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Abstract. We construct a practical lattice-based zero-knowledge argument for proving multiplicative
relations between committed values. The underlying commitment scheme that we use is the currently
most efficient one of Baum et al. (SCN 2018), and the size of our multiplicative proof (9KB) is only
slightly larger than the 7KB required for just proving knowledge of the committed values. We ad-
ditionally expand on the work of Lyubashevsky and Seiler (Eurocrypt 2018) by showing that the
above-mentioned result can also apply when working over rings Zq[X]/(Xd + 1) where Xd + 1 splits
into low-degree factors, which is a desirable property for many applications (e.g. range proofs, multi-
plications over Zq) that take advantage of packing multiple integers into the NTT coefficients of the
committed polynomial.

1 Introduction

Commitment schemes, and their associated zero-knowledge proofs of knowledge (ZKPoK) of committed mes-
sages, from an important ingredient in the construction of generalized zero-knowledge proofs and advanced
cryptographic primitives. An additional feature that’s often desirable is being able to prove algebraic rela-
tionships among committed values. Very efficient constructions of such primitives exist based on the discrete
logarithm problem (e.g. [BBB+18]), but the state of affairs is rather different when it comes to quantum-safe
assumptions, with the maid difficulty being proving multiplicative relations.

There exist generic PCP-type proof techniques [Kil92, Mic00, BBHR18, BCR+19], which even have
asymptotically logarithmic-size proofs, but these proofs have a fixed cost of outputting paths to a Merkle
tree in the range of 100 − 200KB. One could also think about using fully-homomorphic encryption, which
would allow the verifier himself to create additive and multiplicative relations of his choice, thus foregoing
the need for a zero-knowledge proof. The main issue with this approach is that one would need to prove that
the initial ciphertexts are well-formed, and these proofs are also currently on the order of a few hundred
kilobytes (either using generic techniques or lattice-based proofs [BLS19, YAZ+19]). There have also been
lattice-based approaches proposed for this type of problem (e.g. [BKLP15, LLNW18]), but they result in
proofs that are orders of magnitude longer.

1.1 Results Overview.

While there aren’t yet any practical lattice-based commitment schemes for proving multiplicative relations
among committed values, the commitment scheme in [BDL+18] has a ZK proof that is fairly efficient for
proving linear relations among committed polynomials over the ring Rq = Zq[X]/(Xd+1), where q is prime.
The main result of our work is building an efficient ZKPoK of multiplicative relations for messages committed
under this scheme. Our construction is very efficient with the communication complexity of our protocol being
essentially the same as that in [BDL+18] for just proving knowledge of the message. An additional result
of this work is lifting the restriction from [BDL+18] that required that the ring Rq be chosen such that all
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polynomials with small coefficients (which corresponds to the set of all possible difference of challenges) be
invertible in the underlying ring Rq. By [LS18], one could conclude that elements with small coefficients
are invertible in Rq if the polynomial Xd + 1 does not split into too many factors over q. Removing this
aforementioned restriction is particularly useful because if Xd + 1 splits into distinct linear (or very low-
degree) factors, then it allows one to commit to (and independently operate on) many elements in Zq by
packing them into the NTT coefficients of the committed message. One particular example where this is
handy is range proofs where we commit to a number written in binary and want to prove that it is in the
range [0, 2j). We sketch the idea below.

Proving that a vector ~v = v0v1 . . . vd−1 ∈ {0, 1}d is binary and the integer represented by it is less than
2j is equivalent to the statement 

v0
· · ·
vj−1
vj
· · ·
vd−1

 ◦


1− v0
· · ·

1− vj−1
vj
· · ·
vd−1

 = 0 mod q, (1)

where ◦ is the component-wise product. Thus if we create a commitment to ~v by putting the coefficients of
~v into the NTT coefficients of some polynomial m and can create the polynomial m′ corresponding to the
right multiplicand in (1), then the proof that mm′ = 0 would be exactly the range proof we would like since
multiplication of NTT slots is component-wise. Note that the number of NTT slots is the logarithm of the
largest integer that can be committed to. Using our multiplicative proofs, range proofs for 32-bit numbers
are approximately 5.9KB in size (see Section 5.3). This is about an order of magnitude longer than the
discrete logarithm based proofs (c.f. [BBB+18, Table 2]), but is shorter than any quantum-safe proof system
(e.g. [BCR+19, KKW18, ESLL19]). It should be pointed out that the proofs in [BBB+18, BCR+19] grow
logarithmically in the number of instances, while our proof grows linearly. The results of the current work
are thus best suited for non-batched use cases where one wishes to prove knowledge about single instances
over Rq (which actually could be up to d instances over Zq when taking advantage of NTT packing.)

1.2 Techniques.

We will now provide a somewhat technical overview of the main results of the paper. Prior to getting into
them, we recall the commitment scheme of [BDL+18] and its zero-knowledge proof.

Overview of [BDL+18]. The scheme of [BDL+18] commits to a message vector ~m ∈ Rkq by choosing a
vector ~r with small coefficients and then outputting the commitment

B0~r = ~t0 (2)

B1~r + ~m = ~t1. (3)

The intuition is that if the opening proof can show that ~r is short, then (2) binds the committer to the
short ~r (based on the hardness of the SIS problem), and then the message is uniquely determined from (3).
Unfortunately, there do not exist very efficient proofs allowing a prover to prove knowledge of such a short
~r satisfying (2), but one can instead give a rather efficient ZKPoK of a vector ~̄z with coefficients somewhat
larger than those of ~r, and a polynomial c̄ with very small coefficients satisfying

B0~̄z = c̄~t0. (4)

The proof is a Σ-protocol where the prover picks a small-coefficient masking vector ~y and sends ~w = ~B0~y to
the verifier in the first step. The verifier then selects a challenge polynomial c from the challenge set (which
should consist of polynomials with very small coefficients), and the prover responds with ~z = ~y + c~r. Using
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standard rejection sampling techniques [Lyu09, Lyu12], the prover can make the vector ~z independent of
~r to preserve zero-knowledge. The verifier checks that B0~z = ~w + c~t0 and that ~z has small coefficients. If
both of these are satisfied (and c comes from a large-enough domain), then a standard rewinding (where
the extractor sends a fresh c′ and receives another valid ~z′) allows the extractor to obtain ~̄z = ~z − ~z′ and
c̄ = c− c′ satisfying (4).

Combining this with the proof that, unless SIS is easy, there can only be a unique opening (~̄z, ~m, c̄)
where c̄ is invertible in Rq satisfying (4) and

B1~̄z + ~mc̄ = c̄~t1, (5)

it implies that the ZKPoK of (4) uniquely determines ~m. It is furthermore shown in [BDL+18] (also see
[dPLS18]) that one can prove that a commitment is to some ~m satisfying U ~m = ~v, where U and ~v are
an arbitrary public matrix and vector over Rq. Interestingly, this latter proof does not require any extra
communication over the basic opening proof, and both the proof and commitment are comfortably under
10KB for some simple lattice relations (see Table 2 of [BDL+18]).

Distribution of the NTT Coefficients. To show that c̄ is invertible, it was proposed in [BDL+18] to set
the modulus q to a prime such that the polynomial Xd + 1 does not split too much modulo q – then by the
result in [LS18], it would imply that all elements in the ring with small coefficients are invertible.

In the current paper we show that one no longer needs such a restriction q to be any prime. In particular,
the prime q can be chosen to allow Xd + 1 to fully split into d linear factors. The observation is that we do
not need c̄ to always be invertible – it suffices for it to be invertible with high probability.

An element inRq is invertible if and only if all of its NTT coefficients are non-zero. To show that c̄ = c−c′
is invertible, it would therefore suffice to show that the probability that a random c from the challenge set
hits a particular NTT coefficient is smaller than the targeted soundness error. If c were uniformly random
in Rq, then this probability would be easy to calculate as each of its NTT coefficients has a 1/q probability
of being any element in Zq. But c is chosen from a challenge set that has small coefficients and so the
distribution of its NTT coefficients requires different techniques to compute.

As an example, suppose that Xd + 1 =
d∏
i=1

(X − ri) mod q and that we choose an element c =
d−1∑
j=0

ciX
i

from Zq[X]/(Xd + 1) where ci ← {−1, 0, 1} with equal probability. Then

Pr[c is invertible] = Pr[c(r1) 6= 0 ∧ . . . ∧ c(rd) 6= 0].

Observe that for any r, c(r) can be written as

d−1∑
j=0

cjr
j = c0 + r (c1 + r (c2 + . . .+ r (cd−2 + rcd−1)) . . .) ,

and so the distribution of c(r) is equivalent to the distribution of the random variable Y0 in the stochastic
process (Yd, Yd−1, Yd−2, . . . , Y0) where Yd = 0 and Yi = ci + rYi+1 for i < d. Fourier analysis is often a useful
technique for analyzing certain properties (e.g. min entropy, mixing time, etc.) of stochastic processes, and
we show how to efficiently calculate maxy∈Zq

[Y0 = y].6 Calculating the exact probability (or putting a very
good bound on it) would require computing sums consisting of q terms, which may be prohibitive when q is
on the order of billions, so we furthermore show how certain algebraic symmetries allow us to significantly
speed up the computation.

6 In [CLS16], the same techniques were used to show that the statistical distance of Ring-LWE errors is statistically-
close to uniform modulo the NTT coefficients. The slight differences are in the distribution of the original polynomial
(for our application, it only makes sense to consider polynomials whose coefficients have various distributions over
{−1, 0, 1}) and that we do not need statistical closeness for our application, and obtain tight bounds for a different
quantity. We provide more details in Section 3.

3



In our applications, we will actually be more interested in a more general case of proving that for a
factorization

Xd + 1 =

d/k∏
i=1

(Xk − ri), for ri ∈ Zq, (6)

the value c mod (Xk − ri) is not concentrated on any particular polynomial c′0 + c′1X + . . .+ c′k−1X
k−1. But

proving this is a simple extension of the above case where we were computing c(r) = c mod (X − r) because
each of the k coefficients c′iX

i of c mod Xk − ri is only dependent on the coefficients cjk+i for 0 ≤ j < d/k
(i.e. the k coefficients are mutually independent). So the distribution of c′i has the distribution of the same
stochastic process as above, except it consists of d/k steps rather than d.

