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Abstract
Collective coin-tossing allows n processors with private randomness sources to agree on a common
public coin. Without loss of generality, one can assume that the output is in the set {0, 1}, and
the expected output of a coin-tossing protocol is X. The objective of a coin-tossing protocol is
to be robust to adversarial interventions. In this paper, we study Byzantine adversaries who can
arbitrarily set the messages of the corrupted processors.

Historically, the study of coin-tossing protocols, with the introduction of even the mildest
of variations in its setting, tends to yield surprising and exciting outcomes. We know several
optimal or asymptotically optimal protocols like tribes, baton passing, and threshold protocols.
Incidentally, there are several variants of coin-tossing where the majority protocol (or, more
generally, the threshold protocols) turn out to be asymptotically optimal. In this work, we
consider coin-tossing protocols in two security models and study the susceptibility of the optimal
coin-tossing protocols in those settings to adversarial attacks.

In the first model, there are n processors and processor i broadcasts her uniformly and
independently random message xi ∈ {0, 1}. The processors apply a function fn : {0, 1}n → {0, 1}
to the broadcast messages and agree on their common output fn(x1, . . . , xn). After all the
processors broadcast their messages, the adversary may corrupt at most t processors and change
their messages arbitrarily. The optimal protocol minimizes the change in the expected output
that this adversary causes. We reduce this problem to an isoperimetric inequality over the
boolean hypercube and demonstrate that the threshold protocols are the optimal protocols.

In the second model, at time i, processor i broadcasts her message xi, and her message
distribution possibly depends on the previously broadcast messages. We consider an adversary
who can take control of one processor and change her message arbitrarily. In this case, we prove
that the threshold protocols are asymptotically optimal.
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1 Introduction

Collective coin-tossing allows n-processors with unbounded computational power to agree
on a common random coin. These processors have access to a broadcast channel, and each
processor has a private source of randomness. In this paper, we consider single-turn protocols,
i.e., each processor broadcasts a message only once during the evolution of the coin-tossing
protocol. Without loss of generality, we assume that the output of the coin-tossing protocol
is a bit, and we denote the expected output of the honest protocol by X0, referred to as
bias-X0. An adversary may corrupt up to t processors to change the expected output of the
protocol (it may either increase or decrease the expected output). In this paper, we consider
Byzantine adversaries, i.e., the adversary may fix the message of the corrupted processors
arbitrarily.

A coin-tossing protocol may proceed in multiple rounds. The distribution of the messages
sent by processors prescribed to speak in one round may depend on the messages sent in
the previous rounds. For example, in one-round protocols, the distribution over the message
space of the coin-tossing protocol is a product space. On the other hand, in n-round protocols,
only one processor speaks in a round, and her message distribution possibly depends on all
previous messages. As is standard in cryptography, our adversary is always rushing, i.e., it
can arbitrarily schedule all those processors who are supposed to speak in a round.

Given a setting for coin-tossing and the adversarial model, a typical objective is to identify
the optimal or asymptotically optimal protocols realizing bias-X0 coin-tossing. Historically,
the study of coin-tossing protocols, with the introduction of even the mildest of variations in
its setting, tends to yield surprising and exciting outcomes. We have encountered several
optimal coin-tossing protocols like tribes, baton passing, and threshold protocols, and each
of them has had a significant impact on research in discrete mathematics and theoretical
computer science. In fact, for most models, we do not know the characterization of the
optimal coin-tossing protocol for arbitrary bias-X0.

In this paper, we study two models for coin-tossing.

1. Single-turn, one-round coin-tossing protocols against a strongly adaptive adversary. A
strongly adaptive adversary can see a processor’s message before deciding to change her
message arbitrarily.

2. Single-turn, n-round coin-tossing protocols against an adaptive adversary. Here we
consider the typical definition of an adaptive adversary who has to corrupt a processor
before learning her honest message.

We shall prove that the threshold protocols are the optimal coin-tossing protocols in the
first model. Note that the only difference between the model for the original conjecture of
Ben-Or and Linial [BL89] from the model we study is that the former considers adaptive
adversaries (not strongly adaptive). This result establishes connections to a new form of
vertex isoperimetric inequality to characterize the optimal coin-tossing protocol. While in
the second model, we prove that threshold protocols are asymptotically optimal. However,
experimentally, we verify that the optimal protocol corresponds to threshold protocols as
well. This conjecture, however, remains to be proven formally. This result uses the potential-
based inductive technique introduced recently by [KMM19] to inductively lower bound the
performance of the best attack on such coin-tossing protocols.
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1.1 Our Contributions

Our first result is in the following setting. There are n processors, and processor i broadcasts
her uniformly (and independently) random message xi ∈ {0, 1}. The processors apply a
function fn : {0, 1}n → {0, 1} to the broadcast messages and agree on their common output
fn(x1, . . . , xn) ∈ {0, 1}. Let X0 represent the expected outcome of the protocol. We consider
the following adversarial model. After all processors broadcast their messages, the adversary
decides to change at most t ∈ {1, . . . , n} processor’s messages arbitrarily. The objective
of the adversary is to deviate the expected outcome away from X0. The optimal protocol
ensures that the maximum deviation caused by any adversary in the adversarial model above
is minimized.

The theorem below summarizes our result in this setting.

