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Abstract. Human mobility is undisputedly one of the critical factors
in infectious disease dynamics. Until a few years ago, researchers had
to rely on static data to model human mobility, which was then com-
bined with a transmission model of a particular disease resulting in
an epidemiological model. Recent works have consistently been show-
ing that substituting the static mobility data with mobile phone data
leads to significantly more accurate models. While prior studies have
exclusively relied on a mobile operator’s subscribers’ aggregated data,
it may be preferable to contemplate aggregated mobility data of in-
fected individuals only. Clearly, naively linking mobile phone data with
infected individuals would massively intrude privacy. This research aims
to develop a solution that reports the aggregated mobile phone location
data of infected individuals while still maintaining compliance with pri-
vacy expectations. To achieve privacy, we use homomorphic encryption,
zero-knowledge proof techniques, and differential privacy. Our protocol’s
open-source implementation can process eight million subscribers in one
hour. Additionally, we provide a legal analysis of our solution with re-
gards to the General Data Protection Regulation.

Keywords: FHE, privacy, Covid-19, mobile data, GDPR

1 Introduction

1.1 Human Mobility and Infectious Diseases

Human mobility is undisputedly one of the critical factors in infectious disease
dynamics. On the one side, increased human mobility may account for more
contacts between receptive and infected individuals. On the other side, human
travel may introduce pathogens into new geographical regions. Both cases can
be responsible for an increased prevalence and even an outbreak of the infectious
disease [55]. In particular, human travel history has been shown to play a critical
role in the propagation of infectious diseases, like influenza [24] or measles [31].
Therefore understanding the spatiotemporal dynamics of an epidemic is closely
tied to understanding movement patterns of infected individuals.



Mobile Phone Data. Until a few years ago, researchers had to rely on static
data – relative distance and population distribution – to model human mobility,
which was then combined with a transmission model of a particular disease
resulting in an epidemiological model. This model was then used to improve
the understanding of the geographical spread of epidemics. Mobile phones and
their location data have the unique potential to improve these epidemiological
models further. Indeed, recent work [57] has been showing that substituting the
static mobility data with mobile phone data leads to significantly more accurate
models. Integrating such up-to-date mobility patterns allowed them to identify
hotspots with a higher risk of contamination, enabling policymakers to apply
focused measures.

While prior studies have exclusively relied on a mobile operator’s subscribers’
aggregated data, it may be preferable to contemplate aggregated mobility data
of infected individuals only. Indeed, a cholera study [25] observed that although
their model has high accuracy, it performs less well when the cumulative in-
cidence is low. They speculated that demographic stochasticity could be one
reason for the bad performance of their model. In other words, the infected in-
dividuals’ mobility pattern may not be precisely reflected by the population’s
mobility if the prevalence is low. In order to mitigate this problem, we propose
the usage of infected individuals’ mobile phone data, which should lead to an
improvement in the predictive capabilities of epidemiological models, especially
in highly dynamic situations.

Privacy Issues. Clearly, naively linking mobile phone data with infected in-
dividuals would massively intrude privacy. Namely, either the mobile network
operator would have to know which subscribers are infected, or, the epidemio-
logical researchers would have to get access to non-anonymized data records. As
a result, previous studies considered the availability of travel history informa-
tion from patients as not possible and attempted to control possible biases in
the results manually [51].

1.2 Our Contribution

This research aims to develop a software solution that reports the aggregated mo-
bile phone location data of infected individuals while still maintaining compliance
with privacy expectations. We use various state-of-the-art privacy-preserving
cryptographic primitives to design a two-party protocol that achieves the fol-
lowing: The epidemiological researcher or a health authority inputs patients’
identifiers, whereas the mobile operator inputs call detail records (CDRs) of its
subscribers. The protocol outputs the patients’ aggregated location data from
the CDRs to the health authority. Informally, neither does the health authority
access individuals’ CDRs nor does the mobile operator learn which subscribers
were involved in the computation, and therefore, who is infected.

To achieve the privacy goals outlined above, we use homomorphic encryp-
tion [26], zero-knowledge proof techniques [28], and differential privacy [21]. In
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particular, the patients’ identifiers get homomorphically encrypted before send-
ing them to the mobile operator. Due to the nature of homomorphic encryption,
the mobile operator can perform the data aggregation without decrypting the
identifiers. To prevent the health authority from learning individual CDRs, we
ensure that the identifiers’ set has a minimum cardinality by applying zero-
knowledge proof techniques. In addition, the mobile operator can add noise - in
the sense of differential privacy - to the aggregated CDRs before sending them
to the health authority. This becomes necessary if the aggregated CDRs would
still leak information that could lead to patients’ re-identification. More formally,
we defined our protocol as an ideal functionality, which is a common practice
for secure computation protocols [12, 27]. We show input privacy in the pres-
ence of a maliciously controlled mobile operator provided that the homomorphic
encryption scheme is semantically secure.

Our protocol’s open source implementation is written in C++ using the
SEAL [50] library and tested with parameters suitable for entire nation-states.
In the beginning, we also explored whether classical multi-party computation
[22] (secret sharing or garbled circuits) could be used for our protocol’s realiza-
tion, but the immense data complexity constituted a practical obstacle. Instead,
we thoroughly optimized the homomorphic data aggregation phase. Now, our
protocol can process eight million subscribers in one hour (corresponding to
roughly 5 € using AWS).

In addition, we conducted a legal case study of our use case. More concretely,
we focused on the EU General Data Protection Regulation (GDPR)4 because
the GDPR is one of the most strict privacy frameworks.

1.3 Road-map

The following sections not only contain a description of our solution but also a
rigorous analysis regarding legal aspects, security and privacy. In Section 2, we
discuss the relevant related work. Section 3 provides the necessary preliminary
definitions and notations. Section 4 first states the problem we want to solve in
this article. It then gradually develops a solution by introducing privacy protec-
tion mechanism step by step. Section 5 and Section 6 are dedicated to a thorough
legal, security and privacy analysis of our solution. Section 7 elaborates on the
implementation of our solution as well as demonstrating the performance. Sec-
tion 8 concludes with a discussion about considerations for an actual roll-out. We
defer to the appendix additional material on the GDPR (Appendix A), missing
proofs of our security analysis (Appendix B), formal definitions for differential
privacy (Appendix C), and details about the implementation (Appendix D).

4 https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex:32016R0679
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2 Related Work

Numerous research directions have previously sought to model the spread of
infectious diseases. Most closely related to this paper is work connecting mobile
phone data to infectious diseases.

Impact of Human Mobility on Infectious Diseases: The Use of Call De-
tail Records. Mobility data derived from call detail records (CDRs) – phone
calls and text messages – have been used to understand various infectious dis-
eases’ spatial transmission better, see Table 1. There is a general understanding
that – although not perfect – mobile phone data provide an opportunity to model
human travel patterns and thereby enhance the understanding of the transmis-
sion of infectious diseases [55].

Each of the studies got their CDRs from one mobile operator. Most of the
time, this mobile operator had the largest market share and coverage. The com-
mon understanding is that biases such as Multi-SIM activity and different mobile
phone usage across different geographical and socio-economic groups have a lim-
ited effect on general estimates of human mobility [56].

Disease Country Year of dataset Subscribers Period
(millions) (months)

[52] Malaria Tanzania 2008 0.8 3
[57] Malaria Kenya 2008-09 14.8 12
[36] HIV Kenya 2008-09 14.8 12
[58] Rubella Kenya 2008-09 14.8 12
[4] Cholera Haiti 2010 2.9 2
[51] Malaria Namibia 2010-11 1.5 12
[59] Dengue Pakistan 2013 39.8 7
[25] Cholera Senegal 2013 0.1 12

Table 1: Studies connecting mobile phone data to infectious diseases.

The most common model was to assign an individual a daily location. More
concretely, each subscriber was assigned to a study area on each day based on the
cell tower with the most CDRs or the last outgoing CDR. Further, the primary
study area (”home”) was computed for each subscriber by taking the study area
where the majority of days were spent. A slightly different approach was to
assign each subscriber to a study area using the last outgoing CDR of each day,
and not considering a primary study area [4]. A more refined approach was to
compute the number of CDRs made for every subscriber in each study area [25].
The primary study area was defined to be the study area where with the most
CDRs between 7 p.m. and 7 a.m.

All of the studies emphasized that preserving individuals’ privacy is manda-
tory. Each of the studies applied anonymization and aggregation as privacy mea-
sures. More concretely, in all cases - to the best of our understanding - the in-
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volved mobile operator anonymized the CRDs before handing them over to the
health authority. In addition, we found that the mobile network operator aggre-
gated the CDRs in at least two cases. However, none of the studies discussed
privacy’ definitions or the potential risk of de-identification, which is especially
high for location data [38]. Therefore, it is hard to assess if they achieved their
goal of preserving individuals’ privacy in the studies.

Automatic Contact Tracing. Due to the ongoing global threat of Covid-19,
a number of technological approaches are currently developed to help reduce its
spread and impact. A lot of focus is on automatic contact tracing, where the
main challenges include privacy-friendliness, scalability and utility. Numerous
efforts to improve privacy-friendly contact tracing exist, including [20, 6, 13, 5,
7, 14, 53, 1, 30, 46, 54], among others.

These approaches crucially rely on sizable parts of the population using
smartphones, enabling Bluetooth, and installing a new App on their phones.
In contrast, our proposal does not help with contact tracing, but gives poten-
tially useful epidemiological information to health authority without requiring
people to carry around smartphones, as any mobile phone will be sufficient.
Furthermore, our solution does not require people to enable Bluetooth on their
phones.

3 Preliminaries

In this section, we cover the preliminaries required for the rest of the paper.
We will first introduce the notations we use in the rest of the paper, before we
describe homomorphic encryption, and differential privacy.

