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Abstract. Password Authenticated Key Exchange (PAKE) protocols allow parties to establish a
shared key based only on the knowledge of a password, without leaking any information about it.
In this work, we propose a novel notion called “Identity-based PAKE” (iPAKE) that is resilient to
the compromise of one or more parties. iPAKE protocols protect all parties in a symmetric setting,
whereas in Asymmetric PAKE (aPAKE) only one party (a server) is protected. Binding each party to
its identity prevents impersonation between devices with different roles and allows the revocation of
compromised parties.

We further strengthen the notion by introducing “Strong iPAKE” (siPAKE), similar to “Strong
aPAKE” (saPAKE), which is additionally immune to pre-computation. To mount an (inevitable) offline
dictionary attack, an adversary must first compromise a device and only then start an exhaustive search
over the entire password dictionary. Rather than storing its password in the clear, each party derives
a password file using its identity and a secret random salt (“salted hash”). Although the random salts
are independently selected, any pair of parties is able to establish a cryptographically secure shared
key from these files.

We formalize iPAKE and siPAKE notions in the Universally Composable (UC) framework. We propose
a compiler from PAKE to iPAKE using Identity-Based Key-Agreement and prove its UC-security in
the Random Oracle Model (ROM). We then present CRISP: a construction of siPAKE from any PAKE
using bilinear groups with “Hash2Curve”. We prove CRISP’s UC-security in the Generic Group Model
(GGM) and show that each offline password guess requires at least one pairing operation.
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1 Introduction

Establishing secure communication over insecure channels has been the goal of cryptography for
over two millennia. Following the birth of modern cryptography in Diffie and Hellman’s work, the
possibility of securely communicating without prearranged keys arose, but doing it in an authenti-
cated manner remained unresolved.

Password Authenticated Key Exchange (PAKE) protocols allow parties to negotiate a strong
secret key based only on the knowledge of a shared (and possibly low-entropy) password. To pre-
vent offline attacks, PAKE protocols do not leak any information about the password to passive
adversaries.

However, even in the ideal implementation, this is not entirely satisfactory since it does not deal
with the issue of password storage, leaving it open to compromise. Asymmetric PAKE (aPAKE)
protocols stipulated or introduced asymmetry in the setting, calling some participants “servers”
and other “clients”, assuming only servers store some function (hash) of the password. Only servers
are afforded protection from compromising. This asymmetry does not fit all settings, as in practice
it is quite common for passwords to be stored insecurely on devices/clients.1

Moreover, some use cases are explicitly required to be symmetric (e.g., by the Wi-Fi Alliance
consortium for the WPA3 protocol [Wi-18]). In those symmetric multi-party settings, we would like
to allow any pair of parties to create a secure channel, while still providing the following security
guarantees:

1. Compromise resilience. Protect password stored by all parties.

2. Impersonation prevention. Different parties can have different roles or permissions that depend
on their identity.

3. Revocation. Protect the network from compromised parties without changing the password.2

Our “Identity Based” solution: Combine the password with identities and “salt” when creating the
password file for a party from the actual password. As part of the protocol session, we verify both
the password and the declared identity of the peer (the other party).

Note that we also aim to prevent pre-computation attacks, where it is possible to perform most of
the computation before a device is compromised. After compromising a device, the pre-computation
is used to extract the password rather quickly. In saPAKE protocols such as OPAQUE [JKX18],
such protection was provided only to servers, leaving clients vulnerable. See Section 1 for summary
of the notions.

This work provides four main contributions: We introduce and formalize two novel notions:
iPAKE (“weak” Identity-based PAKE functionality, i.e., one involving the identity in addition to
the password) and siPAKE (Strong Identity-based PAKE functionality) that additionally protects
from pre-computation attacks against all parties. We suggest an instantiation of an iPAKE protocol,
and also a siPAKE protocol called CRISP (Compromise Resilient Identity-based Symmetric PAKE)
and prove its UC-security in the Generic Group Model (GGM).

1 Many users allow their browsers to save their password. Those passwords are then accessible from any program
running under the same user [Wri16], which makes them an easy target for any malware. Critical flaws in password
managers expose user passwords even in a locked state, and there have been multiple breaches and security issues
in many popular password managers [Bed19].

2 The revocation is effective for a limited time. Even with compromise resilience, the time required by an attacker
to recover the password after a compromise is dependent on the entropy of the password and the computational
cost of each guess.
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Protected Parties none server all

Pre-computation
vulnerable PAKE [CHK+05] aPAKE [GMR06] iPAKE [Section 3]
resilient – saPAKE [JKX18] siPAKE [Section 3]

Table 1: PAKE notions under party compromise attack.

Our suggested iPAKE protocol is based on the Identity Based Key Agreement (IB-KA) protocol
from [FG10] combined with any symmetric PAKE. We prove this protocol in the Programmable
Random Oracle Model under the Strong Diffie-Hellman assumption. We also suggest a variant of
this protocol that includes key confirmation.

CRISP is actually a compiler that transforms any PAKE protocol into a compromise resilient,
identity-based, and symmetric PAKE protocol, realizing the ideal functionality of siPAKE. It is
based on a bilinear group with pairing and “Hash-to-Group”. A key property of this protocol is
that each offline password guess requires a computational cost equivalent to one pairing operation
and that pre-computation is of no avail (in an ideal model).

1.1 Passwords and PAKE

Passwords are arguably the most widely used authentication method today. They are used in a wide
range of applications from authentication on the internet (e.g., email and bank servers), wireless
network encryption (e.g., Wi-Fi), and enterprise network authentication (e.g., Kerberos [NYHR05]
and EAP-pwd [HZ10]). Today, most of the widely adopted protocols are vulnerable to a wide range
of attacks and implementation errors that might leak the password. For example, transmitting the
plain password under some secure channel (e.g., TLS or SSH connection), which usually relies upon
some setup assumptions, such as Public Key Infrastructure (PKI), and may result in plaintext
passwords being logged by the server [Kre19].

In recent years, a significant effort has been made to try and standardize a more secure approach
for password authentication based on the use of Password Authenticated Key Exchange (PAKE)
protocols (e.g. Kerberos with SPAKE-2+ [MSHH18], Wi-Fi with Dragonfly [Wi-18], and combining
TLS with PAKEs [BF18]).

1.2 Formalizations of PAKE

Canetti et al. [CHK+05] were the first to formalize PAKE in the Universal Composability framework
(UC) [Can01]. Their ideal functionality FPAKE (denoted FpwKE) changes each party’s password with
a randomly chosen key (for the session), only allowing the adversary an online attack where a single
guess may be made to some party’s password.

Asymmetric PAKE (aPAKE) protocols, also called Augmented PAKE, address the problem
of password compromise from long term storage by introducing asymmetry, separating parties
into “clients” and “servers”. While clients supply their passwords on every session, servers use a
“password file” generated in a setup phase. The password should not be extractable from such a
file, ideally not permitting servers to impersonate clients. Since the password domain is generally
considered to be rather small, this requirement is impossible: one can try validating every possible
password against the password file until one is accepted. This is known as “offline dictionary
attack”.

The formulation of Strong Asymmetric PAKE FsaPAKE [JKX18] addresses an issue with the
original FaPAKE of [GMR06], that allowed a pre-computation attack: password guesses could have
been submitted before a server compromise. Most of the computational work could have been done
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prior to the actual compromise of the password file, allowing “instantaneous” password recovery
upon compromise. For example, the attacker can pre-compute the hash value for all passwords in a
given dictionary in advance, then once a server is compromised, simply find the pre-image for the
compromised hash value to find the password immediately. However, in all previous solutions, the
clients (and all parties in the symmetric case) are not protected in case of compromise.

1.3 Our Contributions

In this paper, we propose to protect all PAKE participants against compromise attacks by em-
bedding FsaPAKE’s notion of security into the symmetric setting. We formalize an ideal symmetric
identity-based compromise-resilient PAKE functionality FsiPAKE. We also formalize the weaker func-
tionality FiPAKE that similarly to FaPAKE allows pre-computation attacks. The notions of FsiPAKE

and FiPAKE are strictly stronger than FsaPAKE and FaPAKE, respectively.

When applying compromise resilience to both parties, a problem arises. FsaPAKE prevents im-
personation of clients by a compromised server, by using the clients’ knowledge of the password
itself. However, in the symmetric setting, all parties use password files. To prevent impersonation
of a non-compromised party we need to distinguish between password files of the different parties.
Our solution is to combine identities into the password files: in the setup phase, when creating
a password file for a party from the actual password, that party’s identity is integrated into the
file. When engaging in a protocol, the peer can verify the declared identity with respect to the
established key: if both parties output the same key, then both use the same passwords and declare
their true identity.

By binding the password file to a certain identity, one can revoke a compromised password file
by refusing interaction with the corresponding identity. Since we prevent identity impersonation,
the revoked password file is useless, except for the inevitable post-compromise offline dictionary
attack.

In addition to defining symmetric compromise resilience formally, we provide an instantiation
of an iPAKE protocol. We construct the protocol by combining any PAKE with IB-KA protocol
[FG10], which was proven secure in the Canetti-Krawczyk model under the Strong DH assumption.
We prove our protocol UC-realizes the FiPAKE functionality in the (FPAKE,FRO)-hybrid world.

Moreover, we present CRISP: a concrete realization of FsiPAKE functionality based on any
symmetric PAKE protocol and a bilinear group with pairing and “Hash-to-Group”. CRISP is
the first PAKE protocol resilient to pre-computation attack protecting all parties (as opposed to
protecting against pre-computation attacks of servers only). We model pre-computation resilience
by binding bilinear pairing operations in the real world with offline-test queries in the ideal world,
therefore testing N passwords against a compromised CRISP password file costs at least N bilinear
pairing computations.

We define GGM as a UC ideal functionality FGG, and GGM with pairing and hash-to-group as
FGGP. We prove CRISP’s UC-security in GGM in the (FPAKE,FGGP)-hybrid world.

1.4 Structure of the Paper

We discuss various methods for compromise resilience in section 2. The ideal functionalities for the
extensions of PAKE (including the UC Modelling of Generic Groups) are described in section 3. An
iPAKE protocol appears in section 4 and the CRISP protocol is described in section 5. In section 6
we described the computational cost of running the CRISP protocol and of the brute-force attack.
We also propose several optimization to the protocol. Conclusions and open problems are presented
in section 7.
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2 Compromise Resilience

The compromise resilience of PAKE protocols is determined by the information stored on the
device in the offline phase (i.e., in the password file), and information sent during the online phase
of the protocol. These determine the computational costs required from an adversary to recover the
original password from the password file and the possibility of performing a trade-off between the
offline pre-computation cost (performed before the compromise of the password file) and the online
computation cost (performed after the compromise). For simplicity, we assume that the adversary
has a password dictionary that contains the real password, and the brute-force computational cost
is proportional to the size of the dictionary. Our adversary might target multiple passwords used
by different users.

We survey known methods for achieving various levels of compromise resilience and also give
examples for systems using them:

1. Plaintext password: The password is stored as-is in the password file. No computation is
required for password recovery. This is the case for the WPA3 protocol in Wi-Fi [Wi-18], and
the client-side for augmented PAKEs.

2. Hash of the password: A one-way function of the password is computed and stored in the
password file. The adversary can compute the resulting hash value of each password in the
dictionary and save it in a data structure that allows for password recovery with O(1) compu-
tation cost. This can be done once, amortizing the cost of the pre-computation over multiple
passwords recoveries. This option is only beneficial when using a high entropy password chosen
from a password dictionary that is too large to pre-compute.

3. Hash of the password and public identifiers: A one-way function of the password and some
public identifiers of the connection is computed and stored in the password file. For example,
the public identifiers can be derived from the SSID (network name) in Wi-Fi or a combination
of the server and user’s name. In this case, pre-computation is still possible, but it is not possible
to amortize the cost of recovering multiple passwords with different public identifiers.

