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Abstract. We propose a lattice-based zero-knowledge proof system for exactly proving knowledge of
a ternary solution ~s ∈ {−1, 0, 1}n to a linear equation A~s = ~u over Zq, which produces proofs that are
7.5× shorter than the state-of-the-art result by Bootle, Lyubashevsky and Seiler (CRYPTO 2019).
At the core lies a technique that utilizes the module-homomorphic BDLOP commitment scheme (SCN
2018) over the fully splitting cyclotomic ring Zq[X]/(Xd + 1) to prove scalar products with the NTT
vector of a secret polynomial.

1 Introduction

In a continuous effort towards migration to post-quantum cryptography, there has recently been many
works with the aim towards realizing zero-knowledge proofs based on computational lattice problems,
e.g. [dLNS17, dLS18, YAZ+19, BLS19, ESLL19, EZS+19]. That is because zero-knowledge proofs are a
fundamental component in much more complex cryptographic protocols, such as verifiable encryption or
circuit satisfiability. In almost all applications, it is crucial to be able to prove in zero-knowledge that one
knows how to open a cryptographic commitment, and to prove that the committed values have particular
properties or satisfy certain relations.

For lattice-based schemes, the relations of interest are linear equations of the form

A~s = ~u, (1)

where A is a publicly known matrix defined over some ring R (often Zq or a cyclotomic ring Rq =
Zq[X]/(Xd + 1)) and ~s is a short vector with small coefficients over the ring. For example, in the case
of an encryption scheme based on the (Ring)-LWE problem, (A, ~u) is the public key and ~s is the secret key.
In numerous applications such as group signatures [Cv91], ring signatures [RST01], and verifiable encryption,
one must prove (in a zero-knowledge fashion) knowledge of a secret ~s that satisfies a relation of the form
in (1), which is where lattice-based zero-knowledge proofs come into play. Throughout this manuscript, we
assume that (1) is defined over Zq, which is the most general “unstructured” case. The ring-based cases are
easily obtained by having a structured matrix A.

1.1 Lattice-Based Zero-Knowledge Proofs

We describe main strategies used in the literature for proving knowledge of a secret short vector ~s satisfying
(1). The first one is to adapt Stern’s protocol [Ste94] into proof systems as in [KTX08, LNSW13] to prove
knowledge of an exact witness ~s satisfying (1). What we mean by exact is that there is no knowledge gap
between a witness known by an honest prover and that the proof system convinces the verifier of. The main
drawback of Stern-based “combinatorial” protocols is that the concrete efficiency of such schemes are far
behind practical expectations (see Table 1). The reason behind it is that a single protocol execution provides
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a very poor soundness level of 2/3, and thus many protocol repetitions (in the order of hundreds) are required
to reach a negligible soundness error.

A more “algebraic” approach in the hope of proving knowledge of ~s satisfying (1) is adapting Schnorr’s
protocol [Sch90] to the lattice setting. Although this so-called Fiat-Shamir with Aborts technique [Lyu09,
Lyu12] offers very practically efficient solutions, this only proves knowledge of a much longer ~s′ satisfying
A~s′ = c~u for some scalar c ∈ R. This is an example of a knowledge gap referred to before and thus these
protocols are often called “relaxed” (or “approximate”). Observe here that there are two aspects of relaxation:
1) there is an extra c term in the proved relation, and 2) ~s′ has larger coefficients than ~s.

The efficiency of these protocols comes mainly from the fact that a single protocol execution is sufficient to
reach a negligible soundness error. Even though relaxed proofs are sufficient and lead to efficient instantiations
for some applications such as (ordinary) signatures [Lyu12, DKL+18] and ring signatures [ESLL19, EZS+19],
for the settings of, for example, verifiable encryption and group signatures, the relaxation in the underlying
zero-knowledge proof leads to further complications and relaxations in the higher level construction. We
discuss more on this in Section 5. Another disadvantage of proving knowledge of larger secrets in the relaxed
proofs is that the system modulus q is forced to be larger due to security reasons. If one is interested in using
the zero-knowledge proof to prove a relation in a different protocol, then relaxed proofs may require the
parameters of the latter protocol to be increased, which may not be desirable and/or a worth-while tradeoff.

An alternative approach to this problem is using hash-based argument systems such as STARKs [BBHR18]
and Aurora [BCR+19]. They stem from the PCP-based framework of Kilian [Kil92] and produce asymptot-
ically logarithmic sized arguments. Furthermore, they can be instantiated based on collision resistance of
hash functions. In particular, one could naively construct such a scheme with lattice-based hash functions.
However, we believe that utilising the additional algebraic structure of structured computational assump-
tions should result in small sizes over the generic PCP-based approaches. Even though efficient lattice-based
zero-knowledge protocols offer asymptotically linear proof size, making use of the underlying mathematical
structure results in much smaller constants than generic constructions. Moreover, implementations of the
generic proof systems for our linear equations are known to be very slow with running times in the order of
tens of seconds. On the other hand, lattice-based constructions are usually very fast with running times in
the order of 1ms.

A pair of very recent works [BLS19, YAZ+19] explored a different way of addressing the problem using
lattice assumptions. The approach in [BLS19, YAZ+19] has two parts: 1) a relaxed proof of knowledge:
proving knowledge of ~s′ satisfying A~s′ = c~u mod q, and 2) a relaxed binary/ternary proof: proving that
~s′ = c~s for ~s ∈ {−1, 0, 1}n. Combining these relations and assuming that c is invertible, then one ends up
with proving (1) exactly for ~s ∈ {−1, 0, 1}n.

The drawback of these works is that the concrete practical efficiency is still not at a satisfactory level even
though they are much more efficient than Stern-based proofs. Our contribution in this work is to address
this problem. In particular, we introduce novel techniques, using the structure in fully-splitting rings, for
constructing efficient lattice-based zero-knowledge proofs of exact relations.

1.2 Our Approach

Let us define Rq = Zq[X]/(Xd + 1), where Xd + 1 splits fully into linear factors over Zq, i.e., Xd + 1 =
d−1∏
i=0

(X − ri) mod q. In this case, Rq is isomorphic to d “copies” of Zq and we call an integer stored in a copy

as NTT coefficient (see Section 2.2 for more details). Our goal is to introduce an efficient proof system that
allows to prove that the NTT coefficients of a committed message s ∈ Rq satisfy a relation of the form in
(1). For the sake of simplicity, we assume here that the dimensions of ~s and Rq are the same. The general
case is studied in Section 3.3.
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We know that the i-th NTT coefficient of a polynomial s ∈ Rq is equal to the evaluation of s at the i-th

primitive 2d-th root of unity ri. Therefore, if ~s = NTT(s) and ~γ
$← Zdq is a random vector, we have

〈A~s− ~u,~γ〉 = 〈A~s,~γ〉 − 〈~u,~γ〉 = 〈~s,AT~γ〉 − 〈~u,~γ〉

=

d−1∑
i=0

s(ri)
(
NTT−1(AT~γ)

)
(ri)− 〈~u,~γ〉 =

1

d

d−1∑
i=0

f(ri) = f0,

where f := dNTT−1(AT~γ)s − 〈~u,~γ〉 ∈ Rq and f0 ∈ Zq is the constant coefficient of f . The last equality
follows from Lemma 2.1. The idea is then to prove that f0, the constant coefficient of f , is zero. This proves
that 〈A~s− ~u,~γ〉 = 0. For a uniformly random ~γ ∈ Zdq , the probability that 〈A~s− ~u,~γ〉 = 0 when A~s 6= ~u

(mod q) is 1/q. Therefore, allowing the verifier to choose a random ~γ ∈ Zdq as a challenge, proving f0 = 0
proves that A~s = ~u with a soundness error of 1/q.

To prove that f has vanishing constant coefficient, the prover initially commits to s and a polynomial
g with vanishing constant coefficient. The polynomial g will be used to mask f . Upon receiving a challenge
~γ ∈ Zdq , the prover computes f and sets h = f + g. Using the given information, we show that the verifier
can compute a commitment to f (without requiring it to be sent by the prover). This allows to prove that
h is of the correct form and the verifier can simply observe that h has a zero constant coefficient.

The above proof system has a soundness error of 1/q, which is not negligibly small for typical choices
of q. We show in Section 3.2 how to amplify the soundness of this protocol at a low cost using Galois
automorphisms. Informally, consider k uniformly random vectors ~γ0, . . . , ~γk−1 such that 1/qk is negligible.
Similarly as before, we can write

fi := dNTT−1(AT~γ)s− 〈~u,~γi〉
and thus the constant coefficient of fi is 〈A~s− ~u,~γi〉. For each i = 0, . . . , k − 1, we will define a map
Li : Rq → Rq which satisfies the following property. Denote p := Li(fi) and (p0, . . . , pd−1) to be the
coefficient vector of p. Then, p0 = . . . = pi−1 = pi+1 = . . . = pk−1 = 0 and pi = 〈A~s− ~u,~γi〉. We can observe
that if A~s = ~u then f defined now as

f = L0(f0) + . . .+ Lk−1(fk−1)

has the first k coefficients equal to 0. Therefore, we can construct a protocol for proving this similarly as
above. On the other hand, when A~s 6= ~u then the probability that all the first k coefficients of f are equal
to zero is 1/qk.

The advantage of this approach over the standard way of having k-parallel repetitions is that the size
of the commitment part of the non-interactive proof remains the same as that of a single protocol run.
Therefore, the overall cost is significantly reduced.

We believe that this protocol can be useful in other settings, where one wants to “switch” from the
original relation’s domain to another one where proofs can be done more efficiently.

Notice that the above proof system does not fully answer our main question because we only proved that
A~s = ~u, but not that ~s ∈ {−1, 0, 1}n.

Proving that the secret is short. Now that we have a way to prove linear relations among the NTT coefficients
of a polynomial, we can exploit the technique from [BLS19] to prove that the coefficients are small. Observe
that for s ∈ Rq, if

s(s− 1)(s+ 1) = 0 in Rq, (2)

then si ∈ {−1, 0, 1} for any NTT coefficient si of s. Therefore, by proving (2), we can perform d ternary
proofs in parallel for d NTT coefficients, and then link these NTT coefficients to the coordinates of ~s in our
main relation (1) using the aforementioned technique.

