
Anonymous Lottery In the Proof-of-Stake setting

Foteini Baldimtsi∗1, Varun Madathil†2, Alessandra Scafuro†2, and Linfeng Zhou†2

1Computer Science Department, George Mason University
2Department of Computer Science, North Carolina State University

foteini@baldimtsi.com, {vrmadath, ascafur, lzhou15}@ncsu.edu

May 6, 2020

Abstract

When Proof-of-Stake (PoS) underlies a consensus protocol, parties who are eligible to partic-
ipate in the protocol are selected via a public selection function that depends on the stake they
own. Identity and stake of the selected parties must then be disclosed in order to allow verification
of their eligibility, and this can raise privacy concerns.

In this paper, we present a modular approach for addressing the identity leaks of selection
functions, decoupling the problem of implementing an anonymous selection of the participants,
from the problem of implementing others task, e.g. consensus.

We present an ideal functionality for anonymous selection that can be more easily composed
with other protocols. We then show an instantiation of our anonymous selection functionality
based on the selection function of Algorand.

1 Introduction

Permissionless Blockchain. Permissionless blockchains, first introduced in Bitcoin [1], are open
systems where any party is allowed to participate by provably investing in some type of resource. Fol-
lowing this principle, many other permissionless blockchains have been developed which use different
type of user resources (computation [1], memory [2], money [3–5], time [6], etc).

At the core of all permissionless blockchains, lies a mechanism for selecting the party that will
decide how to extend the blockchain, that is, decide what will be the next added block. This is a
challenging task in a permissionless setting, but thanks to the enforcement of provable user resources
and assuming a fixed upper bound of adversarial resources, several selection methods have been shown
to be effective. For example, in Bitcoin, the selection method is based on Proof-of-Work. The party
to be selected is the one to first solve a computationally hard puzzle (which is fresh for each block
and randomly generated by the system protocol). To participate in the selection, a party only needs
to start working on the problem. Once a party finds a solution it can announce it and gain the right
to extend the blockchain (as well as receive some rewards).

In Proof-of-Stake (PoS) blockchains (e.g., [3, 7]) instead, the selection is performed according to
the amount of stake (e.g., tokens) a party owns in the system. For example, assuming that stake
is money, a party is selected via a randomized process, with probability that is proportional to the
amount of money she owns.

There is, however, a key difference between the two types of selection. In proof-of-work, the proof
of winning the selection is a solution to a fresh, random puzzle, which can be completely disconnected

∗Research Supported by NSF grants #1012798
†Research Supported by NSF grants #1012798,#1764025

1

from the identity of the winning party. As an example, let us consider the case of Bitcoin. The first
step of any party that wishes to participate in the selection process is to assemble the block Bi+1 to be
added next on the blockchain if the party gets selected. This block includes a pointer to the previous
block Bi, a set of transactions and a Bitcoin address to which the potential reward will be sent. The
exact information included in the block defines the puzzle that the party needs to solve. If a party
solves the puzzle before hearing about any other solution in the meantime, it announces the block and
the solution (B, solution). As long as the solution is valid and this was the first party to announce a
solution for the next block, the party gets elected. What is interesting to note in this process is that
the selection process does not depend on the identity of the party (the address included in the block
B can always be a fresh one) – the proof of being selected is simply a valid puzzle solution for a given
block. In contrast, in Proof-of-Stake selection it is not possible for parties to disconnect their identity
from the proof of winning the selection, since their identity is part of the proof.

Anonymous Selection in Proof-of-stake Settings. The selection function used in known proof-of-
stake consensus protocols must satisfy the following properties: privately evaluated, publicly verifiable
and fair. The first property says that only the stakeholder can learn if she is eligible to speak next,
thus, the selection function can be evaluated only with the knowledge of the secret key. This property
is necessary for preventing adaptive corruption of the selected party, and is crucial for achieving
consistency and chain-quality properties. The second property says that, a stakeholder PKi can prove
that she is eligible, by producing a proof that can be verified by anyone having access to PKi (and
corresponding stake). The last property says that the probability of being eligible follows a fixed and
public metric of eligibility. This metric can be different in different applications. For proof-of-stake
consensus, the metric of fairness is that a party wins with probability that is proportional to its stake.
In general, PoS protocols can have different eligibility criteria (where the weight is scaled after a certain
threshold, so that rich people are not selected too often). Independently of the eligibility criteria, a
crucial property is that fairness must hold even in case parties generate their keys maliciously. That
is, an adversary should not be able to craft keys that allow her to hit the eligibility criteria with higher
probability.

