ConTra Corona:
Contact Tracing against the Coronavirus
by Bridging the Centralized—Decentralized
Divide for Stronger Privacy

Wasilij Beskorovajnov!, Felix Dorre?, Gunnar Hartung?, Alexander Koch?,
Joérn Miiller-Quade?, and Thorsten Strufe?

1 FZI Research Center for Information Technology
lastname@fzi.de
2 Karlsruhe Institute of Technology
firstname.lastname@kit.edu

Abstract. Contact tracing is one of the most important interventions to
mitigate the spread of COVID-19/SARS-CoV-2. Smartphone-facilitated
digital contact tracing may help to increase tracing capabilities as well as
extend the coverage to those contacts one does not know in person. The
emerging consensus is that a decentralized approach with local Bluetooth
Low Energy (BLE) communication to detect contagion-relevant proximity,
together with cryptographic protections, is necessary to guarantee the
privacy of the users of such a system.

However, current decentralized protocols, including DP3T [TPH*20] and
the protocol by Canetti, Trachtenberg, and Varia [CTV20], do not suffi-
ciently protect infected users from having their status revealed to their
contacts, which may raise fear of stigmatization.

By taking a dual approach, we propose a new and practical solution with
stronger privacy guarantees even against active adversaries. In particular,
we solve the aforementioned problem with additional pseudorandom
warning identities that are associated to the broadcasted public identity,
but this association is only known to a non-colluding dedicated server,
which does not learn to whom the public identity belongs. Then, only
these anonymous warning identities are published.

Moreover, our solution allows warned contacts to prove that they have
been in contact with infected users, an important feature in times of
restricted testing capacities. Among other additional security measures,
we detail how the use of secret sharing can prevent the unnecessary
and potentially panic-inducing warning of contacts that have only been
around the infected person for a very brief time period.

Keywords: Digital Contact Tracing - Privacy - SARS-CoV-2 - COVID-
19 - Active Security - Anonymity

1 Introduction

One of the most important interventions to contain the SARS-CoV-2 pandemic
is — besides the reduction of face-to-face encounters in general — the consequent

isolation of infected persons, as well those who have been in close contact with
them (“contacts”) to break the chain of infections. However, tracing contacts
manually (by interviews with infected persons) is not feasible when the number of
infections is too high. Hence, more scalable and automated solutions are needed to
safely relax restrictions of personal freedom imposed by a strict lockdown, without
the risk of returning to a phase of exponential spread of infections. In contrast,
digital contact tracing using off-the-shelf smartphones has been proposed as an
alternative (or an additional measure) that is more scalable, does not depend on
infected persons’ ability to recall their location history during the days before
the interview, and can even track contacts between strangers.

In many digital contact tracing protocols, e.g. [AHL18; CGH20; RCC*20;
CTV20; T; TPH'20; P20a; BRS20; CTY20; BBHT20; AG20], users’ devices perform
automatic proximity detection via short-distance wireless communication mecha-
nisms, such as Bluetooth Low Energy (BLE), and jointly perform an ongoing
cryptographic protocol which enables users to check whether they have been
colocated with contagious users. However, naive designs for digital contact tracing
may pose a significant risk to users’ privacy, as they process (and may expose)
confidential information about users’ location history, meeting history, and health
condition.

This has sparked a considerable research effort for designing protocols for
privacy-preserving contact tracing, most of which revolve around the following
idea: User’s devices continuously broadcast ephemeral and short-lived pseudonyms®
and record pseudonyms broadcast by close-by users. When a user is diagnosed
with COVID-19, she submits either all the pseudonyms her device used while
she was contagious or all the pseudonyms her device has recorded (during the
same period) to a server. Users’ devices either are actively notified by the server,
or they regularly query the server for pseudonyms uploaded by infected users.

Some of the most prominent designs following this idea are the centralized
PEPP-PT proposals ROBERT [P20c] and NTK [P20b], as well as the more
decentralized DP3T [TPH'20] approach, at which also the Apple/Google-API
proposal [AG20] aims at. While the centralized approaches of PEPP-PT do
not guarantee users’ privacy against the central server infrastructure [D20b;
D20c|, the DP3T approach [TPH'20], as well as the similar protocol by Canetti,
Trachtenberg, and Varia [CTV20], expose the ephemeral pseudonyms of every
infected user, which enables her contacts to learn about whether she is infected.
The interested reader is referred to [F20] for a fine grained comparison.

We argue that both, protection against a centralized actor, as well as protection
of infected users from being stigmatized for their status, is of utmost importance for
any real-world solution.* By specifying a protocol that achieves both of these goals

3 In order to save energy and maximize devices’ battery life, these pseudonyms should
be as short as possible (e.g. 128 bits).

4 This is especially true due to the desired inter-operability of solutions and/or a pan-
FEuropean or even global adoption. Deploying strongly privacy-preserving solutions in
democratic nations is particularly important, as these solutions will likely be deployed
in states with fewer safeguards against mass surveillance and less democratic oversight

(under certain assumptions), and detailing the corresponding (modular) design
choices, we aim to contribute to the ongoing discussion on privacy-preserving
digital contact tracing.

1.1 Contribution

We propose a new and improved protocol for privacy-preserving contact tracing,
which enjoys the following main properties:

— Our protocol does not allow anything non-trivial® to be learned on who is

infected, even towards contacts that are warned by their app. This is done
by splitting the broadcasted identifiers into two unlinkable pseudorandom
identifiers, where one is used for broadcasting, and the other for publication
by the server, in case the broadcasted identifier is uploaded by an infected
individual.
Additionally, we discuss approaches to preventing Sybil attacks (where an
attacker creates multiple accounts to observe which of them is warned), based
on the literature on the topic. Such attacks were deemed to be inherent by
[D20a, IR 1: Identify infected individuals]. We believe, however, that Sybil
attacks can be effectively mitigated by existing solutions.

— Our protocol makes use of a strict server separation concept to mitigate
the threat to users’ privacy posed by data collection on centralized servers.
In our protocol, the medical professional uploads signed and encrypted
public identifiers (without learning them) to a dedicated “matching” server,
which does a lookup of the respective registered secret identity, which is
an encryption of an (also pseudorandom) “warning identity”. These can
then be decrypted by a dedicated warning server that publishes them after
de-duplication. This separation does not lead to a significant increase of
computation on the side of the smartphone.

Note that the specialized servers may be distributed amongst well-known in-
dependent institutions.® Thus, in order to compromise the server architecture
to the full extent, multiple institutions would have to cooperate maliciously.

— Our protocol allows warned users to securely prove the fact that they have
been warned, e.g., towards medical professionals that administer tests for
COVID-19. Without this feature, anybody who is curious about their status

as well. In the same vein, while some are willing to give up protecting the infection
status of individuals towards their contacts, a more widespread adoption will lead
to adverse effects in societies where a greater stigma is attached to being infected.
Finally, the voluntary adoption of solutions will crucially depend on the perceived
privacy protections, and any solution needs to meet a certain threshold of users in
order to provide sufficient utility.
Except for leakage, such as when a warned person has only been in contact with one
other person.
For the case of Germany such institutions may be the Robert Koch Institute (RKI),
the Federal Ministry of Health (BMG) or the Data Privacy Agencies of the federal
states.

but not at risk could get tested, e.g., by showing a screenshot of a warning
from someone else’s smartphone — which would be unacceptable in times of
restricted testing resources.

— As far as possible, our protocol prevents active attackers from injecting false
positive warnings and from suppressing warnings supposed to be generated
by the protocol (false negatives).

Moreover, we identify the timing of Bluetooth beacons as a side-channel that can
be exploited to link distinct public identifiers, and propose a concrete solution
for adding timing jitter that is compatible with an update of identifiers.

Joint Statement on Contact Tracing of April 19th 2020 [K*20]. The current
fast-paced discussion about concepts and applications of contact tracing was
recently complemented by a joint statement of many researchers from all over
the world, proclaiming desired design principles for contact tracing applications.
We argue that our protocol follows all of these principles. The following are short,
non-exhaustive notes on these principles in our protocol.

— Any data being processed during the execution of our protocol is necessary
for the contact tracing functionality or for a countermeasures against one or
more threats.

— The separation of duties to multiple servers, operated by distinct entities
reduces the risk of mission creep.

— Our scheme is motivated by the observation that publishing the same infor-
mation as was observed locally is inevitably not fully privacy preserving.

— We agree with the joint statement and [C20] that any implementations of
such protocols should be open-source and amenable to public analysis.

Finally, we encourage the reader to find flaws, alternatives or optimizations for
every design choice we made.

1.2 Scope

The reaction of a user to a warning by the system is out-of-scope of this report as
they are not strictly dependent on the scheme. The user might be recommended
to go into self-quarantine or such a warning might be an entitlement to a medical
test. However, treating a warning as an entitlement should be considered carefully,
as it might create an incentive for healthy individuals to colocate with infected
individuals, and might influence individuals into using a digital contact tracing
application they would not want to use otherwise. (For example restricting
medical tests to users of the system and not giving non-users an equal chance to
be tested makes the usage of the system less voluntary.)

