game 3: The simulator S faithfully simulates FCheckDH in the execution of PAPresign.Mult("x", "ρ", "η").
Similarly, as in the above argument, we prove that the probability of finding such δ’s by A that FCheckDH

36



accepts in Game 3 and rejects in Game 2 is negligible, hence the output distributions are computationally
indistinguishable. Following the notation from above, the check in Game 2 passes if both of the equations
hold:

∑
i∈I

ãi,j =
∑
i∈I

ai for every j ∈ J, (10)∑
j∈J

aj δ̃j = δ̃. (11)

Thus it is a strictly stronger condition than an honest check FCheckDH performed in Game 3, as in
equation (9). As (10) simplifies to δ̃′j = 0, the only variable assignments that passes Game 3 check and fails
Game 2 check are such that:

δ̃′j 6= 0 for some j ∈ J, (12)∑
j∈J

bj δ̃
′
j = 0, (13)

where (13) comes from subtracting (11) from (9). As δ̃′j are under A’s control, bj ’s are randomly sampled
and no message sent to A depends on them, the probability of choosing δ̃′j satisfying both (12) and (13) is
negligible. Consequently, Games 2 and 3 are computationally indistinguishable.

Game 4: The simulator S instead of using random pairs of group elements, generates correct commitments
whenever publishing commitments as an honest party. To do so, it uses honest parties’ shares obtained from
FAPresign (due to the modification introduced in Game 1).

To prove output indistinguishability between Games 3 and 4 we construct a reduction to the DDH
assumption. This argument follows closely that of Lindell and Nof [LN18] and uses the following function
(g, h are fixed elements of G, in our case the prespecified generator and the key to ElGamal commitments
respectively):

Rerand(u, v, s, t) = (usgt, vsht),

where u, v ∈ G and s, t ∈ Zq. When writing Rerand(u, v) we mean that s, t are chosen uniformly at random
in Zq. The crucial property of Rerand is the following:

1. If (g, h, u, v) form a Diffie-Hellman tuple (that is, if ur = v and gr = h for some r) then Rerand(u, v) =
(u′, v′) is a random tuple under the constraint that (g, h, u′, v′) forms a Diffie-Hellman tuple.

2. If, on the other hand, (g, h, u, v) do not form a Diffie-Hellman tuple, then Rerand(u, v) = (u′, v′) is a
random pair in G2.

To see that, let us write u, v as gr1 , gr2 and denote (u′, v′) := Rerand(gr1 , gr2 , s, t), then

(u′, v′) = ((gr1)sgt, (gr2)s(gd)t) = (gsr1+t, gsr2+dt).

Note that u′ = gsr1+t is a random group element, and if r2 = dr1 (i.e., exactly when (g, h, u, v) is a DH tuple)
then v′ = gd(sr1+1), and, hence, (g, h, u′, v′) is a Diffie-Hellman tuple. On the other hand, if r2 = dr1 + r′

for some r′ 6= 0, then we can write v′ as gsdr1+sr
′+dt = (u′)dgsr

′
. Since s is random and independent from

u, d, r′, then v′ is random and independent from u′.
Given this property of Rerand we are ready to construct a distinguisher D which, upon receiving a tuple

(g, ĥ, u, v) as input, generates output with distribution indistinguishable from that of Game 4 if (g, ĥ, u, v)
is a DH tuple, and indistinguishable from Game 3 if it is not a DH tuple. Under the DDH assumption, this
implies the indistinguishability of these two games. The distinguisher D runs the simulation as in Game 3
with the following exceptions:
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1. During the execution of Setup(), D simulates FGER so that honest parties’ shares are random under
the restriction that

∏
l∈[N ] g

dl = ĥ.

2. Whenever D needs to generate an ElGamal commitment to some share aj , acting as party j ∈ J , D
computes (u′, v′) = Rerand(u, v) and publishes (u′, v′gaj ) as the commitment. There are four cases:

(a) When publishing the commitment to aj during the execution of Gen(a), the simulator knows aj
thanks to the modification introduced in Game 1.

(b) When publishing the commitment to cj during the execution of Mult(a, b, c), the simulator knows
cj from the functionality FPrivMult.

(c) When publishing the commitment to x ·kj during the execution of Mult("k", "x", "η"), the simula-
tor knows x from simulating FZK during the Setup and kj thanks to the modification introduced
in Game 1.

(d) When publishing the commitment to ρ · kj during the execution of Mult("k", "ρ", "τ"), the sim-
ulator knows ρ and kj from simulating FZK during execution of Gen(”ρ”) and thanks to the
modification introduced in Game 1.