In this work we focus on anonymizing the selection function in the Proof-of-Stake setting. Our
goal is to provide a formal definition of anonymous selection, and show an instantiation.

1.1 Our Contributions

We now give an overview of our main contributions.

A Flexible Definition of Anonymous Selection. An anonymous Proof-of-Stake selection function
should have all the properties of a regular PoS selection (e.g., privately evaluated, publicly verifiable,
fair), but additionally it should guarantee that the proof of selection hides the identity of the winner.

To capture all the above properties, we design an ideal functionality that we call FAnon-Selection.
Our ideal functionality allows parties to register their identity Pi (along with associated stake stakei
when relevant). Once all parties are registered, any party can start making eligibility queries which
are associated to a “tag” tag. The semantic of a tag depends on the application that invokes the
selection procedure. For example, in Algorand [7], a tag is a tuple (round,step,seed) since this is the
information that defines when a new selection process must be performed. Similarly, in Ouroboros
PoS [3], a tag is of the form (epoch nonce, slot number). A party Pi can ask FAnon-Selection if she is
eligible to speak for a certain tag. FAnon-Selection is parameterized by an eligibility predicate Eligible,
which on input the tag tag and other information, such as stake, returns a bit b ∈ {0, 1}. FAnon-Selection
correctly evaluates the predicate Eligible for Pi.

If eligible, Pi can then send FAnon-Selection a message m, and obtain a proof π, for m and tag tag.
For example, in Algorand m could be a protocol message for the underlying Byzantine Agreement,
or a block proposed by a leader. Only Pi can check her own eligibility, and this captures the private
evaluation property. The fairness property is captured by the fact that FAnon-Selection only computes
a valid proof for parties that pass Eligible.

2

The proof π does not have any identity attached – capturing the anonymity property. Any other
party P (even if not registered in the system) can later query FAnon-Selection to verify that π is a
valid proof for m, tag, and get yes/no as an answer. This captures the public verifiability property.
Furthermore, only proofs that are generated by FAnon-Selection will correctly verify, and this captures
the correctness and fairness of the system. An ideal functionality for anonymous lottery is also defined
in a concurrent work [8] (that we discuss in more details in Section 1.2). Their definition differs from
ours in the following crucial aspect. In [8], when an eligible party asks the functionality to send m
for tag entry, the ideal functionality will broadcast the message m to all parties in the system. This
indeed captures what typically happens in a consensus protocol, where messages are broadcast to all
parties. However, this approach presents some potential drawbacks. First, anonymous selection and
anonymous broadcast seem to be problems of different nature – one is at application level, the other
is at network level. In particular, the guarantees that one can achieve against an adversary that can
only act at application level might be much stronger than the guarantees one could hope to achieve
against an adversary that works at network level. Indeed, it has already been observed in previous
work (see Sec VI - C of [9], Sec 5.1 and 5.2 of [5] and Sec 4.2 of [10]) that there is some seemingly
inherent leakage at network level that an adversary can exploit. Therefore, the anonymity guarantee
promised by the functionality described in [8] might not be necessarily realizable (even in the ideal
anonymous broadcast hybrid model). Second, an ideal functionality that enforces broadcast cannot be
used in protocols where parties do not need/want to broadcast their eligibility to the entire network.