Proofs of Multiplicative Relations. We now sketch some of the new ingredients of our main result –
being able to prove multiplicative relations among committed messages in the commitment scheme defined

by (2) and (3). In its most basic form, this involves proving that m1m2 = m3, where ~m =
[
m1 m2 m3

]T
.

We first make a series of observations that show that one can extract more than just (4) from the prover
that produces valid transcripts ( ~w, c, ~z) following the protocol of [BDL+18]. If we assume, for the moment,
that c̄ is invertible, then the extractor can extract a unique ~r∗ = ~̄z/c̄, not necessarily with small coefficients,
satisfying

B~r∗ = ~t. (7)

The reason for the uniqueness is that for any small-norm
(
~̄z1, c̄1

)
,
(
~̄z2, c̄2

)
satisfying

B~̄z1 = c̄1~t B~̄z2 = c̄2~t, (8)

if ~̄z1/c̄1 6= ~̄z2/c̄2, then (4) implies that

B
(
c̄2~̄z1 − c̄1~̄z2

)
= 0. (9)

where the vector being multiplied by B has small coefficients. By the assumption, this vector in additionally
non-zero, and so it’s a solution to SIS. The next observation (see Section 4) crucial for keeping our product
proof short is that as soon as the (successful) Prover sends ~w, he has also committed to a ~y∗ satisfying
B~y∗ = ~w. Furthermore, for a challenge c, his response ~z will always be

~z = ~y∗ + c~r∗. (10)

This is important because of how the product proof works. For simplicity, we will explain how this would
result in immediate improvements in the particular product proofs implicit in [BLS19, YAZ+19] which
essentially prove that the pointwise product of ~r and ~1 − ~r is a zero vector, which implies that ~r is a 0/1
polynomial. Our scenario is different and we relegate the details to Section 5, but the core approach for
proving multiplicative relations is quite similar, and so the reason for the efficiency gain is the same. In
particular, the main idea is to convince the verifier that the prover has set up a quadratic equation in which
the highest-degree term is exactly the relation that we would like to prove is 0 (in our case, it would be
m1m2−m3). Then the prover convinces the verifier that this equation is actually linear, which implies that
the the quadratic coefficient is indeed 0.

In [BLS19, YAZ+19], one makes the observation that if the response can indeed be written as ~z = ~y+c~r,
then one can write

~z ◦ (~z − c~1) = c2~r ◦ (~r − ~1) + c~y ◦ (2~r − ~1) + ~y ◦ ~y,

where ◦ corresponds to component-wise multiplication. After additionally committing to “garbage terms”
~y ◦ (2~r−~1) and ~y ◦ ~y, the prover proceeds to show that the above equation is linear in c, which means that
the ~r ◦ (~r − ~1) term is 0, and thus all the coefficients of ~r are 0/1. In order for this proof to go through, it’s
crucial for the ~y to be fixed by the prover. In [BLS19, YAZ+19], this was done via an additional commitment
and proof to ~y, which essentially doubled the size of the total proof.
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An almost immediate consequence of our work would therefore result in a significant reduction of the
proofs of [BLS19, YAZ+19]. We do not discuss this direction further, because with additional techniques, it
is shown in a parallel submission [ENS20] how one can use the full product proof of commitments from the
current paper to produce an even shorter proof. For this application (and others) we would need to consider
the case where Xd + 1 fully splits into linear terms in Rq, and therefore we can no longer assume that c̄ is
invertible. So we continue to describe the ingredients needed here.

If c̄ is not invertible, then some NTT coefficient of c̄ is 0. In this case we would need to run the protocol
in parallel to obtain extractions (c̄1, ~̄z1), . . . , (c̄`, ~̄z`) such that for every NTT coefficient, some c̄i in non-zero
in that NTT coefficient. In this case, we can again prove that a valid prover knows a unique ~r∗ satisfying (7),
and every ~w is similarly a commitment to a ~y∗ satisfying (10). One could obtain such c̄i by sending several
challenges in parallel, but for technical reasons (described in Section 5) having the challenges ci related via
specific algebraic particular automorphism operations results in smaller proofs. We now explain how the
automorphisms are chosen.

When Xd + 1 splits into linear terms, one can also write Xd + 1 as in (6) where the multiplicative terms
Xk − ri are not irreducible. In particular, we would like to consider such a factorization where qk ≈ 2128

to have approximately 128 bits of soundness in the protocol. Then using the results on the distribution
of c mod Xk − ri, we obtain that except with 2−128 probability, two c, c′ will not be equivalent modulo
Xk − ri. Since Xk − ri can be further factored as Xk − ri =

∏k
j=1(X − rj), this directly implies that one of

these NTT coefficients will be distinct – in particular (c 6= c′ mod X − rj) for some j. Then we define the
automorphisms to be exactly those that cycle through the NTT coefficients represented by X − rj , for j = 1
to k, and therefore for every NTT coefficient, one of the k automorphisms will result in c̄ being non-zero
there.

The combination of these techniques, along with several key optimizations that minimize the number
of necessary “garbage terms”, results in a proof (described in Section 5) that is only two kilobytes longer
(see Section 5.3) than just the opening proof in [BDL+18]. Furthermore, if one would like to prove many
multiplicative relations, the size of the proof even further approaches the size of the proof from [BDL+18]
because the extra elements needed in the proof amortize over all the proofs.

2 Preliminaries

2.1 Notation

As is often the case in ring-based lattice cryptography, computation will be performed in the ring Rq =
Zq[X]/(Xd + 1), which is the quotient ring of the ring of integers R of the power-of-two 2d-th cyclotomic
number field modulo a rational prime q ∈ Z.

We use bold letters f for polynomials in R or Rq, arrows for integer vectors ~v over Zq, bold letters with

arrows ~b for vectors of polynomials over R or Rq and capital letters A and A for integer and polynomial

matrices, respectively. We write x
$← S when x ∈ S is sampled uniformly at random from the set S and

similarly x
$← D when x is sampled according to the distribution D.

For f , g ∈ R, we have the coefficient norm

‖f‖2 =

(
n∑
i=1

|fi|2
) 1

2

.

The norm is extended to vectors ~v = (v1, . . . ,vk) of polynomials in the natural way,

‖~v‖2 =

(
k∑
i=1

‖vi‖22

) 1
2

.
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2.2 Prime Splitting and Galois Automorphisms

Let l be a power of two dividing d and suppose q−1 ≡ 2l (mod 4l). Then, Zq contains primitive 2l-th roots of
unity but no elements with order a higher power of two, and the polynomial Xd + 1 factors into l irreducible
binomials Xd/l − ζ modulo q where ζ runs over the 2l-th roots of unity in Zq [LS18, Theorem 2.3].

The ring Rq has a group of automorphisms Aut(Rq) that is isomorphic to Z×2d,

i 7→ σi : Z×2d → Aut(Rq),

where σi is defined by σi(X) = Xi. In fact, these automorphisms come from the Galois automorphisms of
the 2d-th cyclotomic number field which factor through Rq.

The group Aut(Rq) acts transitively on the prime ideals (Xd/l − ζ) in Rq and every σi factors through
field isomorphisms

Rq/(Xd/l − ζ)→ Rq/(σi(Xd/l − ζ)).

Concretely, for i ∈ Z×2d it holds that

σi(X
d/l − ζ) = (Xid/l − ζ) = (Xd/l − ζi

−1

)

To see this, observe that the roots of Xd/l − ζi−1

(in an appropriate extension field of Zq) are also roots of
Xid/l − ζ. Then, for f ∈ Rq,

σi

(
f mod (Xd/l − ζ)

)
= σi(f) mod (Xd/l − ζi

−1

).

The cyclic subgroup 〈2l + 1〉 ⊂ Z×2d generated by 2l+ 1 has order d/l [LS18, Lemma 2.4] and stabilizes every
prime ideal (Xd/l − ζ) since ζ has order 2l. The quotient group Z×2d/〈2l + 1〉 has order l and hence acts
simply transitively on the l prime ideals. Therefore, we can index the prime ideals by i ∈ Z×2d/〈2l + 1〉 and
write (

Xd + 1
)

=
∏

i∈Z×2d/〈2l+1〉

(
Xd/l − ζi

)
Now, the product of the k | l prime ideals (Xd/l − ζi) where i runs over 〈2l/k + 1〉/〈2l + 1〉 is given by

the ideal (Xkd/l − ζk). So, we can partition the l prime ideals into l/k groups of k ideals each, and write(
Xd + 1

)
=

∏
j∈Z×2d/〈2l/k+1〉

(
Xkd/l − ζjk

)
=

∏
j∈Z×2d/〈2l/k+1〉

∏
i∈〈2l/k+1〉/〈2l+1〉

(
X

d
l − ζij

)
.

Another way to write this, which we will use in our protocols, is to note that Z×2d/〈2l/k + 1〉 ∼= Z×2l/k and

the powers (2l/k+ 1)i for i = 0, . . . , k− 1 form a complete set of representatives for 〈2l/k + 1〉/〈2l + 1〉. So,
if σ = σ2l/k+1 ∈ Aut(Rq), then

(
Xd + 1

)
=

∏
j∈Z×

2l/k

k−1∏
i=0

σi
(
X

d
l − ζj

)
,

and the prime ideals are indexed by (i, j) ∈ I = {0, . . . , k − 1} × Z×2l/k.

2.3 Module SIS/LWE

We employ the computationally binding and computationally hiding commitment scheme from [BDL+18]
in our protocols, and rely on the well-known Module-LWE (MLWE) and Module-SIS (MSIS) [PR06, LM06,
LPR10, LS15] problems to prove the security of our constructions. Both problems are defined over a ring Rq
for a positive modulus q ∈ Z+.
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Definition 2.1 (MSISn,m,βSIS). The goal in the Module-SIS problem with parameters n,m > 0 and 0 <

βSIS < q is to find, for a given matrix A
$← Rn×mq , ~x ∈ Rmq such that A~x = ~0 over Rq and 0 < ‖~x‖2 ≤ βSIS.

We say that a PPT adversary A has advantage ε in solving MSISn,m,βSIS if

Pr
[
0 < ‖~x‖2 ≤ βSIS ∧ A~x = ~0 over Rq

∣∣∣A $← Rn×mq ; ~x← A(A)
]
≥ ε.