For simplicity, we describe our protocols using concrete numbers instead of
abstract parameters. It is understood that these values represent parameters that
can be chosen according to the epidemiological requirements. As examples values,
we describe our protocol with 15 minutes or longer as the approximate minimum
duration of encounters to be tracked, three weeks as retention period for locally

observed contacts, and one day as desired precision of a contact warning. However
all these parameters can be adjusted to change the trade-off between privacy,
utility and performance of the scheme and to fit the contact tracing needs of the
situation the scheme should be used in.

For the system to have good accuracy the distance between participants needs
to be estimated in order to track only contacts within a certain close distance.
Technical challenges in estimating the distance of two devices via Bluetooth LE
communication are out-of-scope for this technical report, we simply assume a
reasonably accurate method of estimation is available, as such a method is needed
for a large number of other proposals, too.

1.3 Related Work

First note that there are far too many approaches for contact tracing to list them
here fully. In a collaboratory effort, an overview of the related work and the
several offered apps has been compiled and published at [scA*20]. See also [T20]
for a discussion of some recent proposals of digital contact tracing. We focus
here on the cryptographic discussion that has been ongoing on preprint servers,
such as arXiv and the IACR eprint archive, and the git repositories of the most
prominently discussed proposals of PEPP-PT [P20a] and DP3T [TPH"20], and
focus on those that are most similar to our work.

First, let us note that early proposals, such as from the just-mentioned
centralized PEPP-PT [P20a] project required that “No geolocation, no personal
information or other data are logged that would allow the identification of the
user. This anonymous proximity history cannot be viewed by anyone, not even
the user of phone A.” [P20a, Sect. 2]. However, the emerging consensus is that
any app for the purpose of contact tracing should be transparent and open source,
which makes it possible that a curious user can run a slightly modified application
without any restriction on what to log. Hence, we believe that already everything
that a user can observe during the protocol should not leak personal information
about other users. This will exclude all more intransparent approaches from
further consideration.

Canetti, Trachtenberg, and Varia [CTV20] mention an extension of their
protocol using private set intersection protocols in order to protect the health
status of infected individuals. However, it is unclear how feasible such a solution
is with regard to the computational load incurred on both, the smartphone and
the server, cf. [P20e, P3].

Whereas [TPH'20] accepts this issue as inherent by [D20a, IR 1: Identify
infected individuals] and therefore does not further address possible countermea-
sures. Our combined protocol tackles this problem at its root and is augmented
to obtain additional security and privacy guarantees, such as preventing the
contacts of an infected individual to learn this status (assuming the proposed
anti-Sybil protections are effective).

Chan et al. [CGH'20, Sect. 4.1] include a short discussion of protocols that
upload observed identifiers in case of infections (as in our case), and propose a
certain form of rerandomization of identifiers, albeit completely at the side of the

smartphone. Hence, this approach puts a regular heavy computation cost on the
user’s device, and is likely not practical, as it has to query all possible identity
rerandomizations from the server.

Bell et al. [BBH'20] propose two solutions for digital contact tracing, with
the first of them also making use of a splitting of the role of the health care
provider, and separate (non-colluding) government run servers.

There are several approaches that use public keys as identities, e.g. [C1Y20].
However, the maximum message length of BLE broadcasts does not permit
sending entire public keys of asymmetric encryption schemes, cf. [P20e].

Besides BLE-based approaches, there are also proposals that use GPS traces
of infected individuals to discover COVID-19 hot spots as well as colocation
(albeit with a lower resolution), such as [BBV*20; FMP*20]. However, there is a
consensus that GPS-based approaches do not offer a a sufficient spatial resolution
to estimate the distance between two participants with sufficient precision.

1.4 On the Centralized—Decentralized Debate

There is a public debate on whether to prefer “centralized” vs. “decentralized”
solutions for digital contact tracing. First of all, note that the terminology of
this debate is slightly misleading. Schemes utilizing private set intersection (PSI)
can be realized with the help of a central server architecture. Following the
arguments of this debate such schemes would be flagged as insecure, although
they may provide a high level of security and privacy. (However, we agree with
using a simplified terminology in a public debate, to warn against certain types
of inadequate solutions.)

Our contribution to the centralized—decentralized debate is, an approach that
can be described as hybrid, as there are periodic uploads from all users to a
submission server, but the contact history stays local to the phone. Additionally,
we introduce a server architecture which features a strict separation of different
tasks. This combines the privacy advantages of both worlds. More specifically — in
contrast to current centralized solutions — our approach achieves almost the same
privacy guarantees of current decentralized solutions, even in the case that all
servers are compromised and collude with malicious participants, cf. Section 6.1.
If the servers are non-colluding, we achieve a (roughly) stronger security notion
than current solutions. Due to the separation of servers, one could even call our
solution more decentralized than other current decentralized solutions (that also
use a central server, which receives data after an infection of a user).

Hence, the centralized—decentralized categorization does not sufficiently de-
scribe the security and privacy guarantees of a contact tracing scheme. An
important aspect of this debate is, of course, the concrete security and privacy
guarantees offered by the respective protocol, and (in particular) whether mass
surveillance is feasible by a state-level attacker or not.

1.5 Outline

We define our security model for BLE-based contact tracing in Section 2, and
specify a first basic protocol that illustrates our main idea in Section 3. For this
protocol, Section 4 proposes a number of useful extensions, some of which are
applied to obtain our full, combined protocol presented in Section 5. A security
and privacy analysis of the full protocols follows in Section 6. We conclude in
Section 7.

2 Security Model

This section presents our (informal) security model. Giving a formal definition
of security for privacy-preserving contact tracing protocols as well as proofs of
security is out-of-scope for this technical report.

Our main goals are privacy (i.e. limiting disclosure of information about
participating individuals) and security (i.e. limiting malicious users’ abilities to
produce false positives and false negatives). For privacy, we consider the following
types of private information:

— where users have been at which point in time (i.e. their location history),

— whom they have met (and when and where),

— whether a user has been infected with SARS-CoV-2,

— whether a user has received a warning because she was colocated with an
infected user.

We refer the interested reader to [KBS20] for an extensive systematization of
different privacy desiderata.
Participants of our protocol assume one or more of the following roles:

Users, who have installed the contact tracing application on their mobile phone
in order to receive a warning if they have been in close proximity to one or
more infected persons, and who want to warn other users in case they are
infected themselves.

Medical Professionals, who administer tests for the SARS-CoV-2 virus and
medical treatment as appropriate.

(Centralized) Servers, operated by health authorities or other responsible
organizations.

Medical professionals may be users, too.” We assume all communication between
the servers uses secure (i.e. confidential and authenticated) channels. We assume
the attacker cannot permanently prevent communication between other parties.

We assume centralized servers and medical professionals to be trusted with
respect to security (but only partially trusted regarding privacy), i.e. we assume

" Since their job may require them to treat infected persons, and hence stay in proximity
to them, we assume they deactivate the application when wearing personal protective
equipment while on duty, in order not to continuously receive warnings.

they will not engage in actions undermining the availability or correct functioning
of the protocol. This entails they will not deviate from the prescribed protocol in
order to cause fake warnings or suppress due ones. Furthermore, we trust medical
professionals to not disclose data regarding the users who are under their care,
as is their duty under standard medical confidentiality. The centralized servers
are assumed not to cooperate in breaking users’ privacy, cf. Section 6.1. Users
not being medical professionals are not trusted to adhere to the protocol.

When considering the distance of corrupted users to another user A, we use a
slightly relaxed notion of “proximity”: We consider the attacker to be close to
A iff she is able to communicate with A’s mobile phone via the BLE protocol
(potentially using dedicated equipment such as high-gain antennas). This includes
situations where the attacker only communicates with A’s device via relays that
are in “proximity” to A, as considered by [P20d].

Given this model, we strive to attain the following important security and
privacy goals. (See below for a justification of the limitations in our goals.)

1. A coalition of malicious/corrupted users must not learn private information
about uncorrupted users, except for information that can be observed via
other means (e.g. by one malicious user being in close proximity to the
victim).

2. The same holds for medical professionals, except that medical professionals
may be aware of the health conditions of users under their care.

3. Even if all of the central servers are compromised and colluding with malicious
users, the privacy impact for the users must be as low as possible.

4. Users should be able to prove they have been in proximity with an infected
individual and received a warning by the application.

5. A coalition of malicious users (not including medical professionals) must not
be able produce a false negative result, i.e. they must not be able to cause
a situation where an uncorrupted user who has been in colocation with an
uncorrupted infected user (close enough, for long enough) does not receive a
warning (or cannot prove possession of a warning), unless a corrupted user
has been suppressing communication between the victim and the infected
person during the colocation.

6. (Coalitions of) malicious users (not including medical professionals) must
not be able to cause a warning to be delivered to an uncorrupted user, unless
the victim has indeed been colocated with an infected user or the attacker
has been colocated both with an infected person and with the victim (false
positive regarding an uncorrupted user).