Our ideal functionality instead provides a proof π of eligibility for a party Pi and does not enforce
any further action. This proof is an actual string that Pi can use in another protocol. This makes our
ideal functionality more flexible and, we think, more easily composable with other protocols. In our
work we first present an ideal functionality that allows parties to be eligible with the same weight.
This can capture the lottery of Ouroboros style protocols where parties are selected with the same
weight (but are selected more often based on their stake - in different tag). Our functionality also
captures the lottery of Algorand if we assume that each user is associated with one unit of stake. To
capture the lottery functionality of Algorand where parties with different stake amounts are selected
with different weights, we present a modification of our ideal functionality for the multi-stake setting
FAnon-Selection-MS in Appendix C. Note that the ideal functionality of [8] does not capture this selection
with multiple weights and cannot be used directly to replace the lottery function of Algorand.

Instantiation from Algorand Selection Function. We provide an implementation of FAnon-Selection
based on the underlying selection function of the Algorand protocol (as described in [7], which works
as follows. In Algorand, a party Pi is identified by its public key pki. In order to check availability for
a certain tag, she uses her private (signing) key ski to compute a signature on tag : σi = SIGski(tag).
This signature is given as input to a random oracle H, i.e. y = H(σi). The random output y is then
used to check eligibility: if y is below a threshold T , the party is selected, and the proof is simply
the pair (y, σi). In order to verify such a proof one needs to use pki to verify the signature, and this
obviously requires leaking the identity of the selected party.

To anonymize this selection function, a näıve approach would be to simply send y, and add a
zero-knowledge proof for the statement: “y is the correct output of the random oracle evaluated on
input a signature σ that verifies under some pki present in the system (i.e., in the set of all published
public keys).” Note that the pre-image σi of the random oracle must remain hidden, since it reveals
the identity of the stake-holder.

This straightforward approach, however, fails when H is modeled as a random oracle, since it can
only be used as a black-box in the protocol. Thus one cannot prove properties of pre-images of the
random oracle unless the random oracle is used as a black-box in the zero-knowledge proof (and no
succinct reusable black-box proofs are known to exist so far). On the other hand, we stress that one
cannot simply replace H with a concrete hash function in the proof, since the perfect unpredictability
property of the random oracle is crucially used in the proof of security, when arguing security against
maliciously chosen keys (for example see Sec. 3.2 of [11]).

Thus, as our second contribution we show how to overcome the above issue and avoid using the

3

random oracle in the zero-knowledge proof, while still maintaining the same selection function of
Algorand. We devise a method that allows one to prove properties about the “pre-image” of the
output of the random oracle, while still using the random oracle as a black-box. Our approach is the
following. Instead of proving a statement about a secret function applied on the input of the random
oracle H we prove a statement about a secret function applied to the output of H, which can be public.
Crucially, we need that the function applied to the output y does not disturb the unpredictability
properties we get from the random oracle. To do so, we use trapdoor permutations.

Our anonymous selection function therefore works as follows. For each tag tag, there is a public
value associated to a party Pi which is Vi = H(i|tag), and can (but it does not have to) be computed
by everyone. Each party Pi also has associated a public key TRP.pki for a trapdoor permutation f .
To check if eligible to speak for tag tag, a party Pi proceeds as follows. She uses her trapdoor key
TRP.ski to compute vi = f−1TRP.ski

(Vi) and then use randomness vi to run predicated Eligible, which in
Algorand simply consists to check if vi < T . If eligible, Pi computes a succinct non-interactive ZK
argument (e.g. [12, 13]) proving that she knows a pre-image of one of the Vi that makes her eligible.
Note that values V1, . . . , VN can be computed by everyone since they do not require any secret. In
fact they can be pre-computed in advance, and consumed as the protocol proceeds. Note also that
the statement of the zero knowledge proofs does not need to contain the list V1, . . . , VN but only their
accumulated representation, that is, the root of a Merkle Tree.

1.2 Related Work

Concurrently and independently to our work there have been two relevant proposals: a framework of
anonymous PoS proposed by Ganesh, Orlandi and Tschudi [8] (in Eurocrypt’19) and the “Ouroboros
Crypsinous” protocol proposed by Kerber, Kohlweiss, Kiayias and Zikas [5] (in IEEE S&P’19). We
will discuss both results and explain how we differ.