Definition 2.2 (MLWEn,m,χ). In the Module-LWE problem with parameters n,m > 0 and an error distri-

bution χ over R, the PPT adversary A is asked to distinguish (A, ~t)
$← Rm×nq ×Rmq from (A,A~s+ ~e) for

A
$← Rm×nq , a secret vector ~s

$← χn and error vector ~e
$← χm. We say that A has advantage ε in solving

MLWEn,m,χ if ∣∣∣Pr
[
b = 1

∣∣∣A $← Rm×nq ; ~s
$← χn; ~e

$← χm; b← A(A,A~s+ ~e)
]

(11)

− Pr
[
b = 1

∣∣∣A $← Rm×nq ; ~t
$← Rmq ; b← A(A, ~t)

]∣∣∣ ≥ ε.
For our practical security estimations of these two problems against known attacks, the parameter m

in both of the problems does not play a crucial role. Therefore, we sometimes simply omit m and use the
notations MSISn,B and MLWEn,χ. The parameters κ and λ denote the module ranks for MSIS and MLWE,
respectively.

2.4 Error Distribution, Discrete Gaussians and Rejection Sampling

For sampling randomness in the commitment scheme that we use, and to define the particular variant of the
Module-LWE problem that we use, we need to specify the error distribution χd on R. In general any of the
standard choices in the literature is fine. So, for example, χ can be a narrow discrete Gaussian distribution
or the uniform distribution on a small interval. In the numerical examples in Section 5.3 we assume that χ
is the computationally simple centered binomial distribution on {−1, 0, 1} where ±1 both have probability
5/16 and 0 has probability 6/16. This distribution is chosen (rather than the more “natural” uniform one)
because it is easy to sample given a random bitstring by computing a1 + a2 − b1 − b2 mod 3 with uniformly
random bits ai, bi.

Rejection Sampling. In our zero-knowledge proof, the prover will want to output a vector ~z whose distribution
should be independent of a secret randomness vector ~r, so that ~z cannot be used to gain any information on
the prover’s secret. During the protocol, the prover computes ~z = ~y + c~r where ~r is the randomness used

to commit to the prover’s secret, c
$← C is a challenge polynomial, and ~y is a “masking” vector. To remove

the dependency of ~z on ~r, we use the rejection sampling technique by Lyubashevsky [Lyu09, Lyu12]. In the
two variants of this technique the masking vector is either sampled uniformly from some bounded region
or using a discrete Gaussian distribution. In the high dimensions we will encounter, the Gaussian variant is
far superior as it gives acceptable rejection probabilities for much narrower distributions. We first define the
discrete Gaussian distribution and then state the rejection sampling algorithm in Figure 1, which plays a
central role in Lemma 2.4.

Definition 2.3. The discrete Gaussian distribution on R` centered around ~v ∈ R` with standard deviation
s > 0 is given by

D`d
v,s(~z) =

e−‖~z−~v‖
2
2/2s

2∑
~z′∈R` e−‖~z

′‖22/2s2
.

When it is centered around ~0 ∈ R` we write D`d
s = D`d

~0,s
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Lemma 2.4 (Rejection Sampling). Let V ⊆ R` be a set of polynomials with norm at most T and

ρ : V → [0, 1] be a probability distribution. Also, write s = 11T and M = 3. Now, sample ~v
$← ρ and

~y
$← D`d

s , set ~z = ~y + ~v, and run b← Rej (~z, ~v, s) Then, the probability that b = 0 is at least (1− 2−100)/M
and the distribution of (~v, ~z), conditioned on b = 0, is within statistical distance of 2−100/M of the product
distribution ρ×D`d

s .

Rej(~z, ~v, s)

01 u
$← [0, 1)

02 If u > 1
M
· exp

(
−2〈~z,~v〉+‖~v‖2

2s2

)
03 return 0
04 Else
05 return 1

Fig. 1. Rejection Sampling [Lyu12].

We will also use the following tail bound, which follows from [Ban93, Lemma 1.5(i)].

Lemma 2.5. Let ~z
$← D`d

s . Then

Pr
[
‖~z‖2 < s

√
2`d
]
> 1− 2− log(e/2)`d/2 > 1− 2−`d/8.

2.5 Commitment Scheme

In our protocol, we use a variant of the commitment scheme from [BDL+18] which commits to a vector of
messages in Rq. Our basic proof of knowledge of multiplicative relations will prove that m1m2 = m3, so for
simplicity, we just describe the commitment scheme for three messages.

The public parameters are a uniformly random matrixB0 ∈ Rµ×(λ+µ+3)
q and uniform vectors ~b1, . . . ,~b3 ∈

Rλ+µ+3
q . To commit to ~m = (m1,m2,m3)T ∈ R3

q, we choose a random short polynomial vector ~r
$←

χ(λ+µ+3)d from the error distribution and output the commitment

~t0 = B0~r,

t1 = 〈~b1, ~r〉+m1,

t2 = 〈~b2, ~r〉+m2,

t3 = 〈~b3, ~r〉+m3.

The commitment scheme is computationally hiding under the Module-LWE assumption and computa-
tionally binding under the Module-SIS assumption; see [BDL+18]. Moreover, the scheme is not only binding
for the opening (~r, ~m) known by the prover, but also binding with respect to a relaxed opening (c̄, ~r∗, ~m∗).
The relaxed opening also includes a short polynomial c̄, the randomness vector ~r∗ is longer than ~r, and the
following equations hold,

c̄~t0 = B0~r
∗,

c̄t1 = 〈~b1, ~r∗〉+ c̄m∗1,

c̄t2 = 〈~b2, ~r∗〉+ c̄m∗2,

c̄t3 = 〈~b3, ~r∗〉+ c̄m∗3.
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The notion of relaxed opening is important since there is an efficient protocol for proving knowledge of a
relaxed opening. We do not go into details here since we will define a new notion of a binding relaxed opening
and provide a proof of knowledge protocol.

The utility of the commitment scheme for zero-knowledge proof systems stems from the fact that one can
compute module homomorphisms on committed messages. For example, let a1 and a2 be from Rq. Then

a1t1 + a2t2 = 〈a1
~b1 + a2

~b2, ~r〉+ a1m1 + a2m2

is a commitment to the message a1m1+a2m2 with matrix a1
~b1+a2

~b2. This module homomorphic property
together with a proof that a commitment is a commitment to the zero polynomial allows to prove linear
relations among committed messages over Rq.

3 Distribution in the NTT

In this section we present a way to construct challenge sets C ⊂ Rq so as to be able to compute the (almost
exact) probability that c− c′ is invertible in Rq, when c and c′ are sampled from some distribution C over
C. Recall that d ≥ l are powers of 2. Moreover,

Rq = Zq[X]/(Xd + 1) ∼=
∏
i∈Z×2l

Zq[X]/(Xd/l − ζi), (12)

where ζ ∈ Zq is a 2l-th root of unity (in this section, the factors Xd/l − ζi are not necessarily irreducible as
this doesn’t really matter for the results here). The challenge set is defined as all degree d polynomials with
coefficients in {−1, 0, 1}, i.e., C = {−1, 0, 1}d ⊂ Rq. The coefficients of a challenge c ∈ C are independently
and identically distributed, where 0 has probability p and ±1 both have probability (1 − p)/2. For the
resulting distribution over C we write C, and sampling a challenge c from this distribution is written as
c← C.

In the remainder of this section we use Fourier analysis to study the distribution of c mod Xd/l− ζi for
c← C and i ∈ Z×q . Lemma 3.1 shows that this distribution does not depend on i.

In [CLS16] a similar analysis is performed. The main differences with our approach is that they sample
the coefficients from a binomial distribution centered at 0. In particular, our coefficient distribution with
p = 1/2 corresponds to a special case of the binomial distribution considered in [CLS16]. For our application
it makes sense to consider various distributions over {−1, 0, 1}. The binomial distribution does allow for the
derivation of an elegant upper bound on the maximum probability of c mod Xd/l− ζi. However, this upper
bound is only applicable when

√
q ≤ 2d. For this reason we derive a less elegant but much tighter upper

bound on various distributions over {−1, 0, 1}, that is also applicable when
√
q > 2d.

Lemma 3.1. Let x ∈ Rq be a random polynomial with coefficients independently and identically distributed.
Then Rq/(Xd/l − ζi) ∼= Rq/(Xd/l − ζj), and x mod (Xd/l − ζi) and x mod (Xd/l − ζj) are identically
distributed for all i, j ∈ Z×2l.

Proof. First suppose that Xd/l − ζi is irreducible for all i ∈ Z×2l. Then qi = (q,Xd/l − ζi) is prime in
K = Q[X]/(Xd+ 1) and for all i, j ∈ Z×2l there exists an automorphism σ ∈ Gal (K/Q) such that σ(qi) = qj .
Hence, σ induces an isomorphism between the finite fields Rq/(Xd/l − ζi) and Rq/(Xd/l − ζj).

Since the coefficients of x are i.i.d., it holds that σ(x) follows the same distribution over Rq as x. Hence,
x mod (Xd/l − ζi) follows the same distribution as σ(x mod (Xd/l − ζi)) = σ(x) mod (Xd/l − ζj) and as
x mod (Xd/l − ζj) which proves the lemma for this case.

Now suppose that Xd/l−ζi is reducible in Zq, then so is Xd/l−ζj . Moreover, since K is Galois both these
polynomials split in the same number irreducible factors and for every pair f(X), g(X) of irreducible factors
there exists an automorphism σ ∈ Gal(K/Q) such that σ ((q, f(X))) = (q, g(X)). Using these automorphisms
the lemma follows in an analogous manner.
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Let us now consider the coefficients of the polynomial c mod (Xd/l−ζ) for c← C. Clearly all coefficients
follow the same distribution over Zq. Let us write Y for the random variable over Zq that follows this
distribution. The following lemma gives an upper bound on the maximum probability of Y .

