
E-cclesia: Universally Composable Self-Tallying
Elections

Myrto Arapinis1, Nikolaos Labrou1, Lenka Mareková2, and Thomas Zacharias1

1 The University of Edinburgh, UK
2 Royal Holloway, University of London, UK

Abstract. The concept of a self-tallying election (STE) scheme was first
introduced by Kiayias and Yung in [22] and captures electronic voting
schemes in which the tallying authorities are the voters of the election
themselves. This type of electronic voting is particularly compatible with
and suitable for (but not only) Blockchain governance, where governance
is expected to be maintained in a fully distributed manner.
In this work, we formalize the requirements for secure STE schemes in
the Universal Composability (UC) framework. Our model captures the
standard voting properties of eligibility, fairness, vote-privacy, and one
voter-one vote. We present E-cclesia, a new family of STE schemes,
and prove that it securely UC-realizes the STE functionality. We propose
a first concrete instantiation of E-cclesia using RSA accumulators in
combination with the time-lock puzzles by Rivest et al. [30]. To this end,
we provide en passant the first UC treatment of dynamic accumulators
in the public setting as well as time-lock encryption (TLE) schemes, and
prove the equivalence of our UC definitions to the standard property-
based accumulator definitions.

Keywords: e-voting, accumulators, time-lock encryption

1 Introduction

Voting has been a fundamental component of democratic societies for more than
2500 years. Electronic voting, or e-voting, refers to any voting procedure that
involves computer systems to support one (or more) stages, e.g. casting and/or
tallying. The aspiration being that electronic voting systems could offer elec-
tions with higher voter participation and better accuracy, while also providing
enhanced security guarantees such as privacy and verifiability, even in the face
of dishonest election authorities. With this drive, electronic voting has been of
interest to the research community and governments all over the globe for the
last three decades. Several cryptographic protocols have been proposed, imple-
mented, and deployed for electronic voting [1,13,21,23,31,29,22,32,20].

The existing electronic voting schemes differ widely, and can be classified
per their underlying trust assumptions. On one end, one finds fully centralized
schemes which are often vulnerable to large scale attacks on robustness or privacy

due to their centralized nature [4,34,16]; on the other end, schemes that are
fully decentralized except maybe for setting up the election, where the (tallying)
authorities are the voters of the election themselves. This second type has been
termed self-tallying election schemes [29,22,32,20]. In between the two ends, and
to avoid the difficulties of self-tallying elections (STE) and dangers of centralized
elections, a range of e-voting schemes which distribute the trust among a small
set of authorities have also been proposed. Such systems achieve security as long
as a subset of those authorities is honest. For instance, in mixnet-based schemes
at least one authority needs to be honest [1,31], and in threshold schemes at
most a fraction ε of the authorities can be corrupt and collude [23,21].

Of course, other things being equal, electronic voting schemes at the decen-
tralized end of the spectrum are preferable as they can withstand more powerful
adversaries. Self-tallying election schemes are a step forward in this direction,
and move us one step closer to direct democracy. With the recent developments
of Blockchain technologies and the appeal for on-chain distributed governance,
such mechanisms are all the more topical. However, they present major chal-
lenges, which explains why full decentralization often needs to be abandoned
in favor of achieving all the conflicting requirements that an electronic voting
scheme should ensure. The main challenges STEs pose are in guaranteeing that
no one (or no coalition of) voter(s) can boycott the election, no intermediate
results are being leaked during the casting phase (fairness), and no vote can be
linked back to the voter that cast it (vote-privacy). We refer the reader to [22]
for a more in depth discussion on the difficulties STEs present.

Our goal in this paper is to further investigate the self-tallying paradigm,
in light of the recent developments in distributed systems that we have been
witnessing with the development of Blockchain technologies. Indeed, Nakamoto’s
Bitcoin protocol [27] for a decentralized banking system has paved a new way
for a decentralized future. With this as our credo too, we develop E-cclesia, a
new family of self-tallying election schemes that satisfy the standard eligibility,
fairness, vote-privacy, and one voter-one vote requirements for electronic voting.
We formally prove that E-cclesia satisfies these properties in the Universal
Composability paradigm proposed by Canetti in [8], which is a state-of-the-art
framework for specifying and analyzing cryptographic protocols, especially when
these are run under concurrent sessions. E-cclesia further satisfies individual
and universal verifiability as a direct consequence of its decentralized nature, its
reliance on a broadcast channel, and ballot authentication. Finally, we provide
the first provably secure concrete instance of E-cclesia. In particular, inspired
by Zerocoin [26], we rely on RSA dynamic accumulators for unlinking cast votes
from the voters who cast them. For fairness, we rely on a time-lock encryption
(TLE) scheme, such as the one derived from the time-lock puzzles of Rivest et
al. [30].

Our contributions and roadmap. In Section 2 we present the necessary
background. The subsequent sections are dedicated to the contributions of this
work which can be summarized as follows:

2

Section 3 We provide a UC treatment (i.e. an ideal functionality) of self-tallying
elections (STE) and extract its two basic sub-functionalities, namely an el-
igibility and a vote management functionality. We then present E-cclesia,
a family of electronic voting schemes UC-realizing STEs via these two sub-
functionalities. The first provably secure concrete instance of E-cclesia can
be derived from the next two sections.

Section 4 We provide the first UC definition for time-lock encryption (TLE)
via the functionality FTLE, and show that a hybrid protocol that uses FTLE

as a building block can UC-realize the vote management functionality. More-
over, we demonstrate a UC realization of FTLE via Rivest et al. time-lock
puzzles [30].

Section 5 We provide the first UC definition for dynamic accumulators in the
public setting, and prove that any UC-secure dynamic accumulator can be
used to realize the eligibility functionality. We further prove that quasi-
commutative dynamic accumulators as defined in [7], e.g. RSA accumulators
are UC-secure dynamic accumulators, and thus provide a concrete realization
of the eligibility module of E-cclesia.

1.1 Related work

Self-tallying. Two self-tallying protocols established in the literature are the
ones of Okamoto et al. [29] and Kiayias et al. [22]. In the former [29], an election
authority uses blind signatures [12] in order to authenticate the eligible voters
and their ballots. Next, each voter casts the commitment [5] of their ballot
signed by the election authority over an anonymous channel. After the casting
phase is over, each voter opens their commitment by casting the de-commitment
key over the anonymous channel, so that the tally can be produced. One of
the main drawbacks of this proposal is leakage of intermediate results, which
violates the fairness property. In the latter proposal [22], the voters agree on
a table where the sum of each row equals the voting choice of a voter. The
link between the identity of a voter and their vote cannot be inferred from the
table. In this proposal, the authors attempt to address the fairness problem by
introducing a “dummy” party that casts its ballot last so that no intermediate
results are leaked. However, this permits a single voter to be able to cause the
protocol to abort. Moreover, the inclusion of such a “dummy” party is still
not an optimal solution to the fairness problem as it re-introduces a trusted
party in the STE setting. While self-tallying protocols such as [32,20] improve
these proposals in terms of efficiency, they still share the limitations of [22].
Our work addresses these limitation, while preserving all the standard security
requirements. In addition, in [32] they define an ideal functionality for e-voting
but with the limitation that every authority must agree so that the tally can
be produced. Moreover, their functionality didn’t consider a global coordination
between protocol phases(e.g cast, tally phase) via a global clock [2] making it
hard to be realised by self tallying protocols without the need of a trusted third
party. We address these limitations to our functionality.

3

Time-lock encryption. TLE is a cryptographic primitive that allows a ci-
phertext to be decrypted only after a specific time period has elapsed. In some
proposals, decryption can further be performed without requiring knowledge
of any secret information. Previously proposed constructions are based either
on witness encryption [18] or symmetric encryption [24]. The authors of these
works provide game-based definitions in order to argue about the security of
their constructions. Unfortunately, game-based definitions do not capture the
variety of adversarial behaviour the UC framework [8] does. Moreover, the task
of transferring these definitions to the UC setting is quite challenging due to some
incompatibility between the two settings (concrete vs. asymptotic adversary).
Dynamic accumulators. Accumulators [17,14,35,19,33,7,15] are a well studied
cryptographic primitive that take as an input a list of objects and output a rep-
resentative value instead of the whole list. Despite the maturity of the primitive
in terms of years of study, the only security arguments that have been provided
are game-based. Recently, a work by Baldimtsi et al. [3] provides a UC treat-
ment for accumulators with a trusted accumulator manager. The manager can
accumulate and delete values from the list by using some trapdoor information.
In our UC treatment, this trusted entity is only responsible for deletion but not
for accumulation of the values (accumulation is a publicly available procedure),
which is vital for our approach.

2 Preliminaries

Throughout the paper, we use λ as the security parameter and · to denote a
wildcard character.

2.1 The Universal Composability model

Overview. The security analysis in this work follows the Universal Compos-
ability (UC) paradigm introduced by Canetti in [8], which is the state-of-the-art
cryptographic model for arguing about the security of protocols when run under
concurrent sessions. In the UC framework, the parties engage in a protocol ses-
sion (labeled by a unique session ID, sid) modeled as interactive Turing Machines
(ITMs) that communicate in the presence of an adversary ITM A that may con-
trol some of the parties. The protocol execution is scheduled by an environment
ITM Z that provides parties with inputs and may interact arbitrarily with A.
The intuition here is that (i) Z captures the external “observer” that aims to
break security by interacting with the protocol interface during session sid, while
(ii) A plays the role of the “insider” that helps Z via any possible information it
can obtain by engaging in the session in the back-end of the current execution.

The UC security of a protocol Π follows the real-world/ideal-world indistin-
guishability approach. Namely, security is captured via a special ideal protocol
that has the same interface as Π that Z interacts with, but now the parties are
“dummy”, in the sense that they only forward their inputs provided by Z to
an ideal functionality F , which is in the center of the back-end (i.e., the ideal

4

protocol has a star topology) and does not interact with Z directly. The ideal
functionality F formalizes a trusted party carrying out the task that Π intends
to realize (e.g., secure communication, key agreement, authentication, etc.). The
functionality F interacts with the adversary present in the ideal protocol, usu-
ally called a simulator S, and this interaction results in a “minimum leakage of
information” that determines the ideal level of security that any protocol real-
izing said task should satisfy (not only Π). E.g., if F formalizes an ideal secure
channel, then the minimum leakage could be the ciphertext length. In case that
Z gives an input to a corrupted party P in the ideal world, the functionality
F pass that messages to S and returns back to P whatever received from S.
The real-world protocol is UC-secure if no environment Z can distinguish its
execution from the one of the ideal protocol managed by F .

More formally, let EXECΠZ,A denote an execution of a real-world protocol Π

in the presence of the adversaryA scheduled by an environment Z, and EXECFZ,S
denote an execution of the ideal protocol managed by F in the presence of a
simulator S, again scheduled by Z. The UC security of Π is defined as follows.

Definition 1 (UC realization [8]). The protocol Π is said to UC-realize the
ideal functionality F if for any PPT adversary A, there exists a PPT simulator
S such that for any PPT environment Z, the random variables EXECΠZ,A and

EXECFZ,S are computationally indistinguishable.

Composition and modularity. Perhaps the most prominent feature of the UC
paradigm – which is at the heart of the E-cclesia design – is the preservation of
security of a protocol that runs concurrently with other protocol instances, or as
a subroutine of another (often more complex) execution. In particular, assume a
protocol Π that UC-realizes an ideal functionality F according to Definition 1,
and is used as a subroutine of a “larger” protocol Π̃. Then, UC guarantees that
if we replace any instance of Π with F , we obtain a “hybrid” protocol, denoted
by Π̃Π→F , that enjoys the same security as Π̃. Namely, if Π̃ UC-realizes some
ideal functionality F̃ , then so does Π̃Π→F .

The power of composition facilitates the design of complicated cryptographic
schemes with a high-degree of modularity. Namely, the scheme’s formal descrip-
tion can be over the composition of ideal modules that are concurrently exe-
cuted as subroutines. When a protocol Π using the functionalities F1, . . . ,Fk
UC-realizes a functionality F , we say that it does so in the {F1, . . . ,Fk}-hybrid
model and we write ΠF1,...,Fk to clearly denote the hybrid functionalities.

A major advantage of the modular design in UC is that we can describe
the cryptographic scheme in a partially abstract black-box way by simply using
the hybrid functionalities instead of the associated real-world subroutines, and
then prove security in the corresponding hybrid model. Henceforth, whenever the
designer wishes to improve the scheme by implementing a more efficient version
of some subroutine, they just need to prove the security of the new subroutine
w.r.t. the associated hybrid functionality, which will directly imply the overall
security of the improved scheme.

5

2.2 Setup functionalities

In Subsection 2.1, we summarized the UC model and showed how provably se-
cure design can be done in a modular way by utilizing hybrid functionalities. We
stress that in the UC literature, hybrid functionalities do not only play the role
of abstracting some UC-secure real-world subroutine (e.g., a secure channel),
but also formalize possible setup assumptions that are required to prove secu-
rity when this is not done (and in many cases even impossible to achieve) in the
“standard model”. For example, this type of setup functionalities may capture
the concept of a trusted source of randomness, a clock, or a Public Key Infras-
tructure (PKI). Moreover, these setup functionalities can be global, i.e. they act
as shared states across multiple protocol instances and they can be accessed by
other functionalities and even the environment that is external to the current
session (recall that standard ideal functionalities do not directly interact with
the environment). The extension of the UC framework in the presence of global
setups has been introduced by Canetti et al. in [10]. Below, we present the setup
functionalities that we consider across the E-cclesia design.

The global clock functionality Gclock. In Fig. 1, we provide the definition of
a global clock functionality Gclock similar to [2]. Time advances only when the
environment has allowed all involved parties to advance.

The Global Clock functionality Gclock(P,F).

For each session sid, the functionality initializes the global clock variable Cl ← 0
and the set of advanced parties per round as Ladv ← ∅.
� Upon receiving (sid,Advance Clock) from P ∈ P, if P /∈ Ladv, then it adds P to
Ladv, sends the message (sid,Advance Clock) to P and notifies A by forwarding
(sid,Advance Clock, P). If Ladv = P ∪ F, then it updates as Cl ← Cl + 1 and
resets Ladv ← ∅.
� Upon receiving (sid,Advance Clock) from F ∈ F, if F /∈ Ladv, then it adds F
to Ladv and sends the message (sid,Advance Clock) to F . If Ladv = P ∪ F, then
it updates as Cl← Cl + 1 and resets Ladv ← ∅.
� Upon receiving (sid,Read Clock) from X ∈ P ∪ F ∪ {Z,A}, then it sends
(sid,Read Clock,Cl) to X.

Fig. 1. The global clock functionality Gclock(P,F) interacting with the parties in P, the
functionalities in F, the environment Z and the adversary A.

The random oracle functionality FRO. In Fig. 2, we define a UC random
oracle (RO) as in [28].
The common reference string functionality FCRS. Another setup assump-
tion is the common random string model, where a single random string is drawn
from a uniform distribution over strings. Fig. 3 formally defines FCRS as given by

6

[8]. Note that FCRS requests permission from the simulator S before returning
the value, disclosing the identity of the requesting party. This action is often
called (public) delayed output in the literature. In Section 5, when we refer to
e.g. FGen

CRS, we mean the output distribution of the function Gen.

The Random Oracle functionality FRO(P, A,B).

The functionality initializes a list LH ← ∅.
� Upon receiving (sid,Query, x) from P ∈ P, if x ∈ A, then

1. If there exists a pair (x, h) ∈ LH, it returns (sid,Random Oracle, x, h) to P .

2. Else it picks h
$← B, and it inserts the pair to the list LH ← (x, h). Then it

returns (sid,Random Oracle, x, h) to P .

Fig. 2. The random oracle functionality FRO w.r.t. domain A and range B interacting
with the parties in P.

The common reference string functionality FCRS(P, D).

The functionality initializes a waiting list Lwait ← ∅.