Another obstacle against practical efficiency (as encountered in [BLS19, YAZ+19]) is that a proof of such
a non-linear relation as in (2) requires communication of “garbage terms”. These garbage terms end up being
a substantial cost in the proofs in [BLS19, YAZ+19]. In the companion paper [ALS20] to this work, a better
product proof is presented that reduces the cost of the garbage terms, also using Galois automorphisms.
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Table 1. Proof length comparison for proving knowledge of LWE secrets in dimension 1024. The result of Stern-like
proofs is taken from [BLS19].

Stern-like proofs 3522 KB

[BLS19] 384 KB

Our work 51 KB

Applications. Having an efficient proof system to prove knowledge of ~s ∈ {−1, 0, 1}n satisfying (1) paves
the way for various efficient zero-knowledge proofs that can be used in many applications. To show the
effectiveness of our new techniques, we present two example applications with concrete parameters. The first
one is to prove knowledge of secrets in LWE samples. This is an important proof system to be used, for
example, with fully homomorphic encryption (FHE) schemes. The goal here is to prove that ~u is a proper
LWE sample such that ~u = A′~s′+~e mod q for ~s′, ~e ∈ {−1, 0, 1}k, which is equivalent to proving ~u = (A′ ‖ Ik)·~s
mod q for ~s = (~s′, ~e) ∈ {−1, 0, 1}2k. As shown in Table 1, our proof system achieves an improvement of 7.5×
in terms of proof length over the state-of-the-art result by Bootle et al. [BLS19], and is dramatically shorter
than the Stern-based proofs.

Our other example application is a proof of plaintext knowledge. In this case, the goal is to create
a ciphertext and a zero-knowledge proof to prove that the ciphertext is a proper encryption of a message
known by the prover. Proofs of plaintext knowledge have applications, for example, in the settings of verifiable
encryption, verifiable secret sharing and group signatures.

Being a very core proof system, there are many other applications beyond the two examples above, where
our main protocol and our new techniques can be useful. For example, one can apply our unstructured linear
proof to prove that one vector is a NTT representation of a polynomial (written as a vector of coefficients).
Indeed, the matrix A in (1) simply becomes a Vandermonde matrix. Furthermore, one can see [YAZ+19] for
various applications that all build on a similar core proof system.

2 Preliminaries

2.1 Notation

The following table summarizes the notation and parameters that will appear in this paper.
Let q be an odd prime, and Zq denote the ring of integers modulo q. For r ∈ Z, we define r mod q to be

the unique element in the interval [− q−12 , q−12 ] that is congruent to r modulo q. We write ~v ∈ Zmq to denote
vectors over Zq and matrices over Zq will be written as regular capital letters M . By default, all vectors are
column vectors. We write ~v ‖ ~w for the concatenation of ~v and ~w (which is still a column vector).

Let d be a power of two and denote R and Rq to be the rings Z[X]/(Xd + 1) and Zq[X]/(Xd + 1),
respectively. Bold lower-case letters p denote elements in R or Rq and bold lower-case letters with arrows
~b represent column vectors with coefficients in R or Rq. We also use bold upper-case letters for matrices B
over R or Rq. For a polynomial denoted as a bold letter, we write its i-th coefficient as the corresponding
regular font letter with subscript i, e.g. f0 ∈ Zq is the constant coefficient of f ∈ Rq.

We write x
$← S when x ∈ S is sampled uniformly at random from the set S and similarly x

$← D when
x is sampled according to the distribution D.

Norms and Sizes. For an element w ∈ Zq, we write |w| to mean |w mod q|. Define the `∞ and `2 norms for
w ∈ Rq as follows,

‖w‖∞ = max
i
|wi| and ‖w‖2 =

√
|w0|2 + . . .+ |wd−1|2.

Similarly, for ~w = (w1, . . . ,wk) ∈ Rk, we define

‖ ~w‖∞ = max
i
‖wi‖∞ and ‖ ~w‖2 =

√
‖w1‖22 + . . .+ ‖wk‖22.
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Parameter Explanation

d Degree of the polynomial Xd + 1, power of two

q Rational prime modulus

Zq = Z/qZ The field over which the linear system is defined

m ∈ Z The number of rows in the linear system

n ∈ Z The number of columns in the linear system

R = Z[X]/(Xd + 1) The ring of integers in the 2d-th cyclotomic number field

Rq = Zq[X]/(Xd + 1) The ring of integers R modulo q

k ∈ Z Repetition rate

σ = σ2d/k+1 Automorphism in Aut(Rq) of order k

C ⊂ R Challenge set

C Probability distribution over C for challenges

T Bound for honest prover’s c~r in the Euclidean norm

s = 2T Standard deviation for sampling ~y′

M = exp(6 + 1/16) Rate for rejection sampling

λ M-LWE dimension

κ M-SIS dimension

β = s
√

2(λ+ κ+ 2)d Bound for honest prover’s ~zi in the Euclidean norm

χ Error distribution on R in the M-LWE problem

Ds Discrete Gaussian distribution on R with st. dev. s
Table 2. Overview of Parameters and Notation

2.2 Prime Splitting and Galois Automorphisms

Let l be a power of two dividing d and suppose q−1 ≡ 2l (mod 4l). Then, Zq contains primitive 2l-th roots of
unity but no elements with order a higher power of two, and the polynomial Xd + 1 factors into l irreducible
binomials Xd/l − ζ modulo q where ζ runs over the 2l-th roots of unity in Zq [LS18, Theorem 2.3].

The ring Rq has a group of automorphisms Aut(Rq) that is isomorphic to Z×2d,

i 7→ σi : Z×2d → Aut(Rq),

where σi is defined by σi(X) = Xi. In fact, these automorphisms come from the Galois automorphisms of
the 2d-th cyclotomic number field which factor through Rq.

The group Aut(Rq) acts transitively on the prime ideals (Xd/l − ζ) in Rq and every σi factors through
field isomorphisms

Rq/(Xd/l − ζ)→ Rq/(σi(Xd/l − ζ)).

Concretely, for i ∈ Z×2d it holds that

σi(X
d/l − ζ) = (Xid/l − ζ) = (Xd/l − ζi

−1

)

To see this, observe that the roots of Xd/l − ζi−1

(in an appropriate extension field of Zq) are also roots of
Xid/l − ζ. Then, for f ∈ Rq,

σi

(
f mod (Xd/l − ζ)

)
= σi(f) mod (Xd/l − ζi

−1

).

The cyclic subgroup 〈2l + 1〉 < Z×2d has order d/l [LS18, Lemma 2.4] and stabilizes every prime ideal (Xd/l−ζ)
since ζ has order 2l. The quotient group Z×2d/〈2l + 1〉 has order l and hence acts simply transitively on the
l prime ideals. Therefore, we can index the prime ideals by i ∈ Z×2d/〈2l + 1〉 and write(

Xd + 1
)

=
∏

i∈Z×2d/〈2l+1〉

(
Xd/l − ζi

)
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Now, the product of the k | l prime ideals (Xd/l − ζi) where i runs over 〈2l/k + 1〉/〈2l + 1〉 is given by
the ideal (Xkd/l − ζk). So, we can partition the l prime ideals into l/k groups of k ideals each, and write(

Xd + 1
)

=
∏

j∈Z×2d/〈2l/k+1〉

(
Xkd/l − ζjk

)
=

∏
j∈Z×2d/〈2l/k+1〉

∏
i∈〈2l/k+1〉/〈2l+1〉

(
X

d
l − ζij

)
.

Another way to write this, which we will use in our protocols, is to note that Z×2d/〈2l/k + 1〉 ∼= Z×2l/k and

the powers (2l/k+ 1)i for i = 0, . . . , k− 1 form a complete set of representatives for 〈2l/k + 1〉/〈2l + 1〉. So,
if σ = σ2l/k+1 ∈ Aut(Rq), then

(
Xd + 1

)
=

∏
j∈Z×

2l/k

k−1∏
i=0

σi
(
X

d
l − ζj

)
,

and the prime ideals are indexed by (i, j) ∈ I = {0, . . . , k − 1} × Z×2l/k.

The fully splitting case. In this paper our main attention lies on the setup where q ≡ 1 (mod 2d) and hence
q splits completely. In this case there is a primitive 2d-th root of unity ζ ∈ Zq and

(Xd + 1) =
∏
i∈Z×2d

(X − ζi).

Then, for a divisor k of d and σ = σ2d/k+1 of order k, we have the partitioning

(Xd + 1) =
∏

j∈Z×2d/〈2d/k+1〉

∏
i∈〈2d/k+1〉

(X − ζij) =
∏

j∈Z×
2d/k

k−1∏
i=0

σi(X − ζj)

2.3 The Number Theoretic Transform

The Number Theoretic Transform (NTT) of a polynomial f ∈ Rq is defined by

NTT(f) = (f̂i)i∈Z×2l
∈
∏
i∈Z×2l

Zq[X]/(Xd/l − ζi) ∼= (Fqd/l)l

where f̂i = f mod (Xd/l − ζi). We write NTT−1(f̂) = f for the inverse map, which exists due to the
Chinese remainder theorem. Note that for f , g ∈ Rq, NTT(fg) = NTT(f) ◦ NTT(g) where ◦ denotes the
coefficient-wise multiplication of vectors.

The sum of the NTT coefficients of a polynomial f ∈ Rq is equal to first d/l coefficients. This will be
later used when proving unstructured linear relations over Zq.

Lemma 2.1. Let f ∈ Rq. Then 1
l

∑
i∈Z×2l

f̂i = f0 + f1X + · · ·+ fd/l−1X
d/l−1, when we lift the f̂i to Zq[X].