7. (Coalitions of) malicious users (again, not including medical professionals)
must not be able to prove possession of a warning, unless one of the malicious
users has in fact been in colocation with an infected user (false positive
regarding a corrupted user).

We do not consider adaptive corruptions, i.e. users are either honest or corrupted,
but this does not change during the protocol execution. Dealing with adaptive
corruptions is out-of-scope for this technical report. We do not distinguish between
“the attacker” and corrupted, malicious, or compromised parties.

We believe the limitations mentioned in the above goals are somewhat funda-
mental for an app that is based on tracking colocation:

— Regarding goals 1 and 2, observe that corrupted users can always learn
information about other users by other means. For example, a corrupted
medical professional who is administering tests or treatment to a potentially
infected user will obviously be aware of the user’s medical situation, and hence
know whether the user is infected. We consider such information leakage
inevitable.

— Medical professionals may always be able to cause suppression of a due
warning or delivery of an undue warning by tampering with the test procedure.
Again, this seems inevitable, so we only consider corrupted users not being
medical professionals for goals 5 to 7.

— If an infected user is colocated with a corrupted user, the corrupted user can
always simply choose to ignore a warning delivered to her (and/or uninstall
the application and delete all associated data). Thus, it is unnecessary to
provide guarantees of delivery of warnings to corrupted users in goal 5.

— If an infected, corrupted user wants to suppress warnings being delivered
to colocated uncorrupted users, she can simply uninstall or deactivate the
application. This limitation is reflected in goal 5.

— If a corrupted user is present during the meeting of two uncorrupted users, one
of whom is infected, the attacker can easily prevent wireless communication
between the uncorrupted users by jamming their signals. Hence, in goal 5, we
only aim to provide protection from false negatives when the attacker does
not prevent the communication between the uncorrupted users.

— We do not fully address the issue of replay/relay attacks as discussed by
Vaudenay [V20] and [P20d]. In such an attack, a corrupted user records
broadcast messages sent at one time and place and replays them at another
time and/or place. This may lead contact tracing applications to register an
encounter between users A, B who have not actually been in contact with
one another, and hence lead to a false positive warning if A is infected. Thus,
we only aim to provide security against false positives when the attacker is
not close to both A and B (see goal 6).8
We believe that any contact tracing protocol which is strictly based on non-
interactive sending and receiving of local broadcasts without considering the
actual time and location will be vulnerable to such an attack. As proposed by
Vaudenay [V20], executing an interactive protocol between two users having
an encounter may provide a way to achieve better security regarding these
attacks. Evaluating the design space for practical interactive protocols is left
for future work.

— If a user (uncorrupted or corrupted) has been colocated with an infected
person, it is legitimate for the user to receive a warning, and to be able
to prove “possession” of this warning. Goal 7 allows corrupted users to
“exchange” / “trade” a received warning among them. Even if there were some

8 Our protocol in Section 5 will require an attacker to stay in proximity to both
A and B for some time as a partial mitigation of this attack.

cryptographic mechanism binding a warning to a device, corrupted users
could still simply exchange their devices in order to “trade” a warning. So,
again, providing cryptographic protection against such an attack would not
yield improved security in a real-world deployment.

3 Basic Protocol

As a starting point for the remainder of this work we propose the following proto-
col. Here, H is a hash function, where H(k||z) is assumed to be a pseudorandom
function (PRF) with key &k € {0,1}" evaluated on input z.

Generation of “Random” Identities. For every time period t, the device
generates a random key k; <—s{0,1}", and computes sid; := H(k;||0) and
pid, == H(k:||1), stores them, and (anonymously) uploads k: to the cen-
tral server, who recomputes sid;, pid, in the same way. Both parties store
(sidy, pid,).

Broadcasting. During each time period t, the device repeatedly broadcasts
pid,. When it receives a broadcast value pid’ from someone else, it stores
(date, pid’), where date is the current date. Every day, the device deletes all
tuples (date, pid’) where date is three weeks ago or older.

Warning co-located users. When a user is positively tested for SARS-CoV-2,
(or the medical personnel believes the user to be most likely infected), the
medical personnel estimates the first day sdate during which the user probably
was infective, taking into consideration the incubation period of SARS-CoV-2
and the time it takes for an infected person to become contagious her-/himself.
Afterwards, one extracts a list of all recorded pid’ from the infected user’s
device, where the associated date is no earlier than sdate. The user hands this
list to the medical personnel, who forward the data to the health authorities,
who finally upload this list to the server. (This chain of course needs to be
authenticated.)

The central server infrastructure maintains a list of all pid’ reported as having
had contact with an infected person. Furthermore, the server has a list of
(sid, pid) tuples uploaded by all users.

For each pid’ reported as potentially infected, the server looks up the respec-
tive sid in his database of (sid, pid) tuples and marks the respective sid as
potentially infected.

Either the server publishes a list of all potentially infected sids in regular
intervals (signed by the server/the health authorities), or the server allows
users to query for a given sids, answering whether the sid has been marked
as potentially infected.

This protocol illustrates our idea of separating the broadcast public identities pid
from the secret identities sid which are published as warnings to their owners.
However, this protocol still falls short of the privacy and security goals (see
Section 2) that we are trying to achieve, since a user can link the sid being
published as a warning to the time and location the corresponding pid was

10

broadcast. Thus, the user knows when and where she met the infected person
and might be able to deduce the infected user’s identity.

We discuss the shortcomings and propose various extensions solving these
issues in Section 4. We present our full “combined protocol”, which encompasses
some of these extensions, in Section 5.

4 Extensions

The simple protocol described above does not meet our requirements regarding
security and privacy. This section introduces several improvements to the basic
protocol.

4.1 Reusing the Secret Identifiers

In the basic protocol described above, users receiving a warning can immediately
observe which of their secret identities sid was published. By correlating this
information with the knowledge on when they used which public identity pid, they
can learn at which time they have met an infected person, which poses a threat
to the infected person’s privacy. Note that the DP3T protocol [TPH'20] and
the scheme by Canetti, Trachtenberg, and Varia [CTV20] succumb to analogous
problems.

To mitigate this risk, we propose to associate the same secret identity sid
with many public identities pid. In order to make sure corrupted users follow
the protocol, we modify the process of deriving sid and pid values. Instead of
choosing sid and pid as in the basic protocol, the user generates a single random
key, now called warning identifier, once for a longer interval, e.g. one day. We
propose the following concrete solution: A user generates a random warning
identifier wid <—s {0, 1}™ per day, and encrypts it with the server’s public key pk
to obtain sid := Encpi(wid). For each shorter time period ¢, the user generates a
rerandomization sid, of sid, where the randomness is derived from a PRG,and
computes pid; := H(sid;). The user uploads sid and the PRG seed to the server,
who performs the same rerandomization, obtaining the same sid; and pid; values.
The user broadcasts the pid; in random order during the day.

Note that there is a fundamental trade-off to be made here: On the one hand,
users should be roughly aware of when they have been in contact with an infected
person, so that they can self-quarantine for an appropriate period. Moreover, if
they start to show symptoms of COVID-19 in the following days, knowing the
time of infection can help medical personnel to estimate when they have been
contagious more precisely, and thus enable them to give more precise warnings to
other users. Additionally, switching sid values with a high frequency restricts the
number of pid values that can be linked in case of a server compromise. On the
other hand, if users can determine the time of contact with an infected person
exactly, they may be able to deduce the identity of the infected user. In our
combined protocol (see Section 5), we compromise by informing users about the
day they have been in contact with an infected user.

11

4.2 Hiding Multiple Exposures

The change introduced in Section 4.1 allows to split the process of warning
co-located users into three tasks for three non-colluding servers, the submission
server, the matching server, and the notification server. This eliminates the single
point of failure a single server would constitute. See Section 6.1 for a privacy
analysis regarding compromised servers.

— The submission server collects the uploaded secret and public identifiers
from different users (more precisely, it receives sid and the seed for the PRG)
and then computes the (sid;, pid;) pairs using the PRG with the given seed.
It rerandomizes the sid; values another time with fresh, non-reproducible
randomness (obtaining sid!), and stores (sid!, pid) for a short period of time.
When the submission server has accumulated submissions by a sufficient
number of clients, it shuffles them and then sends them to the matching
server.

— The matching server collects the (sid!, pid,) pairs and stores them. Upon
receiving the pids recorded by the devices of infected users, the matching
server looks up the respective sid/'s of all potentially infected users and sends
them to the notification server.

— The notification server decrypts sid; to recover wid := Decg(sid;) for all po-
tentially infected users and publishes a deduplicated list of warning identities.

4.3 Hiding Contact Information from the Medical Personnel

In the basic protocol from Section 3, the user unveils all public identities of every
meeting recorded by the application to her medical personnel, who forwards it to
the matching server. This puts the user’s privacy at an unnecessary risk, since
the medical personnel does not need learn about the user’s meetings. To mitigate
this issue, the application can simply encrypt the list of public identities with a
public key of the matching server.”