� Upon receiving (sid,CRS) from Pi ∈ P, if no value r is recorded, it picks r
$← D,

adds Pi to Lwait and sends (sid, Allow, Pi) to S.

� Upon receiving (sid, Allowed, Pi) from S, if Pi ∈ Lwait, it sends (sid,CRS, r) to
Pi and S and removes Pi from Lwait.

Fig. 3. The CRS functionality FCRS interacting with the parties in P and the simulator
S, parameterized by distribution D.

The Anonymous Broadcast functionality Fan.BC(P).

The functionality initializes a list Lpend ← ∅ of messages pending to be broadcast.

� Upon receiving (sid,Broadcast,M) from Pi ∈ P, it adds (M,Pi) to Lpend and
sends (sid,Allow,M) to S.

� Upon receiving (sid,Allowed,M) from S, if (M,Pi) ∈ Lpend, then it sends
(sid,Broadcast,M) to P1, . . . , Pn, and S. Then, it removes (M,Pi) from Lpend.

Fig. 4. The anonymous broadcast functionality Fan.BC interacting with the parties in
P = {P1, . . . , Pn} and the simulator S.

7

The anonymous broadcast functionality Fan.BC. To guarantee the privacy of
our STE scheme we assume that voters communicate via an anonymous broadcast
channel. This communication interface is formalized via the functionality Fan.BC

described in Fig. 4.
Providing a provably UC-secure realization of Fan.BC is out of the scope of

this work. However, intuitively, one can instantiate an anonymous broadcast
channel by deploying a blockchain (or any transaction ledger) where the users
access the blockchain via an anonymous communications channel such as Tor or
any mix-network routing protocol.

The certification functionality Fcert(P,V).

� Upon receiving (sid,Corrupt,Vcorr) from S, if Vcorr ⊆ V ∪ P , it fixes Vcorr as
the set of corrupted parties.

� Upon receiving (sid,Setup) from P , if sid = (P, sid′) for some sid′, it sends
(sid,Setup) to S.

� Upon receiving (sid,Algorithms, Verify, Sign) from S, it stores the algorithms
and sends (sid,Setup) to P .

� Upon receiving (sid,Sign,m) from P , it sets σ ← Sign(m). If Verify(m,σ) 6= 1,
it aborts. Otherwise it records (m,σ) and sends (sid,Signature,m, σ) to P .

� Upon receiving (sid,Verify,m, σ) from V ∈ V, if Verify(m,σ) = 1, the signer
is not corrupted and no entry (m,σ′) for any σ′ is recorded, it aborts. Otherwise
it sends (sid,Verified,m, Verify(m,σ)) to V .

Fig. 5. The certification functionality Fcert interacting with a prover P , a set of verifiers
V and the simulator S.

The certification functionality Fcert. The registration process for voting tra-
ditionally makes use of a channel through which the voters can identify them-
selves to the election authority. It would be natural to utilize a form of public
key infrastructure, but modelling it in UC is not straightforward, and turns out
to not be necessary for the purposes of the protocol that will be introduced in
Section 3. Instead, we will use a certification scheme which provides signatures
not bound to keys, but to identities. Fcert, shown in Fig. 5 as defined by [8]
(2005), provides commands for signature generation and verification, and is tied
to a single party (so each party requires a separate instance). It can be realized
as in [9] by an EUF-CMA secure signature scheme combined with a party acting
as a trusted certificate authority.

3 A framework for STE schemes and the E-cclesia family

In this section, we formalize STE schemes and provide an abstract description
of the E-cclesia family along the lines of modular UC design described in

8

Subsection 2.1. The entities involved in an STE execution include the voters
V1, . . . , Vn and a setup authority SA that is active only prior to the voting and
tally period and specifies the election parameters (e.g., list of eligible voters and
the period of each election phase). In our threat model, the voters are statically
corrupted while SA remains honest. Intuitively, the security properties that an
STE scheme should satisfy are the following:

1. Eligibility : only eligible voters can vote.
2. Fairness: before the tally phase begins, no party can learn some partial

result.
3. Voter Privacy : the voters’ identities cannot be linked to their votes.
4. One voter-one vote: only one vote per (eligible) voter can be included in the

tally.

Our approach to formally describing the E-cclesia family is to first capture
eligibility, fairness, and voter privacy via two main ideal modules:
(i) A vote management functionality Fvm that handles ballot encryption, anony-
mous broadcast and opening.
(ii) An eligibility functionality Felig that is responsible for generating anonymous
credentials and authenticating the ballots of the eligible voters. The functionality
can also link two ballots originating from the same (corrupted) voter.

We stress that ballot encryption and opening run by Fvm ensure fairness,
while credential generation and ballot authentication run by Felig guarantee el-
igibility. Moreover, both functionalities combined safeguard voter privacy by
implicitly featuring anonymous ballot authentication and casting. In addition,
one voter-one vote is achieved by using Felig for discarding multiple ballots that
are linked to the same (corrupted) voter.

Given the aforementioned approach, the major technical challenge in design-
ing E-cclesia instantiations is to devise real-world protocols that UC-realize
Fvm and Felig. Upon completion of this task, the step towards full STE security
is merely a careful composition in terms of interface by specifying how the STE
entities interact with Fvm and Felig, and check the information they obtain from
their engagement in the overall execution, so that the four security properties
are preserved.

Therefore, in order to avoid repetition and excessive formalization, this sec-
tion is organized as follows: in Subsection 3.1, we present the general ideal STE
functionality FSTE that captures all four aforementioned properties. To provide
intuition, we describe FSTE in a complete yet not strictly formal manner. Next,
the functionalities Fvm and Felig are defined formally in Subsections 3.2 and 3.3,
respectively, with precise references to FSTE’s steps that are essentially handled
by Fvm and Felig. Finally, in Subsection 3.4, we present the E-cclesia family as

a protocol Π
Felig,Fvm,Gclock

E-cclesia that UC-realizes FSTE in the {Felig,Fvm,Gclock}-hybrid
model in a straightforward manner. We note that in the subsequent Sections 4
and 5 we construct two instantiations of Fvm and Felig, respectively, that specify
the first version of E-cclesia as a provably secure STE scheme.

9

3.1 The STE functionality FSTE

The functionality FSTE interacts with the setup authority SA, the voters in the
set V = {V1, . . ., Vn} and the simulator S. In addition, it forwards all (sid,
Advance Clock) and (sid, Read Clock) commands to Gclock (cf. Fig. 1) on
behalf of the (dummy) parties, while it also reads the time Cl from Gclock when-
ever necessary. In the spirit of [8], we allow S to provide FSTE with the election
algorithms, noting that this is only for consistency of the output format that
FSTE sends to the parties. As it will be clear in the description, the main security
properties of eligibility, fairness, voter privacy and one voter-one vote are pre-
served by FSTE per se, independently of the security of the algorithms provided
by S. The functionality consists of the following phases:

Setup. The functionality initializes as empty the lists of: eligible voters’ creden-
tials Lelig, ready voters Lready, generated ballots Lgball, cast ballots Lcast, algo-
rithms Lvm, state Stfin as 0, and ballots included in the tally set Ltally. It also
stores the set Vcorr ⊆ V of corrupted voters provided by S. Then, it operates as
follows:

� Upon receiving (sid,Election Info,Velig, tcast, topen) from SA, where (i) Velig

is the list of eligible voters and (ii) tcast < topen are moments that determine
the beginning of the Cast and Tally phases (see below), it acts as follows: In
some cases we need more distinct time points than tcast and topen. However, these
points should be able to be derived from tcast and topen, because these are the only
times that are provided by Z. For example, a time point can be the twait where it
defines the period in which a voter can cast their ballot (from time tcast until twait)
and the period that everyone must wait before the tally phase (from time twait

until topen). The time point twait can be essential in some protocols that they need
a period of synchronization. For that reason we define the function define time

which it takes as input the times tcast and topen and outputs a vector t. This
vector can be just the pair tcast, topen (in that case define time is the identity
function) or a vector with more distinct time points(e.g t = (tcast, topen, twait)). It
depends on the specification of the protocol we want to realize how the function
define time is defined. Formally, FSTE computes t ← define time(tcast, topen)
and if t 6= ⊥, it sends (sid,Setup Ok, Velig, tcast, topen, t) to SA after the permis-
sion of S via a public delayed output.

� Upon receiving (sid,Eligible) from SA, it informs S, which replies with the
eligibility algorithms GenCred, AuthBallot, VrfyBallot, UpState and an initial
credential state Stgen. Then it provides 〈Vi〉i∈[n] and S with the election param-
eters elec.par := ({Velig, tcast, topen, t}, Stgen).

� Upon receiving (sid,Start) from a voter V ∈ Velig \Vcorr, if V /∈ Lready:

1. If Lvm 66= ∅, it (a) adds V to Lready and (b) returns (sid,Start Ok) to V .
2. Else, it sends (sid,Start) to S. Upon receiving the vote management algo-

rithms GenBallot, OpenBallot from S, it (a) updates Lvm with the algo-
rithms, (b) adds V to Lready, and (c) returns (sid,Start Ok) to V .

Credential generation. This phase is active if Status(Cl, t,Cred) = >. The
predicate Status shows us in which phase of the protocol we are based on the

10

current time Cl. It takes as an input the current time Cl, the time vector t and
the phase we want to check if it is active at the moment (all the phases are
Credential,Cast and Tally and can be checked with the acronym Cred,Cast and
Tally respectively). If this phase is active Status outputs the special symbol
⊥, else it outputs ⊥. The predicate is instantiated according to the protocol
we want to realize. An example of what this predicate might be is the check if
tcast < Cl < topen in the case we wan to check if we are in the Cast phase.

� Upon receiving a message (sid,Gen Cred) from V ∈ Velig \Vcorr for the first
time and after permission from S via public delayed output, it runs (cr, rc) ←
GenCred(1λ, elec.par) and adds (V, cr, rc, 1) to Lelig. Here, cr, rc play the role of
the private and public part of the credential, respectively. If there are already
tuples (·, cr, ·, ·) or (·, ·, rc, ·) in Lelig or (cr, rc) = ⊥, it sends (sid,Gen Cred,⊥)
to V and halts. Else, it adds (V, cr, rc, 1) to Lelig.

If FSTE receives some credential pair (sid,Gen Cred, cr, rc, V) from S on
behalf of a corrupted yet eligible voter V for the first time, if there are no tuples
(·, cr, ·, 1) or (·, ·, rc, 1) in Lelig, then FSTE adds (V, cr, rc, 0) to Lelig.

In any case of recording (V, cr, rc, ·), it sends (sid,Gen Cred, V, rc) to 〈Vj〉j∈[n]
and S after permission of S via public delayed output.

Cast. This phase is active if Status(Cl, t,Cast) = > and manages ballot gen-
eration, authentication and broadcasting. For ballot authentication, FSTE once
computes the final credential state Stfin by running UpState on input Stgen and
the set of public credentials rc included in Lelig.

� Upon receiving a message
(
sid,Cast, o

)
from an honest and eligible voter V

for the first time such that (V, cr, rc, 1) ∈ Lelig, it executes the following steps:

1. It generates a ‘dummy’ ballot as an encryption of 0s by running v ← GenBallot(vote.par, 0|o|, λ)
and adds the tuple (V, v, o, 1) to the list of the generated ballots Lgball. This
dummy encryption step captures the semantic security of the GenBallot

algorithm.
2. It generates an authentication receipt as σ ← AuthBallot(v, cr, rc, Stfin) for

ballot v. If VrfyBallot(v, σ, Stfin, reg.par) = 0, it sends (sid, Auth Ballot,
⊥) to V and halts.

3. It sends (sid,Cast, v, σ) to S. Upon receiving (sid,Cast Allowed) from
S, it adds (V, o, v, cr, σ, 1) to Lcast as the authenticated ballot tuple for V .

4. It sends
(
sid,Cast, v, σ

)
to 〈Vj〉j∈[n] and S. Note that FSTE broadcasts the

ballot “anonymously”, i.e. without revealing V ’s identity.

In addition, FSTE allows S to cast ballots arbitrarily on behalf of a corrupted
voter V : when it receives

(
sid, Cast, o, v, σ, V

)
from S, if there is a tuple (V ,

cr, rc, 0) in Lelig, it adds (V , o, v, cr, σ, 0) to Lcast, else it adds (V , o, v, ⊥,σ ,0)
to Lcast. In any case, it sends

(
sid, Cast, v, σ

)
to 〈Vj〉j∈[n] and S.

Tally. This phase is active if Status(Cl, t,Tally) = > and manages the opening
of all the valid ballots that should be included in the tally (thus, capturing
fairness).

� Upon receiving
(
sid,Tally

)
from a voter V or S, FSTE executes the following

steps:

11

1. For every tuple (V, o, v, cr, σ, b) in Lcast, it runs the ballot verification algo-
rithm x← VrfyBallot(v, σ, Stfin). If x = 1, then FSTE performs the follow-
ing security checks:
(i). If there is no tuple (V, cr, rc, ·) in Lelig, then eligibility has been breached

and it returns
(
sid,Tally,⊥

)
to V or S.

(ii). If there is a tuple (V, cr, rc, 1) in Lelig and there is a tuple (·, o′, v′,
cr′, σ′, 1) in Lcast such that (cr′ = cr) ∧ (v′ 6= v), then forgery of some
honest ballot has happened, so it returns (sid,Tally,⊥) to V or S. Note
that this check implies that the AuthBallot algorithm should satisfy
unforgeability.

(iii). Otherwise, it adds (V, o, v, b) to Ltally.
As a result, at the end of the For loop in this step, Ltally contains successfully
verified ballots cast only by the intended eligible voters. Note that multiple
valid ballots coming from corrupted eligible voters may still exist at this
point, something which is handled at the step below.

2. For every tuple (V, cr, rc, ·) in Lelig such that there are multiple tuples (V ,
o1, v1, ·), . . ., (V , on, vn, ·) in Ltally, it removes all multiple tuples from Ltally

except the first one it recorded. This step is important to ensure the one
voter-one vote property. Thus, at this point Ltally contains valid tuples in
one-to-one correspondence with the eligible voters that participated in the
election.

3. For every (V, o, v, ·) in Ltally, it first allows S to open the ballot of any
corrupted voter Vj to an alternative opening õj by updating the corre-
sponding tuple in Ltally as (Vj , õj , vj , 0). Then, it checks the correctness of
the honest voters’ ballot generation (which implies the correctness of the
ballot opening algorithm OpenBallot) as follows: if there are two tuples
(V, o, v, 1), (V ′, o′, v′, 1) in Ltally such that (v′ = v) ∧ (o 6= o′), then it re-
turns

(
sid,Tally,⊥

)
to V . Otherwise, if no such conflict exists, it returns(

sid,Tally, {(o, v)|(V, o, v, ·) ∈ Ltally}
)

to V or S, where {(o, v)|(V, o, v, ·) ∈
Ltally} is the multiset of eligible voters’ tallied options.

� Upon receiving (sid,Leakage) from S, it reads the time Cl from GClock. If
Status(Cl, t,Cred) = Status(Cl, t,Cast) = Status(Cl, t,Open) = ⊥, then it re-
turns to S all the triples (v, o, 1) such that (V, v, o, 1) ∈ Lgball∧(V, v, σ, 1) ∈ Lcast.
This leakage illustrates the fact that in “wait” time period, the period where
the protocol is between the Cast and Tally phase, the adversary might be
able to open the ballots. On the other hand, this information at that point
is not very useful (the adversary can not break fairness) because the adver-
sary can not change its ballot, as the Cast phase is over. In protocols where
no such periods exist the condition Status(Cl, t,Cred) = Status(Cl, t,Cast) =
Status(Cl, t,Open) = ⊥ is never satisfied.