Proof. Write f(X) = f0(Xd/l) + f1(Xd/l)X + · · ·+ fd/l−1(Xd/l)Xd/l−1 Then, it suffices to prove

1

l

∑
i∈Z×2l

fj(ζ
i) = fj

for all j = 0, . . . , d/l − 1, which is the sum over the coefficients of a fully splitting length-l NTT. We find

∑
i∈Z×2l

fj(ζ
i) =

∑
i∈Z×2l

l−1∑
ν=0

fνd/l+jζ
iν =

l−1∑
ν=0

fνd/l+j
∑
i∈Z×2l

ζiν
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and it remains to show that for every ν ∈ {1, . . . , l − 1},
∑
i∈Z×2l

ζiν = 0. Indeed,

∑
i∈Z×2l

ζiν =

l−1∑
i=0

ζ(2i+1)ν = ζν
l−1∑
i=0

ζ2iν = ζν
ζ2lν − 1

ζ2ν − 1
= 0

since ζ2lν = 1. ut

2.4 Challenge Space

Let C = {−1, 0, 1}d ⊂ Rq be the set of ternary polynomials, which have coefficients in {−1, 0, 1}. We define

C : C → [0, 1] to be the probability distribution on C such that the coefficients of a challenge c
$← C are

independently identically distributed with Pr(0) = 1/2 and Pr(1) = Pr(−1) = 1/4.

In [ALS20] it is shown that if c
$← C then the distribution of c mod Xkd/l− ζk are almost uniform in Zq.

Lemma 2.2. Let c
$← C. The coefficients of c mod Xkd/l− ζk are identically independently distributed, say

with distribution X. Then, for x ∈ Zq,

Pr(X = x) ≤ 1

q
+

2l/k

q

∑
j∈Z∗q/〈ζk〉

l/k−1∏
i=0

∣∣∣∣12 +
1

2
cos(2πjζki/q)

∣∣∣∣ . (3)

In particular, if d = 128, q ≈ 232 is fully splitting, i.e. l = d, and k = 4, then the maximum probability
for the coefficients of c mod X4 − ζ4 is bounded by 2−31.4.

2.5 Module-SIS and Module-LWE Problems

We employ the computationally binding and computationally hiding commitment scheme from [BDL+18]
in our protocols, and rely on the well-known Module-LWE (MLWE) and Module-SIS (MSIS) [PR06, LM06,
LPR10, LS15] problems to prove the security of our constructions. Both problems are defined over a ring Rq
for a positive modulus q ∈ Z+.

Definition 2.3 (MSISn,m,βSIS
). The goal in the Module-SIS problem with parameters n,m > 0 and 0 <

βSIS < q is to find, for a given matrix A
$← Rn×mq , ~x ∈ Rmq such that A~x = ~0 over Rq and 0 < ‖~x‖2 ≤ βSIS.

We say that a PPT adversary A has advantage ε in solving MSISn,m,βSIS
if

Pr
[
0 < ‖~x‖2 ≤ βSIS ∧ A~x = ~0 over Rq

∣∣∣A $← Rn×mq ; ~x← A(A)
]
≥ ε.

Definition 2.4 (MLWEn,m,χ). In the Module-LWE problem with parameters n,m > 0 and an error distri-

bution χ over R, the PPT adversary A is asked to distinguish (A, ~t)
$← Rm×nq ×Rmq from (A,A~s+ ~e) for

A
$← Rm×nq , a secret vector ~s

$← χn and error vector ~e
$← χm. We say that A has advantage ε in solving

MLWEn,m,χ if ∣∣∣Pr
[
b = 1

∣∣∣A $← Rm×nq ; ~s
$← χn; ~e

$← χm; b← A(A,A~s+ ~e)
]

(4)

− Pr
[
b = 1

∣∣∣A $← Rm×nq ; ~t
$← Rmq ; b← A(A, ~t)

]∣∣∣ ≥ ε.
For our practical security estimations of these two problems against known attacks, the parameter m

in both of the problems does not play a crucial role. Therefore, we sometimes simply omit m and use the
notations MSISn,B and MLWEn,χ. The parameters κ and λ denote the module ranks for MSIS and MLWE,
respectively.
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2.6 Error Distribution, Discrete Gaussians and Rejection Sampling

For sampling randomness in the commitment scheme that we use, and to define the particular variant of the
Module-LWE problem that we use, we need to specify the error distribution χd on R. In general any of the
standard choices in the literature is fine. So, for example, χ can be a narrow discrete Gaussian distribution
or the uniform distribution on a small interval. In the numerical examples in Section 4.2 we assume that χ
is the computationally simple centered binomial distribution on {−1, 0, 1} where ±1 both have probability
5/16 and 0 has probability 6/16. This distribution is chosen (rather than the more “natural” uniform one)
because it is easy to sample given a random bitstring by computing a1 + a2 − b1 − b2 mod 3 with uniformly
random bits ai, bi.

Rejection Sampling. In our zero-knowledge proof, the prover will want to output a vector ~z whose distribution
should be independent of a secret randomness vector ~r, so that ~z cannot be used to gain any information on
the prover’s secret. During the protocol, the prover computes ~z = ~y + c~r where ~r is the randomness used

to commit to the prover’s secret, c
$← C is a challenge polynomial, and ~y is a “masking” vector. To remove

the dependency of ~z on ~r, we use the rejection sampling technique by Lyubashevsky [Lyu09, Lyu12]. In the
two variants of this technique the masking vector is either sampled uniformly from some bounded region
or using a discrete Gaussian distribution. In the high dimensions we will encounter, the Gaussian variant is
far superior as it gives acceptable rejection probabilities for much narrower distributions. We first define the
discrete Gaussian distribution and then state the rejection sampling algorithm in Figure 1, which plays a
central role in Lemma 2.6.

Definition 2.5. The discrete Gaussian distribution on R` centered around ~v ∈ R` with standard deviation
s > 0 is given by

D`d
v,s(~z) =

e−‖~z−~v‖
2
2/2s

2∑
~z′∈R` e−‖~z

′‖22/2s2
.

When it is centered around ~0 ∈ R` we write D`d
s = D`d

~0,s

Lemma 2.6 (Rejection Sampling). Let V ⊆ R` be a set of polynomials with norm at most T and

ρ : V → [0, 1] be a probability distribution. Also, write s = 2T and M = exp(6 + 1/16). Now, sample ~v
$← ρ

and ~y
$← D`d

s , set ~z = ~y+~v, and run b← Rej (~z, ~v, s) Then, the probability that b = 0 is at least (1−2−100)/M
and the distribution of (~v, ~z), conditioned on b = 0, is within statistical distance of 2−100/M of the product
distribution ρ×D`d

s .

Rej(~z, ~v, s)

01 u
$← [0, 1)

02 If u > 1
M
· exp

(
−2〈~z,~v〉+‖~v‖2

2s2

)
03 return 1
04 Else
05 return 0

Fig. 1. Rejection Sampling [Lyu12].

We will also use the following tail bound, which follows from [Ban93, Lemma 1.5(i)].

Lemma 2.7. Let ~z
$← D`d

s . Then

Pr
[
‖~z‖2 ≤ s

√
2`d
]
≥ 1− 2− log(e/2)`d/4.
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2.7 Commitment Scheme

In our protocol, we use a variant of the commitment scheme from [BDL+18], which allows to commit
to a vector of messages in Rq. Our basic proof of knowledge of multiplicative relations will prove that
m1m2 = m3, so for simplicity, we just describe the commitment scheme for three messages. Suppose that
we want to commit to a message vector ~m = (m1, . . . ,ml)

T ∈ Rlq and that module ranks of κ and λ are
required for MSIS and MLWE security, respectively. Then, in the key generation, a uniformly random matrix

B0
$← Rκ×(λ+κ+l)q and vectors ~b1, . . . ,~bl

$← Rλ+κ+lq are generated and output as public parameters.

To commit to the message ~m, we first sample ~r
$← χ(λ+κ+l)d. Now, there are two parts of the commitment

scheme; the binding part and the message encoding part. Particularly, we compute

~t0 = B0~r,

ti = 〈~bi, ~r〉+mi for i = 1, . . . , l,

where ~t0 forms the binding part and each ti encodes a message polynomial mi. The commitment scheme is
computationally hiding under the Module-LWE assumption and computationally binding under the Module-
SIS assumption; see [BDL+18].

The utility of the commitment scheme for zero-knowledge proof systems stems from the fact that one can
compute module homomorphisms on committed messages. For example, let a1 and a2 be from Rq. Then

a1t1 + a2t2 = 〈a1
~b1 + a2

~b2, ~r〉+ a1m1 + a2m2

is a commitment to the message a1m1+a2m2 with matrix a1
~b1+a2

~b2. This module homomorphic property
together with a proof that a commitment is a commitment to the zero polynomial allows to prove linear
relations among committed messages over Rq.

2.8 Opening and Product Proof

We use the opening proof from [ALS20, Figure 2] that we sketch now. Suppose that the prover knows an
opening to the commitment

~t0 = B0~r,

t1 = 〈~b1, ~r〉+m1.

As in previous opening proofs the prover gives an approximate proof for the first equation. To this end, the
prover and verifier engage in k parallel executions of a sigma protocol with challenges σi(c), i = 0, . . . , k− 1,

that are the rotations of a global challenge c
$← C. Concretely, in the first flow the prover samples k short

masking vectors ~yi from the discrete Gaussian distribution D
(λ+κ+1)d
s and sends them over to the verifier.

The verifier replies with the challenge c. Then the prover applies rejection sampling, and, if this does not
reject, sends ~zi = ~yi+σ

i(c)~r. The verifier checks that the ~zi are short and the equationsB0~zi = ~wi+σ
i(c)~t0.

Now, unlike in previous protocols, the algebraic setup is such that it is not possible to extract a pair
of accepting transcript with invertible challenge difference c̄ = c − c′. Instead, extraction works by piecing
together l/k accepting transcripts where for each ideal (Xkd/l− ζkj) there is a transcript pair with challenge
difference c̄j mod (Xkd/l − ζkj) 6= 0. For this to work out it is required that the maximum probability p
over Zq of the coefficients of c mod (Xkd/l − ζk), as given by Lemma 2.2, is such that pkd/l is negligible. For
example, if d = 128, q ≈ 2−32 fully splits so that l = d, and k = 4, then pkd/l = p4 ≈ 2−128.

