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Abstract. Post-Quantum (PQ) signature schemes are known for large
key and signature sizes, which may inhibit their deployment in real world
applications. In this work, we construct a PQ signature scheme MMSAT
that is the first such scheme capable of aggregating unrelated messages
signed individually by different parties. Our proposal extends the notion
of multisignatures, which are signatures that support aggregation of sig-
natures on a single message signed by multiple parties. Multisignatures
are especially useful in blockchain applications, where a transaction may
be signed by multiple users. The proposed construction achieves signifi-
cant gains in bandwidth and storage requirements by allowing aggrega-
tion of unrelated transactions. Our construction is derived by extending
the PASSRS scheme, and thus the security of our scheme relies on the
hardness of the Vandermonde-SIS problem. When aggregated, a signa-
ture consists of two parts. The first part is a post-quantum size signature
that grows very slowly, scaling by on the order of logK bits for K sig-
natures. The second part scales linearly with K, with a very short fixed
cost, roughly twice the bit security. Thus even when aggregating a mod-
est number of signatures, the per signature cost of MMSAT is in line
with that of traditional pre-quantum signature schemes such as ECDSA.
As an extension to MMSAT, we describe a variant called MMSATK in
which it the public keys required to verify an aggregated signature are
compressed by a factor of 20 to 30.
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1 Introduction

Traditional cryptographic schemes providing encryption, key encapsulation, and
signature services are expected to be replaced by quantum-resistant schemes
in deployments during the next decade. The threat is so urgent that the US
National Institute of Standards and Technology started a standardization com-
petition in 2018 to select one or more so-called Post-Quantum schemes. In
the meantime, companies such as Google have already started experimenting
with PQ cryptography, including the New Hope scheme [5, 11] and an NTRU
derivate [23,25].

PQ Signature Schemes are expected to play a vital role in protecting the
integrity of data in storage, during transmission, and even during computa-
tion [9, 19]. Indeed, in recent years there has been increasing interest in signa-
ture schemes having extended features. For example, multisignatures are a class
of signature schemes that allow aggregation into a single signature of signatures
produced by many parties on a single message [24]. Some multisignature schemes
even support aggregation of the public keys, thereby greatly saving bandwidth
and making them ideal for Blockchain applications [29], where transactions may
be signed by multiple users and where reducing the block size is crucial in improv-
ing the throughput of the P2P network. Targeting the same application domain,
a recent proposal by Bansarkhani and Sturm [7] proposed a PQ multisignature
scheme. This is important, since the emergence of quantum computers will have
a disastrous impact on current blockchain implementations. A significant fea-
ture offered by blockchains is that all past transactions are recorded on a ledger
whose integrity is strongly protected, i.e., the ledger is expected to provide long-
term security. The vast majority of Blockchains currently use traditional elliptic
curve-based signatures (ECDSA), which is vulnerable to quantum attacks.

While techniques such as multisignatures are useful for compressing multiply
signed individual transactions, the bulk of the transactions on Bitcoin and other
networks are signed by different users. Therefore, new blocks are mostly made up
of transactions with separate signatures that are not compressible by existing
multisignature schemes. An early aggregation scheme capable of compressing
independent messages signed by different users was proposed by Boneh et al.
in [10]. The scheme uses bilinear maps constructed over a suitably chosen ellip-
tic curve to achieve aggregation. Although at that time the primary proposed
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application was to certificate chains, the aggregation scheme can be effectively
used to compress signatures on transactions in a block. A more recent scheme by
Boneh et al. [8] supports both signature compression and public-key aggregation
with the primary goal being to reduce the size of the Bitcoin Blockchain. Their
aggregation scheme is derived from Schnorr and BLS signatures. From an effi-
ciency perspective, the methods in [8] appear to provide an ideal solution, since
the scheme supports not only signature compression, but is also able to compress
multiple public-keys into a single one. If deployed, an aggregation scheme such
as [8] would greatly reduce the crypto overhead in Blockchains.

However, all of the aforementioned schemes use traditional cryptographic
primitives that assume hardness in the traditional non-quantum model. There is
an urgent need for PQ signature schemes that allow aggregation. This problem
is exacerbated by the fact that most PQ schemes typically have signature and
key sizes significantly larger than ECDSA, on the order of several thousand bits
compared to the several hundred bits in ECDSA. For example, signatures in
BLISS are 625 bytes, while those in ECDSA are 64 bytes [15]. Compression of
individual PQ signatures and aggregation of public keys remain a challenge.

Our Contribution. The present work includes the following:

• We propose the first PQ signature scheme supporting aggregation across un-
related signatures signed by different users. It comes in several versions in
which increased algorithm complexity yields improved operating character-
istics. We denote these schemes by:

MMSA = Multi-message Multi-user Signature Aggregation Scheme,

MMSAT = MMSA with signature compression,

MMSATK = MMSA with both signature and public key compression.

(The T in MMSAT refers to a linear map T used for signature compression.)
An aggregated MMSAT signature has size roughly equal to a single PQ
signature plus 2λ-bits per signature aggregated. From a practical perspective,
even for a modest number of signatures, the aggregate signature size of
MMSAT represents an improvement over traditional signature schemes such
as ECDSA; e.g. it is 18-times smaller than BLISS and 1.9 times smaller than
ECDSA for 1000 signatures at 128-bit security.

• We reduce the aggregate signature security of MMSAT to the forgery security
of PASS∗RS, a variant of PASSRS.
• We use an ∞-norm analysis to give (slightly) improved estimates for the

forgery probability from lattice reduction, leading to optimized parame-
ters. This may be of independent interest for optimizing other lattice-based
schemes.
• We analyze the lattice security of MMSATand provide concrete parameters

secure against BKZ and Sieving.

Acknowledgements. The authors would like to thank Damien Stehlé and
Thomas Prest for some very helpful discussions and comments on early drafts
of this paper.
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1.1 Comparision of MMSAT to Other Pre- and Post-Quantum
Schemes

Table 1 on page 6 compares the parameter sizes of MMSAT and MMSATK with
other post-quantum schemes such as BLISS and PASSRS, as well as with ECDSA,
which is not quantum secure. Since the other schemes do not support aggrega-
tion, we assume that an aggregate signature consists of K individual signatures.
It is seen in the table that MMSAT provides superior performance against other
post-quantum schemes, and indeed against ECDSA. Thus for an aggregate sig-
nature consisting of 10000 individual signatures at 128-bit security, MMSAT
is 18 times smaller than BLISS, 70 times smaller than PASSRS, and 1.9 times
smaller than ECDSA. And at 256-bit security, MMSAT is 1.4 times smaller
than in ECDSA. Thus MMSAT gives quantum-secure aggregate signatures that
are roughly the same size as (but in fact smaller than) those provided by non-
quantum-secure ECDSA. Further, as seen in the table, the size of individual
public keys for MMSATK, which is our version of MMSAT with key compression,
are only 5 to 8 times longer than ECDSA keys, and are 5 times shorter than the
keys in post-quantum schemes such as BLISS.

The key sizes and signature sizes for MMSAT and MMSATK in Table 1 were
computing using the formulas

Public Key = t log2(q) bits,

Single Signature = N log2(b− k) + t log2(q) bits,

Aggregate Signature = N log2(Bkk
√
K) + t log2(q) + 2λK bits. (1)

Compressed Key = 2λ+ t′ log2(q) bits (2)

We refer the reader to Table 2 for a list of the notation used in these formulas,
to (7) for the derivation of (1) and to (9) for the derivation of (2).

2 Background, Notation, and the PASSRS Scheme

In this section we set notation and discuss the hard lattice problem underlying
PASSRS and our various amalgamation schemes.

2.1 The SIS problem

The Short Integer Solution problem (SIS), introduced by Ajtai in 1996 [1], has
been the basis of a number of cryptographic constructions. SIS is the problem
of of finding a vector y in the kernel of a given linear transformation A : Znq 7→
Zmq such that y is small with respect to a prescribed norm. Ajtai showed a
remarkable worst/average case equivalency property, i.e. for uniform random A,
for m = Poly(n) with n also serving as the security parameter, the ability to
solve random SIS instances with non-negligible probability implies an ability
to find short vectors in any lattice within a certain approximation parameter.
After Ajtai, a number of works [31,33,36] give better parameters that guarantee
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Scheme # of
Signatures
Aggregated

Uncompressed
Public
Key Size
(Bytes)

Single
Signature
Size
(Bytes)

Aggregate
Signature
Size
(Bytes)

Compressed
Public
Key Size
(Bytes)

Security level: 128 bits

MMSAT-128 1000 4266 2982 36 157
5000 4647 3009 167 163
10000 4828 3151 327 166

BLISS 1000 610
Param II 5000 875 625 3052 875

10000 6104

PASSRS 1000 2305
Param 1153 5000 1500 2360 11523 1500

10000 23046

ECDSA 1000 63
nistp256 5000 32 64 313 32

10000 625

Security level: 256 bits

MMSAT-256 1000 8257 5605 75 339
5000 8904 5859 332 348
10000 9209 5861 652 353

ECDSA 1000 94
nistp384 5000 48 96 469 48

10000 938

Table 1: Size comparison of public keys, single signatures, and aggregate signa-
tures, and compressed public keys at various aggregation levels

SIS hardness, while also improving the approximation factors for the underlying
lattice problems. In [32] Micciancio and Peikert show that SIS retains its hardness
even for small moduli q ≥ βnδ for any constant δ > 0, where β is the bound on
the Euclidean norm of the solution.

In practice, generic SIS instances do not yield compact and efficient imple-
mentations, so further assumptions are commonly made. An efficient class of
schemes is obtained by replacing the matrixA with a list of elements a1, . . . ,ak ∈
Zq[x]/ψ(x), where typically ψ(x) is a cyclotomic polynomial. This gives rise
to the Ideal-SISproblem (Ideal-SIS) of finding small yi ∈ Zq[x]/ψ(x) satisfying∑
aiyi = 0. The security of the PASSRS scheme relies on a Vandermonde version

of SIS(Vandermonde-SIS), in which A is a submatrix of the Fourier transform
matrix, so A takes the form of a partial Vandermonde matrix. In the literature,
Vandermonde-SIS is also referred to as the Partial Fourier Recovery Problem.



7

2.2 Some Notation and a Hard Problem

We fix:

N a prime.
q a prime satisfying q ≡ 1 (mod N).
g a primitive Nth root of unity in Zq.

Rq the ring Zq[x]/(xN − 1), often identified with ZNq .
? multiplication in Rq, equivalently, convolution product in ZNq .
� component-wise multiplication of vectors in ZNq .

We often lift vectors in ZNq to vectors in ZN with coordinates in [−q/2, q/2].

Definition 1. The discrete Fourier transform over Zq is the linear transforma-
tion

F : ZNq −→ ZNq , f 7−→ F(f) = f̂ , given by the matrix (F)i,j = gij .

Alternatively, as a map Rq → ZNq , the map F is given by the formula

F(f) =
(
f(1),f(g),f(g2), . . . ,f(gN−1)

)
.

The discrete Fourier transform is a ring isomorphism (ZNq , ?)→ (ZN1 ,�),

F(a+ b) = F(a) + F(b) and F(a ? b) = F(a)�F(b).

The hard problem underlying PASSRS is an underdetermined linear inversion
problem that is sometimes called the Partial Fourier Recovery Problem. We fix
a subset

Ω = {Ω1, . . . , Ωt} ⊂ {0, 1, . . . , N − 1},
and we use it to define a linear transformation FΩ that projects F(f) onto the
coordinates specified by Ω. Thus FΩ : Rq → Ztq is the map

FΩ(f) = f̂ |Ω =

(
the coordinates of f̂ that are
specified by the index set Ω

)
=
(
f(gi)

)
i∈Ω

.

Definition 2. The Partial Fourier Recovery Problem is:

Given κ̂|Ω ∈ Ztq, find ξ ∈ Rq with small norm such that ξ̂|Ω = κ̂|Ω in Ztq.

Remark 1. The problem of recovering a signal from a restricted number of its
Fourier coefficients is a well-studied problem that is known to be difficult in
general. See Section 2.3 for a reformulation as a lattice problem. The original
PASSRS paper [21] contains a more detailed discussion of the difficulty of solving
the partial Fourier recovery problem.

Remark 2. PASSRS is an improved version of the original PASS scheme [22]. It
uses a rejection sampling method pioneered by Lyubashevsky [27] to negate at-
tacks based on transcript analysis. Lyubashevsky originally constructed a lattice-
based transcript-secure identification scheme using a technique that he called
“aborting,” and which is often called rejection sampling. Lyubashevsky et al.
later improved his technique and constructed a signature scheme via the Fiat–
Shamir method, with hardness based on the Ring-SIS problem [15,20,28].
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2.3 The Partial Fourier Recovery Problem as a Lattice Problem

We write the coordinates of κ̂|Ω as κ̂1, . . . , κ̂t, and then the the Partial Fourier
Problem asks for a short vector ξ = (ξ0, . . . , ξN−1) ∈ ZN satisfying

ξ0 + giξ1 + g2iξ2 + · · ·+ g(N−1)iξN−1 ≡ κ̂i (mod q) for all i ∈ Ω.

This gives t linear congruences in the N unknowns ξ0, . . . , ξN−1, and the fact
that g is a primitive Nth root of unity in Zq implies that the congruences are
independent. (Indeed, the full set of congruences for 0 ≤ i < N is given by a
vanderMonde matrix, which is invertible.) This means that we can solve for the
first t unknowns in terms of the later ones. So for 0 ≤ k < t, we have

ξk ≡
N−1∑
j=t

hjkξj − ck (mod q) with known hjk, ck ∈ Zq.

Writing In for the n-by-n identity matrix, we consider the lattice

Λ = RowSpan

(
qIt 0
H IN−t

)
, where H =

 ht0 · · · ht,t−1

...
. . .

...
hN−1,0 · · · hN−1,t−1

 . (3)

Then Λ contains the vector

(ξ0 + c0, . . . , ξt−1 + ct−1, ξt, . . . , ξN−1)

which is close to the known vector (c0, . . . , ct−1, 0, . . . , 0), so the Partial Fourier
Recovery Problem can be formulated as a Closest Vector Problem in the lat-
tice Λ. And as usual, a CVP in dimension N can be solved by embedding it
into an SVP in dimension N + 1, so throughout this paper, we simply identify
the CVP problem associated to partial Fourier recovery with an SVP problem
in the same lattice.

Definition 3. We define the space of (N, q, t)-SIS lattices to be set of lattices

ΛN,q,t =

{
RowSpan

(
qIt 0
H IN−t

)
: H ∈ Mat(N−t)×t(Zq)

}
.

2.4 Further Notation

Elements a ∈ Rq are represented as polynomials

a = a0 + a1x+ a2x
2 + · · ·+ aN−1x

N−1 with ai ∈ Zq,

or alternatively as a vector of coefficients

a = [a0, a1, a2, . . . , aN−1].
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When convenient, we freely transition between these representations. For nu-
merical calculations, we consistently identify ai ∈ Zq with an integer satisfy-
ing |ai| ≤ q/2. With this convention, the L∞-norm and L2-norm of a ∈ Rq
are

‖a‖∞ = max
0≤i<N

|ai| and ‖a‖2 =
√
|a0|2 + · · ·+ |aN−1|2.

(The L∞-norm is also called the sup norm.) We define sets of norm-bounded
vectors and trinary vectors by

B∞(k) =
{
a ∈ Rq : ‖a‖∞ ≤ k

}
,

TN (d) =

{
polynomials in Rq with d coefficients equal to 1,
d coefficients equal to −1, and the rest equal to 0

}
.

Finally, we write [K] for the set {1, 2, . . . ,K}, and 1S(x) for the indicator func-
tion that equals 1 if x ∈ S and 0 otherwise.

3 Description of PASSRS

In this section we briefly describe a version of the PASSRS that is optimized
for amalgamation. Further details about PASSRS may be found in the original
paper [21]. The version of PASSRS that we describe here differs in small ways
from the version in [21]; see Section 3.6 for details.

Table 2 gives a brief description of the public parameters used by PASSRS,
as well as additional parameters required for the amalgamation schemes MMSA,
MMSAT, and MMSATK, which are the main topic of this paper.

3.1 Challenge Creation for PASSRS and MMSA Variants

In all versions of PASSRS and MMSA, the challenge polynomial c ∈ T (dc) is
created by applying a hash function HashC to data that includes the message
digest µ and some quantities that depend on the public key f̂ |Ω and the partial
Fourier values ŷ|Ω of the commitment. However, the different versions of PASSRS
and MMSA feed slightly different quantities to HashC. For this reason, in all of
these algorithms we will write simply

c← HashC(Scheme, µ). (4)

The assignment (4) is an abbreviation for the assignments listed in Table 3.