3.2 Vote management funtionality Fvm

The vote management functionality Fvm takes over the following parts of FSTE

execution: (i) in Setup the configuration of the vote management algorithms,

12

(ii) in Cast the secure ballot generation and casting and (iv) in Tally the ballot
opening step, so that fairness and ballot correctness is preserved (cf. Step 3. in
FSTE’s description for (sid,Tally) messages). The functionality is presented in
Fig. 6.

13

The vote management functionality Fvm(V, define time, Status).

The functionality initializes the lists of generated ballots Lgball, cast ballots Lcast,
opened ballots Lopen, ballot algorithms Lvm, and ready voters Lready as empty. Then
it sets its status to ‘exec’.

� Upon receiving (sid,Corrupt,Vcorr) from S, if Vcorr ⊆ V and status=exec, it
fixes Vcorr as the set of corrupted voters.

� Upon receiving (sid,Setup Info,Velig, tcast, topen) from SA it computes t ←
define time(tcast, topen). If status=exec and t 6= ⊥, it sets vote.par :=
(Velig, tcast, topen, t) as voting parameters and sends (sid,Setup OK, vote.par) to SA,
after permission from S via delayed output.

� Upon receiving (sid,Start) from voter V ∈ Velig \Vcorr, if V /∈ Lready:

1. If Lvm 66= ∅, it (a) adds V to Lready and (b) returns (sid,Start Ok) to V .
2. Else, it sends (sid,Start) to S. Upon receiving (sid, Setup Info, GenBallot,

OpenBallot) from S, it (a) updates Lvm with the algorithms, (b) adds V to
Lready, and (c) returns (sid, Start Ok) to V .

� Upon receiving (sid,Gen Ballot, o) from V ∈ Lready:

1. If there is no
(
V, v′, o′, 1

)
6∈ Lgball, it (a) runs v ← GenBallot(vote.par, 0|o|, λ),

(b) adds
(
V, v, o, 1

)
to Lgball. Upon receiving (sid,Gen Ballot, v) from S, it

returns (sid,Gen Ballot, o, v) to V .
2. Else it returns (sid,Gen Ballot, o,⊥) to V .

� Upon receiving (sid,Gen Ballot) from V ∈ Vcorr, it sends the message
(sid,Gen Ballot, V) to S.

� Upon receiving (sid,Gen Ballot, o, v, V) from S, if V ∈ Vcorr it sends
(sid,Gen Ballot, o, v) to V .
� Upon receiving

(
sid,Cast, v, σ

)
from V , if V 6∈ Vcorr and status=exec, it reads

the time Cl from Gclock. If Status(Cl, t,Open) = >, it sets the status to ‘open’,
otherwise:

1. If (V, v, o′, 1) 6∈ Lgball, it returns (sid,Cast, v, σ,⊥) to V .
2. If there is no (V, v′, σ′, 1) 6∈ Lcast, it sends (sid,Allow Cast, v, σ) to S. Upon

receiving (sid,Cast Allowed) from S, it adds (V, v, σ, 1) to Lcast and sends
(sid,Cast, v, σ) to 〈Vj〉j∈[n] and S.

3. If there is a tuple (V, v′, σ′, 1) in Lcast, it returns (sid,Cast, v, σ,⊥) to V .

� Upon receiving
(
sid,Cast

)
from V ∈ Vcorr, it sends

(
sid,Cast, V

)
to S.

� Upon receiving
(
sid,Cast, v, σ, V

)
from S, if V ∈ Vcorr and status=exec, it reads

the time Cl from Gclock. If Status(Cl, t,Open) = > it sets status to ‘open’, otherwise
it adds (V, v, σ, 0) to Lcast and sends (sid,Cast, v, σ) to 〈Vj〉j∈[n] and S.
� Upon receiving (sid,Open, v) from any party P ∈ V ∪ {S}, it reads the time Cl
from Gclock. If Status(Cl, t,Open) = >, it sets the status to ‘open’ and executes the
following steps:

1. If there is a tuple (V, v, σ, ·) ∈ Lcast, and a unique (V, v, o, 1) ∈ Lgball, it sends
(sid,Open, v, o) to P .

2. Else, if there is a tuple (V, v, σ, ·) ∈ Lcast and at least two tuples
(V, v, o, 1), (V ′, v′, o′, 1) ∈ Lgball such that (v = v′) ∧ (o 6= o′), it sends
(sid,Open, v,⊥) to P .

3. Else, if there is a tuple (V, v, σ, ·) ∈ Lcast but there is no tuple (V, v, o, 1) ∈ Lgball,
it sends (sid,Open, v) to S. Then it sends the reply it gets from S to P .

� Upon receiving (sid,Leakage) from S, it reads the time Cl from GClock. If
Status(Cl, t,Cred) = Status(Cl, t,Cast) = Status(Cl, t,Open) = ⊥ then it returns
to S all the triples (v, o, 1) such that (V, v, o, 1) ∈ Lgball ∧ (V, v, σ, 1) ∈ Lcast.

Fig. 6. The vote management functionality Fvm(V) interacting with voters V, SA and
the simulator S.

14

The eligibility functionality Felig(V, define time, Status).

The functionality initializes the lists of eligible voters Lelig ← ∅, of authenticated
ballots of eligible voters Lauth ← ∅, the value Stfin = 0, and its status to ‘init’.

� Upon receiving (sid,Corrupt,Vcorr) from S, if Vcorr ⊆ V and status=init, it fixes
Vcorr as the set of corrupted voters.

� Upon receiving (sid,Eligible,Velig, tcast, topen) from SA, if Velig ⊆ V and sta-
tus=init, it sends (sid, Setup Elig) to S. Upon receiving (sid, Setup Elig,
GenCred, AuthBallot, VrfyBallot, UpState, Stgen) from S, if status=init, then:

1. It computes t ← define time(tcast, topen). If t 6= ⊥, it sets reg.par :=
(Velig, tcast, topen, t, Stgen) as registration parameters.

2. It sets its status to ‘credential’ and sends (sid,Elig Par, reg.par) to 〈Vj〉j∈[n]
and S.

� Upon receiving (sid,Gen Cred) from V ∈ Velig \Vcorr, if status=credential, then
it reads the time Cl from Gclock. If Status(Cl, t,Cast) = >, it sets its status to ‘cast’.
Otherwise, if Status(Cl, t,Cred) = >, it executes the following steps:

1. If there is no tuple (V , cr′, rc′, 1) in Lelig, it runs (cr, rc) ← GenCred(1λ,
reg.par). If there are tuples (·, cr, ·, ·) or (·, ·, rc, ·) in Lelig or (cr, rc) = ⊥, it
sends (sid, Gen Cred, ⊥) to V and halts. Else, it adds (V , cr, rc, 1) to Lelig

after permission of S via public delayed output.
2. It sends (sid,Gen Cred, V, rc) to 〈Vj〉j∈[n] and S after permission of S via

public delayed output.

� Upon receiving (sid,Gen Cred) from V ∈ Vcorr, it forwards the message
(sid,Gen Cred, V) to S.

� Upon receiving (sid,Gen Cred, V, cr, rc) from S, if V ∈ Vcorr, then:

1. If Velig and there are no tuples (V, cr′, rc′, 0), (·, cr, ·, 1) or (·, ·, rc, 1) in Lelig,
then it adds (V, cr, rc, 0) to Lelig.

2. It sends (sid,Gen Cred, V, rc) to 〈Vj〉j∈[n] and S.

� Upon receiving (sid,Auth Ballot, v) from V ∈ Velig \Vcorr, if status=cast, then
it reads the time Cl from Gclock. If Status(Cl, t,Open) = >, it sets its status to
‘open’. Otherwise, if Status(Cl, t,Cast) = >, it executes the following steps:

1. If Stfin = 0, then it runs Stfin ← UpState(Stgen, {rc|(·, ·, rc, ·) ∈ Lelig}).
2. If there is some (V , cr, rc, 1) ∈ Lelig but no (V , v′, cr, σ′, 1) ∈ Lauth, then it runs

σ ← AuthBallot(v, cr, rc, Stfin, reg.par). If VrfyBallot(v, σ, Stfin, reg.par) = 0,
it sends (sid, Auth Ballot, ⊥) to V and halts. Else, it (a) adds (V , v, cr, σ,
1) to Lauth, and (b) returns (sid, Auth Ballot, v, σ) to V .

� Upon receiving (sid,Auth Ballot) from V ∈ Vcorr, it forwards the message
(sid,Auth Ballot, V) to S.

� Upon receiving (sid,Auth Ballot, V, v, σ) from S, if there is a tuple (V , cr, rc,
0) in Lelig, then it adds (V, v, cr, σ, 0) to Lauth. It returns (sid,Auth Ballot, V, v, σ)
to V .

� Upon receiving (sid,Ver Ballot, v, σ) from V ∈ V:

1. It computes x← VrfyBallot(v, σ, Stfin, reg.par).
2. If x = 1 and there is no cr such that there are tuples (·, cr, ·, ·) ∈ Lelig and

(·, v, cr, σ, ·) ∈ Lauth, it sends (sid,Ver Ballot, v, σ,⊥) to V and halts.
3. If x = 1 and there are tuples (·, v, cr, σ, ·), (·, v′, cr′, σ′, 1) ∈ Lauth such that

cr = cr′ and v 6= v′, it sends (sid,Ver Ballot, v, σ,⊥) to V and halts.
4. Else, it sends (sid,Ver Ballot, v, σ, x) to V .

� Upon receiving
(
sid,Link Ballots, (v, σ), (v′, σ′)

)
from V ∈ V, if there are

tuples (·, v, cr, σ, ·), (·, v′, cr′, σ′, ·) ∈ Lauth such that cr = cr′, then it sets x = 1, else
x = 0. Then, it sends

(
sid,Link Ballots, (v, σ), (v′, σ′), x

)
to V .

Fig. 7. The eligibility functionality Felig(V) interacting with voters V, SA, and the
simulator S.

15

3.3 Eligibility functionality Felig

The eligibility functionality Felig takes over the following parts of FSTE execution:
(i) in Setup the eligibility algorithms and the initial credential state, (ii) the
entire (private and public) Credential generation, (iii) in Cast the creation of
ballot authentication receipts, (iv) in Tally the ballot verification step, so that
unforgeability is preserved (cf. Step 1. in FSTE’s description for (sid,Tally)
messages), and (v) the linkability of two ballots to the same voter, so that one
voter - one vote is preserved. The functionality is presented in Fig. 7.

3.4 Description of the E-cclesia family

We provide a description of the E-cclesia family Π
Felig,Fvm,Gclock

E-cclesia of STE schemes
as a hybrid protocol that makes use of the main modules Felig,Fvm. Any pair
of real-world protocols Πelig, Πvm that UC-realize Felig,Fvm specifies a member

of the family. The description of Π
Felig,Fvm,Gclock

E-cclesia follows the phases and command
interface of FSTE in Subsection 3.1 as described below:

Setup.

� Upon receiving (sid,Election Info,Velig, tcast, topen) from Z, if Velig ⊆ V and
tcast < topen, SA sends (sid,Setup Info,Velig, tcast, topen) to Fvm.

� Upon receiving (sid,Eligible) from the environment Z, if SA has received
(Velig, tcast, topen), it sends (sid,Eligible,Velig, tcast, topen) to Felig which sends
reg.par := (Velig, tcast, topen, t, Stgen) to 〈Vi〉i∈[n]. Upon receiving reg.par from
Felig, each voter V ∈ V stores it as the election parameters elec.par.

� Upon receiving (sid,Start) from Z for the first time, if voter V is in Velig,
then she sends (sid,Start) to Fvm which replies with (sid,Start Ok).

Credential generation. This phase is completely managed by Felig.

� Upon receiving (sid,Gen Cred) from Z, V sends (sid,Gen Cred) to Felig,
which in turn sends (sid,Gen Cred, V, rc) to 〈Vj〉j∈[n] (or sends (sid,Gen Cred,⊥)
to V and halts).

Cast. Here, Fvm and Felig combined carry out the ballot generation, authenti-
cation and broadcasting tasks.

� Upon receiving
(
sid,Cast, o

)
from Z, V executes the following steps:

1. She sends (sid,Gen Ballot, o) to Fvm which replies with the generated
ballot as (sid,Gen Ballot, o, v) (or sends (sid,Gen Ballot, o,⊥) to V
and halts).

2. Then, she sends (sid, Auth Ballot, v) to Felig which replies with the
authentication receipt for v as (sid, Auth Ballot, v, σ) (or sends (sid,
Auth Ballot, ⊥) to V and halts).

3. Finally, she sends
(
sid,Cast, v, σ

)
to Fvm which broadcasts the message to

〈Vj〉j∈[n]. In turn, the voters store the received pair (v, σ).

Tally. In order for the voter to perform self-tallying, she accesses Felig for ballot
verification and linkability and Fvm for ballot opening.

� Upon receiving a message
(
sid,Tally

)
from Z, V executes the following steps:

16

1. For every tuple
(
sid, Cast, v, σ

)
she has obtained from Fvm, V sends (sid,

Ver Ballot, v, σ) to Felig which replies with (sid, Ver Ballot, v, σ, x),
where x ∈ {0, 1,⊥}.
If there is any ballot verification request such that Felig replied with x = ⊥,
then V sets tally to ⊥. Otherwise, she includes in her tally set all pairs (v,
σ) such that Felig replied with x = 1.

2. V discards multiple ballots as follows: for every pair (v, σ), (v′, σ′) in her
tally set, she sends

(
sid, Link Ballots, (v, σ), (v′, σ′)

)
to Felig. If she gets(

sid, Link Ballots, (v, σ), (v′, σ′), 1
)

as a response, then she discards the
ballot she received the last out of those two. Clearly, after this pairwise check
is completed, all except one of ballots that are linked will be removed from
the tally set, so that one voter-one vote is guaranteed.

3. For every pair (v, σ) in the tally set, V sends (sid, Open, v) to Fvm, which
replies with the opening (sid, Open, v, o). Then, V adds o to the multiset
of all opened options (initialized as empty). If at any time Fvm replies with
(sid, Open, v, ⊥), then V sets tally to ⊥.

4. Finally, she sets the tally result as the multiset of all opened options.

Security. As already mentioned in the introduction of Section 3, proving that

Π
Felig,Fvm,Gclock

E-cclesia UC-realizes FSTE in the {Felig,Fvm,Gclock}-hybrid model is straight-
forward given the description of FSTE, Felig and Fvm. Below, we provide the
theorem statement and proof.

Theorem 1. The protocol Π
Felig,Fvm,Gclock

E-cclesia described in Subsection 3.4 UC-realizes
FSTE in the {Felig,Fvm,Gclock}-hybrid model.

Proof. We define a simulator S as follows: In the cases of public delayed outputs,
we assume that S forwards the message to the adversaryA as if it was from either
Felig or Fvm and responds to FSTE in the same way as A. Moreover, whatever
command FSTE receives on behalf of a corrupted party, we assume that FSTE

forwards that message to S. Then S forwards that message to A as if it was
from either Felig or Fvm and it returns to FSTE whatever it receives from A. We
describe the details below.

During the Setup phase, when S receives the corruption set Vcorr from Z,
it forwards it to A as if it was from Z. Then S plays the role of Felig and Fvm

and receives back the corruption set from A. Next, S forwards the corruption
set to FSTE. Upon receiving (sid, Election Info, Velig, tcast, topen) from FSTE,
S stores the parameters and it forwards the message to A as if it was from
Fvm. Then, S returns to FSTE whatever it receives from A. After S receives (sid,
Eligible) from FSTE, it plays the role of Felig and it sends (sid, Setup Elig) to
A. Then, upon receiving the eligibility algorithms (sid, Setup Elig, GenCred,
AuthBallot, VrfyBallot, UpState, Stgen) from A, S forwards the message to
FSTE. When S receives (sid, Start) from FSTE, it forwards the message to
A as if it was from Fvm. Upon receiving the vote management algorithms (sid,
Setup Info, GenBallot, OpenBallot) from A, S forwards the message to FSTE.

