
Aggregated Private Information Retrieval

A First Practical Implementation to Support Large-Scale
Disease Analytics

Lukas Helminger1,2, Daniel Kales1, Christian Rechberger1, and Roman
Walch1,2

1 Graz University of Technology, Graz, Austria
2 Know-Center GmbH, Graz, Austria

Abstract. With the outbreak of the coronavirus, governments rely more
and more on location data shared by European mobile network operators
to monitor the advancements of the disease. In order to comply with
often strict privacy requirements, this location data, however, has to
be anonymized, limiting its usefulness for making statements about a
filtered part of the population, like already infected people.

In this research, we aim to assist with the disease tracking efforts by de-
signing a protocol to detect coronavirus hotspots from mobile data while
still maintaining compliance with privacy expectations. We use various
state-of-the-art privacy-preserving cryptographic primitives to design a
protocol that can best be described as aggregated private information re-
trieval (APIR). Our protocol is based on homomorphic encryption, with
additional measures to protect against malicious requests from clients.

We have implemented our APIR protocol in the SEAL library and tested
it for parameters suitable to create a coronavirus hotspot map for entire
nationstates. This demonstrates that it is feasible to apply our APIR
protocol to support nationwide disease analysis while still preserve the
privacy of infected people.

Keywords: FHE, APIR, Sars-CoV-2, Corona virus, BFV

1 Introduction

Due to the ongoing global threat of the SARS-CoV-2 virus, a number of tech-
nological approaches are currently developed to help reduce its spread and im-
pact. A lot of focus is on automatic contact tracing, challenges include privacy-
friendliness, scalability and utility, efforts include [22,7,15,6,10,16,50,1,31,45,51].

These approaches crucially rely on sizable parts of the population using
smartphones, enabling Bluetooth, and installing a new App on their phones.
In contrast, our proposal does not help with contact tracing, but gives poten-
tially useful epidemiological information to health authorities without requiring
people to carry around smartphones, as any mobile phone will be sufficient, and
Bluetooth is also not needed.

Mobile network operators increasingly share location data to manage the
coronavirus. Example: Governments in Italy, Germany, and Austria are rely-
ing on this metadata to monitor how people are complying with stay-at-home
orders3.

In addition, the EU Commission urged Europe’s biggest mobile network oper-
ators to hand over location data in the coronavirus fight4. In order to respect Eu-
rope’s strict privacy requirements, mobile network operators only share anony-
mous, aggregated information that they have already gathered. Other types of
such aggregated data sharing are e.g. provided by Google5.

Although this information is useful, it has its limitations. After the process
of anonymization and aggregation, it is only possible to make statements about
the whole population. For example, the shared data can not be used to question
whether there is a difference in behavior between people who got infected with
Sars-Cov-2 and those who did not. Consequently, it is impossible with this data
to detect public places where there is a significantly higher risk of getting infected
with Sars-CoV-2 (hotspots). This, in turn, could be valuable knowledge in the
further containment of Sars-CoV-2. The question is if there is a way to find
Sars-CoV-2 hotspots without undermining privacy requirements. Landau in [39]
independently also motivates increased efforts in aggregated location tracking as
contact tracing may not work as well as hoped.

This research aims to construct a protocol for detecting coronavirus hotspots
from mobile data in accordance with strict privacy requirements. To accomplish
this, we design a specialized private information retrieval (PIR) protocol.

PIR protocols, as introduced by Chor et al. [20], aim to realize efficient
methods for a client to retrieve elements from a database managed by one
or many untrusted servers. Thereby, none of the involved servers should learn
which element was retrieved by the client. In this paper, we are interested in
the single-server variants, namely computational PIR (CPIR), which rely on
cryptographic hardness assumptions to hide the query from the server. Recent
work [43,14,26,38,40,41,52,3] has heavily improved on the original ideas of Chor
et al. Many CPIR implementations use homomorphic encryption (HE) to hide
the queries from the server while still allowing him to perform operations on the
query.

HE is a cryptographic primitive that allows performing computations on
encrypted data without knowing the secret decryption key. The first fully ho-
momorphic encryption (FHE) scheme, which in theory allows computing all
possible functions on encrypted data, was introduced by Gentry [29] in 2009 and
has been drastically improved upon by followup publications [12,11,28,18,19].
However, the limitation of FHE schemes is that they add a substantial perfor-

3 https://www.reuters.com/article/us-health-coronavirus-europe-

telecoms/european-mobile-operators-share-data-for-coronavirus-fight-

idUSKBN2152C2
4 https://www.sciencemag.org/news/2020/03/cellphone-tracking-could-help-

stem-spread-coronavirus-privacy-price
5 https://www.google.com/covid19/mobility/

2

https://www.reuters.com/article/us-health-coronavirus-europe-telecoms/european-mobile-operators-share-data-for-coronavirus-fight-idUSKBN2152C2
https://www.reuters.com/article/us-health-coronavirus-europe-telecoms/european-mobile-operators-share-data-for-coronavirus-fight-idUSKBN2152C2
https://www.reuters.com/article/us-health-coronavirus-europe-telecoms/european-mobile-operators-share-data-for-coronavirus-fight-idUSKBN2152C2
https://www.sciencemag.org/news/2020/03/cellphone-tracking-could-help-stem-spread-coronavirus-privacy-price
https://www.sciencemag.org/news/2020/03/cellphone-tracking-could-help-stem-spread-coronavirus-privacy-price
https://www.google.com/covid19/mobility/

mance penalty of several orders of magnitude compared to performing equivalent
computations in plain. Nevertheless, recent publications have shown, that highly
optimized protocols can leverage homomorphic encryption to increase privacy of
complex tasks, like machine learning [23,35,21,9,8,5,37,36].

However, PIR protocols, by definition, do not hide individual database entries
from clients. In this paper, we want to go one step further by using HE to
additionally aggregate multiple database entries to keep the server data private
as well.

1.1 Aggregated Private Information Retrieval

We present a protocol for aggregated private information retrieval (APIR). In the
use-case we will describe later, APIR would enable officials to get anonymous,
aggregated information about movement records of Sars-Cov-2 patients. In the
following, we first outline the main idea of our APIR protocol.

We assume without loss of generality that the first column of the database
of the server consists of unique identifiers. The client’s input to the protocol is a
list of such ids, and the output is a vector representing the aggregated columns
of the server’s database with respect to the client’s identifiers.

The threat model of the APIR protocol is similar to PIR protocols, i.e., the
server should not know which elements were retrieved by the client. Additionally,
in an APIR protocol, the client should also not be able to retrieve individual
entries of the database, only receiving aggregated values is allowed. Note that
the identifiers of the server are not considered to be private.

To achieve the privacy goals outlined above, we make heavy use of homomor-
phic encryption. In particular, the client homomorphically encrypts its identifiers
before sending it to the server. Due to the nature of homomorphic encryption,
the server can still perform the data aggregation. To prevent the client from
learning individual entries, we make sure that the client’s list of identifiers has a
guaranteed minimum cardinality and that each identifier is unique. In addition,
we apply differential privacy before releasing the output.

1.2 Benchmark results

We report concrete benchmarks of our protocol for parameters suitable to create
a Sars-Cov-2 hotspot map for small nations with millions of subscribers and tens
of 1000s of base stations. In our concrete example this corresponds to an APIR
protocol applied on a database consisting of ≈ 238 32-bit entries. We report
multithreaded runtimes of 30 minutes for the standard APIR protocol, and 1
hour when extra steps are applied to ensure the input vector is not malicious.
Our benchmarks show that it is feasible to use our APIR protocol on relatively
large databases to support disease analysis of small nation states or large cities
while still maintaining the privacy of infected people. We also show that costs for
doing the same for larger nation states can still be expected to be very modest.

3

1.3 Roadmap

After introducing preliminaries in Section 2, we describe our APIR protocol
more formally in Section 3. In Section 4, we illustrate an application of our
APIR protocol, which can have a significant impact on the understanding where
Sars-Cov-2 infection hotspots can be found. Afterward, in Section 5, we will have
a look at the details of our implementation as well as the benchmarks.

2 Preliminaries

In this section, we cover the preliminaries required for the rest of the paper.
We will first introduce the notations we use in the rest of the paper, before we
describe homomorphic encryption, private information retrieval and differential
privacy.