The work by Ganesh et al. [8] is the most closely related to ours. They introduce a clean framework
to capture and abstract the lottery aspect of proof-of-stake with an ideal functionality, that they call
Flottery. As discussed earlier, the main difference with our formulation is that their ideal lottery
functionality captures more than just lottery, since it also enforces broadcast of eligible messages,
and this modeling choice could present potential drawbacks. We also note that even though Flottery

abstracts the lottery from the claimed results, it is unclear how Flottery is/can be used as a black-box.
Concretely, when claiming that “Ourobors Praos instantiated with private lottery results in a private
proof-of-stake protocol” (See Corollary 1 of [8]), the informal proof does not actually use the ideal
lottery functionality Flottery, parameterized with the eligibility predicate used in Ouroboros Praos.
Rather it uses the specific (game-based) security properties of the specific implementations of the
anonymized version of the VRF used in Ouroboros Praos. This raises some confusion about whether
one should think that Ouroboros Praos (with Anonymized VRF) is a secure realization of Flottery or
whether Flottery can be used as a building block to realize a “private-proof-of-stake” protocol (though
no definition of “private-proof-of-stake” protocol is provided in [8]).

Finally, [8] originally implemented Flottery by employing the VRF used in Ouroboros Praos, which is
anonymized by simply adding a SNARK to prove that the VRF verifies correctly. Such implementation
required the verification algorithm to evaluate the random oracle, and thus suffered from the issue of
proving a property about the output of a random oracle (which we discussed above). An updated
version of [8] can be found in [14] which replaces the VRF of Ouroboros Praos with the one used in
Ouroboros Crypsinous [5] and avoids using the random oracle in the verification circuit used in the
SNARK. We instead give an implementation based on Algorand’s selection function. Similarly to us,
[8] guarantees anonymity only in presence of static adversaries. Note however that our construction
could actually provide adaptive security for correctness (not anonymity). We discuss such an extension
in Section 7.1.

Summing up, the key differences between our work and [8] is in the definition – our allows compos-
ability with more general protocols besides consensus– and in the instantiation – we use the selection
function of Algorand, while [8] instantiate it using Ouroboros’s VRF.

4

Ouroboros Crypsinous [5] does not focus on the general problem of anonymous selection in proof-
of-stake setting, rather it focuses on defining private proof-of-stake blockchains. They provide an
ideal “private ledger functionality” that aims to capture privacy of blocks and transactions. They
then show how to build a private blockchain for payments extending the Ouroboros protocol with a
confidentiality layer. Confidentiality is preserved in presence of “semi-adaptive” adversaries, that is,
adversary that can corrupt a party at any time, but cannot access the state of the corrupted party
immediately after corruption. Although their techniques are very interesting, they are tied to the
Ouroboros PoS designs and private blockchains. Our work instead does not aim at adding anonymity
to the Ouroboros blockchain specifically (though our technique could be used to hide the stakeholder
identity in the Ouroboros blockchain).

2 Preliminaries

We start by setting the notation to be used throughout the paper. By PPT we denote a probabilistic
polynomial-time algorithm. Let λ be the security parameter and ‖ denote concatenation. We denote
the uniform sampling of a value r from a set D as r ← D and r1, · · · , rn ← D indicates that
we sample from D a uniformly random subset of n elements. We use bold symbols for vectors of
elements. For a vector v, by v[i] we denote the ith entry of the vector. We say a function f is
negligible in λ if for every polynomial p there exists a constant c such that f(λ) < 1

p(λ) when λ > c.

Two ensembles X = {Xλ,z}λ∈N,z∈{0,1}∗ and Y = {Yλ,z}λ∈N,z∈{0,1}∗ of binary random variables are
said to be indistinguishable, X ≈ Y , if for all z it holds that |Pr[Xλ,z = 1]− Pr[Yλ,z = 1]| is negligible
in λ.

Let R be an efficiently computable binary relation. For pairs (stmt, w) ∈ R we call stmt the
statement and w the witness. Let L be the language consisting of statements in R.

