
Weak Linear Layers in Word-Oriented Partial
SPN and HADES-Like Ciphers

Lorenzo Grassi1,2, Christian Rechberger1 and Markus Schofnegger1

1 IAIK, Graz University of Technology
2 Digital Security Group, Radboud University, Nijmegen

firstname.lastname@iaik.tugraz.at
l.grassi@cs.ru.nl

Abstract. When designing a classical substitution-permutation network (SPN) per-
mutation, every non-trivial choice of the S-box and of the affine layer provides security
after a finite number of rounds. However, this is not necessarily the case for partial
SPN (P-SPN) ciphers: Since the nonlinear part does not cover the full state, there
may exist highly non-trivial choices of linear layers which, for example, do not provide
security against statistical attacks.
Quite surprisingly, this direction has hardly been considered in the literature. For
example, LowMC uses different linear layers in each round in order to avoid the
problem, but this solution is quite expensive, both computationally and memory-wise.
Zorro, another construction with an incomplete nonlinear layer, simply reuses the
AES matrix, but this introduces weaknesses.
Working from an attacker’s perspective and focusing on P-SPN ciphers, in this paper
we present conditions which allow to set up attacks based on infinitely long invariant
subspace trails – even when using highly non-trivial linear layers. We also analyze
the case in which the trail is not invariant, yet still an infinite number of rounds
can be covered. In this paper, we consider two scenarios, namely active and inactive
S-boxes. For the first case, we also provide a tool which is able to determine whether
a given linear layer matrix is vulnerable against attacks based on our observations.
Finally, we point out that besides P-SPN ciphers, our results may also have a crucial
impact on the Hades design strategy recently presented at Eurocrypt 2020, which
mixes rounds with full S-box layers and rounds with partial S-box layers in order to
guarantee security and achieve good performance in the target applications.
Keywords: Partial SPN · Linear Layer · Invariant Subspace & Subspace Trail ·
HADES
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1 Introduction
Choosing the Linear Layer in SPN and Partial-SPN Ciphers. A substitution-permutation
network (SPN) is a popular construction technique for block ciphers. Given a key, such a
network transforms a plaintext block into a ciphertext block by applying several alternating
rounds of substitution boxes and permutations to provide confusion and diffusion. For
an SPN cipher over Ft, the substitution layer usually consists of t parallel (independent)
nonlinear functions called S-boxes, operating at word level. The permutation layer is in
most cases a linear operation that can be described as the multiplication of the state with
a t× t matrix.

Determining a suitable round function and the number of rounds necessary for security
is the main objective when designing such a primitive. When choosing a linear layer which
provides full diffusion at word level after a finite number of rounds, the corresponding
cipher can potentially be secure by choosing a “sufficient” number of rounds.

One of the main approaches to achieve provable security against various statistical
attacks is to use the wide trail strategy [14], which allows to guarantee security against
differential [10, 11] and linear [31] attacks, two of the most powerful cryptanalytic techniques
in the literature. Instead of choosing larger S-boxes with strong properties, the wide trail
strategy aims to design the linear round transformations in such a way that the minimum
number of active S-boxes over multiple rounds is increased. From this point of view, an
optimal linear layer can be chosen when using an MDS matrix (that is, a matrix that
maximizes the minimum number of active S-boxes in two consecutive rounds). Such an
approach was used in e.g. Shark [32] or AES (together with a word-level permutation).
There are also variants of MDS matrices, like almost-MDS matrices, which achieve slightly
weaker properties.

Driven by various new application areas and settings, a variation of the SPN approach,
the so-called partial substitution-permutation network (P-SPN), has been proposed and
investigated practically [18, 17]. Replacing part of the substitution layer with an identity
mapping can lead to substantial practical advantages in many applications in which the
cost of a nonlinear operation is significantly higher than the cost of a linear one. This
includes masking and practical applications of secure multi-party computation (MPC),
fully homomorphic encryption (FHE), and zero-knowledge proofs (ZK) that use symmetric
primitives, where the linear computations are often much cheaper than nonlinear ones.

This approach has been proposed for the first time by Gérard et al. [18] at CHES
2013. A concrete instantiation of their methodology is Zorro [18], a 128-bit lightweight
AES-like cipher which reduces the number of S-boxes per round from 16 to only 4 (to
compensate, the number of rounds has been increased to 24). A similar approach has then
been considered by Albrecht et al. [17] in the recent design of a family of block ciphers
called LowMC proposed at Eurocrypt 2015. LowMC is a flexible block cipher based on an
SPN structure, which combines an incomplete S-box layer with a strong linear layer in
order to guarantee security and to be competitive in applications like MPC/FHE/ZK.

Security of Partial-SPN Ciphers. A considerable disadvantage of this approach is that
the existing wide trail strategy to rule out large classes of statistical attacks is no longer
applicable and has to be replaced by more ad-hoc approaches. In the case of Zorro, the
heuristic argument proposed by the designers turned out to be insufficient, as Wang et al.
[34] found iterative differential and linear characteristics that were missed by the heuristic
and used them to break full Zorro faster than by exhaustive search. Similarly, the authors
of LowMC chose the number of rounds in order to guarantee that no differential or linear
characteristic can cover the whole cipher with non-negligible probability. However, they
do not provide similarly strong security arguments against other attack vectors including
algebraic attacks, and key-recovery attacks on LowMC have thus been found [17].
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An automated characteristic search tool and dedicated key-recovery algorithms for SP
networks with partial nonlinear layers have been presented in [5]. In there, the authors
propose generic techniques for differential and linear cryptanalysis of SP networks with
partial nonlinear layers. Besides obtaining practical attacks on P-SPN ciphers, the authors
concluded that even if “the methodology of building PSP networks based on AES in a
straightforward way is flawed, [...] the basic PSP network design methodology can potentially
be reused in future secure designs”.

Hades Design Strategy. A possible way to fix the problem regarding the security against
statistical attacks has been exploited in the so-called “Hades” design strategy [21],
recently proposed at Eurocrypt 2020. The Hades strategy is a high-level design approach
for cryptographic permutations and keyed permutations addressing the needs of new
applications that emphasize the role of multiplications in these designs, with a focus on
simple arguments for its security.

The main ingredient of the Hades strategy is to mix rounds with full S-box layers and
rounds with partial S-box layers in order to provide good performance while still being
secure. The external rounds with full S-box layers together with the wide trail strategy
are used to guarantee security against differential and linear attacks. The main goal of the
middle rounds with a single S-box each is to provide security against algebraic attacks by
increasing the degree of the overall scheme. In other words, they are not used to provide
security against statistical attacks. However, as we are going to recall in the following, a
weakness of the linear layer in the rounds with partial S-box layers can impact the security
against algebraic attacks as well.

Our Contribution
One of the main problems a designer has to face while designing a partial SPN permutation
regards the choice of the linear layer. In the literature, the two possible choices considered
so far are using the same linear layers in all rounds (as in Zorro), or using different linear
layers for each round (as in LowMC).

Even if the second strategy can potentially prevent statistical attacks1 (as discussed in
[17]), it has some drawbacks. First of all, the implementation cost in terms of computation
time or memory may become a problem, even when considering the optimizations proposed
in [25, 16]. Moreover, the analysis of the security against other attacks may become more
complicated, since the linear layer is different in each round. Finally, a poor choice of
the linear layers does not guarantee security against such attacks, as shown concretely in
[17]. In particular, the fact that the designers of LowMC allow to instantiate it using a
pseudo-random source that is not cryptographically secure is risky, since using an over-
simplified source for pseudo randomness may give a malicious party additional control
over the LowMC instantiation, and may allow finding weak instances much faster than
exhaustively searching for them.

For all these reasons, in this paper we focus only on the first strategy: Our goal is to
better understand which properties a linear layer matrix has to fulfill in order to prevent
the existence of infinitely long subspace trails [22, 23], namely the existence of a non-trivial
subspace U ⊆ Ft of inputs that is mapped into a proper (affine) subspace of the state
space over any number of rounds.

In this paper, we do not limit ourselves to work with invariant subspaces, and, to
the best of our knowledge for the first time, we also consider subspace trails with active
S-boxes. In addition, we present an algorithm and a concrete implemented tool which,
given a matrix, can be used to detect subspace trails for the case of inactive S-boxes.

1To the best of our knowledge, there is no attack on LowMC based only on differential cryptanalysis.



4 Weak Linear Layers in Word-Oriented Partial SPN and HADES-Like Ciphers

Influence of the Branch Number. Let us focus on a word-oriented partial SPN cipher
over Ft, where the linear layer is simply defined as the multiplication with a t× t MDS
matrix. Since such a matrix provides full diffusion at word level, and since a partial
nonlinear layer is applied, one may expect that after a certain – even huge – number of
rounds, the corresponding cipher is secure.

As we are going to show with a concrete example, this is not always the case. Indeed,
consider a partial SPN cipher defined over F4×4

q , and let the round transformation be

R(i)
(

(x1, x2, x3, x4)T
)

= k(i) +


2 1 3 1
1 3 1 2
3 1 2 1
1 2 1 3

 ·

S(x1)
x2
x3
x4


for a “good” S-box S : F→ F, where R(i) denotes the i-th round function and k(i) denotes
the i-th round key (and where 2 ≡ X and 3 ≡ X + 1 for the Boolean case). Even though
the matrix is MDS (and similar to the AES one), an invariant subspace trail generated by
the subspace S =

〈
(0, 1, 0,−1)T

〉
(eq.,

〈
(0, 1, 0, 1)T

〉
for the Boolean case) can be set up

for an arbitrary number of rounds. At the same time, this is not possible any more when
considering the MDS matrix used in AES.

Infinitely Long Subspace Trails for Word-Oriented P-SPN Ciphers. This example al-
lows us to conclude that a high branch number alone is not sufficient in the case of
word-oriented partial SPN ciphers when compared to the case of (full) SPN ciphers. For
this reason, in the following we analyze how the details of the matrix that defines the linear
layer influences the security against statistical attacks. Specifically, working independently
of the details of the S-box, we present a sufficient condition that allows to discard matrices
which do not provide security. As we are going to show, this condition is related to the
eigenspaces of the matrix that defines the linear layer:

• In the case of inactive S-boxes (Section 3 for details), we directly construct an
infinitely long subspace trail via the eigenspaces of the matrix.

• In the case of active S-boxes (Section 5 for details), we show which properties a
subspace must satisfy in order to be infinitely long.