4. Hash of the password and public “salt”: A one-way function of the password and a
randomly generated value (“salt”) is computed and stored in the password file. The “salt” is
sent as part of the PAKE protocol, and so the adversary can learn it before compromising
the device. Again pre-computation is possible. This is the case for the server side in aPAKE
protocols.

5. Hash of the password and random private “salt”: In this case, the random “salt” is never
revealed, and no pre-computation is possible. This level of protection is offered by saPAKE and
our novel siPAKE protocols. A brute-force attack is inevitably possible post-compromise, as
shown below.

2.1 Black Box Brute-force attack

Post-compromise brute-force dictionary attacks are inevitable for any PAKE protocol. In our attack,
we assume that the correct password is in the dictionary and that the PAKE protocol fails if two
different passwords are used by the two parties. The attack is straightforward:

1. Retrieve password file filec from compromised device.

2. For every password πi in the dictionary

(a) Derive password file filei.

(b) Use filec and filei to simulate both parties of the PAKE protocol.
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(c) If the same key was negotiated by the simulated parties, πi is the correct password.

The cost of each password guess in the black-box attack is the cost of deriving the password file
from a password, and running the protocol twice. Note that the password file derivation can be
done in pre-computation.

3 Ideal Functionalities

3.1 Notation

Throughout this paper we use the following notations:

– κ is a security parameter;

– π denotes a password;

– id denotes some party’s identifier;

– q is a large prime number q ≥ 2κ;

– Zq denotes the field of integers modulo q, Z?q = Zq\{0};
– x denotes an element of Zq;
– F denotes a polynomial in Zq[X];

– X denotes a formal variable in a polynomial (indeterminate);

– G denotes a cyclic group of order q;

– [x]G denotes a member of group G, identified by the exponent x of some public generator g∈G:
[x]G = gx;

– H denotes a hash function and Ĥ denotes a hash-to-group;

– {0, 1}n denotes the set of binary strings of length n;

– {0, 1}? denotes the set of binary strings of any length;

– P denotes a party interacting in either real or ideal world;

– x
R←S denotes sampling x from uniform distribution over set S.

The following subsections depict several ideal functionalities. Whenever a functionality is re-
quired to retrieve some record (“Retrieve 〈record, . . . 〉 ”) but it cannot be found, the functionality
is said to implicitly ignore the query.

3.2 Symmetric PAKE Functionality

The (symmetric) PAKE functionality FPAKE, originated by [CHK+05] (denoted FpwKE there), is
depicted in Fig. 1. For clarity, we rephrased it to explicitly record keys handed to parties using key
records.

3.3 (Strong) Identity-based PAKE Functionality

In Fig. 2 we present the Identity-based PAKE functionality FiPAKE and the Strong Identity-based
PAKE functionality FsiPAKE. Essentially, they preserve the symmetry of FPAKE while adopting the
notion of password files and party compromise from the Asymmetric PAKE functionality FaPAKE of
[GMR06] and Strong Asymmetric PAKE functionality FsaPAKE of [JKX18] (found in Appendix C).
Note that the symmetric functionalities FiPAKE and FsiPAKE are strictly stronger than their asym-
metric counterparts: given a FiPAKE (respectively, FsiPAKE) functionality, it is trivial to realize the
FaPAKE (respectively, FsaPAKE) functionality. The user party U simply computes its password file
on each session, when receiving UsrSession query from the environment. However, we are not
aware of any direct extension of FaPAKE/FsaPAKE to FiPAKE/FsiPAKE.

Our main addition (relative to the asymmetric functionalities) is the notion of identities (idi)
assigned by the environment to parties. Without them, a single party compromise would allow the
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Functionality FPAKE, with security parameter κ, interacting with parties {Pi}ni=1 and an adversary S.

Upon (NewSession, sid,Pj , πi) from Pi:
◦ Send (NewSession, sid,Pi,Pj) to S
◦ If there is no record 〈session,Pi,Pj , ·, ·〉:

. record 〈session,Pi,Pj , πi〉 and mark it fresh

Upon (TestPwd, sid,Pi, π′) from S:
◦ Retrieve 〈session,Pi,Pj , πi〉 marked fresh
◦ If πi = π′: mark the session compromised and return “correct guess” to S
◦ otherwise: mark the session interrupted and return “wrong guess” to S

Upon (NewKey, sid,Pi,K′) from S:
◦ Retrieve 〈session,Pi,Pj , πi〉 not marked completed
◦ If it is marked compromised, or either Pi or Pj is corrupted: Ki←K′
◦ else if it is marked fresh and there is a record 〈key,Pj , πj ,Kj〉 with πi=πj : Ki←Kj

◦ otherwise: pick Ki
R← {0, 1}κ

◦ If the session is marked fresh: record 〈key,Pi, πi,Ki〉
◦ Mark the session completed and send 〈sid,Ki〉 to Pi

Fig. 1: Symmetric PAKE functionality FPAKE

adversary to compromise any sub-session by impersonating that party. Having the functionality
inform a party of its peer identity prevents the attack. It is possible to revoke known compro-
mised identities, or only permit communication with certain identities (e.g., a user will only allow
connecting to servers and vice versa).

For symmetry, we restored the notation of parties as {Pi}ni=1: All parties invoke StorePwdFile
before starting a session and all use the password file instead of providing a password when starting
a session; UsrSession query was eliminated, and SvrSession was renamed NewSession as in
FPAKE. We also parametrized queries on Pi and Pj where FaPAKE and FsaPAKE omitted them, since
in the symmetric setting those queries may be applied to several parties (e.g., StealPwdFile
applying to any party). On the other hand, we omit Pj from StorePwdFile; in our setting a
password file is derived for each party independently, and is not bound to specific peers.

Our functionalities introduce a new query OfflineComparePwd, allowing the adversary to
test whether two stolen password files correspond to the same password. In the real world, such
attack is always possible by an adversary simulating the protocol for those parties, and comparing
the resulting keys. We argue that in most real-world settings, all parties of the same session use
the same password (e.g., devices connecting to the same WiFi network), thus such a query is both
inevitable and non-beneficial for the adversary.

Notice the four types of records used by the functionalities:

1. 〈file,Pi, idi, πi〉〈file,Pi, idi, πi〉〈file,Pi, idi, πi〉 records represent password files created for each party Pi, and are derived from
its password πi and identity idi. Similar type of records exist in FPAKE and FsaPAKE (without
identities) only for the server.

2. 〈session, ssid,Pi,Pj , idi, πi〉〈session, ssid,Pi,Pj , idi, πi〉〈session, ssid,Pi,Pj , idi, πi〉 records represent party Pi’s view of a sub-session with identifier
ssid between Pi and Pj . Similar type of records exist in FaPAKE and FsaPAKE, without identities.

3. 〈key, ssid,Pi, πi,Ki〉〈key, ssid,Pi, πi,Ki〉〈key, ssid,Pi, πi,Ki〉 records represent sub-session keys Ki created for party Pi participating
in sub-session ssid with password πi, and whose session was not compromised or interrupted.
These records were also implicitly created in FPAKE and FsaPAKE, but appear here explicitly
for the sake of clarity.
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Functionalities FiPAKE and FsiPAKE, with security parameter κ, interacting with parties {Pi}ni=1 and adversary S.

Upon (StorePwdFile, sid, idi, πi) from Pi:
◦ If there is no record 〈file,Pi, ·, ·〉:

. record 〈file,Pi, idi, πi〉 and mark it uncompromised

Upon (StealPwdFile, sid,Pi) from S:
◦ If there is a record 〈file,Pi, idi, πi〉:

. π ←

{
πi if there is a record 〈offline,Pi, π′〉 with π′=πi

⊥ otherwise

. mark the file compromised and return 〈“password file stolen”, idi , π 〉 to S
◦ otherwise: return “no password file” to S

Upon (OfflineTestPwd, sid,Pi, π′) from S:
◦ Retrieve 〈file,Pi, idi, πi〉
◦ If it is marked compromised:

. return “correct guess” to S if πi = π′, and “wrong guess” otherwise
◦ otherwise: Record 〈offline,Pi, π′〉

Upon (OfflineComparePwd, sid,Pi,Pj) from S:
◦ Retrieve 〈file,Pi, idi, πi〉 and 〈file,Pj , idj , πj〉 both marked compromised
◦ Return “passwords match” to S if πi = πj , and “passwords differ” otherwise

Upon (NewSession, sid, ssid,Pj) from Pi:
◦ Retrieve 〈file,Pi, idi, πi〉 and Send (NewSession, ssid,Pi,Pj , idi) to S
◦ If there is no record 〈session, ssid,Pi,Pj , ·〉:

. record 〈session, ssid,Pi,Pj , πi〉 and mark it fresh

Upon (OnlineTestPwd, sid, ssid,Pi, π′) from S:
◦ Retrieve 〈session, ssid,Pi,Pj , πi〉 marked fresh or compromised
◦ Record 〈imp, ssid,Pi, ?〉
◦ If πi = π′: mark the session compromised and return “correct guess” to S
◦ otherwise: mark the session interrupted and return “wrong guess” to S

Upon (Impersonate, sid, ssid,Pi,Pk) from S:
◦ Retrieve 〈session, ssid,Pi,Pj , πi〉 marked fresh or compromised
◦ Retrieve 〈file,Pk, idk, πk〉 marked compromised
◦ Record 〈imp, ssid,Pi, idk〉
◦ If πi = πk: mark the session compromised and return “correct guess” to S
◦ otherwise: mark the session interrupted and return “wrong guess” to S

Upon (NewKey, sid, ssid,Pi, id′,K′) from S:
◦ Retrieve 〈session, ssid,Pi,Pj , πi〉 not marked completed and 〈file,Pj , idj , πj〉
◦ If Pi is honest: ignore the query if either the session is marked fresh and id′ 6=idj , or it is compromised and
〈imp, ssid,Pi, id〉 is not recorded for both id∈{id′, ?}

◦ If the session is marked compromised, or either Pi or Pj is corrupted: Ki←K′
◦ else if it is marked fresh and there is a record 〈key, ssid,Pj , πj ,Kj〉 with πi=πj : Ki←Kj

◦ otherwise: pick Ki
R← {0, 1}κ

◦ If the session is marked fresh: record 〈key, ssid,Pi, πi,Ki〉
◦ Mark the session completed and send 〈ssid, id′,Ki〉 to Pi

Fig. 2: Functionalities FiPAKE (full text) and FsiPAKE (grey text omitted)
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4. 〈imp, ssid,Pi, id′〉〈imp, ssid,Pi, id′〉〈imp, ssid,Pi, id′〉 records represent permissions for the adversary to set the peer identity ob-
served by party Pi in sub-session ssid to id′. When id′=? this record acts as a “wild card”,
permitting the adversary to select any identity.

Additionally, FiPAKE uses the following record type:

5. 〈offline,Pi, π′〉〈offline,Pi, π′〉〈offline,Pi, π′〉 records represent an offline-guess π′ for party Pi’s password, submitted by
S before compromising Pi. If Pi is later compromised, S will instantly learn if the guess was
successful, i.e., π′=πi.

Identity verification is implicit. When no attack is carried out by the adversary, both parties
report each other’s real identities. However, when the adversary succeeds in an online attack,
it is allowed to change the reported identities. A successful OnlineTestPwd query allows the
adversary to specify any identity, while a successful Impersonate query limits the choice to the
impersonated party’s real identity only. If any of the attacks fails, we still allow the adversary to
control the reported identity, at the cost of causing each party to output an independent random
key. Therefore, in the absence of a successful online attack, matching session keys indicate the
reported identities are correct.

We additionally allow both OnlineTestPwd and Impersonate queries against the same
session, as long as they succeed3. This is achieved by accepting them on compromised sessions,
not only fresh. Note that this permits at most one failed attempt per session, which has no impact
on security.