3.1 Notation

We follow the widespread convention to write vectors in bold lower case letters
and matrices in upper case letters. We use xi to access the i-th element of
vector x. For m ∈ N and x ∈ Z, let xm be defined as the vector of powers of
x: xm = (1, x1, ..., xm−1). We denote by c ◦ d the element-wise multiplication
(Hadamard product) of the vectors c and d. For a positive integer t, we identify
Zt = Z ∩ [−t/2, t/2). For a real number r, bre denotes the nearest integer to r,
rounding upwards in case of a tie.

3.2 Homomorphic Encryption

The concept of homomorphic encryption (HE) has often been considered to be
the holy grail in cryptography since it allows us to work on encrypted data with-
out requiring the secret decryption key. It was first introduced by Rivest et al. [48]
and partially HE schemes, i.e. schemes which allow performing a limited set of
operations on encrypted data, have been known for years: The RSA [49] encryp-
tion scheme is homomorphic for multiplication and Paillier’s cryptosystem [45]

5



is homomorphic for addition. However, it was not until Gentry’s groundbreaking
work from 2009 [26] that we were able to construct the first fully homomorphic
encryption (FHE) scheme, a scheme which in theory can evaluate an arbitrary
circuit on encrypted data. His construction is based on ideal lattices and is
deemed to be too impractical ever to be used, but it led the way to construct
more efficient schemes in many following publications [9, 8, 23, 16, 17].

Modern HE schemes are based on the learning with errors (LWE) [47] hard-
ness assumption, and its variant over polynomial rings, the ring learning with
error (RLWE) [42] hardness assumption. During the encryption of a plaintext
in RLWE based schemes, random noise is introduced into the ciphertext. This
noise grows with the evaluation of homomorphic operations, negligible for addi-
tion, but significantly for homomorphic multiplication. Once this noise becomes
too large and exceeds a threshold, the ciphertext cannot be decrypted correctly
anymore. We call such a scheme a somewhat homomorphic encryption scheme
(SHE), a scheme that allows evaluating an arbitrary circuit over encrypted data
up to a certain depth. The specific depth depends on the choice of encryption
parameters, and choosing parameters for larger depths comes, in general, with
a considerable performance penalty.

In his work [26], Gentry introduced the novel bootstrapping technique, a pro-
cedure that reduces the noise in a ciphertext and can turn a (bootstrappable)
SHE scheme into an FHE scheme. However, this bootstrapping operation comes
with high computational complexity. In many practical applications it is, there-
fore, faster to omit bootstrapping and choose a SHE scheme with large enough
parameters to evaluate the desired circuit. In this work, we use the BFV [8, 23]
SHE scheme to homomorphically encrypt the inputs of our protocol.

Homomorphic Encryption vs. Generic MPC. We rely on HE instead
of other privacy-preserving protocols, such as secure multi-party computation
(MPC), due to several considerations:

– Homomorphic ciphertext-ciphertext multiplications are very costly in HE
schemes, however, in our protocol we mainly rely on the cheaper plaintext-
ciphertext multiplications. Therefore, all the operations involved in our pro-
tocol can be expressed relatively cheap using HE.

– HE has the advantage of outsourcing computations. After the client sends the
encrypted data to the server, the server can do the computations without fur-
ther data exchange with the client. MPC protocols based on secret-sharing,
in contrary, have a higher number of communication rounds and all parties
have to participate in the computations.

– Generic MPC protocols are not well suited for the large databases considered
in this work. Both, secret sharing and garbled circuit based MPC, would
require the (secure) transmission of the server’s database (either in secret-
shared form or embedded in a circuit) to the client, requiring several GB of
communication (e.g., 223×215 matrix of 32 bit integers has a size of 1024 GB).
Furthermore, in the most efficient secret sharing schemes, such as the popular
SPDZ [18, 19], the multiplication of two shared values requires a shared
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beaver-triple which has to be precomputed in an expensive offline phase and
can not be reused for further computations. However, computing enough
triples to support the secure aggregation in our protocol, i.e., one triple per
database entry, would require extensive runtime and communication. For
example, on our benchmarking platform, generating 220 triples (enabling
the same number of secure multiplications) using the MP-SPDZ [37] library
in a semi-honest security setting already took 100 seconds in a LAN-setting
and required 4 GB of communication.

3.3 Differential Privacy

When we design privacy-preserving data analytics protocols, we have to consider
that the result, can still leak too much information about the underlying dataset.
In our case – a protocol designed to aggregate location data – the result could
still leak the location of a single individual [60]. We can use the well-established
notion of differential privacy [21] to help protect against such kind of information
leakage.

Differential privacy defines a robust, quantitative notion of privacy for in-
dividuals. The main idea is that the outcome of a computation should be as
independent as possible from the data of a single individual. This independence
can be parameterized, usually denoted by the privacy parameter ε.

We opted for differential privacy for its compatibility with existing privacy
frameworks as well as the success in several real-world applications. Recent
work [44] showed that differential privacy satisfies privacy requirements set forth
by FERPA5. Even before this analysis, several businesses were already using dif-
ferential privacy. For example, Apple [3] and Google [29] have applied differential
privacy to gather statics about their users without intruding on individual users’
privacy. The U.S. Census Bureau announced that the 2020 Census will use dif-
ferential privacy as a privacy protection system [11]. These examples highlight
that despite being a relatively new concept, differential privacy is already well-
established.

The most prevalent technique to achieve differential privacy is to add noise
to the outcome of the computation. In this article, we construct the noise from
a zero-centered Laplace distribution. The distribution is calibrated with a pri-
vacy parameter ε and the global sensitivity ∆q of the computation and has the
following probability density function:

Lap(x|b) =
1

2b
e−
|x|
b , with b =

∆q

ε

To add differential privacy to a protocol operating on integers, we discretize
the Laplace distribution by rounding the sampled value to the nearest integer.
For a formal definition of differential privacy, we refer to Appendix C.

5 Family Educational Rights and Privacy Act of 1974, U.S.
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4 Problem Statement and Solution

In this section, we first discuss our protocol in plain without measures to protect
involved data, before we introduce each privacy protection mechanism step by
step. We provide a formal security analysis of the final protocol in Section 6.

4.1 The Plain Protocol

In this work, we want to accumulate the location data of infected individuals to
create a heatmap of places with higher risk of getting infected, assisting govern-
ments in controlling an epidemic. For this purpose, two parties controlling two
different datasets are involved: Health authority who knows which individuals
are infected; and a mobile operator who knows location data of their subscribers.
More specifically, the mobile operator knows how long each of their subscribers
is connected to which cell towers, and therefore, an approximated location data.
The final heatmap will then show, how much time infected individuals spent in
which area, and therefore, will show areas with higher chance of getting infected
with the disease.

If the mobile operator knows which of its subscribers is infected, it can do
the following to create the desired heatmap:

– Initialize a vector h of k elements with zeros, where k is the total number of
cell towers. Each element of this vector corresponds to one cell tower.

– For each infected individual, add the amount of time it spent at each cell
tower to the corresponding element of the vector h.

– After all individuals are processed, the vector h contains the final heatmap,
i.e. hj contains the accumulated time spent of all infected individuals at cell
tower j.

Now let us rewrite this process into a single matrix multiplication. First
we encode all N subscribed individuals into a vector x ∈ ZN2 , with xi ∈ Z2

indicating, whether the individual i is infected (xi = 1) or not (xi = 0). Then we
encode the location data in a matrix Z = (z1, z2, . . . ,zk) ∈ ZN×k such that the
vector zj contains all the location data corresponding to the cell tower identified
by j. In other words, the i-th element of the vector zj contains the amount of
time the individual i spent at cell tower j. Now we can calculate the heatmap
as h = xT · Z.

We depict the basic protocol, involving the health authority as a client and
the mobile operator as a server, in Figure 1, assuming the health authority and
the mobile phone operators already agree on identifying all subscribed individ-
uals by indices i ∈ 1, ..., N .

Remark 1 (Agreeing on database indices). The protocol in Figure 1 already as-
sumes that the two parties agree on the indices of individuals in the database.
In practice, the individuals would likely be identified by their phone numbers.
We now give two options to get a mapping from a phone number to a database
index:
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– The server sends a mapping of all phone number to their database index
in plain. This approach is simple and efficient, but it discloses the list of
all subscribed individuals to the client. However, this list is essentially a
list of all valid phone numbers in random order and does not leak anything
more than the validity of that number. Still, this may be an issue in some
scenarios.

– The server and client engage in a protocol for Private Set Intersection with
associated data (e.g., [15]). In such a protocol the client and the server input
their list of phone numbers and the client gets as the output of the protocol
the phone numbers that are in both sets, as well as associated data from the
server side, which in our case would be the index in the database.

While the PSI-based solution has some overhead compared to the plain one, the
performance evaluation in [15] shows that a protocol execution with 224 server
items and 5535 client items takes about 22 seconds with a total communication
of 17 MB – a minor increase when looking at the overall protocol.

Client Server

Input: x ∈ ZN2 Input: Z ∈ ZN×k

Output: h = xT · Z Output: h

Input

x

Data Aggregation

h← xT · Z

Output

h

Output h Output: h

Fig. 1: Basic Protocol without privacy protection.

Simply executing the protocol described in Figure 1 of course would enable
the mobile operator to learn which individuals are infected, which is a huge
privacy violation. On the other hand, the health authority could query a single
individual’s location data by sending a vector x = (1, 0, . . . , 0), which also vio-
lates privacy. Furthermore, a correctly accumulated heatmap still can leak some
information about individuals location data. In the following, we describe our
techniques to protect against these privacy violations.