Lemma 3.2. Let the random variable Y over Zq be defined as above. Then for all x ∈ Zq,

Pr(Y = x) ≤M :=
1

q
+

1

q

∑
j∈Z×q

l−1∏
k=0

∣∣p+ (1− p) cos(2πjζk/q)
∣∣ . (13)

Proof. From Fourier analysis (see, e.g., [Dia88]) we find that

P (x) := Pr(Y = x),

=
1

q
+

1

q

∑
j∈Z×q

P̂ (j) exp (−2πijx/q) , (14)

where P̂ is the Fourier transform of P : Zq → [0, 1]. Moreover, the probability distribution P is the convo-
lution of the distributions µk (0 ≤ k ≤ l − 1) with corresponding Fourier transforms µ̂k, where

µk(0) = p, µk(ζk) = µk(−ζk) = (1− p)/2,
µ̂k : Zq → C, j 7→ p+ (1− p) cos

(
2πjζk/q

)
.

(15)

Hence, from Fourier theory, it follows that

P̂ (j) =

l−1∏
k=0

µ̂k(j), (16)

and therefore that

P (x) =
1

q
+

1

q

∑
j∈Z×q

l−1∏
k=0

µ̂k(j) exp (−2πijx/q) , (17)

Taking absolute values on both sides and applying the triangle inequality now proves the lemma.

The following lemma shows that, by utilizing certain algebraic symmetries, we can reduce the number
of terms in the summation of Lemma 3.2 by a factor 2l, thereby allowing the maximum probability to be
computed more efficiently.

Lemma 3.3. Let the random variable Y over Zq be defined as above. Then for all x ∈ Zq,

Pr(Y = x) ≤M :=
1

q
+

2l

q

∑
j∈Z×q /〈ζ〉

l−1∏
k=0

∣∣p+ (1− p) cos(2πjyζk/q)
∣∣ . (18)

Proof. Let a, b ∈ Z×q such that ab−1 ∈ 〈ζ〉, i.e., a = bζm for some m. Now note that {1, ζ, . . . , ζl−1} =

〈ζ〉/± 1 = ζm〈ζ〉/± 1 for all m ∈ Z. Since cos(x) is an even function it therefore follows that P̂ (a) = P̂ (b),
from which the lemma immediately follows.

The random variable Y = Yl corresponds to a random walk of length l over Zq defined as follows

Y0 = 0, Yn = ζYn−1 + bn, (19)
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where bn are i.i.d. with distribution µ(0) = p and µ(1) = µ(−1) = (1 − p)/2. Random walks of this type
have been studied extensively [CDG87, Dia88, Hil90, Hil06, BV19] and convergence is expected in time
O(log q/H2(µ)) [BV19], where

H2(µ) := − log

∑
x∈Zq

µ(x)2

 . (20)

However, there exist random walks of this form for which convergence only occurs in time O(log q log log q)
[Dia88, Hil06].

Let us consider the following example. Let q be the 32-bit prime 4294962689 = mod 1 mod 512 and
d | 256 the dimension of the ring R. Then, for any d, q splits completely in Z[X]/(Xd + 1), hence in this
case l = d. Moreover, suppose that the coefficients of challenges are sampled from a uniform distribution
over {−1, 0, 1}, i.e., p = 1/3. Table 1 shows a bound M on the maximum probability maxx∈Zq |Pr(Y = x)|,
as defined in Lemma 3.2 and Lemma 3.3.

Table 1. Maximum probability for the coefficients of challenges c← C when reduced modulo (X−ζ) (q = 4294962689
and p = 1/3).

Dimension d 1 2 4 8 16 32 64

log2(M) −1.06 −2.13 −4.25 −8.50 −17.01 −31.69 ≈ − log2(q)

4 Opening Proof

Suppose the prover knows an opening to the commitment

~t0 = B0~r,

t1 = 〈~b1, ~r〉+m.

The standard protocol for proving this, stemming from [BDL+18], works by giving an approximate proof for
the first equation ~t0 = B0~r. So, the prover commits to a short masking vector ~y from a discrete Gaussian
distribution by sending ~w = B0~y. Then the verifier sends a short challenge polynomial c ∈ C ⊂ R and the
prover replies with the short vector ~z = ~y + c~r. Here rejection sampling is used to make the distribution of
~z independent from ~r. The verifier checks that ~z is short, i.e. ‖~z‖2 ≤ β, and the equation B0~z = ~w + c~t0.

For suitable instantiations this proves knowledge of a commitment opening because it is possible to
extract two prover replies ~z and ~z′ for two challenges c and c′, respectively, and a message m∗ ∈ Rq such
that

c̄~t0 = B0(~z − ~z′),

c̄t1 = 〈~b1, ~z − ~z′〉+ c̄m∗,

where c̄ = c− c′ is the difference of the challenges. In fact, it can be shown [BDL+18] that the commitment
scheme is binding with respect to the messagem∗ under the Module-SIS assumption if we have the additional
property that c̄ is invertible in the ringRq. Then, it must be thatm∗ = m, unless the prover knows a Module-
SIS solution for B0. The invertibility property is crucial in all previous works that study zero-knowledge
proofs for the commitment scheme. It is enforced by choosing the set C of challenges such that the difference
of every two distinct elements is invertible. Unfortunately, depending on how much the prime q splits in
the ring R, there will not be sufficiently large sets with this property, and even less so large sets consisting
of short polynomials. For instance, for both theoretical and practical reasons one often wants q to split
completely, but then there can be at most q polynomials which are pairwise different modulo one of the
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degree 1 prime divisors of q. Even if we let q split slightly less, say in degree 4 prime ideals, then we do not
know of large sets of short polynomials that do not collide modulo one of the divisors. This severely restricts
the soundness of the protocol and the protocol has to be repeated several times to boost soundness, which
blows up the proof size. See [LS18] for more details about this problem.

The results from Section 3 present a way to construct larger challenge sets with the weaker property
that c̄ is non-invertible only with negligible probability. We generalize the proof further and explain how
it is possible to make use of challenge sets where the difference of two elements is non-invertible with non-
negligible probability.

So, in the extraction, we drop the assumption that for a pair of accepting transcripts with different
challenges c and c′, the difference c̄ = c − c′ is invertible. This essentially means that we can not uniquely
interpolate the prover replies ~z and ~z′, and obtain vectors ~y∗ and ~r∗ such that

~z = ~y∗ + c~r∗ and ~z′ = ~y∗ + c′~r∗. (21)

But we can restore the interpolation by piecing together several transcript pairs that we interpolate locally
modulo the various prime ideals dividing q.

Let Xd + 1 ≡ ϕ1 . . .ϕl (mod q) be the factorization of Xd + 1 into irreducible polynomials modulo q.
Thus, our ring Rq is the product of the corresponding residue fields κi = Zq[X]/(ϕi), i.e.

Rq = Zq[X]/(Xd + 1) = Zq[X]/(ϕ1)× · · · × Zq[X]/(ϕl).

Now, what is needed specifically is that for every i there is an accepting transcript pair with nonzero
challenge difference c̄ modulo ϕi. So, concretely, suppose the extractor E has obtained l pairs (~zi, ~z

′
i),

i = 1, . . . , l, of replies from the prover P for the challenge pairs (ci, c
′
i), respectively, such that

c̄i = ci − c′i 6≡ 0 (mod ϕi).

Some of the pairs can be equal and the extractor does not always need really need to compute l pairs as long
as the above condition is true. We also assume that all transcripts contain the same prover commitment ~w
and are accepting; that is, in particular, B0~zi = ~w + ci~t0 and B0~z

′
i = ~w + c′i~t0 for all i. From this data E

computes the local interpolations

~zi ≡ ~y∗i + ci~r
∗
i and ~z′i ≡ ~y∗i + c′i~r

∗
i (mod ϕi).

Concretely, we set

~r∗i =
~zi − ~z′i
c̄i

mod ϕi, and

~y∗i =
ci~z
′
i − c′i~zi
c̄i

mod ϕi.

Now, let ~r∗ and ~y∗ over Rq be the CRT lifting of the ~r∗i and ~y∗i . We show it must hold that

~zi = ~y∗ + ci~r
∗ and ~z′i = ~y∗ + c′i~r

∗

for all i. This restores the global interpolations as in Equation 21. In fact, we show more than this. Namely,
that in every accepting transcript with commitment ~w, the prover reply must be precisely of the form in
Equation 21. Also the vectors ~r∗ and ~y∗ are preimages of ~t0 and ~w, respectively, which is what we suspect.
So the prover really is committed to ~r∗ and ~y∗ by ~t0 and ~w.

Lemma 4.1. If we have obtained l pairs of accepting transcripts with commitment ~w as in the preceding
paragraph, then every accepting transcript ( ~w, c, ~z) with commitment ~w must be such that ~z = ~y∗ + c~r∗

where ~y∗ and ~r∗ are the vectors computed above independently from c, or we obtain an MSISµ,8κβ solution

for B0 where κ is a bound on the `1-norm of the challenges. Moreover, we have B0~r
∗ = ~t0 and B0~y

∗ = ~w.
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Proof. Define ~y∗′ by ~z = ~y∗′ + c~r∗. Fix some i ∈ {1, . . . , l}. Since all transcripts are accepting we get from
subtracting the verification equations,

B0(~zi − ~z′i) = c̄i~t0, and

B0(~z − ~zi) = (c− ci)~t0.

Now, cross-multiplying by c̄i and c − ci and subtracting shows that we either have an MSISµ,8κβ solution
for B0, or

c̄i(~z − ~zi) = (c− ci)(~zi − ~z′i).

Suppose the latter case is true. Then we reduce modulo ϕi and substitute the local expressions for ~z, ~zi and
~z′i, which shows

c̄i(~y
∗′ − ~y∗i + (c− ci)~r∗i ) ≡ (c− ci)c̄i~r∗i (mod ϕi)

⇔ c̄i(~y
∗′ − ~y∗i ) ≡ 0 (mod ϕi).

Since c̄i mod ϕi 6= 0, ~y∗′ ≡ ~y∗i ≡ ~y∗ modulo ϕi. This holds for all i and hence it follows that ~y∗′ = ~y∗.
We come to the statements B0~r

∗ = ~t0 and B0~y
∗ = ~w. From the construction of ~r∗ and the verification

equations it follows that

B0~r
∗ ≡ B0~r

∗
i

≡ B0
~zi − ~z′i
c̄i

≡ ~t0 (mod ϕi)

for all i. Similarly, for ~y∗,

B0~y
∗ ≡ B0~y

∗
i

≡ B0
ci~z
′
i − c′i~zi
c̄i

≡ ~w (mod ϕi).