The FiPAKE functionality is weaker than FsiPAKE in the sense that it permits pre-computation
of OfflineTestPwd queries prior to party compromise. It is therefore only of interest when
permitting more efficient constructions than its Strong counterpart. Indeed, we present a more
efficient iPAKE protocol (Section 4) realizing FiPAKE in ROM using any cyclic group, while CRISP
(Section 5) requires bilinear groups for realizing FsiPAKE in GGM.

3.4 UC Modelling of Random Oracle and Generic Group

The necessity of some non-black-box assumptions for proving compromise resilience in the UC
framework has been previously observed (see [GMR06], [JKX18] and [BJX19]). In Hesse [Hes19]
UC-realization of aPAKE is proved to be impossible under non-programmable ROM. In this work
we rely on programmable ROM for proving our iPAKE protocol and on Generic Group Model for
proving CRISP.

We model programmable ROM in UC by allowing parties in the real world to access an ideal
functionality FRO (depicted in Fig. 3). Invocations of hash functions in the protocol are modelled
as queries to FRO. The functionality acts as an oracle, answering fresh queries with independent
random values, but consistent results to repeated queries.

The Generic Group Model (GGM), introduced by [Sho97], allows proving properties of algo-
rithms, assuming the only permitted operations on group elements are the group operation and
comparison. Hence a “generic group element” has no meaningful representation. Algorithms in
GGM operate on encodings of elements, and may consult a group oracle which computes the group

3 In fact, we allow the adversary to submit as many such queries as it chooses. However, a failed query interrupts
the session, thus preventing subsequent queries. On the other hand, after a successful attack the adversary has
already compromised the session.
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Functionality FRO, parametrized by range E, interacting with parties {Pi}ni=1 and adversary S. (P ∈ {Pi}ni=1∪{A})
Upon (Hash, sid, s) from P:

◦ If there is no record 〈hash, s, h〉:
. Pick h

R← E and record 〈hash, s, h〉
◦ Return h to P.

Fig. 3: Random Oracle functionality FRO

Functionality FGG, parametrized by group order q, encoding set E (|E|≥q) and generator g∈E, interacting with
parties {Pi}ni=1 and adversary S. (P ∈ {Pi}ni=1 ∪ {A})
Initially, S={1}, [1]G=g and [x]G is undefined for any other x∈Zq. Whenever FGG references an undefined [x]G, set

[x]G
R← E\S and insert [x]G to S.

Upon (MulDiv, sid, [x1]G, [x2]G, s) from P:
◦ x← x1 + (−1)sx2 mod q
◦ Return [x]G to P

Fig. 4: Generic Group functionality FGG

operation for two valid encodings, returning the encoded result. The group oracle declines queries
for encodings not returned by some previous query.

Any cyclic group G of prime-order q with generator g can be viewed as {[x]G |x∈Zq} with group
operations [x]G � [y]G = [x+ y]G and [x]G � [y]G = [x− y]G, unit element [0]G and generator [1]G,
using some encoding function [·]G: x 7→ gx. In GGM we consider encoding functions carrying no
further information about the group, e.g., encodings using random bit-strings or numbers in the
range {0, . . . , q−1}. This is in contrast to concrete groups which might have a meaningful encoding.

In order to prove CRISP’s security under Universal Composition, we need to formalize GGM in
terms of an ideal functionality FGG, similarly to using FRO for proving protocols in ROM. Fig. 4
shows the basic GGM functionality FGG, which answers group operation queries (multiply/divide)
on encoded elements.

For simplicity one can think of the set of encoding E=Zq, so each exponent x∈Zq is encoded

as [x]G=ξ for some ξ
R←Zq, resulting in the encoding function being a random permutation over Zq,

ensuring no information about oracle usage is disclosed between parties.
Note that although the group order q might be (exponentially) large, FGG maps at most one

new element per query. Also note the mapping is injective.
A bilinear group is a triplet of cyclic groups G1,G2,GT of prime order q, with an efficiently

computable bilinear map ê:G1×G2→GT satisfying the following requirements:
– Bilinearity: ê(gx1 , g

y
2) = ê(g1, g2)

xy for all x, y∈Zq.
– Non-degeneracy: ê(g1, g2) 6= 1T .

where g1, g2 are generators for G1,G2 respectively. We also consider an efficiently computable
isomorphism ψ:G1→G2 satisfying ψ(g1)=g2.

A hash to group (also referred to as Hash2Curve) is an efficiently computable hash function,
modelled as random oracle, whose range is a group. For the bilinear setting, we consider the range
G1.

In order to represent groups with pairing and hash into group, we suggest a modified func-
tionality FGGP, depicted in Fig. 5, similar to the extension of GGM to bilinear groups by [BB04].
FGGP can be queried MulDiv for each of G1, G2 and GT , and maintains separate encoding maps
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Functionality FGGP, parametrized by group order q, encoding sets E1, E2, ET (|Ej |≥q for j∈{1, 2, T}) and generators
g1∈E1, g2∈E2, interacting with parties {Pi}ni=1 and adversary S. (P ∈ {Pi}ni=1 ∪ {A})
Initially, S1=S2={1}, ST=∅, [1]G1=g1, [1]G2=g2 and [x]Gj is undefined for any other x∈Zq j∈{1, 2, T}. Whenever

FGGP references an undefined [x]Gj , set [x]Gj

R← E\Sj and insert [x]Gj to Sj .

Upon
(
MulDiv, sid, j∈{1,2,T}, [x1]Gj , [x2]Gj , s

)
from P:

◦ Return [x← x1 + (−1)sx2 mod q]Gj to P

Upon (Pairing, sid, [x1]G1 , [x2]G2) from P:
◦ Return [xT ← x1 · x2 mod q]GT to P

Upon
(
Isomorphism, sid, j∈{1,2}, [x]Gj

)
from S:

◦ Return [x]G3−j to P

Upon (Hash, sid, s) from P:
◦ If there is no record 〈hash, s, [x]G1〉:

. pick x
R← Z?q and record 〈hash, s, [x]G1〉

◦ Return [x]G1 to P

Fig. 5: Generic Group with Pairing and Hash-to-Group functionality FGGP

for each group. It introduces three new queries: (a) Pairing to compute the bilinear pairing ê:
([x1]G1 , [x2]G2) 7→ [x1·x2]GT ; (b) Isomorphism to compute an isomorphism ψ,ψ−1 between G1 and
G2: [x]G1 7→[x]G2 , [x]G2 7→[x]G1 ; and (c) Hash which is a random oracle into G1: for each freshly

queried string s∈{0, 1}? it picks a random exponent x
R←Z?q , then returns its encoding [x]G1 .

We note that in some real-world scenarios, there is no efficiently computable isomorphism, in
which case this query can be omitted (it is not required by CRISP). We still allow for Isomorphism
queries by the adversary to guarantee security even when such isomorphism exists.

4 iPAKE from IB-KA

Identity-Based Key-Agreement (IB-KA) protocols (also called Identity-Based Key-Exchange, IB-
KE) allow any two parties in a multi-party setting to establish a shared key, while verifying each
other’s identity. They achieve this by relying upon a trusted third party called a Key Distribution
Centre (KDC). During the Setup Phase, the KDC generates keys for each party, based on that
party’s identity. In the Online Phase, a pair of parties may communicate to derive a shared session
key.

An important property of IB-KA protocols is Key Compromise Impersonation (KCI) resistance:
Although the adversary can inevitably impersonate any compromised party, she can never imper-
sonate the identity of other parties. We rely upon IB-KA to provide the KCI resistance mandated
by iPAKE.4

Fig. 6 depicts our IB-KA based iPAKE protocol. The construction is nearly identical to the
IB-KA protocol from [FG10], with the following modifications:

– KDC Simulation: Instead of using a real KDC, each party Pi simulates the KDC’s setup
phase during its password file generation. This is achieved by replacing the KDC’s randomly
generated private value yi with the hash of Pi’s password H1(πi).

4 We remark that non-interactive protocols, such as Identity-Based Non-Interactive Key-Exchange (IB-NIKE), can-
not satisfy KCI resistance. After compromising some party P, the adversary can follow P’s steps in the protocol to
derive the constant shared keys with any other party. Using these keys, the adversary can impersonate any party
towards P.
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Public Parameters: Cyclic group G of prime order q≥2κ with generator g∈G, hash functions
H1, H2 : {0, 1}?→Z?q , and κ a security parameter.

Password File Generation:
Pi upon (StorePwdFile, sid, idi, πi): Pj upon (StorePwdFile, sid, idj , πj):

Pick random xi
R← Z?q Pick random xj

R← Z?q
yi ← H1(πi) yj ← H1(πj)
Xi←gxi Yi←gyi Xj←gxj Yj←gyj
hi ← H2(idi, Xi) hj ← H2(idj , Xj)
x̂i ← xi + yi·hi x̂j ← xj + yj ·hj
Record 〈file, idi, Xi, Yi, x̂i〉 Record 〈file, idj , Xj , Yj , x̂j〉

Key Exchange:
Pi upon (NewSession, sid, ssid,Pj): Pj upon (NewSession, sid, ssid,Pi):
Retrieve 〈file, idi, Xi, Yi, x̂i〉 Retrieve 〈file, idj , Xj , Yj , x̂j〉
Pick ri

R← Z?q Pick rj
R← Z?q

Ri←gri Rj←grj
fi = (Flow, idi, Xi, Ri)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
fj = (Flow, idj , Xj , Rj)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

αi ← Rj
ri αj ← Ri

rj

hj ← H2(idj , Xj) hi ← H2(idi, Xi)

βi ←
(
RjXjYi

hj
)ri+x̂i βj ←

(
RiXiYj

hi
)rj+x̂j

tri ← 〈min(fi, fj),max(fi, fj)〉 trj ← 〈min(fj , fi),max(fj , fi)〉
αi, βi, tri−−−−−−−−−−−−−−→ FPAKE

αj , βj , trj←−−−−−−−−−−−−−−
←−−−−−−−−−−−−−−

Ki
−−−−−−−−−−−−−−−→

Kj

Output (sid, ssid, idj ,Ki) Output (sid, ssid, idi,Kj)

Fig. 6: IB-KA based iPAKE protocol

– PAKE Integration: We use the output of the IB-KA (αi, βi) alongside the IB-KA transcript
(tri) as input to a PAKE instance. The output from this PAKE, Ki, is the resulting session
key. This is necessary to prevent an offline attack against the session key.5 We note that PAKE
would not have been necessary had IB-KA provided Perfect Forward Secrecy (PFS).

Theorem 1. If the Strong CDH assumption holds in G, then the protocol in Fig. 6 UC realizes
FiPAKE in the (FPAKE,FRO)-hybrid world.

The proof can be found in Appendix A. Note that H1 corresponds to OfflineTestPwd, so it
is advised to choose a computationally costly hash (see Section 6.1), and include sid (representing
common parameters, e.g. user and service names) in H1’s input. We omitted sid for clarity.

For another variant of this construction refer to Appendix B.

5 An active adversary A can pick the values Xj = gxj , Rj = grj and send them to Pi as Pj . Had the session key
been H3(αi, βi) as in the original IB-KA, the adversary could have computed the resulting key for each possible
password guess. Exploiting any usage of the session key (e.g., for encrypting data) the adversary can find the
correct guess in an offline brute-force attack. PAKE eliminates the attack by allowing the adversary at most one
online guess against the IB-KA values αi, βi.
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Public Parameters: Cyclic groups G1,G2,GT of prime order q≥2κ with generator g2∈G2, bilinear pairing
ê:G1×G2→GT , hash functions Ĥ1, Ĥ2:{0, 1}?→G1 and κ a security parameter.