I Theorem 1 (Coin-tossing and Harper’s Theorem). Consider single-turn one-round coin-
tossing protocols involving n processors, each processor broadcasts a uniformly and indepen-
dently random bit, and the expected output of the protocol is X0. Consider strong adaptive
Byzantine adversaries who can corrupt at most t ∈ {1, . . . , n} processors. The optimal
protocol in this setting outputs 1 if and only if (x1, . . . , xn) ∈ Sn,X0 , where Sn,X0 ⊆ {0, 1}

n

represents the subset of the first X02n elements in the simplicial ordering of {0, 1}n.

The simplicial ordering is a total order on {0, 1}n defined as follows. For x, y ∈ {0, 1}n, we
say that x ≤ y if and only if (1) The number of ones in x is more than the number of ones
in y, or (2) The number of ones x and y are identical, but x has one at the first coordinate
where x and y differ.

Note that if n is odd and X0 = 1/2 then the majority protocol is the optimal protocol.
Here we emphasize that we are claiming that majority is not just asymptotically optimal. It
is in fact the optimal protocol. In general, when X0 = Vol (n, k) /2n,1 the threshold protocol2
is the optimal protocol. We prove this result by establishing connections to (a new variant
of) vertex isoperimetric inequalities over the boolean hypercube. An interesting problem is
to generalize this result to the setting where processors output uniformly random messages
from larger sets.

Our next result is in the following setting. There are n processors and at time i processor i
broadcasts her message xi. The distribution of the i-th processor’s message possibly depends
on the messages broadcast by the first (i− 1) processors. At the end of the protocol, parties
agree on the output fn(x1, . . . , xn) ∈ {0, 1}. The expected output is X0. We consider an
adaptive Byzantine adversary who corrupts at most one processor.

We prove the following result.

I Theorem 2 (Coin-tossing and Potential Argument). Consider any single-turn n-round coin-
tossing protocol involving n processors with an expected output X0. There exists an adaptive
Byzantine adversary who can corrupt at most t = 1 processor and change the expected output
of the protocol by

≥ X0(1−X0)√
2

· 1√
n
.

1 Vol (n, k) represents the total number of n-bit bitstrings with ≤ k ones. That is, we have Vol (n, k) =∑k

i=0

(
n
i

)
.

2 A threshold protocol outputs 1 if the number of processors who send 1 as their messages exceeds a given
threshold. In particular, when X0 = Vol (n, k) /2n, the threshold is n− k − 1.
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Consider odd n and X0 = 1/2. The majority protocol’s expected outcome can be changed
by at most ∼

√
2√
π
· 1√

n
. Therefore, our lower bound is within a constant-factor of the optimal

value.
Interestingly, the optimal solutions for the potential argument for small values of odd

n turn out to be the majority protocol. This leaves open the possibility that the majority
protocol may be the optimal protocol in this setting when X0 = 1/2.

1.2 Prior Works
There is a vast literature that studied coin-tossing protocols against static Byzantine adver-
saries. The celebrated result of Kahn, Kalai, and Linial [KKL88] implied that any one-round
protocol could be fully biased by corrupting Ω̃ (n/ logn) processors. On the positive side,
Ben-Or and Linial [BL89] constructed a boolean function that is resilient to O

(
n0.63) cor-

ruptions. This result is improved by Ajtai and Linial [AL93], who gave a construction that
is resilient to O

(
n/ log2 n

)
corruptions. Their construction was inexplicit and recently made

explicit by Chattopadhyay and Zuckerman [CZ16].
In the multi-round setting, Saks [Sak89] constructed a protocol called the “Baton Passing”

game and showed its resilience to O(n/ logn) corruptions. Alon and Naor [AN90] modified
their construction and showed that it is resilient to a constant fraction of corruption. Boppana
and Narayanan [BN93] improved the analysis and showed resilience of such protocols to
(1/2− δ) fraction of corruption, which is optimal. Feige [Fei99] gave an explicit construction
that is also resilient to (1/2− δ) fraction of corruption. His protocol has round complexity
O(log∗ n),3 which matches the lower bound proven by Russell, Saks, and Zuckerman [RSZ99].

For adaptive Byzantine adversaries, Ben-Or and Linial [BL89] showed that majority
protocol is resilient to O (

√
n) corruptions, and they conjectured this is asymptotically

optimal. That is, no protocol is resilient to more than O (
√
n) corruption. Lichtenstein,

Linial, and Saks[LLS89] proved that this conjecture is true when every processor sends a
single bit during the entire protocol. Recently, there have been several works making progress
on this conjecture. Goldwasser, Kalai, and Park [GKP15] showed that this conjecture holds
if it is a one-round symmetric protocol.4 En route to this result, they introduced strong
adaptive adversaries and showed that any one-round protocol is not resilient to Õ (

√
n)

strong adaptive corruptions. Kalai and Komargodski [KK15] showed how to compress the
communication complexity of such protocols to polylog (n) without compromising the security
of the protocol. Based on this, Kalai, Komargodski, and Raz [KKR18] proved Ben-Or and
Linial’s conjecture for all single-turn protocols.

Recently, in the field of fair coin-tossing, Khorasgani, Maji, and Mukherjee [KMM19]
introduced the approach of geometric transformation for designing optimal protocols. They
showed that this approach yields protocols with less susceptibility than the majority proto-
cols [Blu82, Cle86].

1.3 Technical Overview
Result using Isoperimetric Inequality. Let S ⊆ {0, 1}n be the set of all x ∈ {0, 1}n

such that fn(x) = 1. For intuition consider the case of t = 1. Note that if x ∈ S is such

3 log∗ n is defined as the smallest positive integer k such that log · · · log︸ ︷︷ ︸
k times

n < 1.