3.2 PASSRS Key Generation

In the original formulation of PASSRS [22], the secret key was a randomly chosen
polynomial f ∈ B∞(1), so its coefficients were chosen independently and uni-
formly from {−1, 0, 1}. Here we add flexibility by taking f to be a randomly
chosen element of TN (df ). The parameter df is selected so that that the key
space has more than 22λ elements, and so that various lattice security estimates
are satisfied. The public key corresponding to the secret key f is f̂ |Ω = FΩ(f),
the partial Fourier transform of f .
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N a prime (dimension parameter)
q a prime satisfying q ≡ 1 (mod N) (modulus parameter)

g a primitive N th root of unity in Zq
Rq the ring Zq[x]/(xN − 1), often identified with ZNq with multiplication ?
? multiplication in Rq, convolution product in ZNq
� coordinate-by-coordinate multiplication in Rq ∼= ZNq
λ bit security parameter
M space of message digests µ ∈M
Ω a subset of {gj : 1 ≤ j ≤ N − 1}
t = |Ω|, the number of elements in Ω
Bt ≈ t/N , parameter used to select t

t0 dimension parameter for signature compression map T , satisfies qt0 ≥ 22λ

t′ dimension parameter for key compression, satisfies qt
′
≥ 22λ and

(
t
t′

)
≥ 22λ

k L∞-norm bound for commitment polynomial y
b L∞-norm bound for rejection sampling is k − b
K number of individualsignatures contained in an aggregate signature

Bk, Bq multipliers used for L1-norm bounds for aggregate signature,

related by B
√
K(k − b) ≈ Bqq.

dc the number of 1’s and −1’s in a challenge polynomial, dc ≤ b/2
df the number of 1’s and −1’s in a private key
T a Zq-linear map T : Ztq → Zt0q used for compression

HashC a hash/encoder function {0, 1}∗ → TN (dc)
HashB a hash/encoder function {0, 1}∗ → {−1, 1}K
HashΩ a hash/encoder function {0, 1}∗ → {subsets of Ω containing t′ elements}

Table 2: Public parameters for PASSRS, MMSA, and its variants

3.3 PASSRS Signing

Signing is an iteratative process consisting of the generation of a candidate signa-
ture followed by a rejection sampling step to prevent the publication of signatures
that could leak secret key information.

The signer has a secret key f and wants to sign a message digest µ. She
first selects a commitment polynomial y uniformly at random from B∞(k). The
commitment y serves to mask the private key and must be treated with the same
care as the private key itself. The signer then computes and stores the partial
Fourier transform ŷ|Ω = FΩy. The quantity ŷ|Ω will ultimately be made public
if the candidate signature passes rejection sampling.

Next, the signer computes a challenge polynomial c ∈ T (dc) that is used to
bind ŷ|Ω to µ. To do this she uses a public hash/encoder function:3

HashC : {0, 1}∗ → TN (dc) to compute c = HashC(ŷ|Ω, f̂ |Ω, µ).4

3 When we say that a function is a hash/encoder function, we mean that it has all of
the standard properties of a cryptographically secure hash function such as SHA-512,
but that its values lie in a set that may not be a simple set of bit strings {0, 1}n.

4 More generally, as noted in Table 3, the input to HashC may instead include T (ŷ|Ω)

and/or T (f̂ |Ω), depending on which variant of MMSA is being used.
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c←


HashC(ŷ|Ω, f̂ |Ω, µ) if Scheme = PASSRS or MMSA,

HashC
(
T (ŷ|Ω), f̂ |Ω, µ

)
if Scheme = MMSAT,

HashC
(
T (ŷ|Ω), T (f̂ |Ω), µ

)
if Scheme = MMSATK.

Table 3: Input to HashC for PASSRS, MMSA, MMSAT, and MMSATK

The signer uses the commitment y, the challenge c, and her private key f to
compute a candidate signature

z = f ? c+ y ∈ Rq.

If ‖z‖∞ ≤ k − b, i.e., if every coefficient of z falls into the interval [−k+b, k−b],
then the signer outputs the signature (ŷ|Ω, z, µ). Otherwise y, c, and z are
discarded, and the signing process is repeated. It is proved in [21] that the z
values of the signatures passing this rejection sampling procedure are uniformly
distributed in B∞(k − b).

Remark 3. We note that even for the versions of MMSA that use the compression
function T , the individual signatures always include the quantity ŷ|Ω, which the

verifier uses in computing f̂ |Ω� ĉ|Ω + ŷ|Ω. The only change is that the input to
the hash function that creates the challenge polynomial c uses the compressed
version T (ŷ|Ω) of ŷ|Ω.

3.4 PASSRS Verification

To check the validity of the signature (ŷ|Ω, z, µ) for the public key f̂ |Ω, the
verifier first computes

c = HashC(ŷ|Ω, f̂ |Ω, µ).

The verifier accepts the signature as valid if

z ∈ B∞(k − b) and ẑ|Ω = f̂ |Ω · ĉ|Ω + ŷ|Ω.

3.5 PASSRS Correctness

Since FΩ is a ring homomorphism that changes ? multiplication to � multipli-
cation, we see that

z = f ? c+ y implies that ẑ|Ω = f̂ |Ω � ĉ|Ω + ŷ|Ω.

Hence any signature that comes out of the signing algorithm will be verified as
valid by the verification algorithm.
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3.6 Differences from the Original PASSRS

The version of PASSRS that we use in this paper differs from the original version
of PASSRS in [21] in three ways:

1. The original PASSRS signature was (c, z, µ), while we are using (ŷ|Ω, z, µ).
This is irrelevant from a security perspective, since the formulas

c = HashC(T (ŷ|Ω), µ, f̂ |Ω) and ŷ|Ω = f̂ |Ω � ĉ|Ω − ẑ|Ω

show that an attacker can pass from one form of the signature to the other
using public knowledge. In practice, the vector c tends to require fewer bits
to describe than ŷ|Ω, which is why one would use it for single signatures.
However, our amalgamation algorithm MMSAT is going to require the ŷ|Ω
values, so it is easier (at least for the sake of exposition) if we take take the
individual signatures to already be in the form (ŷ|Ω, z, µ).

2. The original PASSRS scheme did not include the public key f̂ |Ω as input
to the hash function HashC used to create the challenge polynomial c. By
including f̂ |Ω or T (f̂ |Ω) in the input to HashC, we tie c irrevocably to the
key f . This can only help the security of the scheme.

3. The original PASSRS scheme did not us a a linear transformation T . For
individual PASSRS signatures, there is no reason to use T , but for the amal-
gamate signatures produced by MMSA, the map T can be used to compress
the amalgamate signature and the associated public keys.

Algorithm 1 Sign

Input: (µ, f , Scheme)
1: repeat

2: y
$←− B∞(k)

3: c← HashC(Scheme, µ)
4: z ← f ? c+ y
5: until z ∈ B∞(k − b)
Output: (ŷ|Ω,z, µ)

Algorithm 2 Verify

Input: (ŷ|Ω,z, µ, f̂ |Ω, Scheme)
1: c← HashC(Scheme, µ)

2: Z ← f̂ |Ω � ĉ|Ω + ŷ|Ω
3: if z ∈ B∞(k − b) and Z = ẑ|Ω then
4: result← valid
5: else
6: result← invalid
7: end if
Output: result

Table 4: Sign and Verify Algorithms for PASSRS and MMSA[TK]. See Table 3 in
Section 3.1 for the Input to HashC for the Various Schemes
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4 From PASSRS to MMSA: Aggregating Signatures

In this section we describe MMSA, which is our basic signature aggregation
scheme. Later we describe modified versions of MMSA called MMSAT and MM-
SATK that allow compressed aggregated signatures and compressed public keys

4.1 Signature Aggregation

Suppose that K individual signers use their private keys f1, . . . ,fK to sign
message digests µ1, . . . , µK . They do this by randomly choosing commitment
polynomials y1, . . . ,yK ∈ B∞(k), using the hash function HashC to create their
challenge polynomials c1, . . . , cK , and creating their signatures z1, . . . ,zK ∈
B∞(k− b). More precisely, the signature of individual i is the triple (ŷi|Ω, zi, µi)
associated to the public key f̂ i|Ω. A crucial aspect of the Fiat–Shamir construc-
tion is that the signer cannot influence the value of the challenge ci, since ci is
the output of a hash function. The verification of the i’th signature is via a proof
of knowledge of the private key f i and the fact, demonstrated via ci, that ŷi|Ω
really is a collection of values of a short polynomial y. The goal in forming an
aggregate signature is to have the verification of the aggregate signature imply,
with high probability, the validity of all the individual signatures.

A crucial piece of the aggregate signature is a random linear combination of
the zi. In order to determine which linear combination to use, the aggregator
applies a hash/encoder function to the challenge polynomials and computes a
vector β with ±1 coordinates,5

β = (β1, . . . , βK) = HashB(c1, . . . , cK) ∈ {−1, 1}K .

Then one piece of the aggregate signature is the sum

z =

K∑
i=1

βizi.

The aggregator checks that z satisfies6

‖z‖∞ ≤ Bk
√
K(k − b) (5)

for an appropriately chosen public parameter Bk; see Section 4.2. The inequal-
ity (5) is then one of the conditions checked by the verifier.

Each coordinate of z is more-or-less a K-step random walk, with each step
having length uniformly distributed in [−k+ b, k− b], which is why it is easy for
the aggregator to construct z satisfying (5) for, say Bk = 3. It follows from (5)

5 Since our PASSRS signatures have the form (ŷ|Ω,z, µ), the aggregator must first
recreate the c values via the formula c← HashC(Scheme, µ).

6 If (5) fails, the aggregator can permute the order of the signatures being aggregated
and try again, since this changes the value of β. Alternatively, one might append a
few bits to the signature and use them as a counter that is part of the input to HashB.
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that z can be stored in roughly N log2(Bkk
√
K) bits. The complete aggregate

signature consists of z and the list of commitment values y1, . . . ,yK . Thus the
length of an aggregate signature is approximately7

N log2(Bkk
√
K) + t log2(q)K bits.

In Section 5 we will reduce this further by using a compression map T .

We note, however, that increasing Bk to make it easier for the aggregator
will also make it easier for a forger to forge an aggregate signature. In particular,
we must take Bk

√
K(k− b) sufficiently small compared to q, so we define a new

parameter Bq satisfying Bk
√
K(k− b) ≈ Bqq, and we require that Bq be chosen

from some suitable range, say 1
4 ≤ Bq ≤ 2

5 . On the other hand, we need b/k
to be quite small, since the rejection rate for signatures is roughly (1 − b/k)N .
Finally, the analysis of lattice-reduction attacks puts other constraints on the
various parameters, especially q, N and t.

To verify the aggregated signature, the verifier first recomputes the ci =

HashC(ŷi|Ω, µi, f̂ i|Ω).8 The verifier then uses the ci to recompute the βi via
β = HashB(c1, . . . , cK). He then checks that

ẑ|Ω =

K∑
i=1

βi

(
f̂ i|Ω � ĉi|Ω + ŷi|Ω

)
. (6)

For a valid aggregate of valid signatures, the formula (6) is true, since z =
∑
βizi

and the partial Fourier transform is a ring homomorphism.

To summarize, an aggregate signature is valid if z is short and ẑ|Ω takes on

a value determined by the public keys f̂ i|Ω, message digests µi, and commit-
ments ŷi|Ω.

4.2 The Probability That an Aggregate Signature Is Accepted

Definition 4. We use the standard notation erf(x) for the Gaussian error func-
tion

erf(x) =
2√
π

∫ x

0

e−t
2

dt.

Then a random variable N that is normally distributed with finite mean µ and
variance σ2 satisfies

Prob
(
|N − µ| ≤ Cσ

)
= erf

(
C√

2

)
.

7 If one includes the message digests µ1, . . . , µK in the signature, this adds roughly 2λ
bits. And of course, the verifier also needs access to the public keys f̂1|Ω, . . . , f̂K |Ω.

8 We remark that f̂ i|Ω is included in the input to HashC in order to prevent a key
forgery attack; see Section 8.2.
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Algorithm 3 Aggregate

Input:
(
ŷi|Ω,zi, µi, f̂ i|Ω

)
i∈[K]

1: for i := 1 to K step 1 do
2: ci ← HashC(ŷ|Ω, µi, f̂ i|Ω)
3: end for
4: β ← HashB(c1, . . . , cK)
5: z ← β1z1 + · · ·+ βKzK
6: if ‖z‖∞ ≤ Bk

√
K(k − b) then

7: result← success
8: else
9: result← failure

10: end if
Output: (z, µi, ŷi|Ω)i∈[K], result

Algorithm 4 VerifyAggregate

Input: (z, µi, ŷi|Ω, f̂ i|Ω)i∈[K]

1: for i := 1 to K step 1 do
2: ci ← HashC(ŷi|Ω, µi, f̂ i|Ω)
3: end for
4: β ← HashB(c1, . . . , cK)

5: Z ←
K∑
i=1

(
βi
(
f̂ i|Ω � ĉi|Ω + ŷi|Ω

))
6: if ‖z‖∞ ≤ Bk

√
K(k − b) and

c1, . . . , cK are distinct and
Z = ẑ|Ω then

7: result← valid
8: else
9: result← invalid

10: end if
Output: result

Table 5: MMSA: Aggregate Signature Algorithms

Theorem 1 (Central Limit Theorem). Let X1,X2, . . . be independent iden-
tically distributed random variables with finite mean µ and variance σ2. For
K ≥ 1, let ZK = X1 + · · ·+ XK . Then

lim
K→∞

Prob
(
|ZK −Kµ| ≤ C

√
Kσ
)

= erf

(
C√

2

)
.

Proof. The random variable ZK has mean µ(ZK) = Kµ and variance σ2(ZK) =
Kσ2, and the Central Limit Theorem [16, chapter VIII, section 4] says that
the normalized random variable

(
ZK − µ(ZK)

)
/σ(ZK) approaches a normal

distribution with mean 0 and variance 1 as K →∞.

Corollary 1. The probability that the result of Algorithm 3 is success, i.e., the
probability that an aggregate signature is accepted, is approximately given by

Prob(success) = Prob
(
‖z‖∞ ≤ Bk

√
K(k − b)

)
≈ erf

(√
3/2Bk

)N
.

Proof. We start with a particular coordinate, say the jth coordinate, of z =∑
βizi. The jth coordinate of each zi may be viewed as a random variable that

is uniformly distributed in the interval [−k+b, k−b].9 Multiplying by βi ∈ {±1}
9 More precisely, it is the sum of a random number in the interval [−k, k] coming

from the challenge yi added to a value chosen from a generalized hypergeometric
distribution coming from the product f i ? ci. However, as shown in [21], the rejec-
tion sampling process discards the non-uniform edge values in such a way that the
remaining distribution is, as stated, uniform on [−k + b, k − b].
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yields the same distribution, so each coordinate of z is a sum of K independent
and identically distributed random variables10, each of which has norm µ = 0
and variance σ2 = 1

3 (k − b)2.
If K is reasonably large, then we can use the central limit theorem (Theo-

rem 1) to estimate the probability that the jth coordinate satisfies (5). We apply
the theorem with µ = 0, σ2 = 1

3 (k − b)2, and C =
√

3Bk to obtain

Prob
(∣∣jth coordinate of z

∣∣ ≤ Bk√K(k − b)
)
≈ erf

(√
3/2Bk

)
.

The aggregator wants every coordinate of z to be in the interval [−k+b, k−b], so
treating the coordinates of z as independent random variables (which is almost,
but not quite, true), we find that

Prob
(
‖z‖∞ ≤ Bk

√
K(k − b)

)
≈ erf

(√
3/2Bk

)N
.

Table 6 gives some representative values. They indicate that Bk = 3 is a
reasonable choice for a typical range of values fo N .

N 3000 5000 9000

B 2.5 3 3.5 2.5 3 3.5 2.5 3 3.5

95.628% 99.939% 100.00% 92.820% 99.898% 99.999% 87.448% 99.817% 99.999%

Table 6: Estimate erf
(√

3/2B
)

for the probability that the aggregate signature

has norm ≤ B
√
K(k − b) and is thus accepted

5 From MMSA to MMSAT: Compressing the Aggregate
Signature

MMSA aggregates multi-message multi-user signatures, but the aggregate signa-
ture includes one ŷi|Ω for each signature in the aggregate. To curb this growth,
we introduce MMSAT, a variant of MMSA that significantly reduces the per
signature overhead. We do this using a linear map

T : (Z/qZ)t 7→ (Z/qZ)t0 ,

so T (ŷi|Ω) requires only t0 log2(q) bits to describe. Choosing t0 so that

t0 log2(q) ≈ 2λ,

10 To ease the calculation, we take a continuous distribution on the interval [−k +
b, k − b], rather than a discrete one. This means that we are ignoring some lower
order terms.
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we will achieve combinatorial security for T (ŷi|Ω).
However, if the signature were to include only the T (ŷi|Ω) values, then the

validity check on z would involve only T (ẑ|Ω), which would lead to a lattice at-
tack in which the lattice discriminant is reduced from qt to qt0 . This would make
it easier for a forger to find a sufficiently small vector, since the expected solu-
tion to the SVP would be smaller. To preclude this, we include some additional
information in the signature; specifically, we include the quantity

Y = β1ŷ1|Ω + · · ·+ βK ŷK |Ω.