The statements in the lemma follow from the Chinese remainder theorem. ut

Finally, the extracted vector ~r∗ can be used to define a binding notion of opening for the commitment
scheme where the extracted message m∗ is simply set to fulfill

t1 = 〈~b1, ~r∗〉+m∗.

Then we have found an instance of the following definition.

Definition 4.2. A weak opening for the commitment ~t = ~t0 ‖ t1 consists of l polynomials c̄i ∈ Rq, a
randomness vector ~r∗ over Rq and a message m∗ ∈ Rq such that

‖c̄i‖1 ≤ 2κ and c̄i mod ϕi 6= 0 for all 1 ≤ i ≤ l,
‖c̄i~r∗‖2 ≤ 2β for all 1 ≤ i ≤ l,
B0~r

∗ = ~t0,

〈~b1, ~r∗〉+m∗ = t1.

It is easy to show that the commitment scheme is binding with respect to these weak openings.

Lemma 4.3. The commitment scheme is binding with respect to weak openings if MSISµ,8κβ is hard. More
precisely, from two different weak openings ((c̄i), ~r

∗,m∗) and ((c̄′i), ~r
∗′,m∗′) with m∗ 6= m∗′ one can imme-

diately compute a Module-SIS solution for B0 of length at most 8κβ.
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Proof. Suppose there are two weak openings ((c̄i), ~r
∗,m∗) and ((c̄′i), ~r

∗′,m∗′) with m∗ 6= m∗′. Then,

〈~b1, ~r∗〉 + m∗ = t1 = 〈~b1, ~r∗′〉 + m∗′ implies ~r∗ 6= ~r∗′. Therefore, there exists an i ∈ {1, . . . , l} such
that ~r∗ 6≡ ~r∗′ (mod ϕi). Consequently, c̄ic̄

′
i(~r
∗− ~r∗′) = c̄′ic̄i~r

∗− c̄ic̄′i~r∗′ 6= 0 since the polynomials ci and c′i
are non-zero modulo ϕi. Hence,

B0c̄ic̄
′
i(~r
∗ − ~r∗′) = 0

is a non-trivial Module-SIS solution for B0 of length at most 8κβ. ut

It remains to explain how we make it possible to arrive at the transcript pairs that we want to piece
together. Suppose Rq factors in the following way,

Rq =
∏
i∈Z×2l

Zq[X]/(X
d
l − ζi)

with l irreducible ϕi = Xd/l− ζi and ζ a primitive 2l-th root of unity. Let C = {−1, 0, 1}d ⊂ R and c ∈ C be
a random element from C where each coefficient is independently identically distributed with Pr(0) = 1/2
and Pr(−1) = Pr(1) = 1/4. Then the d/l coefficients of c mod ϕi for a fixed i are mutually independent
and Lemma 3.3 gives a bound on their maximum probability over Zq. We will set parameters such that
the maximum probability is not much bigger than 1/q. Then the probability that a cheating prover can get
away with only answering challenges with a particular value modulo ϕi is about q−d/l. If this probability
is negligible, then, although the projections c mod ϕi for varying i are not independent, we can get several
transcript pairs where for each i at least one c̄ mod ϕi is non-zero. This works by rewinding the prover l
times, once for every i, and sending a challenge that differs from a previous successful challenge modulo ϕi.
If otherwise the probability q−d/l is not negligible we can run several, say k, copies of the protocol in parallel
and reduce the cheating probability to q−kd/l. Then there are k prover commitments ~wi in the first flow
and there won’t be l accepting transcript pairs for each of them. Hence this requires a slightly more general
analysis than what we have provided in the overview in this section. We handle this case in the security
proof of our protocol given in Figure 2. It turns out that it is still possible to extract unique preimages ~yi
for all commitments ~wi.

In the k parallel repetitions we do not sample the challenges independently. The reason is that when
proving relations on the messages and specifically in our product proof we will need more structure. Let
σ = σ2l/k+1 ∈ Aut(Rq) ∼= Z×2d be the automorphism of order kd/l that stabilizes the ideals(

X
kd
l − ζjk

)
=

∏
i=0,...,k−1

σi
(
X

d
l − ζj

)
=

∏
i∈〈2l/k+1〉/〈2l+1〉

(
X

d
l − ζij

)
for j ∈ 〈−1, 5〉/〈2l/k + 1〉 ∼= Z×2l/k. Now, we let the challenges in the k parallel executions be the images σi(c),

i = 0, . . . , k − 1, of a single polynomial c ∈ C. If parameters are such that the maximum probability of each
of the mutually independent coefficients of c mod (Xkd/l − ζjk) is essentially 1/q, and thus the maximum
probability of c mod (Xkd/l − ζjk) is essentially q−kd/l, and this is negligible, then the prover must answer
two c, c′ that differ modulo Xkd/l − ζjk. Hence, c̄ = c − c′ is non-zero modulo at least one of the divisors,
say (Xd/l − ζj). Therefore, for every other divisor σi(Xd/l − ζj) we have

σi(c) mod σi
(
X

d
l − ζj

)
= σi

(
c mod

(
X

d
l − ζj

))
6= 0.

So we are in the situation where we have an accepting transcript pair with non-zero c̄ modulo every prime
divisor of (Xkd/l− ζjk). By repeating the argument for every j ∈ Z×2l/k, we see that we can get an extraction

with non-vanishing c̄ modulo every prime divisor of (Xd + 1).
The final protocol is given in Figure 2.

Theorem 4.4. The protocol in Figure 2 is complete, statistical honest verifier zero-knowledge and compu-
tational special sound under the Module-SIS assumption. More precisely, let p be the maximum probability
over Zq of the coefficients of c mod Xkd/l − ζk as in Lemma 3.3.
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Prover P Verifier V

Inputs:

B0 ∈ Rµ×(λ+µ+1)
q ,~b1 ∈ Rλ+µ+1

q B0,~b1

~r ∈ {−1, 0, 1}(λ+µ+1)d ⊂ Rλ+µ+1
q

~t0, t1

m ∈ Rq
~t0 = B0~r

t1 = 〈~b1, ~r〉+m

For i = 0, . . . , k − 1 :

~yi
$← D(λ+µ+1)d

s

~wi = B0~yi

~wi -

c� c
$← C

For i = 0, . . . , k − 1 :

~zi = ~yi + σi(c)~r

If Rej
(

(~zi), (σ
i(c)~r), s

)
= 1, abort ~zi -

For i = 0, . . . , k − 1 :

‖~zi‖2
?

≤ β = s
√

2(λ+ µ+ 1)d

B0~zi
?
= ~wi + σi(c)~t0

Fig. 2. Automorphism opening proof for the commitment scheme. We assume l, k are powers of two such that
k < l ≤ d, q − 1 ≡ 2l (mod 4l), and σ = σ2l/k+1 ∈ Aut(Rq). Furthermore, C is the challenge distribution over R
where each coefficient is independently identically distributed with Pr(0) = 1/2 and Pr(−1) = Pr(1) = 1/4, κ is a

bound on the `1-norm of c, i.e. ‖c‖1 ≤ κ with overwhelming probability for c
$← C, and Ds is the discrete Gaussian

distribution on Z with standard deviation s = 11kκ ‖~r‖2.

Then, for completeness, unless the honest prover P aborts due to the rejection sampling, it convinces the
honest verifier V with overwhelming probability.

For zero-knowledge, there exists a simulator S, that, without access to secret information, outputs a
simulation of a non-aborting transcript of the protocol between P and V which has statistical distance at
most 2−100 to the actual interaction.

For knowledge-soundness, there is an extractor E with the following properties. When given rewindable
black-box access to a deterministic prover P∗ that convinces V with probability ε > pkd/l, E either outputs a
weak opening for the commitment ~t or a MSISµ,8κβ solution for B0 in expected time at most 1/ε+ (l/k)(ε−
pkd/l)−1 when running P∗ once is assumed to take unit time.

Moreover, the weak opening can be extended to also include k vectors ~y∗i ∈ Rλ+µ+1
q such that B0~y

∗
i = ~wi,

where ~wi are the prover commitments sent by P∗ in the first flow. Furthermore, for every accepting transcript
of an interaction with P∗, the prover replies are given by ~zi = ~y∗i + σi(c)~r∗.

Proof. Completeness. The vectors ~zi sent by P are independent and their distribution has statistical dis-

tance at most 2−100 from D
(λ+µ+1)d
s by Lemma 2.4. Lemma 2.5 implies that the bounds ‖~zi‖2 ≤ β =

s
√

2(λ+ µ+ 1)d are true with overwhelming probability. It is easy to see that all of the other verification
equations are always true for the messages sent by P.
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Zero-Knowledge. We can simulate a non-aborting transcript between the honest prover and the honest
verifier in the following way. First, in a non-aborting honest transcript the ~zi are statistically close to

D
(λ+µ+1)d
s by Lemma 2.4. So the simulator can just sample ~zi

$← D
(λ+µ+1)d
s . Next, again by Lemma 2.4, we

know that σi(c)~r is independent of ~zi for all i, and hence c is independent of the ~zi. So, the simulator picks

c
$← C like the honest verifier. Now, the remaining messages ~wi are uniquely determined by the verification

equations in an honest transcript because of completeness. We see that if the simulator computes these
messages so that the verification equations become true, then the resulting transcript is statistically close to
an honest transcript.

Soundness. The extractor E repeatedly runs P with freshly sampled challenges until it hits an accepting
transcript. Let ~wi, c and ~zi be the prover commitments, challenge and prover replies in this transcript,
respectively. Then, E wants to get l/k more accepting transcripts such that for each of the l/k ideals (Xkd/l−
ζjk), j ∈ Z×2l/k, there is a transcript whose challenge differs from c modulo the ideal. Moreover, these

transcripts need all contain the same prover commitments ~wi as in the first accepting transcript. To this
end, for every j, E repeatedly rewinds the prover to just after the first flow and sends a random challenge
that is different from c modulo (Xkd/l − ζjk) until the resulting transcript with challenge cj and replies ~zij
is accepting. We write c̄j = c− cj for the challenge differences. By construction, c̄j mod (Xkd/l − ζjk) 6= 0.