Password File Derivation (offline)
Pi upon (StorePwdFile, sid, idi, πi): Pj upon (StorePwdFile, sid, idj , πj):

Pick random salt xi
R←Z?q Pick random salt xj

R←Z?q
Ai←gxi2 , Bi←Ĥ1(πi)

xi , Ci←Ĥ2(idi)
xi Aj←g

xj
2 , Bj←Ĥ1(πj)

xj , Cj←Ĥ2(idj)
xj

Record 〈file, idi, Ai, Bi, Ci〉 Record 〈file, idj , Aj , Bj , Cj〉

Key Exchange
Pi upon (NewSession, sid, ssid,Pj): Pj upon (NewSession, sid, ssid,Pi):
Retrieve 〈file, idi, Ai, Bi, Ci〉 Retrieve 〈file, idj , Aj , Bj , Cj〉
Pick random exponent ri

R←Z?q Pick random exponent rj
R←Z?q

Ãi←Arii , B̃i←Brii , C̃i←Crii Ãj←A
rj
j , B̃j←B

rj
j , C̃j←C

rj
j

(Flow, idi, Ãi, C̃i)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(Flow, idj , Ãj , C̃j)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Ignore if Ãj=1G2 or Ãj /∈G2 Ignore if Ãi=1G2 or Ãi /∈G2

or ê(C̃j , g2) 6= ê(Ĥ2(idj), Ãj) or ê(C̃i, g2) 6= ê(Ĥ2(idi), Ãi)

Si ← ê(B̃i, Ãj) Sj ← ê(B̃j , Ãi)
Si−−−−−−−−−−−−→ FPAKE

Sj←−−−−−−−−−−−−
←−−−−−−−−−−−−−

Ki
−−−−−−−−−−−−−→

Kj

Output (sid, ssid, idj ,Ki) Output (sid, ssid, idi,Kj)

Fig. 7: CRISP protocol

5 CRISP

5.1 Protocol Description

CRISP is a compiler that transforms any PAKE into a compromise resilient, identity-based, and
symmetric PAKE protocol. CRISP (defined in Fig. 7) is composed of the following phases:

1. Public Parameters Generation: In this phase, public parameters common to all parties are
generated from a security parameter κ. These parameters include the bilinear groups G1, G2,
GT with hash to group functions Ĥ1

6, Ĥ2
7, and the PAKE protocol to be used.

2. Password File Derivation: In this phase, the user enters a password πi and an identifier idi
for a party Pi (e.g., some device such as a personal computer, smartphone, server or access
point). The party selects an independent and uniform random salt, and then derives and stores
the password file.

3. Key Exchange: In this phase, two parties, Pi and Pj engage in a sub-session to derive a shared
key. This phase consists of three stages:
(a) Blinding. Values from the password file are raised to the power of a randomly selected expo-

nent. This stage can be performed once and re-used across sub-sessions (see subsection 6.3).
(b) Secret Exchange. Using a single communication round (two messages), each party computes

a secret value. These values depend on the generating party’s password, and both parties’
salt and blinding exponents.

6 Since Ĥ1 is invoked on the password, the note from Section 4 applies to it.
7 hash-to-group functions (Ĥ1 and Ĥ2) can be realized by FGGP’s Hash queries using domain separation with

different prefixes: Ĥ1(π) will query Hash using s = 1||π, and Ĥ2(id) will use s = 2||id.
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(c) PAKE. Both parties engage in a PAKE where they input their secret values as passwords
to receive secure cryptographic keys.

5.2 Correctness

Honest parties Pi, Pj compute the secrets Si, Sj respectively. The secrets are used as inputs to
FPAKE to get Ki, Kj . Assuming Ĥ1 is injective on the password domain we get:

Si = ê(B̃i, Ãj) = ê(Ĥ1(πi)
xiri , g

xjrj
2 ) = ê(Ĥ1(πi), g2)

xiri·xjrj

Sj = ê(B̃j , Ãi) = ê(Ĥ1(πj)
xjrj , gxiri2 ) = ê(Ĥ1(πj), g2)

xjrj ·xiri

Ki=Kj ⇐⇒ Si=Sj ⇐⇒ Ĥ1(πi)=Ĥ1(πj) ⇐⇒ πi=πj

5.3 Intuition

Let us provide some intuition for the protocol by explaining the necessity of several components.

Blinding. The blinding stage perfectly hides the salt xi (information theoretically) in the flow
transmitted from Pi, since 〈Ãi, C̃i〉 = 〈gx̃i2 , Ĥ2(idi)

x̃i〉 for x̃i=xiri which is a random element of Z?q .
Blinding is required because transmitting the raw Ai value allows A to mount a pre-computation
attack. A may compute the inverse map Bπ′ 7→π′ for any password guess π′:

Bπ′ = ê(Ĥ1(π
′), Ai) = ê(Ĥ1(π

′), g2)
xi

Then after compromising Pi, use the map to lookup:

ê(Bi, g2) = ê(Ĥ1(πi)
xi , g2) = ê(Ĥ1(πi), g2)

xi

Finding the correct π′=πi instantly. A similar attack would have also been possible if the value
B̃i=B

ri
i (or ri) was disclosed to A upon compromise.

Symmetric PAKE. The key Ki should be derived from the secret Si using FPAKE and not some
deterministic key derivation function. Consider the following attack:

Adversary A selects values Ã′j=g
a′j
2 , C̃ ′j=Ĥ2(idj)

a′j using some private exponent a′j . A can

now guess a password π′ and use Ãi (sent by an honest party Pi) to compute the value S′ =
ê(Ĥ1(π

′)xj , Ãi). Using S′, A can derive a guess for the resulting key K ′ and test this key and pass-
word guess on encrypted messages sent by Pi. This can be repeated for multiple password guess
without engaging in additional exchanges.

5.4 UC Security

Theorem 2. Protocol CRISP as depicted in Fig. 7 UC-realizes FsiPAKE in the (FPAKE,FGGP)-
hybrid world.

We prove CRISP’s UC-security by providing an ideal-world adversary S, that simulates a real-
world adversary A against CRISP, while only having access to the ideal functionality FsiPAKE. The
real and ideal world are shown in Fig. 8. The simulator S is detailed in Fig. 9, Fig. 10, Fig. 11 and
Algorithm 1, but we first describe the strategy in high-level.

The main challenge S faces is the unknown passwords assigned to parties by the environment
Z. To overcome this, S simulates the real-world Ĥ1(πi) = [yπi ]G1 using a formal variable (indeter-
minate) Zi in the ideal-world: Ĥ?

1 (πi) = [Zi]G1 . Wherever the real world uses group encodings of
exponents, S simulates them using encodings of polynomials with these formal variables: [F ]Gj for
polynomial F .
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APi Pj
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FPAKE

FGGP

SPi Pj

Z

FsiPAKE

(a) real world (b) simulated world

Fig. 8: Depiction of real world running protocol CRISP with adversary A versus simulated world
running the ideal protocol for FsiPAKE with adversary S.

This simulation technique, using formal variables for unknown values, is very common in GGM
proofs. It “works” because Z is only able to detect equality of group elements, and group operations
produce only linear combinations of the exponents. Two formally distinct polynomials F1 6=F2 in
the ideal world would only represent the same value in the real world in the case of a collision on
some unknown value: F1(x) = F2(x). Since these unknown values are uniformly selected over a
large domain and the polynomials have low degrees, the probability of collisions is negligible.

We apply the technique for simulating several unknown values using these variables:

1. Xi represents party Pi’s salt xi.

2. Yπ represents the unknown logarithm yπ of Ĥ1(π)=gyπ1 .

3. Iid represents the unknown logarithm ιid of Ĥ2(id) = gιid1 .

4. Ri,ssid represents party Pi’s blinding value ri in sub-session ssid.

5. Zi is an alias for Yπi for party Pi’s password πi.

Note that some variables are created “on the fly” during the simulation. For example, upon
every fresh Ĥ1(π) query S creates a new variable Yπ.

Using these variables, S simulates the following:

– Hash queries: Ĥ1(π) = [Yπ]G1 and Ĥ2(id) = [Iid]G1 .

– Group operations: [F1]Gj � [F2]Gj = [F1+F2]Gj , [F1]Gj � [F2]Gj = [F1−F2]Gj ,
ê([F1]G1 , [F2]G2) = [F1·F2]GT , ψ([F ]G1) = [F ]G2 and ψ−1([F ]G2) = [F ]G1 .

– Pi’s password file: 〈idi, [Xi]G2 , [XiZi]G1 , [XiIidi ]G1〉.
– Flow from Pi: (Flow, idi, [XiRi,ssid]G2 , [XiRi,ssidIidi ]G1).

Variable Aliasing. Note that S uses both Yπ and Zi variables: Yπ are used for simulating an
evaluation of Ĥ1(π), while Zi are used for simulating Pi’s password file. Since Yπi and Zi are distinct
variables that might represent the same value in the real world, the simulation seems flawed. For
instance, Z might ask A to compromise a party Pi and then evaluate ê(Bi, g2) = ê(Ĥ1(πi)

xi , g2) and
ê(Ĥ1(π

′), Ai) = ê(Ĥ1(π
′), gxi2 ). These encodings will be equal if and only if Z chose πi=π

′ (or it is a
collision in Ĥ1, which is found with negligible probability). Yet because of using the alias Zi, S would
generate ê(Bi, g2) = ê([XiZi], [1]G2) = [XiZi]GT and ê(Ĥ1(π

′), Ai) = ê([Yπ′ ]G1 , [Xi]G2) = [XiYπ′ ]GT
which are always different encodings.

Nevertheless, S is able to detect possible aliasing collisions: when two distinct polynomials,
whose group encodings were sent to the environment Z, become equal under substitution of Zi
with Yπ′ (for some previously evaluated Ĥ1(π

′)), S knows there will be a collision if πi=π
′. This
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Simulator S proceeds as follows, interacting with environment Z and ideal functionality FsiPAKE.
Initially, matrix M is empty, S1=S2={1}, ST=∅, [1]G1=g1, [1]G2=g2 and [F ]Gj is undefined for any other polynomial

F and j∈{1, 2, T}. Whenever S references an undefined [F ]Gj , set [F ]Gj

R← Ej\Sj and insert [F ]Gj to Sj .

Upon (StealPwdFile, sid) from Z towards Pi:
◦ Send (StealPwdFile, sid,Pi) to FsiPAKE

◦ If FsiPAKE returned “no password file”:
. Return this to Z

◦ Otherwise, FsiPAKE returned 〈“password file stolen”, idi〉
◦ Record 〈compromised,Pi, idi〉
◦ Create variables Xi, Zi, Iidi if necessary
◦ For each 〈compromised,Pj , idj〉 with Pj 6=Pi:

. Send (OfflineComparePwd, sid,Pi,Pj) to FsiPAKE

. If FsiPAKE returned “passwords match”:
� Merge variables Zi and Zj

◦ Return 〈idi, [Xi]G2 , [XiZi]G1 , [XiIidi ]G1〉 to Z

Upon (NewSession, sid, ssid,Pi,Pj , idi) from FsiPAKE:
◦ Create variables Xi, Zi, Iidi , Ri,ssid as necessary
◦ fi ← (Flow, idi, [XiRi,ssid]G2 , [XiIidiRi,ssid]G1)
◦ Send fi to Z as Pi towards Pj , and receive f ′i from Z towards Pj
◦ Parse f ′i as (Flow, id′, [a′]G2 , [c

′]G1)
◦ Ignore if a′=0 or c′ 6= a′·Iid′
◦ Record 〈sent, ssid,Pi,Pj , id′, a′, c′〉

Fig. 9: S simulating party compromise and session.