This allows the verifier to do two things:

1. The verifier can check that T (Y ) is equal to
∑
βiT (ŷi|Ω), thereby ensuring

that Y was correctly generated from ŷ1|Ω, . . . , ŷK |Ω.
2. The verifier can check that z has the correct value by comparing ẑ|Ω with(∑

βif̂ i|Ω � ĉi|Ω
)

+ Y . This verification takes place in Ztq, not Zt0q , so the

lattice used to create a forgery has dimension that depends on t.

We note that this explains why we modified PASSRS so that the input to HashC
includes T (ŷ|Ω), instead of ŷ|Ω, since the person verifying the aggregate signature
only has access to the T (ŷi|Ω) values.

The MMSAT signature aggregation and verification algorithms are given by
Algorithms 5 and 6 in Table 7.

An MMSAT aggregate of K signatures consists of one z ∈ ZNq , one Y ∈ Ztq,
and K elements T (ŷi|Ω) ∈ Zt0q , so ignoring the message digests, the crypto-
graphic part of the aggregate signature has length approximately

N log2(Bkk
√
K)︸ ︷︷ ︸

storage for z

+ t log2(q)︸ ︷︷ ︸
storage for Y

+ Kt0 log2(q)︸ ︷︷ ︸
storage for T (ŷ1|Ω), . . . , T (ŷK |Ω)

bits.

We may adjust t0 so that Zt0q is too large to find a collision, so for bit security λ,

we want qt0 ≈ 22λ. This means that the aggregate of K signatures has length
approximately

N log2(Bkk
√
K) + t log2(q) + 2λK bits. (7)

Thus an MMSAT aggregate signature has a fixed cost of N log2(Bkk
√
K) +

t log2(q), plus a short fixed cost of 2λ for each signature. In this sense, MMSAT
is a post-quantum scheme that has scalability characteristics similar to those of
ECDSA. Table 8 summarizes key and signature sizes for PASSRS, MMSA, and
MMSAT.

6 From MMSAT to MMSATK: Compressing the Public Key

In this section we describe a further variant of MMSA called MMSATK, in which
both signatures and public keys are compressed. This variant may be useful in
situtations in which one wants to store and transmit large numbers of public
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Algorithm 5 Aggregate

Input:
(
ŷi|Ω,zi, µi, f̂ i|Ω

)
i∈[K]

1: for i := 1 to K step 1 do
2: ci ← HashC(T (ŷ|Ω), µi, f̂ i|Ω)
3: end for
4: β ← HashB(c1, . . . , cK)
5: z ← β1z1 + · · ·+ βKzK
6: Y ← β1ŷ1|Ω + · · ·+ βK ŷK |Ω
7: if ‖z‖∞ ≤ Bk

√
K(k − b) then

8: result← success
9: else

10: result← failure
11: end if
Output: (z,Y , µi, T (ŷi|Ω))i∈[K], result

Algorithm 6 VerifyAggregate

Input:
(
z,Y , µi, T (ŷi|Ω), f̂ i|Ω

)
i∈[K]

1: for i := 1 to K step 1 do
2: ci ← HashC(T (ŷi|Ω), µi, f̂ i|Ω)
3: end for
4: β ← HashB(c1, . . . , cK)

5: Z ←
( K∑
i=1

βi(f̂ i|Ω � ĉi|Ω)

)
+ Y

6: W ←
( K∑
i=1

βiT (ŷi|Ω)

)
7: if ‖z‖∞ ≤ Bk

√
K(k − b) and

c1, . . . , cK are distinct and
T (Y ) = W and Z = ẑ|Ω then

8: result← valid
9: else

10: result← invalid
11: end if
Output: result

Table 7: MMSAT: Aggregate Signature Algorithms with Signature Compression

keys. The aggregation and verification algorithms for MMSATK are given by Al-
gorithms 7 and 8 in Table 10 on page 21. To assist in understanding MMSATK,
we describe the components of the aggregate signature; these are the new pa-
rameter and the the quantities that are output from Algorithm 7 and used as
input to Algorithm 8.

Ω′ a t′-element subset of Ω chosen by a hash function, where t′

is smaller than t, but large enough for combinatorial security.

z =
∑

βizi aggregate of z-part of signatures

Y =
∑

βiŷi|Ω aggregate of the commitments

µi the ith message digest

Y i = T (ŷi|Ω) the ith Ω-Fourier commitment, compressed via T

Y ′i = ŷi|Ω′ the ith Ω′-Fourier commitment

F i = T (f̂ i|Ω) the ith public key, compressed via T

F ′i = f̂ i|Ω′ the ith Ω′-Fourier part of the public key

The ith compressed public key for the aggregate signature is the pair

(F i,F
′
i) ∈ Zt0q × Zt

′

q .
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Scheme
Single Public

Key
Single

Signature
Aggregate
Signature

PASSRS t log2(q) N log2(k) KN log2(k)

MMSA t log2(q) N log2(k) N log2(Bk
√
Kk) +Kt log2(q)

MMSAT t log2(q) N log2(k) N log2(Bk
√
Kk) + t log2(q) + 2λK

MMSATK 2λ+ t′ log2(q) N log2(k) N log2(Bk
√
Kk) + t log2(q) + 2λK

Table 8: Public key and signature sizes in bits. Since PASSRS does not support
aggregation, it aggregates K signatures by storing all of them.

The parameter t0 is chosen so that t0 log2(q) ≈ 2λ. The parameter t′ is required
to satisfy both

qt
′
≥ 22λ and

(
t

t′

)
≥ 22λ. (8)

The first condition comes from the fact that ŷi|Ω′ and f̂ i|Ω′ are in Zt′q , which

has qt
′

elements, and we want to avoid collisions in their values. The second
comes from the fact that the values Ω′ of HashΩ are t′-element subsets of Ω,
and we want the number of such subsets to be large enough so in any collection
of 2λ signatures, it is unlikely that any two of the signatures use the same Ω′. In
practice it appears that the second condition in (8) is more stringent than the
first.

In any case, the total size of the compressed public key is

MMSATK Public
Key Length

≈ (t0 + t′) log2(q) bits ≈ 2λ+ t′ log2(q) bits. (9)

Example 1. A sample parameter set from Table 19 has

(λ,N, q, t) = (128, 4111, 224.909, 1370).

The combinatorial condition for key compression security (8) shows that we may
take t′ = 40, since

(
1370
40

)
≈ 2256.81. Then

MMSA Key Size ≈ t log2(q) ≈ 4266 Bytes,
MMSATK Key Size ≈ 2λ+ t′ log2(q) ≈ 157 Bytes.

Further examples are given in Table 9, in which we compare the key sizes
for MMSAT and MMSATK for a selection of parameter sets from Table 19. The
value of t′ in that table is chosen to ensure

(
t
t′

)
≥ 22λ. See Section 13 for a more

detailed discussion on the choice of t′.

Remark 4. The subset Ω′ of Ω is chosen in Step 9 of Algorithm 8 by computing
a hash function whose input includes Y and z. This means that a forger cannot
predict in advance which coordinates of ẑ|Ω will be used in the verification step,
so if the Ω′-coordinates are correct, then there is a very high probability that all
of the Ω-coordinates are correct. See Section 13 for a quantitative analysis.
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Remark 5. The only place that F i, the ith public key compressed via T , is used
in Algorithm 8 is in Step 2 as input to HashC, where it is used to recreate the
challenge polynomial ci. This serves to tie F i to F ′i, the ith Ω′-Fourier part of
the public key, via the computation in Step 5 of the sum involving the product
F ′i � ĉi|Ω′ . And as noted in the previous remark, the identity involving the sum
over the Ω′-part of the Fourier transform implies (with high probability) that the
same identity holds for the full Ω-part of the Fourier transform, which in turn
implies (with high probability) that the identity holds before Fourier transform
is applied.

λ Bt p K N q t t′ MMSAT Key
Size (Bytes)

MMSATK Key
Size (Bytes)

128 1/3 25% 1000 4111 224.909 1370 40 4266 157

128 1/3 25% 5000 4271 226.125 1423 40 4647 163

128 1/3 25% 10000 4349 226.651 1449 40 4828 166

256 1/3 25% 1000 7393 226.806 2464 82 8257 339

256 1/3 25% 5000 7643 227.965 2547 81 8904 348

256 1/3 25% 10000 7759 228.486 2586 81 9209 353

Table 9: Comparison of key sizes for MMSAT and MMSATK for various parameter
sets from Table 19.

7 Transcript Security and Rejection Sampling

7.1 PASSRS Probability of Acceptance/Rejection

We estimate the probability that a potential signature is accepted by Step 5 of
Algorithm 1. We see from our estimate that it is beneficial to take b as small
as possible, since that’s make it more likely that a generated signature will be
accepted, but this is subject to the countervaling force from Theorem 2 that
transcript security decreases as b decreases.

Proposition 1. Assume N ≥ df ≥ dc and that dc ≤ b ≤ 2dc and that b+dc ≤ k.
(These conditions hold for any reasonable choice of PASSRS parameters.) Fix

f
$←− TN (df ). Then

Prob
y

$←−B∞(k), c
$←−TN (dc)

(
‖f ? c+ y‖∞ ≤ k − b

)
' (1− b/k)

N
. (10)

Proof. See [14,21].
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Algorithm 7 Aggregate

Input:
(
ŷi|Ω,zi, µi, f̂ i|Ω

)
i∈[K]

1: for i := 1 to K step 1 do
2: Y i ← T (ŷi|Ω)

3: F i ← T (f̂ i|Ω)
4: ci ← HashC

(
Y i, µi,F i

)
5: end for
6: β ← HashB(c1, . . . , cK)
7: z ← β1z1 + · · ·+ βKzK
8: Y ← β1ŷ1|Ω + · · ·+ βK ŷK |Ω
9: Ω′ ← HashΩ(z,Y , c1, . . . , cK)

10: for i := 1 to K step 1 do
11: F ′i ← f̂ i|Ω′
12: Y ′i ← ŷi|Ω′
13: end for
14: if ‖z‖∞ ≤ Bk

√
K(k − b) then

15: result← success
16: else
17: result← failure
18: end if
Output:

(
z,Y , µi,Y i,Y

′
i,F i,F

′
i

)
i∈[K]

,

result

Algorithm 8 VerifyAggregate

Input:
(
z,Y , µi,Y i,Y

′
i,F i,F

′
i

)
i∈[K]

1: for i := 1 to K step 1 do
2: ci ← HashC

(
Y i, µi,F i

)
3: end for
4: β ← HashB(c1, . . . , cK)
5: Ω′ ← HashΩ(z,Y , c1, . . . , cK)

6: Z′ ←
( K∑
i=1

βi(F
′
i � ĉi|Ω′)

)
+ Y |Ω′

7: W ′ ←
K∑
i=1

βiY
′
i

8: if ‖z‖∞ ≤ Bk
√
K(k − b) and

c1, . . . , cK are distinct and Z′ =
ẑ|Ω′ and W ′ = Y |Ω′ then

9: result← valid
10: else
11: result← invalid
12: end if
Output: result

Table 10: MMSATK: Aggregate Signature Algorithms with Signature and Public
Key Compression

Remark 6. The paper [14], in addition to giving a derivation of the rough in-
equality (10), also contains a more accurate analysis showing that the probability
in (10) is greater than

(
1− 2b

2k + 1

)N
Prob

c
$←−T (dc)

(
‖f ? c‖∞ ≤ b

)N
. (11)

The coefficients of f ? c lie in the interval [−2dc, 2dc], but they are highly clus-
tered toward the middle of this interval. Hence as long as b isn’t too much
smaller than 2dc, the probability term in (11) will be very close to 1, and hence
the value of (11) is very close to (1−b/k)N . We also note that even if the proba-
bility estimate in Proposition 1 is slightly off, it only affects the efficiency of the
signing operation. It has no effect on security, nor does it affect the verification
or aggregation algorithms.



22

7.2 Absolute and Probabilistic Rejection Sampling

Rejection sampling is the test ‖z‖∞
?
≤ k − b performed in Step 5 of Algorithm 1

in Table 4. For appropriately chosen parameters, it ensures that a transcript of
signatures leaks no information about the private key.

Proposition 2. If PASSRS parameters are chosen to satisfy

df ≥ dc and b ≥ 2dc,

then the distribution of z values in a transcript of signatures is independent of
the private key used to create the signatures.

Proof. This is proven in [21]. See also [14] for a more detailed explanation.

The transcript security provided by Proposition 2 comes at a cost. The pa-
rameter dc needs to be large enough to ensure that the c sample space TN (dc)
cannot be searched, so one wants #T (dc) ≥ 22λ. Then the requirement that b ≥
2dc makes it harder to sign, since it increases the likelihood that a candidate
signature will be rejected in Step 5 of Algorithm 1.

An analysis of the proof of Proposition 2 shows that even if we relax the
requirement b ≥ 2dc a little bit, it is highly unlikely that z-transcripts of practical
length produced by different keys will be distinguishable. This is vague, but it
is possible to develop a rigorous theory of probabilistic rejection sampling and
probabilistic transcript security. See [14] for a complete description of this theory
and its application to PASSRS in particular. For the present article, we are content
to cite the following result from [14].

Theorem 2. Let n ≥ 1 and α ≥ 80, and let (N, df , dc, b) be PASSRS parameters
that satisfy the inequalty11

2N(
N

dc,dc

) ∑
k+`≥b

(
df
k

)(
df
`

)(
N − 2df

dc − k, dc − `

)
≤ n−12−α−1.

Then a PASSRS transcript containing at most n signatures gives less than a 2−α

advantage in guessing which of two private keys was used in its generation.

Proof. See [14].

8 Abstract Security of Aggregate Signatures

Boneh et al. in [10] introduced the notion of aggregate signatures and analyzed
the security of such a scheme in the aggregate chosen-key security model. Briefly
the aggregate chosen-key security model assumes an existential forgery adversary

11 Here
(
r
s,t

)
is the trinomial coefficient r!/s!t!(r − s − t)!. Alternatively, it is equal to

the product of binomial coefficients
(
r
s

)(
r−s
t

)
.
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A is given the public key of a victim. The adversary may use any other public
key, and can even ask the victim to contribute authentic signatures on messages
he choses. His goal is to craft an aggregate signature that will convince third
party verifiers that the victim has contributed a signature on a message (other
than the ones where he used the victim as a signing oracle). The advantage of
A is defined as the success probability of the following game12:

Setup: The aggregate forger A is given a challenge public key f̂K |Ω. The forger

A has no influence over how f̂K |Ω was generated.

Queries: The forger A requests signatures with f̂K |Ω on messages of his choice.
The queries may be adaptively generated.

Response: The forger A returns a forged aggregate signature, along with the

public keys f̂1|Ω, . . . , f̂K |Ω and messages µ1, µ2, . . . , µK . The additionalK − 1
public keys are chosen by the forger. The message µK may not be among
the messages the victim has signed during the query stage.

Result: The forger A wins the game if the aggregate signature is a valid aggre-

gate on messages µ1, µ2, . . . , µK under keys f̂1|Ω, . . . , f̂K |Ω and A did not

request a signature on µK under f̂K |Ω.

Definition 5 ( [10]). An existential signature forger A(ε,NS , NH ,K, τ) that
operates in the chosen key model runs in at most τ time, makes at most NS
queries to the signing oracle and at most NH queries to the hash oracle, with
at least ε advantage for an aggregate of at most K users. We call an aggregate
signature scheme (ε,NS , NH ,K, τ)-secure against existential forgery if no forger
A(ε,NS , NH ,K, τ) exists in the chosen key model.

8.1 A Reduction of MMSA to PASSRS

We are able to prove the following reduction from MMSA to PASSRS.