Next, the analysis of the protocol given in [ALS20, Theorem 4.4] shows that it is possible to extract a
weak opening from a prover with non-negligible high success probability, as given in the following definition.
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Definition 2.8. A weak opening for the commitment ~t = ~t0 ‖ t1 consists of l polynomials σi(c̄j) ∈ Rq, a
randomness vector ~r∗ over Rq and a message m∗1 ∈ Rq such that∥∥σi(c̄j)∥∥1 ≤ 2d and σi(c̄j) mod σi(Xd/l − ζj) 6= 0 for all (i, j) ∈ I,∥∥σi(c̄j)~r∗∥∥2 ≤ 2β for all (i, j) ∈ I,

B0~r
∗ = ~t0,

〈~b1, ~r∗〉+m∗1 = t1.

The commitment scheme is binding with respect to weak openings, c.f. [ALS20, Lemma 4.3]. Furthermore,
in the extraction it is also possible to obtain vectors ~y∗i such that every accepting transcript is such that

~zi = ~y∗ + σi(c)~r∗,

when it contains the same prover commitments ~wi that were used in the extraction.
We also apply the product proof from [ALS20, Figure 4], adapted to the case of a cubic relation, to

prove that our secret vector has ternary coefficients. In addition to the opening proof, the product proof
only requires two additional commitments to garbage terms, and the masking vectors ~yi can be used as the
randomness vectors in these commitments. So, the prover sends two polynomials

t′1 = 〈~b1, ~y0〉+ g1,

t′2 = 〈~b2, ~y0〉+ g2.

3 Proving Unstructured Linear Relations over Zn
q

Our goal for this section is to construct an efficient protocol for proving unstructured linear relations among
committed Zq-elements. By this we meant that we want to be able to commit to a vector ~s ∈ Znq and prove
that it fulfills an arbitrary linear equation A~s = ~u with public matrix A ∈ Zm×nq and right hand side ~u ∈ Zmq .
We borrow LWE terminology and call the linear equation unstructured to highlight the fact that A can be
an arbitrary matrix over Zq that does not necessarily express linear relations over some ring of higher rank.

Proofs of linear relations are only useful for applications in lattice cryptography if it is possible to amend
them by a proof of shortness. So, we will also want to be able to prove that the vector ~s is short. As opposed
to the so-called approximate proofs that are ubiquitous in lattice cryptography and where the prover only
proves knowledge of a vector that is much longer than the one he actually knows, we are interested in exact
proofs of shortness. These have the advantage that the parameters of underlying cryptographic schemes do
not have to account for the longer vectors that can be extracted from a prover, i.e. the schemes do not
need to be secure with respect to the longer vectors. This results in more efficient schemes. For example,
one interesting goal of this line of research is to construct a proof of plaintext knowledge or a verifiable
encryption scheme for a standard unmodified lattice-based public-key encryption scheme. In particular, for
one of the schemes submitted to the NIST PQC standardization effort.

The most efficient lattice-based exact proofs of shortness work by encoding the vector ~s in the NTT
representations NTT(ši) of possibly several polynomials ši ∈ Rq. In a first step we restrict to the case where
q splits completely in R. Then NTT(ši) is a vector in Zdq .

Now, for simplicity assume that n is divisible by d. Suppose the prover P knows an opening to a com-
mitment ~t = ~t0 ‖ t1 ‖ · · · ‖ tn/d to n/d secret polynomials š1, . . . , šn/d ∈ Rq. More precisely,

~t0 = B0~r,

ti = 〈~bi, ~r〉+ ši for i ∈ {1, . . . , n/d}.

Then, the goal of P is to prove that the vector

~s = NTT(š1) ‖ · · · ‖ NTT(šn/d) ∈ Znq

10



satisfies the linear equation A~s = ~u over Zq where A ∈ Zm×nq and ~u ∈ Zmq are public.
Firstly, we describe the main ideas and present a protocol which achieves soundness error 1/q. Then, we

present two methods to efficiently decrease the soundness error to negligible quantities.

3.1 Basic Protocol

Let us assume that n = d and denote š := š1. We show how to deal with the case n > d in Section 3.3. The
first protocol relies on the following simple observation. Suppose that A~s = ~u. This means that for all ~γ ∈ Zmq
we have 〈A~s− ~u,~γ〉 = 0. On the contrary, if A~s 6= ~u, then for a uniformly random ~γ ∈ Zmq , 〈A~s− ~u,~s〉 = 0
only with probability 1/q. Hence, ~γ will become a challenge generated from the verifier. Using Lemma 2.1,
we rewrite the inner product,

〈A~s− ~u,~γ〉 = 〈A~s,~γ〉 − 〈~u,~γ〉 = 〈~s,AT~γ〉 − 〈~u,~γ〉

=
∑
j∈Z×2d

s(ζj)
(
NTT−1(AT~γ)

)
(ζj)− 〈~u,~γ〉

=
1

d

∑
j∈Z×2d

f(ζj) = f0

where f ∈ Rq is the polynomial defined by f := NTT−1(dAT~γ)š − 〈~u,~γ〉 and f0 ∈ Zq is the constant
coefficient of f . So by utilizing the polynomial product in Rq it is possible to compute a scalar product over
Zq with a vector encoded in the NTT representation of the polynomial. We observe that the verifier can
compute a commitment to f . Indeed, note that

NTT−1(dAT~γ)t1 − 〈~u,~γ〉 = 〈NTT−1(dAT~γ) ~b1, ~r〉+ f .

Hence, V computes
τ = NTT−1(dAT~γ)t1 − 〈~u,~γ〉. (5)

Now, P needs to prove that f has a zero constant coefficient. The idea is to first send a commitment t2 to
a random polynomial g with a zero constant coefficient before ~γ is generated. Intuitively, g is introduced to
mask f . After getting ~γ, P sends h = f + g and the verifier can check that h0 = 0. Note that by knowing
τ , t2 and h, the verifier can compute a commitment τ + t2−h to the zero polynomial 0. Hence, in the final
stage P needs to prove that this polynomial is indeed a commitment to 0 in the usual way.

We present the full protocol in Figure 4. Firstly, prover P generates a random polynomial g ∈ Rq with

zero constant coefficient and computes a commitment to g defined as t2 = 〈~b2, ~r〉+g. The prover also starts
the opening proof with soundness error 1/q for the commitments and samples a vector of small polynomials
~y and computes the commitment ~w = B0~y. Then P sends t2 and ~w to the verifier. Next, V generates
and sends a uniformly random vector ~γ ∈ Zmq . Prover P can then compute the polynomial f defined above

and h = f + g. Furthermore, it sets v = 〈NTT−1(dAT~γ) ~b1 + ~b2, ~y〉 and sends h,v to V. Then, the verifier

generates a challenge c
$← C and sends it to the prover. Eventually, P sends a response ~z = ~y + c~r.

The verifier V first checks if ~z consists of small polynomials and if h has constant coefficient equal to 0.
Also, V checks that B0~z = ~w + c~t0 and

〈NTT−1(dAT~γ) ~b1 + ~b2, ~z〉 = v + c (τ + t2 − h)

where τ is computed as in Equation (5).
One observes that if A~s 6= ~u then the constant coefficient of f becomes a uniformly random element of

Zq not under the control of the prover. Thus, also the constant coefficient of h = f + g will be uniformly
random because the constant coefficient of g is independent from the constant coefficient of f . In particular,
it will not be zero with probability 1− 1/q – this can be detected by the verifier. Therefore, the probability
that a malicious prover manages to cheat is equal to 1/q.
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3.2 Boosting Soundness by Mapping Down

More abstractly, in the above protocol we checked 〈A~s− ~u,~γ〉 = 0 by investigating whether L(~γ) has a zero
constant coefficient where L : Zmq → Rq is defined as

L(~γ) := NTT−1(dAT~γ)š− 〈~u,~γ〉. (6)

As we observed earlier, the constant coefficient of L(~γ) is indeed 〈A~s− ~u,~γ〉.
Now, suppose we can define k functions L0, . . . , Lk−1 with the following property. For any 0 ≤ µ < k

and ~γµ ∈ Zmq , p = Lµ(~γµ) ∈ Rq is a polynomial such that p0 = . . . = pµ−1 = pµ+1 = . . . = pk−1 = 0 and
pµ = 〈A~s− ~u,~γµ〉. This would mean that for 0 ≤ µ < k, the µ-th coefficient related to Xµ of the polynomial

f = L0(~γ0) + L1(~γ1) + . . .+ Lk−1(~γk−1)

is equal to 〈A~s− ~u, ~γµ〉. In particular, if A~s = ~u then f0 = f1 = . . . = fk−1 = 0. Thus, in order to decrease
the soundness error we can let the verifier V send k independently uniformly random vectors ~γ0, . . . , ~γk−1
and then P proves that f ∈ Rq has the first k coefficients equal to zero. Note that we still need to find a

way for V to compute a commitment to f from ~t1 and ~γ0, . . . , ~γk−1.

Constructing Lµ. Let Sq be the Zq-submodule of Rq generated by Xk, i.e.

Sq = {p0 + p1X
k + · · ·+ pd/k−1X

d−k ∈ Rq} ⊂ Rq.

We have Sq ∼= Zq[X]/(Xd/k + 1). From Galois theory there is a corresponding subgroup H of Aut(Rq)(Rq)
of order k such that σ(p) = p for all σ ∈ H if and only if p ∈ Sq. It is easy to see that this group is generated
by σ = σ2d/k+1 ∈ Aut(Rq)(Rq), which is the same automorphism that we use in the automorphism opening

proof. In fact this follows from the fact that ord(σ) = k and σ(Xk) = Xk(2d/k+1) = Xk.
We have the trace map Tr : Rq → Sq given by

Tr(p) =

k−1∑
ν=0

σν(p).

Notice that the constant coefficient of Tr(p) is given by kp0. Now define Lµ by

Lµ(~γ) =
1

k
XµTr(L(~γ)) =

1

k
Xµ

k−1∑
ν=0

σν
(
NTT−1(dAT~γ)š− 〈~u,~γ〉

)
.

If p = Lµ(~γ), then p is of the form

p = pµX
µ + pk+µX

k+µ + · · ·+ pd−k+µX
d−k+µ

and thus has the property that the first k coefficients except the µ-th coefficient are zero. Moreover, it is
clear from above that pµ = 〈A~s− ~u,~γ〉.