Upon (TestPwd, sid||ssid,Pi, [F ]GT ) from Z towards FPAKE:
◦ Retrieve 〈sent, ssid,Pj ,Pi, id′, a′, c′〉
◦ For each 〈compromised,Pk, idk〉 with idk=id′:

. If Zk appears in F :
� Send (Impersonate, sid, ssid,Pi,Pk) to FsiPAKE

� If FsiPAKE returned “correct guess”: replace all Zk with Zi in F
◦ For each password π′ queried by Ĥ1(π′):

. If Yπ′ appears in F :
� Send (OnlineTestPwd, sid, ssid,Pi, π′) to FsiPAKE

� If FsiPAKE returned “correct guess”: replace all Yπ′ with Zi in F
◦ If F = a′XiZiRi,ssid:

. Return “correct guess” to Z
◦ Otherwise:

. Send (OnlineTestPwd, sid, ssid,Pi,⊥) to FsiPAKE

. Return “wrong guess” to Z

Upon (NewKey, sid||ssid,Pi,K′) from Z towards FPAKE:
◦ Retrieve 〈sent, ssid,Pi,Pj , id′i, a′i, c′i〉 and 〈sent, ssid,Pj ,Pi, id′j , a′j , c′j〉
◦ If @ α∈Z?q s.t. a′i=αXiRi,ssid and a′j=αXjRj,ssid:

. Send (OnlineTestPwd, sid, ssid,Pi,⊥) to FsiPAKE

◦ Send
(
NewKey, sid, ssid,Pi, id′j ,K′

)
to FsiPAKE

Fig. 10: S simulating PAKE functionality FPAKE

condition can be tested by S using OfflineTestPwd queries, for a compromised party Pi. When
FsiPAKE replies “correct guess” to such query, S substitutes Yπ′ for Zi in all its data sets.
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Upon
(
MulDiv, sid, j∈{1,2,T}, [F1]Gj , [F2]Gj , s

)
from Z towards FGGP:

◦ Return [F1 + (−1)s · F2]Gj to Z

Upon (Pairing, sid, [F1]G1 , [F2]G2) from Z towards FGGP:
◦ FT ← F1 · F2

◦ Execute InsertRow(v) on the coefficient vector v of FT
◦ Return [FT ]GT to Z

Upon
(
Isomorphism, sid, j∈{1,2}, [F ]Gj

)
from Z towards FGGP:

◦ Return [F ]G3−j to Z

Upon (Hash, sid, s) from Z towards FGGP:

◦ Return

{
[Yπ]G1 s = 1||π
[Iid]G1 s = 2||id

to Z

Fig. 11: S simulating generic group functionality FGGP

While we could have identified collisions across all FGGP queries, we chose to limit OfflineTest-
Pwd to only bilinear pairing evaluations (Pairing simulation), for better modelling of pre-computation
resilience (see subsection 5.5). This implies that S needs to predict possible future collisions when
simulating a pairing. This prediction is achieved by the polynomial matrix explained below.

1: function InsertRow(v)
2: for all row w with pivot column j in M do
3: v ← v − v[j]·w
4: j ← SelectPivot(v)
5: if v =

#»
0 then return

6: v ← v/v[j]
7: for all row w in M do
8: w ← w − w[j]·v
9: Insert row v with pivot column j to M

10: function SelectPivot(v)
11: sent ← false

12: for all compromised party Pi with identifier idi do
13: for all passwords π′ that were queried by Ĥ1(π′) do
14: j1 ← index of monomial XiYπ′

15: j2 ← index of monomial XiYπ′Iidi
16: if v[j1] 6=0 or v[j2] 6=0 then
17: Send (OfflineTestPwd, sid,Pi, π′) to FsiPAKE

18: sent ← true

19: if FsiPAKE returned “wrong guess” then

20: return

{
j1 if v[j1] 6=0

j2 otherwise

21: Substitute variable Zi with Yπ′ in all polynomials
22: Merge corresponding columns of M , v

23: if some party Pi has been compromised and sent=false then
24: Send (OfflineTestPwd, sid,Pi,⊥) to FsiPAKE

25: if v 6= #»
0 then return arbitrary column j having v[j] 6= 0

Algorithm 1: S’s row reduction algorithm, using OfflineTestPwd queries
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Polynomial Matrix. Throughout the simulation S maintains a matrix M whose rows correspond
to polynomials in GT , and its columns to possible terms. A polynomial is represented in M by its
coefficients stored in the appropriate columns. For example, if columns 1 to 3 correspond to terms
Xi, XiZi and XiYπ′ (respectively) then polynomial F = 2XiZi − 3XiYπ′ will be represented in M by a
row (0, 2,−3).

Matrix M is extended during the simulation: when a new variable is introduced (e.g., when A
issues a Hash query) new columns are added; and when a new polynomial is created in GT by a
Pairing query, another row is added to M , but using a row-reduction algorithm (see Algorithm 1)
so the matrix is always kept in reduced row-echelon form. Note that when polynomials are created
due to MulDiv operations in GT , S does not extend the table, as the created polynomial is by
definition a linear combination of others, so it would have been eliminated by the row-reduction
algorithm. It is therefore clear that all polynomials created by S in GT are linear combinations of
the matrix rows (seen as polynomials).

When invoked by A to compute a pairing ê([F1]G1 , [F2]G2), S first computes the product poly-
nomial FT = F1·F2, converts it to a coefficient vector V then applies the first step of row-reduction;
that is, a linear combination of M ’s rows is added to V so to zero V ’s entries already selected as piv-
ots for these rows. S then scans V for a non-zero entry corresponding to a term XiYπ′ (or XiIidiYπ′)
for some compromised party Pi and a password guess π′ (password guesses are taken from A’s
Ĥ1(π

′) queries). If such non-zero entry exists in V , S sends OfflineTestPwd query to FsiPAKE

testing whether party Pi was assigned password π′ (i.e., πi=π
′). If the guess failed, S chooses this

as the pivot entry. Otherwise, S merges the variable Zi with Yπ′ , and repeats the process until some
test fails or no more entries of the specified form are non-zero in V . If V 6=0 and no pivot is selected,
arbitrary non-zero entry is selected. S then applies the second step of row-reduction; that is S uses
V to zero the entries of the selected pivot entry in other rows, and insert V as a new row to M .
Finally, S proceeds as usual for group operations, choosing the encoding [FT ]GT using the original
FT (possibly having some variables merged).

Lemma 1. The probability of collisions is negligible.

Using the above lemma , we now prove CRISP’s UC-security with respect to FsiPAKE:

Proof (Theorem 2). For simplicity let us call the (FPAKE,FGGP)-hybrid world real world. For any
real-world adversary A we describe an ideal world simulator S such that no environment Z can
distinguish between real-world execution of CRISP and a simulation in the ideal-world. As shown
in [Can01], it suffices to prove this for a “dummy” adversary who merely passes all inputs to the
environment and acts according to its instructions.

We remark that the depiction of CRISP ignored the impact of an active adversary. That is, the
flow fi transmitted by Pi might be received differently on Pj . Here we denote incoming flows as f ′i
(and values they carry as id′i, Ã

′
i, C̃
′
i) to account for adversarial modifications.

fi = (Flow, idi, Ãi, C̃i)−−−−−−−−−−−−−−−−−−−−→ A
fj = (Flow, idj , Ãj , C̃j)←−−−−−−−−−−−−−−−−−−−−−

←−−−−−−−−−−−−−−−−−−−−−
f ′j = (Flow, id′j , Ã

′
j , C̃

′
j)

−−−−−−−−−−−−−−−−−−−−→
f ′i = (Flow, id′i, Ã

′
i, C̃
′
i)

Consider the simulator S as depicted in Fig. 9, Fig. 10 and Fig. 11. First we exclude collisions
in the simulation, since by Lemma 1 those appear with negligible probability. Let us analyse Z’s
view in both the real world and the simulated world:

18



Query Value Real Simulated

MulDiv
ξ1 � ξ2 [a1+a2]Gj [F1+F2]Gj

ξ1 � ξ2 [a1−a2]Gj [F1−F2]Gj

Pairing ê(ξ1, ξ2) [a1·a2]GT [F1·F2]GT

Isomorphism
ψ(ξ1) [a1]G2 [F1]G2

ψ−1(ξ2) [a2]G1 [F2]G1

Hash
Ĥ1(π′) [yπ′ ]G1 [Yπ′ ]G1

Ĥ2(id) [ιid]G1 [Iid]G1

StealPwdFile

idi idi idi

Ai = gxi2 [xi]G2 [Xi]G2

Bi = Ĥ1(πi)
xi [xiyπi ]G1 [XiZi]G1

Ci = Ĥ2(idi)
xi [xiιidi ]G1 [XiIidi ]G1

Flow

idi idi idi

Ãi = Ai
ri [xiri]G2 [XiRi,ssid]G2

C̃i = Ci
ri [xiιidiri]G1 [XiIidiRi,ssid]G1

TestPwd Si = ê(B̃i, Ã
′
j)

8 [(xiyπiri)·a′j ]GT [(XiZiRi,ssid)·F ′j ]GT

Table 2: Comparison of values viewed by Z in the real world versus the simulated world.

From Table 2 we can see that group elements observed by Z are encodings of polynomials in
the simulated world and encodings of assignments to those polynomials in the real world. Since
Z only observes encoded group elements, distinguishing between the worlds can only be achieved
by polynomial collisions, i.e. the encodings of two polynomials differ [F1]Gj 6= [F2]Gj while con-
crete values assigned to them in the real world (variable assignment #»x ) have the same encodings
[F1(

#»x )]Gj = [F2(
#»x )]Gj . Since the encoding function is injective, this implies collisions F1 6=F2 while

F1(
#»x )=F2(

#»x ). By Lemma 1 the probability for collisions in the simulation is negligible, so Z has
negligible advantage in distinguishing between the encodings.

TestPwd answer. Although Table 2 refers to TestPwd query, it does not compare the responses
of this query to A/Z. In the real world, this response is consistent with the state of the session:
when the guess is correct (S′ = Si) the session becomes compromised and the response is “correct
guess”, while a wrong guess makes the session interrupted and causes “wrong guess” to be
returned. However, when S simulates TestPwd there seems to be a path allowing the session to
remain freh, when neither Impersonate nor OnlineTestPwd queries are sent by S to FsiPAKE,
but the condition F = a′XiZiRi,ssid holds.

When S responds “correct guess” to a TestPwd query, Z provided a polynomial satisfying
F=a′jXiZiRi,ssid. Recall that Zi might only alias another variable Zk (when πi=πk) or Yπ′ (when
πi=π

′). If F contains Yπ′ then S issued an OnlineTestPwd query, making the session compro-
mised. Similar argument applies for Zk where Pk has been compromised and having idk=id′. Since
Z only obtains polynomials with Zk by compromising Pk, we are left with the case that Pk has
been compromised, but idk 6=id′. However, in this case a′j must contain Xk and therefore c′j=a

′
j ·Iid′

contains Xk·Iid′ , which is a term Z cannot produce in G1. Thus, if S replies “correct guess” then
the session becomes compromised in the simulated world, as well as in the real world.

8 We remark that Z does not observe Si directly in TestPwd query, but rather the result of comparing its guess
S′ against Si.
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If S answers “wrong guess” then either no queries were submitted by S, or some query has
failed and thus F contains a variable (Yπ′ or Zk) that is not aliased by Zi. In both cases S′ 6=Si in
the real world and the session becomes interrupted. We conclude that after a TestPwd query
the sessions of both the real and simulated worlds are in the same state, and the responses to A/S
are equal.

It is left to compare the outputs of parties in each world. In both worlds, the output consists
of an identity and a session key: 〈sid, ssid, id,Ki〉, which we will analyse separately.

Identity. The identity output by party Pi in the real world is id′ taken from the incoming flow f ′j
controlled by the adversary. In the real world, the identity is taken from the simulator’s input to
NewKey query. Since S uses the same id′ in its query, we only need to show that this query is not
ignored by FsiPAKE (i.e. that id′ is allowed by the check in NewKey).