4.4 Anonymous Communication Channels

When a user uploads her (sid, pid) pairs to the centralized servers, the servers
can easily link these pairs with communication metadata (such as the user’s
IP address), which might be used to ultimately link these pairs to a specific
individual. We therefore propose to use an anonymous communication channel
for the submission of the (sid, pid) pairs. In practice, one might employ the TOR,
onion routing network [TOR] or send the submission via other publicly available
proxies.

9 This still surrenders the approximate length of the list to the medical personnel.

Future work might consider further improvements in order to mitigate this remaining
leakage.

12

4.5 Using Secret Sharing to Enforce a Lower Bound on Contact
Time

The DP3T document [TPH"20] proposes splitting the broadcasted identifiers with
a secret sharing scheme to ensure that malicious users cannot record identifiers
that they observe for less than a specified period of time (e.g. 15 minutes).
However, it does not specify how one would rotate such shared identifiers if one
wishes to switch to the next public identifier. Just stopping with one set of shares
and starting the next set of shares (of a different public identifier) would prevent
recording of contact if the contact happens during such an identity rotation.

To solve this issue, we propose to broadcast multiple public identities in
parallel with overlapping intervals. As an example we could use a 15-out-of-30
secret sharing scheme and always broadcast two identities, in such a way that
the new identity starts to be broadcast when the last identity has already had
15 shares broadcast. That way every contiguous interval of 15 minutes contains
enough shares of one identity to be able to reconstruct the identity.

Additionally, care has to be taken that an observer needs to know which
beacons belong to the same shared identifier, in order to choose the right shares
to combine.

Variant 1 to recombine shares: hardware MAC address. As the BLE-beacons
are sent out with an associated Bluetooth hardware address, this address could
be used to mark shares of the same public identity. For this approach to work,
the application needs to be able to control the Bluetooth MAC address used for
the broadcast. The application chooses a random Bluetooth hardware address
for each identity to be broadcast. When multiple identities are broadcast the
application switches between the hardware addresses back and forth in the time
period they overlap.

Variant 2 to recombine shares: custom identifier. If the hardware address is
not directly controllable by the application, a per-identity marker could be
incorporated into the payload. It needs to be long enough to make local collisions
unlikely. In this situation the Bluetooth hardware address should be rotated once
per beacon to not provide any unnecessary linkability between multiple identities.

4.6 Side Channel Leakage by the Timing of Broadcasts

If the application sends broadcasts in strict, exact intervals, an attacker might
be able to link the two public identities by observing the offset of the broadcast
times to her own clock. For example, if an application sends a broadcast in
exact intervals of one minute and the attacker can observe that one device is
continuously broadcasting whenever the attacker’s clock is 10 seconds into the
current minute, the attacker may be able to link several broadcasts to the same
device even if the public identities being broadcast have changed in between. This
may be used to link public identities both if they are used in direct succession,
and if the attacker did not observe any broadcasts for a longer period of time.

13

This attack applies to both cases: if the public identities are broadcast directly,
and if they are broadcast in shares (as described in Section 4.5).

To mitigate this attack, we propose to add random jitter to the starting
point for broadcasting identities. When applying jitter, care has to be taken to
add a few more shares to each identity to still ensure that the identity can be
reconstructed from any 15 minute interval. When broadcasting the identity as a
single beacon the jitter adds uncertainty to the observed exposure times. In both
cases there are two variants how jitter can be applied:

Jitter Variant 1: absolute. When applying jitter absolute one would start to
send identity pid; at the point in time i -0 + 4;, where 4; is the jitter chosen
at random (e.g. random time between —1 and 1 minute) and 0 is the regular
interval (e.g. 15 minutes).

Jitter Variant 2: relative. When applying relative jitter, one can think of the jitter
as a random pause time between broadcasting identities. Using the notation from
Variant 1, the user would start to send identity pid; at i-d+ Z;:o A;. This way the
jitter accumulates over time, and after a long enough period without observation
the starting point for broadcasting identities will appear to be random.

As an example, consider 15-out-of-45 secret sharing, with every share being
broadcast in 1-minute intervals. When a broadcast is started a random time
between 15 and 30 minutes is chosen uniformly at random and after this delay the
next ID-broadcast is started. Note that with this change two or three identities
are being used simultaneously at every point in time. This ensures that in any
15 minute interval there is at least one public identifier broadcast completely
covering the interval. Additionally this jitter accumulates very quickly to destroy
the linkability of different broadcasted IDs.

4.7 Proving a Warning

In order to enable a user to prove to a third party a warning has been issued for
her, her warning identity wid (or in case the extension in Section 4.1 is not used:
her secret identity sid) could be chosen as the hash of a random value u. In order
to (one-time)-prove that a published wid is used to warn oneself, the user can
present u. This approach has the disadvantage that the receiver of this proof can
now show it to someone else.

In order to reduce the trust in the verifying party, one might choose wid = g
where ¢ is the generator of a group in which the discrete logarithm problem is
hard. Now the presentable proof of warning, would be a non-interactive zero-
knowledge proof of knowledge (NIZK-PoK) of u. This proof should contain the
current time, in order to prevent it from being reused later by the verifying party.
The NIZK-PoK can be obtained quite efficiently using the Fiat-Shamir heuristic
[FS86; S89]. In this case, one could include the time, with appropriate granularity,

14

in the computation of the hash value used as the challenge to prevent reuse at a
later point in time.'9

However the proof can still be transferred by the potentially infected user, by
disclosing all secrets to the party who should receive the proof. To discourage
transferring of such proofs, one could choose wid as g* - A", where rid is a
representation of the user’s real identity (e.g. her name), and & is an independent
generator of the same group such that the discrete logarithm between g and h is
not known. Now the proof can additionally contain the users real identity and
then both, the prover and the verifier can divide wid by 2" and then perform the
same NIZK-PoK as before. The name cannot be changed afterwards as it is hard
to find a o for a different identity rid’ such that g% - k" = g% . prid’ (Binding
property of Pedersen commitments).

4.8 Hiding Multiple Exposures when the Servers can be
Individually Corrupted by Individual Users

In the extension in Section 4.2 the notification server can learn the number of
exposures for an individual user if it is colluding with that user. In order prevent
this, we introduce an additional server to the “pipeline”, the deduplication server.
The pipeline is now: submission server, matching server, deduplication server,
notification server. The deduplication server and the submission server share a
symmetric key. When a submission arrives, the submission server now marks all
individual entries in this submission with a random identifier (the deduplication
identifier) encrypted with the shared symmetric key. The deduplication server
decrypts the deduplication identifier and keeps only a random sid for each
deduplication identifier. Then it discards all deduplication identifiers and hands
all the individual sid to the warning server.

4.9 Protecting from Encounter-wise Warning Identities and Sybil
Attacks

If the extension from Section 4.2 is applied, one might additionally want to
prevent users from switching their warning identity wid too quickly, because of
the following attack:

Ezample Attack. An attacker being able to upload an unlimited number of sid
values to the submission server may be able to perform an attack similar to
the Paparazzi Attack described by [V20], as follows: After each encounter with
another participant, the adversary records the time of the encounter, whom she
has met, and which pids she sent during that time period. Then, the attacker
switches to a pid value representing another warning identity. This way, when one

10 Alternatively, one could choose wid to be the hash of a verification key for a signature
scheme. The proof would then be a signature on the current time (with appropriate
granularity) with the corresponding signing key. This approach may even offer post-
quantum security if the signature scheme is post-quantum secure.

15

of her warning identities wid is published by the notification server, the attacker
can link wid to the encounter, and thus possibly the identity of the infected
person.

Rate Limiting. Preventing this type of attack requires limiting uploads of sids
to one identity per app instance per day. However, an attacker might try to
bypass this restriction by running a Sybil attack, i.e. creating multiple (seemingly)
independent app instances.

A defense strategy is to force the adversary to invest additional resources for
spawning Sybil instances. One possibility is to bind each app instance to a phone
number during a registration process. (Note that this approach does not prevent
an attacker from performing a Sybil attack on lower scale, as the attacker might
own multiple phone numbers.)

Ensuring Anonymity while Binding to Phone Numbers. Binding an app to
an identifiable resource (such as a valid phone number) endangers the user’s
anonymity, since the server might store the data linking resource to the app
instance. In order to achieve rate limiting without disclosing the link between
uploaded sids and an identifiable resource, we propose using the periodic n-times
anonymous authentication scheme from [CHK06] or related schemes offering
this functionality. In our setting, we choose n = 1 and a time period of one day,
i.e. the user can obtain one “e-token” per day to upload a new sid (and PRG
seed) to the submission server. The token dispenser is then issued to the user
during a registration process, which uses, e.g., remotely verifiable electronic ID
cards or phone numbers that are verified via SMS challenges.'!