It is now crucial to observe that if (g, ĥ, u, v) is a DH tuple (that is, u = gr, v = ĥr for some r), then (u′, v′ga)
is a correct, uniformly random ElGamal commitment to a, as we have

(u′, v′ga) =
(

(gr)sgt, (hr)shtga
)

= (grs+t, hrs+tga).

On the other hand, if (g, ĥ, u, v) is not a DH tuple, then (u′, v′ga) is uniformly random in G2. Hence, if
(g, ĥ, u, v) is a DH tuple, the execution is indistinguishable from the execution of Game 4 (as all commitments
generated by S are correct and random), and if (g, ĥ, u, v) is not a DH tuple, the execution is indistinguishable
from Game 3 (as all commitments generated by S are just random pairs in G2).

Since up to technicalities, Game 4 is identical to the real execution, that concludes the proof.

B.8 Analysis of PECDSA

As alluded before, we do not show directly that PECDSA securely computes the FECDSA functionality but
rather prove this via an intermediate functionality called FwECDSA. In this section, we define FwECDSA (we
refer to the table titled Functionality FwECDSA(t)) and subsequently show that PECDSA securely computes
it in a suitable hybrid model. In Section B.9 we show that FECDSA is in fact "no stronger" than FwECDSA

and thus PECDSA computes FECDSA as well.
Before we state a lemma, we need to reformulate PECDSA in an appropriate hybrid model. Below we list

the necessary changes to PECDSA:

• In step 2. of GenKey(), the parties interact with FGER instead of running PGER.
• In step 3. of GenKey(), instead of running PAPresign.Setup() the parties interact with FAPresign by

invoking Setup().
• In step 1. of Presign(), instead of running PAPresign.Setup() the parties interact with FAPresign by

invoking Gen().
• In step 2. of Presign(), the parties call the FReshare(t) functionality instead of the PReshare(t) protocol.
• In step 1. of ExpRevealThreshold(·), the parties interact with FZK(REGRefresh).
• In step 1. of Reveal(·), the parties interact with FZK(REGReveal).

Lemma B.7. For each t ∈ {1, 2, . . . , N} the PECDSA(t) protocol securely computes the FwECDSA(t) func-
tionality in the (FGER,FAPresign,FReshare(t),FZK)-hybrid model.

Proof. Let A be any adversary for PECDSA(t). We start by describing a suitable simulator S.
Simulating GenKey()
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1. S acting as the FGER functionality receives shares {xi}i∈I from A.

2. S sends {xi}i∈I to the FwECDSA functionality and receives back {gxj}j∈J .

3. S simulates the FGER functionality by sending {gxj}j∈J to A. If A chooses to abort, S aborts as well.

4. S simulates FAPresign.Setup() and picks the public key h for ElGamal commitments uniformly at
random in G.

Simulating Presign()

1. S samples uniformly at random and stores adversarial threshold shares {k̂i}i∈I , {ρ̂i}i∈I , {η̂i}i∈I and
{τ̂i}i∈I and externally sends them to the FwECDSA functionality.

2. S, acting as the FAPresign functionality, receives shares {ki}i∈I , {ρi}i∈I , {ηi}i∈I and {τi}i∈I from the
adversary.

3. S generates uniformly random pairs of group elements (u
(a)
j , v

(a)
j ) ∈ G2 for each j ∈ J and a ∈

{k, ρ, η, τ} and internally sends them to A (acting as FAPresign). If A aborts at this point, S aborts as
well.

4. S acting as the FAPresign functionality receives blinding elements {r(k)i , r
(ρ)
i , r

(η)
i , r

(τ)
i }i∈I from A.

5. S acting as FAPresign, publishes the appropriate commitments: correct for i ∈ I and randomly generated
for j ∈ J .

6. S simulates FReshare(t) for variables a ∈ {k, ρ, η, τ} as follows:

(a) S fetches the adversarial shares {âi}i∈I generated by S in step (1) of the simulation of Presign to
A. In case A aborts, S aborts as well.

(b) S externally hands {âi}i∈I to the FwECDSA functionality

(c) S samples uniformly random pairs of group elements (û
(a)
j , v̂

(a)
j ) ∈ G2 for j ∈ J and publishes

them as commitments E(âj ; rj).

(d) S receives from A the blinding factors {r̂(a)i }i∈I for adversarial commitments and publishes the
commitments accordingly.

Simulating Sign(m)

1. S fetches the data gathered (when simulating the corresponding Presign call) regarding the variables
(k, ρ, η, τ) corresponding to the appropriate currently used presignature.

2. S simulates the ExpRevealThreshold(k) subprotocol call:

(a) S receives {gk̂j}j∈J from the FwECDSA functionality.

(b) S acting as honest parties publishes gk̂j for j ∈ J and simulates FZK sending accept to A.