2.1 Notation

We follow the widespread convention to write vectors in bold lower case letters
and matrices in upper case letters. We use xi to access the i-th element of
vector x. For m ∈ N and x ∈ Z, let xm be defined as the vector of powers
of x: xm = (x, x1, ..., xm). We denote by c ◦ d the element-wise multiplication
(Hadamard product) of the vectors c and d. For a positive integer p, we identify
Zp = Z ∩ [−p/2, p/2).

2.2 Homomorphic Encryption

The concept of homomorphic encryption (HE) has often been considered to be
the holy grail in cryptography since it allows us to work on encrypted data with-
out requiring the secret decryption key. It was first introduced by Rivest et al. [47]
and partially HE schemes, i.e. schemes which allow performing a limited set of
operations on encrypted data, have been known for years: The RSA [48] encryp-
tion scheme is homomorphic for multiplication and Paillier’s cryptosystem [44]
is homomorphic for addition. However, it was not until Gentry’s groundbreaking
work from 2009 [29] that we were able to construct the first fully homomorphic
encryption (FHE) scheme, a scheme which in theory can evaluate an arbitrary
circuit on encrypted data. His construction is based on ideal lattices and is
deemed to be too impractical ever to be used, but it led the way to construct
more efficient schemes in many following publications [12,11,28,18,19].

Modern HE schemes are based on the learning with errors (LWE) [46] hard-
ness assumption, and its variant over polynomial rings, the ring learning with
error (RLWE) [42] hardness assumption. In the following, we recall one variant
of the RLWE hardness assumption, the Decision-RLWE hardness assumption.

Definition 1 (Decision-RLWE). For security parameter λ, let f(x) be a cy-
clotomic polynomial Φm(x) with deg(f) = ϕ(m) depending on λ and set R =

4

Z[x]/(f(x)). Let q = q(λ) ≥ 2 be an integer. For a random element s ∈ Rq and

a distribution χ = χ(λ) over R, denote with A
(q)
s,χ the distribution obtained by

choosing a uniformly random element a ← Rq and a noise term e ← χ and
outputting (a, [a · s + e]q). The Decision-RLWEd, q, χ problem is to distinguish

between the distribution A
(q)
s,χ and the uniform distribution U(R2

q). The Decision-
RLWEd, q, χ assumption is that the Decision-RLWEd, q, χ problem is infeasible.

During the encryption of a plaintext in RLWE based schemes, random noise
is introduced into the ciphertext. This noise grows with the evaluation of homo-
morphic operations, negligible for addition, but significantly for homomorphic
multiplication. Once this noise becomes too large and exceeds a threshold, the
ciphertext cannot be decrypted correctly anymore. We call such a scheme a
somewhat homomorphic encryption scheme (SHE), a scheme that allows evalu-
ating an arbitrary circuit over encrypted data up to a certain depth. The specific
depth depends on the choice of encryption parameters, and choosing parameters
for larger depths comes, in general, with a considerable performance penalty.

In his work [29], Gentry introduced the novel bootstrapping technique, a pro-
cedure that reduces the noise in a ciphertext and can turn a (bootstrappable)
SHE scheme into an FHE scheme. However, this bootstrapping operation comes
with high computational complexity. In many practical applications it is, there-
fore, faster to omit bootstrapping and choose a SHE scheme with large enough
parameters to evaluate the desired circuit. In this work, we use the BFV [11,28]
SHE scheme to homomorphically encrypt the inputs of our protocol.

We rely on HE instead of other privacy-preserving protocols, such as secure
multi-party computation (MPC), due to several considerations:

– Homomorphic ciphertext-ciphertext multiplications are very costly in HE
schemes, however, in our protocol we mainly rely on the cheaper plaintext-
ciphertext multiplications. Therefore, all the operations involved in our pro-
tocol can be expressed relatively cheap using HE.

– HE has the advantage of outsourcing computations. After the client sends
the encrypted data to the server, the server can do the computations without
further data exchange with the client. MPC protocols, in contrary, have a
higher number of communication rounds and all parties have to participate
in the computations.

– MPC protocols usually have a higher communicational complexity, i.e., the
amount of exchanged data is much higher. Especially over WAN networks,
the communication alone can introduce significant delays.

2.3 Private Information Retrieval

In 1995, Chor et al. [20] introduced the notion of private information retrieval
(PIR), server-client protocols which allow clients to hide queries to a database
managed by one or many server, but still receive the correct elements. Thereby,
the goal is to be more efficient than the straight-forward solution of letting the
client download the whole database. In the literature we distinguish between

5

two different types of PIR: information theoretic PIR (IT-PIR) [20,4,24,25,30]
protocols which rely on multiple, non-colluding servers to ensure privacy; and
computational PIR (CPIR) [43,14,26,38,40,41,52,3] where a single server man-
ages the database and encryption is used hide the query.

Our approach is similar to the single-server CPIR variant, in which best-
performing CPIR protocols [43,3] use homomorphic encryption to ensure that
the server is still able to compute on the query to provide the final result. One
major issue with CPIR protocols is that the server must process all entries of
the database to answer a single query. If this would not be the case, the server
must somehow have learned, which entries the client is not interested in, and
thus, leaked information about the query. The computation cost of a server is,
therefore, linear in the database size, which limits the practicability of CPIR to
small databases.

CPIR using homomorphic encryption boils down to essentially evaluate a vast
vector-matrix multiplication on a one-hot encoded input vector. State-of-the-art
CPIR implementation employs many optimizations to make retrieving single
elements very feasible for limited database sizes. In this work, however, we are
not interested in retrieving only one item; in fact, we want to ensure that single
database entries are kept hidden from the client as well. We, therefore, employ
homomorphic encryption to retrieve multiple aggregations of many database
entries at once and invalidate responses for malicious queries. Furthermore, we
want to implement use cases involving a huge database consisting of ≈ 238 32-bit
entries.

2.4 Differential Privacy

Another thing to consider when designing a privacy-preserving data analytics
protocol is that the result which the client obtains in plain can still leak infor-
mation about the underlying dataset. In our case, an aggregated PIR protocol,
the data aggregation can leak information about single database entries. We
can use the well-established notion of differential privacy to help protect against
such kind of information leakage. Let us recall the definition of ε-differential
privacy [27]:

Lemma 1 (ε-Differential Privacy). A randomized mechanism A gives ε-
differential privacy if for any neighboring datasets D and D′, and any S ∈
Range(A): Pr[A(D) = S] ≤ eεPr[A(D′) = S].

Since D and D′ are interchangeable, Lemma 1 implies:

e−ε ≤ Pr[A(D) = S]

Pr[A(D′) = S]
≤ eε (1)

An established technique to achieve ε-differential privacy is the Laplace mech-
anism, i.e., to add Laplacian noise to the final result of the computation. The
noise is, thereby, calibrated with the privacy budget ε and the global sensitivity
∆q of the computation q: ∆q = max

D,D′
||q(D) − q(D′)|| for all neighboring D and

6

D′. In other words, the global sensitivity represents the maximum possible value
of each element in the dataset. The Laplace distribution for a scale factor b is

given as Lap(x|b) = 1
2be
− |x|b , in the Laplace mechanism a scale factor of b = ∆q

ε
is used.

We can apply differential privacy to our APIR protocol by adding Laplacian
noise to each element of the final result of the matrix multiplication vT · Z:

hT = vT · Z + `T (2)

with `i
$← Lap(∆qiε) for 0 ≤ i < k.

We note that in general, each column of the matrix multiplication can repre-
sent a different dataset with a different sensitivity ∆qi. However, in the use case
we describe in our work, each ∆qi is equal.

3 APIR

In Section 3.1, we give a high-level description of our protocol below. A formal
definition of the protocol is provided in Figure 1. In addition, we illustrate our
protocol in Figure 2 including an interactive proof to protect against malicious
queries described later in this section. Then we discuss in Section 3.5 the concrete
privacy and a generalization of our APIR protocol in Section 3.6.

3.1 Protocol

We use a HE scheme HE = (HE.KGen,HE.Enc,HE.Dec,HE.Eval). Before exe-
cuting the protocol, the client runs KGen to obtain an evaluation key evk and a
private key sk. We assume that the server knows evk before running the protocol.

First, observe that according to our assumptions, the server is allowed to
share the identifiers with the client. We can exploit this fact by server not only
sending the identifiers but also the indices of the identifiers in the database. In
this case, the client not only gets to know which identifiers it has in common with
the server but also their exact location in the database of server. This information
is stored in the vector v =

[
v1 · · · vN

]
. Sending v to the server would stand

in contradiction to our threat model because the server would directly learn
the identifiers of the client. Therefore, the client homomorphically encrypts the
vector v before sending it to the server. The server can not learn anything from
the encrypted vector provided that the HE scheme is semantically secure.