5 Combined Protocol

We now describe the protocol that results from applying the extensions described
in Sections 4.1 to 4.7 and 4.9 to our basic protocol described in Section 3. This
description does not take into consideration the extension described in Section 4.8.
Let n denote the security parameter, G be a group of prime order ¢ such that
the decisional Diffie-Hellman problem in G is intractable, and let g, h be generators
of G. We assume two secure public key encryption schemes (Gen, Enc, Dec): One
of them having message space M = G and rerandomizable ciphertexts, and one
of them having message space M = {0,1}*. (We propose standard ElGamal and
a standard hybrid encryption scheme for instantiation, respectively.) Let PRG be
a secure pseudorandom generator, and H be a collision-resistant hash function.
Each device continuously and randomly partitions time into overlapping
intervals. Whenever one interval begins (say, at time tg), the application chooses
a random time difference A (between 15 and 30 minutes, with sub-second
precision) and the next interval will begin at to + A. Each interval has a duration
of 45 minutes. Thus, each point in time belongs to either two or three intervals,

11 For a low-tech version (maybe implemented in an early version of the protocol), we
can also just assume a non-colluding dedicated registration server.

16

two successive intervals overlap by at least 15 minutes, and there are at most
24 x % = 96 beginnings of an interval in each day. We note that devices sample
this partitioning independently of each other.

Server Setup. The matching server and the notification server each generate a
key-pair for a public-key encryption scheme: The notification server for the
rerandomizable scheme, the matching server for the other one. The public
keys are published in a way users can retrieve them in an authenticated
fashion.

App Setup. When the proximity tracing software is first installed on a user’s
device, the user enters her real identity rid, such as her name. (This informa-
tion will only be shared with medical professionals treating her.) To avoid
fears, the application should present an understandable explanation of why
this is necessary (cf. Section 4.7). Additionally, for anti-Sybil measures as
described in Section 4.9, the application proves possession of a phone number
(e.g. via an SMS challenge) and obtains a e-token dispenser.

Creating Secret Warning Identifiers. For each day, the application gener-
ates a warning identifier wid as a Pedersen commitment [P91] to the user’s
real identity. (That is, wid is computed as wid := g“h"?, where u s Zq. We
assume rid is implicitly mapped to Z, in a collision resistant manner.) The
application stores the unveiling information u for later use, deleting it after
four weeks.'?

Deriving Public Identities. For each warning identifier wid, the application
computes sid := Enc(pk,wid), where Enc is the encryption algorithm of a
rerandomizable, IND-CPA-secure public-key encryption scheme, and pk is
the notification server’s public key. Additionally, the application chooses a
random seed s {0, 1}" (rerandomization seed) per warning identity.

The application (interactively) presents an e-token 7 to the submission
server via an anonymous channel (e.g. via the TOR network), and uploads
(sid, seed) to the submission server via the same channel. Both the submission
server and the application compute 24 x 4 = 96 rerandomization values
r1,...,r96 = PRG(seed), and rerandomize sid using these values, obtaining
sid; := ReRand(sid; 7;) for i € {1,...,96}. The ephemeral public identities of
the user are defined as pid, := H(sid’) for all .

The application saves the public identities for broadcasting during the day of
validity of wid.

The submission server rerandomizes all the sid; values another time (using
non-reproducable randomness), obtaining sid; := ReRand(sid’), and saves a
list of the (sid], pid;) tuples. When the submission server has accumulated
a sufficiently large list of such tuples, originating from sufficiently many

12 Tf some user A has been in contact with an infected user B during the day of validity
of the respective warning identity, and even if B takes three weeks to show symptoms
and have a positive test result, then A will be able to prove “ownership” of the
respective warning for another week, which is sufficient time for her to get tested
herself.

17

submissions, it shuffles the list and forwards all tuples to the matching server
and clears the list afterwards.

The matching server maintains a list of all tuples it has received from the
submission server, deleting each tuple after three weeks.'?

Broadcasting Public Identities. For each time interval 7, the application
randomly chooses one of the public identities pid precomputed for the current
day (but not used so far), computes a 15-out-of-45 secret sharing s1, ..., s45 =
Share(pid;), and selects a random identifier m. (m may be used as the
Bluetooth MAC address if possible.)

During the respective interval, the application broadcasts the shares s; (one
at a time, with one minute between the broadcasts) together with the random
identifier m.4

Receiving Broadcasts by other Users. The application continuously listens

for broadcast messages by other users and maintains a database of these. When
it receives a new broadcast (m’,s’), the application checks if the database
contains another broadcast value with the same random identifier m/. If it
does, and the previous broadcast is less than (approximately) 60 seconds
ago, the newly received message is discarded. Otherwise, the application
temporarily saves the received broadcast tuple in its database. All database
entries in this database are deleted after at most 45 minutes.
When the application has accumulated 15 broadcasts (m/, s;) with the same
random identifier m’, it recombines the shares s; to recover the public identity
pid’ that was shared by the remote application, and records the occurrence
of a meeting of its user with the user having the public identifier pid’ at the
current time. The information about this meeting is stored for the retention
period, i.e. 21 days, and deleted afterwards.

Sending a Warning. When a user is tested positively for SARS-CoV-2 by
medical personnel or the medical personnel considers an infection sufficiently
likely, the medical personnel estimates the first day sdate during which the
user was probably contagious. The user instructs the application to collect a
list of all meetings she has had from sdate until the present, and the respective
list of public identities pid’. She encrypts the list of public identities using the
public key of the matching server to obtain a ciphertext c¢. The user sends ¢
to the medical personnel (via an authenticated channel), who (directly or
indirectly) forwards it to the matching server (again, via an authenticated
channel, such that the matching server can verify ¢ was sent from some
authorized medical professional).

Centralized Processing of Warnings. When medical personnel submits a
ciphertext ¢, the matching server decrypts the ciphertext to recover the list
of public identities the application has recorded a meeting with.

13 If some user A has been in contact with an infected user B who observes the
respective pid, and even if B takes up to three weeks to show symptoms and have a
positive test result, the data retention on the matching server is sufficient to deliver
a warning to A.

14 Since intervals are overlapping such that any point in time belongs to two or three
intervals, the user will be sending a broadcast every 20 to 30 seconds on average.

18

The server looks up the corresponding secret identifiers sid in its database
and sends the secret identifiers to the notification server.

The notification server decrypts the secret identifiers to recover the warning
identifier wid contained in them, and regularly publishes a deduplicated list
of all warning identifiers it has received during the last two weeks.

Retrieving Warnings. The application regularly fetches the list of published
warning identifiers from the warning server (via an authenticated channel)
and compares it with the list of warning identifiers it has used during the
last 28 days itself.

If there is an overlap, it informs the user she has been in contact with an
infected person on the day the warning identifier was used.

Proving Possession of a Warning. If the user reports to a hospital, asking

to be tested for SARS-CoV-2, she surrenders her real identity rid and her
warning identity wid to the medical personnel. Using a zero-knowledge proof
(e.g., using the Fiat-Shamir heuristic), she shows her wid is a valid Pederson
commitment to rid.
The medical personnel verifies the proof and verifies that wid has indeed been
published by the warning server. (The medical personnel uses an authenticated
channel for retrieving the list of warning identities from the notification
server.)

This concludes the description of our “combined protocol”.

6 Security and Privacy Analysis

We now present a preliminary, informal analysis of the combined protocol de-
scribed above regarding its security and privacy. As mentioned in Section 4.9 we
leave the specific choice of countermeasures against Sybil attacks for future work.
We discussed naive but efficient solutions that thwart such attacks up to a certain
degree, and suggested to use the anonymous e-token system by [CHK106] for a
sophisticated but more resource-consuming solution to this problem. With these
solutions an attacker can only create a limited amount of Sibyls. From a security
point of view, this situation is not different from the case where the attacker is
a small group of malicious users. Therefore, we exclude excessive Sybil attacks
from the security analysis.

6.1 Privacy

Note that, due to the security of the secret sharing scheme, observing a public
identity requires being in proximity to the user’s device for approximately 15
minutes. This restrains the attacker’s ability to observe public identities at
specific times and places in the first place. For our privacy analysis, we assume
corrupted users can link some public identities they directly observe to the
real identities of the corresponding user, i.e. by accidentally meeting someone
they know. This pessimistic approach yields a worst-case analysis regarding the
information available to corrupted users.

19

A corrupted user may be able to modify the application (or use a completely
different one) in order to collect additional data not typically collected. Cor-
rupted users might also deviate from the protocol in order to obtain additional
information. For our preliminary analysis, we consider the following information
to be available to a corrupted user:

— her real identity as well as her own location history,

— all of her own secrets, i.e. her warning identities, the corresponding unveiling
information, all encryptions of her warning identities along with the dates
and times of validity, and (as stated above) her whereabouts during the
time of the validity, and the rerandomization seeds used to derive the public
identities,

— all of her own public identities, all secret sharings of her own identities and
the corresponding random identifiers m, along with the information when
and where they were used /broadcast,

— for all broadcasts she has received: the random identifier m, the corresponding
share of the sender’s public identity at that point in time, and when and
where she has received the broadcast,

— the list of warning identities published by the warning server.