When the session is interrupted, no restriction is placed on the identity selected by S. The
same applies when the session is compromised due to a successful OnlineTestPwd query. When
an Impersonate query caused the session to become compromised, only the impersonated iden-
tity is allowed, and indeed S verifies that idk=id′ before impersonating party Pk. When the session
is fresh, only the true identity of the peer party is permitted, but S uses id′ as in the real world.
Nevertheless, if id′ 6=idj and a′j = αXjRj,ssid (α∈Z?q) then the condition

c′j = a′j ·Iid′ = αXjRj,ssid·Iid′

could not have been satisfied and the modified flow should have been ignored in both worlds.

Session Key. In the real world, Ki is party Pi’s output of FPAKE. If the peer Pj is corrupted or Pi’s
session was compromised then A’s input key K ′ to NewKey is selected. Otherwise, both parties
receive the same randomly chosen key Ki=Kj if they had the same input Si=Sj to NewSession
with fresh sessions, or independent random keys otherwise.

In the simulated world, the key Ki selected by FsiPAKE for party Pi is S’s input key K ′ to
NewKey (decided by Z) if the session is compromised or either party in the sub-session is
corrupted. Otherwise, FsiPAKE generates the same random key for parties using a common password
with fresh sessions, or independent random keys otherwise.

If a session is compromised in the simulated world, then a TestPwd query succeeded, and
as shown above the session is compromised in the real-world as well.

If a session is fresh in the simulated world then no TestPwd query was sent, so it is also
fresh in the real world. Additionally, a′i=αXiRi,ssid and a′j=αXjRj,ssid (S will interrupt a session
with modified flows, even if A would not send TestPwd queries in the real world), so if the parties’
passwords were identical πi=πj , then in the real world the inputs to FPAKE must also be equal
(Si=Sj).

However, if a session is interrupted in the simulated world, it might be from a failing Test-
Pwd query, which caused the session to be interrupted in the real world as well, or because S
sent OnlineTestPwd with π=⊥ when handling NewKey query. This happens when the modified
flows f ′i and f ′j are not using a′i=αiXiRi,ssid and a′j=αJXjRj,ssid with αi=αj . If the flows have this
form with αi 6=αj , then

Si = [XiZiRi,ssid · αjXjRj,ssid]GT 6= [XjZjRj,ssid · αiXiRi,ssid]GT = Sj

in the simulated world, regardless of Zi=Zj . Thus, in the real world Si 6=Sj , since assignment col-
lisions are negligible. If the modifications (a′i and a′j) do not take this form, then since there are

20



no other polynomials with Ri,ssid and Rj,ssid, Si 6=Sj in both real and ideal world (again due to
assignment collisions being negligible).

We proceed to prove the lemmas:

Proof (Lemma 1). There are three types of possible collisions:

1. Hash queries. Since Hash responses are taken from the uniform distribution over Z?q , the prob-
ability of such collisions is bound by qH

q−1 , where qH is the number of Hash queries (polynomial
in κ) and q ≥ 2κ.

2. Variable Aliasing. By Lemma 2, there are no aliasing collisions in the simulation.
3. Variable Assignment. Polynomials created by S for elements in G1 and G2 have maximal

degree 3. MulDiv and Isomorphism queries cannot increase the degree, and Pairing allows
creating polynomials in GT adding the input degrees. Therefore, the maximal degree of any
polynomial whose encoding is observed by Z is 3+3=6.
Since in the real world the exponents (corresponding to variables in the simulated world) are
taken from the uniform distribution over Z?q , the probability of assignment collisions Fi(

#»
X ) =

Fj(
#»
X ) for some variable assignment

#»
X , is bound by:

Pr
#»
X
R←Z?q

[
∃i 6=j Fi(

#»
X ) = Fj(

#»
X )

]
≤
∑
i 6=j

Pr
#»
X
R←Z?q

[
(Fi−Fj)(

#»
X ) = 0

]

≤
∑
i 6=j

deg(Fi−Fj)
|Z?q |

≤
(
N

2

)
6

q−1

which is negligible in κ, where N denotes the number of distinct polynomials created in the
simulation.

Lemma 2. There are no aliasing collisions in the simulation.

Proof. Variable aliasing collisions take the form Zi=Yπi , where πi is the password assigned by
the environment to party Pi. They arise from defining separate formal variables to represent the
logarithm of Ĥ1(π) for (a) each party Pi’s password πi (unknown to the simulator) and (b) each
adversary invocation of Ĥ1 on some password guess π′.

Note that this implies possible aliasing between parties: Zi=Zj when both parties are assigned
the same password: πi=πj .

Since the proof for Theorem 2 has already dealt with aliasing in TestPwd queries, it remains
to show no collisions are possible for group encoding of elements. The following basic polynomials
are accessible to the adversary after the corresponding queries:

1 public generator

Xi
FPAKE’s StealPwdFile queryXi·Iidi

Xi·Zi
Xi·Ri,ssid Flow message from Pi
Xi·Ri,ssid·Iidi
Yπ FGGP’s Hash query for Ĥ1(π)

Iid FGGP’s Hash query for Ĥ2(id)
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Recall that polynomials in G1, G2 are simply linear combinations of these basic polynomials, and
polynomials in GT are linear combinations of their pairwise products. The only basic polynomial in
which Zi appears is Xi·Zi, which cannot collide (under aliases) with anything but Xi·Yπi or Xi·Zj . Since
such polynomials are not given, no aliasing collisions are possible in G1,G2. Since GT polynomials
are combinations of products, only only linear combinations of the following basic collisions are
possible under aliasing (Zi=Yπi):

1. (Xi·Zi) · (1) = (Xi) · (Yπ′) where Zi=Yπ′ (πi=π
′)

2. (Xi·Zi) · (Iid′) = (Xi·Iidi) · (Yπ′) where Zi=Yπ′ and id′=idi
3. (Xi·Zi) · (Xj) = (Xj ·Zj) · (Xi) where Zi=Zj (πi=πj)

4. (Xi·Zi) · (Xj ·Iidj ) = (Xj ·Zj) · (Xi·Iidi) where Zi=Zj and idi=idj

Recall that the simulator S issues OfflineComparePwd queries comparing the password of
freshly compromised party Pi with those of previously compromised parties, therefore eliminating
collisions of the form Zi=Zj altogether. It is left to prove only for type 1 and 2 aliasing collisions.

Since every polynomial in GT is a linear combination of FT polynomials created in Pairing
query, it is also a linear combination of matrix M ’s rows.

Matrix M created by S in Pairing queries is kept in row echelon form (see Algorithm 1),
therefore each row r is represented by a pivot monomial Pr, corresponding to the pivot column
holding 1. Consider a collision (under aliases):

0 =
∑

αrFr (∃rαr 6= 0)

where Fr is the polynomial corresponding to the r’th row. For every row r whose pivot Pr is non-
collidable, the coefficient αr must be 0, since by the row echelon form, pivots are unique. Therefore
if αr 6=0 for some row r, then the pivot Pr is collidable.

Recall that monomials containing XiYπ′ are only selected by S as pivots after an OfflineTest-
Pwd query failed, implying that πi 6=π′ and hence such monomials are not collidable. Therefore, for
a row r with αr 6=0 the pivot Pr must either be XiZi or XiZiIidi which collides with XiYπi or XiYπiIidi
(respectively).

However, if there is a row r′ that has non-zero coefficient for XiYπi or XiYπiIidi , then S must
have queried OfflineTestPwd for Pi with πi, and this test must have succeeded, causing S to
merge Zi with Yπ′ . In this case αr=0 since the pivot Pr is not collidable after the merge.

5.5 Pre-Computation Resilience

We resume by considering pre-computation resilience. As discussed earlier, the original UC frame-
work does not limit the ideal-world adversary S from testing every possible password via Of-
flineTestPwd queries once compromising a party. This allows a very strong simulator who can
instantly reconstruct the party’s password once compromised with StealPwdFile. The solution is
to bind offline tests with some real-world work, by keeping the environment aware of OfflineTest-
Pwd queries in the ideal world and of the corresponding real-world computation. For instance,
[JKX18] requires OPRF query for each tested password, while [BJX19] shows linear relation be-
tween number of offline tests and Generic Group operations.

In this work we will bind each ideal-world OfflineTestPwd query with a bilinear pairing
computed (after a compromise) in the real-world using Pairing query to FGGP. We stress that
it suffices to prove this for failed offline tests, since successful tests may happen at most once per
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compromised party’s password. In real-life scenarios, where all parties share a single password,
there might only be one successful offline test.

It can be easily observed that S never sends OfflineTestPwd queries, except when simulating
FGGP’s Pairing query, where a sequence of such offline tests is sent to FsiPAKE. It is also easy to
see that this sequence ends when FsiPAKE replies with “Correct guess”. If all tests are answered on
the affirmative and some party Pi has been compromised, then S sends a final query with π=⊥
resulting in “Wrong guess” from FsiPAKE.

Therefore there is a one-to-one mapping between bilinear pairings computed by the real-world
adversary after a compromise, and OfflineTestPwd queries sent by the ideal-world adversary
S when simulating those computations. As a result, an environment Z equipped with awareness
of failed offline tests (in the ideal-world) and of pairings (in the real-world) gains no advantage
distinguishing these executions.

6 Computational Cost

The computational cost for our iPAKE compiler and CRISP are summarized in the following table:

iPAKE CRISP

Password File Derivation 2H + 2E 2Ĥ + 3E

Key Exchange
Blinding 1E 3E

Identity check 0 1Ĥ + 2P
Key generation 1H + 3E + PAKE 1P + PAKE

Offline Test
Pre-Compromise 1H 1Ĥ
Post-Compromise 0 1P

Here H, Ĥ, E, and P denote Hash, Hash-to-Group, Exponentiation, and Pairing costs, respec-
tively, and PAKE denotes the additional cost of the underlying PAKE used. We ignore the cost of
group multiplications.

6.1 Password Hardening for Pre-Compromise

Common password hardening techniques (e.g., PBKDF2 [MKR17], Argon2 [BDK16], and scrypt [PJ16])
are used in the process of deriving a key from a password to increase the cost of brute-force at-
tacks. As mentioned in Section 2 both our iPAKE and CRISP protocols can use those techniques
to increase the cost of the pre-compromise computation phase of the attack (pre-computation). In
iPAKE we can use any of those hardening techniques to implement the hash function denoted as
H1. Similarly, in the CRISP protocol, we can use those techniques as the first step in implementing
the Hash-to-Group function denoted as Ĥ1. As those functions are only called once in the password
file derivation phase, we can increase their cost without increasing the cost of the online phase of
the protocol.

6.2 Password Hardening for Post-Compromise

In addition to the cost of the pre-compromise phase, the CRISP protocol also requires the attacker
to perform a post-compromise phase. The offline test post-compromise cost above is taken from
the lower bound proved in Section 5.5. This is also an upper bound for CRISP, since having
compromised a password file, an adversary can check for any password guess π′ if:

ê(Bi, g2)
?
= ê(Ĥ1(π

′), Ai)
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The left-hand side can be computed once and re-used for different guesses. The right-hand side
must be computed per-password, but the invocation of Ĥ1 can be done prior to the compromise.

We stress that a pairing operation is preferred over exponentiation when considering the cost
of an offline test. While the latter can be amortized, e.g., by using a window implementation, to
the best of our knowledge, optimization for pairing with a fixed point only speed the computation
by 37% [CS10]. Moreover, pairing requires more memory than simple point multiplication and is
harder to accelerate using GPUs [PL13].

In order to increase the difficulty of offline tests (password hardening), we cannot use a method
such as iterative hashing, as was done in [JKX18]. However, by using larger group size, we can
increase the cost of each pairing, and hence of offline tests. Although coarse-grained, this allows
some trade-off between resilience to compromise and computational complexity of CRISP.

6.3 CRISP Optimization

We can optimize the CRISP protocol in several ways to reduce the added computational cost and
latency.