We emphasize that we do not only focus on invariant subspace trails (in other words, a
non-trivial infinitely long subspace trail is not necessarily invariant). In particular,

(1) such a subspace trail is invariant if it is related to the eigenspaces of M , and

(2) it is not invariant if it is related to the eigenspaces of Mk for k ≥ 2, as explained in
the following.

In both cases, examples are provided to present and support the results. We remark that
we do not impose any condition on the matrix M (with the only exception that it is
invertible – i.e., we do not limit ourselves to work only with MDS matrices) and that the
results are quite different from what is known for the SPN case.

Before going on, we stress that we are presenting sufficient conditions and not necessary
ones. This means that a “weak” matrix – namely, a matrix for which it is possible to set
up infinitely long subspace trails – is not necessarily discarded by the properties presented
in our paper. The problem to find a necessary and sufficient condition (or to prove that
some of the properties given here are also necessary) is left open for future research.
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A Dedicated Tool – Case of Inactive S-Boxes. Together with our theoretical observa-
tions, we also provide a practical Sage implementation based on our results (Section 4 for
details). Given a square matrix, this tool and the underlying algorithm are able to detect
the structural vulnerabilities described in this paper in the case of inactive S-boxes.

Impact on Hades. Our results also apply to the Hades strategy. In [21], the authors
define the linear layer as a multiplication of the state with a fixed MDS matrix (namely, a
matrix with maximum branch number), and no other properties have to be fulfilled by the
linear layer. It follows that in the case of a “weak” MDS matrix (namely, a matrix that
does not satisfy the properties proposed in this work), an attacker can potentially choose
an input space of texts for which no S-box is activated over all rounds with partial S-box
layers. In such a case, the security of the corresponding design may potentially be lower.
Indeed, if no S-box is active, the degree of the function does not increase in the rounds
with partial S-box layers when working with these chosen texts. Consequently, algebraic
attacks become possible, as demonstrated in practice in [8].

At the same time, a “strong” linear layer can be used by the designer in order to
increase the security against statistical attacks by exploiting the presence of rounds with
partial S-box layers [26]. Hence, we suggest2 that the choice of the MDS matrix that
defines the linear layer for such a scheme must not be “weak” with respect to the properties
given in this paper. We also point out that currently there is no known key-recovery attack
on HadesMiMC exploiting these properties.

Related Work
Relation between Eigenvalues, Eigenvectors, and Invariant Subspace Trails. The re-
lation between the eigenvalues and eigenvectors of the linear layer matrix and the existence
of an infinitely long (invariant) subspace trail is already known in the literature. Such a
relation was pointed out by Abdelraheem et al. [1], and later on generalized by Beyne in [7].
In more detail, Abdelraheem et al. found such a result by analyzing the invariant subspace
trails of PRINTcipher (which was presented one year before in [28]), while Beyne found
such a result as a generalization and improvement of the nonlinear invariant subspace
attack on Midori-64 [33]. In [7], a connection between the eigenvalues of the correlation
matrix that defines the round function and the existence of an invariant subspace trail is
made. More details are given in Appendix A.

Both the results presented in [1] and [7] focus on SPN ciphers and on invariant subspaces
only. As a consequence, one has to consider the effect of the key (namely, such invariant
subspace only holds in the case of weak keys).3 Here we point out that the situation for
partial SPN ciphers is different: The results found for SPN ciphers do not apply to the
P-SPN case and vice-versa. First of all, in the P-SPN case, it is possible to set up infinitely
long invariant subspaces independently of the choice of the key, of the key schedule, of the
round constants, and of the details of the S-box. In other words, for the case of P-SPN
ciphers, the existence of an infinitely long invariant subspace trail may depend only on
the properties of the linear layer, which is not the case for an SPN cipher due to the full
nonlinear layer. This has an impact on the subspace trail that can be set up. For SPN
ciphers, due to the restriction on the key and on the round constants, it is possible to set
up an invariant subspace trail e.g. of the form R(U + v) = U +w only in the case in which
v is in a subset of Ft. This restriction is not necessary in the P-SPN case. Moreover, for
this class of ciphers, following facts hold.

2This is also supported by the designers of Hades (private communication).
3For completeness, we mention that the existence of such an invariant subspace can be easily prevented

by a careful choice of the round constants, as was shown in [6].
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• The subspace trail does not need to be invariant in order to be infinitely long (namely,
we do not restrict ourselves to the case R(U + v) = U + w).

• A non-trivial infinitely long invariant subspace trail can potentially be set up both
in the case in which no S-box is active, and – for the first time – also in the case
in which some (or even all) S-boxes are active. The crucial point is that we do not
need to consider the details of the S-box (namely, we do not require the S-box to
fulfill any specific properties), which is not possible for the case of SPN ciphers.

More details about this are given in the following.

Infinitely Long Invariant Subspace Trails for Hades. We note that the idea of considering
infinitely long invariant subspace trails for a certain class of linear layer matrices has
recently been studied independently in [26] and [8].

In both of these two papers, the authors consider Cauchy matrices4 over a Boolean
field F2n generated in the very specific way given in [19]. This particular class of matrices
has always low multiplicative order5. This fact can be exploited in order to set up an
infinitely long subspace trail. As a result, in [26] the authors show how to fix this problem
by choosing Cauchy matrices that do not have such properties and how to exploit them in
order to provide stronger security arguments against statistical attacks. In [8], the authors
present a concrete application of such a weakness, by showing zero-sum distinguishers on
reduced-round versions of the unkeyed permutations.

While the observations presented in [26] and [19] focus on a small class of (Cauchy)
matrices, our results do not make such specific assumptions about the matrices used in
the linear layers. This line of research is supported by the fact that our results can be
exploited by future versions of cryptographic designs with partial S-box layers. To be more
concrete, in the case of Hades-like ciphers, the MDS matrix can also be replaced by a
matrix with a smaller (known) branch number (e.g., a near-MDS matrix). The results
presented here are naturally relevant in such a case.

Security against Statistical Attacks. In this paper, we present properties which a matrix
defining the linear layer must not satisfy in order to prevent infinitely long subspace trails.
However, in general this does not help in predicting the number of rounds necessary to
provide security against statistical attacks. Such a contribution can be found in [5], where
the authors present tools which analyze the security of a given partial SPN cipher against
statistical attacks. We note that in this paper the authors do not analyze which properties
a matrix must satisfy in order to prevent infinitely long subspace trails – as we do here. In
this sense, we think that our work and the one proposed in [5] complement each other.

2 Preliminaries
Notation. We denote subspaces with calligraphic letters (e.g., S). Further, we use the
superscript notation together with parentheses to differentiate subspaces with similar
properties (e.g., S(i)). Matrices are denoted by non-calligraphic letters, and the superscript
notation for matrices is used to indicate powers of matrices in their traditional form. The
entry of a matrix M in the j-th column of the i-th row is denoted by Mi,j , where M1,1
denotes the entry in the first column of the first row. Finally, we use a || b to denote the
concatenation between two values a and b.

4Cauchy matrices are a class of MDS matrices.
5The multiplicative order of a matrix M is the smallest (integer positive) exponent k ≥ 1 such that

Mk = µI, where µ ∈ F and I is the identity matrix.
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2.1 SPN and Partial SPN Ciphers
In this paper, we will focus on partial SPN ciphers over Fq, where q is a prime power.
These ciphers are similar to classical (full) SPN ciphers, with the only difference being that
the S-boxes (i.e., the nonlinear functions of the cipher) are not applied to the whole state.

SPN Ciphers. We denote the application of r rounds of an SPN cipher by Erk : Ft → Ft,
where k ∈ Ft is a fixed secret key and t ∈ N denotes the number of cells. For every input
x = (x1, x2, . . . , xt) ∈ Ft we write Erk(x) = (Fr ◦ · · · ◦ F1 ◦ F0) (x+k(0)), where Fi : Ft → Ft
is defined as Fi(x) = R(x) ⊕ k(i) for i ∈ [1, r]. The round keys k(0), k(1), . . . , k(r) ∈ Ft
are derived from the master key k using a key schedule (alternatively, they can also be
randomly chosen elements). We denote by R the composition of the S-box and the linear
layer, i.e., we have R : Ft → Ft with

R(x) = (M ◦ S)(x) = M(S1(x), S2(x), . . . , St(x)),

where Si : F → F for i ∈ [1, t] is a nonlinear polynomial S-box. Finally, M : Ft → Ft
denotes an invertible non-trivial linear layer defined by the multiplication with a matrix of
the form

M(x) =


M1,1 M1,2 . . . M1,t
M2,1 M2,2 . . . M2,t
...

...
. . .

...
Mt,1 Mt,2 . . . Mt,t

 ·

x1
x2
...
xt

 ,

where Mi,j ∈ F for i ∈ [1, t] and j ∈ [1, t].

Definition 1. A linear layer M ∈ Ft×t is non-trivial if it ensures full diffusion6 (in the
sense that each word of the output depends on each word of the input and vice versa)
after a finite number of rounds.

Note that all SPN ciphers can be written in this way. Just to give some examples, if M
is an MDS matrix7, the cipher is similar to Shark [32]. For AES [15] or AES-like ciphers
(where the linear layer is obtained as a combination of a ShiftRows and a MixColumns
operation), many words of M are equal to 0.

Partial SPN (P-SPN) Ciphers. The main and only difference to an SPN cipher regards
the S-box layer. For the case of partial SPN (P-SPN) ciphers, the round (and so the S-box
layer) is defined as

R(·) = M ◦ (S1 || . . . || Ss || Is+1 || . . . || It︸ ︷︷ ︸
S-box layer

)(·), (1)

where 1 ≤ s < t and where Is+1 = Is+2 = · · · = It are identity functions. In other words,
instead of having a full S-box layer, the nonlinear functions are applied only to a part of
the state, while the rest of the state remains unchanged.

In this paper, we assume that the s S-boxes are applied on the first s words. Note that
given any partial SPN cipher, it is always possible to find an equivalent representation
such that the S-boxes are applied to the first s words.

6The linear layer defined by the multiplication with M provides full diffusion if there exists r ∈ N such
that the function that describes [Rr(x)]i (hence, [Mr · x]i) depends on xj for a state x, where i ∈ [1, t]
and j ∈ [1, t]. For example, the identity matrix does not fulfill this condition.