Remark. In some applications the list of identifiers in the server database might
also be considered private information. In such cases, one can augment this step
by using a variant of Private Set Intersection (PSI) with associated data trans-
fer. In particular, the labeled PSI protocol in [17] provides the required features
while conveniently being based on Fully Homomorphic Encryption.

7

Public inputs: Client and server agree on parameters N,n,W, s ∈ N, ε ∈ R>0.
Private inputs: The client has input (x1, . . . , xν) ∈ {0, 1}n×ν with ν ∈ N,
and keys (evk, sk) for a homomorphic encryption scheme. The server has input
(y1, . . . , yN) ∈ {0, 1}n×N , Z = (zij) ∈ ZN×k with k ∈ N and knows evk.

Protocol:

1. Server sends {yi, i}i∈[N] to the client.
2. Client sets vi = 1 if {x1, . . . , xν} ∩ yi 6= ∅ and 0 otherwise, for all i ∈ [N].
3. Client computes ci ← HE.Encsk(vi) for all i ∈ [N], and sends {ci}i∈[N] to server.
4. Server sets d← HE.Evalevk

(
c− 1N

)
If interactive == TRUE:

Server chooses zi, yi, ri, ρi
$← Zp, computes

µi = HE.Evalevk(zi · (〈c,1N 〉 −W) + 〈c,d ◦ yNi 〉) · ri + ρi,

and sends µ =
[
µ1 · · · µs 0 · · · 0

]T ∈ Zkp to the client
Else:

Server chooses r
$← Zkp, and computes

µ← HE.Evalevk
(

(z · (〈c,1N 〉 −W) + 〈c,d ◦ yN 〉) · r
)
.

5. If interactive == TRUE:
Client decrypts ρ′ ← HE.Decsk(µ), and sends ρ′ to the server.

6. If interactive == TRUE:
If ρ′ 6= ρ =

[
ρ1 · · · ρs 0 · · · 0

]T
server aborts, otherwise server sets µ← 0.

Sever computes

h∗j ← HE.Evalevk

〈
 c1...
cN

 ,
 z1j...
zNj

〉+ µj

 .

7. Server chooses `j
$← Lap(∆q

ε
) for j ∈ [k], computes

h∗j ← HE.Evalevk
(
h∗j + `j

)
,

and sends {h∗j}j∈[k] to the client.
8. Client computes hj ← HE.Decsk(h

∗
j) for j ∈ [k] and outputs {hj}j∈[k].

Fig. 1: Full description of our APIR protocol.

As mentioned before, we want to ensure that the client does not get the
values of individual rows. Therefore, the server checks that the hamming weight
of c is not too low. Depending on the specific use of the protocol, the threshold
W can vary. This precaution alone is not enough against a malicious client who
could also send an arbitrary non-binary vector. As an example, by sending a
vector of all zeros except one coordinate equal to the minimum hamming weight
W , the client would still learn the values of this particular row. To prevent such
abuse, the server also checks that the vector c is binary. Only if both conditions
are satisfied, the following data aggregation is valid. Technically, we developed
two variants of how the server can check the correctness of the query vector v.

8

One can detect a malicious client before doing the costly matrix multiplication
by introducing one additional round of communication, the other invalidates the
result of our APIR protocol for malicious queries. For details see Section 3.3 and
Section 3.4.

The data aggregation is done by computing a large matrix multiplication.
The vector c contains the information, which rows should part of the sum. Since
c is encrypted, according to the security guarantees of the HE scheme it does
not reveal any information to the server, however, by using Eval and evk, the
server can still perform the matrix multiplication. We add a small random noise
to the result of the homomorphic matrix multiplication for privacy reasons (see
Section 2.4). By decrypting h∗ with its private key sk, the client gets the final
output of the protocol.

3.2 Proving that the Query Vector is Binary

One assumption of the protocol is that it requires the input vector to be binary. If
this is not the case, the client can arbitrarily modify the contribution of a single
person to the overall aggregated result, which can leak private information. Since
the server only receives an encryption of the input vector, simply checking for
binary values is not an option. However, we can use similar techniques to the
ones used in Bulletproofs [13] to provide assurance that the query vector c is
made up of binary elements, i.e., ∀i : ci ∈ {0, 1}.

Lemma 2. Let c ∈ ZN be the query vector and let d = c − 1. If the following
condition holds, c is a binary vector c ∈ ZN2 :

c ◦ d = 0N .

Note in our scenario, d can be computed by the server. However, the server needs
to compare a homomorphically encrypted vector to zero to check Lemma 2, which
is not trivially possible. Therefore, we want to encode this comparison as a mask
µbin ∈ Zkp, which will either be zero if c ∈ ZN2 , random otherwise. Adding µbin

to the response of the server will invalidate the result for malicious input vectors,
but do not affect correct queries.

The result of c ◦ d can be aggregated into a single value by calculating the
inner product 〈c,d〉, which will again be zero if c ∈ ZN2 . The server then adds

a random value y
$← Zp to reduce the probability for the client to cheat by

letting several entries of c cancel each other out during the inner product. A

final randomization with a vector r
$← Zkp, produces the final mask:

µbin = 〈c,d ◦ yN 〉 · r . (3)

For the generic case of a vector b and a randomly chosen y, 〈b,yN 〉 = 0
will hold for a b 6= 0 only with probability N/p [13]. Using a 60 bit prime, i.e.

p ≈ 260, for N = 223, this probability is Pr ≈ 223

260 = 2−37, i.e. a soundness error
of 37 bits.

9

Client Server

Input: (x1, . . . , xν) Input: (y1, . . . , yN), Z = (zij)

Output: hj =

ν∑
l=1

N∑
i=1

1xl(yi)zij for 1 ≤ j ≤ k Output: ⊥

Plain Phase

For i = 1 to N : For i = 1 to N :

(yi, i)

vi =

{
1 if X ∩ yi 6= ∅
0 otherwise

Check Query Vector

For i = 1 to N :

ci ← HE.Enc(vi)

c =
[
c1 · · · cN

]T
c

d← HE.Evalevk
(
c− 1N

)
For i = 1 to s:

zi, yi, ri, ρi
$← Zp :

µi ← HE.Evalevk
(

(zi · (〈c,1N 〉 −W) + 〈c,d ◦ yNi 〉) · ri + ρi.
)

µ =
[
µ1 · · · µs 0 · · · 0

]T ∈ Zkp

µ

ρ′ = HE.Dec(µ)

ρ′

If ρ′ 6= ρ abort, otherwise continue.

Data Aggregation
h∗1
h∗2
...
h∗k

T

= HE.Evalevk
(
cT · Z

)

= HE.Evalevk

[c1 c2 · · · cN] ·

z11 z12 · · · z1k
z21 z22 · · · z2k
...

...
...

...
zN1 zN2 · · · zNk

Differential Privacy

For j = 1 to k:

`j
$← Lap(

∆q

ε
)

h∗1
h∗2
...
h∗k

 = HE.Evalevk

h∗1
h∗2
...
h∗k

+

`1
`2
...
`k

Decryption Phase

For j = 1 to k: For j = 1 to k:

h∗j

hj = HE.Dec(h∗j)

Output
[
h1 h2 · · · hk

]

Fig. 2: Illustration of our APIR protocol with interactive proof for an honest
query vector.

3.3 Proving the Hamming Weight of the Query Vector

Another problem of our protocol is that the client can target the values of single
people by querying the server with an input vector of hamming weight W =

10

1. Again, since the query is encrypted, the server can not trivially check the
hamming weight of the input vector. However, we can apply similar techniques
as in the previous section to incorporate a hamming weight check into a masking
value.

Again let c be the query vector and let W be its announced hamming weight.
On the server-side, calculate 〈c,1N 〉, which is equal to the hamming weight of

c. Therefore, with a random vector r
$← Zkp, the following mask µHW ∈ Zkp is zero

if c has the announced hamming weight W , random otherwise:

µHW = (〈c,1N 〉 −W) · r . (4)

We then combine the two separate proofs in equation 3 and equation 4 into a

combined masking value µ, adding a random value z
$← Zp to avoid the separate

masks canceling each other out:

µ = (z · (〈c,1N 〉 −W) + 〈c,d ◦ yN 〉) · r (5)

µ is now equal to 0k if c is a binary vector with hamming weight W , random
otherwise. A vector c not fulfilling these conditions will result in a masking value
of 0k only with probability N+1

p .