(c) S receives gk̂i from a subset I ′ ⊆ I of adversarial parties. At this point, S simulates FZK and
accepts only the revealed elements which agree with the shares {k̂i}i∈I the adversary committed
to in Presign().

(d) S sends the subset I ′ to the FwECDSA functionality.
(e) If |J | + |I ′| ≤ t − 1 then S simulates each honest party j ∈ J to fail and declares the set of

"faulty parties" as I \ I ′.
(f) S computes R := gk and r := Rx mod q.

3. S simulates the Reveal(τ) subprotocol call:
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(a) S receives {τ̂j}j∈J from the FwECDSA functionality

(b) S acting as honest parties publishes τ̂j for j ∈ J and simulates FZK sending accept to A.
(c) S receives τ̂i from a subset I ′′ ⊆ I of adversarial parties. Here S simulates FZK and accepts

only the revealed elements which agree with the shares {τ̂i}i∈I the adversary committed to in
Presign().

(d) S sends the subset I ′′ to the FwECDSA functionality.

(e) If |J | + |I ′′| ≤ t − 1 then S simulates each honest party j ∈ J to fail and declares the set of
"faulty parties" as I \ I ′′.

(f) S computes τ .

4. S honestly computes the ElGamal commitments to shares of s resulting from previously published
commitments.

5. S simulates the Reveal(s) subprotocol call exactly like for Reveal(τ).

To show indistinguishability between the ideal and real execution we proceed via a sequence of games.
Game 0: Ideal Execution.

Game 1: In this game the simulator S in GenKey() instead of using the values {gxj}j∈J obtained from
FwECDSA honestly simulates the FGER functionality and thus generates these elements within FGER.

Indistinguishability between Game 0 and Game 1 follows from the fact that both the distribution of
{xj}j∈J in FwECDSA and when generated by FGER are uniform in ZJq .

Game 2: In this game we modify the FwECDSA functionality so that during Presign, FwECDSA hands S
the values {k̂j}j∈J , {ρ̂j}j∈J , {η̂j}j∈J and {τ̂j}j∈J . After receiving these shares, S immediately recovers the
values k, ρ, η and τ (as S already knows adversarial threshold shares).

Since S only learns these values but does not use them yet, Games 1 and 2 are indistinguishable.

Game 3: In this game S after receiving adversarial additive shares at the start of the simulation of Presign()
generates "honest shares" kJ , ρJ , ηJ , τJ uniformly at random, subject to constraints: (We recall that at this
point S knows all the values k, ρ, η, τ as explained in the previous step.)∑

j∈J
kj = k −

∑
i∈I

ki,
∑
j∈J

ρj = ρ−
∑
i∈I

ρi,∑
j∈J

ηj = η −
∑
i∈I

ηi,
∑
j∈J

τj = τ −
∑
i∈I

τi.

Again, this is indistinguishable since S does not use these values in the simulation.

Game 4: In this game the simulator S generates all the values k, ρ, η, τ and all (additive and threshold)
"honest shares" by itself instead of relying on the FwECDSA functionality, specifically in the simulation of
Presign() the simulator S now acts as follows

• S starts by picking k and ρ uniformly at random in Zq and subsequently computes η := ρ · x and
τ := ρ · k.

• S, given adversarial additive shares kI , ρI , ηI , τI (from the simulation of FAPresign), generates additive
threshold shares of honest parties uniformly at random subject to an appropriate sum constraint (as
in Game 3).

• S simulates the FReshare(t) functionality honestly (except that in place of ElGamal commitments S
still uses random pairs in G2) thus learning the adversarial threshold shares and generating the "honest
shares" via random polynomials.
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We argue that the distribution of all shares (additive and threshold shares) of k, ρ, η and τ are exactly the
same in Game 3 and Game 4. To this end we break down how these shares are generated in these two games
Generating shares in Game 3:

1. A reveals kI , ρI , ηI , τI ,

2. S generates k̂I , ρ̂I , η̂I , τ̂I uniformly at random,

3. the FwECDSA functionality generates k, ρ ∈ Zq uniformly at random, sets η := kx, τ = kρ and picks
uniformly random polynomials f (a) ∈ Zq[X] of degree ≤ t−1 (for a ∈ {k, ρ, η, τ}) such that f (a)(0) = a
and f (a)(i) = ai for all i ∈ I and a ∈ {k, ρ, η, τ}. For each a ∈ {k, ρ, η, τ} and j ∈ J , aj is specified as
f (a)(j).

4. S samples aJ ∈ ZJq uniformly at random subject to the constraint
∑
j∈J aj = a −

∑
i∈I ai for all

a ∈ {k, ρ, η, τ}.