Blinding operation The blinding of the group elements from the password file requires three ex-
ponentiation. However, we can amortize this cost across multiple runs of the protocol. The blinding
can be calculated once every period (e.g., every reboot of the devices or once an hour), and the
same blinding value can be reused multiple times. The PAKE protocol will still return a fresh key
for each run and provide forward secrecy. Moreover, we can calculate those blinding values offline,
in preparation for a protocol. This does not reduce the overall computational cost but reduces the
protocol’s latency.

Identity Verification A substantial part of the added computational cost of the protocol is the
identity verification that requires two pairing operations. We propose two options to optimize this
cost:

1. Reducing latency – The verification does not affect the derived key or the subsequent messages.
This implies we can continue with the protocol by sending the next message and postpone the
verification for later, while we wait for the other party to respond. The total computational cost
remains the same, but the latency (or running time) of the protocol is reduced.

2. Verification delegation – Any party that receives the protocol messages, can verify the identity
appearing in it (verification is only based on the identity and blinded values). We consider the
following scenario, where we have a broadcast network with many low-end devices (e.g., IoT
devices) and one or more high-end devices (a controller or bridge). The bridge can perform the
identity verification for all protocols in the network, and alert the user if any verification fails.

Number of Messages CRISP requires two additional messages compared to the underlying
PAKE. We can trivially reduce this to one additional message. The first message remains the same.
However, once receiving it, the other party can already derive the shared secret Si and prepare
the first PAKE message. Consequently, CRISP’s second message can be combined with the first
PAKE message, resulting in a single additional message, and again reducing the total latency of
the protocol. As any PAKE protocol requires at least two (simultaneous) messages [KV11], we
can implement CRISP using only three (albeit sequential) messages. The same optimization also
applies to our iPAKE protocol.
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7 Conclusions and Open Problems

In this paper, we have formalized the novel notions of iPAKE and siPAKE. We presented an iPAKE
protocol and proved its security it in UC under ROM. We also introduced CRIPS which we proved
to realize FsiPAKE under GGM. Moreover, we have shown that for CRISP each offline password
guess requires a computational cost equivalent to one pairing operation.

The following open problems arise:
Two message protocol. In subsection 6.3, we showed how our protocols require only three

messages. As shown in [KV11], PAKE can be realized with only two messages. It is an open problem
to either prove a lower bound of three messages or to implement a two message iPAKE or siPAKE
protocol.

Optimal bound on the cost of brute-force attack. In subsection 2.1 we have shown a
black-box post-compromise brute-force attack on any PAKE protocol. The computational cost of
the attack is two runs of the PAKE protocol for each offline password guess. However, to the
best of our knowledge, brute-forcing current PAKE implementations requires a computational cost
equivalent to only one run of the protocol. It remains an open problem to either find a more efficient
black-box attack or to implement a more resilient PAKE.

Fine grained password hardening. CRISP allows for a coarse-grained password hardening
by changing the pairing group (e.g., using curves of larger size). How to allow for a fine-grained
password hardening (e.g., such as iterative hashing) secure against pre-comptuation remains an
open problem.
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A iPAKE protocol security

We remark that the underlying IB-KA protocol satisfies the following properties:

1. Weak Forward Secrecy: A passive adversary has negligible probability in computing the
session key K, even if any party is later compromised.

2. KCI Resistance Given that in session sid party Pi outputs 〈id,K〉 and no party with identity id
was compromised, the probability that an adversary can compute K is negligible. This property
is proved in [FG10] based on the Strong CDH assumption (roughly speaking, assuming CDH
problem remains hard given a DDH oracle).

3. KDC Independent Flows: The data exchanged between parties on each session is indepen-
dent of the KDC secrets.

4. Pairing Free: The protocol can be implemented using conventional groups (e.g. Elliptic Curves)
without depending on special properties, such as bilinear pairing or hash-to-group.

Before proving our protocol, we first explain why KCI resistance is preserved under our modi-
fications. We stress that until H1(πi) is queried by the adversary, the random oracle FRO acts like
the original KDC, holding the secret random exponent yi. Thus, the original property is preserved
while H1(πi) is not queried, and indeed the proof below only relies upon KCI resistance under this
condition.

Following is the proof for UC security of IB-KA based iPAKE protocol from Fig. 6, as stated
in Theorem 1.

Proof (Theorem 1).

Let A be the dummy adversary running in the (FPAKE,FRO)-hybrid world (will be referred to
as “ideal world” from now on). Consider the simulator S depicted in Fig. 12 and Fig. 13, running
in the ideal world and let Z be a PPT environment. The goal is to show that Z’s views in both
worlds are computationally indistinguishable.
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Initially, pick xi
R←Z?q for each party Pi and Hi[·] is undefined for i = {1, 2}. Whenever S references an undefined

hash value Hi[·], set H1[π′]
R← Z?q , H2[id, X]

R← Z?q .

Upon (StealPwdFile, sid) from Z towards Pi:
◦ Send (StealPwdFile, sid,Pi) to FiPAKE

◦ If FsiPAKE returned “no password file”:
. return this to Z

◦ Otherwise, FiPAKE returned 〈“password file stolen”, idi, πi〉
◦ If πi 6= ⊥: set yi ← H1[πi]

◦ Otherwise, pick yi
R←Z?q

◦ For each 〈compromised,Pk, ·, yk〉:
. Send (OfflineComparePwd, sid,Pi,Pk) to FiPAKE

. If FiPAKE returned “passwords match”: set yi←yk
◦ Record 〈compromised,Pi, idi, yi〉
◦ Xi←gxi , Yi←gyi
◦ hi ← H2[idi, Xi]
◦ x̂i ← xi + hi·yi
◦ Return 〈file, idi, Xi, Yi, x̂i〉 to Z

Upon (Hash, sid, s) from Z towards FRO:
◦ If s = 〈1, π′〉: for each party Pi:

. Send (OfflineTestPwd, sid, ssid,Pi, π′) to FiPAKE

. If FiPAKE replied “correct guess”:
� Retrieve 〈compromised,Pi, ·, yi〉
� set H1[π′]← yi

◦ Return to Z

{
H1[π′] s = 〈1, π′〉
H2[id, X] s = 〈2, id, X〉

Fig. 12: Simulator S in the offline part

First we observe that in the real world xi and ri are independent of the password, allowing S to
perfectly simulate these values. It is also easy to see that the identity idi sent by S in StealPwdFile
query and flow comes from FiPAKE and thus matches the identity in the real world. Using the
same calculations as a real party, S is therefore able to perfectly mimic that party in Flow. For
StealPwdFile, however, S lacks the knowledge of the password, which is necessary for deriving
yi.

IfH1(πi) was requested by Z prior to compromising Pi via StealPwdFile, then S has issued an
OfflineTestPwd query towards FiPAKE for Pi with password πi. This query succeeded, causing
FiPAKE to create an 〈offline, . . . 〉 record, ensuring that the correct πi is returned from FiPAKE

in response to StealPwdFile query. S can therefore generate yi using H1[πi] exactly like a real
party. If, on the other hand, H1(πi) has not been queried by the time Pi is compromised, then
the value yi is generated by S in StealPwdFile and saved in a 〈compromised, . . . 〉 record. If
Z will later choose to compute H1(πi), S will detect this from a “correct guess” response to its
OfflineTestPwd query, and will set H1[πi] using the recorded yi. Also notice that in this case S
utilizes OfflineComparePwd queries to match the value yi with yk of a previously compromised
party Pk, when πi = πk.

Because S acts exactly like a random oracle in Hash queries, and since we have already con-
sidered the password file obtained by StealPwdFile and the values of Flow, we are left with
FPAKE’s TestPwd and NewKey queries.
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Upon (NewSession, sid, ssid,Pi,Pj , idi) from FiPAKE:
◦ Ignore if there is a record 〈session, ssid,Pi,Pj , ·〉
◦ Pick ri

R←Z?q
◦ Record 〈session, ssid,Pi,Pj , ri〉 and mark it fresh
◦ Xi←gxi , Ri←gri
◦ fi ← (Flow, idi, Xi, Ri)
◦ Send fi to Z as Pi towards Pj and receive f ′i from Z towards Pj
◦ Parse f ′i as (Flow, id′i, X

′
i, R
′
i)

◦ Record 〈sent, ssid,Pi, (idi, Xi, Ri)〉 and 〈recv, ssid,Pj , (id′i, X ′i, R′i)〉

Upon (TestPwd, sid, ssid,Pi, α′, β′, tr′) from Z towards FPAKE:
◦ Retrieve 〈session, ssid,Pi,Pj , ri〉 marked fresh
◦ Retrieve 〈send, ssid,Pi, fi〉 and 〈recv, ssid,Pi, f ′j = (id′j , X

′
j , R

′
j)〉

◦ Set αi ← R′rij , hi ← H2[idi, Xi], hj ← H2[id′j , X
′
j ]

◦ tri ← 〈min(fi, f
′
j),max(fi, f

′
j)〉

◦ Define β(y): y 7→ (R′jX
′
jg
y·hj )ri+xi+y·hi

◦ If αi=α
′ and tri=tr′:

. If there is an entry H1[π′]=y′ with β(y′)=β′:
� Send (OnlineTestPwd, sid, ssid,Pi, π′) to FiPAKE

. Otherwise, if there is a record 〈compromised,Pk, idk, yk〉 with β(yk)=β′ and idk=id′j :
� Send (Impersonate, sid, ssid,Pi,Pk) to FiPAKE

◦ If no other query was sent:
. Send (OnlineTestPwd, sid, ssid,Pi,⊥) to FiPAKE

◦ Mark the session compromised if FiPAKE replied “correct guess” or interrupted otherwise
◦ Forward FiPAKE’s response to Z

Upon (NewKey, sid, ssid,Pi, α′) from Z towards FPAKE:
◦ Retrieve 〈session, ssid,Pi,Pj , ri〉 not marked completed
◦ Retrieve 〈sent, ssid,Pj , fj〉 and 〈recv, ssid,Pi, f ′j=(id′j , ·, ·)〉
◦ if the session is fresh and fj 6= f ′j :

. Send (OnlineTestPwd, sid, ssid,Pi,⊥) to FiPAKE

◦ Mark the session completed
◦ Send

(
NewKey, sid, ssid,Pi,K′, id′j

)
to to FiPAKE

Fig. 13: Simulator S in the online part

TestPwd. Consider TestPwd query’s output. If in the real world FPAKE returns “correct guess”
then α′ = αi, β

′ = βi and tr′ = tri. In the simulated world, S easily tests α′ and tr′, since αi and
tri are independent of the password and can be simulated. To check β′ S has to extract the guess
for y′, either from H1(π

′) queried earlier, or from a compromised party’s yk.

If the correct password has been previously queried by H1(πi), then S will compute β(H1(πi))
exactly like a real-world party Pi. In this case the comparison with β′ must succeed, and S will issue
an OnlineTestPwd query for πi, which will result in FiPAKE’s session being compromised and
“correct guess” being returned. However, if H1(πi) has not been queried yet, then KCI resistance is
preserved, and thus Z could have only provided α′ = αi and β′ = βi if some compromised party Pk
has idk = id′j and πk = πi. In this case S will find β(yk) = β(H1(πk)) = β(H1(πi)) = βi = β′ and will
issue an Impersonate query for Pk, which will also result in FiPAKE’s session being compromised
and “correct guess” to be returned.

In the other direction, if the TestPwd query succeeded in the simulated world, then S found
that α′ = αi, tr

′ = tri and either β′ = β(H1[π
′]) or β′ = β(yk). In the first case, S received “correct

guess” in response to an OnlineTestPwd query with π′, implying πi = π′ and thus β′ = β(H1(πi)).
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In the latter case, S received “correct guess” from FiPAKE after issuing an Impersonate query,
implying πi = πk and thus β′ = β(H1(πk)) = β(H1(πi)). This ensures that in both cases the
real-world adversary would also get “correct guess” from FPAKE.