Privacy in Case of Corrupted Participants. Multiple corrupted users may
work together, combining their information. Thus, we end up with an adversary
in possession of a large amount of recorded broadcasts with meta data on time
and location. We conservatively assume an adversary can receive BLE traffic
within the entire area where a targeted person may have moved and can link
some of the broadcasts to the targeted person, by e.g., meeting her in person or
utilizing video surveillance.

Hiding Multiple FExposures. The frequency of exposures, i.e., warnings, may
allow the warned participant to re-identify the positively tested participant, who
has uploaded the received public identities pids. In Section 4.2 we describe our
approach of deduplication of warning wids before publishing. The deduplication
prevents a user from learning how many of her public identities have been
recorded by infected users, thus hiding the frequency of exposures from the
warned participant.

Location Privacy. We analyze how a coalition of malicious users might track a
user’s location history. For this, we assume that the attacker is in possession
of one current pid of the victim individual A, e.g. because the attacker is in
proximity to A, therefore also knowing her current (starting) location. In order to
learn the subsequent location, the adversary is required to link two consecutive
public identities. Without any side-channel information the adversary faces
the problem of computing the pre-images of pid; := H(sid}) and breaking the
rerandomized encryption of sid. This problem is intractable if the encryption
scheme is secure. Utilizing the timing of fixed-spaced intervals when broadcasts
are sent as side-channel information, the adversary may be able to narrow down

20

the set of possible subsequent public identifiers/locations. Informally, this is
currently thwarted by the application of random jitter, see Section 4.6, thus
reducing the adversary’s ability to track users. The adversary may however, even
in presence of random jitter, discard some of public identifiers that are guaranteed
not to be the subsequent public identifier.

If A started broadcasting her current pid value at time ¢, (in minutes), she
will start broadcasting her next pid in the time interval Ty = [t, + 15, ¢, + 30].
Likewise, if another user B started broadcasting his current pid at time %, the
first share of B’s next public identity will be sent in Ts = [t, + 15,t, + 30]. If A
is close enough to B (so that the attacker cannot distinguish their BLE signal
characteristics) for at least 15 + ¢ minutes (¢ > 0), there is a positive probability
that both A and B start broadcasting their next pids in the overlap T4 N T.
If this happens, then the adversary has no advantage over random guessing in
linking one of the pids to A (provided the above complexity assumptions hold).

We argue that our jitter extension provides enough “fuzziness” within a
recording of multiple people broadcasting within the same location to hide the
subsequent public identifier of the target “in the crowd”. (Note that in case the
target person is alone for a period of time, the adversary is trivially able to link
consecutive public identities of this user.) We leave a rigorous discussion to future
work, and only present an informal one:

In order to track a user, the adversary must monitor a large area for Bluetooth
signals. Once the victim leaves this area for long enough, the attacker will not
be able to link the location tracks of the user. If the attacker has background
knowledge, the area can be chosen smaller to be targeted on a specific user. We
discuss the two extremes of background knowledge available to the attacker:

— If the adversary has no background knowledge about the possible movement
pattern of the target, the adversary needs to cover a radial area with receivers,
growing in size with the victim’s movement distance. Thus, the area to be
covered with receivers grows quadratically in the victim’s movement distance,
and we expect tracking a user for a prolonged period of time to exceed the
adversary’s resources.

— If the adversary has complete background knowledge and only wishes to
confirm the victim’s movements, the number of receivers is linear in the
victim’s movement distance.

For a proper analysis, it would be advisable to choose a compromise between
these two extremes, and to limit the amount of available background information
the adversary may have about the movement pattern. (For example, using a
priori information on typical movement patterns of people in public spaces is
expected to significantly reduce the necessary number of receivers.) Furthermore,
it is necessary to estimate the cost of resources, e.g., Bluetooth receivers, needed
to cover the assumed movement area. The detection probability of a broad scale
setup of Bluetooth receivers may be also taken into the account.

Privacy of Positively Tested Participants. To capture the privacy risk of positively
tested participants, note that the only difference in their protocol behavior is that

21

they hand over an encrypted list of recorded pids of their contacts to the medical
professional for an upload to the matching server. We assume that the hand over
is done via a confidential channel and that the uploading happens without any
reference to the users identity. Assuming the servers are uncorrupted, the only
change in the attacker’s view is the additional warning identities published on
the warning server. Hence, this section only concerned about the privacy risk
incurred by this extra information. However, the following discussion will argue
that these warning identities are not linkable to any public identities broadcast
by uncorrupted users (except under trivial conditions, e.g. that the user was in
contact with only one other user during a wid’s one-day lifetime), and hence do
not pose an additional privacy risk. (In particular, this ensures confidentiality
w.r.t. the user’s infection status.)

As discussed above, we can assume the adversary is at most a small group
of n colluding users (without additional Sybils). The one-day lifetime of these
corrupted users’ warning identities guarantees that no single user can (on their
own) distinguish which of her encounters during the day caused her to receive a
warning. (Note, by working together and making use of group testing mechanisms,
the malicious users’ might be able to single out the infected person from a larger
group of 2" users. This attack is inherent in the desired functionality.) Thus, our
protocol is only susceptible to inherent attacks.

Privacy of Warned Participants. Our protocol naturally protects the privacy of
warned participants and their social graph as the published warning identity is
computationally unlinkable to any information that can be recorded locally, thus
it is only of use to the warned application. Specifically, each honestly generated
warning identifier wid is a Pedersen commitment to the user’s real identity. Since
Pedersen commitments are perfectly hiding, the attacker cannot infer the user’s
real identity rid from wid, and also deciding whether some identities belong to
the same user, is impossible. Thus, the warning identity wid does not help the
attacker in breaking the users’ privacy.

Privacy in the Case of Compromised Servers. This section presents a
preliminary analysis of the privacy guarantees offered by our protocol if servers
are compromised.

Linking Public Identities used on the Same Day. If the submission server is
compromised, the attacker will be able to link different public identities pid to the
same secret sid, and hence can link the public identities the user is using on the
same day. This situation only poses a privacy threat, if the attacker additionally
has observed some of the targeted public identities pid, which requires colluding
users. See Section 4.1 for a detailed discussion about this trade-off.

Similarly, if both the matching server and the notification server are corrupted,
the attacker can decrypt the sid values stored by the matching server to recover
the wid value, and hence again link public identities to the secret identities sid
and the respective warning identity wid. We analyze how the additional capability

22

of linking public identities capability may help an attacker in breaking user’s
privacy.

An attacker (including users cooperating to break others’ privacy) may be
able to link public identities to times and places where these identities have
been broadcast. An attacker additionally having compromised the servers may
therefore be able to re-identify a user at different times and places during the
same day. Thus, an attacker may be able to observe parts of the user’s location
history and track a user for up to one day.

We stress that even if all servers are compromised, an attacker will not be able
to link public identities used on different days (assuming the use of anonymous
communication and no other leakage).

Contact Information of Infected Users. Information about encounters between
users is stored strictly on the user’s devices. Only the meeting history (more
precisely: the list of encountered public identities, without times and places of
meetings) of infected users is transmitted to the central servers.

If the attacker has compromised the matching server and is able to link public
identities used on the same day (as in the previous scenario), the attacker might
be able to infer repeated meetings of the infected user, i.e. she can learn how
many encounters with the same persons the infected user’s device has registered
within each day. If the attacker has additionally observed some of the warned
public identities at specific times and places, the attacker will also learn where
and when (approximately) the encounter took place, and hence learn parts of
the location history of the infected user as well as the warned users.

Warnings Issued. If the attacker has compromised the matching server, she can
immediately observe the public identities of all users who have been colocated
with infected users. If the attacker can additionally link a public identity to a
specific individual, the attacker can conclude this person has received a warning.
(Note that a similar attack is possible in the DP3T protocol [TPHT20], but even
without compromising a server.) Linking a public identity to a specific individual
will require learning the public identity in the first place, which (again) requires
staying in proximity to the user for approximately 15 minutes.

6.2 Security

We now analyze an attacker’s ability to cause false negatives or false positives.
As stated above, we consider a coalition of malicious users, who may be deviating
from the prescribed protocol. However, we assume medical personnel as well as
the central servers do not participate in such attacks, i.e. they follow the protocol.

Creating False Negatives. A false negative occurs when an uncorrupted user A
has been in colocation with an uncorrupted infected user B and no corrupted
user was present during the colocation, but either A does not receive a warning,
or she cannot prove the possession of the warning to the medical personnel.

23

A warning is issued by the warning server publishing the respective warning
identity, which is a Pedersen commitment to A’s real identity.

Observe that once B’s device has recorded an encounter with A’s public
identity pid, corrupted users can no longer interfere with the delivery of the
warning: Once B is tested positively for the SARS-CoV-2 virus he sends a list
containing A’s public id pid to the medical personnel, who forwards it to the
matching server, which again forwards the respective sid to the warning server,
who will decrypt sid to recover the warning identity wid. Then wid is published
for everyone to see.