7A matrix M ∈ Ft×t is called a maximum distance separable (MDS) matrix iff it has a branch number
B(M) equal to B(M) = t+1. The branch number ofM is defined as B(M) = minx∈Ft{wt(x)+wt(M(x))},
where wt(·) is the bundle weight in wide trail terminology. A matrix M is MDS if and only if every
submatrix of M is invertible.
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Hades-Like Ciphers. The recently proposed Hades-strategy [21] combines both SPN
and partial SPN ciphers in the following way:

• The initial Rf and the final Rf rounds contain full S-box layers, for a total of
RF = 2Rf rounds with full S-box layers.

• In the middle of the construction, RP rounds with partial S-box layers are used.

Roughly speaking, RF rounds provide security against statistical attacks, while RP rounds
are exploited in order to increase the overall degree of the encryption/decryption function,
in an attempt to provide security against algebraic attacks.

Before going on, let us recall that the middle (partial) rounds are not exploited to
increase the security against statistical attacks. Using these partial rounds to provide
additional security arguments against this class of attacks has been considered in [26],
where the authors are able to improve the lower bounds on the number of active S-boxes
for some instantiations of Hades.

2.2 Invariant Subspaces and Subspace Trails
2.2.1 Invariant Subspace Attack

The invariant subspace attack, introduced in [28] and reconsidered e.g. in [29], is based on
the possibility to set up an invariant subspace trail, defined as follows.

In order to recall the definition, let F denote the round function of a key-alternating
block cipher, and let U + a denote a coset of a vector space U . By Uc we denote the
complementary subspace of U . Finally, two cosets U + a and U + b are considered to be
equivalent if and only if a+ b ∈ Uc.

Definition 2. LetKweak be a set of keys and k ∈ Kweak, with k = (k(0), k(1), k(2), . . . , k(r)),
where k(j) is the j-th round key. For k ∈ Kweak, the subspace IS generates an invariant
subspace trail of length r for the function Fk(·) = F (·) + k if for each i ∈ [1, r] there exists
a non-empty set Ai ⊆ ISc (where ·c denotes the complement) for which

∀ai ∈ Ai : ∃ai+1 ∈ Ai+1 s.t. Fk(i)(IS + ai) = F (IS + ai) + k(i) = IS + ai+1.

All keys in the set Kweak are weak keys.

Let us remark the main difference for invariant subspace attacks when working with
partial SPN ciphers instead of SPN ones. In this last case and to the best of our knowledge,
the sets Ai are (almost always) non-trivial subsets of Ft. As shown in the following, this
restriction is not mandatory for the case of partial SPN ciphers. In particular, we work
independently of the details of the S-box, and we assume that for each i : Ai = Ft and
that the set kweak is equal to the set of all possible keys.

2.2.2 Subspace Trail Attack

Subspace trails were first defined in [22], and they are strictly related to truncated
differential attacks, as shown in [30]. We refer to [22] for more details about the concept
of subspace trails. However, our treatment here is meant to be self-contained.

Definition 3. Let (U1,U2, . . . ,Ur+1) denote a set of r + 1 subspaces with dim(Ui) ≤
dim(Ui+1). If for each i ∈ [1, r] and for each ai there exists a (unique) ai+1 ∈ Uci+1 such
that

F (Ui + ai) ⊆ Ui+1 + ai+1,

then (U1,U2, . . . ,Ur+1) is a subspace trail of length r for the function F . If all the previous
relations hold with equality, the trail is called a constant-dimensional subspace trail.
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Iterative (Constant-Dimensional) Subspace Trails. We now introduce the concept of
infinitely long iterative (constant-dimensional) subspace trails.

Definition 4. Let {V0,V1, . . . ,Vr} be a constant-dimensional subspace trail for r rounds.
We call this subspace trail an r-round iterative (constant-dimensional) subspace trail for
the considered cipher if it repeats itself an infinite number of times, i.e., if

{V0,V1, . . . ,Vr,V0,V1, . . . ,Vr, . . . ,V0,V1, . . . ,Vr, . . . }

is an infinitely long subspace trail.

Obviously, an invariant subspace trail is also an iterated subspace trail for the case of
P-SPN ciphers (under the previous assumptions), while not every iterated subspace trail
is also an invariant subspace trail.

While, to the best of our knowledge, no example of infinitely long iterative constant-
dimensional subspace trails for SPN ciphers is given in the literature, a poor choice of the
linear layer matrix allows to find them for the case of P-SPN ciphers.

Weak-Key Subspace Trails. For completeness, we mention that a generalization of the
two previous attacks, called “weak-key subspace trail attack”, has been proposed in [20]
(it basically corresponds to a subspace trail that holds for a class of weak keys only).

2.3 Preliminary Assumptions
Before presenting our results, we make clear the following assumptions that we consider in
our work.

"Generic" S-Box: We assume that the S-box has no linear structure. Otherwise, the
details of the S-box can be exploited in order to set up an invariant subspace attack.
If no linear structure is present, then one can work independently of the details of
the S-box. Indeed, as was shown in [30], there are only two essential subspace trails
({0} → {0} and F→ F) when working at word level if the S-box has no non-trivial
linear structure. For example, both the AES S-box and the cube one (x 7→ x3) satisfy
this assumption. In other words, for an S-box S, it is not possible to find U ,V ⊆ F
such that for each u there exists v such that S(U + u) = V + v.

No Weak Keys: We only consider infinitely long constant subspace trails which are inde-
pendent of the key and of the key schedule. In other words, we assume that the key
schedule is designed in order to prevent setting up infinitely long constant subspace
trails for a class of weak keys.

P-SPN with s < bt/2c: We further assume s < bt/2c. Indeed, in the case in which a
fixed linear layer matrix M is used, let 2 ≤ b ≤ t+ 1 be its branch number. Note
that b+ 2s > 2t implies that at least b+ 2s− 2t ≥ 1 S-boxes are active in every two
consecutive rounds. For example, if M is an MDS matrix and if s ≥ bt/2c, then
at least one S-box is active in every two consecutive rounds. As a consequence, if
s < bt/2c, the choice of the linear layer is crucial in order to guarantee that at least
one S-box is active after a finite number of rounds.

3 Subspaces Trails for P-SPN Ciphers (No Active S-Boxes)
In the case of SPN ciphers, (weak-key) infinitely long subspace trails can be prevented
by carefully choosing the round constants (see [6] for details) and by exploiting the fact
that a full S-box layer together with a reasonable linear layer provides full diffusion after a
finite number of rounds. In the case of P-SPN ciphers, however, the situation is different.
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First of all, due to the fact that the S-box layer is not complete, the details of the
round constants (together with a non-trivial linear layer) are not sufficient by themselves
to provide security against the subspace attacks just recalled. In this sense, the linear layer
plays a crucial role in order to provide security. Several strategies have been proposed
in the literature in order to prevent subspace attacks. Focusing on the linear layer, the
designers of LowMC [2] proposed to use different random linear layers in each round in
order to prevent this approach and to provide security against statistical attacks. As
already mentioned in the introduction, this choice has some drawbacks, and hence we
focus on cases where the same linear layer is used in each round – an approach which is
taken by the designers of Zorro [18], for example.

3.1 Preliminary Results
Due to the fact that the nonlinear layer is only partial in a P-SPN cipher, parts of the state
go through the S-box layer unchanged. In particular, if the nonlinear layer is composed
of s ≥ 1 S-boxes and t− s ≥ 1 identity functions, it is always possible to find an initial
subspace such that no S-box is active in the first⌊

t− s
s

⌋
rounds.

Indeed, assume that the s S-boxes are applied to the first s words. Thus, by choosing
S = 〈v1, v2, . . . , vd〉 such that

∀i ∈
{

1, 2, . . . ,
⌊
t− s
s

⌋}
,∀j ∈ [1, d] : [M i · vj ]1,2,...,s = 0 || 0 || · · · || 0︸ ︷︷ ︸

∈Fs

,

where [v]1,2,...,s denotes the first s words of a vector v ∈ Ft, it follows that no S-box is
active in the first

⌊
t−s
s

⌋
rounds. Note that

d = dim(S) ≥ t+ 1− s ·
⌊
t

s

⌋
,

where s < t. We formalize this result in the following definition.

Definition 5. Consider the case of a P-SPN cipher over Ft with 1 ≤ s ≤ t S-boxes applied
to the first s words. Let Si be a subspace such that no S-boxes are active in the first i
rounds, defined as

S(i) =
{
v ∈ Ft

∣∣∣∣ ∀j ≤ i : [M j · v]1,2,...,s = 0 || 0 || · · · || 0︸ ︷︷ ︸
∈Fs

}
, (2)

where S(0) = Ft, and where dim
(
S(i)) ≥ t− i · s.

The previous definition can naturally be extended to more rounds, for example in the
case in which dim

(
S(b t−s

s c)
)
≥ s. Obviously, this depends on the details of the linear

layer, and it is formally defined in the following.

Proposition 1. Consider the case of a P-SPN cipher over Ft with 1 ≤ s ≤ t S-boxes
applied to the first s words, and let S(i) be defined as before. Let R ≥

⌊
t−s
s

⌋
s.t.

dim(S(R)) ≥ 1 and dim(S(R+1)) = 0. (3)

For each r ≤ R, the collection{
S(r),M · S(r),M2 · S(r), . . . ,Mr−1 · S(r)

}
forms a subspace trail for the first r rounds (with no active S-boxes).
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This well-known result does not require any assumption on the matrix M that defines
the linear layer. In the following, we will therefore explore in which cases it is possible to
set up an infinitely long subspace trail.

3.2 Linear Layers with Low Multiplicative Order
Here we provide a first sufficient condition that, if satisfied, leads to an infinitely long
constant subspace attack.

Proposition 2. Let M ∈ Ft×t be an invertible matrix. If there exists k ∈ {2, . . . ,R},
where R ≥

⌊
t−s
s

⌋
is defined as in Eq. (3), and µ ∈ F\{0} such that M k = µ ·I (equivalently,

if M has multiplicative order k), where I ∈ Ft×t is the identity matrix, then it is always
possible to find an infinitely long invariant subspace trail.

Proof. As we have seen before, it is always possible to find an initial subspace such that
no S-box is active in the first R rounds. This subspace, constructed as in Definition 5,
yields a subspace trail of the form{

S(k),M · S(k),M2 · S(k), . . . ,M k−1 · S(k)
}

for the first k ≤ R rounds. Here, we only have to show that such a k-round subspace trail
is repeated infinitely. To do this, we compute M i · S(k) for i ≥ k. By definition, there exist
j, h ∈ N s.t. i = jk + h, where h < k. Thus,

M i · S(k) = (M k)j ·Mh · S(k) = (µ · I)j ·Mh · S(k) = Mh · S(k).