Theorem 3. Let PASSRS with parameters (q,N, k′, b′) be (ε′, τ ′)-secure against
existential forgery. Then MMSA with parameters (q,N, k, b) is (ε,NS , NH , τ)-
secure against a chosen key forger for k′ = O(1)k

√
NH and b′ = O(1)k

√
NH

and for all ε ≥ NHε′ success probability and time

τ ≤ τ ′− (2NS +1)τFΩ − (4NS +2NH +3)τ�− (NS +1)τ×− (NS +NH)τH−τHash

where τ×, τ�, τFΩ , τH and τHash, denote time required for a polynomial multipli-
cation, component-wise multiplication/addition, FΩ transformation, hash table
insertion, and hash computation, respectively.

Proof. We postpone the proof to Section A.

12 We have slightly rewritten the definition in [10] and adapted it to follow our notation.
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8.2 Key Swap Attacks on Aggregate Signatures

A serious threat to multisignatures and signature aggregation schemes is the
possibility of swapping the forger’s key for the legitimate key. In this attack,
the adversary does not conform to the usual key generation process, and instead
choses public keys in way to gain advantage in forging aggregate signatures [30].
To demonstrate the vulnerability consider an aggregating scheme built on the
PASSRS (single signature) signing and verification primitives where Alice has a

legitimately generated public key f̂A|Ω. During verification Alice’s public key is

used to recover the public version of y, i.e. ŷ|Ω = ẑ|Ω − f̂A|Ω � ĉ|Ω as the key
step to enable the check in the verification algorithm. In the aggregation scheme,
again we use the same mechanism but this time simultaneously over multiple keys

in the aggregated signature z, i.e.
∑
ŷ|Ω = ẑ|Ω −

∑
f̂ i|Ω � ĉi|Ω. For simplicity

assume only two signatures are aggregated and the forger is contributing the

second public key f̂B |Ω. A malicious party can craft a fake public key f̂B |Ω =

f̂ |Ω − f̂A|Ω and eliminate the effect of Alice’s key during aggregate verification
by also forcing ĉA|Ω = ĉB |Ω. This is easily done in the original PASSRS scheme,
since in that version the challenge polynomial is computed from Hash(ŷ|Ω, µ)
and thus does not depend on the public key. Note that the forger does not even

know the actual secret key that yields the public key f̂B |Ω, since he does not

know the short fA related to f̂A|Ω, but this does not hinder the success of this
aggregate forgery attack:

2ŷ|Ω = ẑ|Ω − f̂A|Ω � ĉ|Ω − f̂B |Ω � ĉ|Ω
= ẑ|Ω − f̂A|Ω � ĉ|Ω − (f̂ |Ω − f̂A|Ω)� ĉ|Ω
= ẑ|Ω − f̂ |Ω � ĉ|Ω

The values f̂A|Ω and ŷ|Ω are completely decoupled, with Alice’s public key
eliminated from the right-hand side, although the verification primitive does use

Alice’s public key f̂A|Ω. Since the forger has the short version of f̂ |Ω and also
gets to choose the short y, he can freely forge an aggregate signature.

To overcome this particularly strong threat, Micali et al. [30] propose using
complex schemes such as Zero Knowledge Proofs that ensure the correct gener-
ation of the public keys. Boneh et al. in [10] chose a simpler route by requiring
that the individual messages in an aggregate signature to be distinct.

In PASSRS
13 and MMSAT we opt for a simple countermeasure by requiring

the challenge polynomial ci to be computed not only from the the commitment

polynomial ŷi|Ω and message µi, but also from the public key f̂ i|Ω. To overcome
this countermeasure, a key-forging adversary would have to find a hash collision,
or a pseudo-collision with the linear sum of a number of colliding hashes, without
significantly increasing the norm of the resulting vector.

13 As noted earlier, the original version of PASSRS did not include the public key as
the input to the hash function that generates c, but as also noted earlier, including
the public key cannot hurt the security of the scheme, and it only minimally affects
efficiency.
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9 Operating Characteristics of Lattice Reduction
Algorithms

Before analyzing the various lattice attacks on PASSRS and MMSAT, we review
some basic material on lattice reduction and give references to the relevant lit-
erature on the results achieved by lattice reduction algorithsm such as BKZ.

Definition 6 (Gram–Schmidt Orthogonalization Algorithm). The Gram-
Schmidt orthogonalization of a collection of linearly independent vectors v1, . . . ,vN ∈
Rn is the list of vectors v∗1, . . . ,v

∗
N defined inductively by

v∗1 = v1 and v∗i = vi −
i−1∑
j=1

vi · vj
vj · vj

vj for i = 2, . . . , N . (12)

We note that the vectors v∗1, . . . ,v
∗
N are pairwise orthogonal, but are not in

general orthonormal.

Definition 7. Let v1, . . . ,vN be a basis of an N -dimensional lattice L. The
Hermite Root Factor (HRF) is the quantity

δ = δ(v1, L) =

(
‖v1‖2

Disc(L)1/N

)1/(N−1)

.

Definition 8 (Geometric Series Assumption). Fix a blocksize β ≥ 50.
There is a constant δ(β) with the following property: Let L ⊂ RN be a (ran-
dom) lattice of dimension N � β. Let v1, . . . ,vN be the basis for L obtained as
the output of some version of BKZ-β, and let v∗1, . . . ,v

∗
N be the Gram-Schmidt

reduction (12) of this basis. Then

‖b∗i ‖2 ≈ δ(β)−2
∥∥b∗i−1

∥∥
2

for all 1 ≤ i ≤ N .

Remark 7. As noted in [2, Definition 4], the Geometric Series Assumption as
described in [37] takes a given β and heuristically determines the lengths of
consecutive Gram–Schmidt basis vectors. It is reasonably accurate for blocksizes
β > 50, provided that the blocksize is significantly smaller than the lattice
dimension; cf. [13, 35,41].

Proposition 3 (Experimental). Fix a blocksize β ≥ 50, and let L ⊂ RN be a
(random) lattice of dimension N � β. Then the HRF of the basis obtained by
running BKZ-β on L is approximately equal to

δBKZ(β) =

(
β

2πe
· (βπ)1/β

)1/(2β−2)

. (13)

Proof (Justification). Let v1, . . . ,vN be the basis of L produced by BKZ-β.
Repeatedly applying the geometric series assumption (Definition 8) gives

‖v∗i ‖2 ≈ δ(β)−2(i−1) ‖v∗1‖2 .
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This allows us to estimate

Disc(L) =

N∏
i=1

‖v∗i ‖2 ≈
N∏
i=1

(
δ(β)−2(i−1) ‖v∗1‖2

)
= δ(β)(N−1)N ‖v∗1‖

N
2 .

Hence the δ(β) in Definition 8 satisfies

δ(β) =
(
‖v∗1‖2 /Disc(L)1/N

)1/(N−1)

,

so δ(β) is the HRF of the output obtained from running BKZ with blocksize β.
We now quote from [13]: “Experiments in [17] show that in practice, the

Hermite root factor [for BKZ-β] is typically δ(β, n), where δ(β, n) converges
rapidly as n grows to infinity for fixed β, and it is shown in [12] that the data
supports the assumption that the HRF follows the asymptotic formula (13).”

Proposition 4 (Experimental/Extrapolated). Fix a blocksize β ≥ 50, and
let L ⊂ RN be a (random) lattice of dimension N � β. Then a conservative
estimate for the cost of running BKZ-β on L (using a quantum computer) is

Cost of BKZ-β ≈ 20.265β . (14)

Thus in order to achieve bit security λ, it must be impossible to break the system
by running BKZ-β with β ≤ λ/0.265.

Proof (Justification). Various implementations suggest that the cost of running
BKZ-β is roughly 20.29β , although there would be nontrivial parallelism and
memory issues in scaling such an implementation up to large blocksizes; cf. Sec-
tion 9.1. On a sufficiently large quantum computer, i.e., one with an exponential
(in β) amount of quantum RAM, it might be possible to reduce the runtime to
around 20.265β , so that is the highly conservative value that we have decided to
use in this article.

9.1 A Note on the General Sieve Kernel

Recently more efficient algorithms for solving Short Vector Problem (SVP) have
appeared in the literature. Especially sieving, which is asymptotically slower,
yields better run times on real time experiments compared to popular SVP solv-
ing algorithms, i.e. BKZ-2.0. In [2], Ducas et. al shares experimental results of
the sieving technique. From a practical point of view, the method achieves a 400-
fold speedup compared to BKZ-2.0 for low dimensional lattices. This translates
roughly to a 9-bit reduction in the security level. In order to estimate the security
reduction for higher dimensional lattices, we also performed similar experiments
using the G6K sieving software. However, it is hard to solve SVP on lattices
with dimensions over 120 in practice. In [2], the authors note that the perfor-
mance observed for low dimensional lattices does not match with the asymptotic
analysis, and they therefore refrain from extrapolating to higher dimensions. As



27

it stands now, while useful, using low dimensional G6K runtime estimates to
extrapolate the runtime for higher lattice dimensions does not appear to be a
viable option.

The authors of [2] also suggest a conservative security bound of 20.292d for
solving the SVP in dimension d. Assuming this estimate, this gives a security
bound of 20.292d for finding an entire KZ-reduced basis in dimension d, since the
first element of such a basis is a solution to SVP. We note that since BKZ-β
needs to find many KZ-reduced bases for many sublattices of dimension β, the
SVP security estimate in [2] says that the security of BKZ-β is at least 20.292β .
(And presmuably considerably higher.)

In conclusion: Current conservative estiamtes for the practical security of
BKZ-β on a classical computer suggest that it has bit security greater than 0.292β.
This is far greater than the highly conservative quantum bit security of 0.265β
for BKZ-β that we use in this paper.

9.2 The BKZ-Simulator HRF versus the HRF Formula

Formula (13) gives an estimate for the HRF of BKZ-β that is experimentally
reasonably accurate provided that the lattice dimension is significantly larger
than the blocksize β. An alternative way of estimating this HRF is the BKZ-
Simulator of Chen and Nguyen [13, Algorithm 2]. They analyzed state-of-the-art
BKZ lattice reduction algorithms and devised a BKZ-Simulator that predicts the
quality of the output from running BKZ for a given number of rounds using a
given, reasonably large, blocksize. See Section C for a detailed description of the
BKZ-Simulator and our implementation.

We ran the BKZ-Simulator for 30 rounds14 on PASSRS lattices i.e., on an
(N, q, t)-SIS lattice as described in Definition 3. This is particularly easy, since
the public lattice (3) for PASSRS is already in Hermite normal form. Then Gram–
Schmidt reduction of the PASSRS lattice gives the following list of logarithmic
lengths, which are used as input to the BKZ-Simulator:

(log2(q), . . . , log2(q)︸ ︷︷ ︸
t copies of log2(q)

, 0, 0, 0, . . . , 0︸ ︷︷ ︸
N − t copies of 0

).

Table 11 compares the HRF output from the BKZ-Simulator to the HRF
from the formula. Each section of the table gives three blocksizes of decreasing
dimension-to-blocksize ratio. We can summarize the conclusions from the table
as follows:

Dimension to Formula HRF versus
Blocksize Ratio Simulator HRF

Larger HRF-Formula > HRF-Simulator
Medium HRF-Formula ≈ HRF-Simulator
Smaller HRF-Formula < HRF-Simulator

14 The output from the simulator tends to stabilize after about 20 rounds, so running
additional rounds would not improve the output.
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As the dimension-to-blocksize ratio decreases, one expects the HRF-formula to
become less accurate. On the other hand, for the larger dimension-to-blocksize
ratios in Table 11, we expect that the HRF-formula should be farily accurate,
which raises the question of why the BKZ-Simulator gives somewhat smaller
HRF values in these cases. We suspect that the answer lies in the fact that a
standard basis for a PASSRS (or NTRU) lattice is already in Hermite normal
form, and the associated Gram-Schmidt basis has the special form

{qe1, qe2, . . . , qet, et+1, et+1, . . . , eN}.

The BKZ-Simulator seems to be able to exploit special Gram-Schmidt bases of
this sort, although running actual implementions of BKZ on PASSRS and NTRU
lattices does not appear to yield significantly better results than running on
random lattices.

This appears also to be the conclusion reached in [13], where the authors
state: “But this model [used in the BKZ simulator] may not work with bases of
special structure such as partial reductions of the NTRU Hermite normal form,
which is why we only consider random reduced bases as input.”

Based on these considerations, in all of our security calculations
we have used the HRF formula (13) for the output of BKZ-β,
together with the very conservative formula (14) for the effort
required to run BKZ-β.

Blocksize
Bit

Security
N q t

HRF from
formula

HRF from
BKZ-Simulator

Dimension

Blocksize

484 128.26 5297 235.544 1765 1.003484 1.003107 10.94

884 234.26 5297 235.544 1765 1.002242 1.002264 5.99

1284 340.26 5297 235.544 1765 1.001687 1.001704 4.13

967 256.25 9311 235.305 3103 1.002096 1.001754 9.63

1267 335.75 9311 235.305 3103 1.001705 1.001695 7.35

1567 415.25 9311 235.305 3103 1.001446 1.001455 5.94

484 128.26 3343 225.871 1671 1.003484 1.002687 6.91

884 234.26 3343 225.871 1671 1.002242 1.002270 3.78

1284 340.26 3343 225.871 1671 1.001687 1.001719 2.60

967 256.25 6007 227.717 3003 1.002096 1.001601 6.21

1267 335.75 6007 227.717 3003 1.001705 1.001601 4.74

1567 415.25 6007 227.717 3003 1.001446 1.001461 3.83

Table 11: Comparison of the HRF from the BKZ-Simulator and the Blocksize
Formula (13) in Proposition 3
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9.3 L2-Norm Bounds Versus L∞-Norm Bounds

In this section we let L be a lattice of dimension N and discriminant D. Suppose
that the forger is required to find a vector z ∈ L satisfying ‖v‖∞ ≤ C. The
triangle inequality gives the trivial estimate

‖v‖2 ≤
√
N · ‖v‖∞ ,

with equality if and only if all of the coordinates of v have the same magnitude.
In particular, a necessary condition for success is that the vector z ∈ L satisfy

‖v‖2 ≤
√
N · C. (15)

However, this is far from sufficient, since it is quite unlikely that the coordinates
of a random v will all be of the same size.

We can give an upper bound for the probability that a random point v
with L2 norm ‖v‖2 ≤ R has L∞ norm bounded by ‖v‖∞ ≤ C by calculating
the following ratio of volumes:

Prob
v←{w∈RN :‖w‖2≤R}

(
‖v‖∞ ≤ C

)
≈

Vol
(
{v ∈ RN : ‖v‖∞ ≤ C and ‖v‖2 ≤ R}

)
Vol
(
{v ∈ RN : ‖v‖2 ≤ R}

)
≤

Vol
(
{v ∈ RN : ‖v‖∞ ≤ C}

)
Vol
(
{v ∈ RN : ‖v‖2 ≤ R}

) (16)

=
(2C)N

RNµN
. (17)

Suppose that the attacker runs BKZ-β on L. We denote the run-time of
BKZ-β by Timeβ and the HRF of the output by δβ . The definition of HRF says
that the output is a lattice vector z whose L2-norm is approximately

‖z‖2 ≈ δ
N−1
β ·D1/N . (18)

An upper bound for the probability that such a vector has L∞-norm smaller
than C is given by (17). Hence the (probable) run-time to find a z ∈ L satisfying
‖z‖∞ ≤ C is

Timetotal =
Run-time for BKZ-β

Prob(BKZ-β output satisfies ‖z‖∞ ≤ C)

=
Timeβ

Prob
(
‖z‖∞ ≤ C

∣∣ ‖z‖2 = δN−1
β ·D1/N

) from (18),

≥ Timeβ(
2C/(δN−1

β ·D1/N )
)N · µ−1

N

from (17).

Taking logs and doing a little algebra yields

log2(Timetotal) ≥ log2(Timeβ)+N

{
log2

(δN−1
β ·D1/N

√
NC︸ ︷︷ ︸

must be ≤ 1
from (15) and (18)

)
+log2

(1

2
µ

1/N
N ·

√
N︸ ︷︷ ︸

≈
√
πe/2

)}
.

(19)
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(The second subnote uses µN = πN/2/Γ (1 +N/2) ≈ (2πe/N)N/2.)
We note that (19) gives a lower bound for the logarithmic-run-time, while

the second term in the lower bound is a multiple of N . So the attacker’s total
run-time will be huge unless the quantity in braces is non-positive. Hence to
have any chance of success, the forger must choose β so that

δN−1
β ·D1/N ≤

(
1

2
µ

1/N
N ·

√
N

)−1√
NC.

Comparing this with (15) and (18), we see that the actual L2-norm required to
forge is roughly

√
2/πe times smaller than the naive estimate (15) coming from

the (implausible) assumption that the coordinates of a random vector are all of
the same size. Hence in order to find a vector whose L∞-norm is less than C,
i.e., to find a forgery, the forger needs to achieve an HRF that is at most((

1

2
µ

1/N
N ·

√
N

)−1

·
√
NC

D1/N

)1/(N−1)

=

(
2C

µ
1/N
N ·D1/N

)1/(N−1)

. (20)

Thus the forger needs to run BKZ-β with a sufficiently large blocksize β so that
δβ is at most the quantity given in (20).