Finally, given the commitment t1 to s, the verifier can compute a commitment to f = L0(~γ0) + · · · +
Lk−1(~γk−1) via

τ =

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν
(
NTT−1(dAT~γµ)t1 − 〈~u,~γµ〉

)
=

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν
(
〈NTT−1(dAT~γµ)~b1, ~r〉

)
+ f . (7)
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The Protocol. We present the protocol in Figure 2 with the verification algorithm given in Figure 3. Prover
P starts by generating a uniformly random polynomial g satisfying g0 = . . . = gk−1 = 0 and computing a

commitment t2 = 〈~b2, ~r〉 + g. Now the prover needs to start an opening proof with soundness 1/qk. Also
it is going to prove a relation which involves the k automorphisms σi. Therefore it uses the automorphism
opening proof from [ALS20] and samples vectors ~y0, . . . , ~yk−1 of short polynomials that are going to be used
to mask ~r k times with challenges of the form σi(c). Also, P computes ~wi = B0~yi. The prover sends t2 and
~wi to V.

Next, the verifier selects uniformly random vectors ~γ0, . . . , ~γk−1 ∈ Zmq and sends them to P. Then, the
prover computes

f =

k−1∑
µ=0

Lµ(~γµ) =

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν
(
NTT−1(dAT~γµ)š− 〈~u,~γµ〉

)
.

By construction, f0 = . . . = fk−1 = 0. Note that V can compute a commitment τ to f as explained above.
Now the prover sets h = f + g and computes for i = 0, . . . , k − 1,

vi =

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν
(
〈NTT−1(dAT~γµ)~b1, ~yi−ν mod k〉

)
+ 〈~b2, ~yi〉.

It sends h and v0, . . . ,vk−1. The verifier sends a random challenge polynomial c
$← C. Eventually, P computes

~zi = ~yi + σi(c)~r for i = 0, . . . , k − 1 and sends ~z0, . . . , ~zk−1.
Verifier V first checks if for all i = 0, . . . , k − 1, ~zi is short, and

B0~zi
?
= ~wi + σi(c)~t0.

Then, V checks that h0, . . . , hk−1 are all equal to zero and computes τ as in (7). Finally, the verifier checks
whether for all i = 0, . . . , k − 1,

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν
(
〈NTT−1(dAT~γµ)~b1, ~zi−ν mod k〉

)
+ 〈~b2, ~zi〉

= vi + σi(c)(τ + t2 − h)

to test whether τ + t2 − h really is a commitment to zero.

Security Analysis.

Theorem 3.1. The protocol in Figure 2 is complete, computational honest verifier zero-knowledge under the
Module-LWE assumption and computational special sound under the Module-SIS assumption. More precisely,
let p be the maximum probability over Zq of the coefficients of c mod Xk − ζk as in Lemma 2.2.

Then, for completeness, unless the honest prover P aborts due to the rejection sampling, it convinces the
honest verifier V with overwhelming probability.

For zero-knowledge, there exists a simulator S, that, without access to secret information, outputs a
simulation of a non-aborting transcript of the protocol between P and V. Then for every algorithm A that
has advantage ε in distinguishing the simulated transcript from an actual transcript, there is an algorithm
A′ with the same running time that has advantage ε− 2−100 in distinguishing MLWEλ,χ.

For soundness, there is an extractor E with the following properties. When given rewindable black-box
access to a deterministic prover P∗ that convinces V with probability ε ≥ q−k + pk, E either outputs a weak
opening for the commitment ~t with message š∗, such that ANTT(š∗) = ~u, or a MSISκ,8dβ solution for B0 in
expected time at most 1/ε+ (d/k)(ε− pk)−1 when running P∗ once is assumed to take unit time.

Proof. Completeness. The distributions of the vectors ~zi sent by P are independent and have statistical

distance at most 2−100 from D
(λ+κ+3)d
s by Lemma 2.6. Lemma 2.7 implies that the bounds ‖~zi‖2 ≤ β =
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Prover P Verifier V

Inputs:

š ∈ Rq, ~s = NTT(š) A, ~u

A ∈ Zm×nq B0,~b1,~b2

~u = A~s ~t0, t1

B0 ∈ Rκ×(λ+κ+2)
q ,~b1,~b2 ∈ Rλ+κ+2

q

~r ∈ {−1, 0, 1}(λ+κ+2)d ⊂ Rλ+κ+2
q

~t0 = B0~r

t1 = 〈~b1, ~r〉+ š

g
$← {g ∈ Rq | g0 = · · · = gk−1 = 0}

t2 = 〈~b2, ~r〉+ g

For i = 0, . . . , k − 1 :

~yi
$← D(λ+κ+2)d

s

~wi = B0~yi

t2, ~wi -

~γµ� ~γ0, . . . , ~γk−1
$← Zmq

h = g +

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν
(
NTT−1(dAT~γµ)š− 〈~u,~γµ〉

)
For i = 0, . . . , k − 1 :

vi =

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν
(
〈NTT−1(dAT~γµ)~b1, ~yi−ν mod k〉

)
+ 〈~b2, ~yi〉

h,vi -

c� c
$← C

For i = 0, . . . , k − 1 :

~zi = ~yi + σi(c)~r

If Rej
(

(~zi), (σ
i(c)~r), s

)
= 1, abort

~zi -

Ver(t2, ~wi, ~γi,h,vi, c, ~zi)

Fig. 2. Automorphism proof of knowledge of a solution to an unstructured linear equation over Zq. Verification
equations are described in Figure 3.

s
√

2(λ+ κ+ 3)d are true with overwhelming probability. It follows by careful inspection that the other
verification equations are always true for the messages sent by P.

Zero-Knowledge. We can simulate a non-aborting transcript between the honest prover and the honest
verifier in the following way. First, in a non-aborting transcript the vectors ~zi are statistically close to

D
(λ+κ+2)d
s by Lemma 2.6. So the simulator can just sample ~zi

$← D
(λ+κ+2)d
s . Next, again by Lemma 2.6, we

know that σi(c)~r is independent from ~zi, and hence c is independent from the ~zi. So, the simulator picks
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Ver(t2, ~wi, ~γi,h,vi, c, ~zi)
01 For i = 0, . . . , k − 1:

02 ‖~zi‖2
?

≤ β = s
√

2(λ+ κ+ 2)d

03 B0~zi
?
= ~wi + σi(c)~t0

04 h0
?
= . . .

?
= hk−1

?
= 0

05 τ =
∑k−1
µ=0

1
k
Xµ∑k−1

ν=0 σ
ν
(
NTT−1(dAT~γµ)t1 − 〈~u,~γµ〉

)
06 For i = 0, . . . , k − 1:

07
∑k−1
µ=0

1
k
Xµ∑k−1

ν=0 σ
ν
(
〈NTT−1(dAT~γµ)b1, ~zi−ν mod k〉

)
+ 〈~b2, ~zi〉

?
= vi + σi(c)(τ + t2 − h)

Fig. 3. Verification equations for Figure 2.

c
$← C like the honest verifier. The polynomial h is such that h0 = · · · = hk−1 = 0 in honest transcripts and

the other coefficients are uniformly random because of the additive term g. Hence, the simulator samples

h
$← {h ∈ Rq | h0 = · · · = kk−1 = 0}. Then, the challenges ~γµ ∈ Zmq are independently uniformly random

and the simulator samples them in this way. Next, the commitment t2 is computationally indistinguishable
from a uniformly random polynomial if MLWEλ is hard. So the simulator can just take a uniformly random
t2 ∈ Rq. Now, in an honest transcript, the remaining messages ~wi and vi are all uniquely determined by
the verification equations because of completeness. We see that if the simulator computes these messages
so that the verification equations become true, then the resulting transcript is indistinguishable from the
honest transcript.

Soundness. First the extractor opens the commitments t1 and t2. From [ALS20][Theorem 4.4], unless
E finds a MSISκ,8dβ solution, the extractor can compute vectors ~y∗ and ~r∗ such that for every accepting
transcript with first messages t2 and ~wi,

zi = ~y∗i + σi(c)~r∗.

The expected runtime for this equals the runtime in the theorem statement. Then let š∗ ∈ Rq and g∗ ∈ Rq
be the extracted messages, which are defined by

t1 = 〈~b1, ~r∗〉+ š∗,

t2 = 〈~b2, ~r∗〉+ g∗.

Now substituting these expressions into τ gives

τ =
k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν
(
〈NTT−1(dAT~γµ)~b1, ~r

∗〉
)

+ f∗,

where

f∗ =

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν
(
NTT−1(dAT~γµ)š∗ − 〈~u,~γµ〉

)
.

From the discussion in this section we know that f∗µ = 〈A~s∗ − ~u,~γµ〉 for µ = 0, . . . , k − 1, ~s∗ = NTT(š∗).
Next we find from the last verification equations,(

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν
(
〈NTT−1(dAT~γµ)~b1, ~y

∗
i−ν mod k〉

)
+ 〈~b2, ~y∗〉 − vi

)
= σi(c) (f∗ + g∗ − h) . (8)

for all i = 0, . . . , k − 1. The coefficients of these linear polynomials in σi(c) are independent from c. We
bound the success probability ε of the prover under the assumption A~s∗ 6= ~u. In this case the coefficients
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f∗µ for µ = 0, . . . , k − 1 are uniformly random elements in Zq in a random transcript. Hence, f∗µ + g∗µ is
uniformly random since g∗ is independent from the ~γµ. Also we know that hµ = 0 in every accepting
transcript. So, suppose f∗µ + g∗µ − h∗µ = f∗µ + g∗µ 6= 0 for some µ. Then there exists some j ∈ Z×2d with

f∗ + g∗ − h mod (X − ζj) 6= 0. Therefore, there is only one possible value modulo (Xk − ζjk) for the
challenge in such a transcript, otherwise Equation 8 can not be true for all i. Since the maximum probability
of every coefficient of c mod (Xk − ζjk) is less than p we see that the success probability is bounded by

ε = Pr [accepting] <

(
1

q

)k
+ Pr

[
accepting

∣∣ f∗µ + g∗µ 6= 0 for some µ
]

≤
(

1

q

)k
+ pk.