4.2 Adding Encryption

To protect the vector send by the health authority, and therefore who is in-
fected and who is not, we use a homomorphic encryption (HE) scheme HE =
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(HE.KGen,HE.Enc,HE.Dec,HE.Eval). Before executing the protocol, the health
authority runs KGen to obtain a secret key sk and an evaluation key evk. We
assume that the mobile operator knows evk, which is required to perform oper-
ations on encrypted data, before running the protocol.

In the updated protocol, the health authority now uses sk to encrypt the
input vector x and sends the resulting ciphertext vector c ← HE.Encsk(x) to
the mobile operator. The mobile operator then uses evk to perform the matrix
multiplication on the encrypted input vector and sends the resulting ciphertext
vector h∗ ← HE.Evalevk

(
cT · Z

)
back to health authority. The health authority

can now use sk to decrypt the result and get the final heatmap h = HE.Decsk(h
∗).

Informally, if the used HE scheme is semantically secure, then the mobile
operator cannot learn which individuals are infected by the disease and which
are not.

4.3 Invalidation Results for Malicious Queries

In the simple protocol, the health authority could use the input vector x to
get information about the location data of individuals. Since the input vector is
encrypted, the mobile operator cannot trivially check if the vector is malicious
or not. Also, comparing encrypted elements is not trivially possible in most HE
schemes. However, we can encode all the required checks to output 0, if every-
thing is correct, and a random value otherwise. We then can add this value to the
final output as a masking value which randomizes the mobile operator response
if the input vector is malicious. We describe how to generate this masking value
for different proofs in the following sections.

Masking for Non-Binary Query Vector. The aim of this mask is to ensure
that an infected individual’s location data gets aggregated not more than once.
Note that, the HE scheme we use operates on plaintexts in Zt, i.e., integers
modulo t. Therefore, the inputs to our protocol, i.e., the vector x and the matrix
Z consist of elements in Zt. As lined above it is crucial to the protocol’s privacy
that input vector is binary, i.e., only contain 0s and 1s. If this is not the case, the
client can arbitrarily modify the contribution of a single person to the overall
aggregated result, which can leak private information. Since the server only
receives an encryption of the input vector, simply checking for binary values is
not an option.

However, we can use similar techniques to the ones used in Bulletproofs [10] to
provide assurance that the query vector x ∈ ZNt only contains binary elements.
First, we will exploit the following general observation. Let d = x−1, then x◦d
is the zero vector if x is binary. Note in our scenario, d can be computed by the
server. The result of Hadamard product x ◦ d can be aggregated into a single
value by calculating the inner product 〈x,d〉, which will again be zero if x is
binary. The server then adds a random value y to reduce the probability for the
client to cheat by letting several entries of x cancel each other out during the
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inner product, which gives the mask:

µbin′ = 〈x, (d ◦ yN )〉 . (1)

For the generic case of a vector x and a randomly chosen y, 〈x,yN 〉 = 0
will hold for a x 6= 0 only with probability N/t [10]. Using a ν bit t (t ≈ 2ν),
translates to a soundness error of ν − log2(N) bits, for details of this calculation
see Appendix B.1. In particular, if we look at N = 223, ν = 60, parameters suffi-
cient for small nation-states (see Section 7.6), we get 37-bit statistical security.
Standard literature suggest a statistical security parameter of at least 40-bit;
therefore, we developed a method to enhance the statistical security without
significant overhead.

Boosting Soundness for Non-Binary Query Vector Mask. The high level
idea is that we lower the probability of cheating successfully by independently
checking the above mask twice. We extended the previous mask to the following:

µbin = 〈x, (d ◦ yN1 )〉 · r1 + 〈x, (d ◦ yN2 )〉 · r2

where r1, r2
$← Zt \{0} are two random values. Therefore, the statistical security

level increases to ν − 1-bit (= 59 bit). We refer to Lemma 2 for a proof of this
statement.

Masking Against Wrong Hamming Weight. Another problem of our pro-
tocol is that the client can target the values of single individuals by querying
the server with an input vector of hamming weight one. Again, since the query
is encrypted, the server can not trivially check the hamming weight of the input
vector. However, we can apply similar techniques as in the previous section to
incorporate a hamming weight check into a masking value.

Again let x be the query vector and let w be its announced hamming weight.
On the server-side, calculate 〈x,1N 〉, which is equal to the hamming weight of x.
Therefore, the following mask µHW ∈ Zt is zero if x has the announced hamming
weight w:

µHW = 〈x,1N 〉 − w .

We note, that µHW is controlled and known by the client.

Applying the Masks. Once the final mask is calculated, it gets added to the
final output of the protocol. However, in case the masking value is not zero, we
have to make sure that a different random value is added to each element of the
output vector to prevent leaking the mask if some values of the output vector
are known beforehand. Therefore, the final mask µ can be calculated using a

random vector r
$← (Zt \ {0})k as follows:

µ = (µbin + µHW) · r (2)
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µ is now equal to 0k if x is a binary vector with hamming weight w, random
otherwise. The whole procedure reduces the statistical security of our protocol by
one bit. Hence, our protocol enjoys ν−2 bit (= 58-bit) security, see Appendix B.1
for a proof.

Remark 2. Adding the hamming weight check into the proving mask inherently
leaks the number of infected individuals in the query. Since the number of in-
fected individuals is usually public, this does not represent a problem. Neverthe-
less, one could omit the hamming weight check by setting µ = µbin · r, getting
a protocol with ν − 1 bit statistical security.

4.4 Adding Differential Privacy

Even with a cardinality check in place, the final heatmap can still leak infor-
mation about location data of individuals. As an example, the health authority
could abuse the heatmap to track an individual by querying him alongside in-
dividuals from a completely different area. The location data of the targeted
individual would be clearly visible as an isolated zone in the resulting heatmap.
Applying differential privacy with suitable parameters will protect against such
an attack since the overall goal of differential privacy is to decrease the statisti-
cal dependence of the final result to a single database entry. In our use-case,
therefore, differential privacy achieves that it is infeasible to distinguish be-
tween heatmaps, in which we include a single individual in the accumulation
and heatmaps in which we do not.

Choosing proper parameters, however, highly depends on the underlying
dataset. On the one hand, the chosen ε should be small enough to satisfy privacy
concerns; on the other hand, it should be big enough not to overflow the result
with noise. In our protocol, accumulations of a sufficient amount of individuals
should not be affected by the noise, i.e., the noise on its own should not be able
to create hotspots.

4.5 Final Protocol

Finally, with all measures to protect privacy in place, we present the final pro-
tocol in Figure 2.

5 Legal Case Study

For the social context and background considerations regarding this legal case
study we refer to Appendix A.

In our use case, data held by both the Health Authority6 and the Electronic
Communication Service providers fall both in the definition of personal data.
On the one hand, data in possession of the Health Authority, namely personal

6 The Health National Authority is the entity empowered to carry out and enforce
policy measures approved at EU and national touching upon the health sector.

12



Client Server

Input: x ∈ ZNt Input: Z ∈ ZN×k
t

Output: If x ∈ ZN2 : h = xT · Z +

(⌊
Lap

(
∆q

ε

)⌉)k
∈ Zkt Output: ⊥

Otherwise: h
$← Zkt

Encryption

c← HE.Encsk(x)

w ← 〈x, 1N 〉

c, w

Data Aggregation

h∗ ← HE.Evalevk
(
cT · Z

)
Compute Mask

d← HE.Evalevk
(
c− 1N

)
r

$← Zkt ; r1, r2, y1, y2
$← Zt

µbin ← HE.Evalevk
(
〈c, (d ◦ yN1 )〉r1 + 〈c, (d ◦ yN2 )〉r2

)
µHW ← HE.Evalevk

(
〈c,1N 〉 − w)〉

)
µ← HE.Evalevk ((µbin + µHW) · r)

h∗ ← HE.Evalevk (h∗ + µ)

Differential Privacy

δ
$←

(⌊
Lap

(
∆q

ε

)⌉)k
h∗ = HE.Evalevk (h∗ + δ)

Decryption

h∗

h = HE.Decsk(h
∗)

Output h

Fig. 2: Final protocol.

medical data and on the other hand, also call details, data records and call
detail record (CDR) fall in the definition provided by the GDPR. As a result,
any processing activity carried out by these two entities on such data should
be considered as falling in the scope of application of the GDPR. Thus, such
processing activities have to fall the requirements listed in GDPR and comply
with privacy and data protection principles, listed in Art. 5 GDPR.
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5.1 Roles

In the EU Privacy and Data Protection subjects involve in activities that fall
into the definition of processing7 of personal data are three: controller, processor8

and data subjects. In a recent guideline on the role of controller and processor
the European Data Protection Board (EDPB),9 in line with the previous Article
29 Working Party (WP29) Opinion10 has pointed out the main characteristics
of controller role. According to the EDPB one of the crucial element necessary
to identify a controller concern its ‘factual influence that the controller has over
the processing operation, by virtue of an exercise of decision-making power.’11

In our use-case, domestic legislation might have delegated specific activities to
the health authority in order to develop a comprehensive strategy to fight the
COVID-19 crisis.

The WP29 Opinion had already clarified that in case a controller(travel
agency) would have shared personal data to other entities (hotels), the entity in
possession of these personal data should have to be configured together with the
travel agency a controller, creating a joint-controllership12 with him.13

From a legal perspective, to determine the nature and roles concerning the
processing of personal data, an assessment of the activities is necessary.