Thus, if the warning identity is published by the warning server, the medical
personnel can verify A’s warning identifier has in fact been published there,
and A will be able to give a zero-knowledge proof about knowing the unveiling
information, while the unveiling information has not been deleted.

Thus, an attacker wanting to produce a false negative must prevent B’s
device from registering the encounter with A’s public identity pid. This, however,
requires the attacker being able to interfere with the local BLE communication
between them, and thus to be in proximity to them while the encounter is taking
place.

This shows our protocol achieves the required security guarantees regarding
false negatives.

Creating False Positives Regarding Honest Users. An honest user A is
subject of a false positive if she has not been colocated with an infected user, but
she nonetheless receives a warning. Our security goal is to prevent false positives,
unless the attacker has been in proximity to both an infected user and A.

In order to cause a warning for A, an attacker must have the warning server
publish one of her warning identifiers, i.e. one of A’s public identifiers pid must be
uploaded to the matching server by a medical professional, and hence an infected
user B must present a list including A’s pid.'®

If B is uncorrupted, the attacker must trick B’s device into registering an
encounter with A’s pid. B’s device will register the encounter when having received
sufficiently many shares of A’s pid. Since the application discards shares with
the same random identifier m if they are sent too quickly, the attacker needs to
be in proximity with B for approximately 15 minutes. (If B is corrupted, this
part of the attack can be skipped.)

In any case, the attacker needs to learn one of A’s public identities. As argued
in Section 6.1, this requires the attacker to be close to A for approximately 15
minutes, due to the secret sharing scheme employed.

This concludes our argument that producing a false positive for an honest
user requires proximity both to the honest user and to an infected user.

!5 Since the public identities stored on the matching server are created as hash values
of (rerandomizations of) A’s sid, collisions between differing public identities are very
unlikely.

24

Creating False Positives Regarding Corrupted Users. We now analyze
corrupted users’ ability to prove possession of warnings. Since the medical per-
sonnel retrieves the list of warning identities from the notification server via
an authenticated channel, the attacker can only prove possession of warnings
regarding warning identities published by the notification server. Let wid be the
warning identity the attacker wants to prove ownership of.

If wid was generated by an honest user, it is a Pedersen commitment to
the real identity rid of the honest user created with a decommitment value u.
Since honest users never share the unveiling information (not even with medical
personnel), we consider it unlikely an attacker learns the value w.

Thus, proving the ownership of wid would require the attacker to present her
real identity rid’ and a zero-knowledge proof showing she knows a corresponding
unveiling information u’. However, since the Pedersen commitment scheme is
computationally binding (under the discrete logarithm assumption in G), and if
the zero-knowledge proof system is sound, the attacker will not be able to forge
a proof.

If wid was generated by a corrupted user, the attacker may be able to prove
ownership of the respective warning identity wid. In this case, however, the
attacker will have to make sure one of the public identities pid derived from wid
is reported to the matching server by medical personnel, and hence an infected
user must hand out a list containing pid to the medical personnel.

If the infected user is corrupted herself, this is trivial. if the infected user is
honest, causing her to output pid requires her device registering an encounter.
Since the application is rate-limiting the reception of shares of public identi-
ties, this requires the attacker to stay in proximity with the infected user for
approximately 15 minutes.

This concludes our discussion of the combined protocol’s security properties.

7 Summary

We showed a modular approach with several alternatives and trade-offs to achieve
contact tracing in a privacy preserving manner. Leakage of private information
that was previously thought as inevitable has been shown to be unnecessary
after all, by decoupling the identities used for warning at-risk users from the
information that is broadcast locally and can be observed by other users. However,
our improvements introduce new challenges (e.g. our improvements reinforce
the need for protection against Sybil attacks). To address these challenges, our
approach requires some additional protective measures, and we highlighted how
these can be implemented using existing techniques.

Moreover, we introduce protection against a side-channel assisted linking
of different broadcasts by randomizing the starting points of broadcast blocks
of secret shares. In order to reduce the required trust into the central server
components, we described how the server’s functions may be separated by dis-
tributing core functions to different organizations, which removes the single point
of failure regarding privacy of a purely centralized contact tracing application.

25

We argued that, even if all servers are compromised and colluding with malicious
participants, our protocol still achieves almost the same privacy guarantees as
previous works, such as [TPH"20]. Thus, in conclusion we argue that our protocol
represents an overall improvement regarding security and privacy, while still
being relatively practical.

However, many questions remain open. Finding an “optimal” trade-off between
utility, privacy, robustness and performance for contact tracing applications is a
delicate question which requires a careful consideration, not just by scientists,
but by society as a whole.

Acknowledgements

We would like to express our gratitude to Michael Kloof for helpful comments.
The authors were supported by the Competence Center for Applied Security
Technology (KASTEL).

References

[AG20] Apple and Google. Privacy-Preserving Contact Tracing. 2020. URL:
https://www.apple.com /covid19/contacttracing/ (visited on 04/17/2020).

[AHL18] T. Altuwaiyan, M. Hadian, and X. Liang. “EPIC: Efficient Privacy-
Preserving Contact Tracing for Infection Detection”. In: 2018 IEEE
International Conference on Communications, ICC 2018. IEEE, 2018,
pp. 1-6. DOL: 10.1109/ICC.2018.8422886.

[BBH"20] J. Bell, D. Butler, C. Hicks, and J. Crowcroft. “TraceSecure: Towards
Privacy Preserving Contact Tracing”. In: ArXiv e-prints (Apr. 8,
2020). 1D: 2004.04059 [cs.CR].

[BBV*t20] A. Berke, M. Bakker, P. Vepakomma, R. Raskar, K. Larson, and
A.’. Pentland. “Assessing Disease Exposure Risk with Location Data:
A Proposal for Cryptographic Preservation of Privacy”. In: ArXiv
e-prints (Mar. 31, 2020). 1D: 2003.14412 [cs.CR].

[BRS20] S. Brack, L. Reichert, and B. Scheuermann. Decentralized Contact
Tracing Using a DHT and Blind Signatures. Apr. 8, 2020. Cryptology
ePrint Archive, Report 2020/398.

[C20] Chaos Computer Club e.V. 10 requirements for the evaluation of
“Contact Tracing” apps. Apr. 6, 2020. URL: https://www.ccc.de/en/
updates/2020/contact-tracing-requirements (visited on 04/06/2020).

[CGH'20] J. Chan, S. Gollakota, E. Horvitz, J. Jaeger, S. Kakade, T. Kohno,
J. Langford, J. Larson, S. Singanamalla, J. Sunshine, and S. Tessaro.
“PACT: Privacy Sensitive Protocols and Mechanisms for Mobile
Contact Tracing”. In: ArXiv e-prints (Apr. 7, 2020). 1D: 2004.03544
[cs.CR].

26

https://www.apple.com/covid19/contacttracing/
https://doi.org/10.1109/ICC.2018.8422886
https://arxiv.org/abs/2004.04059
https://arxiv.org/abs/2003.14412
https://eprint.iacr.org/2020/398
https://www.ccc.de/en/updates/2020/contact-tracing-requirements
https://www.ccc.de/en/updates/2020/contact-tracing-requirements
https://arxiv.org/abs/2004.03544
https://arxiv.org/abs/2004.03544

[CHK*06] J. Camenisch, S. Hohenberger, M. Kohlweiss, A. Lysyanskaya, and
M. Meyerovich. “How to win the clonewars: efficient periodic n-
times anonymous authentication”. In: Proceedings of the 13th ACM
Conference on Computer and Communications Security, CCS 2006.
Ed. by A. Juels, R. N. Wright, and S. D. C. di Vimercati. ACM,
2006, pp. 201-210. por: 10.1145,/1180405.1180431.

[CIY20] H. Cho, D. Ippolito, and Y. W. Yu. “Contact Tracing Mobile Apps
for COVID-19: Privacy Considerations and Related Trade-offs”. In:
ArXiv e-prints (Mar. 25, 2020). 1D: 2003.11511 [cs.CR].

[CTV20] R. Canetti, A. Trachtenberg, and M. Varia. “Anonymous Collocation
Discovery: Harnessing Privacy to Tame the Coronavirus”. In: ArXiv
e-prints (Mar. 30, 2020). 1D: 2003.13670 [cs.CY].

[D20a] DP-3T Project. Privacy and Security Risk Evaluation of Digital Proz-
imity Tracing Systems. Apr. 21, 2020. URL: https://github.com /DP-
3T /documents/blob /master /Security % 20analysis/Privacy % 20and %
20Security %20Attacks%20on %20Digital %20Proximity %20 Tracing %
20Systems.pdf (visited on 04/21/2020).

[D20b] DP-3T Project. Security and privacy analysis of the document ‘PEP P-
PT: Data Protection and Information Security Architecture’. Apr. 19,
2020. URL: https://github.com /DP-3T /documents/blob /master /Security%
20analysis/PEPP-PT_%20Data%20Protection%20Architechture%20-
%20Security%20and%20privacy%?20analysis.pdf (visited on 04/21/2020).