3.4 Interaction vs. Masking

The masks calculated in the previous section is finally added to the result of the
matrix multiplication to invalidate the result for malicious queries. However, one
could also perform an additional round of interaction between the client and the
server as follows: Calculate a challenge value like the previous mask, however,

instead of using a random vector r
$← Zkp, we multiply the mask with a random

scalar r
$← Zp and also add a final random value ρ

$← Zp:

µchal = (z · (〈c,1N 〉 −W) + 〈c,d ◦ yN 〉) · r + ρ (6)

The server then sends this ciphertext as a challenge to the client, who de-
crypts it and sends back the result. Only if the sent value is equal to ρ, the
matrix multiplication is carried out and the result is sent back to the client.
This approach has multiple advantages: First, at the cost of one more round of
interaction and the associated communication, the server can detect malicious
input vectors before carrying out the expensive matrix multiplication. Further-
more, this approach can also be repeated in parallel to boost the soundness.

With a soundness error of N+1
p , repeating the challenge t times reduces the

probability to cheat to
(
N+1
p

)t
. Therefore, we require at least s challenges in

parallel to achieve a soundness error of at least the security level λ (in bits),
with s being:

s =

⌈
−λ

log2(N+1
p)

⌉
(7)

11

3.5 Privacy

For the privacy of APIR, the selection of parameters is of outermost importance.
By using the APIR protocol in an application, the parameters n, k, and N get
fixed by the specific data sets, whereas the parameters ε and W can be freely
chosen. The concrete privacy - in particular for the items in the client’s database
- is highly dependent on those two parameters. An anonymization expert should
choose them with knowledge of the specific data sets and the actual application.
The aim here is that the parameters are selected in a way that, from the output,
no re-identification is possible but correctness and usefulness of the aggregated
results is maintained.

3.6 Generalized View of APIR

The data aggregation of our APIR protocol is presented in a straightforward
fashion. We use the simplest form of aggregations; namely, just adding all the
information requested from the client, which corresponds to a single big matrix
multiplication. Depending on the use-case, one could think of more involved
methods. The computation on the server-side can consist of any combination of
(matrix) multiplications, (matrix) additions as well as rotations of single rows
or columns. In this light, APIR can be seen not only as a protocol but rather as
a useful framework for privacy-preserving data analytics.

4 Application: National Scale Sars-CoV-2 Heat Map

Our APIR protocol can help to learn more about the behavioral patterns of
people tested positive with Sars-CoV-2. Note that the whole objective of our
approach is to gather this information without violating the privacy of patients
or enabling the tracking of individuals. In this section, we describe how the
generic protocol in Figure 1 can be used to create a private heat map of Sars-
CoV-2 positive people at the time of their infection. Such a heat map could lead
to a better understanding of Sars-CoV-2 hotspots, i.e., places where there is a
significantly higher risk of getting infected with Sars-CoV-2. This, in turn, could
be valuable knowledge in the further containment of Sars-CoV-2.

4.1 Heat Map Protocol

The parties involved in creating a Sars-CoV-2 heat map are a mobile network
operator (M) and a health authority (H). An illustration of this application
can be found in Figure 3. M takes the role of the server, where the identifiers
are mobile phone numbers. Let N be the number of all mobile phone numbers
registered by M and n the length to represent a mobile phone number. The
matrix Z contains location data. More precisely, each row is the location data
for one particular mobile phone number. For simplification, we assume that the
location data is represented as follows. The value zij is the amount of time spent

12

by person i in the cell site j. Therefore, k is the number of cell towers operated
by M . On the other side, the role of the client is taken by H. The input of H
is a list of ν mobile phone numbers of Sars-CoV-2 patients. The output of the
protocol is a vector

[
h1 · · · hk

]
, where hj is the total amount of time spent by

all the Sars-CoV-2 patients in the cell site j.

Note that, as we have already mentioned in Section 3.6, our APIR protocol
should be seen more as a framework. This means that with little adaptation, our
APIR protocol can be used for many different analytical methods. In particu-
lar, we can exchange the data aggregation (matrix multiplication) by different
computations to support a larger class of epidemiologically useful statistics. The
heat map is only one concrete instantiation of this framework.

We now want to have a look at the privacy features of the application inher-
ited from them generic protocol. Recall, the generic protocol has two checks to
ensure that H does not learn the values of any row, i.e., H should not learn the
movement pattern of any individual. More concretely, H is not allowed to query
the location data for less than W different people. W has to be chosen in such a
way that the data aggregation provides anonymity and its exact value will highly
depend on the actual underlying data, which is the reason why we do not give
a generic value in this paper. We urge users of our protocol to rely on an expert
in the field of de-anonymization with sufficient knowledge of location data to
choose a suitable value. To sum up, by using our protocol correctly, highly sen-
sitive personal data is protected. In particular, M does not learn which people
are infected by Sars-CoV-2. On the other side, H does not get the movement
record of individual patients.

Health Authority

Patient 0001: 0043 664 1234567
Patient 0002: 0043 664 7654321

...
Patient 1000: 0043 664 1219928

Mobile Network Operator

0043 664 7654321: location data
0043 664 3454359: location data

...
0043 664 2376321: location data

phone numbers, corresp. indices

encrypted indices of patients

encrypted heat map

Output: Corona Heat Map

Fig. 3: Private Sars-CoV-2 Heat Map.

13

4.2 Practical Considerations

Preprocessing. A preprocessing phase on the side of the mobile network
provider could increase the value of the heat map as well as provide even more
privacy. First, M could try to find the place of residence by assuming people
sleep at home. Therefore, they can look at the location of people at night and
remove those places for the heat map creation. Once M has completed this step,
the heat map will additionally be more informative in the sense of H getting
a better picture, which public places might bear a high risk of getting infected
with Sars-CoV-2. Secondly, to further enhance the privacy of patients, M should
filter out isolated profiles. Such filtering of the data obviously does not affect the
meaningfulness of the heat map, since crowded public places would not be af-
fected. Note that both preprocessing steps are done on the side of the mobile
network operator. That means those steps can be done on non-encrypted data
and therefore are negligible when it comes to the runtime of our protocol.

Applying Differential Privacy. An attack vector for H in our protocol can
be to abuse the heatmap to track individual people by querying for isolated
profiles. For example, they want to query for a person living in the westmost area
of the country. To overcome the hamming weight check on the server-side, they
additionally query for W − 1 people living on the east side of the country. The
location data of the targeted person is clearly shown on the resulting heatmap;
H just has to look at the western part of the result.

Applying differential privacy with suitable parameters will protect against
such an attack since the overall goal of differential privacy is to decrease the
statistical dependence of the final result to a single database entry as much
as possible. In our use-case, therefore, differential privacy achieves that it is
infeasible to distinguish between heatmaps, in which we include a single person
in the accumulation and heatmaps in which we do not.

A general issue of differential privacy is that the privacy guarantees get
weaker the more queries the client is allowed to do. This, however, is no is-
sue in our use case, since the location data changes every couple of days, and we
can limit H to query a heatmap to, e.g., once a day.

Choosing proper parameters, however, highly depends on the underlying
dataset. On the one hand, the chosen ε should be small enough to satisfy pri-
vacy concerns; on the other hand, it should be big enough not to overflow the
result with noise. In our protocol, accumulations of a sufficient amount of people
should not be affected by the noise, i.e., the noise on its own should not be able
to create hotspots. Again, we urge users of our protocol to rely on an expert
in the field of de-anonymization with sufficient knowledge of location data to
choose suitable values for the application of differential privacy.

5 Implementation and Performance

We implemented our protocol using the BFV [11,28] homomorphic encryption
scheme, more specifically its implementation in the SEAL v3.4 [49] library. SEAL

14

is an actively developed open-source library maintained by Microsoft Research
compatible with all major operating systems, including Windows, Linux, and
OS X.

The computationally most expensive phase in the protocol is the Data Aggre-
gation phase, in which the server multiplies a huge matrix to a homomorphically
encrypted input vector. Therefore, the main objective of our implementation is
to perform this huge matrix multiplication as efficiently as possible.