This is in contradiction to the bound in the theorem statement and thus it must hold A~s∗ = ~u. ut

3.3 General Case

Previously, we assumed that n = d so that ~s = NTT(š) = NTT(š1). When n > d, we slightly modify our
approach. We have ~s = NTT(š1) ‖ · · · ‖ NTT(šn/d) and now also define polynomials ψj such that

AT~γ = NTT(ψ1) ‖ · · · ‖ NTT(ψn/d).

Then the inner product 〈A~s,~γ〉 = 〈~s,AT~γ〉 can be written as a sum of smaller inner products. We find

〈A~s− ~u,~γ〉 =

n/d∑
j=1

〈NTT(šj),NTT(ψj)〉 − 〈~u,~γ〉

=

n/d∑
j=1

∑
i∈Z×2d

šj(ζ
i)ψj(ζ

i)− 〈~u,~γ〉 =
1

d

∑
i∈Z×2d

n/d∑
j=1

dšjψj − 〈~u,~γ〉

 (ζi).

Next, similarly as before, we incorporate more challenges. So, for ~γ0, . . . , ~γk−1 ∈ Zmq we write

AT~γµ = NTT(ψ
(µ)
1 )‖ · · · ‖NTT(ψ

(µ)
n/d)

and then set

f =

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν

n/d∑
j=1

dψ
(µ)
j sj − 〈~u,~γµ〉

 .

It holds that for µ = 0, . . . , k − 1, fµ = 〈A~s− ~u,~γµ〉. Now, note that τ defined as

τ =

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν

n/d∑
j=1

dψ
(µ)
j tj − 〈~u,~γµ〉


=

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν

n/d∑
j=1

〈dψ(µ)
j
~bj , ~r〉+ dψ

(µ)
j šj − 〈~u,~γ〉


=

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν

〈n/d∑
j=1

dψ
(µ)
j
~bj , ~r

〉+ f

is indeed a commitment to f and can be computed by the verifier.
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3.4 Boosting Soundness by Going Up

We now present the second method to decrease the soundness error of the protocol from Section 3.1. This
method is efficient if there are fewer secret coefficients than the ring dimension, i.e. if n < d. For example
n = 32 and d = 128. Then it is better not to choose a completely splitting prime q so that the opening proof
has negligible soundness error with only one repetition (k = 1). So assume q−1 ≡ 2l (mod 4l) with l < d, and
n = l. In this case the analysis of the basic protocol from Section 3.1 does not apply directly and we can not
use automorphisms to boost soundness by mapping down to a smaller ring. Instead we go the other direction.
The prime q splits completely in the subring Sq = {p0 + p1X

d/l + · · ·+ pl−1X
d−d/l ∈ Rq} ∼= Zq[X]/(X l + 1)

of Rq. So we choose the secret polynomial š such that it lies in Sq, which is the case if and only if the NTT
vector NTT(š) lies in the subvector space Zlq of (Fqd/l)l. Then š encodes the l coefficients of ~s. Our protocol
assumes that there is a proof for this property. This can for example be part of the shortness proof since
š(š − 1)(š + 1) = 0 shows that NTT(š) even lies in {−1, 0, 1}l ⊂ Zlq ⊂ (Fqd/l)l. With this setup the basic
protocol using ~γ ∈ Zmq proves the linear relation A~s = ~u with soundness error 1/q. But now we can let ~γ be
uniformly random over Fqd/l and directly get negligible soundness error. Indeed, note that by Lemma 2.1,

〈A~s− ~u,~γ〉F
qd/l

= 〈~s,AT~γ〉F
qd/l
− 〈~u,~γ〉F

qd/l

=
∑
j∈Z×2l

(
šNTT−1(AT~γ) mod (Xd/l − ζj)

)
− 〈~u,~γ〉F

qd/l

=
1

l

∑
j∈Z×2l

(f mod (Xd/l − ζj)) = f0 + f1X + · · ·+ fd/l−1X
d/l−1,

where the scalar product is over the finite field Fqd/l and the polynomial f ∈ Rq is defined by f =

šNTT−1(lAT~γ)− 〈~u,~γ〉. The protocol is given in Figure 4.

4 Main Protocol

In this section we present our main protocol for proving knowledge of a ternary solution ~s ∈ {−1, 0, 1}n to
an arbitrary linear equation A~s = ~u over Zq. The protocol is essentially an amalgamation of the linear proof
from Section 3 and the product proof from [ALS20]. We use a fully splitting prime q and automorphisms to
boost the soundness. So, at a high level the prover commits to n/d polynomials šj whose NTT coefficients
are the coefficients of ~s. That is,

~s =

 NTT(š1)
...

NTT(šn/d)

 .

Then the prover uses the obvious generalization of the product proof to many cubic relations to show that

šj(šj + 1)(šj − 1) = 0

for all j. This shows that NTT(šj) ∈ {−1, 0, 1}d since the polynomial product in Rq is coefficient-wise in the
NTT representation. This is the technique that was used in [BLS19].

In parallel, the prover uses the linear proof for the general case from Section 3.3, to show that the
polynomials šj really give a solution to the linear equation. The complete protocol is given in Figure 5 and
it is proven secure in Theorem 4.1.

4.1 Security Analysis

Theorem 4.1. The protocol in Figure 5 is complete, computational honest verifier zero-knowledge under the
Module-LWE assumption and computational special sound under the Module-SIS assumption. More precisely,
let p be the maximum probability over Zq of the coefficients of c mod Xk − ζk as in Lemma 2.2.
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Prover P Verifier V

Inputs:

A ∈ Zm×lq , ~s = NTT(š) ∈ Zlq A, ~u

~u = A~s B0;~b1,~b2

B0 ∈ Rκ×(λ+κ+2)
q ;~b1,~b2 ∈ Rλ+κ+2

q
~t0, t1

~r ∈ {−1, 0, 1}(λ+κ+2)d ⊂ Rλ+κ+2
q

~t0 = B0~r

t1 = 〈~b1, ~r〉+ š

g
$← {g ∈ Rq | g0 = · · · = gd/l−1 = 0}

t2 = 〈~b2, ~r〉+ g

~y
$← D(λ+κ+2)d

s

~w = B0~y

t2, ~w -

~γ� ~γ
$← (Fqd/l)

m

h = g + NTT−1(lAT~γ)š− 〈~γ, ~u〉

v = 〈NTT−1(lAT~γ) ~b1 + ~b2, ~y〉
h,v -

c� c
$← C

~z = ~y + c~r

If Rej (~z, c~r, s) = 1, abort

~z -

‖~z‖2
?

≤ β = s
√

2(λ+ κ+ 2)d

B0~z
?
= ~w + c~t0

h0
?
= . . .

?
= hd/l−1

?
=

τ = NTT−1(lAT~γ)t1 − 〈~u,~γ〉

〈NTT−1(lAT~γ)~b1 + ~b2, ~z〉
?
= v + c (τ + t2 − h)

Fig. 4. Simple proof of unstructured linear relations among l | d committed integers. The prime q is such that q ≡ 2l
(mod 4l) and hence splits into l prime ideals in the ring R.

Then, for completeness, in case the honest prover P does not abort due to rejection sampling, it convinces
the honest verifier V with overwhelming probability.

For zero-knowledge, there exists a simulator S, that, without access to secret information, outputs a
simulation of a non-aborting transcript of the protocol between P and V. Then for every algorithm A that
has advantage ε in distinguishing the simulated transcript from an actual transcript, there is an algorithm
A′ with the same running time that has advantage ε− 2−100 in distinguishing MLWEλ,χ.

For soundness, there is an extractor E with the following properties. When given rewindable black-box
access to a deterministic prover P∗ that convinces V with probability ε > (3p)k, E either outputs a solution
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Prover P Verifier V

Inputs:

š1, . . . , šn/d ∈ Rq A, ~u,B0,~bi

~s = NTT(š1)‖ · · · ‖NTT(šn/d) ∈ {−1, 0, 1}n

A ∈ Zm×nq

~u = A~s

B0 ∈ Rκ×(λ+κ+n/d+1)
q ,~b1 . . . ,~bn/d+1 ∈ Rλ+κ+n/d+1

q

~r
$← χ(λ+κ+n/d+1)d

g
$← {g ∈ Rq | g0 = · · · = gk−1 = 0}

~t0 = B0~r

tn/d+1 = 〈~bn/d+1, ~r〉+ g

For j = 1, . . . , n/d : tj = 〈~bj , ~r〉+ šj

For i = 0, . . . , k − 1 :

~yi
$← D(λ+κ+n/d+1)d

s

~wi = B0~yi

~t0, tj , ~wi -

α1, . . . ,αkn/d
$←Rq

αi, ~γµ� ~γ0, . . . , ~γk−1
$← Zmq

t′1 = 〈~b1, ~y0〉 −
k−1∑
i=0

n/d∑
j=1

αin/d+jσ
−i
(
〈~bj , ~yi〉3

)

t′2 = 〈~b2, ~y0〉+ 〈~b1, ~r〉 −
k−1∑
i=0

n/d∑
j=1

αin/d+jσ
−i
(

3šj〈~bj , ~yi〉2
)

v = −〈~b2, ~r〉+

k−1∑
i=0

n/d∑
j=1

αin/d+jσ
−i
(

(2š2j − 1)〈~bj , ~yi〉
)

For µ = 0, . . . , k − 1 :

AT~γµ = NTT(ψ
(µ)
1 )‖ · · · ‖NTT(ψ

(µ)

n/d)

h = g +

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν

n/d∑
j=1

dψ
(µ)
j šj − 〈~u,~γµ〉


For i = 0, . . . , k − 1 :

v′i =

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

n/d∑
j=1

σν
(
〈dψ(µ)

j
~bj , ~yi−ν〉

)
+ 〈~bn/d+1, ~yi〉

t′1, t
′
2,h,v,v

′
i-

c� c
$← C

For i = 0, . . . , k − 1 :

~zi = ~yi + σi(c)~r

If Rej
(

(~zi), (σ
i(c)~r), s

)
= 1, abort

~zi -

Ver(tj , ~wi, αi, ~γi,

t′1, t
′
2,h,v,v

′
i, c, ~zi)

Fig. 5. Proof of knowledge of a ternary solution to an unstructured linear equation over Zq. Verification equations
are defined in Figure 3.
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Ver(tj , ~wi,αi, ~γi, t
′
1, t
′
2,h,v,v

′
i, c, ~zi)

01 For i = 0, . . . , k − 1 :

02 ‖~zi‖2
?