5.2 Activities and Context

In the context of the given use case should be assessed whether the cryptographic
techniques that have been used to encrypt different personal data sets have

7 Art. 4(2) GDPR: ‘processing’ means any operation or set of operations which is per-
formed on personal data or on sets of personal data, whether or not by automated
means, such as collection, recording, organisation, structuring, storage, adaptation
or alteration, retrieval, consultation, use, disclosure by transmission, dissemination
or otherwise making available, alignment or combination, restriction, erasure or de-
struction;’

8 Art.4(8) GDPR: ‘processor’ means a natural or legal person, public authority, agency
or other body which processes personal data on behalf of the controller;’

9 European Data Protection Board, Guidelines 07/2020 on the concepts of
controller and processor in the GDPR, adopted on 2 September 2020,
https://edps.europa.eu/sites/edp/files/publication/19-11-07_edps_gui

delines_on_controller_processor_and_jc_reg_2018_1725_en.pdf
10 Article 29 Working Party, Opinion 1/2010 on the concepts of “controller” and

“processor” , adopted on 16 February 2010, WP169, http://ec.europa.eu/justi
ce/policies/privacy/docs/wpdocs/2010/wp169_en.pdf.

11 European Data Protection Board, Guidelines 07/2020 on the concepts of
controller and processor in the GDPR, adopted on 2 September 2020,
https://edps.europa.eu/sites/edp/files/publication/19-11-07_edps_gui

delines_on_controller_processor_and_jc_reg_2018_1725_en.pdf, p.7
12 Art. 26 GDPR
13 Article 29 Working Party, Opinion 1/2010 on the concepts of “controller” and

“processor” , adopted on 16 February 2010, WP169, http://ec.europa.eu/justi
ce/policies/privacy/docs/wpdocs/2010/wp169_en.pdf, p.19
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made the identification of data subjects no longer possible. If this is the case,
the anonymised data fall out of the GDPR’s scope of application, and involved
actors will not have to comply with such rules.

According to WP2913, and mentioned CJEU jurisprudence,14 to assess the
identifiability should be considered objective aspects such as time and technical
means, together with other contextual elements. In such a context monitoring of
latest developments in the anonymisation and re-identification attacks scenario
results to be crucial, especially when the processing activity involves location
data, known for being difficult to be anonymised.

In the given use case, the two main entities involved in the processing of per-
sonal data have used different cryptographic methods to make identifiers anony-
mous. Specifically, the Health authority has used homomorphic encryption for
the names of COVID positive individuals while the electronic communication ser-
vice provider has used differential privacy. The process to encrypt and make inac-
cessible, such data is considered by GDPR and Article 29 as a processing activity.
Therefore, both entities applying such privacy-preserving technology should be
considered as the data controller, and their processing activity should comply
with GDPR and ePrivacy requirements. As a result, the encryption of data to
make them anonymous should be carried out complying, among the others, the
purpose limitation principle and should have a lawful basis if there is no compat-
ibility between the first processing activity, namely, collection of data, and the
anonymisation one.15 Taking into account our research and the objective of the
activities carried out in such context, we should mention Art. 23 GDPR. The
GDPR, which is flexible that foreseen situations where the fundamental right of
data protection might be limited, offer an exception to data protection principle.
This situation should be possible only when Union or Member state law foreseen
a restriction to data controller obligation ‘when such a restriction respects the
essence of the fundamental rights and freedoms and is a necessary and propor-
tionate measure in a democratic society to safeguard’.16 Art. 23(5) GDPR also
mentions public health and social security as one of the grounds that can justify
a restriction of privacy and data protection obligations. Therefore, the process-
ing activity of both electronic communication operator and health authority to
anonymised, through privacy-enhancing-technologies (so-called PETs), personal
data should consider in compliance with GDPR provisions.16

After having assessed the compliance of encryption activity with the EU pri-
vacy and data protection framework, additional consideration should be done,
namely, if the encryption methods used by the two entities can be defined anony-
mous and consequently which are the obligations for the Health Authority and

14 Patrick Breyer v Bundesrepublik Deutschland [2016] European Court of Justice
Case C-582/14, ECLI:EU:C:2016:779 [46]

15 Gerald Spindler and Philipp Schmechel, ‘Personal Data and Encryption in the Eu-
ropean General Data Protection Regulation’ [2016] Journal of Intellectual Property,
Information Technology and Electronic Commerce Law 15, 166; Finck and Pallas (n
23) 17–18.

16 Art. 23 GDPR
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the electronic communication operator rising from the EU privacy and data
protection framework.

In conclusion, the analysis on the encryption methods used both by the
health authority has to assess whether or not the two protocols used to allow
any other entity to likely identify personal data from subjects other than the
data controller.

6 Security Analysis

In this section, we show that our protocol is secure against semi-honest adver-
saries while providing privacy against a malicious server.

Two-party protocols are usually proven secure with the real-ideal world
paradigm. Roughly speaking, one has to prove that the protocol does not leak
any additional information than when computed with the help of a trusted third
party. The trusted third party is modeled as an ideal functionality presented in
Figure 3.

FCoV

Parameters: t,N,W ∈ N, β ∈ R+. Running with parties P1 and P2.

1. Upon receiving an input (input, sid, P1, P2, x) from a party P1, verify that
x ∈ ZNt , else ignore input. Next, record (sid, P1, P2,x). Once x is recorded,
ignore any subsequent inputs of the form (input, sid, P1, P2, ·) from P1.

2. Upon receiving an input (input, sid, P1, P2, Z) from party P2, verify that
Z ∈ ZN×∗

t , else ignore input. Proceed as follows: If there is a recorded value
(sid, P1, P2,x), compute h← xT · Z + (bLap (β)e)k provided that x ∈ ZN2 and

hamming weight of x is W , otherwise h
$← Zkt , and send (sid, P1, P2, k) where k is

the number of columns of Z to the adversary. Then output (result, sid, P1, P2,h)
to P1. and ignore subsequent inputs of the form (input, sid, P1, P2, ·) from P2.

Fig. 3: Ideal functionality FCoV of the above solution.

First, we will show that our protocol is secure in the presence of semi-honest
adversaries.

Lemma 1. Let us assume HE is an IND-CPA secure homomorphic encryption
scheme. Then protocol Figure 2 securely realizes FCoV against static semi-honest
adversaries.

The high-level idea is that we reduce our protocol’s security to the semantic
security of the underlying homomorphic encryption scheme. Since by the defini-
tion of semantic security the server can not learn anything from encrypted data.
The formal proof builds upon secure function evaluation and can be found in
Appendix B.

16



Achieving simulation based security against a malicious server would be sim-
ilar to verified homomorphic encryption. While some theoretical constructions
exist [39], they are far from practical.

Instead, we show input privacy against a malicious server, which is also known
as one-sided simulation security. This notion has been first considered in the
context of oblivious transfer [43], was then formalized [35] and recently used
[15] in the realm of PSI. Applied to the use-case at hand one-sided simulation
guarantees that the patient’s identifier are protected even in the presence of a
malicious server (one that deviates from the protocol). For a formal definition
see Appendix B.

Theorem 1. Let us assume HE is an IND-CPA secure homomorphic encryption
scheme. Then protocol Figure 2 securely realizes FCoV with one-sided simulation
in the presence of a maliciously controlled server.

Proof. From Lemma 1, we already know that the protocols is secure against
semi-honest adversaries. The only thing left to show is the input privacy of
the client against a malicious server, i.e., the server is not able to learn any
information from the client’s input (patients’ identifier). Now, due to the fact
that server’s view only includes a homomorphic encryption of the client’s input,
by the semantic security of HE we have that the server learns nothing about
client’s input. ut

7 Implementation and Performance

We implemented our protocol using the BFV [8, 23] homomorphic encryption
scheme, more specifically its implementation in the SEAL v3.4 [50] library. SEAL
is an actively developed open-source library maintained by Microsoft Research
compatible with all major operating systems, including Windows, Linux, and
OS X.

The computationally most expensive phase in the protocol is the Data Aggre-
gation phase, in which the server multiplies a huge matrix to a homomorphically
encrypted input vector. Therefore, the main objective of our implementation is
to perform this huge matrix multiplication as efficiently as possible.

7.1 Packing

Modern HE schemes allow for packing a vector of n plaintexts into only one
ciphertext. Performing an operation on this ciphertext then is implicitly applied
to each slot of the encrypted vector, similar to single-instruction-multiple-data
(SIMD) instructions on modern CPU’s (AVX, SSE2, etc.). However, the size
of the ciphertext does not depend on the exact number (≤ n) of plaintexts
encoded. The HE schemes support a variety of SIMD operations, including slot-
wise addition, subtraction and multiplication, and slot-rotation. However, one
can not directly access a specific slot of the encoded vector. We can use the SIMD
encoding to speed up the matrix multiplication of our protocol significantly.
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In the BFV scheme (and its implementation in the SEAL library), packing
requires, that plaintexts are in Zp with a prime p which is congruent to 1 mod
2 · n. The number of available SIMD slots is then equal to the degree of the
cyclotomic reduction polynomial (xn + 1); thus, it is always a power of two. In
the ciphertexts, the n slots are arranged as matrix of dimensions (2 × n/2). A
ciphertext rotation affects either all rows, or all columns of the matrix simulta-
neously. Therefore, we can think of the inner matrix as two rotatable vectors,
which can be swapped.

7.2 Baby-Step Giant-Step Matrix Multiplication

The SIMD encoding can be used to efficiently speed up matrix multiplication by
using the diagonal method introduced by Halevi and Shoup in [32]. They have
shown that a matrix-vector multiplication of a matrix Z ∈ Zm×m and vector
x ∈ Zm can be expressed by m elementwise vector-vector multiplications, m− 1
rotations, and m−1 additions, operations that can easily be evaluated in an HE
scheme:

Z · x =

m−1∑
i=0

diag(Z, i) ◦ rot(x, i) (3)

diag(Z, i) in equation 3 expresses the i-th diagonal of matrix Z in a vector of
size m and rot(x, i) rotates the vector x by index i to the left.