4 A one-round protocol is called symmetric if the output of the protocol is oblivious to the order of the
messages.
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wt = 0 wt = 1 wt = 2 wt = 3 wt = 4 wt = 5

Figure 1 An intuitive example on hypercube {0, 1}5. Any compression of the “black ball set” is
also a compression of the “white ball set.” The solid arrow compresses the black ball set, and the
dotted arrow compresses the complementary white ball set.

that one of its distance-1 neighbor in the boolean hypercube is in S := {0, 1}n \ S then the
adversary can change the outcome of the protocol to 0. On the other hand, if no distance-1
neighbor of x in the boolean hypercube is in S then the adversary cannot change the outcome
of the protocol to 0.

Note that every element in the vertex perimeter of S, represented by ∂S, is an element
where the adversary can change the output from 1 to 0. Furthermore, this adversary cannot
change the outcome from 1 to 0 at any other x. So, we conclude that the adversary can reduce
the expected outcome by

∣∣∂S∣∣ /2n. Analogously, an adversary can increase the expected
outcome by |∂S| /2n.

Consequently, to construct the optimal coin-tossing protocol, our objective is to minimize

max
{∣∣∂S∣∣ , |∂S|} .

Harper’s theorem minimizes
∣∣∂S∣∣ and |∂S| individually. Our objective is to simultaneously

minimize them. Is it possible that one can trade off one of these terms for the other?
The proof proceeds by considering a compression-based proof of the Harper’s theorem.

Intuitively, a compression of a set moves the points closer to each other. The crucial
observation is the following.

“The complement of any compression of a set
is also a compression of the complement of that set.”

Figure 1 provides this intuition for n = 5. Therefore, one can translate any compression
based proof for Harper’s theorem to our context as well. This observation implies that the
optimal S is obtained by choosing appropriate number of points in the boolean hypercube
according to the simplicial order. Interestingly, the proof implies that it is impossible to
increase the susceptibility to attacks biasing towards 0 as compared to the optimal protocol
while gaining robustness to attacks biasing towards 1.
Result using Potential Arguments. Recently, Khorasgani, Maji, and Mukherjee [KMM19]
introduced a potential based inductive technique to account for good adversarial attacks on
a coin-tossing protocol. We use that framework for our next result. The potential accounts
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for the sum of the positive and negative change in the expected outcome that an adversary
can cause.

Suppose we already know the best attack on protocols of depth d. Let Cd(X) represent
a lower-bound on the best attack on one-turn d-round coin-tossing protocols involving d
processors, and the expected output of the honest protocol is X. Next, we consider any
one-turn (d + 1)-round coin-tossing protocols involving (d + 1) processors. Note that in
the beginning, the adaptive adversary (who can corrupt at most t = 1 processors) can
either corrupt the first processor and fix her outcome, or delay the corruption to a later
round depending on the evolution of the coin-tossing protocol. We express this decision as a
geometric transformation on the curve Cd(X) to obtain the new Cd+1(X) curve (see Figure 2).

A closed form expression of this curve seems difficult to obtain. So, we proceed to
lower bound it using an easier to express curve. This procedure proceeds inductively in the
following manner.

1. We prove that the geometric transformation of Figure 2 preserves the relative ordering of
two curves. That is, if one curve is above another curve, then the transformation of the
former curve is above the transformation of the latter curve.

2. Next, we obtain a simple lower bound to C1(X) and inductively proceed to find a similar
curve that lower bounds C2(X), and so on. We show that Dn(X) :=

√
2X(1−X) · 1√

n

is below Cn(X).

Finally, one observes that there exists an adaptive Byzantine strategy that corrupts at most
t = 1 processors to change the final outcome by 1

2Dn(X) (because, either the positive or
negative change in the expected output shall surpass the average).

2 Preliminaries

For a universe Ω and a set S ⊆ Ω, we use S to denote the complement of S, i.e., Ω\S. We
use |S| to represent the cardinality of S. We use [n] for set {1, 2, . . . , n}. For any set S and
integer 0 ≤ n ≤ |S|, we use

(
S
n

)
to represent the collection of subsets of S of size n, i.e.,

{T ⊆ S| |T | = n}.
For binary strings x, y ∈ {0, 1}n, the Hamming weight is defined as wt(x) := |{i ∈ [n]|xi = 1}|;

the Hamming distance is defined as HD (x, y) := |{i ∈ [n]|xi 6= yi}|. We use Vol (n, k) to
denote the size of a Hamming ball of radius k, i.e., Vol (n, k) :=

∑k
i=0
(
n
i

)
.

2.1 Coin-Tossing Protocols
In this work, we consider coin-tossing protocols among n processors in the full information
model. That is, all processors communicate through one single broadcast channel. This
protocol might consist of multiple rounds. Within each round, the processors who are
supposed to speak shall broadcast their messages simultaneously. At the end of the protocol,
all processors will reconstruct the output ∈ {0, 1} by applying the same function on the
broadcasted messages. Hence, they will always agree on the output of the protocol. We call
it an m-turn protocol if every processor sends at most m messages throughout the protocol.
In particular, a single-turn protocol implies that every processor broadcasts a single message
during the entire protocol. We do not limit to coin-tossing protocols with unbiased output.
That is, the probability of the output being head could be any real number in [0, 1].

I Definition 1 ((n,X0)-Coin-tossing protocols). An (n,X0)-coin-tossing protocol is a coin-
tossing protocol among n processors, where the expectation of the output is X0.
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The susceptibility of a coin-tossing protocol is the maximum change (in terms of statistical
distance) that the adversary can cause to the distribution of the output of the protocol.