≤ β = s
√

2(λ+ κ+ n/d+ 1)d

03 B0~zi
?
= ~wi + σi(c)~t0

04 For i = 0, . . . , k − 1:
05 For j = 1, . . . , n/d :

06 f
(i)
j = 〈~bj , ~zi〉 − σi(c)tj

07 f ′1 = 〈~b1, ~z0〉 − t′1
08 f ′2 = 〈~b2, ~z0〉 − t′2
09
∑k−1
i=0

∑n/d
j=1αin/d+jσ

−i
(
f

(i)
j (f

(i)
j + σi(c))(f

(i)
j − σ

i(c))
)
− f ′1 − cf ′2

?
= c2v

10 For µ = 0, . . . , k − 1 :

11 hµ
?
= 0

12 AT~γµ = NTT(ψ
(µ)
1 )‖ · · · ‖NTT(ψ

(µ)

n/d)

13 τ =
∑k−1
µ=0

1
k
Xµ∑k−1

ν=0 σ
ν
(∑n/d

j=1 dψ
(µ)
j tj − 〈~u,~γµ〉

)
14 For i = 0, . . . , k − 1:

15
∑k−1
µ=0

1
k
Xµ∑k−1

ν=0

∑n/d
j=1 σ

ν
(
dψ

(µ)
j 〈~bj , ~zi−ν mod k〉

)
+ 〈~bn/d+1, ~zi〉

16
?
= v′i + σi(c)(τ + tn/d+1 − h)

Fig. 6. Verification equations for Figure 5.

~s∗ ∈ {−1, 0, 1}n to A~s∗ = ~u, or a MSISκ,8dβ solution for B0 in expected time at most 1/ε+ (ε− pk)−1 when
running P∗ once is assumed to take unit time.

Proof. Completeness. The distributions of the vectors ~zi sent by P are independent and have statistical

distance at most 2−100 from D
(λ+κ+n/d+1)d
s by Lemma 2.6. Lemma 2.7 implies that the bounds ‖~zi‖2 ≤

β = s
√

2(λ+ κ+ n/d+ 1)d are true with overwhelming probability. It follows by careful inspection that the
other verification equations are always true for the messages sent by P.

Zero-Knowledge. We can simulate a non-aborting transcript between the honest prover and the honest
verifier in the following way. First, in a non-aborting transcript the vectors ~zi are statistically close to

D
(λ+κ+n/d+1)d
s by Lemma 2.6. So the simulator can just sample ~zi

$← D
(λ+κ+n/d+1)d
s . Next, again by

Lemma 2.6, we know that σi(c)~r is independent from ~zi, and hence c is independent from the ~zi. So, the

simulator picks c
$← C like the honest verifier. The polynomial h is such that h0 = · · · = hk−1 = 0 in

honest transcripts and the other coefficients are uniformly random because of the additive term g. Hence,

the simulator samples h
$← {h ∈ Rq | h0 = · · · = kk−1 = 0}. Then, the challenges αi ∈ Rq and ~γµ ∈ Zmq

are independently uniformly random and the simulator samples them in this way. Next, the commitments
t′1, t′2 and tj are computationally indistinguishable from uniformly random polynomials if MLWEλ is hard.
In fact, they include independent Module-LWE samples. So the simulator can just take uniformly random
t′1, t

′
2, tj ∈ Rq. Now, in an honest transcript, the remaining messages ~wi, v, v′i are all uniquely determined by

the verification equations because of completeness. We see that if the simulator computes these messages so
that the verification equations become true, then the resulting transcript is indistinguishable from an honest
transcript.

Soundness. First the extractor opens the commitments tj and t′1, t′2. From [ALS20][Theorem 4.4], unless
E has found a MSISκ,8dβ solution, the extractor can compute vectors ~y∗i and ~r∗ such that for every accepting
transcript with first messages tj , ~wi,

zi = ~y∗i + σi(c)~r∗.
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The expected runtime for this is equal to the runtime given in the theorem statement. Then let š∗j , g
∗, m∗′1

and m∗′2 be the extracted messages, which are such that

tj = 〈~bj , ~r∗〉+ š∗j for j = 1, . . . , n/d,

tn
d +1 = 〈~bn

d +1, ~r
∗〉+ g∗,

t′1 = 〈~b1, ~y∗0〉+m∗′1 ,

t′2 = 〈~b2, ~y∗0〉+m∗′2 .

Now substituting these expressions into f
(i)
j , f ′1, f ′2 as computed in the verification algorithm gives

f
(i)
j = 〈~bj , ~y∗i 〉 − σi(c)š∗j ,

f ′1 = 〈~b1, c~r∗〉 −m∗′1 ,

f ′2 = 〈~b2, c~r∗〉 −m∗′2 .

Next, the verification equation in Line 9 of the verification algorithm readsk−1∑
i=0

n/d∑
j=1

αin/d+jσ
−i
(
〈~bj , ~y∗i 〉3

)
+m∗′1


+ c

k−1∑
i=0

n/d∑
j=1

αin/d+jσ
−i
(

3〈~bj , ~yi〉2š∗j
)
− 〈~b1, ~r∗〉+m∗′2


+ c2

k−1∑
i=0

n/d∑
j=1

αin/d+jσ
−i
(
〈~bj , ~y∗i 〉(2(š∗j )

2 − 1)
)
− 〈~b2, ~r∗〉 − v


+ c3

k−1∑
i=0

n/d∑
j=1

αin/d+jσ
−i (š∗j (š∗j − 1)(š∗j + 1)

)
= 0.

If we assume that š∗j (š
∗
j − 1)(š∗j + 1) 6= 0 for some j, then following the same argument as in [ALS20,

Theorem 5.1], the success probability of the prover must be bounded by

ε ≤
k∑
i=0

(
k

i

)(
1

q

)i(
1− 1

q

)k−i
2k−iqipk < (3p)k.

This is not the case and therefore ~s∗j = NTT(š∗j ) ∈ {−1, 0, 1}d for all j.

Now substituting tj into τ gives

τ =

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν

n/d∑
j=1

〈dψ(µ)
j
~b1, ~r

∗〉

+ f∗.

where

f∗ =

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν

n/d∑
j=1

dψ
(µ)
j š∗j − 〈~u,~γµ〉
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We know that f∗µ = 〈A~s∗ − ~u,~γµ〉 for µ = 0, . . . , k − 1 and ~s∗ = ~s∗j‖ · · · ‖~s∗j . Next we find from the last
verification equations, k−1∑

µ=0

1

k
Xµ

k−1∑
ν=0

n/d∑
j=1

σν
(
〈dψ(µ)

j
~b1, ~y

∗
i−ν mod k〉

)
+ 〈~b2, ~y∗〉 − v′i

 (9)

= σi(c) (f∗ + g∗ − h) . (10)

for all i = 0, . . . , k − 1. The coefficients of these linear polynomials in σi(c) are independent from c. With
the same reasoning as in the proof of Theorem 3.1 it follows that if A~s∗ 6= ~u, then

ε <

(
1

q

)k
+ pk

in contradiction to the bound in the statement. Hence A~s∗ = ~u.

4.2 Proof Size

We now look at the size of the non-interactive proof outputs created by the protocol in Figure 2. First, note
that for the non-interactive proof wi’s, v and v′is need not be included in the output as they are uniquely
determined by the remaining components. Further, the challenges can be generated from a small seed of 256
bits, which itself is generated as the hash of some components. Therefore, the contribution of the challenges
to the total proof length is extremely small and thus we neglect it.

As “full-sized” elements of Rq, we have tj ’s, t
′
1, t
′
2, and h (in fact, h is missing k coefficients, but that is

a negligible consideration). Therefore, we have in total

n/d+ 1 + κ+ 3

full-sized elements of Rq, which altogether costs

(n/d+ κ+ 4) · d log q bits.

Now, the only remaining part is ~zi’s. Due to rejection sampling, each coefficient of ~zi follows a Gaussian
distribution with standard deviation s since each coefficient of ~yi is sampled from Ds. Therefore, similar to
prior works, e.g., [BLS19], we can bound each coefficient in absolute value by 6s. If we then take into account
the total number of coefficients in ~zi and an additional sign bit for each coefficient, then we get

k · ((λ+ κ+ 1) · d+ n) · log (12s)

bits of communication required for all ~zi’s together.
For the rejection sampling, we set s = 2T , where T is a bound on the Euclidean norm of the concatenated

vector
(
σ0(c)~r, . . . , σk−1(c)~r

)
. Therefore, we assume here that there is a single rejection sampling step done

on all k ~zi’s together. It is easy to see that no coefficient of the product σi(c)~r can exceed d for any
0 ≤ i ≤ k − 1. Therefore, we have the following theoretical bound∥∥(σ0(c)~r, . . . , σk−1(c)~r

)∥∥
2
≤ d ·

√
k · ((λ+ κ+ 1) · d+ n) =: T. (11)

Note that by setting T dependant on k, the average number of iterations in the protocol remains the same
for varying k.

In conclusion, the overall proof length is about

(n/d+ κ+ 4) · d log q + k · ((λ+ κ+ 1) · d+ n) · log (12s) bits, (12)

for s = 2 · d
√
k · ((λ+ κ+ 1) · d+ n).

An important advantage of our proof system is that the proof length (i.e., the communication size) is
independent of the height, m, of the matrix A.
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Proof length optimizations. The proof length calculation in (12) does not take into account the fact
that a (truncated) discrete Gaussian with known standard deviation has less entropy than the uniform
distribution. Therefore, for concrete sizes to be described in the applications, we compute the entropy of a
discrete Gaussian coefficient from Ds and use the corresponding value instead of log (12s) above in (12). One
can encode ~zi’s using, for example, a Huffman code to realize this.