Remark 8. We note that since 2Γ (1+N/2)1/N/
√
π ≈

√
2/πe·

√
N , the attacker’s

HRF forgery goal is roughly (2/πe)1/(2N−2) times harder than suggested using
the naive L2-norm bound.

We summarize the preceding discussion as a proposition.

Proposition 5. Let L be a lattice of dimension N . To find a vector v ∈ L whose
L∞-norm satisfies ‖v‖∞ ≤ C, a lattice reduction algorithm needs to achieve a
Hermite root factor δ satisfying

δ ≤
(

2CΓ (1 +N/2)1/N

√
πDisc(L)1/N

)1/(N−1)

.

Proof. This is a restatement of (20).

Experimental Estimates for L2-Norm Versus L∞-Norm The inequality (16) is
only an estimate since for any given C and R, a portion of the L∞-box may lie
outside the L2-ball.

We start by observing that the conditional probability

Prob
(
‖v‖∞ ≤ C

∣∣∣ ‖v‖2 ≤ R)
is homogeneous, i.e., it only depends on the ratio C/R, so we study its value
for R = 1. Then formula (17) says that

Prob
(
‖v‖∞ ≤ C

∣∣∣ ‖v‖2 ≤ 1
)
≤ (2N/µN ) · CN .
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And of course, the probability is always at most 1, so this estimate is non-trivial

for C ≤ 1
2µ

1/N
N . We are going to use this inequality and the following elementary

proposition to estimate the mean value of ‖v‖∞.

Proposition 6. Let X be a (well-behaved) random variable with values in [0, 1],
and suppose that the distribution function FX of X satisfies

FX (x) ≤ AxN for all x ≤ A−1/N .

Then the expectation of X satisfies

Mean(X ) ≥ NA−1/N

N + 1
.

Proof. We compute

Mean(X ) =

∫ 1

0

xF ′X (x) dx = xFX (x)
∣∣∣1
0
−
∫ 1

0

FX (x) dx

= 1−
∫ 1

0

FX (x) dx ≥ 1−
∫ A−1/N

0

AxN dx−
∫ 1

A−1/N

1 dx =
NA−1/N

N + 1
.

Applying Proposition 6 to our situation with A = 2N/µN , we find that

Mean
‖v‖2≤1

(
‖v‖∞

)
≥

Nµ
1/N
N

2(N + 1)
≈
√
πe

2N
. (21)

In order to gauge the accuracy of the estimate (21), we experimented by
choosing a large number of random points on the surface of an N -dimensional
unit ball15 and computed the mean value of the L∞-norms of the points. As
shown in Table 12, the theoretical lower bound (21) is a bit smaller than the
experimental value, but the order of magnitude is about right.

Remark 9. There are well-known methods to generate points uniformly dis-
tributed on a sphere; see [34,39] We used the following algorithm. Let X1, . . . ,XN
be independent random variables that are normally distributed with mean 0 and
variance 1. Then the random variable

SN =
(X1,X2, . . . ,XN )√
X 2

1 + X 2
2 + · · ·+ X 2

N

gives points that are uniformly distributed on the unit (N − 1)-sphere in RN .

15 Choosing points at random on the surface of the ball is the conservative choice,
since we’re not sure to what extent an algorithm such as BKZ will find points with
L2-norm significantly smaller than the expected norm. In any case, the majority of
the volume of an N -ball lies near its surface, e.g., if N ≥ 1000, then more than 99%
of the volume lies within 0.005 of the surface.
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N
Nµ

1/N
N

2(N + 1)
from (21)

Mean
(
‖SN‖∞

)
based

on 8 · 106 samples

1000 0.065017 0.108662

3000 0.037656 0.067998

4000 0.029189 0.060029

Table 12: Comparing the theoretical lower bound for Mean
(
‖v‖∞

)
in the unit

ball to the experimental mean on the unit sphere

9.4 The Gaussian Heuristic

Definition 9. We denote the volume of a unit ball in RN by

µN = Vol
({
v ∈ RN : ‖v‖2 ≤ 1

})
=

πN/2

Γ (1 +N/2)
≈
(

2πe

N

)N/2
,

where the approximation comes from Stirling’s formula Γ (1 + x) ∼ (x/e)x and
is valid for large values of N . In general, the volume of a ball of radius R in RN
is16

Vol
({
v ∈ RN : ‖v‖2 ≤ R

})
= RNµN .

Definition 10 (Gaussian Heuristic Assumption). The Gaussian Heuristic
Assumption says that a smallest non-zero vector in a random N -dimensional
lattice Λ has L2-norm approximately equal to the Gaussian Heuristic Value

GH(Λ) =
Disc(Λ)1/N

µ
1/N
N

≈
√

N

2πe
·Disc(Λ)1/N . (22)

More generally, for ε > 0, it is expected that there are no non-zero vectors of
length (1− ε)GH(Λ), and that there are lots of vectors of length (1 + ε)GH(Λ).

Remark 10. The justification for the Gaussian Heuristic Assumption is that the
volume of a ball of radius GH(Λ) is equal to the volume of a fundamental domain
for Λ.

9.5 The Unique Shortest Vector Problem (UniqueSVP)

Definition 11. The Unique Shortest Vector Problem (UniqueSVP) refers to
finding a shortest vector in a lattice whose shortest vector is significantly shorter
than the next smallest linearly independent vector. The difficulty of the UniqueSVP
is measured by the ratio of the first and second successive minima of the lattice.
Since in practice it is difficult to compute the second minimum, we approximate
it by the Gaussian heuristic value, so we define the SVP-Gap of the lattice L to
be the quantity

SVP Gap(L) =
GH(L)

λ1(L)
≈ λ2(L)

λ1(L)
.

16 See [40] for a nice exposition of several ways to compute the volumes of the N -ball.
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There are two esimtates for the difficulty of solving UniqueSVP. The first,
which may be found in [3, 17, 18], is based on analysis of experiments using
various classes of lattices. The second based on an observation in Alkim–Ducas–
Pöppelmann–Schwabe [6] that one should declare success in solving UniqueSVP
as soon as the intermediate results of a lattice reduction algortihm such as BKZ
deviates from the expected intermediate results for a lattice not containing an
especially short vector. In other words, declare success when BKZ solves the
decisional UniqueSVP problem. This second approach is analyzed in more detail
in Albrecht–Göpfert–Virdia–Wunderer [4], where two competing estimates are
compared with experiments. We will follow the convention from [4] and call these
the 2008-Estimate and the 2016-Estimate. We summarize the two estimates in
the following proposition.

Proposition 7 (Heuristic/Experimental UniqueSVP Run-Time). Let L be
a lattice of dimension N and discriminant D. Let λ1(L) be the first minimum
of L, i.e., the length of a shortest non-zero vector, and let δ be the Hermite root
factor achievable by a lattice reduction algorithm, e.g., as given in Proposition 3
for BKZ-β. Then the algorithm will solve the SVP17 if :18

(a) (2008-Estimate [18, Section 2.2.1])

λ1(L) ≤ τ−1
√
N/2πe · δ−N ·D1/N ,

where τ is an experimentally derived constant that appears to be in the range
0.3 ≤ τ ≤ 0.5 for lattices of the form (3).19

(b) (2016-Estimate [4, 6])

λ1(L) ≤
√
N/β · δ−(N−2β) ·D1/N ,

Remark 11. In [4] the authors conclude that the 2016-Estimate predicts that
UniqueSVP is easier to solve than predicted by the 2008-Estimate, a prediction
that they confirm by experiments on lattices using typical LWE parameters. As
we will see in Section 10.4, the opposite is true for the PASSRS and MMSAT
parameters in Tables 19 and 20, i.e., the 2008-Estimate says that the problem
is harder than predicted by the 2016-Estimate. The primary reason for the dis-
crepency between out results and those in [4] appears to be the high dimensions
used in our parameter sets. In any case, we always insist that our parameters be
secure under both the 2008 and the 2016 estimates.

10 Analysis of Lattice Security for PASSRS and MMSAT

In this section we analyze various ways to use lattice reduction in order to find
a key or forge a signature for PASSRS or MMSAT.

17 or at least, the algorithm will able to distinguish whether the lattice contains a
non-zero vector that is significantly shorter than expected by the Gaussian heuristic

18 The upper bounds in (a) and (b) use Stirling’s formula to estimate the Γ function.
19 Although experiments done for BLISS [15] and PASSRS [21] gave τ ≈ 0.48.
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10.1 The Fake Key Hermite Root Factor for PASSRS and MMSAT

In this section we analyze the security of PASSRS and MMSAT against a lattice
attack designed to find a fake signing key. The analysis of MMSAT key security
uses a slightly fancier version of the central limit theorem, which we state here,
as well as an elementary calculus calculation about points on spheres.

Theorem 4 (Generalized (Lyapunov) Central Limit Theorem). Suppose
that X1,X2, . . . are independent random variables with finite means µ1, µ2, . . .
and finite variances σ2

1 , σ
2
2 , . . .. For K ≥ 1, let

s2
K = σ2

1 + · · ·+ σ2
K and ZK = (X1 − µ1) + · · ·+ (XK − µK).

Then under a technical condition that is satisfied in our applications,20

lim
K→∞

Prob
(
|ZK | ≤ CsK

)
= erf

(
C/
√

2
)
.

Proof. See for example [38, Theorem 1.15 and equation (197)].

Lemma 1. Let SN−1 ⊂ RN denote the unit sphere taken with the uniform prob-
ability measure, and let Xi denote any one of the coordinate functions on RN .
Then the mean of Xi is 0, and the variance of Xi is 1/N .

Proof. More generally, it is an elementary calculus exercise to compute all of
the moments of Xi. For the convenience of the reader, we include the proof in
Section B.

Proposition 8 (Key Security HRF). Let f̂ |Ω be a given PASSRS public key.
We give Hermite root bounds δfake-F with the following property : A lattice reduc-
tion algorithm must achieve an HRF smaller than δfake-F on the PASSRS lattice
of dimension N and discriminant qt associated to f̂ |Ω in order to find a fake
key F that can be used to (a) forge a PASSRS signature, or to (b) add a forged
PASSRS signature to an existing MMSAT aggregate signature.

(a) The fake key HRF for the PASSRS parameter set (λ,N, q, t, dc, k, bk) is the
quantity21

δfake-F =

[
(k − b)

√
N

2
√
dcqt/N erf−1(2−λ/N )

]1/(N−1)

.

(b) The fake key HRF for the MMSAT parameter set (λ,K,N, q, t, dc, k, b, Bk)
is the quantity

δfake-F =

[
N

2dcq2t/N

(
B2
kK(k − b)2

2 erf−1(2−λ/N )2
− 1

3
(K − 1)(k − b)2

)]1/(2N−2)

.

(We note that the estimate in (a) is simply the estimate in (b) with K =
Bk = 1, i.e., forging a PASSRS signature is essentially the same as appending
a forged PASSRS signature to an empty aggregate signature.)

20 The required condition is that there is a ε > 0 so that s−2−ε
K

∑K
i=1 E

[
Xi−µi|2+ε

]
→ 0

as K →∞.
21 Note that erf−1 is the inverse of error function, not the reciprocal.
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Proof. (a) Let f ∈ TN (ff ) be a PASSRS signing key, with corresponding verifi-

cation key f̂ |Ω. A polynomial F ∈ Rq can be used to forge an individual PASSRS
signature if F̂ |Ω = f̂ |Ω, and further if for every message digest µ, it is feasible
to find a y ∈ Rq so that

‖F ? c+ y‖∞ ≤ k − b with c = HashC(ŷ|Ω, F̂ |Ω, µ) (23)

Note that there is no requirement that F have coefficients in {−1, 0, 1}, nor is
there any condition imposed on the coefficients of y.22 Thus for example, the
forger could choose the coefficients of y from {−1, 0, 1}, i.e., y ∈ B∞(1), in
which case the norm bound (23) is essentially a norm bound on F ? c. So we
will say that the forgery succeeds if ‖F ? c‖∞ is small enough with probability
at least 2−λ, i.e., if

Prob
c←TN (d)

(
‖F ? c‖∞ ≤ k − b

)
≥ 2−λ.

Each coefficient of F ? c is a sum of 2dc coefficients of ±F , so if we view F
as a random point on a sphere of radius ‖F ‖2, then each coefficient of F ? c is
roughly a sum of 2dc iid random variables chosen from the coordinates of points
on that sphere.23

Thus the distribution of the sum may be approximated by a normally dis-
tributed random variable of mean 0 and variance

‖F ‖22 /N, (24)

where the variance follows from Lemma 1. Treating the coefficients of F ? c as
independent, the central limit theorem gives the approximation

Prob
c←TN (dc)

(
‖F ? c‖∞ ≤ C

)
≈ Prob

c←TN (dc)

(∣∣(F ? c
)

0

∣∣ ≤ C)N independence
assumption,

≈ erf

(
C
√
N

2
√
dc ‖F ‖2

)N
Theorem 1 with K = 2dc
and σ = ‖F ‖2 /

√
N .

Taking C = k−b, which is the L∞-norm bound for a valid signature, we see that
the forgery is successufl if and only if the forger has found a vector F satisfying

erf

(
(k − b)

√
N

2
√
dc ‖F ‖2

)N
≥ 2−λ. (25)

22 Although taking y = 0 would not be a good idea, since then ŷ|Ω = 0, which would
suggest that the signature is forged.

23 It would be more accurate to say that the Yi are determined by first choosing a
random point on SN−1(Rδ) and then choosing distinct random coordinates of that
point. However, the coordinates of the points of SN−1(Rδ) are only slightly corre-
lated, so since in practice dc is quite small compared to N , it suffices to take the Yi
to be random coordinates of independently chosen random points of SN−1(Rδ).
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By definition of HRF, the smallest vector F obtained by a lattice reduction
algorithm (on a PASSRS lattice of dimension N and discriminant qt) has length

‖F ‖2 = HRFN−1 · qt/N . (26)

Substituting (26) into (25) and solving for the HRF gives the stated result.

(b) Let f̂ |Ω be a public key. If the forger is able to achieve an HRF of δ on the
associated PASSRS lattice of of dimension N and discriminant qt, then she can
find a lattice vector F satisfying

F̂ |Ω = f̂ |Ω and ‖F ‖2 ≈ Rδ = δN−1 · qt/N . (27)

Next suppose that the forger wants to append a forged signature to z, which is
an existing aggregate of K−1 signatures. To do this, she chooses an arbitrary y
of her choice, she hashes y F̂ |Ω, and a document digest µ to create c, and then
she hopes that

z′ = z + F ? c+ y

is a valid aggregate signature. The partial Fourier transform for z′ works, so the
forger just needs ‖z′‖∞ to be sufficiently small. It is in the forger’s best interest
to choose y to be small, say y ∈ B∞(1), so we ignore y and declare the forgery
a success if

z′ = z + F ? c satisfies ‖z′‖∞ ≤ Bk
√
K(k − b).

As usual, we treat the coefficients of z′ as being essentially independent, so

Prob
(
‖z′‖∞ ≤ Bk

√
K(k − b)

)
= Prob

(∣∣(z′)0

∣∣ ≤ Bk√K(k − b)
)N

.

The 0th coefficient of z′ has the form

(z′)0 =

K−1∑
i=1

βi(zi)0 +

N−1∑
i=0

FN−ici.

The βi are ±1, while the ci consist of 2dc copies of ±1 and N − 2dc copies of 0.
The coefficients of Fi are the coefficients of a random point on the sphere of
radius Rδ. Hence we can model the distribution of (z′)0 by the random variable

Z =

K−1∑
i=1

Xi +

2dc∑
i=1

Yi,

where the Xi and Yi are independent random variables satisfying

Xi = random variable uniformly distributed on
[
−(k − b), k − b

]
,

Yi = first coordinate of point uniformly distributed on SN−1(Rδ).

Then Xi and Yi have mean 0, and their variances are given by

σ2(Xi) =
1

3
(k − b)2 and σ2(Yi) =

1

N
R2
δ ,
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where the former is an easy computation and the latter follows from Lemma 1.
We are going to use the generalized central limit theorem (Theorem 4), which

says that if we set

s2 =

K−1∑
i=1

σ2(Xi) +

2dc∑
i=1

σ2(Yi) =
K − 1

3
(k − b)2 +

2dc
N
R2
δ , (28)

then Z/s is approximately a standard normal distribution with mean 0 and
variance 1. Hence for all C,

Prob
(
|Z| ≤ Cs

)
≈ erf

(
C/
√

2
)
.