Generating shares in Game 4:

1. A reveals kI , ρI , ηI , τI ,

2. S generates k̂I , ρ̂I , η̂I , τ̂I uniformly at random,

3. S generates k, ρ uniformly at random in Zq and computes η, τ ,

4. S samples aJ ∈ ZJq uniformly at random subject to the constraint
∑
j∈J aj = a −

∑
i∈I ai for all

a ∈ {k, ρ, η, τ}.

5. S picks uniformly random polynomials f (a) ∈ Zq[X] of degree ≤ t − 1 (for a ∈ {k, ρ, η, τ}) such that
f (a)(0) = a and f (a)(i) = ai for all i ∈ I and a ∈ {k, ρ, η, τ}. For each a ∈ {k, ρ, η, τ} and j ∈ J , aj is
specified as f (a)(j).

We note first that the only impact A has is picking additive adversarial shares in Step (1) (in both of
the above lists). Further, steps (1) and (2) are in both cases the same, showing that the distribution of
adversarial (additive and threshold) shares is in both case the same.

To see that also honest shares are identically distributed, note first that k, ρ are in both cases chosen
independently, uniformly at random (and η, τ are computed deterministically from these variables). Honest
shares are then sampled by the exact same method in both cases, though in a different order and by different
entities (FwECDSA or S), thus their distributions match.

Finally, let us argue that the mere fact that the distributions of shares are the same implies indistin-
guishability between Game 3 and Game 4. Firstly: the only part of this distribution A learns during Presign
are the adversarial shares kI , ρI , ηI , τI (which A chooses) and k̂I , ρ̂I , η̂I , τ̂I (which are chosen independently,
uniformly at random by S). Thus, during Presign() the adversary A cannot make a distinction. On the
other hand, during Sign(·) the distribution over A’s views depends solely on the shares k̂I , ρ̂I , η̂I , τ̂I and
k̂J , ρ̂J , η̂J , τ̂J generated in Presign(), hence we conclude indistinguishability between Game 3 and Game 4.

Game 5: In this game, S does not generate k, ρ, η, τ and the additive shares explicitly by itself, instead
it honestly simulates the execution of FAPresign, with the only modification that at the end, S generates
random pairs in G2 instead of ElGamal commitments to shares of honest parties.

It suffices to argue that the distribution of (kJ , ρJ , ηJ , τJ) conditioned on the choice of (kI , ρI , ηI , τI) by
A, is the same as in Game 4. This is clear since by simulating FAPresign we obtain uniformly random shares
(kJ , ρJ) and uniformly random shares (ηJ , τJ), subject to

∑
j∈J aj +

∑
i∈I ai = a for a ∈ {η, τ}. The only

difference between Game 4 and Game 5 is that in the former S first samples k and ρ uniformly at random
and only then chooses (kJ , ρJ) subject to

∑
j∈J kj +

∑
i∈I ki = k and

∑
j∈J ρj +

∑
i∈I ρi = ρ. This is clearly

equivalent to what happens in Game 5.

Game 6: In this game S generates ElGamal commitments honestly instead of using uniformly random pairs
in G2, i.e.
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• S honestly commits to the additive shares of honest parties, while simulating FAPresign,

• S honestly commits to the threshold shares of honest parties, while simulating FReshare(t).

The indistinguishability between Game 5 and Game 6 follows from the Diffie-Hellman assumption. The
construction of a distinguisher is the same as in the proof of Lemma B.6 (Game 4). Importantly, the
distinguisher is allowed to "choose" h ∈ G (given as the first element in its input tuple for a Diffie-Hellman
check), this is done by setting the appropriate h in the simulation of FAPresign.Setup() in step 4. of the
simulation of GenKey().

Game 7: Real Execution.

The only difference between Game 6 and Game 7 is that each honest party now explicitly interacts with
A and the corresponding functionalities instead of that being done by S.

B.9 From FECDSA to FwECDSA

In this section we show that every protocol that securely computes FwECDSA also securely computes FECDSA.
This is expressed in the lemma below.

Lemma B.8. Every adversary for the FwECDSA functionality can be simulated by an adversary for the
FECDSA functionality.

Proof. Let A be an adversary for the FwECDSA functionality, we construct a simulator S that is an adversary
for the FECDSA functionality and the distributions of outputs generated by these two adversaries by inter-
acting with FwECDSA and FECDSA respectively are computationally indistinguishable (more specifically, the
total variation distance between these distributions is at most O(q−1)). For brevity, in the simulation below
we ignore the bookkeeping of (signed, presigned) variables, which are maintained in a straightforward way by
S.