Note that since in both worlds TestPwd query either results in “correct guess” with the session
being marked compromised, or “wrong guess” and the session becoming interrupted, then both
TestPwd’s output and the session state are equivalent in both worlds.

We now consider party Pi’s output, which consists of a session key Ki and an identity id.

Identity. It is easy to see that S uses id′j that was received in the modified flow f ′j , as the identity
for FiPAKE’s NewKey. In the real world, an honest party Pi will also use this identity for its
output. Therefore, we only need to show that FiPAKE allows this identity as input.

When the session is interrupted FiPAKE does not limit the selection of the identity at all.
When the session is fresh S checks if Z asked to make any change in the flow fj from Pj to Pi. If it
did not, then id′j = idj and FiPAKE will accept this identity. Otherwise, S sends an OnlineTestPwd
query with ⊥ as password, which will make the session interrupted in FiPAKE, and as a result will
allow S to choose any identity.

When the session is compromised, S must have succeeded in either an OnlineTestPwd or
an Impersonate query earlier. If the former was queried, then FiPAKE allows S to choose any
identity. Otherwise, it was a successful impersonation of party Pk towards Pi. As shown above
for TestPwd query, thanks to KCI resistance, this only happens when idk = id′j , which FiPAKE

permits.

Session Key. Finally, consider the output key Ki. Recall that when NewKey is requested by
the environment, FiPAKE’s session in the simulated world has the same state as FPAKE in the real
world. Since FiPAKE and FPAKE use the same logic for selecting the session key (either Z’s K ′, a
previous Kj or a fresh random Ki), it seems clear that Z cannot distinguish between these keys.
However, when the session is fresh and a change in the flow from Pj to Pi is detected (fj 6= f ′j)
S sends an OnlineTestPwd to FiPAKE making the session interrupted (this was necessary for
setting the identity, as explained above). Nevertheless, in this case the real parties observe different
transcripts (tri 6= trj) and thus they provide FPAKE with different inputs. Therefore, FPAKE will
provide Pi with random key Ki (since its session is fresh) regardless of its password. As for Pj ’s
key, it is only affected by Pi’s session state when Pj ’s own session is fresh, in which case it will be
assigned an independent random key Kj . Recall that S made Pi’s session in FiPAKE interrupted,
so in the simulated world too Pi and Pj ’s session keys will be randomly chosen.

Since with astonishing probability Z cannot distinguish between the real and ideal world views,
the protocol UC realizes FiPAKE as stated.

B iPAKE Variant

In Section 4 we showed how to combine an IB-KA protocol together with any symmetric PAKE
to construct an iPAKE protocol. The construction was sequential; at first the parties executed
the IB-KA protocol, and only then were they able to engage in a PAKE, using the negotiated
shared values (αi and βi). One might wonder if these two communication rounds can be merged by
simultaneously executing both IB-KA and PAKE.

To run PAKE in parallel to IB-KA, the input to PAKE cannot depend on the IB-KA output.
Instead, during the password file generation phase we derive two independent values from the
password (instead of just one): yi, pi ← H1(πi). As before, yi is used to simulate the KDC’s private
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key. The new value pi is added to the password file, and will be provided as input to PAKE. Finally,
both keys of IB-KA and PAKE should be combined in the derivation of the session key.

Unfortunately, this construction does not provide Perfect Forward Secrecy (PFS). Assume there
is a set of parties that share the same password. Once an adversary has compromised a party, it can
actively interfere in sessions between any two parties. When the correct password is later guessed,
the adversary will find the keys to all those sessions. Recall that the IB-KA protocol only guarantees
Weak Forward Secrecy (wFS not PFS), i.e. past sessions in which the adversary A was active are
vulnerable when long term keys are compromised. In our settings, guessing the correct password
after a session has ended allows A to find the IB-KA key. In order to find the final session key,
A also has to succeed in a TestPwd against the PAKE. However, since the correct input is pi,
which is common to all parties (with the same password), the adversary only needs to have had
compromised in advance a single party Pk (with πk = πi) so it can use its pk = pi and bypass the
PAKE.

We remark that this attack is possible due to the imperfect forward secrecy of IB-KA. Thus, we
can eliminate it by adding PFS to the scheme. We augment our construction with an explicit key
confirmation, and include the transcripts in the session key derivation. Intuitively, this prevents the
aforementioned attack by requiring the adversary to find the correct password during the session
to pass the key confirmation. The transcripts are included to prevent honest parties from agreeing
on a session key in presence of an active adversary. In this case, even the impersonated party will
not be able to complete the key confirmation. Unconfirmed, the resulting key will never be used,
and the adversary will gain nothing from finding it later, when the password is guessed.

Although adding a key confirmation results in a two-round iPAKE protocol, with which we
have started, we stress that in many real-life scenarios (such as TLS) an explicit key confirmation
exists anyway, and so the added communication cost is only one round.

The complete iPAKE variant described above is depicted in Fig. 14. Note that it combines the
transcripts of both IB-KA and the underlying PAKE9. This requires a slight modification of FPAKE,
to make it output the transcript together with the session key, as was done in [GMR06].

C Asymmetric PAKE Functionality

Fig. 15 shows the Strong Asymmetric PAKE functionality from [JKX18], in which only two par-
ties engage: a server S and a user U . It introduces the concept of a password file, created for
S upon StorePwdFile query and disclosed to the adversary upon adaptive corruption query
StealPwdFile modelling a server compromise attack. Once a server’s password file is obtained,
the ideal-world adversary is able to mount an offline guessing attack using OfflineTestPwd
queries, and an online impersonation attack using Impersonate query.
FsaPAKE encompasses the concept of sub-sessions: a single session corresponds to a single user

account on the server, allowing many sub-sessions (identified by ssid) where the user and server
reuse the same password file to establish independent random keys.

The asymmetry between user and server in this functionality is prominent: only OnlineTest-
Pwd and NewKey queries consider a general party P, while other queries explicitly mention either
U or S. Even FPAKE’s NewSession query is split in FsaPAKE into UsrSession and SvrSession,
since the user supplies a password for each session, while the server uses its password file.

9 The PAKE’s transcript is necessary for simulating the case where the adversary uses a compromised pk value to
set the PAKE key, but does not modify the IB-KA flows. In this case the adversary cannot compute the session
key, but decides whether the parties output matching or different keys.
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Public Parameters: Cyclic group G of prime order q≥2κ with generator g∈G, hash functions
H1:{0, 1}?→{0, 1}κ×Z?q , H2:{0, 1}?→Z?q and H3:{0, 1}?→{0, 1}3κ, and κ a security parameter.

Password File Generation:
Pi upon (StorePwdFile, sid, idi, πi): Pj upon (StorePwdFile, sid, idj , πj):

Pick random xi
R← Z?q Pick random xj

R← Z?q
pi, yi ← H1(πi) pj , yj ← H1(πj)
Xi←gxi Yi←gyi Xj←gxj Yj←gyj
hi ← H2(idi, Xi) hj ← H2(idj , Xj)
x̂i ← xi + yi·hi x̂j ← xj + yj ·hj
Record 〈file, idi, pi, Xi, Yi, x̂i〉 Record 〈file, idj , pj , Xj , Yj , x̂j〉

Key Exchange:
Pi upon (NewSession, sid, ssid,Pj): Pj upon (NewSession, sid, ssid,Pi):
Retrieve 〈file, idi, pi, Xi, Yi, x̂i〉 Retrieve 〈file, idj , pj , Xj , Yj , x̂j〉
Pick ri

R← Z?q Pick rj
R← Z?q

Ri←gri Rj←grj
fi = (Flow, idi, Xi, Ri)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
fj = (Flow, idj , Xj , Rj)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

pi−−−−−−−−−−−−−−→ F+
PAKE

pj←−−−−−−−−−−−−−−
←−−−−−−−−−−−−−−

αi, tri,1
−−−−−−−−−−−−−−→

αj , trj,1
hj ← H2(idj , Xj) hi ← H2(idi, Xi)

βi ←
(
RjXjYi

hj
)ri+x̂i βj ←

(
RiXiYj

hi
)rj+x̂j

γi ← Rj
ri γj ← Ri

rj

tri,2 ← 〈min(fi, fj),max(fi, fj)〉 trj,2 ← 〈min(fj , fi),max(fj , fi)〉
k1, k2, k3 ← H3 (αi, βi, γi, tri,1, tri,2) k1, k2, k3 ← H3 (αj , βj , γj , trj , trj,2)

ui, vi ←

{
k1, k2 if fi ≤ fj
k2, k1 otherwise

uj , vj ←

{
k1, k2 if fj ≤ fi
k2, k1 otherwise

ui−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
uj←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

If uj=vi: Ki←k3, otherwise: Ki
R←{0, 1}κ If ui=vj : Kj←k3, otherwise: Kj

R←{0, 1}κ
Output (sid, ssid, idj ,Ki) Output (sid, ssid, idi,Kj)

Fig. 14: iPAKE variant with key confirmation
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Functionalities FaPAKE and FsaPAKE, with security parameter κ, interacting with parties {U, S} and an adversary
S.

Upon (StorePwdFile, sid, U, πS) from S:
◦ If there is no record 〈file, U, S, ·〉:

. record 〈file, U, S, πS〉 and mark it uncompromised

Upon (StealPwdFile, sid, S) from S:
◦ If there is a record 〈file, U, S, πS〉:

. mark it compromised

. π ←

{
πS if there is a record 〈offline, π′〉 with π′=πS

⊥ otherwise

. return 〈“password file stolen” , π〉 to S
◦ else: return “no password file” to S

Upon (OfflineTestPwd, sid, S, π′) from S:
◦ Retrieve 〈file,U, S, πS〉
◦ If it is marked compromised:

. if πS = π′: return “correct guess” to S

. else: return “wrong guess” to S
◦ otherwise: Record 〈offline, π′〉

Upon (UsrSession, sid, ssid, S, πU ) from U :
◦ Send (UsrSession, sid, ssid, U, S) to S
◦ If there is no record 〈session, ssid, U, S, ·〉:

. record 〈session, ssid, U, S, πU 〉 and mark it fresh

Upon (SvrSession, sid, ssid, U) from S:
◦ Retrieve 〈session,U, S, πS〉
◦ Send (SvrSession, sid, ssid, S, U) to S
◦ If there is no record 〈session, ssid, S, U, ·〉:

. record 〈session, ssid, S, U, πS〉 and mark it fresh

Upon (OnlineTestPwd, sid, ssid,P, π′) from S:
◦ Retrieve 〈session, ssid,P,P ′, πP〉 marked fresh
◦ if πP = π′: mark the session compromised and return “correct guess” to S
◦ else: mark the session interrupted and return “wrong guess” to S

Upon (Impersonate, sid, ssid) from S:
◦ Retrieve 〈session, ssid, U, S, πU 〉 marked fresh
◦ Retrieve 〈file,U, S, πS〉 marked compromised
◦ If πU = πS : mark the session compromised and return “correct guess” to S
◦ else: mark the session interrupted and return “wrong guess” to S

Upon (NewKey, sid, ssid,P,K′) from S:
◦ Retrieve 〈session, ssid,P,P ′, πP〉 not marked completed
◦ if it is marked compromised, or either Pi or Pj is corrupted: KP ← K′

◦ else if it is marked fresh and there is a record 〈key, ssid,P ′, πP′ ,KP′〉 with πP = πP′ : KP ← KP′

◦ else: pick KP
R← {0, 1}κ

◦ if the session is marked fresh:
. record 〈key, ssid,P, πP ,KP〉

◦ mark the session completed
◦ send 〈ssid,KP〉 to P

Fig. 15: Asymmetric PAKE functionality FaPAKE (full text) and Strong Asymmetric PAKE func-
tionality FsaPAKE (grey text omitted)
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