Putting all of this together, we find that the probability of a successful forgery
is approximately

Prob
(
‖z′‖∞ ≤ Bk

√
K(k − b)

)
≈ erf

[
Bk
√
K(k − b)√

2 ·
√

((K − 1)/3)(k − b)2 + (2dc/N)R2
δ

]N
. (29)

We substitute Rδ = δN−1 · qt/N from (27), set (29) equal to 2−λ, and solve for δ
to find the HRF for λ-bit lattice key security for MMSAT.

Remark 12. The tail of the error function erf is rapidly decreasing, but on the
other hand, the value of erf in the right-hand side of (29) is raised to a large
power. This means that as Rδ decreases, there will be a fairly abrupt boundary
at which forgery goes from being infeasible to being easy. This occurs roughly
when the two terms in the sum (28) defining s2 are equal.

Example 2. We illustrate Remark (12) with a numerical example. We consider
the MMSAT parameter set

(λ,K,N, q, t, dc, k, b, Bk) = (256, 1000, 7393, 226.8, 2464, 29, 309338, 58, 3)

from Table 19. The formula in Proposition 8(b) says that this gives the key
security HRF

δfake-F = 1.00175.

According to (13) and (14), at security level λ = 256, an attacker can run BKZ-β
with blocksize β = 967 and obtain an output whose HRF is δBKZ = 1.00210, so
forgery is not possible.

We might ask what blocksize is required to achieve an HRF of 1.00175. The
output from BKZ-β with blocksize β gives a vector F satisfying

Rδ =

(√
β

2πe
· (βπ)1/2β

)(N−1)/(β−1)

· qt/N ,
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and this value may then be used in the success probability formula (29),

Prob(success) ≈ erf

[
Bk
√
K(k − b)√

2 ·
√

(K/3)(k − b)2 + (2dc/N)R2
δ

]N
.

Table 13 illustrates the abrupt shift from infeasible forgery to easy forgery as
the blocksize increases.

Blocksize Prob(success) BKZ run-time

967 2−24283.73 2256.27

1242 2−827.25 2329.13

1261 2−464.62 2334.17

1280 2−240.38 2339.20

1299 2−114.64 2344.24

1317 2−53.11 2349.01

1336 2−22.27 2354.04

1355 2−9.00 2359.08

Table 13: Example of Probability of Forgery Success with Increasing Blocksize

10.2 Solving for the PASSRS Private Key as a UniqueSVP

In this section we analyze the difficulty of finding a PASSRS private key formulated
as a UniqueSVP. We note that the private key f is a vector length

√
2df in the

PASSRS lattice (3) of dimension N and discriminant qt, so the SVP-Gap is

SVP Gap =
GH

λ1
≈

√
N

4dfπe
· qt/N ,

which will be significantly larger than 1. (Note that we always have df <
1
3N .)

We recall from Proposition 7 that there are two competing estimates for the
difficulty of solving UniqueSVP. The conclusion of [4] is that the 2016-Estimate
predicts that UniqueSVP is easier to solve than predicted by the 2008-Estimate,
and that this prediction is confirmed by experiments on lattices using typical
LWE parameters. We were thus somewhat surprised that for the parameters
used by PASSRS and MMSAT, the opposite is true, i.e., the 2016-Estimate says
that the UniqueSVP for finding a PASSRS secret key is harder than predicted
by the 2008-Estimate! To see why, we solve the two estimates for the HRF δ
required to solve the UniqueSVP:

2008-Estimate δ =

[
1

τ
√

2πe
·
√
N ·D1/N · λ1(L)−1

]1/N

, (30)
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2016-Estimate δ =

[
1√
β
·
√
N ·D1/N · λ1(L)−1

]1/(N−2β)

. (31)

The estimates differ in two ways. First, the 1/τ
√

2πe ≈ 0.6 factor in the 2008-
Estimate is replaced by 1/

√
β in the 2016-Estimate. For security levels 128

and 256, as given for example in Table 19, the allowed blocksizes are, respectively,
β = 484 and β = 966, so 1/

√
β is 0.046 and 0.032. This means that the quantity

in square brackets is roughly 13 to 18 times smaller for the 2016-Estimate.
Second, the 2008-Estimate is raised to the 1/N power, while the 2016-Estimate

is raised to the smaller 1/(N − 2β) power. If β is large, this will definitely tend
to make the 2016-Estimate larger than the 2008-Estimate, but there is a delicate
balance of whether it compensates for the fact that the 2008-Estimate started 13
to 18 times smaller before taking the roots. Table 14 shows what happens for
some typical parameter sets from Table 19.

λ 128 256

β 484 967

N 4111 7393

q 224.909 226.806

t 1307 2464

D1/N = qt/N 315.4 489.1

df 1307 2464

λ1 =
√

2df 52.35 70.20

GH ≈
√
N/2πe · qt/N 4893 10177

Estimate-2008 δ 1.0013 1.00080

Estimate-2016 δ 1.0009 1.00054

δ for BKZ-β 1.0035 1.00210

Table 14: Comparision of the UniqueSVP HRF for the 2008-Estimate versus the
2016-Estimate

10.3 HRF Required to Forge the z Part of an MMSAT Signature

We use the result in Proposition 5 to estimate the HRF needed to forge an
MMSAT signature z. We note that this estimate includes the L∞-norm versus
L2-norm correction discussed in Section 9.3.

Proposition 9. For the PASSRS lattice (3) of dimension N and discriminant qt,
in order to find a z that forges an MMSAT signature, the forger needs to achieve
an HRF smaller than

δL∞-forge =

(
2Γ (1 +N/2)1/NBqq

1−t/N
√
π

)1/(N−1)

. (32)
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Proof. For the MMSAT aggregate signatures, the L∞-norm bound in the PASSRS
lattice is C = Bqq, and the discriminant of the lattice is Disc = qt. Substituting
these values into Proposition 5 gives the stated result.

Remark 13. For PASSRS and MMSAT, it is not literally true that the attacker
succeeds if they find a vector satisfying (32), since the given basis for the lat-
tice includes the q-vectors qe1, . . . , qet. Thus the lattice contains t mutually
orthogonal vectors whose L2-norms are equal to q, so it contains lots of vectors
satisfying (32), specifically all linear combinations

n1qe1 + · · ·+ ntqet with n2
1 + · · ·+ n2

t ≤ 2NB2
q/πe.

Of course, these vectors are useless for forging, since their L∞-norms are larger
than Bqq. So when a forger uses BKZ to try to find a vector satisfying (32) or
some similar inequality, at the very least they are actually looking for a vector
that is not built solely out of the known q-vectors.

10.4 A Summary of the Hermite Root Factors for MMSAT Lattice
Security

For a given desired bit security level λ, we use Proposition 4 to set the achiev-
able block-size β = dλ/0.265e, and then Proposition 3 tells us the HRF that is
achievable by BKZ-β.

We have described a number of ways in which a lattice reduction algorithm
such as BKZ-β, applied to the lattice (3), can be used to attack PASSRS or
MMSAT. These include forging the signature z, finding a vector F that can
be used in place of the private key f , or directly searching for f . Each of these
lattice problems has an associated HRF, and the security of PASSRS and MMSAT
requires that the HRFs for the attacks be smaller than the HRF achievable by
BKZ β. We summarize these requirements in the next proposition.

Proposition 10 (Lattice Security of PASSRS and MMSAT). Let

(λ,K,N, q, t, dc, k, b, Bk)

be an MMSAT parameter set, or alternatively a PASSRS parameter set in which
K = Bk = 1. Set β = dλ/0.265e, and define24

δβ = the HRF achieved by BKZ-β for blocksize β = λ/0.265

=

[
β

2πe
· (βπ)1/β

]1/(2β−2)

,

δforge-z = the HRF required to forge an amalgamate signature z

=

[
2Γ (1 +N/2)1/NBqq

1−t/N
√
π

]1/(N−1)

,

24 Here τ is an experimentally determined constant. A conservative choice is τ = 1/3.
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δfake-F = the HRF required to find an F that serves a a fake signing key

=

[
N

2dcq2t/N

(
B2
kK(k − b)2

2 erf−1(2−λ/N )2
− 1

3
(K − 1)(k − b)2

)]1/(2N−2)

,

δUSVP-08 = the HRF required to solve the UniqueSVP and find f (2008-Estimate)

=

[
1

τ
√

4dfπe
·
√
N · qt/N

]1/N

,

δUSVP-16 = the HRF required to solve the UniqueSVP and find f (2016-Estimate)

=

[
1√

2dfβ
·
√
N · qt/N

]1/(N−2β)

.

Then the given MMSAT (or PASSRS) parameter set is secure against (known)
lattice attacks provided that

δβ > max{δforge-z, δfake-F , δUSVP-08, δUSVP-16}.

Proof. For the derivation of these HRF formulas, see Proposition 3 for δβ , see
Proposition 9 for δforge-z, see Proposition 8(b) for δfake-F , see Proposition 7(a)
and (30) for δUSVP-08, and see Proposition 7(b) and (31) for δUSVP-16.

11 Choosing Parameters for MMSA and MMSAT

Proposition 4 says that a conservative run-time estimate for BKZ-β is25

log2(BKZ-β Run-Time) ≈ 0.265 · β. (33)

And as noted in Proposition 3, the following estimate for the HRF for the output
of BKZ-β seems to be consistant with experiments assuming reasonably large
blocksize (β ≥ 50) and lattice dimension significantly larger than the blocksize:

δ(BKZ-β) ≈
[
β

2πe
· (πβ)1/β

]1/(2β−2)

. (34)

Using (33) and (34) as our base formulas, we now develop an algorithm to choose
PASSRS and MMSAT parameters.

1. Select the following quantities:

λ← bit security level, typically in [128, 4096].

K ← maximum number of signatures to be aggregated, typically in [103, 106].

25 Indeed, it is not clear that anyone will achieve even 0.29β in the foreseeable future,
much less 0.265β, without some major theoretical breakthrough; cf. Section 9.1.
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Bk ← an aggregate signature verification scaling factor, typically in [2, 6].

Bq ← an aggregate signature verification scaling factor, typically in
[

1
4 ,

1
3

]
.

Bt ← lattice scaling factor, typically in
[

1
3 ,

1
2

]
.

p← desired single signature accept rate, typically between 10% and 99%.

(For PASSRS, set K = Bk = 1.)

2. Output consists of the following quantities:

N = dimension, a prime

q = modulus, a prime satisfying q ≡ 1 (mod N)

t = number of coordinates in partial Fourier transform, t ≈ BtN
k = norm bound for challenge polynomial

b = norm bound displacement for rejection sampling of signatures

dc = number of 1 and −1 coefficients in commitment c

df = number of 1 and −1 coefficients in private key f

3. Use (33) to compute the allowable blocksize for the given bit security level:

β ← λ/0.265.

4. Use (34) to compute the BKZ-β HRF for the given bit security level,

δβ ←
[
β

2πe
· (πβ)1/β

]1/(2β−2)

.

5. The goal now is to find parameters satisfying the following inequalities:

Bk
√
K(k − b) ≈ Bqq signature norm bound (35)

b = 2dc rejection sampling offset (36)(
N

dc, dc

)
≥ 22λ combinatorial security (37)(√

NBqq
1−Bt

)1/N

/ δβ lattice forgery security (38)(
1− b

k

)N
' p acceptance probability (39)

6. Substituting (36) into (39) gives

k ≥ 2dc
1− p1/N

. (40)

7. Using (36) and (40) in (35), a bit of algebra gives a lower bound for q,
while (38) gives an upper bound for q. Thus

2Bk
√
K

Bq
· dc ·

p1/N

1− p1/N
≤ q ≤

(
δNβ

Bq
√
N

)1/(1−Bt)

. (41)
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We note that 1 − p1/N ∼ N/ log(p−1) as N → ∞, so the lower bound
in (41) grows linearly with N . On the other side, the upper bound grows
exponentially, since δβ > 1. Hence if N is sufficiently large, there will be a
non-empty interval allowed for q.

8. All of the quantities in (41) except for N , q, and dc are preset parame-
ters, and dc can only decrease as N increases. The goal now is to find
a triple (N, q, dc) satisfying (37) and (41). And since the public key size
is roughly BtN log2(q), we would like to find the triple that minimizes
N log2(q).

9. This leads to the following algorithm, which is briefly described here, and
which is given in full detail as a working algorithm in Table 15.

(a) Find the smallest N so that the interval (41) with dc = 1 is non-empty.

(b) Set dc to be the smallest value so that
(
N

dc,dc

)
≥ 22λ. This ensures that

the inequality (37) holds.

(c) SetN to be the smallest prime so that the interval (41) contains a prime q
satisfying q ≡ 1 (mod N), and set q equal to that value.

(d) Assign the following values:

t← bBtNc, b← 2dc, k ←
⌊
Bqq/Bk

√
K + b

⌉
.

(e) Typically one sets df ← bN/3c, which maximizes key security. Alterna-

tively, one may take a smaller df , provided that
(

N
df ,df

)
≥ 22λ.

(f) If desired, recompute p ← (1 − b/k)N to see how much its value has
changed due to rounding.

(g) Compute the quantities δforge-z, δfake-F , δUSVP-08, δUSVP-16 using the
formulas in Proposition 10. If

δβ > max{δforge-z, δfake-F , δUSVP-08, δUSVP-16} (42)

output a successful parameter set. Otherwise select a larger prime N
and try again. (N.B. Our algorithm is designed to create parameters
satisfying δβ > δforge-z, since in practice we have found that δforge-z

tends to be the largest of the four δs on the right-hand side of (42).)

Remark 14. We note again that the forgery bound is an L∞-norm bound, not
an L2-norm bound. Thus as explained in Remark 8, the

√
N in the lattice forgery

inequality (38) can be strengthened by replacing it with 2Γ (1 +N/2)1/N/
√
π ≈√

2N/πe inside the parenthesis. Hence, in practice we replace (38) with the
forgery requirement(

2Γ (1 +N/2)1/NBqq
1−t/N

√
π

)1/(N−1)

≤ δβ . (43)

Similar considerations apply to the key recovery problem.
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Algorithm 9 Choosing MMSAT Parameters

Input: λ bit security level, typically in [128, 4096].
K maximum number of signatures to be aggregated, typically in [103, 106].
Bk aggregate signature verification scaling factor, typically in [2, 6].
Bq aggregate signature verification scaling factor, typically in

[
1
4
, 1

3

]
.

Bt lattice scaling factor, typically in
[

1
3
, 1

2

]
.

p single signature accept rate, typically between 10% and 99%.

Output: N dimension, a prime
q modulus, a prime satisfying q ≡ 1 (mod N)
t number of coordinates in partial Fourier transform
k norm bound for challenge polynomial
b used for norm bound/rejection sampling of signatures
dc numbers of 1 and −1 coefficients in commitment c
df numbers of 1 and −1 coefficients in private key f

Useful Non-Parameter Quantities
β BKZ blocksize
δβ HRF for BKZ β at bit security λ

δforge-z HRF to forge the z part of an MMSAT signature
δfake-F HRF to find an F that works as a signing key
δUSVP-08 HRF to find f as UniqueSVP — 2008 Estimate
δUSVP-16 HRF to find f as UniqueSVP — 2016 Estimate

1: β ← λ/0.265 // Blocksize from (33)

2: δβ ←
[
β

2πe
· (πβ)1/β

]1/(2β−2)

// HRF for BKZ-β from (34)

3: N ← smallest prime such

2Bk
√
K

Bq
· p1/N

1− p1/N
<

(
δNβ

Bq
√
N

)1/(1−Bt)
// This makes the interval (41)
// with dc = 1 non-empty.

4: dc ← smallest value so that
(
N

dc,dc

)
≥ 22λ

5: while the interval (41) contains no primes satisfying q ≡ 1 (mod N) do
6: N ← Next Prime(N)
7: end while
8: q ← smallest prime satisfying (41) and q ≡ 1 (mod N)
9: t← bBtNc

10: b← 2dc

11: k ←
⌊
Bq·q
Bk
√
K

+ b
⌉

12: df ← bN/3c // May be smaller, but must satisfy
(

N
df ,df

)
> 22λ

13: p← (1− b/k)N // Recompute signing probability

14: δforge-z ←
(

2Γ (1+N/2)1/NBqq
1−t/N

√
π

)1/(N−1)

15: δfake-F ←
[

N

2dcq2t/N

(
B2
kK(k−b)2

2 erf−1(2−λ/N )2
− 1

3
K(k − b)2

)]1/(2N−2)

16: δUSVP-08 ←
[

1

τ
√

4dfπe
·
√
N · qt/N

]1/N

// Typically τ = 1
3

17: δUSVP-16 ←
[

1√
2dfβ

·
√
N · qt/N

]1/(N−2β)

18: if δβ ≤ max{δforge-z, δfake-F , δUSVP-08, δUSVP-16} then
19: N ← Next Prime(N)
20: go to Step 8
21: end if

Table 15: Algorithm for Selecting MMSAT Parameters
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12 Sample Parameter Sets for MMSAT

Table 19 on page 60 lists a variety of sample parameters that were selected by
running Algorithm 9 (Table 15) using various values of (λ,Bk, Bq, Bt, p). We
illustrate by discussing the first line of that table.