However, rotations are very expensive in terms of computational effort in the
BFV encryption scheme. Luckily, the diagonal method can further be improved
by applying the baby-step giant-step algorithm [33, 34]:

Z · x =

m−1∑
i=0

diag(Z, i) ◦ rot(x, i)

=

m2−1∑
k=0

m1−1∑
j=0

diag(Z, km1 + j) ◦ rot(x, km1 + j)

=

m2−1∑
k=0

rot

m1−1∑
j=0

diag′(Z, km1 + j) ◦ rot(x, j), km1

 (4)

where m = m1 · m2 and diag′(Z, i) = rot (diag(Z, i),−bi/m1c ·m1).17 Note,
that rot(x, j) only has to be computed once for each j < m1, therefore, equa-
tion 4 only requires m1 +m2 − 2 rotations of the vector x in total.

Trivially, we can use the following equation to implement a xT · Z multipli-
cation, like we use in our protocol:

(xT · Z)T = ZT · x

=

m2−1∑
k=0

rot

m1−1∑
j=0

diag′(ZT , km1 + j) ◦ rot(x, j), km1

 (5)

17 In equation 4, bi/m1c is equal to k.

18



7.3 Homomorphic N × k Matrix Multiplication

In our protocol we want to homomorphically evaluate xT ·Z, where x ∈ {0, 1}N
and Z ∈ ZN×kp , for big parameters N and k. As described in Section 7.1, the in-
ner structure of the BFV ciphertext consists of two vectors of size n/2 each, and
it does not allow a cyclic rotation over the whole input vector of size n. However,
a rotation over the whole input vector is required by the baby-step giant-step
algorithm. Therefore, we only can perform a baby-step giant-step multiplica-
tion with a (n/2× n/2) matrix using this packing. Fortunately, we can use the
remaining n/2 slots (i.e., the second vector in the inner structure of the BFV ci-
phertext) to perform a second (n/2×n/2) matrix multiplication simultaneously.
Therefore, after a homomorphic baby-step giant-step matrix multiplication, the
result is a ciphertext c, where each of the two inner vectors encodes the result
of a (1×n/2)× (n/2×n/2) vector-matrix multiplication. The sum of those two
vectors can easily be obtained by rotating the columns of the ciphertext c and
adding it to the first result:

csum = c+ rotcol(c) (6)

Thus, we can use one (n/2 × n/2) baby-step giant-step matrix multiplication
and equation 6 to implement a homomorphic (1 × n) × (n × n/2) = (1 × n/2)
vector-matrix multiplication.

Taking this into account, we split the huge (N × k) matrix into nv · no
submatrices of size (n × n/2), with nv =

⌈
N
n

⌉
and no =

⌈
2k
n

⌉
, padding the

submatrices with zeros if necessary. We split the input vector x into nv vectors
of size n (padding the last vector with zeros if necessary) and encrypt each of
these vectors to get nv ciphertexts ci. The final result of the xT · Z matrix
multiplication can be computed with the following equation:

c̃i =

nv−1∑
j=0

MatMul(SubMat(Z, j, i)T , cj) ∀0 ≤ i < no (7)

where, SubMat(Z, j, i) returns the submatrix of Z with size (n×n/2), starting at
row n·j and column n

2 ·i, and MatMul(Z, c) performs the homomorphic baby-step
giant-step matrix multiplication Z · c followed by equation 6.

Equation 7 produces no ciphertexts c̃i, with the final results being located in
the first n/2 slots of the ciphertexts. Overall, our algorithm to homomorphically
calculate xT ·Z requires nv ·no baby-step giant-step matrix multiplications and
the total multiplicative depth is 1 plaintext-ciphertext multiplication.

7.4 Homomorphic Evaluation of the Masking Value

To calculate the binary vector masking value (equation 1), we need to calculate
the inner product of two homomorphically encrypted ciphertexts c and d. After
an initial multiplication c · d, the inner product requires log2(n/2) rotations and
addition, followed by equation 6 to produce a ciphertext, where the result is
encoded in each of the n slots.
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Our implementation uses rejection sampling and the SHAKE128 algorithm
to cryptographically secure sample all the required random values in Zp. The to-
tal multiplicative depth to homomorphically evaluate the final mask (equation 2)
is 1 ciphertext-ciphertext multiplication and 2 plaintext-ciphertext multiplica-
tions.

7.5 BFV Parameters

In BFV, one can choose three different parameters which greatly impact the
runtime, security, and the available noise budget (i.e. how much further noise
can be introduced until decryption will fail):

– Plaintext modulus t

• In general an arbitrary integer t.

• Needs to be prime and congruent to 1 (mod 2 · n) to enable packing.

– Ciphertext modulus q =
∏
i qi, with qi being prime.

– Degree n of the reduction polynomial (power of two).

We test our implementation for a computational security level of κ = 128 bit
and κ = 80 bit. We use the LWE estimator [2] by Albrecht et al. to find suitable
BFV parameters which provide 80 bit security against known attacks; for 128 bit
security SEAL already provides parameters for different reduction polynomial
degrees n. See Appendix D for more details on the impact of the parameters and
which ones we used in our implementation.

7.6 Benchmarks

Multithreading. Since in our use cases N is much bigger than k, we imple-
mented multithreading, such that the threads split the number of rows in the
matrix (more specifically, the number of submatrices in the rows nv) equally
amongst all available threads. Therefore, each thread has to perform at most⌈

nv
#threads

⌉
· no MatMul evaluations, which will be combined at the end by sum-

ming up the intermediate results. In case we want to add the mask to the result,
an extra thread will perform the mask-evaluation in parallel to the matrix mul-
tiplication.

Benchmark Platform. Our prototype implementation18 is compatible to Linux
and Windows; however, we ran our benchmarks on a Linux cluster with two Intel
Xeon E5-2699 v4 CPU’s (total of 44 cores @ 2.2 GHz, 88 threads) and 512 GB
RAM available.

18 The source code is available at https://github.com/IAIK/CoronaHeatMap.
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Runtime. The runtime of our protocol is O(nvno), i.e., it scales linearly in
the number of MatMul evaluations. This can be seen in Figure 4 in which we
summarize the runtime of the homomorphic matrix multiplication for different
matrix dimensions using only one thread. For better comparability, we evaluate
the different sizes with the same BFV parameter set. For real-world matrix di-
mensions, some added runtime has to be expected due to thread synchronization
and the accumulation of the intermediate thread results.
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Fig. 4: Linear dependency of the runtime of the overal matrix multiplication to
the number of MatMul evaluations. BFV parameters are: log2(p) = 33, log2(q) =
218, n = 8192, κ = 128.

Real World Matrix Dimension. In our benchmarks we want to evaluate our
protocol with parameters suitable for smaller nation states and set the matrix
dimensions to N = 223 and k = 215. This would, for example, be enough to
evaluate the protocol for Austria, with a population of approximately 8.9 million
people19 and 18389 cell cites20 at the time of writing. In Table 2 we list the
runtime for a homomorphic (1 × 223) × (223 × 215) matrix multiplication, for
different BFV parameters, using 88 threads. We also provide the total number
of MatMul evaluations and the (maximum) number of evaluations per thread. We
give performance numbers for BFV parameters capable of evaluating the proving

19 https://de.statista.com/statistik/daten/studie/19292/umfrage/gesamtbevo

elkerung-in-oesterreich/
20 https://www.senderkataster.at/
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mask, providing ν-bit statistical privacy against malicious clients, as well as BFV
parameters only capable of evaluating the aggregation phase, which corresponds
to a semi-honest privacy level.

Table 2: Runtime for the Data Aggregation Phase for different parameters using
88 threads. The column Masking indicates whether this parameter set is only
able to evaluate the matrix multiplication (7), or gives the statistical privacy ν
(in bits) provided by the masking value.

BFV Matrix #MatMul Masking Runtime
Nr. log2(p) log2(q) n κ N k total / per thread ν min

1 33 218 8192 128 223 215 8192 / 96 31 59.36
2 60 218 8192 128 223 215 8192 / 96 7 89.87
3 60 438 16384 128 223 215 2048 / 24 58 267.19

4 33 162 4096 80 223 215 32768 / 384 7 33.55
5 33 329 8192 80 223 215 8192 / 96 31 89.32
6 60 329 8192 80 223 215 8192 / 96 58 140.82

As Table 2 shows, a matrix multiplication takes approximately 1 hour for
a 33 bit plaintext modulus with κ = 128 bit computational security and 1.5
hour for the bigger 60 bit modulus. The noise budget for n = 8192 and a 60 bit
modulus, however, is not sufficient to evaluate the masking value, which has a
bigger multiplicative depth than the matrix multiplication. Increasing n leads
to a performance drop, more specifically, the evaluation with a 60 bit plaintext
modulus takes 4.5 hours.

Reducing the computational security level to κ = 80 bit allows us to use a
smaller n for the evaluation of the mask with a 60 bit prime, and the matrix
multiplication with a 33 bit plaintext modulus, splitting the respective runtimes
in half. Unfortunately, n can not be reduced for the 33 bit prime with 80 bit
security when masking is applied, increasing the runtime of the matrix multipli-
cation compared to the κ = 128 bit security case. This is due to the fact that in
the 80 bit security case q is composed of more distinct primes qi. We recommend,
therefore, to always use 128 bit computational security parameters for the 33 bit
prime when the masking value has to be evaluated.