2.2 Adversarial Models
In this work, we focus on Byzantine adversaries, i.e., once a processor is corrupted, the
adversary takes full control over its behavior. We assume the adversaries are rushing, which
means it can schedule the order of which processors broadcast their messages within each
round. Specifically, we consider the following two types of adversaries.

Adaptive Adversary. An adaptive adversary does not commit to which processors to
corrupt before the protocol begins (i.e., static). In contrast, it decides on which processors
to corrupt in the course of the protocol. However, it cannot alter messages that have
already been sent.
Strong Adaptive Adversary [GKP15]. A strong adaptive adversary has the addi-
tional power to decide on whether to corrupt a processor after seeing its message. Without
loss of generality, such adversaries, within each round, first wait for all the processors
to broadcast their messages and then decide which processors to corrupt (to alter their
messages).

3 Optimal Coin-Tossing Protocols for Strong Adaptive Adversary

In this section, we study strong adaptive adversaries. This adversarial model is proposed and
studied by Goldwasser, Kalai, and Park [GKP15]. In particular, we consider a one-round
protocol, where every processor sends a uniform bit as its message.

We shall show that, in this setting, majority protocols (more generally, threshold protocols
for biased output), are the optimal protocol for such adversaries. Note that we are not
claiming that it is asymptotically optimal, it is the optimal protocol. We prove our results
by drawing connections from isoperimetric inequalities on boolean hypercubes.

In Section 3.1, we provide some basics about isoperimetric inequalities on boolean
hypercubes. In Section 3.2, we shall show how one can apply isoperimetric inequalities to
coin-tossing problems.

3.1 Isoperimetric inequalities on boolean hypercubes
For a graph G, isoperimetric inequalities consider, of a fixed size, which subgraph of G
minimizes the size of its vertex boundary. Let us define vertex boundary first.

I Definition 2 (Vertex Boundary). For a graph G = (V,E) and a subset of vertices S ⊆ V ,
the vertex boundary of S is defined as

∂S :=
{
s ∈ S

∣∣ ∃s ∈ S s.t. (s, s) ∈ E
}
.

More generally, the t-vertex boundary is defined as

∂tS :=
{
s ∈ S

∣∣ ∃s ∈ S s.t. dist(s, s) ≤ t
}
.

In particular, let graph G = (V,E) represent the boolean hypercube, which is defined as,
V = {0, 1}n and for any two vertices u, v ∈ V , (u, v) ∈ E if and only if HD (u, v) = 1. The
celebrated Harper’s theorem [Har66] states that, for the boolean hypercube G, the subgraph
that minimizes its vertex boundary, is exactly the subgraph induced by the prefix of the
simplicial ordering, which is defined as follows.
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I Definition 3 (Simplicial Ordering). For any two distinct elements a, b ∈ {0, 1}n, we say
a < b if one of the following two conditions is met.

1. wt(a) < wt(b);
2. wt(a) = wt(b), but a is smaller than b in lexicographical ordering.

Let Ln(s) be the first s smallest elements of {0, 1}n in simplicial ordering. Then Harper’s
theorem guarantees the following.

I Theorem 3 (Harper’s theorem). For all integers n > 0, 0 ≤ s ≤ 2n, and for all S ∈
({0,1}n

s

)
,

we have
|∂Ln(s)| ≤ |∂S| .

3.2 The connections between isoperimetric inequalities and
coin-tossing protocols

Consider an (n,X0)-coin tossing protocol, where every processor sends a uniform bit as
its message. We consider strong adaptive adversaries who are allowed to corrupt at most
t processors. In this setting, an (n,X0)-coin-tossing protocol is solely determined by the
function

f : {0, 1}n −→ {0, 1},
where

∣∣f−1(1)
∣∣ = X0 · 2n. Let us use S to represent the set f−1(1). Clearly, the complement

of S, i.e., S, is identical to f−1(0).
Consider a strong adaptive adversary that corrupts at most t processors and aims to

deviate the output towards 1. It will first see the messages from all the processors, i.e.,
x

$←− {0, 1}n. If x ∈ S, i.e., f(x) = 1, the adversary shall not alter any processor’s message.
However, if x ∈ S, i.e., f(x) = 0, the adversary desires to alter x to be x′, by changing at
most t coordinates of x, such that f(x′) = 0. Clearly, by the definition of t-vertex boundary,
this is possible if and only if x ∈ ∂tS. Hence, this adversary can alter the probability of the
output being 1 to be at most

(|S|+
∣∣∂tS∣∣)/2n,

which causes a statistical distance change of |∂tS| /2n.
Similarly, a strong adaptive adversary that aims to deviate the output towards 0, can

alter the distribution of the output by at most
∣∣∂tS∣∣ /2n. Therefore, the susceptibility of such

a protocol in the presence of strong adaptive adversary that corrupts at most t processors is

max
(∣∣∂tS∣∣ /2n , ∣∣∂tS∣∣ /2n) .

Therefore, we reduce the problem of finding the optimal protocol to the objective of,
given an integer 0 ≤ s ≤ 2n, find

argmin
S∈({0,1}n

s )
max

(∣∣∂tS∣∣ , ∣∣∂tS∣∣) .
We note that Harper’s theorem extends naturally to this setting. That is, the optimal

choice of S is still the prefix the simplicial ordering on the boolean hypercube. This
observation is stated as the following theorem.