5.1 Packing

Modern HE schemes allow for packing a vector of n plaintexts into only one
ciphertext. Performing an operation on this ciphertext then is implicitly applied
to each slot of the encrypted vector, similar to single-instruction-multiple-data
(SIMD) instructions on modern CPU’s (AVX, SSE2, etc.). However, the size
of the ciphertext does not depend on the exact number (≤ n) of plaintexts
encoded. The HE schemes support a variety of SIMD operations, including slot-
wise addition, subtraction and multiplication, and slot-rotation. However, one
can not directly access a specific slot of the encoded vector. We can use the SIMD
encoding to speed up the matrix multiplication of our protocol significantly.

In the BFV scheme (and its implementation in the SEAL library), the num-
ber of available SIMD slots is equal to the degree of the cyclotomic reduction
polynomial (xn + 1); thus, it is always a power of two. In the ciphertexts, the
n slots are arranged as matrix of dimensions (2 × n/2). A ciphertext rotation
affects either all rows, or all columns of the matrix simultaneously. Therefore, we
can think of the inner matrix as two rotatable vectors, which can be swapped.
Figure 4 highlights the inner structure of the ciphertext and the rotation oper-
ations.

5.2 Baby-Step Giant-Step Matrix Multiplication

The SIMD encoding can be used to efficiently speed up matrix multiplication by
using the diagonal method introduced by Halevi and Shoup in [32]. They have
shown that a matrix-vector multiplication of a matrix Z ∈ Zm×m and vector
v ∈ Zm can be expressed by m elementwise vector-vector multiplications, m− 1
rotations, and m−1 additions, operations that can easily be evaluated in an HE
scheme:

Z · v =

m−1∑
i=0

diag(M, i) ◦ rot(v, i) (8)

diag(Z, i) in equation 8 expresses the i-th diagonal of matrix Z in a vector of
size m and rot(v, i) rotates the vector v by index i to the left.

However, rotations are very expensive in terms of computational effort in the
BFV encryption scheme. Luckily, the diagonal method can further be improved

15

1 2 · · · n− 1 n

1 2 · · · n
2
− 1 n

2

n
2

+ 1 n
2

+ 2 · · · n− 1 n

n
2
− 1 n

2
1 · · · n

2
− 3 n

2
− 2

n− 1 n n
2

+ 1 · · · n− 3 n− 2

n− 1 n n
2

+ 1 · · · n− 3 n− 2

n
2
− 1 n

2
1 · · · n

2
− 3 n

2
− 2

Vector of plaintexts:

Encode

Rotate rows by k = −2

Rotate columns

Fig. 4: Effect of rotations to the inner structure of a BFV ciphertext with n slots.

by applying the baby-step giant-step algorithm [33,34]:

Z · v =

m−1∑
i=0

diag(Z, i) ◦ rot(v, i)

=

m2−1∑
k=0

m1−1∑
j=0

diag(Z, km1 + j) ◦ rot(v, km1 + j)

=

m2−1∑
k=0

rot

m1−1∑
j=0

diag′(Z, km1 + j) ◦ rot(v, j), km1

 (9)

wherem = m1·m2 and diag′(Z, i) = rot (diag(Z, i),−bi/m1c ·m1).6 Note, that
rot(v, j) only has to be computed once for each j < m1, therefore, equation 9
only requires m1 +m2 − 2 rotations of the vector v in total.

6 In equation 9, bi/m1c is equal to k.

16

Trivially, we can use the following equation to implement a vT · Z multipli-
cation, like we use in our protocol:

(vT · Z)T = ZT · v

=

m2−1∑
k=0

rot

m1−1∑
j=0

diag′(ZT , km1 + j) ◦ rot(v, j), km1

 (10)

5.3 Homomorphic N × k Matrix Multiplication

In our protocol we want to homomorphically evaluate vT ·Z, where v ∈ {0, 1}N
and Z ∈ ZN×kp , for big parameters N and k. As described in Section 5.1, the in-
ner structure of the BFV ciphertext consists of two vectors of size n/2 each, and
it does not allow a cyclic rotation over the whole input vector of size n. However,
a rotation over the whole input vector is required by the baby-step giant-step
algorithm. Therefore, we only can perform a baby-step giant-step multiplica-
tion with a (n/2× n/2) matrix using this packing. Fortunately, we can use the
remaining n/2 slots (i.e., the second vector in the inner structure of the BFV ci-
phertext) to perform a second (n/2×n/2) matrix multiplication simultaneously.
Therefore, after a homomorphic baby-step giant-step matrix multiplication, the
result is a ciphertext, where each of the two inner vectors encodes the result of
a (1 × n/2) × (n/2 × n/2) vector-matrix multiplication. The sum of those two
vectors can easily be obtained by rotating the columns of the ciphertext and
adding it to the first result:

csum = c+ rotcol(c) (11)

Thus, we can use one (n/2 × n/2) baby-step giant-step matrix multiplication
and equation 11 to implement a homomorphic (1× n)× (n× n/2) = (1× n/2)
vector-matrix multiplication.

Taking this into account, we split the huge (N × k) matrix into nv · no
submatrices of size (n × n/2), with nv =

⌈
N
n

⌉
and no =

⌈
2k
n

⌉
, padding the

submatrices with zeros if necessary. We split the input vector v into nv vectors
of size n (padding the last vector with zeros if necessary) and encrypt each of
these vectors to get nv ciphertexts ci. The final result of the vT · Z matrix
multiplication can be computed with the following equation:

c̃i =

nv−1∑
j=0

MatMul(SubMat(Z, j, i)T , cj) ∀0 ≤ i < no (12)

where, SubMat(M, j, i) returns the submatrix of Z with size (n×n/2), starting at
row n·j and column n

2 ·i, and MatMul(Z, c) performs the homomorphic baby-step
giant-step matrix multiplication Z · c followed by equation 11.

Equation 12 produces no ciphertexts c̃i, with the final results being located in
the first n/2 slots of the ciphertexts. Overall, our algorithm to homomorphically
calculate vT ·Z requires nv · no baby-step giant-step matrix multiplications and
the total multiplicative depth is 1 plaintext-ciphertext multiplication.

17

5.4 Homomorphic Evaluation of the Masking Value

To calculate the masking value (equation 5), or the challenge (equation 6), we
need to calculate the inner product of two homomorphically encrypted cipher-
texts c and d. After an initial multiplication c · d, the inner product requires
log2(n/2) rotations and addition, followed by equation 11 to produce a cipher-
text, where the result is encoded in each of the n slots.

Our implementation uses rejection sampling and the SHAKE128 algorithm
to cryptographically secure sample all the required random values in Zp. The to-
tal multiplicative depth to homomorphically evaluate the final mask (equation 5
or equation 6) is 1 ciphertext-ciphertext multiplication and 2 plaintext-ciphertext
multiplications.

If we want to boost soundness in the interactive version of the challenge
mask, we can encode multiple values of different µchal into the SIMD slots of
one ciphertext, filling the remaining slots with zeros:

µ = (µchal,0, . . . , µchal,s−1, 0, . . . , 0) (13)

We can evaluate equation 13 by multiplying a vector r = (ri, 0, . . . , 0) instead
of a scalar r in equation 6 to get µchal,i and add rotations of those individual
masks:

µ =

s−1∑
i=0

rot(µchal,i,−i) (14)

5.5 BFV Parameters

In BFV, one can choose three different parameters which greatly impact the
runtime and the available noise budget (i.e. how much further noise can be
introduced until decryption will fail):

– Plaintext modulus p: p defines the Ring Zp to which the homomorphic op-
erations correspond to. Every result encoded in the ciphertext vector will be
an element of Zp. Therefore, one has to make sure that p is big enough, such
that no computation overflows. On the other hand, a big p has a bad impact
on the ciphertext noise, where the noise cost of homomorphic operations is
higher for bigger p. Additionally, the size of p will also affect the runtime of
homomorphic operations. In general, SEAL allows arbitrary plaintext mod-
uli t ≥ 2 ∈ Z; however, if we want to enable SIMD-packing (Section 5.1),
then the plaintext modulus has to be a prime p and congruent to 1 (mod
2n).

– Ciphertext modulus q: q defines the available noise budget. Therefore, a
bigger q allows for a bigger depth in homomorphic operations. However,
bigger q’s have an adverse effect on the security of the encryption scheme.
Additionally, q also influences the runtime of homomorphic operations; more
specifically, the number of primes q is composed of. The more primes, the
longer the computation times.