Note that the previous result is independent of the key, the key schedule, and the
S-box. Indeed, since no S-box is active, the key only changes the coset of S(k): Given two
plaintexts whose difference is in S(k), the resulting difference after i rounds is in M i · S(k).

Example. In the following, the circulant matrix circL(c1, c2, . . . , cn) is defined as

circL(c1, c2, . . . , cn) =


c1 c2 . . . cn−1 cn
c2 c3 . . . cn c1
...

. . .
...

cn c1 . . . cn−2 cn−1

,
and we use the notation circR(c1, c2, . . . , cn) if the words are rotated to the right instead.
Given a circulant invertible matrix M = circL(α, β, γ, δ) ∈ F4×4, we have

M2 = circR(α2 + β2 + γ2 + δ2, αβ + βγ + αδ + γδ, 2αγ + 2βδ, αβ + βγ + αδ + γδ).

The condition M2 = (α2 + β2 + γ2 + δ2) · I is satisfied if and only if 2αγ + 2βδ = 0 (which
is always satisfied over a binary field) and αβ + βγ + αδ + γδ = 0. A concrete example is
given by M = circ

(
β2, β, 1,−β

)
for β 6= 0.8

Cauchy Matrices: Recent Results in the Literature

Another concrete example has recently been pointed out by Keller et al. [26] and by Beyne
et al. [8]. In these papers, the authors focus on the Cauchy matrix M ∈ Ft×t2n proposed in
[19] and defined as

Mi,j = 1
xi + xj + r

,

8Note that in some cases it is also possible to choose β in order to construct an MDS matrix. E.g.,
working over GF(31), M = circ

(
32, 3, 1,−3

)
= circ(9, 3, 1, 28) is an MDS matrix and it satisfiesM2 = 7 ·I.
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where xi = i− 1 for i ∈ [1, t] and t ≤ r ≤ p− t. Such a matrix is used as the linear layer
of some Hades-like permutations, namely Starkadπ and Poseidonπ [19]. In there, they
prove that if t = 2τ , the matrix has a multiplicative complexity equal to 2, namely that
M2 is a multiple of the identity.9

3.3 Infinitely Long Invariant Subspace Trails
As we are going to show, the previous condition is sufficient but in general not necessary
in order to prevent infinite subspace trails. Namely, there exist linear layer matrices that
do not satisfy the previous condition and for which it is still possible to set up an infinitely
long subspace trail attack. As a concrete example, consider the matrix

M = circ(α, β, β) ∈ F3×3

for some particular non-trivial values of α, β ∈ F such that M is invertible (e.g., α 6= β to
guarantee that M−1 exists). For s = 1, the subspace

V =
〈

(0, 1,−1)T
〉

=
{
a · (0, 1,−1)T

∣∣∣ a ∈ F
}
⊂ F3

yields an infinitely long invariant subspace. Indeed, since M i = circ(γ, δ, δ) for particular
γ and δ (which depends on i ≥ 1 and on α, β), it follows that

(
M i · V

)
0 = 0γ + δ − δ = 0.

Choosing α = 1 and β = 2 in Fp for large p results in M 6= I and M2 6= I, which implies
that the previous condition is not a necessary one.

Starting with this example, here we show a connection between the existence of an
infinitely long invariant subspace and the eigenspaces of M . First of all, we recall a
preliminary concept.

Definition 6. M ∈ Ft×t is a diagonalizable matrix if and only if there exists an (invertible)
matrix P ∈ Ft×t s.t. P−1 ·M · P = D = diag(λ1, λ2, . . . , λt) is a diagonal matrix. The
subspace P = 〈ρ1, ρ2, . . . , ρd〉 ∈ Ft that satisfies the condition M · ρi = λ · ρi for i ∈ [1, d]
is called the (right) eigenspace of M for the eigenvalue λ.

A t× t matrixM over a field F is diagonalizable if and only if the sum of the dimensions
of its eigenspaces is equal to t.

Theorem 1. Given a P-SPN cipher with s S-boxes per round, letM ∈ Ft×t be an invertible
matrix. Let λ1, λ2, . . . , λτ be its eigenvalues and let P1,P2, . . . ,Pτ be the corresponding
eigenspaces10. Let

IS = 〈P1 ∩ 〈es+1, es+2, . . . , et〉 ,P2 ∩ 〈es+1, es+2, . . . , et〉 , . . . ,Pτ ∩ 〈es+1, es+2, . . . , et〉〉 .

If 1 ≤ dim(IS) < t, then IS generates a (non-trivial) infinitely long invariant subspace
trail (with no active S-box).

Equivalently, let IS be defined as

IS = 〈P ′1,P ′2, . . . ,P ′τ 〉 ,

where P ′i ⊆ Pi is a subspace of Pi for i ∈ [1, τ ], such that

IS ∩ 〈es+1, es+2, . . . , et〉 = IS.

If dim(IS) ≥ 1, then an infinitely long invariant subspace trail is generated. This equivalent
definition will be used in the following.

9In [8], the authors assume that {x1, x2, . . . , xt} forms a closed subgroup of GF (2n). By definition of
xi, this is always the case for Starkadπ and Poseidonπ if t < 2n is a power of 2.

10We recall that dim(P) ≥ 1.
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Proof. To prove the previous result, we have to show that M ◦ S(x) ∈ IS for each x ∈ IS
(we omit the key and constant additions since we deal with differences).

1. Since IS ⊆ Ft \ 〈e1, . . . , es〉, no S-box is active. Hence, only the coset changes
through the S-box layer.

2. Since the linear layer is linear, it is possible to focus on a single space Pi ∩
〈es+1, es+2, . . . , et〉. W.l.o.g., let P1 = 〈ρ1, ρ2, . . . , ρd〉, and let P1∩〈es+1, es+2, . . . , et〉 =
〈ρ′1, ρ′2, . . . , ρ′δ〉, where δ ≤ d. Since each ρ′ ∈ 〈ρ′1, ρ′2, . . . , ρ′δ〉 is a linear combination
of eigenvectors with the same eigenvalue, the result is still a multiple of ρ′ when
applying M . Hence, the result is again in P1 ∩ 〈es+1, es+2, . . . , et〉.

The result follows immediately.

We highlight that this fact holds since we work independently on the eigenspaces of M .
Consider indeed the case in which P1 = 〈v〉, P2 = 〈w〉, and 〈P1,P2〉∩〈es+1, es+2, . . . , et〉 =
〈v + αw〉. Given x ∈ 〈P1,P2〉∩〈es+1, es+2, . . . , et〉,M ·x does not belong to such a subspace
since M · (v + αw) = λv ·

(
v + α · λw

λv
· w
)
, where λw 6= λv.

We emphasize that the previous result provides only a sufficient condition. The problem
to prove/disprove that it is also necessary (and/or to find a necessary condition) is left
open for future research.

SPN Ciphers versus Partial-SPN Ciphers. Let us recall one more time that

(1) in the previous theorem we do not require that M is diagonalizable,

(2) the round keys, constants, and the key schedule do not influence the result (they
only change the coset of IS, but not the difference), and that

(3) potentially other invariant subspace trails can be set up if the details of the S-box
are taken into account.

These facts emphasize the difference when dealing with invariant subspace trails in the
case of SPN ciphers and in the case of P-SPN ones. Indeed, in the first case the condition
R(U + v) = U + w holds only if v is in a subset of Ft and the key is a weak key. In the
case of P-SPN, no limitation on v is imposed, or, in other words, the invariant subspace
trail holds for any initial coset of U .

Example. Besides the example circ(α, β, β) just given, let us consider the following
invertible 4× 4 matrix M over F (for s = 1) defined by

M =


M1,1 b c d
M2,1 M2,2 (−d+M2,2 · c)/b (−c+M2,2 · d)/b
M3,1 M3,2 M3,2 · c/b (b+M3,2 · d)/b
M4,1 M4,2 (b+M4,2 · c)/b M4,2 · d/b

 ,

where b 6= 0. Properly choosing b, c, d, and the remaining entries ofM provides invertibility
and full diffusion (at word level after a finite number of rounds) for cryptographic purposes.

Given the subspace

V =
〈
v0 := (0,−c, b, 0)T , v1 := (0,−d, 0, b)T

〉
,

it is not hard to see that M · v0 = v1 and M · v1 = v0. Hence, V yields an infinitely long
invariant subspace trail. The connection with the theorem just given is due to the fact
that the subspace V is related to the eigenvalues of M and their corresponding eigenspaces.
Indeed,

M · (v0 + v1) = (v0 + v1) and M · (v0 − v1) = −(v0 − v1).
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3.4 Infinitely Long Iterative (Non-Invariant) Subspace Trails
Until now, we focused only on the properties of M . However, since we are not working on
a closed field, a possible generalization of the previous result can be presented.

Let M be an invertible matrix in Ft×t. If M is diagonalizable, then Mk, where k ∈ N,
is also diagonalizable:

P ·M · P−1 = D =⇒ P ·Mk · P−1 = Dk.

The other direction is not true in general, as given in the following proposition.

Proposition 3 ([24]). IfM is invertible, F is algebraically closed, andMk is diagonalizable
for some k that is not an integer multiple of the characteristic of F, thenM is diagonalizable.

Since no finite field can be algebraically closed, it follows that Mk may contain more
eigenvalues thanM . In other words, if λ is an eigenvalue ofM , then λk is also an eigenvalue
of Mk. The opposite is not true in general: Given an eigenvalue λ of Mk, it is possible
that λ1/k does not exist, which means that there is no corresponding eigenvalue for M .

This fact has an impact on the existence of infinitely long subspace trails. Indeed, in
the case in which there exists k ≥ 2 s.t. Mk has more eigenvalues than M , it is potentially
possible to set up an iterated subspace trail which is not invariant (and for which no S-box
is active) for any number of rounds.

Theorem 2. Given a P-SPN cipher with s S-boxes, let M ∈ Ft×t be an invertible matrix.
Let λ(k)

1 , λ
(k)
2 , . . . , λ

(k)
τ be the eigenvalues of M k for some k ≥ 1, and let P(k)

1 ,P(k)
2 , . . . ,P(k)

τ

be their corresponding eigenspaces (where τ ≤ t). For each r ≥ 1, let IS(r) be the subspace
defined as

IS(r) =
〈
S(r) ∩ P(r)

1 ,S(r) ∩ P(r)
2 , . . . ,S(r) ∩ P(r)

τ

〉
,

where S(r) is the subspace constructed as in Definition 5 such that no S-box is active in
the first r rounds. If 1 ≤ dim

(
IS(r)

)
< t, an infinitely long iterated subspace trail of the

form {
IS(r),M · IS(r),M2 · IS(r), . . . ,M k−1 · IS(r)

}
is generated.