I Theorem 4. For all integers n > 0 and 0 ≤ s ≤ 2n, for any S ∈
({0,1}n

s

)
we have,∣∣∂tLn(s)

∣∣ ≤ ∣∣∂tS∣∣ and
∣∣∣∂tLn(s)

∣∣∣ ≤ ∣∣∂S∣∣ .
That is, the subgraph induced by the prefix of the simplicial ordering minimizes simultaneously
the t-vertex boundary of both itself and its complement.
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The proof of this theorem uses similar ideas as the original proof of Harper’s theorem. For
completeness, we provide a proof in Appendix A.
Implications. Our observation implies that the optimal protocol with expected output X0
will define function f as

f(x) = 1 if and only if x ∈ Ln(s),

where s = X0 · 2n. When X0 = 1/2 and n is odd, this is exactly the majority protocol.
Hence, majority protocol is exactly the optimal protocol against strong adaptive adversaries
among all protocols with unbiased output.
Asymmetry of deviation. We note that, when X0 < 1/2, the optimal protocol is
asymmetric in the sense that the amount of deviation towards 1 the adversary can cause are
more than that towards 0. For example, let X0 = 1−Vol (n, k) /2n for some integer k > n/2.
Then our observation implies that the optimal protocol is the threshold protocol, i.e., the
outcome is 1 if > k processors’ message are 1. Note that, in the threshold protocol, the amount
of deviation towards 1 that a strong adaptive adversary who corrupts at most t processors,
can cause is

∑t−1
i=0
(
n
k−i
)
/2n, while the amount of deviation towards 0 is

∑t
i=1
(
n
k+i
)
/2n.

Similarly, when X0 > 1/2, the protocol is more susceptible when the adversary aims to
deviate toward 0. Our observation implies that such asymmetry is inherent and no protocols
can be more secure by exploiting a trade-off between the deviation towards 0 and 1.
I Remark 1. We remark that the proof of Harper’s theorem does not trivially extend to larger
alphabet because Lemma 1 in Appendix A does not hold in general for larger alphabet. There
are some works on extending Harper’s theorem into integer lattice [`]n (See, for example,
[BE17]). However, we note that the graph structure they studied is different from that of
interests in this problem.

4 Optimal Coin-Tossing Protocols for Adaptive Adversary

In this section, we study adaptive adversary. In particular, we focus on single-turn n-round
coin-tossing protocols among n-processor. That is, each round consists of one processor
sending one message and every processor speaks only once. We consider the susceptibility of
such protocols in the presence of adaptive adversary that corrupts at most one processor.

We study this problem through the lens of geometric approach introduced recently by
Khorasgani, Maji, and Mukherjee [KMM19]. Let π be an (n,X0)-coin-tossing protocol. Let
A be an adaptive attack strategy that corrupts at most one processor. We define Score(π,A)
as the deviation that A causes to the output of protocol π. We are interested in

Cn (X0) := inf
π

sup
A

Score(π,A).5

Intuitively, for all X0 ∈ [0, 1], Cn (X0) represents the least susceptibility against the most
devastating attack among all protocols with n processors and expected outcome X0. In
particular,

C1(x) =


0 x = 0, 1
1− x x ∈ (0, 1/2]
x x ∈ (1/2, 1)

For the rest of this section, in Section 4.1, we shall introduce a geometric transformation
approach such that one can iteratively obtain curve Cn+1 by applying it on the previous

5 There are additionally subtleties in this definition that are addressed in Remark 2.
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curve Cn. In Section 4.2, we prove a lower bound of Cn. In Section 4.3, we compare our
lower bound with the majority protocol.

4.1 Geometric transformation

Suppose we have curve Cn, we are interested in the next curve Cn+1. Let us use Figure 2 as
an intuitive example to understand how is Cn+1(x) related to curve Cn.

x

y

Cn(x)

xx1 x2 x3

(x, y1)

(x, y2)

Figure 2 An intuitive example of the geometric transformation

Let π be an (n+ 1, x)-coin-tossing protocol. Suppose there are three possible messages
that the first processor might send, namely m1, m2, andm3. Conditioned on the first message
being m1, m2, and m3, the expected output is x1, x2, and x3, respectively. The probability
of the first message being m1, m2, and m3, are p1, p2, and p3, respectively. Note that after
the first processor sends message mi, the remaining protocol πi becomes a (n, xi)-coin-tossing
protocol.

An adaptive adversary that corrupts at most one processor have four choices for the first
processor. Either it can carry out the attack now by fixing the first processor’s message to
be mi, for i ∈ {1, 2, 3}, or it can defer the attack to subprotocols π1, π2, and π3. If it fixes
the first processor’s message to be mi, this will result in a deviation of |xi − x| . On the other
hand, if it defers the attack to each subprotocol, by the definition of curve Cn, it can ensure
a deviation of at least Cn(xi) in subprotocol πi. Overall, it ensures a deviation of

p1 · Cn(x1) + p2 · Cn(x2) + p3 · Cn(x3).6

Note that it must hold that x = p1x1 + p2x2 + p3x3. Therefore, p1 · Cn(x1) + p2 · Cn(x2) +
p3 · Cn(x3) must lie between y1 and y2 in Figure 2.

The most devastating attack will do the attack based on which strategy results in the
largest deviation, which is

max (|x− x1| , |x− x2| , |x− x3| , p1 · Cn(x1) + p2 · Cn(x2) + p3 · Cn(x3)) .