[D20c¢] DP-3T Project. Security and privacy analysis of the document ‘ROBERT:
ROBust and privacy-presERving proximity Tracing’. Apr. 22, 2020.
URL: https://github.com/DP-3T /documents/blob/master/Security %
20analysis/ROBERT %20-%20Security%20and%20privacy%?20analysis.
pdf (visited on 04/25/2020).

[F20] Fraunhofer AISEC. Pandemic Contact Tracing Apps: DP-3T, PEPP-
PT NTK, and ROBERT from a Privacy Perspective. Apr. 27, 2020.
Cryptology ePrint Archive, Report 2020 /489.

[FMP*20] J. K. Fitzsimons, A. Mantri, R. Pisarczyk, T. Rainforth, and Z.
Zhao. “A note on blind contact tracing at scale with applications to
the COVID-19 pandemic”. In: ArXiv e-prints (Apr. 10, 2020). 1D:
2004.05116 [cs.CR].

[FS86] A. Fiat and A. Shamir. “How to Prove Yourself: Practical Solutions
to Identification and Signature Problems”. In: CRYPTO 1986, Pro-
ceedings. Ed. by A. M. Odlyzko. Vol. 263. LNCS. Springer, 1986,
pp. 186-194. DOL: 10.1007/3-540-47721-7_12.

[K*20] D. Kaafar et al. Joint Statement on Contact Tracing. Apr. 19, 2020.
URL: https://drive.google.com /file /d /10Qg2dxPu-x-RZzETIpV3IFa259Nrpk1J/
view (visited on 04/25/2020).

[KBS20] C. Kuhn, M. Beck, and T. Strufe. “Covid Notions: Towards Formal
Definitions — and Documented Understanding — of Privacy Goals
and Claimed Protection in Proximity-Tracing Services”. In: ArXiv
e-prints (Apr. 16, 2020). 1D: 2004.07723 [cs.CR].

27

https://doi.org/10.1145/1180405.1180431
https://arxiv.org/abs/2003.11511
https://arxiv.org/abs/2003.13670
https://github.com/DP-3T/documents/blob/master/Security%20analysis/Privacy%20and%20Security%20Attacks%20on%20Digital%20Proximity%20Tracing%20Systems.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/Privacy%20and%20Security%20Attacks%20on%20Digital%20Proximity%20Tracing%20Systems.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/Privacy%20and%20Security%20Attacks%20on%20Digital%20Proximity%20Tracing%20Systems.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/Privacy%20and%20Security%20Attacks%20on%20Digital%20Proximity%20Tracing%20Systems.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/PEPP-PT_%20Data%20Protection%20Architechture%20-%20Security%20and%20privacy%20analysis.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/PEPP-PT_%20Data%20Protection%20Architechture%20-%20Security%20and%20privacy%20analysis.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/PEPP-PT_%20Data%20Protection%20Architechture%20-%20Security%20and%20privacy%20analysis.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/ROBERT%20-%20Security%20and%20privacy%20analysis.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/ROBERT%20-%20Security%20and%20privacy%20analysis.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/ROBERT%20-%20Security%20and%20privacy%20analysis.pdf
https://eprint.iacr.org/2020/489
https://arxiv.org/abs/2004.05116
https://doi.org/10.1007/3-540-47721-7_12
https://drive.google.com/file/d/1OQg2dxPu-x-RZzETlpV3lFa259Nrpk1J/view
https://drive.google.com/file/d/1OQg2dxPu-x-RZzETlpV3lFa259Nrpk1J/view
https://arxiv.org/abs/2004.07723

[P20a)]

[P20b]

[P20c]

[P20d]

[P20€]

[P91]

[RCCT20]

[S89]

[scAt20]

[T20]

[TOR]

[TPH'20]

PePP-PT e.V. i.Gr. Pan-Furopean Privacy-Preserving Proximity
Tracing. 2020. URL: https://www.pepp- pt.org/content (visited on
04/17/2020).

PePP-PT e.V. i.Gr. PEPP-PT NTK High-Level Overview. 2020. URL:
https: //github.com /pepp- pt/pepp- pt- documentation /blob/master/
PEPP-PT-high-level-overview.pdf (visited on 04/25/2020).

PePP-PT e.V. i.Gr. ROBust and privacy-presERving proximity Trac-
ing protocol. 2020. URL: https://github.com /ROBERT-proximity-tracing/
documents (visited on 04/25/2020).

K. Pietrzak. Delayed Authentication: Replay and Relay Attacks on
DP-3T. Apr. 3, 2020. Cryptology ePrint Archive, Report 2020/418.
D. Project. FAQ: Decentralized Prozimity Tracing. 2020. URL: https:
//github.com /DP - 3T /documents/blob/master /FAQ.md (visited on
04/28/2020).

T. P. Pedersen. “Non-Interactive and Information-Theoretic Secure
Verifiable Secret Sharing”. In: CRYPTO 1991, Proceedings. Ed. by
J. Feigenbaum. Vol. 576. LNCS. Springer, 1991, pp. 129-140. DOI:
10.1007/3-540-46766-1_9.

R. L. Rivest, J. Callas, R. Canetti, K. Esvelt, D. K. Gillmor, Y. T.
Kalai, A. Lysyanskaya, A. Norige, R. Raskar, A. Shamir, E. Shen,
I. Soibelman, M. Specter, V. Teague, A. Trachtenberg, M. Varia, M.
Viera, D. Weitzner, J. Wilkinson, and M. Zissman. The PACT protocol
specification. Apr. 8, 2020. URL: https://pact.mit.edu/wp-content/
uploads/2020/04 /The-PACT-protocol-specification-ver-0.1.pdf (visited
on 04/25/2020).

C. Schnorr. “Efficient Identification and Signatures for Smart Cards”.
In: CRYPTO 1989, Proceedings. Ed. by G. Brassard. Vol. 435. LNCS.
Springer, 1989, pp. 239-252. por: 10.1007 /0-387-34805-0_22.
stop-covid.tech, covid-watch.org, M. Ardron, et al. Unified research
on privacy-preserving contact tracing and exposure notification for
COVID-19. 2020. URL: https://bit.ly /virustrackertracker.

TCN Coalition. A Global Coalition for Privacy-First Digital Contact
Tracing Protocols to Fight COVID-19. URL: https://tcn-coalition.org/.
Q. Tang. Privacy-Preserving Contact Tracing: current solutions and
open questions. Apr. 14, 2020. Cryptology ePrint Archive, Report
2020/426.

The Tor Project, Inc. TOR Project. URL: https://www.torproject.org/
(visited on 04/22/2020).

C. Troncoso, M. Payer, J.-P. Hubaux, M. Salathé, J. Larus, E.
Bugnion, W. Lueks, T. Stadler, A. Pyrgelis, D. Antonioli, L. Barman,
S. Chatel, K. Paterson, S. Capkun, D. Basin, J. Beutel, D. Jackson,
B. Preneel, N. Smart, D. Singelee, A. Abidin, S. Giirses, M. Veale, C.
Cremers, R. Binns, and C. Cattuto. Decentralized Privacy-Preserving
Proximity Tracing. Apr. 12, 2020. URL: https://github.com /DP-3T/
documents/raw/master/DP3T%20White%20Paper.pdf.

28

https://www.pepp-pt.org/content
https://github.com/pepp-pt/pepp-pt-documentation/blob/master/PEPP-PT-high-level-overview.pdf
https://github.com/pepp-pt/pepp-pt-documentation/blob/master/PEPP-PT-high-level-overview.pdf
https://github.com/ROBERT-proximity-tracing/documents
https://github.com/ROBERT-proximity-tracing/documents
https://eprint.iacr.org/2020/418
https://github.com/DP-3T/documents/blob/master/FAQ.md
https://github.com/DP-3T/documents/blob/master/FAQ.md
https://doi.org/10.1007/3-540-46766-1_9
https://pact.mit.edu/wp-content/uploads/2020/04/The-PACT-protocol-specification-ver-0.1.pdf
https://pact.mit.edu/wp-content/uploads/2020/04/The-PACT-protocol-specification-ver-0.1.pdf
https://doi.org/10.1007/0-387-34805-0_22
https://bit.ly/virustrackertracker
https://tcn-coalition.org/
https://eprint.iacr.org/2020/426
https://www.torproject.org/
https://github.com/DP-3T/documents/raw/master/DP3T%20White%20Paper.pdf
https://github.com/DP-3T/documents/raw/master/DP3T%20White%20Paper.pdf

[V20] S. Vaudenay. Analysis of DP3T. Apr. 8, 2020. Cryptology ePrint
Archive, Report 2020/399.

29

https://eprint.iacr.org/2020/399

	ConTra Corona: Contact Tracing against the Coronavirus by Bridging the Centralized–Decentralized Divide for Stronger Privacy