Example 3. We consider a MMSAT parameter set with

K = 1000, λ = 128, Bk = 3, Bq =
1

4
, Bt =

1

3
, Prob(Accept) = 25.00%.

Algorithm 9 on this input gives parameters

(N, q, t) = (4111, 224.909, 1370), (df , dc) = (1370, 14), (k, b) = (83047, 28).

This gives the desired combinatorial security level and accept probability,

#TN (dc) =

(
N

dc, dc

)
≈ 2263.3 and

(
1− b

k

)N
≈ 25.15%.

The security level λ = 128 means that a forger is allowed to run BKZ-β with
blocksize β = 128/0.265 ≈ 484, which from (13) means that the forger can
achieve an HRF of

δBKZ(484) = 1.0034836.

According to (32), the forger succeeds if δBKZ(484) is smaller that the following
forgery HRF for the given parameters (with Bq = 1/4):

δforge(4111, 224.909, 1370) ≈ 1.0033051.

Thus the forgery is not successful. Indeed, we have been somewhat conservative
in estimating lattice security, since δforge is significantly smaller than δBKZ with
β = 484. We might ask what blocksize is required to successfully forge. The
answer is

δBKZ(521) = 1.0033055 and δBKZ(522) = 1.0033010,

so blocksize β = 522 is required, which corresponds to λ = 138.33. Thus the
given parameter set ostensibly has better than 138-bit lattice security. In view
of the uncertainties in estimating lattice security, we view this extra 10-bits of
lattice security as a feature, not a bug.

See also Table 1 in Section 1.1 for a comparison of parameter sizes of MMSAT
and MMSATK with other post-quantum schemes such as BLISS and PASSRS, as
well as with the non-quantum-secure ECDSA scheme.



46

13 MMSATK Bit Security and Choosing MMSATK
Parameters

The lattice forgery problem underlying MMSA is to find a sufficiently short
vector z such that the t coordinates of ẑ|Ω take on specified values in Zq. The
lattice has dimension N and discriminant qt.

The lattice forgery problem for MMSATK is similar, except that the forger
now only needs to match t′ of the coorindates of ẑ|Ω to specified values, where t′ <
t. However, the forger does not know in advance which t′ coordinates need to
match. Indeed, the t′ indices are chosen as a hash of z, thereby making it im-
possible for the forger to preselect any of the t′ indices.

However, the MMSATK forger gains some advantage over the MMSA forger.
Specifically, she may choose to solve an easier lattice problem in which she finds
a sufficiently short z such that t′′ of the coordinates of ẑ|Ω are correct. If t′′ is
fairly large compared to t′, then there is a reasonable possibility that she will
be lucky and the t′ indices chosen by hashing z will be a subset of the good t′′

coordinates that she forced to be correct.26 Hence

Expected run time to forge an MMSATK signature z

=


Expected run time to find z
satisfying ‖z‖∞ ≤ Bqq in a
PASSRS lattice of dimen-

sion N and discriminant qt
′′

Prob


Choosing t′ samples from
a set of size t containing
t′′ winning tickets and
getting all winning tickets


−1

. (44)

The probability in (44) is easy to compute. There are
(
t
t′

)
ways to choose the

sample, and of those, exactly
(
t′′

t′

)
of them consist entirely of winning tickets, so

the probability is

Prob


Choosing t′ samples from
a set of size t containing
t′′ winning tickets and
getting all winning tickets

 =

(
t′′

t′

)
(
t

t′

)
To estimate the first factor in (44), we let δBKZ(β) be the expected HRF

of BKZ-β as given by the formula (13) in Proposition 3, and we will also use
the fact that, according to Proposition 4, the cost of running BKZ-β is approx-
imately 20.265β . On the other hand, the formula (32) in Remark 8 says that the
HRF to find a forgery is

δforge(t′′) =

(
2Γ (1 +N/2)1/NBqq

1−t′′/N
√
π

)1/(N−1)

.

26 Even if a few of the t′ indices are not in the forger’s good set, she might be lucky
and have the extra coordinates match by chance. But each such coordinate has only
a 1/q chance of being correct, and q is quite large, so we will ignore this small error
term in our calculation.
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Note that this formula uses t′′ in place of t. This means that the δforge for
MMSATK is larger than the δforge for MMSA, making MMSATK somewhat easier
to forge than MMSA, as we would expect.

For each t′′ let β(t′′) be the smallest β so that so that

δBKZ

(
β(t′′)

)
≤ δforge(t′′).

Then the bit security of MMSATK against forgery lattice attacks is obtained by
taking the optimal (for the forger) value of t′′,

MMSATK bit security = min
t′≤t′′≤t

[
0.265β(t′′) + log2

(
t

t′

)
− log2

(
t′′

t′

)]
.

Table 16 gives some examples showing that when Bt = 1
3 , i.e., t ≈ 1

3N , this
attack decreases the bit security by only a few bits. However, for Bt = 1

2 , the
decrease in security is more substantial, bringing the security level below the
desired λ value. In practice, the security level can easily be raised back to the
desired level by increasing t′ slightly, which in turn will make the MMSATK key
a bit larger.

Example 4. We illustrate with the parameter set in the last line of Table 16.
The target bit security is λ = 256, but the MMSATK bit security for forgery
is only λforge = 248.68. In order to achieve the desired bit security, we need to
increase t′ from 78 to 92. With this change, we obtain blocksize βforge = 369
and λforge = 256.38. The consequence of the larger t′ value is that the key size
of MMSATK increases from 323 Bytes to 369 Bytes. Although not insignificant,
the compressed key size is still is stil almost 30 times smaller than the key size
for MMSA.

MMSA MMSATK
≈ λ N q t t′ t′′ key βforge λforge key βforge λforge

1284111224.9091370401140 4266 Bytes 522 138.33157 Bytes 473 136.12

1285119232.3331706381398 6896 Bytes 512 135.68186 Bytes 460 132.95

1283217224.655160839 998 4956 Bytes 531 140.72153 Bytes 361 122.92

2567393226.8062464822129 8257 Bytes 1033 273.74339 Bytes 959 271.74

2569041234.102301377255012844 Bytes 1018 269.77393 Bytes 935 266.57

2565791226.5032895781924 9591 Bytes 1048 277.72323 Bytes 762 248.68

Table 16: Minimal value of t′ satisfying (8) for some parameter sets in Table 19,
with a comparison of security levels and key sizes for MMSAT and MMSATK.

A Proof of the Reduction of MMSA to PASSRS

In this section we give the proof of the reduction of MMSA to PASSRS.
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Proof (of Theorem 3 in Section 8). The goal of the Challenger C is to interact
with the Chosen Key ForgerA to forge a Single Signature on µK using Alice’s key

f̂A|Ω. Note that C does not know the secret key fA and has no influence over how
µK is chosen. The Challenger C simulates the forger A by presenting a challenge
key, returning signature and hash queries. In response the Forger A returns
an aggregate signature forgery. The Challenger C uses the aggregate forgery
to extract a PASSRS signature. To handle the hash (random oracle) queries, C
maintains a list H. In MMSA hashes are computed with input (ŷ|Ω, µ, f̂ |Ω).

Therefore, C simulates the random oracle H with inputs (ŷ|Ω, µ, f̂ |Ω).
The simulation proceeds as follows:

Challenge PK: The Challenger C gives the aggregate forger A a challenge

public key f̂K |Ω = f̂C |Ω + f̂A|Ω where f̂A|Ω is Alice’s public key and f̂C |Ω
is the public key of the Challenger. Hence, C knows fC but not fK .

Signature Queries: A requests signatures on µ1, . . . , µNS under f̂K |Ω. C pre-
pares signatures zi, ci and returns them to A by iterating the following steps
for i = 1, . . . , NS :
1. Sample yCi ∈ B∞ (k) and ci ∈ B∞ (b).

2. Compute ŷi|Ω = ŷCi |Ω − f̂A|Ω � ĉi|Ω.

3. If entry with matching ŷi|Ω, µi, f̂1|Ω exists in H, restart from Step 1.
4. Compute zi = fC ? ci + yCi .
5. If ‖zi‖ > k − b then return to Step 1 (rejection sampling).
6. Uniformly sample βi ∈ {−1, 1}.
7. Insert 〈ŷi|Ω, µi, f̂K |Ω, ci, zi, βi〉 into H.
8. Return signature (zi, ci, µi) to A.

Note that Steps 1 and 5 ensure that the signatures are indistinguishable from
authentic signatures to the forger A.

Message Hash Queries: The forger A requests H(ŷi|Ω, µi, f̂ i|Ω) for forged

keys {f̂ i|Ω}
NH
i=1. The challenger C handles the hash queries as follows for

i 6= NH :

1. If entry for ŷi|Ω, µi, f̂ i|Ω exists in H, lookup and return ci.
2. Otherwise C samples ci ∈ B∞ (b) and βi ∈ {−1,+1}.
3. Return ci and insert 〈ŷi|Ω, µi, f̂ i|Ω, ci, null, βi〉 into random oracle H.

In the last iteration A queries for H(ŷNH |Ω, µNH , f̂NH |Ω). The Challenger
follows these steps instead:

1. If f̂NH |Ω 6= f̂K |Ω then ABORT.

2. If µK , f̂K |Ω is found in H and corresponding zi is not null then ABORT.

3. Challenger C retrieves f̂ i|Ω, ĉi|Ω, ŷi|Ω from H for i = 1, . . . , NH − 1.
4. Challenger C uniformly samples βi ∈ {−1, 1} and inserts this value into

H(f̂ i|Ω, ĉi|Ω, ŷi|Ω).
5. Challenger C computes ŷA|Ω:

ŷA|Ω = ŷK |Ω + βK

NH−1∑
i=1

βi(f̂ i|Ω � ĉi|Ω + ŷi|Ω).
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6. Challenger C computes and returns cA = Hash(ŷA|Ω, µK , f̂A|Ω).

Aggregation Hash Query: For aggregation A needs the βi values, and there-

fore needs make another random oracle query to H with {ŷi|Ω, µi, f̂ i|Ω}Ki=1

as input. For (ŷi|Ω, µi, f̂ i|Ω) entries that were requested earlier and stored
in the hash table, the Challenger C can look up the corresponding βi value.
Otherwise, C creates a new entry in H by uniformly sampling βi ∈ {−1, 1}.
C returns β1, . . . , βK .

Aggregate Forgery: A forges an aggregate signature (z, {µi, ŷi|Ω}Ki=1), that

verifies for {f̂ i|Ω}Ki=1 and messages {µi}Ki=1. If the forger fails so does C and
returns ABORT.

Signature Extraction:

1. Challenger C retrieves zi, βi from H(ŷi|Ω, µi, f̂K |Ω) for i = 1, . . . , NS .
2. Challenger C eliminates signatures obtained from the signing oracle for

f̂K |Ω by computing

z′ = βK(z −
NS∑
i=1

βizi)

3. Recover signature by computing

zA = z′ − fC ? cA

4. Return (zA, cA, µK) as the PASSRS signature.

Correctness. The challenger C returns (zA, cA, µK) as the PASSRS signature

and succeeds only if f̂NH |Ω = f̂K |Ω, i.e. the last hash query is performed with
the challenge key. This happens with probability 1/NH . Otherwise the the sim-
ulation ends with an ABORT. For the remaining analysis we assume this to hold:

f̂NH |Ω = f̂K |Ω. To verify the signature we run the PASSRS verification process
for instantiation with parameters (q,N, k′, b′). There are two checks in the ver-
ification process: check of the norm of the signature zA and the check on the
recomputed challenge c. Starting with the latter the challenge polynomial is
recomputed from the signature and public key as follows. We first compute

ŷ′A|Ω = ẑA|Ω − f̂A|Ω � ĉA|Ω.

and then the challenge

c′ = FormatC(Hash(ŷ′A|Ω, µK , f̂A|Ω))

Then we check if the newly computed challenge matches the one received in the
signature c′ = cA. Remember that

zA = z′ − fC ? cA and z′ = z −
NS∑
i=1

βizi.
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By construction the signatures returned during the signature queries satisfy

zi = fK ? ci + yi = (fC + fA) ? ci + yi = fC ? ci + fA ? ci + yi︸ ︷︷ ︸
yCi

,

where z′ denotes the remaining part of the aggregate signature with the signature
queries removed,

z′ = z −
NS∑
i=1

βizi.

Since

z′ = βK(fK ? cA + yK) +

NH−1∑
i=1

βi(f i ? ci + yi),

and since yA was defined to satisfy

βKyA = βKyK +

NH−1∑
i=1

βi(f i ? ci + yi),

we can write
βKz

′ = (fK ? cA) + yA.

Let us recall that fK = fC + fA. We expand the equation

z′ =
(
(fC + fA) ? cA

)
+ yA = fC ? cA + fA ? cA + yA.

Since we know fC ?cA, we can subtract it from the short version of the signature
z′:

zA = z′ − fC ? cA = fA ? cA + yA.

Now we have a valid signature (zA, cA) for Alice for the message µK and public

key f̂A|Ω. One can verify the signature by computing and comparing if the
challenges cA match:

ŷA|Ω = ẑA|Ω − f̂A|Ω � ĉA|Ω

This reveals
cA = Hash(ŷA|Ω, µK , f̂A|Ω)

In addition to the check on the challenge, the norm bound on the signature zA
also needs to be satisfied:

‖zA‖ = ‖z′ − fCcA‖ ≤ ‖z′‖+ ‖fCcA‖ = ‖z′‖+ b

and

‖z′‖ =

∥∥∥∥∥z −
NS∑
i=1

βizi

∥∥∥∥∥ =

∥∥∥∥∥
NH∑
i=1

zi

∥∥∥∥∥ ≤ NH(k − b).

The Central Limit Theorem implies that ‖z′‖ ≈
√
NH(k − b). To compensate

for the infinity norm check, we add a constant O(1), and then zA satisfies

zA ∈ B∞
(
O(1)

√
NH(k − b)

)
.
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Efficiency. The computations during the simulation performed by the Chal-
lenger C are summarized as follows:

• Challenge PK: 1 FΩ-transformation, 1 polynomial addition.
• Signature Query: 2 FΩ-transformation, 2 addition/subtraction, 1 coef-

ficient multiplication, 1 polynomial multiplication, 1 table insert for each
signature query (NS).

• Message Hash Query: 1 FΩ-transformation, 1 coefficient multiplication
and 1 coefficient addition for NH−1 queries. In addition 1 coefficient addition
and 1 Hash calculation.

• Single Extraction: 1 subtraction for each NS , 1 multiplication and 1 ad-
ditional subtraction.

Hence in terms of primitive operations, the total computation time τ is given by

τ = (2NS + 1)τFΩ + (4NS + 2NH + 3)τ� + (NS + 1)τ× + (NS +NH)τH + τHash.

B The Coordinate Moment of Points on a Sphere

In this section we compute the moments of the coordinates of points on a sphere,
which is an elementary calculus exercise.

Lemma 2. Let SN−1 ⊂ RN denote the unit sphere taken with the uniform prob-
ability measure, and let Xi denote any one of the coordinate functions on RN .
Then the odd moments of Xi are 0, and the moments of |Xi| are given by

E
(
|Xi|`

)
=

Γ

(
`+ 1

2

)
Γ

(
N

2

)
Γ

(
1

2

)
Γ

(
N + `

2

)
In particular, the variance is E(X2

i ) = 1/N .