18

– Degree n of the reduction polynomial: In BFV in SEAL n is always a power
of two and has a direct impact on the runtime of the scheme. A bigger n
drastically increases the time a homomorphic operation needs for evaluation.
On the other hand, a bigger n also increases the security of the scheme and,
therefore, allows for a bigger ciphertext modulus q to increase the noise
budget.

We test our implementation for a security level of λ = 128 bit and λ = 80 bit.
We use the LWE estimator [2] by Albrecht et al. to find suitable BFV parameters
which provide 80 bit security against known attacks; for 128 bit security SEAL
already provides parameters for different reduction polynomial degrees n. See
Appendix A for more details on the used parameters.

5.6 Benchmarks

Multithreading. Since in our use cases N is much bigger than k, we imple-
mented multithreading, such that the threads split the number of rows in the
matrix (more specifically, the number of submatrices in the rows nv) equally
amongst all available threads. Therefore, each thread has to perform at most⌈

nv

#threads

⌉
· no MatMul evaluations, which will be combined at the end by sum-

ming up the intermediate results. In case we want to add the mask to the result,
an extra thread will perform the mask-evaluation in parallel to the matrix mul-
tiplication. In the other case, the case of the interactive challenge round, we
leverage multithreading, such that we distribute the computation of the masks

µbin equally amongst all available threads, i.e., at most
⌈

s
#threads

⌉
evaluations

of µbin per thread. In parallel, an additional thread performs the evaluation of
µHW before the results are combined with new random values z and r for each
slot of the final mask.

Benchmark Platform. Our implementation7 is compatible to Linux and Win-
dows; however, we ran our benchmarks on a Linux cluster with two Intel Xeon
E5-2699 v4 CPU’s (total of 44 cores @ 2.2 GHz, 88 threads) and 512 GB RAM
available.

Runtime. The runtime of our protocol is O(nvno), i.e., it scales linearly in the
number of MatMul evaluations. This can be seen in Table 1 in which we summa-
rize the runtime of the homomorphic matrix multiplication for different matrix
dimensions using only one thread. For better comparability, we evaluate the dif-
ferent sizes with the same BFV parameter set. For real-world matrix dimensions,
some added runtime has to be expected due to thread synchronization and the
accumulation of the intermediate thread results.

7 The source code is available at https://github.com/IAIK/CoronaHeatMap.

19

https://github.com/IAIK/CoronaHeatMap

Table 1: Runtime for the Data Aggregation Phase for different matrix dimensions
using only one thread.

BFV Matrix #MatMul Runtime
Nr. log2(p) log2(q) n λ N k sec

1 33 218 8192 128 8192 4096 1 17.4
2 33 218 8192 128 40960 4096 5 87.1
3 33 218 8192 128 81920 4096 10 173.1
4 33 218 8192 128 163840 4096 20 359.5
5 33 218 8192 128 8192 20480 5 88.3
6 33 218 8192 128 8192 40960 10 172.5
7 33 218 8192 128 8192 81920 20 349.4
8 33 218 8192 128 40960 20480 25 434.7
9 33 218 8192 128 98304 32768 96 1778.9

Real World Matrix Dimension. At the time of writing, approximately 8.9
million people live in Austria8 and the total number of cell cites is 183899 (June
2019). In our benchmarks, we want to capture the Austrian use case and set the
matrix dimensions to N = 223 and k = 215. In Table 2 we list the runtime for
a homomorphic (1× 223)× (223 × 215) matrix multiplication, for different BFV
parameters, using 88 threads. We also provide the total number of MatMul eval-
uations and the (maximum) number of evaluations per thread. Additionally, we
give performance results for parameters also capable of evaluating the masking
value.

Table 2: Runtime for the Data Aggregation Phase for different parameters using
88 threads. The column Masking indicates whether this parameter set is only
able to evaluate the matrix multiplication (7), or is additionally able to evaluate
the calculation of the masking values (X).

BFV Matrix #MatMul Masking Runtime
Nr. log2(p) log2(q) n λ N k total / per thread min

1 33 218 8192 128 223 215 8192 / 96 X 59.36
2 60 218 8192 128 223 215 8192 / 96 7 89.87
3 60 438 16384 128 223 215 2048 / 24 X 267.19

4 33 162 4096 80 223 215 32768 / 384 7 33.55
5 33 329 8192 80 223 215 8192 / 96 X 89.32
6 60 329 8192 80 223 215 8192 / 96 X 140.82

8 https://de.statista.com/statistik/daten/studie/19292/umfrage/gesamtbevo

elkerung-in-oesterreich/
9 https://www.senderkataster.at/

20

https://de.statista.com/statistik/daten/studie/19292/umfrage/gesamtbevoelkerung-in-oesterreich/
https://de.statista.com/statistik/daten/studie/19292/umfrage/gesamtbevoelkerung-in-oesterreich/
https://www.senderkataster.at/

As Table 2 shows, a matrix multiplication takes approximately 1 hour for a
33 bit plaintext modulus with 128 bit security and 1.5 hour for the bigger 60 bit
modulus. The noise budget for n = 8192 and a 60 bit modulus, however, is not
sufficient to evaluate the masking value, which has a bigger multiplicative depth
than the matrix multiplication. Increasing n leads to a performance drop, more
specifically, the evaluation with a 60 bit plaintext modulus takes 4.5 hours.

Reducing the security level to λ = 80 bit allows us to use a smaller n for the
evaluation of the mask with a 60 bit prime, and the matrix multiplication with a
33 bit plaintext modulus, splitting the respective runtimes in half. Unfortunately,
n can not be reduced for the 33 bit prime with 80 bit security when masking is
applied, increasing the runtime of the matrix multiplication compared to the
128 bit security case. This is due to the fact that in the 80 bit security case q is
composed of more distinct primes qi. We recommend, therefore, to always use
128 bit security parameters for the 33 bit prime when the masking value has to
be evaluated.

Data Transmission. In Table 3, we list the sizes of all the data, which has
to be transmitted between the server and the client. Each row corresponds to a
different parameter set from Table 2. The sizes were obtained by storing each of
the described elements on the file system on the cluster. The table lists the size of
the ciphertexts (ct), Galois keys (gk), and relinearization keys (rk). Galois keys
are required to perform homomorphic rotations, each rotation index requires one
Galois key, plus an additional key for rotating the columns. When using the baby-
step giant-step algorithm, we need a key for the index 1 to calculate rot(v, j),
and a key for the indices k · m1, ∀0 < k < m2. Furthermore, when masking
is applied, we need the keys for the power-of-2 indices to calculate the inner
product of two ciphertexts. The relinearization key is required to linearize the
result of a ciphertext-ciphertext multiplication. Since we only have to perform
such a multiplication when we calculate the masking values, we can omit to send
the relinearization key when the mask is not applied.

In addition to the values described in Table 3, the client has to announce
the used BFV parameters and the hamming weight of the input vector. These
values have a combined size of less than 300 bytes.

As Table 3 shows, client-to-server communication is significantly more exten-
sive than the response of the server. The main parts of the communication are
the initial ciphertexts; however, especially when masking has to be applied, the
Galois keys have a significant size as well. The plaintext modulus p has little to
no effect on the number of bytes, contrary to the reduction polynomial degree
n, which influences the communication cost significantly. The response of the
server is very small in comparison to the ciphertexts he receives from the client.
One reason for that is the small parameter k compared to N . The other reason
is, that our implementation performs a so-called modulus-switch to level 0 after
the computation, reducing the ciphertext modulus q to only one of the moduli
qi it is composed of.

21

Table 3: Data transmission in MiB for the different parameters in Table 2. Values
include keys for evaluating the masking value when applicable.

Client Server Total
Nr. ct gk rk Total ct

1 256.2 87.6 1.3 345.1 1.0 346.1
2 256.2 81.4 - 337.6 2.0 339.6
3 512.1 639.2 9.0 1160.3 2.0 1162.3
4 128.3 6.2 - 134.5 1.0 135.5
5 384.2 183.9 2.6 570.7 1.0 571.7
6 384.2 183.9 2.6 570.7 2.0 572.7

Challenge Mask Compuation Time. In Table 4, we list the runtime of the
evaluation of the interactive challenge mask for different BFV parameters with
a soundness error of at least λ bits. As Table 4 shows, the evaluation of the
challenge mask is significantly faster than performing the matrix multiplication,
allowing the server to detect and filter malicious inputs before engaging in the
costly matrix evaluation. As we already stated, calculating the masking value
for a 33 bit prime is slower with parameters for 80 bit security than with param-
eters for 128 bit security (given multithreading with enough threads) since q is
composed of more primes qi and n stays the same for both parameter sets.