The protocol designer shall, however, pick x1, . . . , x` and p1, . . . , p` accordingly to minimize

6 There are some subtleties here that are addressed in Remark 2.
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the above quantity. Therefore,

Cn+1(x) = inf
x1,...,x`∈[0,1]
p1,...,p`∈[0,1]
p1+···+p`=1

p1x1+···+p`x`=x

max
(
|x− x1| , . . . , |x− x`| ,

∑̀
i=1

pi · Cn(xi)
)
.

For convenience, let us define geometric transformation T , which takes any curve C on [0, 1]
as input, and outputs a curve T (C) defined as

T (C)(x) := inf
x1,...,x`∈[0,1]
p1,...,p`∈[0,1]
p1+···+p`=1

p1x1+···+p`x`=x

max
(
|x− x1| , . . . , |x− x`| ,

∑̀
i=1

pi · C(xi)
)
.

Hence, we now have Cn+1 is defined by T (Cn).
I Remark 2. We remark on some subtleties in the geometric transformation definition of
Cn. When the attacker defers the attacks to sub-protocols. It is not guaranteed that the
optimal attack in each sub-protocols will deviate towards the same direction. For instance, if
in sub-protocol π1, the optimal attack can deviate toward 0 by 1%, while in sub-protocol π2,
the optimal attack can deviate toward 1 by 1% and the probability of the first message being
m1 and m2 are both 1/2. Then the overall deviation should be 0. However, in the geometric
transformation definition, the score is in fact 1%. Therefore, Cn(x) does not represent the
deviation of the most devastating attack on the optimal protocol. However, this shall not
be an issue. The deviation of the most devastating attack on the optimal protocol is still
lower bounded by 1

2 · Cn(x). This is because Cn(x) can be bipartition into two attacks, one
deviates toward 0 and the other towards 1; And the summation of the deviations of these
two attacks shall equal to Cn(x). Hence, at least one of the attack ensures a deviation of
≥ 1

2 · Cn(x).

4.2 Lower bounding Cn

Given our observation of the geometric transformation, it still remains elusive to obtain a
close form representation of curve Cn. In this section, we shall show how one can use the
idea of the geometric transformation to obtain a lower bound.

For any two curves A and B on [0, 1], we say A 4 B if we have that for all x ∈ [0, 1],
A(x) ≤ B(x). Intuitively, it means that curve A is strictly below curve B. We have the
following claim.

I Claim 1. If A 4 B, then T (A) 4 T (B).

Proof of Claim 1 . Trivially, for all x, x1, . . . , x`, and p1, . . . , p`, we have

max
(
|x− x1| , . . . , |x− x`| ,

∑̀
i=1

pi ·A(xi)
)
≤

max
(
|x− x1| , . . . , |x− x`| ,

∑̀
i=1

pi ·B(xi)
)
.

Therefore, by definition, for all x, T (A)(x) ≤ T (B)(x), or equivalently T (A) 4 T (B). J

Next, we have the following claim.
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I Claim 2. Qx(1− x) 4 T

(
Px(1− x)

)
if we have P −Q− PQ2/4 ≥ 0.

Proof of Claim 2 . Let us use Figure 3 for intuition. In Figure 3, D(x) is defined as P ·x(1−x)
for some constant P > 0, the choice of x1 and x2 satisfies that

|x1 − x| = |x2 − x| =
1
2 · (D(x1) +D(x2)) .

x

y

D(x) = P · x(1− x)

xx1 x2

A

B

(x, T (D)(x))

x′1 x′2 x′3

Figure 3 The geometric transformation of curve D(x) = P · x(1 − x) for constant P > 0.
Intuitively, if x′1, x′2, and x′3 are between x1 and x2, the shaded region is always above line segment
AB by the convexness of D.

Suppose x1 and x2 exist, let us show that

|x1 − x| ≤ inf
x′

1,...,x
′
`∈[0,1]

p1,...,p`∈[0,1]
p1+···+p`=1

p1x
′
1+···+p`x

′
`=x

max
(
|x− x′1| , . . . , |x− x′`| ,

∑̀
i=1

pi ·D(x′i)
)

Firstly, if there exists an x′i such that |x− x′i| ≥ |x1 − x|, then the statement trivially holds.
Next, if for all i, |x− x′i| ≤ |x1 − x|, then by the convexness of curve D,

1
2 · (D(x1) +D(x2)) ≤

∑̀
i=1

pi ·D(x′i).

And hence the statement again holds.
Now, let us see why x1 and x2 always exist. Let δ = |x1 − x| > 0. δ shall satisfy that

δ = 1
2 · (P · (x− δ)(1− x+ δ) + P · (x+ δ)(1− x− δ)) .

Solving this, we have

δ =
−1 +

√
1 + 4P 2x(1− x)

2P .

Therefore, δ always exists and so are x1 and x2. By definition, δ = T (D)(x).7 Hence, we
require δ ≥ Q · x(1− x) for all x. This implies

PQ2x(1− x) +Q− P ≤ 0,

7 It might be the case that the solution x1, x2 /∈ [0, 1]. Then, δ is not exactly the definition of T (D)(x).
However, note that δ is still a lower bound of T (D)(x). And that is all we care about.
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which holds if we have
P −Q− PQ2/4 ≥ 0. J

Define Γn :=
√

2
n . We note that the constraint of Claim 2 is always satisfied if we set P = Γn

and Q = Γn+1. Now, define curve Dn as

Dn(x) := Γn · x(1− x).

Initially, one can easily verify that D1 4 C1. Moreover,

Dn 4 Cn
Claim 1========⇒ T (Dn) 4 T (Cn) Claim 2========⇒ Dn+1 4 Cn+1.