17

During the Credential generation phase, when S receives a credential
generation request from FSTE on behalf of a corrupted party V , S forwards the
request to A as if it was from Felig. Then, upon receiving (sid, Gen Cred, V ,
cr, rc) from A, S forwards the message to FSTE.

During the Cast phase, when S receives (sid,Cast, v, σ) from FSTE, it for-
wards the message toA as if it was from Fvm. Then S returns whatever it receives
from A. Upon receiving a cast ballot request from FSTE on behalf of a corrupted
party V , S forwards the message to A as if it was from Fvm. After S receives(
sid, Cast, ṽ, σ̃, V

)
from A, it returns the message

(
sid, Cast, o, ṽ, σ̃, V

)
to

FSTE for some o. The choice of o is irrelevant because during the Tally phase S
will be asked by FSTE for a new opening of ṽ. This happens because every time
FSTE (Fvm as well) receives a request for opening a malicious ballot, it gives the
token to the simulator and it answers according to what S provides.

During the Tally phase, when S is asked by FSTE for an alternative ballot
opening of the tuple (V , o, v, ·) ∈ Ltally where V ∈Vcorr, S sends the message (sid,
Open, v) to A as if it was from Fvm and it returns to FSTE whatever it receives
from A. Upon receiving (sid, Open, v) from Z for the first time, S sends (sid,
Tally) to FSTE. Upon receiving

(
sid,Tally, {(o, v)|(V, o, v, ·) ∈ Ltally}

)
from

FSTE, S records the tally. Next, S forwards the message (sid,Open, v) to A
as if it was from Z. Upon receiving (sid,Open, v), S playing the role of Fvm

returns the plaintext for that ballot to A. If the message doesn’t exist in the list
previously provided by FSTE, then S asks A for the opening of that message as
before.

The distribution of messages is exactly the same in both settings, since the
algorithms that are used are the same. As a result the simulation is perfect. ut

4 Realizing Fvm via TLE

We define one of our main building blocks, the FTLE functionality that cap-
tures the security properties of a time-lock encryption (TLE) scheme. Intuitively
speaking, a TLE scheme is a pair of algorithms (e, d) that a party Pi can use in
order to encrypt a message m with time label τdec such that everyone can de-
crypt that message after the current time exceeds τdec. The decryption is possible
because after the time τdec, a witness wτdec

is available.
In Subsection 4.1, we provide a definition of the ideal TLE functionality FTLE.

In Subsection 4.2, we demonstrate a realization of FTLE via time-lock puzzles, as
the one in [30]. In Subsection 4.3, we construct a real-world protocol that UC-
realizes the vote management functionality Fvm (cf. Subsection 3.2) via FTLE.

4.1 Definition of FTLE

We provide the first UC treatment of TLE by defining the functionality FTLE,
following the approach of [6,8]. The functionality is described in Fig. 8, and at
a high level operates as follows.

18

The time-lock encryption functionality F leak
TLE.

The functionality initializes the lists of algorithms Lalgo and ready parties Lready as
empty.

� Upon receiving (sid,Corrupt,Pcorr) from S, it records the corrupted set Pcorr.

� Upon receiving (sid,Start) from a party P 6∈ Lready, it adds P → Lready and:

1. If Lalgo ≡ ∅, it forwards the message to S. Upon receiving (sid,Enc, Dec, eS ,
dS) from S, it registers the tuple (eS , dS)→ Lalgo. It returns (sid, Start Ok)
to P .

2. Else it returns (sid,Start Ok) to P .

� Upon receiving (sid,Enc,m, τdec) from P 6∈ Pcorr:

1. If τdec < 0 or P 6∈ Lready, it returns (sid,Enc,m, τdec,⊥) to P .

2. Else, it adds (m, c ← eS(0|m|, τdec; r), τdec, r) → Lrec, where r
$← {0, 1}|poly(λ)|

is the randomness of encryption, and returns (sid,Enc,m, τdec, c) to P after
informing the S for c via public delayed output.

� Upon receiving (sid,Dec, c, τ) from P 6∈ Pcorr:

1. If τ < 0 or Pi 6∈ Lready, it returns (sid,Dec, c, τ,⊥) to P . Else, it reads the time
Cl from Gclock and:

(a) If Cl < τ , it sends (sid,Dec, c, τ,More Time) to P .
(b) If Cl ≥ τ , then

– If there are two tuples (m1, c, τ1, r1), (m2, c, τ2, r2) in Lrec such that m1 6=
m2 where τ ≥ max{τ1, τ2}, it returns to P (sid,Dec, c, τ,⊥).

– If no tuple (·, c, ·, ·) is recorded in Lrec, it sends (sid,Dec, c, τ) to S and
returns to P whatever it receives from S.

– If there is a unique tuple (m, c, τdec, r) in Lrec, then if τ ≥ τdec, it returns
(sid, Dec, c, τ , m) to P . Else, if Cl < τdec, it returns (sid, Dec, c, τ ,
More Time) to P . Else, if Cl ≥ τdec > τ , it returns (sid, Dec, c, τ ,
Invalid Time) to P .

� Whatever message it receives from P ∈ Pcorr, it forwards it to S and vice versa.

� Upon receiving (sid,Leakage) from S, it reads the time Cl from Gclock and returns
(sid,Leakage, {(m, c, τdec)}τdec:τdec≤leak(Cl)) to S.

Fig. 8. Functionality FTLE parameterized by λ, a leakage function leak, interacting with
simulator S, parties in P, and global clock Gclock.

Initially, the simulator S provides FTLE with the corrupted parties set and
the encryption/decryption algorithms. Each time an encryption query issued by
an uncorrupted party is given to FTLE, the functionality records the message
and the encryption not of the message, but of the all zero string and returns the
ciphertext. This illustrates the fact that the ciphertext itself does not contain
any information about the message. Next, it handles the decryption queries
appropriately, unless it finds two messages recorded with the same ciphertext, in
which case it outputs ⊥. This implies that the encryption/decryption algorithms
should satisfy correctness. In the cases of encryption/decryption queries issued

19

by corrupted parties, FTLE responds according to the instructions of S. Moreover,
on demand, FTLE gives the record of all messages with encryption up to leak(Cl)
to S, where Cl is the current time and leak a leakage function that takes as
an input a time and gives as an output a time of at least as high value. This
function leak captures the fact that in some cases the adversary can decrypt
messages before the time comes. Ideally the “best” leak function with respect to
security is the identity one, the one that gives no real advantage to the adversary.
Unfortunately, there are some time-lock encryption schemes where the adversary
can decrypt a little bit earlier than the honest voters. For example time-lock
encryption that is based on bitcoin. This is happening because the adversary can
locally compute some witnesses (selfish mining) without announcing them to the
rest of the parties. In the context of e-voting, it means that the adversary for
these time-lock instantiations might decrypt the ballots before the tally phase,
learn the election outcome and change its vote (violation of fairness). Fortunately,
even these time-lock encryption schemes are useful in voting if we introduce a
“time wait” period, that’s it a period where no one can cast a ballot and ballots
can not be opened either. In that period, the adversary can open the ballot but
it can not change its vote because the casting period is over. This is why we
defined the predicates define time, Status. As we see next, these predicates
are instantiated with the leakage function in order our FTLE to be able to realise
Fvm.

4.2 Realization of FTLE via time-lock puzzles

In this subsection we present the realization of FTLE via a protocol that uses a
pair of encryption/decryption algorithms that satisfy a pair of specific properties
(cf. Definition 2). We claim that the construction by Rivest et al. proposed in
[30] satisfies these properties.

The general idea of a time-lock puzzle scheme is that the parties have re-
stricted access to a specific computation in a period of time in order to solve
that puzzle (in [30]’s case that computation is the repeated squaring). Of course,
the underlying assumption here is that there is no “better” way to solve that
puzzle except for applying the specific computation. Some of the most prominent
proposed time-lock constructions are based on such assumption [30,25,2].

In the UC framework, in order to construct a time-lock protocol we need to
abstract such computation into an oracle, namely Feval. The reason behind this
is simple. In UC all the parties are allowed to run polynomial time with respect
to the protocol’s parameter. As a result, it is impossible to restrict a party in a
specific period of time to apply a certain number of computations. That is why
we need to abstract such computation into a functionality/oracle and wrap the
oracle with a functionality wrapper, similar to [2], for restricted access.

Next, we present the evaluation oracle Feval, the functionality wrapperWq(Feval),
and we define what is a pair of encryption/decryption algorithms with respect
to an oracle. Finally, we present the protocol ΠTLE and we provide a security
definition that every TLE construction should satisfy such that ΠTLE UC realizes
FTLE.

20

The evaluation functionality Feval(D,P).

Initializes an empty evaluation query list Leval.

� Upon receiving (sid,Evaluate, x) from a party P ∈ P, it does:

1. It checks if (x, y) ∈ Leval for some y. If no such entry exists, it samples y
from the distribution Dx and inserts the pair (x, y) to Leval. Then, it returns
(sid,Evaluated, x, y) to P . Else, it returns the recorded pair.

Fig. 9. Functionality Feval parameterized by λ,a family of distributions D = {Dx|x ∈
X} and a set of parties P.

The evaluation functionality Feval. Initially, the functionality Feval (cf. Fig 9)
creates the list Leval so that it can keep a record of the queries it received so far.
After Feval receives a query from a party, it checks if this query was issued before.
If this is the case, it returns the recorded pair. If not, then for the query x it
samples from the distribution Dx the value y. This distribution in Rivest et al.
case [30] illustrates the repeated squaring (we define how explicitly later), or in
cases such as in [25,2] is a random value over a domain (thus Feval is the random
oracle). Finally, it returns to that party the pair (x, y).

The functionality wrapperWq(Feval). The functionality wrapper (cf. Fig. 10)
when it receives an evaluation query with a ciphertext c from a party P it reads
the time Cl from Gclock. If this is the first time that this query with c is issued,
then it creates the list LP,cactivity in order to keep track of the queries. In the
case that this is the first query for c it checks if the first query is equal with
statec0 and if it is labeled as the first query. The function state0 takes as an
input a ciphertext c and outputs the first query (in Rivest’s et al. construction
this is the base of the repeated squaring). When it receives the answer from
the functionality/oracle Feval, Wq(Feval) records it and returns the answer to
party P . If this is not the first time a query was issued for the ciphertext c, the
functionality wrapper checks if the query is equal with the previous recorded
answer of Feval (formation of chain) and if the number of queries for that time
Cl does not exceed q. This illustrates the fact that the queries should form a
chain (e.g., repeated squaring) and parties have limited number of queries per
ciphertext per clock round. In [2], the functionality wrapper is defined in the
same spirit. The difference is that in [2] the number of queries for each party
each round is upper bounded by q, whereas here q is the upper bound for each
ciphertext each party each round. The reason behind this is that we care to
capture not only the restricted access to the functionality oracle in general but
with respect to a ciphertext.

21

Functionality wrapper Wq(Feval,Gclock,P, state0).

� Upon receiving (sid,Evaluate, c, x, τdec, j) from P ∈ P it reads the time Cl from
Gclock and does:

1. If there is not a list LP,cactivity it creates one and does:

(a) If j = 1 ∨ statec0 = x, it inserts the tuple-(c, τdec, {∅},Cl, 0) to LP,cactivity and
sends (sid,Evaluate, x) to Feval. Upon receiving (sid,Evaluate, x, y) from
Feval, it registers (x, y) as (statec0, state

c
1) and updates the previous tuple

to (c, τdec, {(statec0, statec1)},Cl, 1) and sends (sid,Evaluate, c, x, τdec, j, y)
to P .

2. Else it does:
(a) If there is a tuple of the form (c, τdec, {(stateck−1, state

c
k)}j−1

k=1,Cl, j−1) with
x = statecj−1∧j−1 ≤ q, it sends (sid,Evaluate, x) to Feval. Upon receiving
(sid,Evaluate, x, y) from Feval, it registers (x, y) as (statecj−1, state

c
j) and

updates the previous tuple to (c, τdec, {(stateck−1, state
c
k)}jk=1,Cl, j). Then

it sends (sid,Evaluate, c, x, τdec, j, y) to P .
(b) Else, if there is a tuple of the form (c, τdec, {(stateck−1, state

c
k)}qk=1,Cl−1, q)

with x = statecq ∧ j = 1 it sends (sid,Evaluate, x) to Feval. Upon receiving
(sid,Evaluate, x, y) from Feval, it registers (x, y) as (statec0, state

c
1) and

inserts the tuple-(c, τdec, {(statec0, statec1)},Cl, 1) to LP,cactivity. Then it sends
(sid,Evaluate, c, x, τdec, j, y) to P .

3. In any other case it sends (sid,Evaluate, c, x, τdec, j,⊥) to P .

Fig. 10. The Functionality wrapperWq(Feval) parameterized by λ, a number of queries
q, an initial state function state0, functionality Feval, Gclock and parties in P.

Algorithms with respect to an oracle. A pair of time-lock algorithms
(eO, dO) with respect to an oracle O3 are a randomized and a deterministic
Turing machine respectively that: The encryption algorithm eO accepts as an
input a message m, the current time Cl, the decryption time τdec and a ran-
domness r 4and outputs a ciphertext c. The decryption algorithm dO accepts
as an input the ciphertext c, and the witness wτ

4. The function interacts with
the oracle so that it can decide what value to output. Specifically, the function
checks if the queries that are needed so that the witness wτ can be constructed
are issued through the oracle. This is achieved by an interaction between the
algorithm and the oracle itself. Of course, such interaction is compatible with
the oracle’s interface. For that task, it is necessary that there is a function that
“decomposes” the witness wτdec

to oracle queries so that dO can check if these
queries are issued through the oracle. As a result, algorithm dO needs to be
parameterized by such a function. For simplicity reasons we keep the same no-
tation. The most “interesting” algorithms from the security perspective are the
ones that output ⊥ in the case that the queries are not recorded to the oracle,
and the actual message if they are.

3 In UC setting, the oracle is the evaluation functionality Feval.
4 In UC setting, it also accepts the current sid where the protocol is executed.

22

Protocol ΠTLE(Wq(Feval), eFeval , dFeval ,Gclock,FRO,Fan.BC,P).

� Upon receiving (sid,Start) from Z, P does the following:

1. If status is ‘not ready’, it changes the status to ‘ready’ and it does:

(a) It records the pair (e, d), where e(·m, ·τdec , ·sid, ·Cl; r1||r2) ←
(eFeval (·r1 , ·τdec , ·sid, ·Cl; r2),H(·r1) ⊕ ·m,H(·r1 ||·m)) and d(·c, ·wτdec

, ·sid) ←
(·x ← dFeval (·c1 , ·wτdec

, ·sid), ·m ← H(·x) ⊕ ·c2 , ·Requal(H(x||m),c3)), where (i)
Requal(a, b) is 1, if a = b, and 0 otherwise, and (ii) H(·) is an abbreviation
of a call to the random oracle FRO.

(b) It outputs (sid,Start Ok).

� Upon receiving (sid,Enc,m, τdec) from Z, P does:

1. If τdec < 0 or status is ‘not ready’, it returns (sid,Enc,m, τdec,⊥) to Z.

2. Else it picks r1
$← {0, 1}|poly(λ)| and sends (sid,Query, r1) to FRO. Upon re-

ceiving (sid,Random Oracle, r1, h) from FRO, P sends (sid,Query, r1||m)
to FRO. Upon receiving (sid,Random Oracle, r1||m, c3) from FRO, P reads
the time Cl from Gclock and computes c ← (eFeval (r1, τdec, sid,Cl), h ⊕
m, c3). Then, it sends (sid,Broadcast, c, τdec) to Fan.BC. Upon receiving
(sid,Broadcast, c, τdec) from Fan.BC, it outputs (sid,Enc,m, τdec, c) to Z.