Data Transmission. In Table 3, we list the sizes of all the data, which has
to be transmitted between the server and the client. Each row corresponds to a
different parameter set from Table 2. The sizes were obtained by storing each
of the described elements on the file system on the benchmarking platform. The
table lists the size of the ciphertexts (ct), Galois keys (gk), and relinearization
keys (rk). Galois keys are required to perform homomorphic rotations, each
rotation index requires one Galois key, plus an additional key for rotating the
columns. When using the baby-step giant-step algorithm, we need a key for the
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index 1 to calculate rot(x, j), and a key for the indices k ·m1, ∀0 < k < m2.
Furthermore, when masking is applied, we need the keys for the power-of-2
indices to calculate the inner product of two ciphertexts. The relinearization key
is required to linearize the result of a ciphertext-ciphertext multiplication. Since
we only have to perform such a multiplication when we calculate the masking
values, we can omit to send the relinearization key when the mask is not applied.

In addition to the values described in Table 3, the client has to announce
the used BFV parameters and the hamming weight of the input vector. These
values have a combined size of less than 300 bytes.

Table 3: Data transmission in MiB for the different parameters in Table 2. Values
include keys for evaluating the masking value when applicable.

Client Server Total
Nr. ct gk rk Total ct

1 256.2 87.6 1.3 345.1 1.0 346.1
2 256.2 81.4 - 337.6 2.0 339.6
3 512.1 639.2 9.0 1160.3 2.0 1162.3

4 128.3 6.2 - 134.5 1.0 135.5
5 384.2 183.9 2.6 570.7 1.0 571.7
6 384.2 183.9 2.6 570.7 2.0 572.7

As Table 3 shows, client-to-server communication is significantly more exten-
sive than the response of the server. The main parts of the communication are
the initial ciphertexts; however, especially when masking has to be applied, the
Galois keys have a significant size as well. The plaintext modulus p has little to
no effect on the number of bytes, contrary to the reduction polynomial degree
n, which influences the communication cost significantly. The response of the
server is very small in comparison to the ciphertexts he receives from the client.
One reason for that is the small parameter k compared to N . The other reason
is, that our implementation performs a so-called modulus-switch to level 0 after
the computation, reducing the ciphertext modulus q to only one of the moduli
qi it is composed of.

7.7 Price Estimation for Deployment in Larger Countries

In this section, we want to give an estimate of the costs of deploying our system
to create a corona heatmap for a larger country, more specifically, for Germany.
At the time of writing, about 83.1 million people live in Germany21, and a total
of 74280 cell sites are deployed22. With the BFV parameters of entry Nr. 1 in

21 https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Bevo

elkerungsstand/_inhalt.html
22 https://www.informationszentrum-mobilfunk.de/artikel/statistik-zur-

zahl-der-funkanlagenstandorte-in-deutschland
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Table 2, i.e., n = 8192, this corresponds to a total number of of nv ·no = 192755
MatMul evaluations. To get 96 MatMul evaluations per thread, we would have to
acquire 21 CPU’s capable of handling 96 threads each. According to the current
market prizes23 the cost of one CPU capable of handling 96 threads is ∼ 1.5 $ per
hour. Taking an additional overhead by handling so many threads and combining
intermediate results, we estimate the cost of evaluating the homomorphic matrix
multiplication for the German use case using AWS to ∼ 60 $. While noting that a
trivial outsourcing of such computations is not part of our proposal, this estimate
still shows that it is likely very feasible to create a heatmap once a day to gain
valuable insight into the spread of the disease, even for larger countries.

8 Conclusion

Our solution shows that privacy-preserving health data analytics is possible even
on a national scale. We achieved this by combining three PETs. Each of them
has their known limitations, but filtering out their strengths and apply them
purposefully lead to a real-world cryptographic protocol.

We are now going to discuss considerations for an actual roll-out. It is im-
portant that we only guarantee privacy as long as the health authority does not
share the heatmap (outcome of protocol) with the mobile operator. There are
also parameters of our system that need to be chosen in view of a particular
dataset, potentially in coordination with data protection authorities, such as
fixing the minimum number of aggregated individuals and differential privacy
parameters.

Legal Considerations

Taking into account the nature of activities performed by the Health Authority
and the electronic communication provider, the use case carried out by the TU
Graz University configure an articulate situation. Both entities of our use case
study should be considered data controller in relation to the raw data sets they
independently manage. As a matter of fact they remain in possession of the
decryption keys to anonymise datasets, but in such specific activity and would
be possible for them, through deanonymisation process to turn anonymised data
into personal data.

Notwithstanding such an initial situation, it is fair to assume that in the
given use case, the Austrian Health Authority exercise a factual influence over
the processing operation, by virtue of an exercise of decision-making power.24

Considering this, the authority should be considered as the data controller of the
whole process activity carried out in the context of this use case. The electronic

23 https://aws.amazon.com/ec2/spot/pricing/
24 European Data Protection Board, Guidelines 07/2020 on the concepts of

controller and processor in the GDPR, adopted on 2 September 2020,
https://edps.europa.eu/sites/edp/files/publication/19-11-07_edps_gui

delines_on_controller_processor_and_jc_reg_2018_1725_en.pdf, p.7

24

https://aws.amazon.com/ec2/spot/pricing/
https://edps.europa.eu/sites/edp/files/publication/19-11-07_edps_guidelines_on_controller_processor_and_jc_reg_2018_1725_en.pdf
https://edps.europa.eu/sites/edp/files/publication/19-11-07_edps_guidelines_on_controller_processor_and_jc_reg_2018_1725_en.pdf


service provider does not enter into possession of the decryption keys of the data
sets held by the Austrian authority. Therefore, the activity performed should
be considered carried out on anonymised data, so out of the EU privacy and
data protection framework. If data sent by the Health Authority do not meet
the criteria listed by the WP29 and recent EU jurisprudence, the electronic
service provider should be considered as a mere processor, with limited security
obligation.
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A Legal Aspects

Social context

Data-driven solutions are providing fundamental supports to public authorities
in their fight against COVID-19. Due to the implications, such solutions have
on the privacy and data protection of citizens, compliance with the EU privacy
and data protection framework should be assessed. As a matter of fact. From
an ethical and socio-economic perspective, should be considered the alignment
of these solutions with the EU framework as a precondition to enhance citizens’
trust, necessary for an efficient use of such technological novelties.

From a Member State perspective should be stressed that regardless the
peculiarities of the adopted solutions, general principles of effectiveness, pro-
portionality and necessity should always be promoted, and the adoption of any
technological solutions by the public authorities should avoid any unjustified
compression of the privacy and data protection of citizens.25 Therefore, due to
the large-scale processing activities and multiple actors involved in the process,
a risk-based analysis should be not only desirable but also auspicate.

Legal framework

In the privacy and data protection context two central legislations should be
taken into account, namely, the General Data Protection Regulation26 and ePri-
vacy Directive,27 lex specialis that exclusively Deals With ‘The Processing Of
Personal Data In Connection With The Provision Of Publicly Available elec-
tronic communication services in public communications networks in the com-
munity’.27

The procedure developed by TU Graz uses location data provided by elec-
tronic communication servers providers to support an efficient response to the
pandemic by modelling the spread of the virus through a heatmap, consequently
giving the possibility to involved public authorities to develop a confinement
measures.

In our case study, the processing activity involves data that falls into the
definition of traffic and location data, and both defined and regulated by the Art.

25 EDPB, ‘Guidelines 04/2020 on the Use of Location Data and Con-
tact Tracing Tools in the Context of the COVID-19 Outbreak’ (2020)
https://edpb.europa.eu/sites/edpb/files/files/file1/edpb_guidelines_

20200420_contact_tracing_covid_with_annex_en.pdf accessed 19 October 2020.
26 Regulation (EU) 2016/679 of The European Parliament And Of The Council on the

protection of natural persons with regard to the processing of personal data and on
the free movement of such data, and repealing Directive 95/46/EC (General Data
Protection Regulation)

27 Directive 2002/58/EC Of The European Parliament And Of The Council Of 12 July
2002 concerning the processing of personal data and the protection of privacy in the
electronic communications sector (Directive on privacy and electronic communica-
tions), OJ L 201, 31.7.2002, p. 37
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6 and 9 ePrivacy Directive. According to such provisions, traffic data and data
indicating the geographic position of the terminal equipment of a user should
be processed for a specific purpose and then erased or made anonymous if the
consent of the user was not gained. If such information is stored on the device of
the user, Art.5(3) on the confidentiality principle requires that such processing
activity (access to personal data) is only allowed when authorised by the user.
Nonetheless, Art 15 ePrivacy Directive derogates Art.9 restriction when ‘such
restriction constitutes a necessary, appropriate and proportionate measure within
a democratic society to safeguard national security (i.e. State security), defence,
public security, and the prevention, investigation, detection and prosecution of
criminal offences or unauthorised use of the electronic communication system’.28

The use of such data, regardless if they can be defined as anonymised or not after
the use of cryptographic techniques developed by TU Graz, falling in the scope
of Art.15, seems to offer an exception for the use of such data.