Another optimization we employ is in the calculation of a maximum absolute coefficient in σi(c)~r. In our
applications, we aim to minimize d and set d = 128. Now in this case, a coefficient of σi(c)~r is the sum of
128 coefficients with i.i.d. P (−1) = P (1) = 5/32 and P (0) = 22/32.5 If we calculate the convolution of this
distribution, we find that a coefficient is bigger than 78 in absolute value with probability less than 2−114.
Hence, by a union bound the probability that any of the coefficients in

(
σ0(c)~r, . . . , σk−1(c)~r

)
is bigger

than 78 will still be negligibly small. Therefore, we can set s = 2 · 78
√
k · ((λ+ κ+ 1) · d+ n) instead (when

d = 128).

5 Applications

5.1 Proving Knowledge of LWE Secrets

As also considered in [BLS19], the first application of our proofs is to prove knowledge of secrets in LWE
samples. For a fair comparison, we consider the same setting as in [BLS19]. That is, for n = 2048, we want
to prove knowledge of a ternary vector ~s ∈ {−1, 0, 1}n such that

~u = (A′ ‖ Im) · ~s (mod q),

where Im is them-dimensional identity matrix, A′ ∈ Zm×(n−m)
q is a public matrix chosen uniformly at random

and q is a modulus of about 32 bits (i.e., log q = 32). Note that ~s here corresponds to the concatenation
of a secret vector and an error vector of 1024 dimension each in the usual LWE setting. Let us denote
A = (A′ ‖ Im). This setting is now precisely the one of the protocol in Figure 2 with ~u = A~s mod q,
n = 2048 and q ≈ 232.

First, to reach 128-bit security level we set k = 128/ log q = 4. Then, to optimize the proof length, we
need to set d = dim(Rq) as small as possible. This is due to the fact that regardless of what level of security is
desired, each “garbage term”, namely t′1, t

′
2,h, requires d log q bits of storage. Using Lemma 2.2, the smallest

possible d we can choose is 128, thus we set d = 128. The remaining task is to choose λ and κ to make
M-LWE and M-SIS hard in practice against known attacks.

As in prior works (cf. [ESS+19, ESLL19, BLS19]), we measure the hardness of these problems in terms
of root Hermite factor δ, aim for δ ≈ 1.0045 and follow an estimation strategy as in the recent works
[ESS+19, ESLL19], where the authors also aimed for about 128-bit security. Particularly, using the “LWE
estimator” in [APS15] and the SIS practical security estimation methodology in [MR09], we can reach the
desired security level with λ = 10 and κ = 9 for a root Hermite factor (for both SIS and LWE) of δ ≈ 1.0045.
An advantage of our construction here over [BLS19] is that setting of overall SIS/LWE dimension (which
needs to be a multiple of d) is more flexible as we can use a relatively small d of 128.

Plugging in this parameter setting into (12) (with the described optimizations) yields a proof length of
51.44 KB. As a result, we achieve an improvement of almost 7.5× over the proposal in [BLS19] in terms of
proof length. There are further results in [YAZ+19] similar to [BLS19], but the concrete proof length is not
provided for this particular scenario. We refer to Appendix A for more on applications.
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Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS - kyber: A cca-secure module-lattice-based KEM.
In EuroS&P, pages 353–367. IEEE, 2018.

BDL+18. Carsten Baum, Ivan Damg̊ard, Vadim Lyubashevsky, Sabine Oechsner, and Chris Peikert. More efficient
commitments from structured lattice assumptions. In SCN, pages 368–385, 2018.

BLS19. Jonathan Bootle, Vadim Lyubashevsky, and Gregor Seiler. Algebraic techniques for short(er) exact lattice-
based zero-knowledge proofs. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part I, volume 11692 of LNCS, pages 176–202. Springer, Heidelberg, August 2019.

Cv91. David Chaum and Eugène van Heyst. Group signatures. In Donald W. Davies, editor, EUROCRYPT’91,
volume 547 of LNCS, pages 257–265. Springer, Heidelberg, April 1991.
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dLS18. Rafaël del Pino, Vadim Lyubashevsky, and Gregor Seiler. Lattice-based group signatures and zero-
knowledge proofs of automorphism stability. In David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang, editors, ACM CCS 2018, pages 574–591. ACM Press, October 2018.

ESLL19. Muhammed F. Esgin, Ron Steinfeld, Joseph K. Liu, and Dongxi Liu. Lattice-based zero-knowledge proofs:
New techniques for shorter and faster constructions and applications. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages 115–146. Springer, Heidelberg,
August 2019.

ESS+19. Muhammed F. Esgin, Ron Steinfeld, Amin Sakzad, Joseph K. Liu, and Dongxi Liu. Short lattice-based
one-out-of-many proofs and applications to ring signatures. In Robert H. Deng, Valérie Gauthier-Umaña,
Mart́ın Ochoa, and Moti Yung, editors, ACNS 19, volume 11464 of LNCS, pages 67–88. Springer, Heidel-
berg, June 2019.

EZS+19. Muhammed F. Esgin, Raymond K. Zhao, Ron Steinfeld, Joseph K. Liu, and Dongxi Liu. MatRiCT:
Efficient, scalable and post-quantum blockchain confidential transactions protocol. In Lorenzo Cavallaro,
Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 567–584. ACM
Press, November 2019.

Kil92. Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In 24th ACM
STOC, pages 723–732. ACM Press, May 1992.

KTX08. Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Concurrently secure identification schemes based
on the worst-case hardness of lattice problems. In Josef Pieprzyk, editor, ASIACRYPT 2008, volume 5350
of LNCS, pages 372–389. Springer, Heidelberg, December 2008.

LM06. Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knapsacks are collision resistant. In
ICALP (2), pages 144–155, 2006.

LN17. Vadim Lyubashevsky and Gregory Neven. One-shot verifiable encryption from lattices. In Jean-Sébastien
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Auxiliary Supporting Material

A More on Applications

A.1 Proof of Plaintext Knowledge

In a proof of plaintext knowledge (also called a verifiable encryption), the goal is to produce a ciphertext
and a zero-knowledge proof such that the decryption of a valid ciphertext is guaranteed to yield a plaintext
known by the prover.

The only lattice-based verifiable encryption scheme with a satisfactory practical efficiency is presented
in [LN17]. Although this proposal is very efficient in practice, it has some undesirable properties. First, the
guarantee on the message ~m′ decrypted from a valid ciphertext is relaxed in a way that ~m′ only satisfies an
“approximate” lattice relation. Second, the running time of the decryption algorithm is dependant on the
running time of the prover and only the expected number of decryption tries is theoretically investigated.

Our proofs from previous sections can help mitigate these drawbacks at the cost of larger proofs. How-
ever, unlike the other previous approaches such as [YAZ+19] that can provide an exact proof of plaintext
knowledge, we believe our results are of practical relevance.

Let us first recall a Module-LWE encryption scheme similar to Kyber [BDK+18] for a message m ∈ Rp
for p ∈ Z+. The secret keys are sampled as ~s1, ~s2

$← S`1, where S1 is the set of polynomials in Rq with

infinity norm at most 1, and the public keys are A
$← R`×`q and ~t = A~s1 + ~s2. An encryption (~v,w) of a

plaintext m ∈ Rp satisfies

(
~v
w

)
=

(
pA> pI` 0 0

p~t> 0`×` p 1

)
·


~r
~e
e′

m

 mod q, (13)
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where ~r, ~e
$← S`1, e′

$← S1 and I` is the ` × ` identity matrix over R. The decryption in this case works by
computing

m = w − ~s>1 ~v mod q mod p.

For a successful decryption, we require

q/2 >
∥∥p(~s>2 ~r + e′ − ~s>1 ~e) +m

∥∥
∞ . (14)

For simplicity, we consider ‖m‖∞ = 1, i.e., p = 3. It is easy to adjust also to the setting where m is a binary
polynomial.

What we need now is to construct a non-interactive protocol that proves knowledge of (~r, ~e, e′,m) with
‖~r‖∞ = ‖~e‖∞ = ‖e′‖∞ = ‖m‖∞ = 1 that satisfies the relation in (13).

If we expand the matrix in the middle of the relation (13) to its representative matrix over Zq and denote
it by A, and denote the concatenated coefficient vector of (~r, ~e, e′,m) by ~s, then we again end up with a

relation suitable for the protocol in Figure 2. In this case ~s ∈ Z(2`+2)d
q , i.e., n = (2`+ 2)d. As in the previous

application, let us consider the setting of q ≈ 232 (i.e., log q = 32 and k = 4) and d = 128. From the previous
section, we know that a module rank of ` = 10 for the M-LWE encryption would be sufficient with q ≈ 232

and d = 128. As a result, we get n = 2816, which is close to the value of n = 2048 in the previous section.
The same module ranks of λ = 10 and κ = 9 suffice for the zero-knowledge proof with δ ≈ 1.0045 in this
case as well.

For this parameter setting, correctness of decryption (i.e., the inequality in (14)) is easily satisfied.
Plugging in this parameter setting into (12) (with the described optimizations), we end up with a proof
length of 60.89 KB.

A.2 Other Applications

The two applications from Section 5 show how effective our new techniques are. There are actually various
other applications, where our unstructured linear equation proof and our techniques can be useful. Some
examples include group signatures [Cv91], ring signatures [RST01], exact range proofs, cryptographic accu-
mulators and proof of message-signature pairs. These examples are all studied in [YAZ+19], where each of
them build mainly on a zero-knowledge proof of a relation similar to that of our unstructured linear equation
proof. Since this core proof can be realized more efficiently in practice using our novel techniques, we expect
more efficient applications to follow.

Particularly, we believe that our zero-knowledge proofs and techniques can be useful in more efficient
group signatures that do not rely on relaxed zero-knowledge proofs as in [dLS18, EZS+19]. Although these two
works [dLS18, EZS+19] offer relatively efficient constructions in practice, they have certain drawbacks. More
specifically, the opening algorithm in [dLS18] relies on the decryption algorithm of the verifiable encryption
in [LN17], and therefore its worst-case running time for adversarially-generated group signatures is not clear.
This case of opening adversarially-generated signatures is not at all supported in [EZS+19], and the group
public key length in [EZS+19] grows linearly in the group size, rendering the scheme unsuitable for large
groups. Therefore, extending of our techniques here to build a group signature seems to be an interesting
future research direction.
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