Simulating GenKey()

1. S externally interacts with FECDSA and receives the public key y := gx ∈ G (but does not know the
private key x ∈ Zq)

2. S internally interacts with A to receive the shares {xi}i∈I of dishonest parties.

3. Let j0 ∈ J be an index of any honest party. S samples the shares of private key of honest parties as
follows:

• Sample the shares xj for j ∈ J \ {j0} uniformly at random from Zq

• Pick xj0 so that it satisfies gxj0 = y ·
(∑

l∈[N ],l 6=j0 g
xl
)−1

.

We emphasize that S does not know xj0 because to compute it, S would need to learn logg(y) which
is presumably hard. Still, xj0 is uniquely determined and S knows gxj0 which will turn out to be
sufficient.

4. S internally sends {gxj}j∈J to A and simulates A’s response.

Simulating Presign()

1. S sends abort to FECDSA after receiving internal abort from by A.

2. Receive from A and record (at presig[p] for p := presigned) the four sets of shares {ki}i∈I , {ρi}i∈I ,
{ηi}i∈I and {τi}i∈I .
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Simulating Sign(m)

1. S externally receives a signature (r, s) from FECDSA and computes R = gms
−1 · (gx)rs

−1

(Note that
R = gk for the k chosen by FECDSA).

2. S fetches A’s shares of k, ρ, η, τ stored at presig[p] (for p := signed). The goal of S becomes now to
act in such a way, so as to convince A that the threshold-shared value k (that was supposed to be
generated during the corresponding Presign() call indeed satisfies R = gk. This is tricky, because S
does not know k (it would need to compute logg(R) to learn k).

3. Let J ′ be any subset of honest parties that satisfies |J ′|+ |I| = t− 1. The simulator randomly samples
the shares k̂j ∈ Zq for j ∈ J ′. Now the values of the polynomial f (k) ∈ Zq[X] that is used to share k
are specified at t points

• f (k)(l) = k̂l for l ∈ I ∪ J ′, recall that the adversarial shares were sent by A to S during Presign()

• f (k)(0) = k, not knowing k = logg(R) is not a problem here since it will never be used in
computations

Hence f is uniquely specified, as a polynomial of degree at most t−1. It follows that the share k̂j (i.e.,
the value f (k)(j)) for j ∈ J \ J ′ is now uniquely specified as

gk̂j = Rλ0 · g
∑
l∈I∪J′ λlk̂l

for some interpolation coefficients {λl} ⊆ Zq that depend upon j only.

4. S sends the group elements gk̂j for j ∈ J (computing them as explained in previous step) to A and
simulates A’s response (a set I ′)

5. S internally publishes gk̂l for l ∈ J ∪ I ′. In case when |J |+ |I ′| ≤ t− 1, S externally terminates Sign(·)
with fail and declares F := I \ I ′ as the "faulty parties".

6. S samples a random polynomial f (τ) ∈ Zq[X] of degree ≤ t− 1 subject to the constraints f (τ)(i) = τ̂i.

7. S computes τ̂j := f (τ)(j) for j ∈ J and sends {τ̂j}j∈J to A and receives a set I ′′ as a response.

8. S internally publishes the shares {τ̂l} for l ∈ J ∪ I ′′. In case when |J | + |I ′′| ≤ t − 1, S externally
terminates Sign(·) with fail and declares F := I \ I ′′ as the "faulty parties".

9. S samples a random polynomial f (s) ∈ Zq[X] of degree ≤ t− 1 subject to the constraints:

• f (s)(i) = ŝi, where ŝi := η̂ir + ρ̂im,

• f (s)(0) = s.

10. S computes ŝj := f (s)(j) for j ∈ J and sends {ŝj}j∈J to A and receives a set I ′′′ as a response.

11. S internally publishes the shares {ŝl} for l ∈ J ∪ I ′′′. In case when |J | + |I ′′′| ≤ t − 1, S externally
terminates Sign(·) with fail and declares F := I \ I ′′′ as the "faulty parties".

12. S outputs whatever A outputs and halts.

We now show that the output distribution of A is the same as the output distribution of S (up to events
of probability O(q−1)). To start, let us see that the distribution of {xl}l∈[N ] is the same when generated
inside FwECDSA and in the simulation by S:

• In FwECDSA: A generates {xi}i∈I , next {xj}j∈J are chosen uniformly at random and x :=
∑
l∈[N ] xl.
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• In the simulation: A generates {xi}i∈I , x ∈ Zq is generated uniformly at random and {xj}j∈J are
uniformly random subject to

∑
j∈J xj = x−

∑
i∈I xi.

The two distributions above are clearly the same.