The expected runtime for the whole process is as follows. The first transcript takes expected time 1/ε.
Next, when restricting to challenges that are different modulo one of the ideals (Xkd/l + ζjk), the remaining
success probability is at least ε− pkd/l. So in expected time at most

1

ε
+
l

k

1

ε− pkd/l

the extractor has the 1 + l/k accepting transcripts.
Now fix an index (e, f) ∈ I = {0, . . . , k − 1} × Z×2l/k and consider the associated prime ideal pef =

σe(Xd/l − ζf ) dividing (Xkd/l − ζfk). One of the permutations of c̄f is nonzero modulo pef . So there exists

at least one e′ = e′(e, f) ∈ {0, . . . , k − 1} such that σe
′
(c̄f ) mod pef 6= 0. Now, we set

~r∗ef =
~ze′ − ~ze′f
σe′(c̄f )

mod σe
(
X

d
l − ζf

)
.

Next, let ~r∗ ∈ Rλ+µ+1
q be such that ~r∗ ≡ ~r∗ef (mod σe(Xd/l − ζf )) for all (e, f) ∈ I. We claim σi(c̄j)~r

∗ =
~zi − ~zij for all (i, j) ∈ I, unless we find a Module-SIS solution for B0. From the verification equations we
have

B0(~zi − ~zij) = σi(c̄j)~t0 (22)

for all (i, j) ∈ I. Therefore, either

σe
′
(c̄f )(~zi − ~zij) = σi(c̄j)(~ze′ − ~ze′f ),

or we have found a non-trivial Module-SIS solution for B0 of length at most 8κβ. We assume the former is
true. Then,

σi(c̄j)~r
∗ ≡ σi(c̄j)~r∗ef

≡ σi(c̄j)
~ze′ − ~ze′f
σe′(c̄f )

≡ ~zi − ~zij (mod σe(X
d
l − ζf )),

and the claim follows from the Chinese remainder theorem. It holds B0σ
i(c̄j)~r

∗ = σi(c̄j)~t0 for all (i, j) ∈ I
and this implies

B0~r
∗ = ~t0.
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Finally, we compute the extracted message m∗ which we set to fulfill the equation

t1 = 〈~b1, ~r∗〉+m∗.

We conclude that the extractor has obtained a weak opening (σi(c̄j), ~r
∗,m∗) for the commitment ~t. In

particular, it is true that
∥∥σi(c̄j)~r∗∥∥2 ≤ 2β for all (i, j) ∈ I.

We turn to the ~y∗i . Set them to be the vectors defined by

~zi = ~y∗i + σi(c)~r∗.

Clearly, B0~y
∗
i = B0(~zi − σi(c)~r∗) = ~wi. Now, consider an arbitrary accepting transcript with the same

prover commitments ~wi as above, but possibly a different challenge c′ and different last messages ~z′i. Then,
for a moment write ~z′i = ~y∗′i + σi(c′)~r∗. We aim to show ~y∗i = ~y∗′i . From the verification equations for ~zi
and ~z′i,

B0(~zi − ~z′i) = σi(c̄)~t0

for all i ∈ {0, . . . , k − 1} where c̄ = c− c′. Combining this with Equation (22), unless we find a Module-SIS
solution for B0,

σe
′
(c̄f )(~zi − ~z′i) = σi(c̄)(~ze′ − ~ze′f ),

This implies, since ~ze′ − ~ze′f = σe
′
(c̄f )~r∗,

σe
′
(c̄f )(~y∗i − ~y∗′i ) = 0.

Recall σe
′
(c̄f ) 6≡ 0 (mod pef ). Hence, ~y∗i ≡ ~y∗′i (mod pef ), and thus ~y∗i = ~y∗′i . ut

.

5 Product Proof

In this section we present an efficient protocol for proving multiplicative relations between committed mes-
sages. Suppose the prover knows an opening to a commitment ~t to three secret polynomialsm1,m2,m3 ∈ Rq,

~t0 = B0~r,

t1 = 〈~b1, ~r〉+m1,

t2 = 〈~b2, ~r〉+m2,

t3 = 〈~b3, ~r〉+m3.

His goal is to prove the multiplicative relationm1m2 = m3 inRq. We recall a simple technique for this, which
for example was used in [BLS19, YAZ+19]. The prover commits to uniformly random masking polynomials
a1,a2,a3 ∈ Rq and two so-called “garbage polynomials“,

~t′0 = B′0~r
′,

t′1 = 〈~b′1, ~r′〉+ a1,

t′2 = 〈~b′2, ~r′〉+ a2,

t′3 = 〈~b′3, ~r′〉+ a3,

t′4 = 〈~b′4, ~r′〉+ a1m2 + a2m1 + a3,

t′5 = 〈~b′5, ~r′〉+ a1a2.

Then P replies to a challenge polynomial x ∈ Rq with masked openings fi = ai +xmi of the messages mi.
Now P shows that the fi really open to the committed messages by proving that t′i+xti−fi is a commitment
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to zero for i = 1, 2, 3. Concretely, in addition to the standard opening proof for all of the commitments where
the prover sends

~w = B0~y,

~w′ = B′0~y
′,

~z = ~y + c~r,

~z′ = ~y′ + c~r′,

they will also send

v1 = 〈~b′1, ~y′〉+ x〈~b1, ~y〉,

v2 = 〈~b′2, ~y′〉+ x〈~b2, ~y〉,

v3 = 〈~b′3, ~y′〉+ x〈~b3, ~y〉.

The verifier then checks the equations

B0~z = ~w + c~t0,

B′0~z
′ = ~w′ + c~t′0,

〈~b′1, ~z′〉+ x〈~b1, ~z〉 = v1 + c(t′1 + xt1 − f1),

〈~b′2, ~z′〉+ x〈~b2, ~z〉 = v2 + c(t′2 + xt2 − f2),

〈~b′3, ~z′〉+ x〈~b3, ~z〉 = v3 + c(t′3 + xt3 − f3).

This convinces the verifier that the fi open to the secret messages mi. Next, consider the commitment

τ = t′5 + xt′4 − (f1f2 − xf3). (23)

The verifier knows that the fi are of the form fi = a∗i + xm∗i where the polynomials a∗i and m∗i are the
(extracted) messages in the commitments t′i, ti. Therefore, V knows that τ is a commitment to the message

µ = m∗5 + xm∗4 − (a∗1a
∗
2 + x(a∗1m

∗
2 + a∗2m

∗
1) + x2m∗1m

∗
2 − xa∗3 − x2m∗3)

= (m∗5 − a∗1a∗2) + x(m∗4 − a∗1m∗2 − a∗2m∗1 + a∗3) + x2(m∗3 −m∗1m∗2)

where m∗4, m∗5 are the extracted messages from the two garbage commitments. Now the prover completes
the product proof by proving that τ is a commitment to zero. We explain why this suffices. The message µ
can be viewed as a quadratic polynomial in x with coefficients that are independent from x. If the prover
is able to answer three challenges x such that their pairwise differences are invertible, then the polynomial
must be the zero polynomial. In particular, the interesting term m∗1m

∗
2 −m∗3, which is separated from the

other terms as the leading coefficient in the challenge x, must be zero.
There are two main problems with the technique:

1. The prover needs to send a large commitment ~t′ to 5 polynomials together with an opening proof for it,
and also the three uniform masked openings fi.

2. Similarly as in the opening proof, the prover can cheat unless it is forced to be able to answer several
challenges x with invertible differences. Unlike for the challenge c there is no shortness requirement
associated to x. Still, if q splits completely, the soundness error is restricted to 1/q even for uniformly
random x ∈ Rq. Repetition is particularly expensive in the case of x since the masking polynomials ai
and corresponding commitments t′i can not be reused. In fact, sending fi = ai+xmi for different x would
break zero-knowledge. This even further increases the cost of the masking and garbage commitment and
its opening proof.

Both problems result in concretely quite large communication sizes. We provide solutions to both problems
and hereby drastically reduce the proof size.
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First Problem. Instead of making the prover send the masked openings fi and prove their well-formedness
by committing to the ai, we let the verifier compute the fi from the commitments ti. Then the proper
relation to the messages mi follows by construction. This is made possible by the results from Section 4.
Recall that the verifier will be convinced that the vector ~z in the opening proof is of the form ~z = ~y∗ + c~r∗

where ~y∗, ~r∗ are independent from c and ti = 〈~bi, ~r∗〉 + m∗i with binded m∗i . Hence, the verifier will be
convinced that

fi = 〈~bi, ~z〉 − cti = 〈~bi, ~y∗〉 − cm∗i .

But this exactly is a masked opening of m∗i with challenge c and masking polynomial a∗i = 〈~bi, ~y∗〉.
Now, when we compute the quadratic relation f1f2+cf3 we need to get rid of the garbage terms. It seems

we need to linear combine garbage commitments t′4 and t′5 with the challenge c and hereby construct a new
commitment with commitment matrix b′4 +cb′5 depending on c. If we went down this path we would need to
send a second fresh opening proof with new challenge to show that t′4 + ct′5− (f1f2 + cf3) is a commitment
to zero. This would be particularly bad if the garbage commitments are part of the commitment to the
messages as one wants to have it in applications.

Instead, we use a new proof technique to achieve the same goal without two-layered opening proof and
only one garbage commitment. In a nutshell, we use the masked opening f ′4 = 〈~b′4, ~z′〉 − ct′4 of the garbage
term to reduce f1f2 + cf3 to the polynomial f1f2 + cf3 + f ′4 that is constant in c. Then we show that
the prover can just send this polynomial before seeing c without destroying zero-knowledge. The resulting
verification equation, which is quadratic in the commitments, can be handled in the extraction proof by
making repeated use of the interpolations of ~z, ~z′ and the associated expressions for the commitments.

In our protocol we include the single garbage commitment in the commitment to the messages. This has
the advantage of saving the separate binding part ~t′0 and the associated cost in the opening proof. Effectively
this means that the message commitments become a part of the product proof protocol and this commitment
contains an additional commitment to a garbage term,

t4 = 〈~b4, ~r〉+ 〈~b3, ~y〉 −m1〈~b2, ~y〉 −m2〈~b2, ~y〉.

For usual applications this approach is natural. For example when committing to an integer one usually
knows that one needs to later provide a range proof for it so one can as well compute the range proof already
when doing the commitment.