Hence, by induction, one can trivially show that curve Cn is always lower bounded by curve
Dn.

4.3 Comparison to Majority protocol

We note that Dn(x) =
√

2
n ·x(1−x) is only a lower bound of the curve Cn. We do not obtain

an upper bound of Cn. In this section, we provide additional perspectives by comparing this
lower bound with majority protocol.

For a n-processor majority protocol, an adaptive adversary that corrupts at most one pro-
cessor can deviate the output of the protocol towards 1 by fixing the first processor’s message
to be 1. Asymptotically, this results in a deviation of

(
n
n/2
)
/2n. By Stirling approximation,(

n

n/2

)
· 2−n ∼

√
2
π
· 1√

n
.

On the other hand, our results show that for any n-processor protocol with expected
output 1/2, there at least exists an attack that deviates the protocol by 1

2 ·Cn(1/2), which is
lower bounded by

1
2 ·Dn(1/2) =

√
2

8 ·
1√
n
.

Therefore, our results show that, asymptotically, majority protocol is the optimal protocol
modulo a constant factor.
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A Proof of Theorem 4

Similar to the original proof of Harper’s theorem, we prove Theorem 4 by induction on the
dimension n and distance t. The proof of the inductive step relies on the technique called
compression. On a high level, starting from an arbitrary set S ⊆ {0, 1}n, the compression
argument shall use a sequence of steps to transform S into Ln(|S|), with the additional
guarantee that each step is monotone decreasing in terms of the t-vertex boundary of itself
and its complement.

If a set S ⊆ {0, 1}n consists of the first |S| elements of the simplicial ordering, we call S a
prefix. Similarly, if S consists of the last |S| elements, then we call it a suffix. The inductive
proof relies on the following lemma.

I Lemma 1. If S is a prefix, then S ∪ ∂S is also a prefix. Similarly, if S is a suffix, then
S ∪ ∂S is also a suffix.

Next, we shall first prove Lemma 1 and then prove Theorem 4 using Lemma 1.

Proof of Lemma 1 . Let S ⊆ {0, 1}n be any prefix. Let a, b ∈ {0, 1}n be any two elements
such that a < b in simplicial ordering. We will show that if b ∈ S ∪ ∂tS, then a ∈ S ∪ ∂tS
must also hold. This is sufficient to imply the claim regarding prefix in Lemma 1.

If a = 0n, the statement is trivial. Hence, for the rest of the proof, we consider a 6= 0n.
Obviously, we also have b 6= 0n.

Let a′ (resp., b′) be the smallest element whose distance to a (resp., b) is at most t.8 The
crucial observation is that, if a < b, we must have a′ ≤ b′. Therefore, the facts that S is a
prefix and b ∈ S ∪ ∂tS together imply that b′ ∈ S, which further imply a′ ∈ S and finally
imply that a ∈ S ∪ ∂tS.

The proof for the suffix part is essentially the same. One can define a′′ and b′′ to be the
largest elements whose distance is at most t from a and b respectively. Then observe that
a > b implies a′′ ≥ b′′. The rest of the proof shall follow naturally. J

We note that the proof of Harper’s theorem shall only rely on the prefix part of Lemma 1.
However, for our purpose, we also require the suffix part. As mentioned above, we prove
our observation by induction on dimension n and distance t. The base case, (1) n = 1 and
arbitrary t, or (2) arbitrary n and t = 0, can be verified trivially. Hence, we only need to
prove the inductive step. In the following proof, we assume that the statement is correct for
(n− 1, t− 1) and (n− 1, t). This inductive step shall show that the statement is also correct
for (n, t). This is sufficient to imply that the statement is correct for all dimension n and
distance t.

Proof of the inductive step. Now, suppose the statement is correct for (n− 1, t− 1) and
(n− 1, t), we shall prove its correctness for (n, t). For each i ∈ [n], let

Hi
0 := {x ∈ {0, 1}n | xi = 0} and Hi

1 := {x ∈ {0, 1}n | xi = 1}

Note that Hi
0 and Hi

1 are two hypercubes in n− 1 dimension. Define a compression operator
Ci as follows.

1. Given a set S ⊆ {0, 1}n, bipartition S as Si0 = S ∩Hi
0 and Si1 = S ∩Hi

1.

8 If wt(a) ≤ t, then a′ = 0n. Otherwise, a′ is exactly a with the first t 1’s in a replaced by 0.
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2. Let T i0 ⊆ Hi
0 be of the same size as Si0 such that elements in T i0 without the ith coordinates

form a prefix in the n− 1 dimension. Similarly, let T i1 ⊆ Hi
1 be of the same size as Si1

such that elements in T i1 without the ith coordinates form a prefix in the n− 1 dimension.
3. Define

Ci(S) := T i0 ∪ T i1.

Intuitively, the compression operator first divides the n dimension hypercube into two n− 1
dimension hypercubes based on the ith coordinate, i.e., Hi

0 and Hi
1. Then, it compresses the

partitions of S to be the prefix of the simplicial ordering on each sub-hypercube individually.
We shall prove that, for all i ∈ [n], compression operator Ci reduces both the t-vertex

boundary of itself and its complement. That is the following claim.

I Claim 3. For all i ∈ [n],∣∣∂tCi(S)
∣∣ ≤ ∣∣∂tS∣∣ and

∣∣∣∂tCi(S)
∣∣∣ ≤ ∣∣∂tS∣∣ .