Table 4: Runtime for the challenge mask computation different parameters using
s+ 1 threads.

BFV Input #µbin Runtime
Nr. log2(p) log2(q) n λ N s min

1 33 218 8192 128 223 13 3.79
2 60 438 16384 128 223 4 10.53

3 33 329 8192 80 223 9 6.11
4 60 329 8192 80 223 3 5.50

We note that we require additional s Galois keys for performing the challenge
mask creation, increasing the communicated bytes. However, the additional keys
require a comparably small amount of data, e.g., less than 25 MiB for entry nr.
3 in Table 3.

5.7 Price Estimation for Deployment in Germany

In this section, we want to give an estimate of the costs of deploying our system
to create a corona heatmap for a larger country, more specifically, for Germany.

22

At the time of writing, about 83.1 million people live in Germany10, and a total
of 74280 cell sites are deployed11. With the BFV parameters of entry Nr. 1 in
Table 2, i.e., n = 8192, this corresponds to a total number of of nv ·no = 192755
MatMul evaluations. To get 96 MatMul evaluations per thread, we would have
to acquire 21 CPU’s capable of handling 96 threads each. To get a estimate
for doing such computations used current market prizes12 the cost of one CPU
capable of handling 96 threads is ∼ 1.5 $ per hour. Taking an additional overhead
by handling so many threads and combining intermediate results, we estimate
the cost of evaluating the homomorphic matrix multiplication for the German
use case using AWS to ∼ 60 $. While noting that a trivial outsourcing of such
computations is not part of our proposal, this estimate still shows that it is likely
very feasible to create a heatmap once a day to gain valuable insight into the
spread of the disease, even for larger countries.

6 Concluding discussion

Our protocol shows that concrete privacy-preserving data analytics is possible
even on a national scale.

For an interested audience with little security and cryptography background,
we created a webpage13 that describes our approach, and basically has the fol-
lowing message: Even in times of crisis where it is tempting to (temporarily)
lower data protection standards for purposes of big data analytics, there are
technical methods to keep data protection standards high. And those technical
methods are practical and available.

An actual roll-out needs to consider a number of other aspects that are out
of scope for this article. This includes legal aspects, e.g. making sure there is
a consent in using collected telephone numbers for such a purpose. There are
also parameters of our system that need to be chosen in view of a particular
dataset, potentially in coordination with data-protection authorities such as fix-
ing the minimum Hamming weight of the query vector c and differential privacy
parameters.

Acknowledgments

This work was supported by EU’s Horizon 2020 project Safe-DEED, grant
agreement n◦825225, and EU’s Horizon 2020 project TRUSTS, grant agreement
n◦871481, and by the ”DDAI” COMET Module within the COMET – Compe-
tence Centers for Excellent Technologies Programme, funded by the Austrian

10 https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Bevo

elkerungsstand/_inhalt.html
11 https://www.informationszentrum-mobilfunk.de/artikel/statistik-zur-

zahl-der-funkanlagenstandorte-in-deutschland
12 https://aws.amazon.com/ec2/spot/pricing/
13 https://covid-heatmap.iaik.tugraz.at

23

https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Bevoelkerungsstand/_inhalt.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Bevoelkerungsstand/_inhalt.html
https://www.informationszentrum-mobilfunk.de/artikel/statistik-zur-zahl-der-funkanlagenstandorte-in-deutschland
https://www.informationszentrum-mobilfunk.de/artikel/statistik-zur-zahl-der-funkanlagenstandorte-in-deutschland
https://aws.amazon.com/ec2/spot/pricing/
https://covid-heatmap.iaik.tugraz.at

Federal Ministry for Transport, Innovation and Technology (bmvit), the Aus-
trian Federal Ministry for Digital and Economic Affairs (bmdw), the Austrian
Research Promotion Agency (FFG), the province of Styria (SFG) and partners
from industry and academia. The COMET Programme is managed by FFG.

References

1. AISEC, F.: Pandemic contact tracing apps: Dp-3t, pepp-pt ntk, and robert from a
privacy perspective. Cryptology ePrint Archive, Report 2020/489 (2020), https:
//eprint.iacr.org/2020/489

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Mathematical Cryptology 9(3), 169–203 (2015)

3. Angel, S., Chen, H., Laine, K., Setty, S.T.V.: PIR with compressed queries and
amortized query processing. In: IEEE Symposium on Security and Privacy. pp.
962–979. IEEE Computer Society (2018)

4. Beimel, A., Ishai, Y., Kushilevitz, E., Raymond, J.: Breaking the o(n1/(2k-1))
barrier for information-theoretic private information retrieval. In: FOCS. pp. 261–
270. IEEE Computer Society (2002)

5. Bergamaschi, F., Halevi, S., Halevi, T.T., Hunt, H.: Homomorphic training of 30,
000 logistic regression models. In: ACNS. Lecture Notes in Computer Science, vol.
11464, pp. 592–611. Springer (2019)

6. Berke, A., Bakker, M., Vepakomma, P., Larson, K., Pentland, A.S.: Assessing dis-
ease exposure risk with location data: A proposal for cryptographic preservation
of privacy (2020)

7. Beskorovajnov, W., Dörre, F., Hartung, G., Koch, A., Müller-Quade, J., Strufe, T.:
Contra corona: Contact tracing against the coronavirus by bridging the central-
ized–decentralized divide for stronger privacy. Cryptology ePrint Archive, Report
2020/505 (2020), https://eprint.iacr.org/2020/505

8. Boemer, F., Costache, A., Cammarota, R., Wierzynski, C.: ngraph-he2: A high-
throughput framework for neural network inference on encrypted data. In:
WAHC@CCS. pp. 45–56. ACM (2019)

9. Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast homomorphic evaluation
of deep discretized neural networks. In: CRYPTO (3). Lecture Notes in Computer
Science, vol. 10993, pp. 483–512. Springer (2018)

10. Brack, S., Reichert, L., Scheuermann, B.: Decentralized contact tracing using a
dht and blind signatures. Cryptology ePrint Archive, Report 2020/398 (2020),
https://eprint.iacr.org/2020/398

11. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical gapsvp. In: CRYPTO. Lecture Notes in Computer Science, vol. 7417, pp.
868–886. Springer (2012)

12. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic en-
cryption without bootstrapping. In: ITCS. pp. 309–325. ACM (2012)

13. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bullet-
proofs: Short proofs for confidential transactions and more. In: IEEE Symposium
on Security and Privacy. pp. 315–334. IEEE Computer Society (2018)

14. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval
with polylogarithmic communication. In: EUROCRYPT. Lecture Notes in Com-
puter Science, vol. 1592, pp. 402–414. Springer (1999)

24

https://eprint.iacr.org/2020/489
https://eprint.iacr.org/2020/489
https://eprint.iacr.org/2020/505
https://eprint.iacr.org/2020/398

15. Canetti, R., Trachtenberg, A., Varia, M.: Anonymous collocation discovery: Har-
nessing privacy to tame the coronavirus (2020)

16. Chan, J., Foster, D., Gollakota, S., Horvitz, E., Jaeger, J., Kakade, S., Kohno, T.,
Langford, J., Larson, J., Singanamalla, S., Sunshine, J., Tessaro, S.: Pact: Privacy
sensitive protocols and mechanisms for mobile contact tracing (2020)

17. Chen, H., Huang, Z., Laine, K., Rindal, P.: Labeled PSI from fully homomorphic
encryption with malicious security. In: ACM Conference on Computer and Com-
munications Security. pp. 1223–1237. ACM (2018)

18. Cheon, J.H., Kim, A., Kim, M., Song, Y.S.: Homomorphic encryption for arith-
metic of approximate numbers. In: ASIACRYPT (1). Lecture Notes in Computer
Science, vol. 10624, pp. 409–437. Springer (2017)

19. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In: ASIACRYPT (1). Lecture
Notes in Computer Science, vol. 10031, pp. 3–33 (2016)

20. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: FOCS. pp. 41–50. IEEE Computer Society (1995)

21. Chou, E., Beal, J., Levy, D., Yeung, S., Haque, A., Fei-Fei, L.: Faster cryptonets:
Leveraging sparsity for real-world encrypted inference. CoRR abs/1811.09953
(2018)