For concreteness we state the resulting protocol in Figure 3. It has negligible soundness error when c̄ is
invertible with overwhelming probability. Otherwise the protocol could be repeated to boost the soundness
but this would increase the number of garbage commitments t4 that need to be transmitted. Instead, we
now present a better solution that still only needs a single garbage commitment.

Second Problem. As explained in Section 4, we set up parameters so that, for some j ∈ Z×2l/k+1, the

prover can guess the challenge c modulo each of the k prime ideals σi(Xd/l − ζj), i = 0, . . . , k − 1, with
non-negligible independent probability of about 1/qd/l. This means with the above method the prover will
prove

m1m2 ≡m3 (mod σi(Xd/l − ζj))

only with non-negligible soundness error. We solve this problem by linear combining all the permutations
σi(m1m2 −m3) with independently uniformly random challenge polynomials αi. So we set out to prove

k−1∑
i=0

αiσ
i(m1m2 −m3) = 0.

Then our proof will show

k−1∑
i=0

αiσ
i(m1m2 −m3) ≡ 0 (mod σi

′
(Xd/l − ζj))
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with independent cheating probability for i′ = 0, . . . , k − 1. But the last equation for a single i′ proves

σi(m1m2 −m3) ≡ 0 (mod σi
′
(Xd/l − ζj))

⇒m1m2 −m3 ≡ 0 (mod σi
′−i(Xd/l − ζj))

for all i = 0, . . . , k − 1 with cheating probability 1/qd/l by the Schwartz-Zippel Lemma. A careful analysis
will show the success probability of a cheating prover will be reduced to essentially at most

ε =

(
3

qd/l

)k
.

Now we derive the corresponding equation for the masked message openings. Here is where we need the
randomness openings ~zi with the permutations σi(c) of the challenge. The verifier can compute k masked
openings for every message with challenges σi(c) by setting

f
(i)
j = 〈~bj , ~zi〉 − σi(c)tj .

In the extraction we will have the expressions

f
(i)
j = 〈~bj , ~y∗i 〉 − σi(c)m∗j .

Therefore, it follows that

k−1∑
i=0

αiσ
−i
(
f
(i)
1 f

(i)
2 + σi(c)f

(i)
3

)
=

k−1∑
i=0

αiσ
−i
(
〈~b1, ~y∗i 〉〈~b2, ~y∗i 〉

)
+ c

k−1∑
i=0

αiσ
−i
(
〈~b3, ~y∗i 〉 −m∗1〈~b2, ~y∗i 〉 −m∗2〈~b1, ~y∗i 〉

)
+ c2

(
k−1∑
i=0

αiσ
−i (m∗1m

∗
2 −m∗3)

)

We fold the coefficient of c into the constant coefficient by adding f4 = 〈~b4, ~z0〉 − ct4 computed from the
garbage commitment

t4 = 〈~b4, ~r〉+

k−1∑
i=0

αiσ
−i
(
〈~b3, ~yi〉 −m1〈~b2, ~yi〉 −m2〈~b1, ~yi〉

)
.

Then we arrive at

k−1∑
i=0

αiσ
−i
(
f
(i)
1 f

(i)
2 + σi(c)f

(i)
3

)
+ f4

= 〈~b4, ~y∗0〉+

k−1∑
i=0

αiσ
−i
(
〈~b1, ~y∗i 〉〈~b2, ~y∗i 〉

)
+ c

(
k−1∑
i=0

αiσ
−i
(
〈~b3, ~y∗i 〉 −m1〈~b2, ~y∗i 〉 −m2〈~b1, ~y∗i 〉

)
−m∗4

)

+ c2

(
k−1∑
i=0

αiσ
−i (m∗1m

∗
2 −m∗3)

)
.
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The verifier checks that this is equal to v using the polynomial v that it has received before sending the
challenge.

It is important to note that we have departed from a straight-forward repetition of the protocol in
Figure 3. The main advantage being that there is still only one garbage commitment necessary.

5.1 The Protocol

The final protocol is given in Figure 4. Its security is stated in Theorem 5.1.

Prover P Verifier V

Inputs:

B0 ∈ Rµ×(λ+µ+4)
q ;~b1 . . . ,~b4 ∈ Rλ+µ+4

q B0;~b1, . . . ,~b4

m1,m2,m3 ∈ Rq

~r
$← χ(λ+µ+4)d

~y
$← D(λ+µ+4)d

s

~t0 = B0~r

t1 = 〈~b1, ~r〉+m1

t2 = 〈~b2, ~r〉+m2

t3 = 〈~b3, ~r〉+m3

t4 = 〈~b4, ~r〉+ 〈~b3, ~y〉 −m1〈~b2, ~y〉 −m2〈~b1, ~y〉
~t = ~t0 ‖ t1 ‖ · · · ‖ t4
~w = B0~y

v = 〈~b4, ~y〉+ 〈~b1, ~y〉〈~b2, ~y〉
~t, ~w,v -

c� c
$← C

~z = ~y + c~r

If Rej (~z, c~r, s) = 1, abort ~z -

‖~z‖2
?

≤ β = s
√

2(λ+ µ+ 4)d

B0~z
?
= ~w + c~t0

f1 = 〈~b1, ~z〉 − ct1
f2 = 〈~b2, ~z〉 − ct2
f3 = 〈~b3, ~z〉 − ct3
f4 = 〈~b4, ~z〉 − ct4

f1f2 + cf3 + f4
?
= v

Fig. 3. Simple proof of multiplicative relation.

Theorem 5.1. The protocol in Figure 4 is complete, computational honest verifier zero-knowledge under the
Module-LWE assumption and computational special sound under the Module-SIS assumption. More precisely,
let p be the maximum probability over Zq of the coefficients of c mod Xkd/l − ζk as in Lemma 3.3.
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Prover P Verifier V

Inputs:

B0 ∈ Rµ×(λ+µ+4)
q ;~b1, . . . ,~b4 ∈ Rλ+µ+4

q B0;~b1, . . . ,~b4

m1,m2,m3 ∈ Rq

~r
$← χ(λ+µ+4)d

~t0 = B0~r

t1 = 〈~b1, ~r〉+m1

t2 = 〈~b2, ~r〉+m2

t3 = 〈~b3, ~r〉+m3

For i = 0, . . . , k − 1 :

~yi
$← D(λ+µ+4)d

s

~wi = B0~yi

~t0, t1, t2, t3, ~wi-

α0, . . . ,αk−1� α0, . . . ,αk−1
$←Rq

t4 = 〈~b4, ~r〉+

k−1∑
i=0

αiσ
−i
(
〈~b3, ~yi〉 −m1〈~b2, ~yi〉 −m2〈~b1, ~yi〉

)
v = 〈~b4, ~y0〉+

k−1∑
i=0

αiσ
−i
(
〈~b1, ~yi〉〈~b2, ~yi〉

)
t4,v -

c� c
$← C

For i = 0, . . . , k − 1 :

~zi = ~yi + σi(c)~r

If Rej
(

(~zi), (σ
i(c)~r), s

)
= 1, abort ~zi -

For i = 0, . . . , k − 1 :

‖~zi‖2
?

≤ β = s
√

2(λ+ µ+ 3)d

B0~zi
?
= ~wi + σi(c)~t0

f
(i)
1 = 〈~b1, ~zi〉 − σi(c)t1

f
(i)
2 = 〈~b2, ~zi〉 − σi(c)t2

f
(i)
3 = 〈~b3, ~zi〉 − σi(c)t3

f4 = 〈~b4, ~z0〉 − ct4
k−1∑
i=0

αiσ
−i
(
f

(i)
1 f

(i)
2 + σi(c)f

(i)
3

)
+ f4

?
= v

Fig. 4. Automorphism proof of multiplicative relation for automorphism σ ∈ Aut(Rq) of order kd/l.
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Then, for completeness, in case the honest prover P does not abort due to rejection sampling, it convinces
the honest verifier V with overwhelming probability.

For zero-knowledge, there exists a simulator S, that, without access to secret information, outputs a
simulation of a non-aborting transcript of the protocol between P and V. Then for every algorithm A that
has advantage ε in distinguishing the simulated transcript from an actual transcript, there is an algorithm
A′ with the same running time that has advantage ε− 2−100 in distinguishing MLWEλ,χ.

For soundness, there is an extractor E with the following properties. When given rewindable black-box
access to a deterministic prover P∗ that convinces V with probability ε ≥ (3pd/l)k, E either outputs a weak
opening for the commitment ~t with messages m∗1, m∗2 and m∗3 such that m∗1m

∗
2 = m∗3, or a MSISµ,8κβ

solution for B0 in expected time at most 1/ε+ (l/k)(ε− pkd/l)−1 when running P∗ once is assumed to take
unit time.

Proof. Completeness. The vectors ~zi sent by P are independent and their distribution has statistical dis-

tance at most 2−100 from D
(λ+µ+4)d
s by Lemma 2.4. Lemma 2.5 implies that the bounds ‖~zi‖2 ≤ β =

s
√

2(λ+ µ+ 4)d are true with overwhelming probability. It follows from careful inspection that all of the
other verification equations are always true for the messages sent by P.

Zero-Knowledge. For notational simplicity, we will prove the zero-knowledge property of the protocol in
Figure 3. The proof of the full protocol in Figure 4 is virtually identical and simply involves more variables.

We first make the observation that for any mi and B0,~bi, an accepting transcript can be generated

statistically close to the correct distribution by sampling ~z
$← D

(λ+µ+4)d
s , c

$← C, and ~r
$← χ(λ+µ+4)d .

By Lemma 2.4), the distribution of these variables is within statistical distance approximately 2−100 of the
distribution of the correct protocol. It’s now easy to see that everything else sent to the prover (i.e. ~t,v, ~w)

is a deterministic function of B0,~bi, ~r,mi, c, and ~z, and so can be correctly generated.

The main thing that we achieved by rewriting the distribution as above is that the distribution of ~z and
c is now independent of ~r and we no longer need to know the actual vector ~r for the simulation. Indeed,
observe that we can do the above simulation when, instead of ~r, we are given B0~r, and 〈~bi, ~r〉 for all i. Define

the matrix B =


B0

~b1
~b2
~b3
~b4

. By the MLWE assumption, the distributions (B,B~r) and (B, ~u) are computationally

indistinguishable when ~r is chosen as in the protocol in Figure 4 and ~u is a uniform vector of polynomials.