The proof is equivalent to the one given before (note that no S-box is active due to the
construction of S(r)). Moreover, we point out that this result reduces to the previous one
if k = 1, since S(1) = 〈es+1, es+2, . . . , et〉.

Low Multiplicative Order. This result also includes the case in which the matrix has
low multiplicative order, as shown in the following corollary.

Corollary 1. Theorem 2 implies the result presented in Proposition 2.

Proof. Assume there exists k such that M k = µ · I. Then e1, e2, . . . , et are all eigenvectors
of M k with eigenvalue µ (equivalently, the space Ft is an eigenspace of M k w.r.t. the
same eigenvalue µ). Moreover, let S(k) be the subspace constructed as in Definition 5
such that no S-box is active in the first k rounds. Since 〈e1, e2, . . . , et〉 is an eigenspace of
M k corresponding to the eigenvalue µ, it follows that S(k) is an invariant subspace of M k.
Hence, due to the previous considerations,{

S(k),M · S(k),M2 · S(k), . . . ,M k−1 · S(k)
}

is an infinitely long iterated (constant-dimensional) subspace trail.

We remark that the two conditions are not equivalent, as shown in the following
concrete example.
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Example. Consider the circulant matrix M = circ(a, b, c, d) over F4. The eigenvalues of
M are

a+ b+ c+ d, ±
√
a2 + b2 − 2ac+ c2 − 2bd+ d2, a− b+ c− d,

while the eigenvalues of M2 are

(a+ b+ c+ d)2 = a2 − 2a(b− c+ d) + b2 − 2b(c− d) + c2 − 2cd+ d2,

(a− b+ c− d)2 = a2 + 2a(b+ c+ d) + b2 + 2b(c+ d) + c2 + 2cd+ d2,

a2 + b2 − 2ac+ c2 − 2bd+ d2, a2 + b2 − 2ac+ c2 − 2bd+ d2.

Since x 7→ x2 is not a permutation over Fp for a prime p ≥ 3 (see Hermite’s criterion),
there exist a, b, c, d, such that a2 + b2 − 2ac + c2 − 2bd + d2 is not a square. Hence, for
certain values of a, b, c, d ∈ Fp, it is possible that M has two eigenvalues, while M2 has
always four eigenvalues.11 As shown in details in Appendix B, this fact can be exploited
in order to construct a matrix M such that

(1) the corresponding iterated subspace trail IS is iterated infinitely many times while
not being invariant (namely, it is mapped into itself after two rounds, but not after
a single round), and

(2) M2 is not a multiple of the identity.

Given a P-SPN cipher over F5
p with s = 1, a concrete example of such a matrix is given by

M =


x y0 y1 y0 y1
z0 a b c d
z1 b c d a
z2 c d a b
z3 d a b c


for particular values of a, b, c, d, x, yi, zj ∈ Fp (for which the matrix is invertible and
circ(a, b, c, d) has only 2 eigenvalues), where the iterated (non-invariant) subspace trail is
given by {

IS = 〈(0, 0, 1, 0,−1)T 〉, M · IS = 〈(0, b− d, c− a, d− b, a− c)T 〉
}
,

where M2 · IS = IS and where M2 is not a multiple of the identity (see Appendix B for
concrete examples).

4 Practical Tests
LetM be the matrix that defines the linear layer. IfMk has no eigenvalues and eigenvectors
for each integer k ≥ 1, the previous result does not apply. Hence, choosing a matrix
which satisfies this condition could be a possible solution to prevent the previous attack.
Unfortunately, this is not the case since

(1) as we are going to show in the following with a concrete example, there exist matrices
that do not have any eigenvalues and eigenvectors but for which the previous attack
works, and

11For example, choosing (a, b, c, d) = (1, 1, 2, 3), a2 + b2 − 2ac+ c2 − 2bd+ d2 is a square over F11, but
it is not a square over F13.
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Algorithm 1: Searching for an (iterative) infinitely long subspace trail without
active S-boxes, using Theorem 1 and Theorem 2.
Data: P-SPN cipher over Ft with s ∈ [1, t] S-boxes applied to the first s words,

where the S-box has no linear structure.
Result: 1 if an (iterative) infinitely long subspace trail exists, 0 otherwise.

1 i← 0.
2 do
3 i← i+ 1.
4 if ∃µ ∈ F s.t. M i = µ · I (where I is the identity matrix) then
5 return 1: Discard the matrix M
6 Let S(i) be the subspace such that no S-box is active in the first i rounds,

defined as in Definition 5.
7 Let {λ(i)

1 , λ
(i)
2 , . . . , λ

(i)
τ } be all the (linearly independent) eigenvalues of M i, and

let {P(i)
1 ,P(i)

2 , . . . ,P(i)
τ } be the corresponding eigenspaces.

8 Note: dim(P(i−1)
1 ) + · · ·+ dim(P(i−1)

τ ) = t =⇒ P(i−1)
j = P(i)

j , where j ∈ [1, τ ].
9 IS(i) ←

〈
P(i)

1 ∩ S(i),P(i)
2 ∩ S(i), . . . ,P(i)

τ ∩ S(i)
〉
.

10 if dim(IS(i)) ≥ 1 and IS(i) 6= Ft then
11 return 1: Discard the matrix M
12 while dim

(
S(i)) ≥ 1;

13 return 0: No (iterative) infinitely long subspace trail

(2) we may be forced to use a matrix which has eigenvalues and eigenvectors. The crucial
point is that, even if Mk has one or more eigenvalues and eigenvectors, the previous
attack does not necessarily work. Indeed, the applicability depends on the details of
the subspace V for which no S-box is active in the first r rounds.

In the following, we first present an algorithm which can be used to find vulnerabilities
and/or to discard possible “weak” matrices (w.r.t. the attacks presented before). Secondly,
we test several matrices over Fp and over F2n in order to give an idea of the percentage of
“weak” matrices.

4.1 Algorithm to Detect “Weak” Matrices
Algorithm 1 can be used to find vulnerabilities and/or to discard possible “weak” matrices
(w.r.t. the attacks presented before). Here we present the details of this algorithm.

In order to determine a possible vulnerability, we first ensure that there is no integer
k ≥ 1 which leads to Mk being a multiple of I, where I is the identity matrix. After that,
we apply the following steps.

1. We compute the eigenvalues and eigenspaces, denoted by P1,P2, . . . ,Pτ (with a basis
{ρ1, ρ2, . . . , ρτ}) of M , and store them.

2. We compute S(i) such that there is no active S-box in the first i rounds (see
Definition 5).

3. Finally, we look for an intersection between S(i) and {ρ1, ρ2, . . . , ρτ}. If an intersection
exists, M is a weak choice.

Computational Cost of Algorithm 1. The eigendecomposition of a t × t matrix needs
a number of field operations in O(t3), which is similar to the cost of solving a system of
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(linear) equations to find S(i). Hence, the total runtime cost is in O
(
x · t3

)
, where x is the

number of repetitions of the Do-While loop.
Due to the Do-While condition, it is possible that the algorithm does not finish in a

reasonable time. Indeed, note that the number of subspaces may be large, depending on
the size of the field Ft. Hence, it is possible that the iterated subspace trail has a large
period which cannot be detected by the algorithm in a reasonable time. In such a case,
we suggest to stop the algorithm after a previously chosen number of iterations, and to
discard the matrix. This basically corresponds to introducing an additional condition:

If there exists a subspace trail with no active S-boxes for more than r rounds, then
discard the matrix (where r ≥

⌊
t−s
s

⌋
is fixed in advance).

This does not mean that there exists an infinitely long subspace trail for such a matrix. It
just corresponds to the idea of using matrices for which we are sure (and we can prove)
that the longest subspace trail with no active S-boxes covers at most r rounds (without
exploiting the details of the S-box, weak keys, and so on).

Implementation. We make our implementation available online12. This tool can be used
to detect vulnerabilities of given matrices over prime field or binary fields.

4.2 Percentage of “Weak” Linear Layers
We implemented Algorithm 1 in Sage and used it to give an idea of the percentage of
matrices that are vulnerable to the attack without active S-boxes presented in Section 3.

Different Classes of Matrices. For concrete use cases, we set s = 1 and we focus on
two scenarios, namely random invertible matrices and random Cauchy matrices13. As
the source for randomness we use Sage’s random engine in both cases (and for choosing
e.g. the prime numbers). In the first scenario, we create a matrix space, sample random
matrices, and finally determine if they are invertible. In the second scenario, we generate
Cauchy matrices using random (and valid) starting sequences. We tested all matrices using
both prime fields and binary fields, focusing on square matrices of order t ∈ {3, 4, 8, 12, 16}
and on fields with a size of n ∈ {4, 8, 16} (and dlog2(p)e ∈ {4, 8, 16} for prime fields).
Moreover, we tested our algorithm on the concrete matrices used to instantiate Starkad
and Poseidon. We present these results in Appendix D.

Concrete Results. The sample size for all tests was set to 10000. While a matrix chosen
completely at random (or without considering our results) may be vulnerable with a
significant probability, it is easy to choose a matrix which is not vulnerable to the attacks
presented above. Namely, given the estimated percentages of vulnerable matrices found in
the tables above, the probability of finding a “secure” matrix (w.r.t. our results) is already
quite high after trying two or more different matrices. In other words, our tool can easily
be used to find matrices which are not vulnerable to the attacks presented in Section 3.

Regarding the tables, we can immediately see that the choice of p (or n) has an impact
on the number of vulnerable matrices. Specifically, increasing dlog2(p)e (or n) tends to
result in a higher probability for a matrix to be secure against the attacks presented here.
We can also see that the cardinality of the field is more important in that regard than the
number of cells – indeed, with respect to our observations, increasing t does not seem to
have a major impact on the vulnerability.

12https://extgit.iaik.tugraz.at/krypto/linear-layer-tool
13We recall that M ∈ Ft×t is a Cauchy matrix if there exists {xi, yi}ti=1 s.t. Mi,j = 1

xi+yj
, where for

each i 6= j : xi 6= xj , yi 6= yj , xi + yj 6= 0. Cauchy matrices are MDS matrices.

https://extgit.iaik.tugraz.at/krypto/linear-layer-tool
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Table 1: Percentage of vulnerable matrices for Algorithm 1 and orders t and field sizes
dlog2(p)e when considering prime fields GF(p).