Proof. The sphere is invariant under Xi → −Xi, so it is clear that the odd
moments of Xi vanish. For the moments of |Xi| we compute∫

SN−1

|X1|` dVSN−1

=

∫ π

0

· · ·
∫ π

0

∫ 2π

0

| cos θ1|`
N−2∏
i=1

sinN−1−i θi dθ1 · · · dθN−1

=

(∫ π

0

∣∣cos θ1|` · sinN−2 θ1 dθ1

)(N−2∏
i=2

∫ π

0

sinN−1−i θi dθi

)(∫ 2π

0

dθN−1

)

=

(
2

∫ π/2

0

cos` θ1 · sinN−2 θ1 dθ1

)(
N−2∏
i=2

2

∫ π/2

0

sinN−1−i θi dθi

)(
4

∫ π/2

0

dθN−1

)
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= B

(
`+ 1

2
,
N − 1

2

)
·
N−2∏
i=2

B

(
1

2
,
N − i

2

)
· 2B

(
1

2
,

1

2

)

=
Γ
(
`+1

2

)
Γ
(
N−1

2

)
Γ
(
N+`

2

) ·
N−2∏
i=2

Γ
(

1
2

)
Γ
(
N−i

2

)
Γ
(
N−i+1

2

) · 2
Γ
(

1
2

)
Γ
(

1
2

)
Γ (1)

= 2Γ

(
1

2

)N−1

Γ

(
`+ 1

2

)
Γ

(
N + `

2

)−1

.

In particular, taking ` = 0 gives the well-known formula

Vol(SN−1) = 2Γ (1/2)N/Γ (N/2) (45)

for the volume of the sphere, and thus the probability measure on SN−1 is dVSN−1

divided by (45). Hence

E
(
|Xi|`

)
= Vol(SN−1)−1

∫
SN−1

|X1|` dVSN−1 =
Γ
(
`+1

2

)
Γ
(
N
2

)
Γ
(

1
2

)
Γ
(
N+`

2

) ,
which is the desired formula.

To compute the variance, we use Γ (z + 1) = zΓ (z) to compute

E(X2
i ) =

Γ (3/2)Γ (N/2)

Γ (1/2)Γ (N/2 + 1)
=

(1/2)Γ (1/2)Γ (N/2)

Γ (1/2)(N/2)Γ (N/2)
=

1

N
.

More generally if ` is even, one can expand the gamma functions to get

E(X`
i ) =

`/2−1∏
j=0

2j + 1

N + 2j
,

so for example, E(X4
1 ) = 3/(N2 + 2N) and E(X6

1 ) = 15/(N3 + 6N2 + 8N).

C Chen and Nguyen’s BKZ-Simulator

In this section we describe that BKZ-simulator of Chen and Nguyen [13]. It
predicts the quality of the output from running BKZ β for a given number of
rounds using a given, reasonably large, blocksize β. We sumamrize their results,
using slightly different notation.

Theorem 5 (BKZ-Simulator [13]).
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Input:
`1, . . . , `N the logarithms of the lengths of the vectors in the Gram-

Schmidt orthogonalization of the initial basis for the lat-
tice Λ.

BlockSize the blocksize used by BKZ, must be ≥ 45.
Rounds the number of rounds (iterations) of BKZ.

Output:
`′1, . . . , `

′
N the logarithms of the lengths of the vectors in the Gram-

Schmidt orthogonalization of the basis determined by BKZ.
Run Time:

The expected RunTime of BKZ is given by the formula

log2(RunTime) = log2(Rounds ·N) + 0.64 · BlockSize− 20.356.

N.B. This run-time estimate from [13] and [26] is superceded by the far more
conservative estimate given by (14) in Proposition 4.

Proof. See Algorithm 10 in Table 17, as well as [13, Algorithm 2] and the subse-
quent analysis. Following [13], we estimate the run time of BKZ as follows: Each
round consists of roughly N = dimΛ enumerations. The cost of each enumera-
tion is equal to the number of enumeration tree nodes visited multiplied by the
cost of visiting one node. Hence

RunTime ≈ (number of rounds) ·N · (nodes per enumeration) · (cost per node).

In [13] the cost per node is given as roughly 200 cycles. We estimate the number
of nodes per enumeration using the equation

log2(nodes per enumeration) = 0.64 · BlockSize− 28,

which is derived in Lepoint et al. [26]. Hence

log2(RunTime) = log2(Rounds ·N) + (0.64 · BlockSize− 28)︸ ︷︷ ︸
enumeration cost

+ log2(200)︸ ︷︷ ︸
cost per node

.

Then −28 + log2(200) = −20.356 gives the stated formula

Remark 15. Algorithm 10 in Table 17 describes our implementation of [13, Al-
gorithm 2], the Chen–Nguyen BKZ Simulator. We briefly indicate the differences
between our implementation and [13, Algorithm 2].

• We have renamed some of the variables. In particular, the dimension of the
lattice isN , and the blocksize and number of rounds are denoted by BlockSize
and Rounds.
• We explicitly include the initialization `′i = `i for 1 ≤ i ≤ N . We note that

some initial assignment is required, since otherwise an unassigned `′i value
might be needed at Step 17.
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• We initialize the quantity logV in Step 9 and then update the value of logV in
Steps 14 and 17. This updating procedure replaces the following assignment
statement from [13, Algorithm 2]:

logV←
min{f,N}∑

i=1

`i −
k−1∑
i=1

`′i.

We have thus replaced 2k additions with 2 additions, and since the k loop
runs from 1 to roughly N , the resulting run-time of the simulator is greatly
reduced.

D Average L2-Norm of F ? c

The following calculation may be useful for future work, but is not used in this
paper.

Lemma 3. Let F ∈ ZN . Then for all N ≥ 1 and N/2 ≥ d ≥ 1,

Mean
c←TN (d)

(
‖F ? c‖22

)
= 2d ‖F ‖22 .

Hence for a randomly chosen c ∈ TN (d), one expects

‖F ? c‖2 ≈
√

2d · ‖F ‖2 , (46)

which accords with viewing the coefficients of F ?c as summing a 2dc-step random
walk through the coefficients of F .

Proof. To ease notation, we write T for TN (d). Then

Mean
c←TN (d)

(
‖F ? c‖22

)
= (#T )−1

∑
c∈T
‖F ? c‖22

= (#T )−1
∑
c∈T

N−1∑
k=0

(F ? c)2
k

= (#T )−1
∑
c∈T

N−1∑
k=0

(N−1∑
i=0

Fk−ici

)2

= (#T )−1
∑
c∈T

N−1∑
k=0

N−1∑
i=0

N−1∑
j=0

Fk−iciFk−jcj

= (#T )−1
N−1∑
k=0

N−1∑
i=0

N−1∑
j=0

Fk−iFk−j
∑
c∈T

cicj .
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Algorithm 10 BKZ Simulator

Input: N = lattice dimension
`1, . . . , `N , the logarithmic Gram–Schmidt norms of the initial lattice basis, i.e., if
v1, . . . ,vN is the initial basis, then `i = log ‖v∗i ‖2, where v∗i is given by (12)
BlockSize = BKZ-blocksize, must satisfy BlockSize ≥ 45
Rounds = number of BKZ-rounds
r1, . . . , r45, average logarithmic Gram–Schmidt norms of HKZ-reduced random
unit-volume 45-dimensional lattices (determined experimentally, see Table 18)

Output: `′1, . . . , `
′
N , the logarithmic Gram–Schmidt norms of the expected output

lattice basis after the specified number of Rounds of BKZ-reduction at the specified
BlockSize. The associated Hermite Root Factor (HRF) δ is given by

log δ =
1

N − 1

(
`′1 −

1

N

N∑
i=1

`′i

)
.

1: for i := 1 to N step 1 do
2: `′i = `i
3: end for
4: for d := 46 to BlockSize step 1 do

5: cd ← log
(
Γ (d/2 + 1)1/d/π1/2

)
= log

(
GH(Zd)

)
6: end for
7: for j := 1 to Rounds step 1 do
8: φ← true // flag to store whether L[k,N ] has changed

9: logV←
∑β
i=1 `i

10: for k := 1 to N − 45 step 1 do
11: d← min(BlockSize, N − k + 1) // dimension of local block
12: f ← k + BlockSize // end index of local block (if ≤ N)
13: if f ≤ N then
14: logV← logV +`f
15: end if
16: if k ≥ 2 then
17: logV← logV−`′k−1

18: end if // at this step, logV equals
∑min{f,N}
i=1 `i −

∑k−1
i=1 `

′
i

19: if φ = true then
20: if d−1 logV +cd < `k then
21: `′k ← d−1 logV +cd
22: φ← false
23: end if
24: else
25: `′k ← d−1 logV +cd
26: end if
27: end for
28: logV←

∑N
i=1 `i −

∑N−45
i=1 `′i

29: for k := N − 44 to N step 1 do
30: `′k ← 45−1 logV +rk+45−N
31: end for
32: for k := 1 to N step 1 do
33: `k ← `′k
34: end for
35: end for

Table 17: BKZ Simulator - Optimized Version of [13, Algorithm 2]
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0.789528, 0.780003, 0.750872, 0.706520, 0.696345, 0.660534,
0.626275, 0.581481, 0.553171, 0.520811, 0.487994, 0.459541,
0.414638, 0.392812, 0.339090, 0.306561, 0.276041, 0.236699,
0.196186, 0.161214, 0.110895, 0.067826, 0.027281, −0.023461,
−0.032053, −0.094033, −0.129109, −0.176965, −0.209406, −0.265868,
−0.299031, −0.349339, −0.380428, −0.427399, −0.474945, −0.530141,
−0.561625, −0.612009, −0.669011, −0.713767, −0.754042, −0.808610,
−0.859933, −0.884480, −0.886667

Table 18: Average logarithmic Gram–Schmidt norms of HKZ-reduced random
unit-volume 45-dimensional lattices, used by the BKZ Simulator (Algorithm 10)

In order to compute the inner sum, we consider two cases. First, if i 6= j, we
momentarily write c→ c′ for the permutation of T that flips the sign of the ith
coordinate of c. Then∑

c∈T
cicj =

∑
c∈T
ci=1

cj −
∑
c∈T
ci=−1

cj =
∑
c∈T
ci=1

cj −
∑
c′∈T
c′i=1

c′j =
∑
c∈T
ci=1

cj −
∑
c′∈T
c′i=1

cj = 0,

where in the penultimate equality we have used the fact that i 6= j to conclude
that c′j = cj . Second, if i = j, then

∑
c∈T

c2i = #
{
c ∈ T : ci = ±1

}
= 2#

{
c ∈ T : ci = 1

}
= 2

(
N − 1

d− 1, d

)
=

2d

N

(
N

d, d

)
.

Subtituting and using #T =
(
N
d,d

)
yields

Mean
c←TN (d)

(
‖F ? c‖22

)
= #T −1

N−1∑
k=0

N−1∑
i=0

F 2
k−i

2d

N

(
N

d, d

)
= N · ‖F ‖22 ·

2d

N
.

which completes the proof of the lemma.
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reduction to unique-SVP. In Information security and cryptology—ICISC 2013,
volume 8565 of Lecture Notes in Comput. Sci., pages 293–310. Springer, Cham,
2014.

https://eprint.iacr.org/2019/089


57
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E Tables of MMSAT and PASSRS Parameters Secure
Against Known Attacks

In this section we give sample parameters for MMSAT and PASSRS that are secure
against the known attacks described in this paper. We recall that the Hermite
root factors listed in the tables have the following meanings, and we refer to
Proposition (10) for the explicit formula used to compute each HRF.

δβ = HRF achieved by BKZ-β for blocksize β = λ/0.265.

δforge-z = HRF required to forge an amalgamate signature z.

δfake-F = HRF required to find an F that serves a a fake signing key.

δUSVP-08 = 2008-estimate of HRF required to solve the UniqueSVP and find f .

δUSVP-16 = 2016-esimtate of HRF required to solve the UniqueSVP and find f .



6
0

K N q t df dc k b β δBKZ δforge δfake-F δUSVP-08 δUSVP-16 1 Key
(Bytes)

1 Sig
(Bytes)

Agg-Sig
(KByte)

λ = 128, Bk = 3, Bq = 1/4, t ≈ 1/3 ·N, Prob(Accept) = 25.00%

1000 4111 224.909 1370 1370 14 83047 28 484 1.0034887 1.0033051 1.0028452 1.0013979 1.0009122 4266 8398 49

5000 4271 226.125 1423 1370 14 86279 28 484 1.0034887 1.0033179 1.0028734 1.0014155 1.0009585 4647 8754 178

10000 4349 226.651 1449 1370 14 87854 28 484 1.0034887 1.0033165 1.0028792 1.0014202 1.0009750 4828 8928 339

λ = 128, Bk = 3, Bq = 1/4, t ≈ 1/3 ·N, Prob(Accept) = 99.00%

1000 5119 232.333 1706 1706 14 14261428 28 484 1.0034887 1.0033471 1.0029693 1.0014580 1.0011042 6896 15208 59

5000 5297 233.544 1765 1706 14 14757332 28 484 1.0034887 1.0033439 1.0029775 1.0014648 1.0011270 7401 15769 189

10000 5381 234.066 1793 1706 14 14991354 28 484 1.0034887 1.0033381 1.0029769 1.0014658 1.0011348 7636 16034 350

λ = 128, Bk = 3, Bq = 1/4, t ≈ 1/2 ·N, Prob(Accept) = 25.00%

1000 3217 224.655 1608 1072 15 69632 30 484 1.0034887 1.0032624 1.0026798 1.0026555 1.0025171 4956 6469 47

5000 3343 225.871 1671 1072 15 72359 30 484 1.0034887 1.0032715 1.0027084 1.0026874 1.0025694 5404 6746 176

10000 3407 226.398 1703 1072 15 73744 30 484 1.0034887 1.0032666 1.0027129 1.0026935 1.0025810 5620 6887 337

λ = 256, Bk = 3, Bq = 1/4, t ≈ 1/3 ·N, Prob(Accept) = 25.00%

1000 7393 226.806 2464 2464 29 309338 58 967 1.0020973 1.0019948 1.0016931 1.0008364 1.0005421 8257 16855 96

5000 7643 227.965 2547 2464 28 308771 56 967 1.0020973 1.0020019 1.0017115 1.0008462 1.0005680 8904 17423 354

10000 7759 228.486 2586 2464 28 313456 56 967 1.0020973 1.0020040 1.0017175 1.0008502 1.0005788 9209 17708 675

λ = 256, Bk = 3, Bq = 1/4, t ≈ 1/3 ·N, Prob(Accept) = 99.00%

1000 9041 234.102 3013 3013 27 48576911 54 967 1.0020973 1.0020157 1.0017684 1.0008704 1.0006535 12844 28857 114

5000 9311 235.305 3103 3013 27 50027609 54 967 1.0020973 1.0020186 1.0017779 1.0008766 1.0006693 13694 29768 373

10000 9431 235.824 3143 3013 27 50672363 54 967 1.0020973 1.0020190 1.0017811 1.0008788 1.0006754 14075 30173 694

λ = 256, Bk = 3, Bq = 1/4, t ≈ 1/2 ·N, Prob(Accept) = 25.00%

1000 5791 226.503 2895 1930 30 250669 60 967 1.0020973 1.0019722 1.0015930 1.0015851 1.0015437 9591 12983 92

5000 6007 227.717 3003 1930 30 260018 60 967 1.0020973 1.0019744 1.0016075 1.0016013 1.0015697 10405 13507 350

10000 6089 228.236 3044 1930 30 263567 60 967 1.0020973 1.0019785 1.0016161 1.0016104 1.0015837 10744 13706 671

Table 19: Sample Parameters for MMSAT



6
1

N q t df dc k b β δBKZ δforge δfake-F δUSVP-08 δUSVP-16 Key
(Bytes)

Sig
(Bytes)

λ = 128 Bq = 1/4, t ≈ 1/3 ·N, Prob(Accept) = 25.00%

3163 218.062 1054 1054 15 68464 30 484 1.0034887 1.0032523 1.0026922 1.0013165 1.0005851 2380 6351

λ = 128 Bq = 1/4, t ≈ 1/3 ·N, Prob(Accept) = 99.00%

4201 225.480 1400 1400 14 11703902 28 484 1.0034887 1.0032998 1.0028750 1.0013994 1.0009276 4460 12331

λ = 128 Bq = 1/4, t ≈ 1/2 ·N, Prob(Accept) = 25.00%

2503 217.818 1251 834 16 57793 32 484 1.0034887 1.0031945 1.0024908 1.0024651 1.0021421 2787 4949

λ = 256 Bq = 1/4, t ≈ 1/3 ·N, Prob(Accept) = 25.00%

5807 219.939 1935 1935 30 251362 60 967 1.0020973 1.0019719 1.0016102 1.0007914 1.0003541 4823 13022

λ = 256 Bq = 1/4, t ≈ 1/3 ·N, Prob(Accept) = 99.00%

7507 227.369 2502 2502 29 43322562 58 967 1.0020973 1.0020002 1.0017167 1.0008411 1.0005543 8560 23806

λ = 256 Bq = 1/4, t ≈ 1/2 ·N, Prob(Accept) = 25.00%

4621 219.703 2310 1540 32 213366 64 967 1.0020973 1.0019365 1.0014842 1.0014761 1.0013379 5690 10226

Table 20: Sample Parameters for PASSRS
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