The above therefore implies that, the distribution in which we choose ~z, c as before, and then choose ~t
uniformly at random (and then deterministically set ~w and v) is computationally indistinguishable from the
correct distribution. This last distribution has no dependence on the messages mi, and this completes the
proof for the protocol in Figure 3.

The proof of the full protocol in Figure 4 is virtually identical with the only difference being that there
are k independent ~yi which create k independent ~zi. As in the first step of the above proof, we generate ~zi
according to D

(λ+µ+4)d
s independently from the ~r and (all the automorphisms of) c. The rest of the proof is

virtually identical.

Soundness. Firstly, the extractor opens the commitments t1, . . . , t4. We know from Theorem 4.4 that,
unless E finds a MSISµ,8κβ solution, it computes vectors ~y∗ and ~r∗ such that for every accepting transcript

with fixed first message ~t, ~wi,

zi = ~y∗i + σi(c)~r∗.
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Then let m∗1, . . . ,m
∗
4 ∈ Rq be the corresponding extracted messages which are defined by

~t1 = 〈~b1, ~r∗〉+m∗1,

~t2 = 〈~b2, ~r∗〉+m∗2,

~t3 = 〈~b3, ~r∗〉+m∗3,

~t4 = 〈~b4, ~r∗〉+m∗4.

Here the messages m∗1, . . . ,m
∗
3 are independent from the challenges αi since the commitments t1, . . . , t3 are

send before the αi are chosen, while the message m∗4 can depend on the αi. From the above decompositions
of ~zi and the expression for t1 we obtain the expression

f
(i)
1 = 〈~b1, ~y∗i 〉 − σi(c)m∗1

and similarly for f
(i)
2 , f

(i)
3 and f4. Substituting these into the last verification equation gives

〈~b4, ~y∗0〉+

k−1∑
i=0

αiσ
−i
(
〈~b1, ~y∗i 〉〈~b2, ~y∗i 〉

)
− v

+ c

(
k−1∑
i=0

αiσ
−i
(
〈~b3, ~y∗i 〉 −m∗1〈~b2, ~y∗i 〉 −m∗2〈~b1, ~y∗i 〉

)
−m∗4

)

+ c2

(
k−1∑
i=0

αiσ
−i (m∗1m

∗
2 −m∗3)

)
= 0. (24)

Now, it is crucial that the last equation holds in every accepting transcript and is a polynomial in c with
coefficients that are independent from c. Furthermore, the only terms that can depend on the αi are m4

and v. With this preparation we now bound the success probability of the prover assuming that m∗1m
∗
2 is

not equal to m∗3. In this case m∗1m
∗
2 −m∗3 is non-zero modulo at least one of the prime ideals,

m∗1m
∗
2 −m∗3 6≡ 0 (mod σi(X

d
l − ζj))

for some (i, j) ∈ I. But then

p =

k−1∑
i=0

αiσ
−i (m∗1m

∗
2 −m∗3) mod

(
X

kd
l − ζkj

)
is a uniformly random polynomial for uniformly random αi. So, first, with probability (1 − 1/qd/l)k it is
non-zero modulo all k prime ideals dividing (Xkd/l − ζkj). In this case, modulo each prime ideal, there can
be at most two points that make the evaluation of the quadratic polynomial in Equation (24) zero. So, they
combine to at most 2k elements modulo Xkd/l − ζkj . Hence, even when we assume c mod (Xkd/l − ζkj) = x
has probability at most pkd/l for all elements x modulo Xkd/l − ζkj , the success probability of the prover is
clearly bounded by 2kpkd/l. Second, if p is zero in one of the k prime ideals, which happens with probability
k/qd/l(1 − 1/qd/l)k−1, we find that there are at most 2k−1qd/l possible values for c mod (Xkd/l − ζkj) and
the success probability is bounded by 2k−1qd/lpkd/l. Continuing in this way we see it must be that

ε ≤
k∑
i=0

(
k

i

)(
1

qd/l

)i(
1− 1

qd/l

)k−i
2k−iqid/lpkd/l

<
(

3p
d
l

)k
.

This is a contradiction to the bound in the theorem and hence m∗1m
∗
2 = m∗3.
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5.2 Amortized Protocol

The protocol from the last section can be extended into a protocol for the case where the prover wants to
prove multiplicative relations between many messages. In this extension there will still only be one garbage
commitment necessary for proving all of the relations. So the cost for the garbage commitment is amortized
over all relations. Suppose we want to prove n product relations

m
(j)
1 m

(j)
2 = m

(j)
3

for j = 1, . . . , n. Then virtually in the same way in which we linear combine the automorphic images of a single
relation with uniform challenges, we can use even more challenges and linear combine all the automorphic
images of all the relations. Concretely, we want to prove

k−1∑
i=0

n∑
j=1

αin+jσ
i
(
m

(j)
1 m

(j)
2 −m

(j)
3

)
= 0

with α1, . . . ,αnk
$← Rq. Now a nice feature of the Schwartz-Zippel lemma is that this does not decrease

the soundness. Intuitively, as soon as one of the relations is false, then the linear combination of all of the
relations will be uniformly random, and this will be detected with overwhelming probability.

5.3 Non-Interactive Protocol and Proof Sizes

In this section we compute the size of a non-interactive proof, where we distinguish between the size for the
commitment ~t = ~t0 ‖ t1 ‖ · · · ‖ t3 to the messages and the size for the actual product proof. The message
commitment is to be reused in some other protocol. It consists of µ+ 3 uniformly random polynomials so its
size is (µ+ 3)ddlog qe bits.

The protocol in Figure 4 is made non-interactive with the help of the standard Fiat-Shamir technique.
This means that the challenges are computed by the prover by hashing all previous messages and public
information, and the hash function is modeled as a random oracle. To shorten the length of the proof,
a standard technique is to not send the input to the hash function, but rather send its output (i.e. the
challenge) and let the verifier recompute the input from the later transmitted terms using the verification
equation and then test that the hash of these computed input terms is indeed the challenge. Concretely, in
the non-interactive version of the product proof, the kµ + 1 full-size polynomials ~wi and v do not have to
be transmitted and only t4 remains as a non-short polynomial. The polynomials in the vectors ~zi are short
discrete Gaussian vectors with standard deviation s. Every coefficient is smaller than 6s in absolute value
with probability 1 − 2−24 [Lyu12, Lemma 4.4]. So we can assume this is the case for all coefficients – the
non-interactive prover can just restart otherwise. Eventually, we obtain that one non-interactive proof needs

ddlog(q)e+ k(λ+ µ+ 4)ddlog(12s)e+ 256

bits.

Example I. Suppose we are given 8 secret polynomials in the ring Rq of rank d = 128 with a prime q ≈ 232

that splits completely. So there are 1024 secret coefficients. For this ring the maximum probability over Zq
of the coefficients of c mod (X4− ζ4) for c

$← C when a coefficient is zero with probability 1/2 is p = 2−31.44

according to the formula in Lemma 3.3. So k = 4 permutations of a challenge under the automorphism
σ = σ64 are sufficient to reach negligible soundness error. Further, suppose the commitment scheme uses
MLWE rank λ = 10 and MSIS rank µ = 10. We find ‖c~r‖1 ≤ 77 with probability bigger than 1 − 2−100.

Then, if we set the standard deviation of the discrete Gaussian to s = 5 · 77 ·
√

(λ+ µ+ 9)d = 46913 we

find that we need MSISµ,8dβ to be secure for β = s
√

2(λ+ µ+ 9)d. We found the root Hermite factor to be
approximately 1.0043. Similarly, MLWEλ with ternary noise has hermite Factor 1.0043. Finally, the size of
our product proof for these parameters is 31.3 KB.
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Example II. For a fair comparison to [BDL+18, Parameter set I of Table 2], where the polynomial Xd + 1
does not necessarily split into linear factors, we modify the previous example and switch to using a prime q
that splits into prime ideals of degree 4 (and so there are 32 NTT slots). Then we have negligible soundness
error already with k = 1 and we don’t need parallel repetitions and automorphisms. The protocol is given
in Figure 3 and the product proof size goes down to 8.8 KB.

Example III. In the above comparison to [BDL+18], we created a commitment to 1024 values (or 256
NTT coefficients each being a polynomial of degree 3). For the 32-bit range proof example stated in the
introduction, we only need 128 values (i.e. we need 32 NTT coefficients each being a polynomial of degree
3). The size of such a product proof is approximately 5.9KB.
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dPLS18. Rafaël del Pino, Vadim Lyubashevsky, and Gregor Seiler. Lattice-based group signatures and zero-
knowledge proofs of automorphism stability. In ACM CCS, pages 574–591. ACM, 2018.

ENS20. Muhammed F. Esgin, Ngoc Khanh Nguyen, and Gregor Seiler. Practical exact proofs from lattices: New
techniques to exploit fully-splitting rings., 2020. https://eprint.iacr.org/2020/518.

ESLL19. Muhammed F. Esgin, Ron Steinfeld, Joseph K. Liu, and Dongxi Liu. Lattice-based zero-knowledge proofs:
New techniques for shorter and faster constructions and applications. In CRYPTO (1), volume 11692 of
Lecture Notes in Computer Science, pages 115–146. Springer, 2019.

Hil90. Martin Victor Hildebrand. Rates of convergence of some random processes on finite groups. PhD thesis,
Harvard University, 1990.

Hil06. Martin Hildebrand. On the Chung-Diaconis-Graham random process. Electronic Communications in
Probability, 11:347–356, 2006.

Kil92. Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In STOC, pages
723–732. ACM, 1992.

KKW18. Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-interactive zero knowledge with
applications to post-quantum signatures. In ACM Conference on Computer and Communications Security,
pages 525–537. ACM, 2018.

26

https://eprint.iacr.org/2020/518


LLNW18. Benôıt Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Lattice-based zero-knowledge arguments for
integer relations. In CRYPTO (2), volume 10992 of Lecture Notes in Computer Science, pages 700–732.
Springer, 2018.

LM06. Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knapsacks are collision resistant. In
ICALP (2), pages 144–155, 2006.

LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over
rings. In EUROCRYPT, pages 1–23, 2010.
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