Generation dlog2(p)e t Vulnerable (%)

Random Invertible

4 3 8.74
8 3 0.48
4 4 7.30
8 4 0.45
8 8 0.57
8 12 0.43
8 16 0.55

16 12 0.01
16 16 < 0.01

MDS (Random Cauchy)

4 3 7.97
8 3 0.63
4 4 5.74
8 4 0.61
8 8 0.47
8 12 0.51
8 16 0.69

16 12 < 0.01
16 16 0.01

In addition, we applied Algorithm 1 using different limits for its termination. In
particular, we focused on limits of the form k(t− 1) for 0 < k ∈ N. We could not observe
any major differences between choosing, for example, k = 2 or k = 4. As mentioned above,
if the algorithm is not able to terminate within this fixed number of runs, we suggest to
discard the given matrix.

Computational Cost in Practice. There are various ways to implement Algorithm 1 in
practice. Since we have to recalculate the subspace S(i) in each run, we store the powers
of the input matrix M beforehand, i.e., we compute and store M,M2, . . . ,Me, where e is
the number of iterations. Hence, the memory cost depends on e and is then essentially in
O
(
et2
)
for a t× t matrix M .14

The runtime is dominated by finding a solution to the system of equations and by
building the eigendecomposition of a matrix. Both complexities are in O

(
t3
)
for t × t

matrices. In practice, we can also observe that running the tests for matrices with smaller
t is significantly faster than running the tests for matrices with large t. As an example,
and using n = 16, the test for a single matrix takes about 50 milliseconds for t = 4, while
it takes about 1 second for t = 12. We used an Intel Xeon E5-2699v4 with a maximum
clock frequency of 3.60 GHz for all our tests.

4.3 An Open Problem of Finding a Necessary Condition
Consider the case of a Cauchy matrix M generated as in [19] (recalled in Section 3.2)
for t = 24 and F2n , where n = 63. As shown in [26], the subspace S(5) defined as in
Definition 5 satisfies

M · S(5) = S(5)

14Alternatively, the powers can be recomputed in each run, which increases the runtime cost, but
decreases the memory cost to an element in O

(
t2
)
.
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Table 2: Percentage of vulnerable matrices for Algorithm 1 and orders t and field sizes n
when considering binary fields GF(2n).

Generation n t Vulnerable (%)

Random Invertible

4 3 5.92
8 3 0.48
4 4 6.26
8 4 0.34
8 8 0.35
8 12 0.32
8 16 0.35

16 12 < 0.01
16 16 < 0.01

MDS (Random Cauchy)

4 3 6.96
8 3 0.33
4 4 5.46
8 4 0.28
8 8 0.48
8 12 0.46
8 16 0.42

16 12 < 0.01
16 16 < 0.01

and
∀x ∈ S(5) : [M · x]1 = 0,

where x ∈ S(5) and where [v]1 denotes the first word (namely, the first n bits) of a vector
v (this corresponds to the result already given in [26, Page 20]).

The reason why we highlight this fact is that it provides an example of a matrix for
which our conditions given before are only sufficient but not necessary. In other words,
if the previous condition (namely, Theorem 2) is both necessary and sufficient, then the
subspace S(5) must be related to the eigenvalues and eigenvectors ofM . However, by simple
practical tests, this is not the case since M j for j ∈ [1, 5] does not have any eigenvalues and
eigenvectors. Hence, we can deduce that our observation provides a sufficient condition,
but not a necessary one.

A future open problem is to extend the condition to a necessary one. Instead of working
over F, one idea could be to work over its algebraic closure15 F?. Indeed, by definition16, a
field F is algebraically closed if and only if for each natural number n every linear map
from (F)n into itself has some eigenvectors. Hence, instead of working over Fp or over F2n ,
one possibility would be to work over their algebraic closures.

5 Subspace Trails for P-SPN Ciphers with Active S-Boxes
Until now, we focused on the case in which no S-box is active. Here, we analyze the
scenario in which S-boxes are active. We start by presenting a generic result regarding

15A field F is algebraically closed if every non-constant polynomial in F[X] (the univariate polynomial
ring with coefficients in F) has a root in F. For example, no finite field F is algebraically closed, because if
a1, a2, . . . , an are all the elements of F, then the polynomial (x− a1)(x− a2)...(x− an) + 1 has no zero in
F. By contrast, the field of complex numbers is algebraically closed.

16A linear map over a field F has an eigenvector if and only if its characteristic polynomial has some
root. Therefore, when F is algebraically closed, every linear map of Fn has some eigenvector.
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the minimum number of rounds for which it is possible to set up a subspace trail with a
probability of 1. Then, for the first time in the literature (to the best of our knowledge),
we analyze infinitely long invariant subspace trails in the case of active S-boxes.

5.1 Subspace Trails and Truncated Differentials
Proposition 4. Given a partial SPN cipher over Ft with s ≤ t S-boxes, it is always
possible to set up a subspace trail with probability 1 on at least 2 ·

⌊
t−s
s

⌋
rounds, defined byS(b t−s

s c),M · S(b t−s
s c), . . . ,Mb

t−s
s c−1 · S(b t−s

s c)︸ ︷︷ ︸
no active S-boxes

,A(1),A(2), . . . ,A(b t−s
s c)

 , (4)

where S(·) is defined as in Definition 5, where

∀i ≥ 1 : A(i) :=
〈
M(e1),M(e2), . . . ,M(es),M · A(i−1)

〉
,

and where A(0) := Mb
t−s

s c−1 · S(b t−s
s c).

As for Proposition 1, this well-known result only depends on the number of S-boxes,
and no assumption on the matrix M is made. Moreover, it also includes the case of SPN
ciphers (if t = s, the subspace trail can be set up for at least one round). As done before
and w.l.o.g., in the following we omit the round key and constant additions (since they
only change the coset and we deal with differences).

Proof. The subspace trail defined over the first
⌊
t−s
s

⌋
rounds is already analyzed in

Section 3.1. Such a subspace trail cannot be extended for more rounds without activating
any S-box since

Mb
t−s

s c−1 · S(b t−s
s c) 6⊆ 〈es+1, es+2, . . . , et〉 .

Hence, at least one S-box would be active after
⌊
t−s
s

⌋
rounds. It follows that the only way

to extend the trail is by increasing the dimension of such a subspace, that is,

R
(
Mb

t−s
s c · S(b t−s

s c)
)
⊆ A(1) =

〈
Mb

t−s
s c+1 · S(b t−s

s c),M(e1),M(e2), . . . ,M(es)
〉
.

Indeed, the only thing one can do is to consider the biggest subspace for which

S-box
(
M(b t−s

s c) · S(b t−s
s c)

)
⊆

〈
e1, e2, . . . , es︸ ︷︷ ︸
Due to S-boxes

,Mb
t−s

s c · S(b t−s
s c)︸ ︷︷ ︸

Due to identity part

〉
.

In this way, we lose information about the output of the S-box layer (while nothing changes
for the part of the identity layer), but we can extend the subspace trail. Working in the
same way, it follows that

R
(
A(1)

)
⊆ A(2) =

〈
M · A(1),M(e1),M(e2), . . . ,M(es)

〉
and, more generally,

R
(
A(r)

)
⊆ A(r+1) =

〈
M · A(r),M(e1), . . . ,M(es)

〉
.

This operation can be repeated until the dimension of the subspace is smaller than t. Since
for a generic cipher the dimension of S(b t−s

s c) is s and the dimension increases by s in
each additional round, the dimension remains smaller than t for up to 2 ·

⌊
t−s
s

⌋
rounds.

Similar to the case presented in Section 3.1, depending on the details of the linear layer,
a longer subspace trail of dimension 1 can be set up. This happens e.g. for the case of
AES, due to the fact that M = MC ◦ SR(·) is “sparse” and does not provide full diffusion
at word level after a single round (we refer to [22] for more details). In such a case, a
2-round subspace trail with probability 1 can be set up.
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Truncated Differentials. Due to the relation between subspace trails and truncated
differentials [30], this implies the possibility to set up a truncated differential distinguisher
on at least 2 ·

⌊
t−s
s

⌋
rounds with probability 1. Moreover, truncated differentials [27] which

hold with a probability smaller than 1 and impossible differentials can potentially be set
up for more rounds. However, since this is out of the scope of this paper, we refer to
Appendix C for more details.

5.2 Infinitely Long Subspace Trail with Active S-Boxes
Working as in Section 3, we now study which properties a linear layer must satisfy in order
to set up an infinitely long subspace trail also in the case of active S-boxes. To the best of
our knowledge, this is the first time that such an approach is described in the literature.

5.2.1 Invariant Subspace Trail with Active S-Boxes

Using the approach proposed in Section 3.3, we first focus on the case of invariant subspace
trails with active S-boxes.

Theorem 3. Given a P-SPN cipher with s S-boxes, let M ∈ Ft×t be an invertible matrix.
Let λ1, λ2, . . . , λτ be the eigenvalues of M , and let P1,P2, . . . ,Pτ be the corresponding
eigenspaces (where τ ≤ t). Let I = {i1, i2, . . . , i|I|} ⊆ {1, 2, . . . , s} be the indices of the
words with active S-boxes, and let J = {j1, j2, . . . , j|J|} ⊆ {1, 2, . . . , τ} such that

IS =
〈
P ′j1

, P ′j2
, . . . ,P ′j|J|

〉
,

where P ′ ⊆ P is a non-null subspace. If 1 ≤ dim(IS) < t and if IS satisfies

(1) IS ∩
〈
ei1 , ei2 , . . . , ei|I| , es+1, es+2, . . . , et

〉
= IS, and

(2) ∀i ∈ I ⊆ {1, 2, . . . , s} : IS ∩ 〈ei〉 = 〈ei〉 ,

then IS generates an infinitely long invariant subspace trail (with active S-boxes in the
case in which I 6= ∅).

Note that if |I| = 0, then this reduces to the previous result.

Proof. The first condition ensures that no l-th word is active, where l /∈ I. For each i-th
active word, where i ∈ I, the second condition implies that the entire space 〈ei〉 is included
in IS. The consequence is that, when applying the S-box, the subspace remains the same.