� Upon receiving (sid,Broadcast, c := (c1, c2, c3), τdec) from Fan.BC, P reads the
time Cl from Gclock and does:

1. It creates an empty list LP,c1record.
2. It inserts the tuple-(c1, τdec, {∅}queries,Cl, 0) → LP,c1record and computes and stores

statec10 .
3. For (j = 1; q; j + +) It sends (sid,Evaluate, c1, state

c1
j−1, τdec, j) to Wq(Feval).

Upon receiving (sid,Evaluate, c1, state
c1
j−1, τdec, j, y) fromWq(Feval), it creates

y → statec1j and updates (c1, τdec, {(statec1k−1, state
c1
k)}jk=1,Cl, j)→ LP,c1record.

� Upon receiving (sid,Advance Clock) from Z, P reads the time Cl from the
Gclock and does:

1. It collects all tuples of the form (c1, τdec, {(statec1k−1, state
c1
k)}qk=1,Cl− 1, 1) ∈

LP,c1record and for each one of them it repeats the previous steps [2,3] with statec10 ←
statec1q .

2. It sends (sid,Advance Clock) to Gclock and returns whatever it receives to Z.

� Upon receiving (sid,Dec, c := (c1, c2, c3), τdec) from Z, P reads the time Cl from
Gclock and does:

1. If τdec < 0 or status is ‘not ready’, it returns (sid,Dec, c, τdec,⊥) to Z.
2. It searches for a tuple of the form (c1, τdec, {(statec1k−1, state

c1
k)}qk=1, t, q) ∈ L

P,c1
record

with the maximum value t (that can be either Cl − 1 or Cl). If t = Cl − 1, it
updates the tuple by running the previous steps [2,3].

3. It collects all the sets {(statec1k−1, state
c1
k)}qk=1 for all the values of t in LP,c1record

and sets them as wτdec .
4. It runs x ← dFeval (c1, wτdec , sid) and it sends (sid,Query, x) to FRO. Upon re-

ceiving (sid,Random Oracle, x, h) from FRO, it computesm← h⊕c2. It sends
(sid,Query, x||m) to FRO. Upon receiving (sid,Random Oracle, x||m, c∗3)
from FRO: If c3 6= c∗3, it returns to Z (sid,Dec, c, τdec,⊥). Else, it returns to Z
(sid,Dec, c, τdec,m).

5. If such tuple doesn’t exists then it returns (sid,Dec, c, τdec,⊥) to Z.

Fig. 11. The Protocol ΠTLE in the presence of a functionality wrapper Wq, an evalu-
ation functionality Feval, a random oracle FRO, an anonymous broadcast functionality
Fan.BC, a global clock Gclock, a pair of algorithms eFeval , dFeval where is hard-coded in each
party in P.

23

The protocol ΠTLE. At the beginning of the protocol (cf. Fig. 11), each party
initializes their encryption/decryption algorithms by extending the ones they
have already hard-coded. This extension is based on the construction of [28,6]
and is important for the realization of FTLE. Recall that in FTLE all the ci-
phertexts eventually open. Moreover, in order to capture semantic security, the
ciphertext contains the encryption of the zero string in contrast to the real pro-
tocol that contains the encryption of the actual message. So, in order for the
simulator to be able to simulate this difference when the messages are opened, S
must be able to equivocate the opening of the ciphertext, else Z can trivially dis-
tinguish the real from the ideal execution of the protocol. When a party receives
an encryption request from Z it follows the description of the encryption algo-
rithm and then broadcasts the ciphertext. The broadcast is necessary because
if we want the message to be opened after a specific time for every party by
the time of its creation, the receiving parties must start to work on solving the
puzzle immediately [30]. In constructions such as in [25] this is not necessary be-
cause the puzzle is the same for every ciphertext posted in the blockchain. Next,
when a party receives the broadcast ciphertext it reads the time Cl from Gclock

and it queries q times the Feval through the functionality wrapper Wq for that
ciphertext. Similarly, when a party receives an advance clock command from Z
it reads again the time Cl from Gclock and issues q queries for all stored cipher-
texts that it holds. The queries illustrate the “effort” of the party to solve the
puzzle so that it can decrypt the message later. Finally, when a party receives
a decryption command from Z for a ciphertext c it uses the last state that it
received from the Feval through the functionality wrapper Wq as the decryption
key and returns to Z either a message m if the decryption was successful or ⊥,
otherwise. Note that, as in the construction of [28,6], the third argument in the
ciphertext makes the scheme non-malleable.

Definition of a secure TLE scheme. In Fig. 12, we present the experiment
EXPTLE in the presence of a challenger Ch and an adversary B. This experi-
ment illustrates the security of a TLE scheme in the sense that no adversary
can open a message before a certain number of computations have been done.
Specifically, we allow in a similar way as previously the adversary to have ac-
cess to the evaluation oracle Oeval. If the adversary queries the oracle q times
for a ciphertext c, the challenger, which maintains a counter for that cipher-
text, increases that counter by one. The queries are formed as before with the
initial query for ciphertext c the statec0. Upon request, the adversary receives a
challenging ciphertext from the challenger. If the adversary can guess correctly
the underneath plaintext with less than the required computations, then it wins
the game. We define a time-lock scheme to be secure if it satisfies two proper-
ties: (i) Correctness that captures the fact that the decryption of the encryption
of a message m leads again to the message m with high probability, and (ii)
q-Security according to which no adversary can win the experiment EXPTLE

except with small probability.
We assume that the description of the oracle Oeval in Fig. 12, is exactly the

same as the ideal functionality in Fig. 9 without the UC interface.

24

The experiment EXPTLE(BOeval ,ChOeval , q)

� Ch initialized with eOeval , dOeval and sends them to B.

� When B issues the query (Evaluate, x) to Oeval, it gets back (Evaluate, x, y).

� B can request the encryption of a message m ∈Mλ with time label τdec by send-
ing (Enc,m, τdec) to Ch, where Mλ is the domain of the messages.

� When Ch receives a (Enc,m, τdec) request from B, it runs the algorithm
eOeval (m, τdec) → c and creates a local counter Clc with respect to a ciphertext
c. Ch increases Clc by 1 (initially is 0) every time B queries Oeval q times with
respect to c. This is easily checkable from the query path that is recorded to Oeval.
The initial query is for the value statec0. After this, every query is linked with the
previous one. Ch returns c to B.

� B can request the decryption of a ciphertext c by sending (Dec, c, wτ) to Ch.
Then, Ch just runs the algorithm dOeval (c, wτdec) → y ∈ {m,⊥} and returns to B
(Dec, c, wτ , y).

� B can request for a single time a challenge from Ch by sending (Challenge, τ).

Then, Ch picks a value r
$←Mλ and sends (Challenge, τ, eOeval (r, τ)) to B.

�B sends as the answer of the challenge cr := eOeval (r, τ) the value r∗ to Ch. Specif-
ically, it sends (Challenge, τ, eOeval (r, τ), r∗).

� If (r∗ = r)∧ (τ > Clcr) (i.e., B manages to decrypt cr before the decryption time
comes) then EXPTLE outputs 1. Else, EXPTLE outputs 0.

Fig. 12. Experiment EXPTLE for a number of queries q in the presence of an adversary
B, Oeval and a challenger Ch all parameterized by 1λ.

We provide our property-based definition of a secure TLE scheme below.

Definition 2. A secure time-lock encryption scheme with respect to a evalua-
tion oracle Oeval for message space M and parameter λ is a pair of PPT algo-
rithms (eOeval

, dOeval
) such that:

– eOeval
(m, τdec, 1

λ): The encryption algorithm takes as input message a m ∈
M, an integer τdec ∈ N, the security parameter λ and outputs a ciphertext c.

– dOeval
(c, wτdec

): The decryption algorithm takes as input wτdec
∈ {0, 1}∗ and a

ciphertext c, and outputs a message m ∈M or ⊥.

(eOeval
, dOeval

) satisfies the following properties:

1. Correctness: For every λ, τdec ∈ N and every m ∈M, it holds that Pr
[
c←

eOeval
(m, τdec, 1

λ) : m = dOeval
(c, wτdec

)
]
> 1−negl(λ) , where wτdec

is produced
through Oeval.

2. q-Security: For every PPT adversary B with access to oracle Oeval, the
probability to win the experiment EXPTLE(BOeval ,ChOeval , q) in Fig.12 is at
most negl(λ).

25

Next, we show that if the TLE scheme used in protocol ΠTLE in Fig. 11 is a
secure time-lock encryption scheme according to Definition 2 then the protocol
ΠTLE UC realizes FTLE.

Theorem 2. Let (eOeval
, dOeval

) be a pair of encryption/decryption algorithms
that satisfies Definition 2. Then, the protocol ΠTLE(Wq(Feval), eFeval

, dFeval
,Gclock,FRO,Fan.BC,P)

UC-realizes functionality F leak
TLE with leakage function leak to be the identity func-

tion.

Proof (Sketch). Let us suppose that protocol ΠTLE does not UC-realize F leak
TLE.

Then, by Definition 1, there is an adversary A s.t. for every simulator S there

is an environment Z s.t.: |Pr[EXECΠTLE

Z,A = 0]− Pr[EXEC
FTLE

TLE

Z,S = 0]| > α(λ)(1) ,
where α() is a non negligible function.

Now consider the specific simulator S below: At the beginning, S receives the
corruption vector from Z and informs A. When S gets the token back from A, it
sends the corruption vector to F leak

TLE. If S receives Start from F leak
TLE, it generates

a pair of algorithms (eS , dS) with the same description as the pair (e, d) in the
protocol ΠTLE except that the created cipher texts c2, c3 are equal to a random
value which is part of the random coin the algorithm eS uses. When S receives
an encryption request from F leak

TLE on behalf of a corrupted player, it forwards the
message to A the request as if it was from that party. Then, S returns whatever
receives from A to F leak

TLE. Observe that there is no interaction between F leak
TLE and

S in an encryption request on behalf of an honest party. Similarly, in protocol
ΠTLE there is not interaction between the encryption algorithm and the Feval.
In case S receives a decryption request from F leak

TLE with ciphertext c and time
label τdec on behalf of an honest party, it does:S generates the witness wτdec

and updates its list LSeval(initially empty) exactly as Feval in protocol ΠTLE for
consistency between the witness and the oracle queries. Then, S returns to F leak

TLE

the message m← dS(c, wτdec
).

If S receives a decryption request for a ciphertext c with time label τdec from
F leak

TLE on behalf of a corrupted party, it forwards the message to A as if it was
from that party. Then, if S is activated via the algorithm dS for the ciphertext c
with witness wτdec

(see definition 4.2), it returns m← dS(c, wτdec
) to A. S returns

whatever receives from A as if it was the corrupted party back to F leak
TLE. In case S

receives a random oracle query request from FTLE on behalf of a corrupted party,
it forwards the message to A as if it was from that party. When S receives this
request from A playing the role of FRO, it sends the command Leakage to F leak

TLE.
Then S checks if the received record from F leak

TLE contains any relation between
a message m and the random oracle query that S received initially from the
corrupted party. If S finds such relation, it programs the oracle so that ciphertext
can be opened to message m. Then, it responds to A as if it was the FRO. In
the case S founds the oracle query but the list does not contain the message, it
outputs “⊥”(meaning that the adversary was lucky enough to guess a plaintext
before the time comes, or the adversary “broke” the security of the encryption
scheme). In any other case it behaves just like a random oracle. Finally, when
S receives the command Evaluate from F leak

TLE on behalf of a corrupted party, it

26

forwards the message to A as if it was that party. When S receives the Evaluate
command from A on behalf of the corrupted party as if it was Wq(Feval), it
behaves exactly as Wq(Feval) in protocol ΠTLE. Therefore, for S defined above
there is an ZS such that Eq. (1) holds. Moreover lets us suppose that the pair
(eOeval

, dOeval
) satisfies the Correctness property. We construct an adversary B

that can break the q−Security with probability at least α̃(λ), where α̃() a non
negligible function. Observe that the only way ZS to distinguish the real from
the ideal execution of our protocol with non-negligible probability is to decrypt
the first argument of a ciphertext, namely c1, generated by an honest party
before the time comes. This is possible if ZS is able to construct a witness wτdec

for a honest generated ciphertext c1 via the queries issued by a corrupted party
toWFeval

in the real execution of the protocol or in S in the ideal execution given
that the global time Cl provided by Gclock is strictly smaller than τdec. Next, ZS
will request a random oracle query by a corrupted party with the query value to
be the plaintext of the ciphertext c1. Next, S in order to equivocate correctly,
it needs the corresponding message. But if the time of that message has not
come yet (e.g Cl < τdec), the recorded table that S will request from F leak

TLE via
the Leakage command, it will not contain that message. As a result, S will
fail to equivocate correctly and ZS can distinguish the two executions. Now B
takes advantage of that environment, and uses it in order to win the experiment
EXPTLE with non negligible probability in the following way: B simulates the
interface to the environment as in the ideal execution of the protocol in the
presence of the global clock, except when receiving (sid,Evaluate, c, x, τdec, j)
from Z where it forwards the message (Evaluate, x) to the oracle Oeval in
EXPTLE. When ZS advances the clock, B does nothing more than allowing
ZS to make more evaluation queries to Feval for each ciphertext in the way
described before. Any other procedure is run locally by B. Now, B knows that
the environment will make at most pH(λ), penc(λ) random oracle and encryption
queries respectively, where pH,enc() are polynomial functions. At least one of
these random oracle queries made by ZS , from our hypothesis, will contain the
plainttext (namely the value r1 as described in Fig. 11) of one of the penc(λ)
ciphertexts that has been decrypted by ZS before its time with non negligible

probability α(λ). Therefore, B picks j1
$← {1, . . . , penc(λ)}. When ZS issues the

j1-th encryption query (sid,Enc,m, τdec) to an honest party simulated by B, B
proceeds as follows: If τdec > Cl, then it sends (Challenge, τdec − Cl) to Ch.
When B receives (Challenge, τdec − Cl, c1) from Ch, B picks c2, c3 exactly as

FTLE and returns (sid,Enc,m, τ, c ← (c1, c2, c3)) to ZS . Then, B picks j2
$←

{1, . . . , pH(λ)}. When ZS issues the j2-th random oracle query (sid,Query, x)
to a corrupted party, B sends x to Ch as the answer to the challenge. It can
be seen that the probability x to be the answer of the challenge is at least
1/(penc(λ)pH(λ)) · α̃(λ). ut

Finally, we claim that the TLE construction of Rivest et al. [30] is a secure
time-lock encryption scheme with:

27

1. The oracle queries are of the form (Evaluate, (22
j

, 2)) with oracle response

h = 22
j+1

mod n where n is a safe composite number [30]. As a result, the
distribution Dx=(22

j
,2) is the constant distribution.

2. The encryption and decryption algorithms (eFeval
, dFeval

) are described in [30]
with puzzle time complexity τdec−Cl (in the UC description). The time τdec

gives us the essence of absolute time that a ciphertext should be opened.
On the other hand, eFeval

in [30] functions in relativistic time. To compute
relativistic time, both values Cl and τdec are provided to eFeval

. Specifically, by
considering the notation in Fig. 11 the algorithm eFeval

works as follows: 1)
The algorithm picks at random a safe composite number n by using part of
the randomness r2. 2) It uses a standard symmetric key encryption scheme
in order to encrypt message r1 with a random key r∗2 , which can be derived
from randomness r2. The resulting ciphertext is cr1,r∗2 . 3) It picks a random α

mod n and computes cr∗2 = r∗2 +α2τdec−Cl

mod n. 4) It outputs the ciphertext
c1 = (n, α, τdec − Cl, cr∗2 , cr1,r∗2).
Similarly the decryption algorithm dFeval

uses the witness wτdec
= r∗2 to re-

trieve the message r1 from the ciphertext cr1,r∗2 .