The second step is to show that for a fixed x, the distributions of(
k̂J , τ̂J , ŝJ

)
conditioned on

(
k̂I , ρ̂I , η̂I , τ̂I

)
(14)

for two corresponding calls of Presign() and Sign(m) are the same when generated inside FwECDSA and in
the simulation with S. We note that the tuple

(
k̂J , τ̂J , ŝJ

)
in (14) is all that the adversary can see in an

execution of FwECDSA and thus all that needs to be considered in the analysis; in particular, the shares η̂J
and ρ̂J are never revealed to A.

We first show that the distributions of k̂J in the execution of FwECDSA and in the simulation are the
same. Indeed:

• In FwECDSA: A generates k̂I , next, subject to the constraints f (k)(i) = k̂i for i ∈ I the polynomial
f (k) is chosen uniformly at random from all polynomials of degree ≤ t − 1 in Zq. More concretely,
this can be achieved by picking a subset J ′′ ⊆ J of cardinality t− |I|, and choosing f (k)(j) for j ∈ J ′′
independently, uniformly at random and then computing f (k) by interpolation.

• In the simulation: A generates k̂I , next, a uniformly random k ∈ Zq is (implicitly generated by FECDSA

and a set J ′ ⊆ J is chosen of cardinality t − |I| − 1 and the polynomial f (k) is chosen as satisfying:
f (k)(i) = k̂i, f (k)(0) = k and f (k)(j) being uniformly random for j ∈ J ′.

Thus, in both cases, f (k) is constrained to satisfy f (k)(i) = k̂i and is chosen uniformly at random for t− |I|
different inputs, and, thus, the distributions coincide.

When analyzing τ̂J the situation is quite simple, since in both scenarios these shares come from the same
distribution, i.e., a polynomial f (τ) is chosen uniformly at random, subject to f (τ)(i) = τ̂i for i ∈ I, the
values τ̂J are simply evaluations of f (τ) over all j ∈ J .

Finally, we argue that the distribution of ŝJ is also (almost) identical in both scenarios. We start with an
observation that FwECDSA could alternatively generate (in Presign()) the polynomials f (k), f (ρ), f (η), f (τ) in
a slightly different way, without affecting the distribution too much (only by O(q−1) total variation distance),
i.e., start with f (k) and f (τ) (by picking f (τ)(0) = τ uniformly at random) and then generate f (ρ) requiring
that f (ρ)(0) = τk−1 and f (η) as before. To make sure we never divide by 0, we assume that none of the
variables k, ρ, η, τ equals 0 in either of the executions, such an event happens with probability O(q−1) and
hence is negligible. Given this observation, we can describe the two scenarios of sampling ŝJ as follows.

1. In FwECDSA:

• A generates
(
k̂I , ρ̂I , η̂I , τ̂I

)
• FwECDSA generates f (k)(0) and the value k is chosen as f (k)(0) and R, r are determined.

• The polynomial f (τ) is generated by FwECDSA, followed by f (ρ), f (η). The values and shares of
ρ, η, τ are computed accordingly.

• FwECDSA computes f (s) = τ−1(rf (η) +mf (ρ)). The shares ŝJ are now given as f (s)(j) for j ∈ J .

2. In the simulation:

• A generates
(
k̂I , ρ̂I , η̂I , τ̂I

)
• S given (r, s) from FECDSA generates the polynomial f (k) which determines k,R and r.

• The polynomial f (τ) is generated by S and the value τ and shares τJ are determined.
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• S computes a polynomial f (s) by setting f (s)(i) = ŝi, f (s)(0) = s and choosing it uniformly at
random subject to these constraints. The shares ŝJ are now given as f (s)(j) for j ∈ J .

To see that the distribution of ŝJ is the same in both cases, we show that the polynomial f (s) is identically
distributed. To this end, note first that the distribution of ŝI is the same in both scenarios. Further, in the
simulation f (s) is determined via the constraints f (s)(0) = s and f (s)(i) = ŝi for i ∈ I (and uniformly at
random otherwise), while in the execution within FwECDSA the polynomial f (s) satisfies the same constraints
on the values at 0 and i for i ∈ I and for a set J ′ ⊆ J of cardinality t− |I| − 1 it satisfies

f (s)(j) = τ−1(rf (η)(j) +mf (ρ)(j)) for j ∈ J ′.

Since the values f (η)(j) and f (ρ)(j) are chosen uniformly at random by FwECDSA (with τ, r,m fixed), the
evaluations of f (s)(j) over j ∈ J ′ in the execution of FwECDSA are also uniformly random (for this we require
that at least one of r or m is non-zero, but the probability that r = 0 is O(q−1)). This implies that the
distributions of f (s) in both scenarios are the same up to O(q−1) total variation distance.