As for the results given in the previous sections, since such a subspace is defined via
the eigenspaces of M , it remains invariant under the linear layer. Hence, IS results in an
infinitely long invariant subspace trail.

Example. Given a P-SPN cipher with s = 1, consider the following 4 × 4 matrix M
defined over F:

M =


0 (1−M02 · v2 −M03 · v3)/v1 M02 M03
v1 (−M12 · v2 −M13 · v3)/v1 M12 M13
v2 (−M22 · v2 −M23 · v3)/v1 M22 M23
v3 (−M32 · v2 −M33 · v3)/v1 M32 M33

 , (5)

where v1 6= 0. A proper choice of v1, v2, v3 andM·,· provides invertibility and “full diffusion”
(at word level after a finite number of rounds) for cryptographic purposes.

The subspace
S =

〈
e1 = (1, 0, 0, 0)T , v = (0, v1, v2, v3)T

〉
is invariant under the round transformation for any number of rounds, since
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(1) the first word can take every value and because the S-box is applied only to this word
(the S-box is a permutation), S remains invariant (note that the S-box is active), and

(2) the vectors satisfy M · e1 = v and M · v = e1.

It follows that this is a concrete example of an infinitely long invariant subspace trails
with active S-boxes. As before, v and e1 are related to the eigenvectors of M , in particular

M · (v + e1) = v + e1 M · (v − e1) = −(v − e1),

where P1 = 〈v+ e1〉 and P2 = 〈v− e1〉 satisfy the conditions given in the previous theorem.
As a last thing, we remark that matrices of the form Eq. (5) are currently used in the

literature: For example, the almost-MDS matrix over F2n defined as

circR(0, 1, 1, 1) =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


is used in Midori [4] and QARMA [3].

5.2.2 Computational Cost

While in the case of passive S-boxes we are able to construct the invariant subspace directly,
the previous definition is too computationally expensive to exploit in order to construct the
invariant subspace trail (with active S-boxes) in the case of large t and/or large |F|. For
example, in the case of s S-boxes and in the case of a matrix with t different eigenspaces
P1,P2, . . . ,Pt (each one of dimension 1), there are

(2s − 1) ·
(

t∑
i=1

(
t

i

))
= (2t − 1) · (2s − 1) ∈ O(2s+t)

different cases the attacker has to check in order to construct such a subspace trail. The
situation becomes even worse in the case in which some eigenspaces have dimension greater
than 1, due to the fact that the number of possible subspaces grows exponentially, as given
in the following proposition.

Proposition 5 ([24]). Let 0 ≤ k ≤ n. Given an n-dimensional vector space V over Fq,
there exist

(qn − 1)(qn − q)(qn − q2) · · · (qn − qk−1)
(qk − 1)(qk − q)(qk − q2) · · · (qk − qk−1) ∈ O

(
qk(n−k)

)
different subspaces of dimension k.

Hence, apart from some special cases, it seems infeasible to determine if an infinitely
long subspace trail with active S-boxes can be constructed or not. We leave this as an
open problem for future research.

5.2.3 Iterated Subspace Trail with Active S-Boxes

Finally, we mention that the previous result can be generalized by considering iterated
(non-invariant) subspace trails with active S-boxes. To do this, the idea is again to consider
the eigenspaces of Mk for k ≥ 2.

Theorem 4. Given a P-SPN cipher with s S-boxes, let M ∈ Ft×t be an invertible
matrix. Let λ(k)

1 , λ
(k)
2 , . . . , λ

(k)
τ be the eigenvalues of M k for a certain k ≥ 1, and let
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P(k)
1 ,P(k)

2 , . . . ,P(k)
τ be the corresponding eigenspaces (where τ ≤ t). Further, let s ≤ s be

the number of active S-boxes, and let J = {j1, j2, . . . , j|J|} ⊆ {1, 2, . . . , τ} such that

IS =
〈
P ′j1

,P ′j2
, . . . ,P ′j|J|

〉
,

where P ′ ⊆ P is a non-null subspace.
For each 0 ≤ j ≤ k− 1, let Ij = {i1,j , i2,j , . . . , is,j} ⊆ {1, 2, . . . , s} be the indices of the

words with active S-boxes in the x-th round, where x mod (k− 1) = j. If 1 ≤ dim(IS) < t
and if IS satisfies

(1) ∀j ∈ {0, 1, . . . , k− 1} : (M j · IS) ∩
〈
ei1,j , ei2,j , . . . , eis,j , es+1, es+2, . . . , et

〉
= IS,

(2) ∀j ∈ {0, 1, . . . , k− 1} and ∀i ∈ Ij ⊆ {1, 2, . . . , s} : (M j · IS) ∩ 〈ei〉 = 〈ei〉,

then an infinitely long iterated subspace (with active S-boxes in the case in which I 6= ∅) of
the form {

IS,M · IS,M2 · IS, . . . ,M k−1 · IS
}

is generated.

Note that the active S-boxes do not need to be in fixed position, and it is sufficient to
impose Ij = Il for each j, l ≤ k− 1.

6 Open Problems
In this paper, we presented sufficient conditions that a (highly non-trivial) linear layer
must satisfy in order to set up infinitely long subspace trail attacks. As already mentioned
in the paper, several problems are still open for future research:

• Is any of the conditions given in this paper both necessary and sufficient? If not, is
it possible to find a similar condition which is both necessary and sufficient? For
example, what happens if one considers the eigenvalues or eigenspaces of M over the
algebraic closure of F?

• In the whole paper, we limit ourselves to work independently of the details of the
S-box, since we assume that it is not possible to set up any non-trivial subspace trail
for the S-box. However, this is not always the case (e.g., consider the examples given
in [30] for PRESENT). As a future open problem, one could extend the result given
in this paper in order to take the details of the S-box into account as well.

• Following the previous point, it could make sense to analyze how the key schedule
and the existence of weak keys influence the possibility to set up a weak-key infinitely
long subspace trail. What is a possible countermeasure that allows to prevent this
case? Is the analysis provided in [6] valid also in the case of P-SPN ciphers?

• In the case of active S-boxes, a direct construction of the infinitely long subspace
trail (given the details of the matrix that defines the linear layer) is missing. This
may be crucial in order to solve the problem regarding the computational cost of
constructing it with the current definition. Is it possible to conclude anything, at
least in the simplest case in which s = 1?

• Given t, s,F, is it possible to give the specification of a regular matrix for which one
can easily prove that no infinitely long subspace trail (both with active and inactive
S-boxes) exists? Is it possible to conclude anything at least in the case of MDS or
near-MDS matrices?
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A Related Works
In order to discuss the results in [1] and [7], and the relation between them and the ones
presented in this paper, we first briefly recall the definition of correlation matrices [13].

Definition 7. Let F : Fn2 → Fm2 be a vectorial Boolean function. The correlation matrix
CF ∈ R2m×2n of F is the representation of the transition matrix of F with respect to the
character basis of the algebra C[Fn2 ] and C[Fm2 ]. The coordinates of CF are

CFu,v = 1
2n ·

∑
x∈Fn

2

(−1)u
T ·F (x)+vT ·x.

Using these notions, we recall the results presented in the literature.

Proposition 6 (Theorem 5 of [1]). Consider an invertible vectorial Boolean function F ,
a subspace U , the orthogonal subspace U⊥, and a vector d. Let CFu,v be the correlation
matrix of F , and let ω = (ωu)u∈U⊥ , where ωu = (−1)dT ·u. Then CF ·ωT = ωT if and only
if F (U + d) = U + d.

This result has been generalized by Beyne in [7], who defines a “block cipher invariant”
in the following way.

Definition 8 (Definition 2 of [7]). A vector v ∈ C2n is an invariant for a block cipher
Ek : Fn2 → Fn2 if and only if it is an eigenvector of the correlation matrix CEk . If v is a
multiple of (1, 0, . . . , 0)T , it will be called a trivial invariant.

For the case of invariant subspace trails, the same approach – opportunely modified
– can potentially be exploited in order to find the results proposed here. In particular,
using the properties of CF just presented, it follows that in the case of a round function
Rk(·) = k ⊕ R(·) = k + M ◦S(·), where S(·) ≡ [S(·) || . . . || S(·) || I(·) || . . . || I(·)] and
where M(·) = M · (·), it holds that

CRk = CkCR = CkCM · CS = Ck[CM ]
(
[CS ]⊗s ⊗ [CI ]⊗(t−s)),

where CMu,v = δ(u + MT · v), CIu,v = δ(u + v), and where Ck is a diagonal matrix. In
the case studied here, it is not hard to see that if no S-box is active, the eigenvalues and
eigenvectors of CMu,v are strictly related to the eigenvalues and eigenvectors of M , hence
the previous result.

At the same time, here we point out the following observations.

1. Both the results [1] and [7] focus on invariant subspaces only. As a consequence, one
has to take care of the effect of the key (namely, of Ck) on the eigenvectors of CR
(namely, of the part of the round that is independent of the key).

2. In our case, we look for infinitely long iterative subspace trails of P-SPN ciphers
which are independent of the secret key and of the key schedule. Again, this is not
possible for an SPN cipher due to the full nonlinear layer.

3. We do not require that the subspace is invariant (namely, we do not restrict ourselves
to the case R(U + v) = U + w). At the same time, an r-round iterated subspace
trail can be seen as an invariant subspace trail for r rounds of the cipher. Hence, the
previous result can be adapted in order to include this case.
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B 2-Round Iterative Subspace Trail – Details
In this section, we present all the details of the concrete example of an iterated subspace
trail that is not invariant given in Section 3.4.

The starting point is given by the circulant matrix M = circ(a, b, c, d) with elements
a, b, c, d ∈ Fp, which is invertible if and only if its determinant is different from zero:

−a4 + b4 − 4ab2c+ 2a2c2 − c4 + 4a2bd+ 4bc2d− 2b2d2 − 4acd2 + d4 6= 0 mod p.