4.3 A protocol Π
FTLE,{FP

cert},Fan.BC,Gclock
vm that realizes Fvm

The description of Π
FTLE,{FPcert},Fan.BC,Gclock
vm shown in Fig. 13 follows the phases and

the command interface of Fvm in Subsection 3.2.

Definition 3. Let leak be a leakage function and tcast, topen be time points. We
say that the pair of functions Statusleak, define timeleak with respect to a leakage
function leak is phase preserving if there is no time s.t. the Cast and Tally
phases are simultaneously active. Formally, the following property holds:

∀Cl such that Statusleak(Cl, t,Cast) = > ⇒ Statusleak(leak(Cl), t,Open) = ⊥ ,

where t← define timeleak(tcast, topen)

Theorem 3. Πvm UC-realizes Fvm in the {F leak
TLE,Fan.BC, {FPcert},Gclock}-hybrid

model given that the pair of functions Statusleak, define timeleak is phase preserving.

Proof. In cases where a corrupted party receives an input and we do not describe
her behaviour, we assume that the message is sent to S from Fvm and S forwards
that message to A as if it was from that party. Then S returns to Fvm whatever
receives from A.

We describe the ideal adversary S. When S receives the corruption vector
from Z, S forwards it to A as if it was from Z. When S receives back the
corruption vector from A playing the role of both of FTLE,FSA

cert, S forwards it to
Fvm. When S receives the setup information (sid,Setup Info, tcast, topen,Velig)
from Fvm, S sends ((SA, sid),Setup) to A as if it was from FSA

cert. Upon receiving
((SA, sid),Algorithms, Verify, Sign) from A playing the role of FSA

cert, S stores

28

the algorithms (Verify, Sign) and produces the signature σ ← Sign(tcast, topen,
Velig).

The vote management protocol Π
F leak

TLE,Fan.BC,{Ficert},Gclock
vm .

Each voter V maintains a list of the cast ballots LVcast initially as empty. Each voter
initializes its status to ’exec’.

� Upon receiving (sid,Setup Info, tcast, topen,Velig) for the first time from Z, SA
sends ((SA, sid), Setup) to FSA

cert, and waits to receive ((SA, sid), Setup) from FSA
cert.

Then SA computes t← define timeleak(tcast, topen) and if t 6= ⊥ it sends ((SA, sid),
Sign, (SA, tcast, topen,t,Velig)) to FSA

cert. Upon receiving ((SA, sid), Signature, (SA,
tcast, topen,t,Velig), s) from FSA

cert, it sends (sid, Broadcast, (SA, tcast, topen,t,Velig,
s)) to Fan.BC.

� Upon receiving (sid,Broadcast, (SA, tcast, topen,t,Velig, s)) from Fan.BC, V sends
((SA, sid), Verify, (SA, tcast, topen,t,Velig), s) to FSA

cert. If it returns 1, she stores tcast,
topen,t,Velig.

� Upon receiving (sid,Start) from Z, V forwards the message to FTLE. Upon
receiving (sid, Start Ok) from FTLE, V outputs the received message.

� Upon receiving (sid,Gen Ballot, o) from Z, V does:

1. If this is the first time receiving this command-message and V ∈ Velig, V sends
to FTLE (sid,Enc, o, topen). Upon receiving (sid,Enc, o, topen, v) from FTLE, V
stores the pair (V, v, o, 1) and returns the message (sid,Gen Ballot, o, v) to
Z.

2. Else, V returns to Z (sid,Gen Ballot, o,⊥).

� Upon receiving (sid,Cast, v, σ) from Z, if her status is ‘exec’, V reads the time
Cl from Gclock. If Statusleak(Cl, t,Open) = >, V sets the status to ‘open’. Otherwise
V does:

1. If there is a tuple of the form (V, v, ·, 1) stored and it is the first time receiv-
ing this command-message, V sends (sid,Cast, v, σ) to Fan.BC. Upon receiving
(sid,Cast, v, σ) from Fan.BC, V ∗ stores the tuple (v, σ) to LV

∗
cast.

2. Else, V returns (sid,Cast, v, σ,⊥) to Z.

� Upon receiving (sid,Open, v∗) from Z, if there is a tuple (v∗, σ∗) ∈ LVcast, V sends
(sid,Dec, v∗, topen) to FTLE.

1. Upon receiving (sid,Dec, v∗, topen, o
∗) from FTLE, V returns the message

(sid,Open, v∗, o∗) to Z.
2. Upon receiving (sid,Dec, v∗, topen,⊥) from FTLE, V returns the message

(sid,Open, v∗,⊥) to Z.

Fig. 13. Definition of Πvm in the {F leak
TLE,Fan.BC, {FPcert},Gclock}-hybrid model in the pres-

ence of V and SA.

Then S asks A if it allows the cast of the message (tcast, topen,Velig, σ) as if
it was from Fan.BC.

Then, S responds to Fvm according to the answer of A.

29

Next, if S receives (sid,Start) from Fvm, S forwards the message to A as
if it was from FTLE. Upon receiving the time-lock algorithms (sid, Enc, Dec,
eA, dA) from A, S returns the message (sid, Setup Info, GenBallot = eA,
OpenBallot = dA) to Fvm.

Upon receiving a Gen Ballot request from Fvm on behalf of a corrupted
party Vi, S forwards the message to A as if it was from FTLE and it returns the
response of A to Fvm. Upon receiving (sid,Allow Cast, v, σ) from Fvm, S asks
A if it allows the broadcast of (v, σ) as if it was from Fan.BC. If the broadcast is
allowed, S sends (sid,Cast Allowed) to Fvm. When S receives a Cast request
from Fvm on behalf of a corrupted party Vi, it forwards the message to A as if
it was from Fan.BC and it returns the message it received from A back to Fvm.

Upon receiving (sid,Open, v) from Fvm (where v is a ballot not generated by
Fvm), S sends (sid, Dec, v, topen) to A as if it was from FTLE. When S receives
(sid, Dec, v, topen, o) from A, it returns the message (sid, Open, v, o) to FTLE.

Upon receiving (sid,Leakage) from Z, S forwards the message to A as if it
was from Z. Upon receiving (sid,Leakage) from A, S reads the time Cl from
Gclock. Then S playing the role of FTLE returns to A all the maliciously generated
cipher texts with time labeling until time leak(Cl). If Statusleak(Cl, t,Open) =
Statusleak(Cl, t,Cast) = Statusleak(Cl, t,Cred) = ⊥, then S can request and give
also the honest generated cipher texts from Fvm and returns them to A as if it
was from from FTLE. Note that all honest parties will use FTLE with the same
time labeling for encryption requests and at most once. The only way simulation
fails is when the Statusleak(Cl, t,Cast) = > and Statusleak(leak(Cl), t,Open) = >
because in that case S can not retrieve the honestly generated plain texts from
Fvm so it can’t give a response on behalf of FTLE to A on a (sid,Leakage)
command. By the definition of Statusleak and define timeleak this is impossible
to happen.

The distribution of messages is exactly the same in both the ideal and the
hybrid setting, as the algorithms GenBallot ≡ eA and OpenBallot ≡ dA that
are used are the same. As a result the simulation is perfect. ut

5 Realizing Felig via accumulators

This section describes the primitives needed to build a real protocol that realizes
the eligibility functionality. Since cryptographic accumulators do not have a
suitable UC treatment in the literature that would fit our purpose , Subsections
5.1 and 5.2 provide an ideal accumulator functionality and link it to a standard
definition. Note that recently, [3] provided a UC functionality for accumulators,
however it is not suitable for our protocol since it requires the accumulation
operation to be managed centrally by some authority. Subsection 5.3 presents
the Πelig protocol.

5.1 Definition of Facc

The purpose of secure accumulators is to provide an object representing a set
and create witnesses for specific items being in the set. Our starting point for

30

this functionality is the property-based definition by [7] provided below. In this
model, it is assumed that a trusted accumulator manager runs Gen to generate
both the public parameters and the secret trapdoor. Note that the deletion
command in the interface of Facc is optional and is included for completeness.
Specifically, in the context of E-cclesia, deletion is totally omitted making the
accumulator manager to participate only in the Setup phase.

Definition 4 (Accumulator). AC = (Xλ, Gen) is an accumulator scheme for
a family of inputs {Xλ} if it has the following properties:

1. Efficient generation
Gen is an efficient probabilistic algorithm such that Gen(1λ)→ (f, aux f) for
random f ∈ Fλ, where Fλ is a family of functions.

2. Efficient evaluation
f ∈ Fλ is a polynomial-size circuit such that f(w, x)→ a for (w, x) ∈ Uf×Xλ
and a ∈ Uf where Uf is an efficiently samplable domain for f .

3. Correctness
w ∈ Uf is a witness for x ∈ Xλ in the accumulator a ∈ Uf under f if

Verifyf (w, x, a)→ > where Verifyf (w, x, a) := f(w, x)
?
= a.

4. Quasi-commutativity
For all f ∈ Fλ, u ∈ Uf , x1, x2 ∈ Xλ: f(f(u, x1), x2) = f(f(u, x2), x1). So
for X = {x1, . . . , xm} ⊂ Xλ, f(u,X) := f(f(. . . (u, x1), . . .), xm).

5. Witness unforgeability
Let U ′f × X ′λ denote the domains for which the computational procedure for
function f ∈ Fλ is defined (so Uf ⊆ U ′f ,Xλ ⊆ X ′λ).
AC is secure if for all PPT adversaries Aλ:

Pr[f ← Gen(1λ);u← Uf ; (x,w,X)← Aλ(f,Uf , u) :

X ⊂ Xλ;w, a ∈ U ′f ;x ∈ X ′λ;x 6∈ X;

Verifyf (u,X, a) = Verifyf (w, x, a) = >] = negl(λ) .
6. Efficient deletion

AC is dynamic if there exist efficient algorithms Delete, Update such that
if x, x′ ∈ X and Verifyf (u, X, a) = Verifyf (w, x, a) = >, then:
Delete(aux f , a, x

′)→ a′ such that Verifyf (u, X\{x′}, a′) = >,
and Update(f, a, a′, x, x′)→ w′ such that Verifyf (w′, x, a′) = >.

Remark 1. Definition 4 is well known, but it is not the only definition of accu-
mulators in the standard model [15]. The reason for matching our functionality
to this particular definition is that it suits the public setting that we wanted
to model the best. As opposed to the more common definitions which involve a
central authority responding to requests for accumulation, here the accumulator
is a public function which any party can use.

The definition of the ideal functionality Facc is shown in Figures 14 and 15.
Facc, parameterized by the input set Xλ, stores a list Lacc of (a, X, w) entries
where a is the accumulator value, X is the set of accumulated items and w is
either another accumulator or the basis u, a fixed value representing the empty

31

Setup.

The lists Lacc, Lsets and Lref are initialized as empty.
� Upon receiving (sid, Setup) from the manager M for the first time, it sends (sid,
Setup, Xλ) to S. Upon receiving (sid, Algs, (Uf , u), f , Verify, Delete, Update)
from S, it sets params = (Xλ, Uf , u) and sends (sid, Algs, params, f , Verify,
Delete, Update) to M .
� Upon receiving (sid, Params) from any party P , it returns (sid, Params, params,
f , Verify, Update) to P .

Accumulation.

� Upon receiving (sid, Accum, w, X) from party P :

1. If X 6⊆ X ′λ or w 6∈ U ′f , it aborts.
2. If there is (a, X, w) ∈ Lacc for some a, it returns (sid, Accum, a) to P .
3. It computes a← f(w,X).
4. If a 6∈ Uf or Verify(w, X, a) 6= >, it aborts.
5. If w = u, it creates La ← [X].

Else if there is (w,Lw) ∈ Lsets for some Lw, it creates La ← [W ∪ X : W ∈
Lw].
Else it adds (w, Wr) to Lref , and creates La ← [Wr ∪X].

6. If there is (a, L′a) ∈ Lsets for some L′a, it replaces the pair with (a, L′a ||La) (i.e.
it appends La to L′a) unless L′a = La.
Else if for any A ∈ La, there is (a′, L′a) ∈ Lsets for some a′ 6= a and A ∈ L′a, it
aborts.
Else if (a,Ar) ∈ Lref for some Ar:
(a) For every (a′, L′a) ∈ Lsets, it replaces each occurrence of Ar in L′a with

items from La (so each A′ = Ar ∪ . . . can expand into multiple E =
A ∪ . . .).

(b) For any E, if there is (a′′, L′′a) ∈ Lsets for some a′′ 6= a′ such that E ∈ L′′a ,
it aborts.

(c) It removes (a,Ar) from Lref and it adds (a, La) to Lsets.
Else, it adds (a, La) to Lsets.

7. It adds (a,X,w) to Lacc and returns (sid, Accum, a) to P .

Deletion.

� Upon receiving (sid, Delete, a, x, A) from manager M :

1. If A 6⊆ X ′λ, a 6∈ Uf or x 6∈ A, it aborts.
2. If there is no (a, {x}, w) ∈ Lacc for some w, and no (a, La) ∈ Lsets such that

A ∈ La, it aborts.
3. It computes a′ ← Delete(a, x).
4. If a′ = u and A = {x}, it skips to Step 7.
5. If Verify(u, A\{x}, a′) 6= >, it aborts.
6. It runs Step 6 of Accum for a′ and La = [A\{x}].
7. It returns (sid, Deleted, a′) to M .

� Upon receiving (sid, Update, a, a′, x, x′, A) from P :

1. If A 6⊆ X ′λ, a, a′ 6∈ Uf or x, x′ 6∈ A, it aborts.
2. It runs Step 2 of Delete.
3. It computes w′ ← Update(a, a′, x, x′). If Verify(w′, {x}, a′) 6= >, it aborts.
4. It runs Steps 5 to 7 of Accum for w′ and a′.
5. It returns (sid, Updated, w′) to P .

Fig. 14. Setup, accumulation and deletion commands of Facc.
32

set. Since Facc is not producing the witnesses itself, to ensure correctness it needs
to keep some auxiliary information. Lsets is a list of (a, [S1, S2, . . .]) entries for
each a in Lacc, where [S1, S2, . . .] is a list of all known representations of the
contents of the set accumulated in a. Lref is a list of (a,Ar) entries which rep-
resents references to accumulators that have not been expanded yet. We call an
accumulator expanded if it has an entry in Lsets, i.e., there exists some repre-
sentation of its contents. If it is not expanded, there is no such entry, but Ar
may appear (syntactically) as part of some list Si for another entry. We denote
all such unexpanded references in capitals and with the r suffix. We call a set
fully-expanded if it does not contain references to any unexpanded accumulators.

To illustrate the use of these lists, we give an example execution for the
accumulation of items x1, x2, x3:
1. Accumulate {x2, x3} with witness a: Facc computes f(a, {x2, x3}) = b, adds

(b, {x2, x3}, a) to Lacc, (b, [Ar ∪ {x2, x3}]) to Lsets and (a,Ar) to Lref .
2. Accumulate x1 with witness u: Facc computes f(u, x1) = a and adds (a, {x1},
u) to Lacc and (a, [{x1}]) to Lsets. Since (a,Ar) is in Lref , the first entry in
Lsets expands to (b, [{x1, x2, x3}]) and (a,Ar) is removed from Lref .

3. Accumulate {x1, x2, x3} with witness u: Facc computes f(u, {x1, x2, x3})
= c. If c = b, it adds (c, {x1, x2, x3}, u) to Lacc, otherwise it aborts.

We can now describe the individual commands.
Setup. Upon initialization, Facc asks the adversary for the parameters and for
the accumulation and verification algorithms. It distributes these to any party
that asks. The party M that first calls the functionality is the designated accu-
mulator manager. The Delete algorithm implicitly includes the trapdoor (aux f
in Definition 4).
Accumulation. In an Accum call, Facc first checks if the given input has an
associated accumulator value in Lacc and returns it if that’s the case. If not, it
computes the value and checks that it verifies. Step 5 ensures the propagation
of known sets throughout the Lsets list.