GDPR and ePrivacy Scope of Application

To assess whether or not the processed data fall into the scope of application
of the GDPR or ePrivacy Directive, a preliminary assessment on the data is
necessary. According to Rec 26 GDPR ‘the principles of data protection should
not apply to anonymous information, namely, information which does not re-
late to an identified or identifiable natural person or to personal data rendered
anonymous in such a manner that the data subject is not or no longer identi-
fiable’.29 Notwithstanding the reference to anonymised data of Rec. 26, neither
the GDPR nor the ePrivacy Directive provide a definition of anonymised data.
Contrary, the GDPR provides a definition of personal data and pseudonymised
data. According to Art.4 GDPR, personal data are data should be considered
‘any information relating to an identified or identifiable natural person (‘data
subject’); an identifiable natural person is one who can be identified, directly or
indirectly, in particular by reference to an identifier such as a name, an iden-
tification number, location data, an online identifier or to one or more factors
specific to the physical, physiological, genetic, mental, economic, cultural or social
identity of that natural person’.30 Considering such definition if data processed in
the context of developing a heat map for monitoring COVID-19 positive patients
data can be directly or indirectly identifiable, EU privacy and data protection
requirements apply. As a result, a legal assessment of data processing activities
should be subject to a case-by-case assessment.31

Due also to the absence of a proper definition of anonymised data in the
GDPR’s articles this term is often mistaken for pseudonymisation. Pseudonymi-
sation is defined by Art 4(5) as ‘the processing of personal data in such a manner
that the personal data can no longer be attributed to a specific data subject with-
out the use of additional information, provided that such additional information

28 Art.15 ePrivacy Directive
29 Rec.26 GDPR
30 Art.4(1) GDPR
31 EDPB (n 1).

30



is kept separately and is subject to technical and organisational measures to en-
sure that the personal data are not attributed to an identified or identifiable
natural person’. Pseudonymisation can be done in a retraceable or untraceable
way. In the former case, individuals can be identified, and consequently, these
pseudonymised data fall into the scope of GDPR’s scope of application. In the
latter case, the process creates anonymised data and is un-retraceable, in the
sense that the identity of the subject is cannot be discovered or even deleted.

Therefore, the possibility to identify the subject marks the difference between
pseudonymisation and anonymisation process and consequently, the application
or not of the EU privacy and data protection framework.

EU Court of Justice approach

In the context of our use case, it is crucial to mention a crucial decision made by
the European Court of Justice on whether or not dynamic IP addresses can be
considered as personal data (Breyer case).32 In such a case the CJEU pronounced
on the interpretation of data subject’s identifiability in the Directive 95/4633

(replaced by the GDPR). According to the Luxembourg judges the wording used
in and transposed in the GDPR referring to the possibility to identify personal
data by ‘any other person’ suggests that for information to be treated as ‘personal
data’ it is not required that ‘all the information enabling the identification of the
data subject must be in the hands of one person’.34 Nonetheless, the Luxemburg
judges, endorsing the Advocate General approach add that to identify specific
data as personal data should be assessed whether it would be possible to combine
data held by the data controller with means likely reasonably to be used by third
parties to identify the data subject.35

32 Patrick Breyer v Bundesrepublik Deutschland [2016] European Court of Justice Case
C-582/14, ECLI:EU:C:2016:779 [46]

33 Directive 95/46/EC of the European Parliament and of the Council of 24 October
1995 on the protection of individuals with regard to the processing of personal data
and on the free movement of such dataOJ L 281, 23.11.1995, p. 31–50

34 Directive 95/46/EC of the European Parliament and of the Council of 24 October
1995 on the protection of individuals with regard to the processing of personal data
and on the free movement of such dataOJ L 281, 23.11.1995, p. 31–50, paragraph 43

35 “ Just as recital 26 refers not to any means which may be used by the controller
(in this case, the provider of services on the Internet), but only to those that it is
likely ‘reasonably’ to use, the legislature must also be understood as referring to
‘third parties’ who, also in a reasonable manner, may be approached by a controller
seeking to obtain additional data for the purpose of identification This will not
occur when contact with those third parties is, in fact, very costly in human and
economic terms, or practically impossible or prohibited by law. Otherwise, as noted
earlier, it would be virtually impossible to discriminate between the various means,
since it would always be possible to imagine the hypothetical contingency of a third
party who, no matter how inaccessible to the provider of services on the Internet,
could — now or in the future — have additional relevant data to assist in the
identification of a user” .Opinion Of Advocate General Campos Sánchez-Bordona,
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B Security Proofs

Throughout this section, we will use the definitions from Section 4.5, in particular
from Figure 2. Furhter, we denote the computational security parameter by κ,
and the statistical security parameter by ν.

We are now going to briefly summarize what it means that a protocol is se-
cure in the real-ideal-paradigm sense [22]. First, a protocol only can be proven
secure with respect to an ideal functionality. In other words, a protocol execu-
tion is secure if it behaves the same as when the parties send their input to a
trusted third party that does the computation and provides them with the out-
puts. More formally, an environment should not be able to distinguish between
observation of the protocol with a possible adversary and a simulator interacting
with the ideal functionality. More specifically, most of the time, computational
indistinguishability is required between the ideal and real world. In contrast, we
require (κ, ν)-indistinguishability [40] respectively [41] to analyse the cheating
probability more thoroughly.

Definition 1 ([40]). Let X = {X(a, κ, ν)}κ,ν,∈N,a∈{0,1}∗ and
Y = {Y (a, κ, ν)}κ,ν,∈N,a∈{0,1}∗ be probability ensembles, so that for any κ, ν ∈ N
the distribution {X(a, κ, ν)} (resp. {Y (a, κ, ν)}) ranges over strings of length
polynomial in κ+ν. We say that the ensembles are (κ, ν)-indistinguishable if for
every polynomial-time adversary A, it holds that for every a ∈ {0, 1}∗

|Pr[A ({X(a, κ, ν) = 1})]− Pr[A ({Y (a, κ, ν) = 1})]| < 1

p(κ)
+ 2−O(ν),

for every ν ∈ N, every polynomial p(·), and all large enough κ ∈ N.

B.1 Masks

Lemma 2. Let t be a integer of bit-length ν ∈ N, and let N ≤ 2
ν/2. Further, let

x and µbin be defined as in Section 4.3, then it holds that

Pr[x not binary ∧ µbin = 0] = Pr
[
x /∈ ZN2 ∧ µbin = 0

]
≤ 1

2ν−1
.

Proof.

µbin = 〈x, (d ◦ yN1 )〉 · r1︸ ︷︷ ︸
:=α

+ 〈x, (d ◦ yN2 )〉 · r2︸ ︷︷ ︸
:=β

= α+ β

We are now interested in ”bad events”, i.e., when x /∈ ZN2 but the binary mask
is still 0. On a high-level this can only happen in two ways. Either α = β = 0 or
α = −β. Next, we calculate the probability of these two cases.

Case C-582/14 Patrick Breyer V Bundesrepublik Deutschland, 12 May 2016 (1),
ECLI:EU:C:2016:339, paragraph 68.
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First, since r1, r2 6= 0 and assuming x 6= 0k (which is a valid input and no
”bad event”), we have Pr[α = 0] = Pr[β = 0] = N/t [10]. Hence,

Pr[α = β = 0] =
N

t
· N
t

=
N2

t2
. (8)

Consequently, the probability of α being non-zero is 1− N/t. Further, the prob-
ability of β being −α is 1/t. Combing these probabilities gives us

Pr[α = −β ] =

(
1− N

t

)
1

t
=

1

t
− N

t2
. (9)

We get the final probability by putting together Equation (8) and Equation (9)

Pr[α+ β = 0] =
N2

t2
+

1

t
− N

t2
<

1

t
+
N2

t2

≤ 1

2ν
+

2ν

22ν
, because N ≤ 2

ν/2

=
1

2ν−1
.

ut

Corollary 1. Let t be a integer of bit-length ν ∈ N. Further, let N ≤ 2
ν/2, and

µ be the result of Equation (2), then it holds that

Pr
[
µ = 0k ∧ (x /∈ ZN2 ∨ w 6= 〈x,1N 〉)

]
≤ 1

2ν−2
,

Proof. Since µbin is controlled by the client, he has a chance of 1/t to guess
and counteract a non-zero µbin in Zt. Therefore, a vector x which is either non-
binary, has a hamming weight 6= w, or both will result in a masking value of 0k

only with probability Pr
[
µbin = 0 ∧ x /∈ ZN2

]
+ 1/t. With a ν bit t and N ≤ 2

ν/2,
this probability will thus be:

Pr
[
µ = 0k ∧ (x /∈ ZN2 ∨ w 6= 〈x,1N 〉)

]
≤ 1

2ν−1
+

1

2ν
=

3

2ν
≤ 1

2ν−2
,

ut

B.2 Proof of Lemma 1

Proof. We use Lemma 2 to prove that to any polynomial time environment
the execution πCoV with a possible adversary A is (κ, ν)-indistinguishable from
a simulator S interacting with the ideal functionality FCoV . More concretely,
we claim that as long the event that x is not binary and at the same time
the mask µ = 0k does not occur, the executions of the ideal and real world
are computational indistinguishable. Once we have proven this claim, we are
done, since we have already shown that the probability of the above event is
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πCoV

1. A party P1 on input (input, sid, P1, P2,x) from the environment verifies that x ∈
ZNt , else ignores the input. Next, samples a key pair (pk, sk) ← HE.KGen(1κ) and
c← HE.Encpk(x). It records (sid, P1, P2, sk), and sends (sid, P1, P2, pk, c) to P2. P1

ignores subsequent inputs of the form (input, sid, P1, P2, ·) from the environment.
2. On a later input of the form (sid, P1, P2,h

∗) from P2, P1 computes h ←
HE.Decsk(h

∗), and outputs (result, sid, P1, P2,h) to the environment.
3. A party P2 on input (input, sid, P1, P2, Z) from the environment and

(sid, P1, P2, pk, c) from P1 verifies that Z ∈ ZN×k
t , else ignores the input. Next,

computes the mask vector µ and the noise δ according to Figure 2. Then computes
h∗ ← HE.Evalpk(c

T · Z + δ + µ). P2, sends (sid, P1, P2,h
∗) to P1 and ignores all

subsequent inputs of the form (input, sid, P1, P2, ·) from the environment.

Fig. 5: Formalized protocol πCoV

exponentially small in the statistical security parameter. Note that for the proof,
we rewritten the protcol in a more formal description πCoV , see Figure 5.