Depending on a, b, c, d, such a matrix can have either 2 or 4 eigenvalues and eigenvectors,
while M2 has always 4 eigenvalues and eigenvectors. In particular, the eigenvalues and
eigenvectors of M are given by

λ0 = a+ b+ c+ d : (1, 1, 1, 1)T ,

λ1 = −
√
a2 + b2 − 2ac+ c2 − 2bd+ d2 : (b− d,−a+ c+ λ1, d− b, a− c− λ1)T ,

λ2 =
√
a2 + b2 − 2ac+ c2 − 2bd+ d2 : (b− d,−a+ c+ λ2, d− b, a− c− λ2)T ,

λ3 = a− b+ c− d : (1,−1, 1,−1)T ,

while the eigenvalues and eigenvectors of M2 are given by

Λ0 = (λ0)2 = a2 + 2a(b+ c+ d) + b2 + 2b(c+ d) + c2 + 2cd+ d2 : (1, 1, 1, 1)T ,

Λ1 = (λ1)2 = a2 + b2 − 2ac+ c2 − 2bd+ d2 : (1, 0,−1, 0)T ,

Λ2 = (λ2)2 = a2 + b2 − 2ac+ c2 − 2bd+ d2 : (0, 1, 0,−1)T ,

Λ3 = (λ3)2 = a2 − 2a(b− c+ d) + b2 − 2b(c− d) + c2 − 2cd+ d2 : (1,−1, 1,−1)T .

Let Mt×t ∈ Ft×t be the matrix defined as

M5×5 =


x y0 y1 y0 y1
z0 a b c d
z1 b c d a
z2 c d a b
z3 d a b c

 ,

M6×6 =


x0 x1 y0 y1 y0 y1
x2 x3 y2 y3 y2 y3
z0 z4 a b c d
z1 z5 b c d a
z2 z6 c d a b
z3 z7 d a b c

 ,

and so on, where

(1) the coefficients are chosen in order to provide invertibility and “full diffusion” (at
word level after a finite number of rounds) for cryptographic purposes, and

(2) a, b, c, d are chosen such that the corresponding matrix has only 2 eigenvalues, namely

∀x ∈ Fp : a2 + b2 − 2 · a · c+ c2 − 2 · b · d+ d2 6= x2 mod p,

that is,
a 6= c and b 6= d

(remember that x 7→ x2 is not a permutation over Fp for a prime p ≥ 3 – see Hermite’s
criterion).
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Note that

(1)


a b c d
b c d a
c d a b
d a b c

 ·


0
1
0
−1

 =


b− d
c− a
−(b− d)
−(c− a)

 ,

(2)


a b c d
b c d a
c d a b
d a b c


2

·


0
1
0
−1

 = (a2 + b2 − 2ac+ c2 − 2bd+ d2) ·


0
1
0
−1

 , and

(3)
(
x y x y

)
·


0
1
0
−1

 =
(
0
)
.

Working on F5, and due to these considerations, the subspace S defined by

S =
〈

(0, 0, 1, 0,−1)T
〉

is 2-round iterative subspace trail, since

(1) M · S =
〈

(0, b− d, c− a, d− b, a− c)T
〉
, and

(2) M2 · S = S.

Finally, note that M2 is not necessarily equal to a multiple of the identity. A concrete
example is given by (M2

5×5)0,4 6= 0, where17(
M2

5×5
)

0,4 = xy0 + y0a+ y1b+ y0c+ y1d,

which is different from 0 by appropriately choosing the entries.

Other Examples. Note that many other examples can be constructed in a similar way.
For example, the matrix M8×8 defined by

M8×8 =
(
circ(s, z, s, z) circ(a, b, c, d)
circ(a, b, c, d) circ(u, v, u, v)

)
,

where a, b, c, d are chosen such that the corresponding circulant matrix has only 2 eigenval-
ues, admits a 2-round iterative subspace trail defined by

S =
〈

(0, 1, 0,−1, 0, 0, 0, 0)T
〉
.

Indeed,

M8×8 ·
〈

(0, 1, 0,−1, 0, 0, 0, 0)T
〉

=
〈

(0, 0, 0, 0, b− d, c− a, d− b, a− c)T
〉

and
(M8×8)2 ·

〈
(0, 1, 0,−1, 0, 0, 0, 0)T

〉
=
〈

(0, 1, 0,−1, 0, 0, 0, 0)T
〉
.

17Mx,y denotes the entry of M at row x and column y.
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C Truncated and Impossible Differentials
So far, we discussed the possibility to set up truncated differentials with probability
1. However, this does not guarantee security against all other generalizations, precisely
truncated differentials with probability smaller than 1 and impossible differentials. Here
we briefly focus on this case. However, we point out that we do not discuss the minimum
number of rounds necessary to guarantee security against these attacks, since they strongly
depend on the details of the linear layer.

Differential attacks [11] exploit the fact that pairs of plaintexts with certain differences
yield other differences in the corresponding ciphertexts with a non-uniform probability
distribution. A variant of this attack/distinguisher is the truncated differential one [27], in
which the attacker can predict only part of the difference between pairs of texts. Using the
subspace terminology, given pairs of plaintexts that belong to the same coset of a subspace
X , one considers the probability that the corresponding ciphertexts belong to the same
coset of a subspace Y to set up an attack – see e.g. [12] for details. (Truncated) impossible
differential distinguishers/attacks [9] exploit differentials that holds with probability 0.

As we are going to show, in the case in which the details of the S-box are not taken
into account, then (the “basic” variants of) truncated and/or of impossible differential
distinguishers – which are independent of the secret key – can be set up for (at most) 2R
rounds, where R ≥ 2

⌊
t−s
s

⌋
is the maximum number of rounds for which it is possible to

set up a truncated differential with probability 1.

Remark. We stress that the details of the construction (e.g., the S-box, the linear
layer, the key schedule) can potentially be used to improve the previous attacks. That
is, 2R rounds refer only to the “basic” variants of such attacks, and this number must be
considered only as lower bound in order to guarantee security.

C.1 Truncated Differentials with Probability < 1
Here we exploit the relation between truncated differentials and subspace trails [22, 30],
and the results just given, in order to analyze the minimum number of rounds to prevent
these attacks. We recall following proposition from [22].

Proposition 7. Let
{
S(b t−s

s c),M · S(b t−s
s c), . . . ,Mb

t−s
s c−1 · S(b t−s

s c),A(1), . . . ,A(b t−s
s c)

}
be a subspace trail of prob. 1 defined as in Eq. (4). For simplicity, let r = 2 · b(t− s)/sc
and let

{V 0, V 1, . . . ,V b(t−s)/sc−1, V b(t−s)/sc, . . . , V 2·b(t−s)/sc−2} :=

:=
{
S(b t−s

s c),M · S(b t−s
s c), . . . ,Mb

t−s
s c−1 · S(b t−s

s c),A(1), . . . ,A(b t−s
s c)

}
.

If there exist 0 ≤ v < u ≤ w < r s.t.

dim(V v ∩ V u)
dim(V u) >

dim(V w)
t

(equivalently, s.t. given a text x ∈ Ft P
(
x ∈ V v | x ∈ V u

)
> P(x ∈ V w

)
, where P (·) denotes

the probability), then it is always possible to set up a truncated differential distinguisher
for w + u− v rounds with prob. |F|− dim(V u)+dim(V v∩V u).

The result follows from the fact that for each pair (x, y) of plaintexts, where x 6= y,

P
(
Ek(x)⊕Ek(y) ∈ V w | x⊕y ∈ V 0)= P

(
Ek(x)⊕Ek(y) ∈ V v | x⊕y ∈ V u

)
= |F|

dim(V v∩V u)

|F|dim(V u)
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independently of the secret key k, due to the fact that

∀a, b : ∃c, d s.t. Ru(V 0 + a) ⊆ V u + b and Rw−v(V v + b) ⊆ V w + d,

where Rx(·) denotes the x-round encryption function. For comparison, in the case of a
random permutation Π(·)

P
(
Π(x)⊕Π(y) ∈ V w | x⊕ y ∈ V 0)= |F|dim(V w)

|F|t
.

We finally recall that for each subspace X,Y ,

dim(X ∩ Y ) = dim(X) + dim(Y )− dim(X ∪ Y ),

where dim(X ∪ Y ) can be easily computed by using a Gram–Schmidt process on X ∪ Y .

C.2 Impossible Differentials
(Truncated) impossible differential distinguishers/attacks [9] exploit differential that holds
with probability 0.

Proposition 8. Let {V 0, V 1, . . . , V r−1} be a subspace trail of prob. 1 defined as in
Proposition 7. If there exist 0 ≤ v < u < r s.t.

P
(
x ∈ V v | x ∈ V u

)
= 0

(equivalently, dim(V v ∩ V u) = 0), then it is always possible to set up an impossible
differential distinguisher for r + u− v rounds.

The reason of the previous result is analogous to the one given before for truncated
differential distinguishers with prob. ≤ 1.

D Using our Tool for Starkad and Poseidon Matrices
In addition to the statistical tests described in Section 4, we also used our tool for the
Cauchy matrices using specific starting sequences defined for Starkad and Poseidon
[19]. We recall that the matrix M ′ over F2n for Starkad is defined by

M ′i,j = 1
xi ⊕ yj

,

where xi = i, yi = i+ t, and i ∈ [0, t− 1]. Similarly, the matrix M ′′ over Fp for Poseidon
is defined by

M
′′

i,j = 1
xi + yj

,

where again xi = i, yi = i+ t, and i ∈ [0, t− 1].

Comparison with Related Results. When using our tool for matrices with various sizes
(i.e., different values for t), we can observe that some matrices over F2n (i.e., the matrices
used for Starkad) are vulnerable to the attacks described in this paper. We can also
observe, however, that matrices over Fp using the same t values are not vulnerable. The
detailed results for some instances are shown in Table 3.

These results are not new in the literature, since similar conclusions have been already
shown in [26, 8]. Moreover, in [26] authors explain how to modify the choice of xi and
yj in Appendix D in order to fix this problem. This solution consists in changing the
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Table 3: Vulnerable matrices for Algorithm 1 and orders t and field sizes n = dlog2(p)e
when considering the Starkad and Poseidon specifications.

Generation n or dlog2(p)e t Vulnerable

Starkad Specification (over F2n)

4 3 No
8 3 No
4 4 Yes
8 4 Yes
8 8 Yes
8 12 Yes
8 16 Yes
16 12 Yes
16 16 Yes

Poseidon Specification (over Fp)

4 3 No
8 3 No
4 4 No
8 4 No
8 8 No
8 12 No
8 16 No
16 12 No
16 16 No

starting sequences for the Cauchy generation method. For completeness, we also tested our
algorithm for matrices suggested in [26]. This solution consists in changing the starting
sequences for the Cauchy generation method. As expected, we arrive at the same conclusion
that it is not possible to set up infinite-long subspace trail for such modified Cauchy matrices
proposed in [26] (in the case of inactive S-boxes). The problem to extend this conclusion
also to the case of active S-boxes is open for future work.
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