For example, suppose Facc is given witness w and input {z}. If (w, [Xr ∪
{y}, {x, y}]) ∈ Lsets and (x,Xr) ∈ Lref , then the La corresponding to the newly
calculated accumulator a will have to be of the form [Xr ∪{y, z}, {x, y, z}]. Step
6 ensures that the output is consistent and does not invalidate previous values,
and that references to incomplete sets are updated correctly. Continuing the
example, if (a, [Yr ∪ {x, z}]) ∈ Lsets, Facc appends the newly calculated sets to
the existing list, replacing the old entry with (a, [Yr∪{x, z}, Xr∪{y, z}, {x, y, z}]).
If there is no such entry, but there is a′ 6= a such that (a′, [{x, y, z}]) ∈ Lsets,
then correctness is violated and Facc aborts. The third condition deals with the
case when the computed a has a reference (a,Ar) ∈ Lref . The inputs w and {z}
reveal something about the contents of Ar, which lets Facc update all the entries
in Lsets which contain Ar as long as there are no conflicts. A conflict could arise
if there were (a′, [Ar ∪ {s}]), (a′′, [{x, y, z, s}]) ∈ Lsets with a′ 6= a′′, because
Ar ∪ {s} expands to {x, y, z, s}.
Deletion. (Optional) To match the model of [7], only the manager M can delete,
but any party P can update their witness after a deletion. We stress that in E-

33

cclesia deletion commands never occur, so the manager is not required after
the Setup phase.
Verification. There are two ways a forgery could occur. The adversary could
try to verify an accumulator either with an item that has not been accumulated
in it (e.g. the tuple (u, {x}, a) when there is (a, [{y, z}]) ∈ Lsets such that x 6∈
{y, z}), or with an invalid witness (e.g. (w, {x}, a) when there are (w, [{x, y}]),
(a, [{x, y, z}]) ∈ Lsets such that z 6= x).

Verification.

� Upon receiving (sid, Verify, w, X, a) from party P :

1. If X 6⊆ X ′λ, a 6∈ Uf or w 6∈ U ′f , it aborts.
2. If (a, X, w) ∈ Lacc, it returns (sid, Verified, >) to P .
3. If Verify(w, X, a) = > and (a) or (b) holds, it aborts:

(a) There is (a, La) ∈ Lsets such that for some fully-expanded A ∈ La we have
X 6⊆ A.

(b) There are (w,Lw), (a, La) ∈ Lsets such that for some W ∈ Lw and A ∈ La
we have A = W ∪ V where V is a fully-expanded set with V 6⊆ X.

4. It returns (sid, Verified, Verify(w, X, a)) to P .

Fig. 15. Verification commands of Facc.

The accumulation protocol ΠAC for AC = (Xλ, Gen).

� Upon receiving (sid, Setup) for the first time, M sends (sid, CRS) to FGen
CRS to

receive (sid, CRS, (f , Uf , u, auxf)). It sets params = (Xλ,Uf , u) and returns (sid,
Algs, params, f , Verify, Delete(aux f , ·, ·), Update(f, ·, ·, ·, ·)).
� Upon receiving (sid, Params), P sends (sid, CRS) to FGen

CRS to receive (CRS,
sid, (f , Uf , u)). It sets params = (Xλ,Uf , u) and returns (sid, Params, params, f ,
Verify, Update).
� Upon receiving (sid, Accum, w, X), P aborts if X 6⊆ X ′λ or w 6∈ U ′f . Otherwise
it returns (sid, Accum, f(w,X)).
� Upon receiving (sid, Delete, a, x′, A), M aborts if A 6⊆ X ′λ, a 6∈ U ′f , x′ 6∈ A or
if Verify(u, A, a) 6= >. Otherwise it returns (sid, Deleted, Delete(aux f , a, x′)).
� Upon receiving (sid, Update, a, a′, x, x′, A), P aborts if A 6⊆ X ′λ, a, a′ 6∈ U ′f , x,
x′ 6∈ A or if Verify(u, A, a) 6= >. Otherwise it returns (sid, Updated, Update(a,
a′, x, x′)).
� Upon receiving (sid, Verify, w, X, a), P aborts if X 6⊆ X ′λ, w 6∈ U ′f . Else it
returns (sid, Verified, Verify(w, X, a)).

Fig. 16. Definition of ΠAC in the FGen
CRS-hybrid model.

34

5.2 A protocol that realizes Facc

In Fig. 16, we define a real protocol ΠAC that uses an accumulator scheme in the
CRS model. The following Theorems 4 and 5 capture the equivalence between
our functionality and secure accumulator schemes, and in particular imply that
Facc can be realized by a strong RSA accumulator construction [7].

The presented proofs for realizing Facc follow the general structure of the
realizability proofs for the signature functionality in the 2005 version of [8]. We
first prove a lemma that will be used to prove one direction of the equivalence.

Lemma 1. If AC is an accumulator scheme and Facc is given parameters and
algorithms according to AC, then Facc never aborts on a valid Accum query.

Proof. Suppose we have a query (sid, Accum, w, X) for w ∈ U ′f , X ⊂ X ′λ. f
is deterministic and Facc only adds properly calculated values to Lacc, so Facc

either returns a = f(w,X) or aborts. Aborts can only occur in Step 6, so we
show that they are never satisfied:

1. Suppose there is A ∈ La and (a′, L′a) ∈ Lsets such that A ∈ L′a and a 6= a′.
After Step 5, A is one of three forms: A = W ∪X where W is empty, or there is
(w, W) ∈ Lref for some w, or there is (w, [W1, W2, . . .]) ∈ Lsets with W = Wi

for some i. Further, we can write W = W ′ ∪ Y for some (possibly empty)
fully-expanded set Y = {y1, y2, . . . }. Due to the way that items are added or
modified within La, there can be at most one unexpanded witness reference in
each, and in all cases X is added to each set. Since A ∈ L′a, there must have
been a sequence of queries which accumulated all elements of Y as well as X into
a′, so that f(w′, Y ∪X) = a′. From the current query we know that f(w,X) =
a and f(w′, Y) = w, which implies that a = f(w,X) = f(f(w′, Y), X) = f(w′,
Y ∪X) = a′, clearly a contradiction.

2. Suppose (a,W) ∈ Lref and there is A ∈ La, (a′, L′a) ∈ Lsets such that
W ∪ B ∈ L′a for some B = {b1, b2, . . . } and (a′′, L′′a) ∈ Lsets such that A ∪ B
∈ L′′a and a′ 6= a′′. A∪B ∈ L′′a implies that f(w′, Y ∪X ∪B) = a′′. The current
query implies that f(w,X) is the accumulator for W , and W ∪B ∈ L′a gives us
f(a,B) = a′. Combining the last two we get a′ = f(f(w,X), B) = f(f(w′, Y),
X ∪B) = f(w′, Y ∪X ∪B) = a′′, which is a contradiction.

No abort can occur, so (a,X,w) is recorded in Lacc and (sid, Accum, a) is
returned. ut

Theorem 4. If AC = (Xλ, Gen) is a secure dynamic accumulator scheme, then
ΠAC UC-realizes Facc in the FGen

CRS-hybrid model.

Proof. We prove the contrapositive, i.e. if ΠAC does not UC-realize Facc, then
AC is not a secure dynamic accumulator scheme, so at least one property is not
satisfied. Let Π stand for ΠAC and F for the ideal protocol for Facc. By Definition
1 we know that there exist an adversary A such that for every simulator S there
exists an environment Z which can distinguish between F and Π with non-
negligible probability. So, for a specific simulator S, as we define below, we use
such environment Z to construct an adversary G against witness unforgeability

35

because Z must trigger a Verify query during its run if it is to succeed. We
consider S which supplies the correct algorithms from the AC scheme to F .

We construct G by simulating the ideal execution with F and S for Z. Like
S, G also runs a simulated A. When Z activates M or P with Setup, G re-
turns algorithms as given by S. G answers all (sid,Accum, w′, X ′) calls with
(sid, Accum, f(w′, X ′)). When Z sends (sid, Verify, v, Y , a), G checks if
Verifyf (v, Y, a) = > and one of the following holds:

1. There is (a, La) ∈ Lsets such that Y 6⊆ A for some fully expanded A ∈ La,
so that x ∈ Y but x 6∈ A.
Let w = f(v, Y \{x}) so f(w, x) = f(v, Y) = a = f(u,A).

2. There are (v, Lw) and (a, La) ∈ Lsets such that A = W ∪ V and V 6⊆ Y for
some A ∈ La, W ∈ Lw and some fully-expanded V , so that x ∈ V but x 6∈ Y .
Similarly, w = f(v, V \{x}) so f(w, x) = f(v, V) = a = f(v, Y) = f(u, Y \W).

If it does, G returns the forgery (x,w,X) for X = A or X = Y \W and
halts. If not, it continues the simulation. Let E be the event that Z runs Setup
and a (sid, Verify, v, Y , a) query such that Verify(v, Y, a) = > and a forgery
conditions holds. By Lemma 1, F never aborts a well-formed Accum query and
its outputs are consistent with Π. Verify is identical between F and Π unless
a forgery condition is triggered. Hence the view of Z of the real execution is
indistinguishable from the ideal one as long as E doesn’t occur. We know that
Z can distinguish with non-negligible probability, E must occur with the same
probability and so G obtains a forgery. ut

Theorem 5. If ΠAC UC-realizes Facc in the FGen
CRS-hybrid model, then AC =

(Xλ, Gen) is a secure dynamic accumulator scheme.

Proof. We show the contrapositive. Lack of efficient generation or evaluation
would fail Setup, so we only consider commutativity, witness unforgeability
and the dynamic procedures. In each case, we construct Z that distinguishes for
all S, with an inactive A. Z always first obtains algorithms on behalf of M and
P .

Suppose AC does not satisfy commutativity, so there are f ∈ Fλ, u ∈ Uf
and x1, x2 ∈ Xλ such that f(f(u, x1), x2) 6= f(f(u, x2), x1). Z activates P with
Accum for the following pairs of inputs and outputs: (u, x1)→ a, (u, x2)→ a′,
(a, x2) → b and (a′, x1) → b′. In the execution with F , Z has no control over
what algorithms S supplies, but regardless of that F can only abort or return
values such that b = b′. The parties executing Π use g ← Gen(1λ) obtained from
FGen

CRS. Since Gen returns random functions from Fλ and we are only guaranteed
the existence of one f that fails commutativity for our u, x1, x2, the probability
of Gen returning f has a lower bound of 1

|Fλ| . The size of Fλ is polynomially

constrained by 1λ, so the probability cannot be negligible. Then Π returns b =
f(a, x2) = f(f(u, x1), x2) 6= f(f(u, x2), x1) = f(a′, x1) = b′. If the protocol
returns b = b′ or aborts, Z outputs 0, otherwise it outputs 1, succeeding at
distinguishing between F and Π with non-negligible probability, depending on
if Π uses a non-commutative accumulation function.

36

Suppose AC does not satisfy witness-unforgeability. Z runs an instance of
G(f,Uf , u) to get a forgery (x,w,X) with non-negligible probability. Z activates
P with (sid, Accum, u, X) to get (sid, Accum, a), and then with (sid, Verify,
w, {x}, a). In the execution with F , there is no entry for (a, {x}, w) in Lacc. If
Verify(w, {x}, a) = ⊥ for Verify supplied by S, F outputs ⊥. Otherwise, it
finds there is (a, [X]) in Lsets such that x 6∈ X and aborts. Π computes Verify(w,
{x}, a) = > since a = f(u, X) and returns >. Hence if the protocol returns ⊥
or aborts, Z outputs 0, otherwise it outputs 1, succeeding in distinguishing with
non-negligible probability depending only on whether G supplies the forgery.

Lastly, if AC has algorithms Delete, Update such that their outputs do not
always verify, then as in the previous two cases we use this to construct a distin-
guishing environment Z. It activates parties to accumulate the inputs for which
Delete or Update produce invalid outputs, then activates M to delete those
items and observes if the protocol aborts (as Facc will if Verify outputs ⊥) or
returns the expected output. ut

Commitment functionality FNIC.

(sid,Setup) → (sid, Params, params, Verify) delayed output.
(sid,Comm,m) → (sid, Comm, c, o).
(sid,Verify, c,m, o) → (sid, Verified, b).

Signature of knowledge functionality FSoK(Facc,FNIC).

(sid,Setup) → (sid, Algs, Sign, Verify).
(sid,Sign,m, (a, S), (c, w, r)) → (sid, Sign, m, (a, S), σ).
(sid,Verify,m, (a, S), σ) → (sid, Verified, b).

Fig. 17. Interfaces provided by FNIC and FSoK(Facc,FNIC).

5.3 A protocol that realizes Felig

To realize Felig, we need two other primitives besides accumulators, both of
which have UC formulations in the literature: non-interactive commitments [5]
and (non-interactive zero-knowledge) signatures of knowledge [11].

We note the command interfaces that they provide in Fig. 17. FNIC allows a
party to commit to a message m via a commitment c that can be verified using
the opening o, and FSoK allows a party to produce a signature σ on message m if
they know the opening r to some commitment c (which commits to some value
S) which has been accumulated in a with witness w. FSoK can internally use
any functionality that represents a language of statements on which signatures
of knowledge can be made. In our case, it uses both Facc and FNIC. The model
of [11] is easily extended to the case of two “internal” functionalities, since we

37

The eligibility protocol Π
FSoK(Facc,FNIC),Fan.BC,{FPcert},Gclock
elig .

All parties initialize the set C ← ∅. Moreover, all parties have hard coded the
predicates (define time, Status) If at any point a hybrid functionality aborts, the
party returns ⊥ to Z.
� Upon receiving (sid,Eligible,Velig, tcast, topen) from Z, if Velig ⊆ V and SA’s
status=init, SA runs:

1. It sets its status to ‘credential’.
2. It computes t← define time(tcast, topen).
3. It sends (sid,Setup) to Facc to get (sid, Algs, paramsacc, f , Verifyacc, Delete,

Update). It parses paramsacc as (Xλ, Uf , u). It sends (sid,Setup) to FNIC to get
(sid, Params, paramsNIC, VerifyNIC). It parses paramsNIC as (M, R). It sends
(sid,Setup) to FSoK to get (sid, Algs, Sign, VerifySoK). It saves all algorithms
and parameters except Delete in Stgen.

4. It sets reg.par := (Velig, tcast, topen, t,Stgen).
5. It sends ((SA, sid), Setup) to FSA

cert, waits for confirmation and then sends ((SA,
sid), Sign, (SA, reg.par)) back to receive ((SA, sid), Signature, (SA, reg.par),
s). Then it sends (sid, Broadcast, (SA, reg.par, s)) to Fan.BC.

6. It returns (sid,Elig Par, reg.par) to Z.

� Upon receiving (sid,Broadcast, (SA, reg.par, s)) from Fan.BC, V sends ((SA, sid),
Verify, (SA, reg.par), s) to FSA

cert. If it returns 1, she stores reg.par and sets her
status to ‘credential’.
� Upon receiving (sid,Gen Cred) from Z, if V ’s status=credential, she reads Cl
from Gclock. If Status(Cl, t,Cast) = >, she sets her status to ‘cast’. Otherwise, if
Status(Cl, t,Cred) = >, then V acts as follows:

1. She computes S
$←M and sends (sid,Comm, S) to FNIC to get (sid, Comm, c,

r). If c 6∈ Xλ, it repeats this step until it does.
2. She sends ((V, sid),Setup) to FVcert, waits for confirmation and then sends

((V, sid),Sign, (V, c)) back to receive ((V, sid),Signature, (V, c), s). Then it
sends (sid,Broadcast, (V, (c, s))) to Fan.BC.