Before going into the proof of the claim let us note recall that the adversary
A is static, i.e., the set of corrupted parties is fixed from the start and known
to the simulator SCoV . Therefore it has full control of the corrupted dummy
parties.

First consider a polynomial time environment which does not corrupt any of
the parties. Any meaningful environment will interact with πCoV or FCoV in the
following way.

1. It picks some vector x ∈ Znt and inputs (input, sid, P1, P2,x).
2. Then it sees (sid, P1, P2, pk, c).
3. Then it picks some matrix Z ∈ ZN×kt and inputs (input, sid, P1, P2, Z).
4. Then it sees (sid, P1, P2, pk,h

∗).
5. Then it sees (result, sid, P1, P2,h).

Let now us assume to the contrary there is such an environment E that can
distinguish the two systems πCoV ◦A and FCoV ◦S with non-negligible advantage.
Then we can turn E into a polynomial time system E ′ which wins in the IND-
CPA game with non-negligible probability:

1. First E ′ receives pk.
2. Then E ′ runs E to see which message (sid, P1, P2,x) gets recorded.
3. Then E ′ inputs (x,0N ) to the IND-CPA game and gets back an encryption
c, where c is either an encryption of x (if b = 0) or an encryption of 0N (if
b = 1).

4. Then E ′ samples Z ← ZNt . It runs E and provides input (input, sid, P1, P2,x),
(input, sid, P1, P2, Z), (sid, P1, P2, pk, c), (sid, P1, P2,HE.Encpk(c

T ·Z+δ+µ))
and (result, sid, P1, P2,x

T · Z + δ + µ).
5. E ′ waits until E outputs its guess b′, and then E ′ outputs b′.
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SCoV

P1 and P2 not corrupted: It starts by sampling a key pair (pk, sk)← HE.KGen(1κ),
and sets x ← 0N . Then it computes c ← HE.Encpk(x), and instructs P1 to send
(sid, P1, P2, pk, c) to P2.
On later input of the form (sid, P1, P2, pk, c) from P1 it samples Z ← ZN×k

t . Then
it computes h∗ ← HE.Evalpk(c

T ·Z+δ+µ). It instructs P2 to send (sid, P1, P2,h
∗)

to P1.
P1 not corrupted, P2 corrupted: Similar as before but it does not have to simulate

Z because it learns the input Z from P2. Then it simply computes HE.Evalpk(c
T ·

Z + δ + µ.
P1 corrupted, P2 not corrupted: It learns the input x from P1. Then it proceeds

as in the first case until it has to simulate the message to P1. In order to do this it
runs a copy of πCoV internally, where it corrupts P1. Thereby, it learns xT ·Z+δ+µ
and sets h∗ ← HE.Encpk(x

T · Z + δ + µ).
P1 and P2 corrupted: It learns the inputs x from P1 respectively Z from P2.

It simply runs the protocol with the inputs, and outputs (input, sid, P1, P2,x)
and (input, sid, P1, P2, Z) to the ideal functionality, which makes FCoV output
(result, sid, P1, P2,x

T · Z + δ + µ).

Fig. 6: Simulator SCoV .

If b = 0, then E observes the interaction it would see when interacting with
the protocol πCoV , and if b = 1, then E observes the interaction it would see
when interacting with the ideal functionality and the simulator FCoV ◦ S. By
assumption E can distinguish πCoV ◦A and FCoV ◦S with non-negligible advan-
tage. Therefore, E ′ will guess b with probability significantly better than 1/2. This
is a contradiction to the IND-CPA security of HE, as E ′ is polynomial time. ut

B.3 One-Sided Simulation

To define one-sided simulation security, we have the notion of a protocol ex-
ecution view. Let V IEWAπ,A(x, y) denoted the protocol execution view of the
adversary A, i.e., the corrupted parties’ view (input, randomness, all received
messages) after execution of π with input x respectively y from P1 respectively
P2.

Definition 2. Let EXECπ,A,E respectively EXECF,S,E denote the random vari-
ables describing the output of environment E when interacting with an adversary
A and parties P1, P2 performing protocol π, respectively when interacting with a
simulator S and an ideal functionality F , where only P1 receives output. Protocol
π securely realizes functionality F with one-sided simulation if

1. for any adversary A that controls P2 there exists a simulator S such that,
for any environment E the distribution of EXECπ,A,E and EXECF,S,E are
indistinguishable,
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2. and for any adversary A controlling P1 the distribution V IEWAπ,A(x, y) and

V IEWAπ,A(x, y′), where |y| = |y′| are indistinguishable.

C Differential Privacy

Let us recall the definition of ε-differential privacy [21]:

Lemma 3 (ε-Differential Privacy). A randomized mechanism A gives ε-
differential privacy if for any neighboring datasets D and D′, and any S ∈
Range(A): Pr[A(D) = S] ≤ eεPr[A(D′) = S].

Since D and D′ are interchangeable, Lemma 3 implies:

e−ε ≤ Pr[A(D) = S]

Pr[A(D′) = S]
≤ eε

i.e. for small ε : 1− ε . Pr[A(D) = S]

Pr[A(D′) = S]
. 1 + ε

An established technique to achieve ε-differential privacy is the Laplace mech-
anism, i.e., to add noise from a zero-centered Laplace distribution to the final re-
sult of the computation. The noise is, thereby, calibrated with the privacy budget
ε and the global sensitivity ∆q of the computation q: ∆q = max

D,D′
||q(D)− q(D′)||

for all neighboring D and D′. In other words, the global sensitivity represents the
maximum possible value of each element in the dataset. The Laplace distribution

for a scale factor b is given as Lap(x|b) = 1
2be
− |x|b , in the Laplace mechanism a

scale factor of b = ∆q
ε is used.

D BFV parameters

In this section we list the BFV parameters used in our implementation. In BFV,
one can choose three different parameters which greatly impact the runtime,
security, and the available noise budget (i.e. how much further noise can be
introduced until decryption will fail):

– Plaintext modulus t: t defines the Ring Zt to which the homomorphic oper-
ations correspond to. Every result encoded in the ciphertext vector will be
an element of Zt. Therefore, one has to make sure that t is big enough, such
that no computation overflows. On the other hand, a big t has a bad impact
on the ciphertext noise, where the noise cost of homomorphic operations is
higher for bigger t. Additionally, the size of t will also affect the runtime of
homomorphic operations. In general, SEAL allows arbitrary plaintext mod-
uli t ≥ 2 ∈ Z; however, if we want to enable SIMD-packing (Section 7.1),
then the plaintext modulus has to be a prime p and congruent to 1 (mod
2n).
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– Ciphertext modulus q: q defines the available noise budget. Therefore, a
bigger q allows for a bigger depth in homomorphic operations. However,
bigger q’s have an adverse effect on the security of the encryption scheme.
Additionally, q also influences the runtime of homomorphic operations; more
specifically, the number of primes q is composed of. The more primes, the
longer the computation times.

– Degree n of the reduction polynomial: In BFV in SEAL n is always a power
of two and has a direct impact on the runtime of the scheme. A bigger n
drastically increases the time a homomorphic operation needs for evaluation.
On the other hand, a bigger n also increases the security of the scheme and,
therefore, allows for a bigger ciphertext modulus q to increase the noise
budget.

D.1 Plaintext Moduli

In our benchmarks, we use two different plaintext moduli, one with a size of
33 bits, the other with a size of 60 bits. Table 4 lists the used moduli.

Table 4: Used plaintext moduli in hexadecimal notation and their size in bits.

Nr. p log2(p)

1 0x1e21a0001 33
2 0xf4fc03ff53d0001 60

D.2 Ciphertext Moduli

In this section we list all the ciphertext moduli used for different security levels
κ and reduction polynomial degrees n. In SEAL the ciphertext modulus q is the
product several primes qi: q =

∏
i qi.

n = 4096, κ = 80: The ciphertext modulus q is composed of 3 primes with a
total size of 162 bit, which we list in Table 5.

Table 5: Primes composing the ciphertext modulus for n = 4096, κ = 80 in
hexadecimal notation and their size in bits.

i qi log2(qi)

1 0x3ffffffffd6001 54
2 0x3ffffffffd2001 54
3 0x3ffffffffbe001 54
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n = 8192, κ = 80: The ciphertext modulus q is composed of 7 primes with a
total size of 329 bit, which we list in Table 6.

Table 6: Primes composing the ciphertext modulus for n = 8192, κ = 80 in
hexadecimal notation and their size in bits.

i qi log2(qi)

1 0x7ffffffec001 47
2 0x7ffffffc8001 47
3 0x7ffffffb4001 47
4 0x7ffffff00001 47
5 0x7fffffefc001 47
6 0x7fffffecc001 47
7 0x7fffffe70001 47

n = 8192, κ = 128: The ciphertext modulus q is composed of 5 primes with
a total size of 218 bit, which we list in Table 7.

Table 7: Primes composing the ciphertext modulus for n = 8192, κ = 128 in
hexadecimal notation and their size in bits.

i qi log2(qi)

1 0x7fffffd8001 43
2 0x7fffffc8001 43
3 0xfffffffc001 44
4 0xffffff6c001 44
5 0xfffffebc001 44

n = 16384, κ = 128: The ciphertext modulus q is composed of 9 primes with
a total size of 438 bit, which we list in Table 8.
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Table 8: Primes composing the ciphertext modulus for n = 16384, κ = 128 in
hexadecimal notation and their size in bits.

i qi log2(qi)

1 0xfffffffd8001 48
2 0xfffffffa0001 48
3 0xfffffff00001 48
4 0x1fffffff68001 49
5 0x1fffffff50001 49
6 0x1ffffffee8001 49
7 0x1ffffffea0001 49
8 0x1ffffffe88001 49
9 0x1ffffffe48001 49
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