22. Dar, A.B., Lone, A.H., Zahoor, S., Khan, A.A., Naaz, R.: Applicability of mobile
contact tracing in fighting pandemic (covid-19): Issues, challenges and solutions.
Cryptology ePrint Archive, Report 2020/484 (2020), https://eprint.iacr.org/
2020/484

23. Dathathri, R., Saarikivi, O., Chen, H., Laine, K., Lauter, K.E., Maleki, S., Musu-
vathi, M., Mytkowicz, T.: CHET: an optimizing compiler for fully-homomorphic
neural-network inferencing. In: PLDI. pp. 142–156. ACM (2019)

24. Demmler, D., Herzberg, A., Schneider, T.: RAID-PIR: practical multi-server PIR.
In: CCSW. pp. 45–56. ACM (2014)

25. Devet, C., Goldberg, I., Heninger, N.: Optimally robust private information re-
trieval. In: USENIX Security Symposium. pp. 269–283. USENIX Association
(2012)

26. Dong, C., Chen, L.: A fast single server private information retrieval protocol with
low communication cost. In: ESORICS (1). Lecture Notes in Computer Science,
vol. 8712, pp. 380–399. Springer (2014)

27. Dwork, C.: Differential privacy. In: ICALP (2). Lecture Notes in Computer Science,
vol. 4052, pp. 1–12. Springer (2006)

28. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptology ePrint Archive 2012, 144 (2012)

29. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC. pp. 169–
178. ACM (2009)

30. Goldberg, I.: Improving the robustness of private information retrieval. In: IEEE
Symposium on Security and Privacy. pp. 131–148. IEEE Computer Society (2007)

31. Google, Apple: Apple and google’s exposure notification system. https://www.ap
ple.com/covid19/contacttracing (2020)

32. Halevi, S., Shoup, V.: Algorithms in helib. In: CRYPTO (1). Lecture Notes in
Computer Science, vol. 8616, pp. 554–571. Springer (2014)

33. Halevi, S., Shoup, V.: Bootstrapping for helib. In: EUROCRYPT (1). Lecture
Notes in Computer Science, vol. 9056, pp. 641–670. Springer (2015)

34. Halevi, S., Shoup, V.: Faster homomorphic linear transformations in helib. In:
CRYPTO (1). Lecture Notes in Computer Science, vol. 10991, pp. 93–120. Springer
(2018)

25

https://eprint.iacr.org/2020/484
https://eprint.iacr.org/2020/484
https://www.apple.com/covid19/ contacttracing
https://www.apple.com/covid19/ contacttracing

35. Hesamifard, E., Takabi, H., Ghasemi, M.: Deep neural networks classification over
encrypted data. In: CODASPY. pp. 97–108. ACM (2019)

36. Jiang, X., Kim, M., Lauter, K.E., Song, Y.: Secure outsourced matrix computa-
tion and application to neural networks. In: ACM Conference on Computer and
Communications Security. pp. 1209–1222. ACM (2018)

37. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: A low latency
framework for secure neural network inference. In: USENIX Security Symposium.
pp. 1651–1669. USENIX Association (2018)

38. Kiayias, A., Leonardos, N., Lipmaa, H., Pavlyk, K., Tang, Q.: Optimal rate private
information retrieval from homomorphic encryption. PoPETs 2015(2), 222–243
(2015)

39. Landau, S.: Looking beyond contact tracing to stop the spread. https://www.la
wfareblog.com/looking-beyond-contact-tracing-stop-spread (2020)

40. Lipmaa, H.: First CPIR protocol with data-dependent computation. In: ICISC.
Lecture Notes in Computer Science, vol. 5984, pp. 193–210. Springer (2009)

41. Lipmaa, H., Pavlyk, K.: A simpler rate-optimal CPIR protocol. In: Financial Cryp-
tography. Lecture Notes in Computer Science, vol. 10322, pp. 621–638. Springer
(2017)

42. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: EUROCRYPT. Lecture Notes in Computer Science, vol. 6110, pp.
1–23. Springer (2010)

43. Melchor, C.A., Barrier, J., Fousse, L., Killijian, M.: XPIR : Private information
retrieval for everyone. PoPETs 2016(2), 155–174 (2016)

44. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: EUROCRYPT. Lecture Notes in Computer Science, vol. 1592, pp.
223–238. Springer (1999)

45. Pinkas, B., Ronen, E.: Hashomer - a proposal for a privacy-preserving bluetooth
based contact tracing scheme for hamagen. https://github.com/eyalr0/Hashom
erCryptoRef/blob/master/documents/hashomer.pdf (2020)

46. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC. pp. 84–93. ACM (2005)

47. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phisms. Foundations of Secure Computation, Academia Press pp. 169–179 (1978)

48. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

49. Microsoft SEAL (release 3.4). https://github.com/Microsoft/SEAL (Oct 2019),
microsoft Research, Redmond, WA.

50. Team, D.T.: Decentralized privacy-preserving proximity tracing. https://github
.com/DP-3T (2020)

51. Trieu, N., Shehata, K., Saxena, P., Shokri, R., Song, D.: Epione: Lightweight con-
tact tracing with strong privacy (2020)

52. Yi, X., Kaosar, M.G., Paulet, R., Bertino, E.: Single-database private informa-
tion retrieval from fully homomorphic encryption. IEEE Trans. Knowl. Data Eng.
25(5), 1125–1134 (2013)

26

https://www.lawfareblog.com/looking-beyond-contact-tracing-stop-spread
https://www.lawfareblog.com/looking-beyond-contact-tracing-stop-spread
https://github.com/eyalr0/HashomerCryptoRef/blob/master/documents/hashomer.pdf
https://github.com/eyalr0/HashomerCryptoRef/blob/master/documents/hashomer.pdf
https://github.com/Microsoft/SEAL
https://github.com/DP-3T
https://github.com/DP-3T

A BFV parameters

In this section we list the BFV parameters used in our implementation.

A.1 Plaintext Moduli

In our benchmarks, we use two different plaintext moduli, one with a size of
33 bits, the other with a size of 60 bits. Table 5 lists the used moduli.

Table 5: Used plaintext moduli in hexadecimal notation and their size in bits.

Nr. p log2(p)

1 0x1e21a0001 33
2 0xf4fc03ff53d0001 60

A.2 Ciphertext Moduli

In this section we list all the ciphertext moduli used for different security levels
λ and reduction polynomial degrees n. In SEAL the ciphertext modulus q is the
product several primes qi: q =

∏
i qi.

n = 4096, λ = 80: The ciphertext modulus q is composed of 3 primes with a
total size of 162 bit, which we list in Table 6.

Table 6: Primes composing the ciphertext modulus for n = 4096, λ = 80 in
hexadecimal notation and their size in bits.

i qi log2(qi)

1 0x3ffffffffd6001 54
2 0x3ffffffffd2001 54
3 0x3ffffffffbe001 54

n = 8192, λ = 80: The ciphertext modulus q is composed of 7 primes with a
total size of 329 bit, which we list in Table 7.

n = 8192, λ = 128: The ciphertext modulus q is composed of 5 primes with
a total size of 218 bit, which we list in Table 8.

n = 16384, λ = 128: The ciphertext modulus q is composed of 9 primes with
a total size of 438 bit, which we list in Table 9.

27

Table 7: Primes composing the ciphertext modulus for n = 8192, λ = 80 in
hexadecimal notation and their size in bits.

i qi log2(qi)

1 0x7ffffffec001 47
2 0x7ffffffc8001 47
3 0x7ffffffb4001 47
4 0x7ffffff00001 47
5 0x7fffffefc001 47
6 0x7fffffecc001 47
7 0x7fffffe70001 47

Table 8: Primes composing the ciphertext modulus for n = 8192, λ = 128 in
hexadecimal notation and their size in bits.

i qi log2(qi)

1 0x7fffffd8001 43
2 0x7fffffc8001 43
3 0xfffffffc001 44
4 0xffffff6c001 44
5 0xfffffebc001 44

Table 9: Primes composing the ciphertext modulus for n = 16384, λ = 128 in
hexadecimal notation and their size in bits.

i qi log2(qi)

1 0xfffffffd8001 48
2 0xfffffffa0001 48
3 0xfffffff00001 48
4 0x1fffffff68001 49
5 0x1fffffff50001 49
6 0x1ffffffee8001 49
7 0x1ffffffea0001 49
8 0x1ffffffe88001 49
9 0x1ffffffe48001 49

28

	Aggregated Private Information Retrieval