C Zero Knowledge Proofs and Commitments

C.1 The FZK Functionality
The zero-knowledge functionality FZK(R) (see the table Functionality FZK(R)) is parametrized by a relation
R = R(x,w) which takes public data x and a private "witness" w. To give an example, consider

RLog := {(h,w) : w ∈ Zq, h = gw ∈ G},

which is the relation representing knowledge of a discrete log of the public group element h, with respect to
a fixed generator g ∈ G. In Section C.4, we list all relations that are used in zero-knowledge proofs in our
protocol.
The above standard functionality simply receives both the public and private data (x,w) from a particular
party l ∈ [N ] corresponding to a unique identifier6 id, and broadcasts x along with the information whether
(x,w) ∈ R to all the parties. The FZK(R) functionality, for all the relations R that are of use in our protocol
has efficient non-interactive realizations. We refer to [LN18] where all of them are described in detail.
Roughly speaking, each of the relations R has a corresponding Σ-protocol which via a standard application
of Fiat-Shamir heuristic [FS87] can be compiled into a non-interactive zero-knowledge proof of knowledge.

C.2 The FCom Functionality
In the table Functionality FCom, we present the standard definition of the commitment FCom ideal function-
ality. In Section 3 we present a practical way of realizing this functionality in the random oracle model.
See also [Lin11] for a UC-secure implementation based on the DDH assumption.

C.3 The FComZK Functionality
Finally, in the table Functionality FComZK(R) we describe the "Committed Zero Knowledge" ideal func-
tionality FComZK following Lindell [Lin17] that allows a party to commit to a piece of data that satisfies a
particular relation. Thus, in principle, FComZK is a combination of FZK and FCom. As in the case of FCom,
this functionality is parametrized by a relation R. As remarked in [LN18], the FComZK can be efficiently
realized by simply committing to a pair (x, π) where π is a non-interactive zero-knowledge proof of knowledge
that the party knows w such that (x,w) ∈ R. Thus, it can be easily composed from the tools that are used
in implementing FZK and FCom.

6The purpose of id’s is to allow multiple different calls to a single copy of this functionality without confusing these calls
with each other.
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C.4 Relations for Zero-Knowledge Proofs
In this section, we list and briefly describe relations that are used with the FZK and FComZK functionalities
in our protocol. As already mentions, Σ-protocols for these relations are described in great detail in [LN18].
In all the relations below, we assume that G is a cyclic group of order q and g is its fixed generator.

1. Rerandomization.

RRerand := {((h, u1, v1, u2, v2), (r, s)) : (u2, v2) = (gsur1, h
svr1)} .

In this relation, h is the key to ElGamal commitments and both (u1, v1) and (u2, v2) are ElGamal
commitments to certain values w1, w2 ∈ Zq, respectively. If we denote the randomizing element of
the first commitment by r1 ∈ Zq, so that (u1, v1) = E(w1; r1), then this relation says that (u2, v2) =
E(w1; r1)

r · E(0, s) for some secret values r, s ∈ Zq. This relation is used in the PCheckDH protocol to
rerandomize the input tuple of the group elements.

2. Knowledge of ElGamal committed value.

REGKnow := {((h, u, v), (x, r)) : (u, v) = E(x, r)} .

In this relation, (u, v) is an ElGamal commitment to a secret value x ∈ Zq with randomizing element
r ∈ Zq.

3. Exponentiation of ElGamal commitment with an ElGamal committed exponent.

REGExp :=
{

((h, u1, v1, u2, v2, u3, v3), (t, r, y)) :

(u2, v2) = E(y; t) ∧ (u3, v3) = (uy1g
r, vy1h

r)
}
.

In this relation, (u1, v1) is meant to be an ElGamal commitment E(x) to a certain (possible unknown)
value x, (u2, v2) = E(y, t) is an ElGamal commitment known to the prover (both the value and the
randomizing element). The relation says that the third ElGamal commitment (u3, v3) is formed as
E(x)

y · E(0; r).

4. Reveal of ElGamal committed value.

REGReveal := {((h, u, v, x), (r)) : (u, v) = E(x; r)}

In this relation, the pair (u, v) ∈ G2 ElGamal-commits to the public value x ∈ Zq, with a secret
randomizing element r ∈ Zq.

5. Refreshing ElGamal commitment.

REGRefresh := {((h, u1, v1, u2, v2), (r)) : (u2, v2) = (u1g
r, v1h

r)} .

In this relation (u2, v2) is meant to be an ElGamal commitment to the same value as (u1, v1). More
precisely, the relation says that (u2, v2) = (u2, v2) · E(0; r) for a secret randomizing element r ∈ Zq.