� Upon receiving (sid, Broadcast, (V ′, (c′, s′))) from Fan.BC, V sends ((V ′,

sid), Verify, (V ′, c′), s′) to FV
′

cert. If it returns 1, it adds c′ to C and returns
(sid,Gen Cred, V ′, c′) to Z.
� Upon receiving (sid,Auth Ballot, v) from Z, if V ’s status=cast, it reads Cl
from Gclock. If Status(Cl, t,Open) = >, it sets its status to ‘open’. Otherwise, if
Status(Cl, t,Cast) = >, then V :

1. She sends (sid,Accum, u, C\{c}) to Facc to get (sid, Accum, w), and (sid,
Accum, w, {c}) to get (sid, Accum, a).

2. She sends (sid,Sign, v, (a, S), (c, w, r)) to FSoK to get (sid, Sign, v, (a, S), φ).
She sets σ := (φ, S).

3. She returns (sid,Auth Ballot, v, σ) to Z.

� Upon receiving (sid,Ver Ballot, v, σ) from Z, V :

1. She parses σ as (φ, S) and sends (sid,Accum, u, C) to Facc to get (sid, Accum,
a) and (sid,Verify, v, (a, S), φ) to FSoK to get (sid, Verified, x).

2. She returns (sid,Ver Ballot, v, σ, x) to Z.

� Upon receiving (sid,Link Ballots, (v, σ), (v′, σ′)) from Z, V :

1. She parses σ as (φ, S) and σ′ as (φ′, S′). If S = S′, she sets x = 1, otherwise
x = 0.

2. She returns (sid,Link Ballots, (v, σ), (v′, σ′), x) to Z.

Fig. 18. Definition of Πelig in the {FSoK(Facc, FNIC), Fan.BC, {FPcert}, Gclock}-hybrid model
in the presence of V and SA.

38

can define the language that our FSoK accepts as L = {(a, S, c, w, r) : (w, {c}, a) ∈
Lacc ∧ (c, S, r) ∈ LNIC}, where Lacc, LNIC are the languages accepted by Facc and
FNIC, respectively.

Fig. 18 defines an eligibility protocol that realizes Felig. For ease of notation,
when we say P calls Facc or FNIC, we mean that the communication goes through
FSoK since the functionalities are embedded within. [11] describes formally how
this is achieved.

Πelig also uses the functionalities for anonymous broadcast, the global clock
and the certification functionality instantiated for SA and all V which we de-
note by {FPcert}, where P ∈ {V,SA}. Note that when we write FPcert we mean
Fcert(P,V ∪ SA).

Remark 2. Note that in the definitions of Felig and Πelig, we implicitly assume
that the commands with which the environment can activate the corrupted par-
ties are the same as for the honest parties. However, for corrupted parties, Felig

will first reach out to the simulator to request their internal state, which the sim-
ulator will provide (this part is captured explicitly), and then Felig will output
as usual based on what S provides.

Theorem 6. Πelig UC-realizes Felig in the {FSoK(Facc, FNIC), Fan.BC, {FPcert},
Gclock}-hybrid model.

Proof. In a direct proof of UC-realizability, given a real adversary A we have
to construct a simulator S that can make the ideal execution indistinguishable
from the real one from the point of view of the environment Z. Since we are in a
hybrid model, S will internally simulate the real execution for A by playing the
part of voters and authorities as well as the part of the hybrid functionalities.
In case of corrupted voters, it will pass any requests from A onto Felig.

Since both Felig and all the functionalities we are working with expect the
adversary to provide algorithms and parameters during setup, S will have to
ask A for the algorithms for Facc, FNIC and FSoK and use them to define the
algorithms that Felig expects, as shown in Fig. 19.

We do not describe the reasoning behind the hybrid functionalities’ algo-
rithms here, as we are referring to the definitions established in [5] and [11]
respectively for FNIC and FSoK. TrapCom, TrapOpen and VerifyNIC belong to
FNIC and SimSign, VerifySoK and Extract are from FSoK, and Verifycert and
Signcert are given to all FPcert (which maybe different for each party). The rest
have been explained in the context of Facc in Subsection 5.1.

Then S continues observing the ideal execution as allowed by Felig and its task
is to use this to play the part of real voters in the simulated execution with A.
Using the commitment algorithms obtained earlier by S , Felig can generate valid
credentials for all eligible voters who have been activated in the ideal execution.

On the other hand, in the ideal execution when S is asked by Felig if it allows
the credential to be generated via public delayed output, S signs the credential
and checks the signature with the algorithms provided by A. Note that in the
ideal execution there are not any signatures involved with each voter’s credential
because we assume that Felig broadcasts and authenticates the public part of

39

the credential at the same time. If the verification fails, S does not allow the
generation of the credential. Similarly, when S is asked by Felig if it allows to
send the credential via public delay output to the other parties, S asks A if it
allows the broadcast as if it was from Fan.BC and responds appropriately to Felig.

GenCred(1λ, reg.par):

1. (comm, info)← TrapCom(sid, paramsNIC, trapdoor).

2. Let (M,R)← paramsNIC and compute S
$←M.

3. open← TrapOpen(sid, S, info).
4. If VerifyNIC(paramsNIC, comm, S, open) 6= >, return ⊥.
5. Return (cr, rc) := ((S, open), (comm)).

UpState(Stgen, C):

1. Return Stfin := C.

AuthBallot(v, cr, rc,Stfin, reg.par):

1. Let (S, r) := cr, (c, s) := rc and C := Stfin.
2. Compute w ← f(u,C\{c}) and a← f(w, {c}).
3. Compute a′ ← f(u,C). If a′ 6= a, return ⊥.
4. If Verifyacc(u,C\{c}, w) 6= >, Verifyacc(w, {c}, a) 6= > or Verifyacc(u, C, a)
6= >, return ⊥.

5. Else compute φ← SimSign(L, v, (a, S)).
6. If VerifySoK(L, v, (a, S), φ) 6= >, return ⊥.
7. Else return σ := (φ, S).

VrfyBallot(v, σ,Stfin, reg.par):

1. Let C := Stfin and (φ, S) := σ. Compute a← f(u,C).
2. If Verifyacc(u,C, a) 6= >, return ⊥.
3. Else compute (c, w, r)← Extract(L, v, (a, S), φ).
4. If Verifyacc(w, {c}, a) 6= > or VerifyNIC(paramsNIC, c, S, r) 6= >, return ⊥.
5. Else return x← VerifySoK(L, v, (a, S), φ).

Fig. 19. Algorithms supplied by S to Felig during Setup, using algorithms supplied by
A to Facc, FNIC and FSoK.

Note that S has no visibility into the interaction between voters and Felig

with respect to Auth Ballot and Ver Ballot commands, just like A would
not in the real protocol. That is not the case for Z, as it can activate parties
at will and supplies their inputs, so indistinguishability of the outputs of those
commands is ensured by the matching of the algorithms described earlier. In
this way, properties guaranteed by Felig directly translate to (one or several)
properties provided by the hybrid functionalities, e.g. eligibility relies on binding
commitments and ballot unforgeability depends on unforgeability of signatures
of knowledge.

A detailed construction of S is provided below.

40

1. Send (sid,Corrupt,Vcorr) to Felig where Vcorr is the set of voters that A
has decided to corrupt at the beginning of the real execution.

2. Wait to receive (sid,Setup Elig) from Felig.
3. Simulate the ‘init’ stage of Πelig:

– Simulate setup of the hybrid functionalities Facc, FNIC, {FSA
cert} and FSoK

by requesting algorithms and parameters from A for each of them. Store
all except the accumulator Delete algorithm in Stgen.

– Use the received algorithms to define the new algorithms as in Fig. 19 and
send (sid, Setup Elig, GenCred, AuthBallot, VrfyBallot, UpState,
Stgen) to Felig.

– Wait to receive (sid,Elig Par, reg.par) from Felig.
4. Begin receiving (sid,Gen Cred, Vi, rci) from Felig for honest voters Vi. Sign

and verify the credential with the algorithms provided upon request from A
by playing the role of FVicert. If verification succeeds, then collate their public
credentials in the set C.

5. Send (sid,Gen Cred, V ′i , cr
′
i, rc
′
i) to Felig for each corrupted voter V ′i , where

rc′i is the public credential generated by A and cr′i is the private credential
generated by A or a random unique value, if A has generated the public part
in another way.

6. S has no visibility into Auth Ballot queries between Felig and the dummy
honest voters.

7. Simulate the ‘cast’ stage of Πelig:
– Respond to A’s requests to hybrid functionalities involved in authenti-

cation.
– Verification and linking of ballots is performed by the voters themselves,

so S can again only respond toA’s requests to hybrid functionalities. The
answers should be consistent with those of Felig, since they are computed
using the same algorithms.

8. S can provide the authentication receipts on behalf of corrupted voters by
sending (sid, Auth Ballot, V ′i , v′i, σ

′
i) to Felig, using the outputs given by

A in the simulation.

Hence the ideal and the real distribution will be the same.
ut

6 Conclusion

In this work we have proposed a formal treatment in the UC framework for self
tallying elections. We presented it in a modular way such that future designs of
self tallying protocols can be adapted and analysed easier. That is, the substi-
tution of one crypto primitive does not lead to reproof the whole security of our
protocol, instead it is only nessecary to prove the realization of the functional-
ity that this primitive is related to (e.g., if we replace the time-lock algorithm
of Rivest et al. [30] with the one of [25] only the realization of FTLE will be
affected, and not of FSTE). Moreover, we have presented E-cclesia, a (family

41

of) e-voting scheme(s) that realizes our ideal functionality FSTE. E-cclesia is
the first self tallying scheme that solves the fairness problem without the pres-
ence of a trusted third party. We hope our work will revive the interest for self
tallying elections from researchers in the field of e-voting, in the context where
decentralized solutions are necessary (e.g blockchain governance).

In order to define FSTE and prove the security of E-cclesia in a modular
way, we had to define from scratch functionalities such as Facc and FTLE. Specifi-
cally, with FTLE functionality we solved the fairness problem that every previous
self tallying election protocol was vulnerable. These functionalities are of inde-
pendent interest. Moreover, in order to realize our FTLE we extend Rivest et
al. [30] time-lock construction so that the realization is feasible.

Despite all these there is room for future work. For example, there should
be an implementation of our protocol in order to see how efficient and scalable
it is in real world numbers. Another thing is the usability of our protocol. The
interaction of a voter with the protocol should be as simple as possible while
keeping the voter’s participation time as low as it can be (ideally the voter
should vote and then go). There is also room for improvements in the privacy
aspect of E-cclesia. At the moment E-cclesia does not provide protection
against a coercer (either active or passive). There are ideas in the literature on
how we can make a protocol to satisfy that property but for the moment we
do not know if these solutions are compatible with our setting. Last, we could
explore alternative realizations of our FTLE functionality. For instance, by using
a time-lock protocol based on [25,2] which in turn is based on Bitcoin. One of
the advantages of such a construction would be that the computational effort in
order to solve a puzzle and decrypt a message is not part of the client (in our
case of a voter). Instead, the miners in Bitcoin network are responsible for the
solution of the puzzle and thus the decryption of the message. What makes this
approach more interesting is the fact that the miners do not try to decrypt any
message at all rather than extent the Bitcoin’s blockchain.

References

1. Ben Adida. Helios: Web-based open-audit voting. In USENIX security symposium,
pages 335–348, 2008.

2. Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin as
a transaction ledger: A composable treatment. In CRYPTO, pages 324–356, 2017.

3. Foteini Baldimtsi, Ran Canetti, and Sophia Yakoubov. Universally composable
accumulators. IACR Cryptology ePrint Archive, 2018:1241, 2018.

4. Jonathan Bannet, David W. Price, Algis Rudys, Justin Singer, and Dan S. Wal-
lach. Hack-a-vote: Security issues with electronic voting systems. IEEE Security
& Privacy, 2(1):32–37, 2004.

5. Jan Camenisch, Maria Dubovitskaya, and Alfredo Rial. UC commitments for
modular protocol design and applications to revocation and attribute tokens. In
CRYPTO, 2016.

6. Jan Camenisch, Anja Lehmann, Gregory Neven, and Kai Samelin. Uc-secure non-
interactive public-key encryption. In CSF 2017, pages 217–233. IEEE Computer
Society, 2017.

42

7. Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to
efficient revocation of anonymous credentials. In CRYPTO, pages 61–76, 2002.

8. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, 2001.

9. Ran Canetti. Universally composable signatures, certification and authentication.
IACR Cryptology ePrint Archive, 2003:239, 2003.

10. Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally com-
posable security with global setup. In TCC, pages 61–85, 2007.

11. Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In CRYPTO,
pages 78–96, 2006.

12. David Chaum. Blind signatures for untraceable payments. In David Chaum,
Ronald L. Rivest, and Alan T. Sherman, editors, Advances in Cryptology, pages
199–203, Boston, MA, 1983. Springer US.

13. Véronique Cortier, David Galindo, Ralf Küsters, Johannes Müller, and Tomasz
Truderung. Sok: Verifiability notions for e-voting protocols. In IEEE S&P, 2016.

14. David Derler, Christian Hanser, and Daniel Slamanig. Revisiting cryptographic
accumulators, additional properties and relations to other primitives. In CT-RSA,
2015.

15. David Derler, Christian Hanser, and Daniel Slamanig. Revisiting cryptographic
accumulators, additional properties and relations to other primitives. In CT-RSA,
2015.

16. Saghar Estehghari and Yvo Desmedt. Exploiting the client vulnerabilities in in-
ternet e-voting systems: Hacking helios 2.0 as an example. In EVT/WOTE, 2010.

17. Nelly Fazio and Antonio Nicolosi. Cryptographic accumulators: Definitions, con-
structions and applications. Paper written for course at New York University:
www. cs. nyu. edu/nicolosi/papers/accumulators. pdf, 2002.

18. Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption
and its applications. In STOC, 2013.

19. Michael T. Goodrich, Roberto Tamassia, and Jasminka Hasic. An efficient dynamic
and distributed cryptographic accumulator. In ISC, 2002.

20. Jens Groth. Efficient maximal privacy in boardroom voting and anonymous broad-
cast. In FC, 2004.

21. Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic
elections. In Proc. of the ACM workshop on privacy in the electronic society, pages
61–70, 2005.

22. Aggelos Kiayias and Moti Yung. Self-tallying elections and perfect ballot secrecy.
In PKC, 2002.

23. Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. End-to-end verifiable
elections in the standard model. In EUROCRYPT, 2015.

24. Czes law Kościelny, Miros law Kurkowski, and Marian Srebrny. Foundations of Sym-
metric Cryptography, pages 77–118. Springer Berlin Heidelberg, Berlin, Heidelberg,
2013.

25. Jia Liu, Tibor Jager, Saqib A. Kakvi, and Bogdan Warinschi. How to build time-
lock encryption. Designs, Codes and Cryptography, Feb 2018.

26. Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zerocoin:
Anonymous distributed e-cash from bitcoin. In IEEE S&P, 2013.

27. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system,
http://bitcoin.org/bitcoin.pdf.

28. Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic
proofs: The non-committing encryption case. In CRYPTO, 2002.

43

29. Tatsuaki Okamoto. Receipt-free electronic voting schemes for large scale elections.
In Security Protocols, 1998.

30. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release
crypto. Technical report, Cambridge, MA, USA, 1996.

31. Peter Y. A. Ryan and Steve A. Schneider. Prêt-à-voter with re-encryption mixes.
In ESORICS, 2006.

32. Alan Szepieniec and Bart Preneel. New techniques for electronic voting. Washing-
ton, D.C., 2015. USENIX Association.

33. Edward Tremel. Real-world performance of cryptographic accumulators. Under-
graduate Honors Thesis, Brown University, 2013.

34. Scott Wolchok, Eric Wustrow, Dawn Isabel, and J. Alex Halderman. Attacking
the washington, D.C. internet voting system. In FC, 2012.

35. Y. Zhang, J. Katz, and C. Papamanthou. An expressive (zero-knowledge) set
accumulator. In Euro S&P, 2017.

44

	E-cclesia: Universally Composable Self-Tallying Elections