Proof. Let us first show |∂tCi(S)| ≤ |∂tS|. In fact, we show the stronger statement that
Ci(S) has smaller t-vertex boundary set than S in both sub-hypercubes Hi

0 and Hi
1, i.e.,∣∣∂tCi(S) ∩Hi

0
∣∣ ≤ ∣∣∂tS ∩Hi

0
∣∣ and

∣∣∂tCi(S) ∩Hi
1
∣∣ ≤ ∣∣∂tS ∩Hi

1
∣∣ .

Let us zoom into Hi
0. One can trivially verify that

∣∣∂tCi(S) ∩Hi
0
∣∣ ≤ ∣∣∂tS ∩Hi

0
∣∣⇐⇒ ∣∣∣∣(Ci(S) ∪ ∂tCi(S)

)
∩Hi

0

∣∣∣∣ ≤ ∣∣∣∣(S ∪ ∂tS) ∩Hi
0

∣∣∣∣ .
For any set A, let us call

(
A ∪ ∂tA

)
∩Hi

0 the t-set of A in Hi
0. Therefore, it suffices to show

that the t-set of Ci(S) in Hi
0 is smaller than t-set of S in Hi

0.
Note that the t-set of Ci(S) = T i0 ∪ T i1 in Hi

0 is the union of the t-set of T i0 and T i1.
Similarly, the t-set of S = Si0 ∪ Si1 in Hi

0 is the union of the t-set of Si0 and Si1.
Firstly, by inductive hypothesis, the t-set of T i0 is smaller than the t-set of Si0.
Secondly, the t-set of T i1 (in Hi

0) is exactly the (t− 1)-set of T̃ i1, where T̃ i1 is the set of
vertices obtained by flipping the ith coordinate the vertices in T i1. Similarly, the t-set of Si1
is exactly the (t− 1)-set of S̃i1, where S̃i1 is the set of vertices obtained by flipping the ith

coordinate the vertices in Si1. By inductive hypothesis, the (t− 1)-set of T̃ i1 is smaller than
the the (t− 1)-set of S̃i1. Consequently, the t-set of T i1 is smaller than the t-set of Si1.

Finally, the t-set of Ci(S) in Hi
0 is the union of the t-set of T i0 and T i1. Here, we use

Lemma 1 to see that both these two sets are the prefix of the simplicial ordering and hence
one must be included in the other. Therefore, the t-set of Ci(S) in Hi

0 is either the t-set
of T i0 or the t-set of T i1, and their sizes are bounded by the size of the t-set of Si0 and Si1,
respectively. Therefore, C(S) must have smaller t-set in Hi

0 than S.
The proof of Hi

1 is essentially identical.
The proof that Ci is monotone in terms of the t-vertex boundary of the complement is

essentially the same. On a high level, the proof consists of the following steps.

1. The complement of Ci(S) is the union of (1) the complement of T i0 in Hi
0 and (2) the

complement of T i1 in Hi
1, i.e.,

Ci(S) =
(
Hi

0\T i0
)
∪
(
Hi

1\T i1
)
.
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2. Hi
0\T i0 and Hi

1\T i1 are suffix of simplicial ordering in n− 1 dimension.
3. Similar to the proof above, we argue that the S has larger t-boundary than Ci(S) in both

Hi
0 and Hi

1. This part of the proof relies on the suffix part of the claim in Lemma 1. J

Now, start from the original set S, we repetitively apply the compression operators

S
C1−→ S1

C2−→ S2
C3−→ · · · Cn−−→ Sn

C1−→ Sn+1
C2−→ · · ·

Clearly, after a finite number of steps,9 this process will stabilize at a set T such that

1. The t-vertex boundary of both itself and its completement decreases compare to S. That
is, |∂tT | ≤ |∂tS| and

∣∣∂tT ∣∣ ≤ ∣∣∂tS∣∣.
2. T is a fix point for all compression operators. That is, for all i ∈ [n], Ci(T ) = T .

Fix points for all compression operators. We shall show that subsets that are the fix
points for all compression operators are almost always the simplicial prefix. Suppose T is a
fix point for all compression operators, and T is not a simplicial prefix. Then, there exists a
x ∈ T and y /∈ T such that y < x. If there exists an i, such that xi = yi, then y < x implies
y−i < x−i in the n − 1 dimension, which implies that T is not a fix point for operator Ci.
Therefore, for all i, xi 6= yi. This implies that such a pair of x, y must be unique. Also,
there does not exist a z such that y < z < x. Otherwise, either z ∈ T or z /∈ T will result in
contradictions.

Clearly, the only possible scenario that there exists two consecutive elements who disagree
on every coordinate is when n = 2m+ 1.10 And

y = 1 · · · 1︸ ︷︷ ︸
m

0 · · · 0︸ ︷︷ ︸
m+1

and x = 0 · · · 0︸ ︷︷ ︸
m

1 · · · 1︸ ︷︷ ︸
m+1

,

where T = {x} ∪ {z
∣∣wt(z) ≤ m and z 6= y}. Trivially, we can verify that, for this particular

case, ∣∣∂tT ∣∣ > ∣∣∂tLn(|T |)
∣∣

and ∣∣∂tT ∣∣ > ∣∣∣∂tLn(|T |)
∣∣∣ .

This observation completes the proof of the inductive step. J

9 The compression operator always replaces elements with other elements that are smaller in the simplicial
ordering. Therefore, this process can only go on for a finite number of steps.

10Another possibility is when n = 2, x = 01 and y = 10. However, in general, when n is even, no such x
and y exist.
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