6. Knowledge of discrete logarithm.

RDLog := {(gw, w) : w ∈ Zq}

This is the classical relation representing knowledge of the logarithm of a given element with respect
to the generator g ∈ G.
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Functionality FwECDSA(t)

GenKey():
1. Receive from A shares {xi}i∈I ⊆ Zq
2. Generate shares of honest parties {xj}j∈J uniformly at random in Zq .

3. Send {gxj }j∈J to A. A may decide to abort if |I| > 1.

4. Store presigned = 0, signed = 0.

5. Ignore future calls to GenKey().
Presign():

1. Ignore this call if GenKey() has not yet been executed.

2. A may choose to abort if |I| > 1.

3. Receive from the adversary A the following 4 sets of shares {k̂i}i∈I , {ρ̂i}i∈I , {η̂i}i∈I and {τ̂i}i∈I .
4. Compute "honest shares" as follows:

(a) Sample a uniformly random polynomial f (k) ∈ Zq [X] of degree ≤ t − 1 subject to constraints f (k)(i) = k̂i for
i ∈ I and compute k̂j = f (k)(j) for j ∈ J .

(b) Sample a uniformly random polynomial f (ρ) ∈ Zq [X] of degree ≤ t − 1 subject to constraints f (ρ)(i) = ρ̂i for
i ∈ I and compute ρ̂j = f (ρ)(j) for j ∈ J .

(c) Compute k := f (k)(0) and ρ := f (ρ)(0).

(d) Sample a uniformly random polynomial f (η) ∈ Zq [X] of degree ≤ t − 1 subject to constraints f (η)(i) = η̂i for
i ∈ I and f (η)(0) = xk. Compute η̂j = f (η)(j) for j ∈ J .

(e) Sample a uniformly random polynomial f (τ) ∈ Zq [X] of degree ≤ t − 1 subject to constraints f (τ)(i) = τ̂i for
i ∈ I and f (τ)(0) = kρ. Compute τ̂j = f (τ)(j) for j ∈ J .

5. Let p := presigned and store the computed shares as presig[p] := {{kl}l∈[N ], {ρl}l∈[N ], {ηl}l∈[N ], {τl}l∈[N ]}
6. Set presigned← presigned + 1.

Sign(m):
1. If GenKey() was not called yet or presigned ≤ signed, abort.

2. signed← signed + 1.

3. Fetch the values and the shares of (k, ρ, η, τ) stored in memory at presig[p], where p := signed

4. Send {gk̂j }j∈J to A and receive a subset I′ ⊆ I from A

5. Publish gk̂l for all l ∈ J ∪ I′

6. If |J |+ |I′| ≤ t− 1 terminate Sign(·) with fail and publicly declare parties I \ I′ as "faulty parties".

7. Compute R = gk and r = Rx mod q.

8. Send {τ̂j}j∈J to A and receive another subset I′′ ⊆ I from A
9. Publish τ̂l for all l ∈ J ∪ I′′.

10. If |J |+ |I′′| ≤ t− 1 terminate Sign(·) with fail and publicly declare parties I \ I′′ as "faulty parties".

11. Compute ŝl := τ−1(η̂lr + ρ̂lm) for each l ∈ [N ].

12. Send {ŝj}j∈J to A and receive a third subset I′′′ ⊆ I from I

13. Publish ŝl for l ∈ J ∪ I′′′

14. If |J |+ |I′′′| ≤ t− 1 terminate Sign(·) with fail and publicly declare parties I \ I′′′ as "faulty parties".

15. Publish (r, s) (at this point s can be also computed from publicly available data).
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Functionality FZK(R)

Prove(l, id):
1. If Prove(·, ·) has been already called with parameters (l, id) then ignore this call.

2. Receive (x,w) from party l ∈ [N ].

3. If (x,w) ∈ R send x to all parties k ∈ [N ] along with an accept verdict.

4. If (x,w) /∈ R send x to all parties k ∈ [N ] along with a reject verdict.

Functionality FCom

Commit(l, id):
1. If Commit(·, ·) has been already called with parameters (l, id) then ignore this call.

2. Receive a piece of data d from party l ∈ [N ] and record the triple (l, id, d) in memory.
Decommit(l, id):

1. Fetch from memory the unique triple (l, id, d) stored. In case no such triple exists abort.

2. Send d to all parties.

Functionality FComZK(R)

CommitProof(l, id):
1. If CommitProof(·, ·) has been already called with parameters (l, id) then ignore this call.

2. Receive a pair (x,w) from party l ∈ [N ] and record the tuple (l, id, x, w) in memory.
DecommitProof(l, id):

1. Fetch from memory the unique tuple (l, id, x, w) stored. In case no such tuple exists abort.

2. In case (x,w) ∈ R send x along with accept verdict to all parties, otherwise send x with reject verdict to all parties.
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