Non-Interactive Zero Knowledge Proof (NIZK), We recall the definition of a non-interactive
zero knowledge proof system (adapted from [15] and [16]).

A non-interactive zero-knowledge proof system for a relation R is defined as a set of probabilistic
polynomial time algorithms NIZK = (NIZK.Setup,NIZK.Prove, NIZK.Verify). NIZK.Setup is a common
reference string generation algorithm that produces a common reference string crs of length Ω(λ). The
prover takes as input (crs, stmt, w) and by running NIZK.Prove produces a proof π. The verifier takes
as input (crs, stmt, π) and runs NIZK.Verify to verify the proof. The following properties need to be
satisfied:

• Completeness: The NIZK proof system is complete if an honest prover with a valid witness can
convince an honest verifier. For all adversaries A we have:

Pr[crs← NIZK.Setup(1λ); (stmt, w)← A(crs);

π ← NIZK.Prove(crs, stmt, w) :

NIZK.Verify(crs, stmt, π) = 1 ∧ (stmt, w) ∈ R] = 1

• Soundness: A NIZK proof system is sound if it is infeasible to convince an honest verifier when
the statement is false. For all polynomial size families {stmtλ} of statements stmtλ /∈ L and all
adversaries A we have:

Pr[crs←NIZK.Setup(1λ);π ← A(crs, stmtλ) :

NIZK.Verify(crs, stmtλ, π) = 1] ≤ negl(λ)

• Zero-Knowledge: A NIZK proof system is zero-knowledge if the proofs π do not reveal any
information about the witness. That is, if there exists a polynomial time simulator S = (S1,S2),
where S1 returns a simulated common reference string crs together with a simulation trapdoor

5

τ and an extraction key ek. The trapdoor τ enables S2 to simulate proofs without access to the
witness. For all non-uniform polynomial time adversaries A we have:

Pr[crs← NIZK.Setup(1λ) : ANIZK.Prove(crs,·,·)(crs) = 1]

≈ Pr[(crs, τ, ek)← S1(1λ) : AS(crs,τ,·,·)(crs) = 1]

where S(crs, τ, stmt, w) = S2(crs, τ, stmt) for (stmt, w) ∈ R and both oracles output failure if
(stmt, w) /∈ R. Notice that we define the simulator S1 as in [16], where S1 not only outputs a
simulated crs and a trapdoor τ , but also an extraction key ek.

We require the NIZK arguments to satisfy the following simulation extractability property as
defined in [16].

• Simulation Extractability : Simulation extractability is a strong notion which requires that even
after seeing many simulated proofs (even for false theorems), whenever the adversary generates
a new proof, a simulator is able to extract a witness. More formally, a NIZK proof system is
said to be simulation extractable if it satisfies computational zero-knowledge and additionally,
there exists a polynomial-time algorithm Extract, such that for any polynomial-time adversary
A, it holds that

Pr[(crs, τ, ek)← S1(1λ); (stmt, π)← AS2(crs,τ,·)(crs, ek);

w ← Extract(crs, ek, stmt, π) : stmt /∈ Q∧
∧ (stmt, w) /∈ L ∧ NIZK.Verify(crs, stmt, π) = 1] = negl(n)

where Q is the list of queries made by A.

Trapdoor Permutation. We adapt the definition of trapdoor permutation from Bellare and Yung
[17].

Definition 1 (Trapdoor Permutation). We say that (TRP.KeyGen, f, f−1) is a trapdoor permutation
if the following conditions hold:

• Generation: For all λ > 0, the output of TRP.KeyGen on input 1λ is a pair of λ-bit strings
TRP.pk,TRP.sk.

• Permutation: For all λ > 0 and (TRP.pk,TRP.sk) ∈ TRP.KeyGen(1λ), the maps fTRP.pk(·) and
f−1TRP.sk(·) are permutations of {0, 1}λ which are inverse of each other. That is f−1TRP.sk(fTRP.pk(x)) =
x and fTRP.pk(f

−1
TRP.sk(y)) = y for all x, y ∈ {0, 1}λ.

• Security: For all probabilistic polynomial-time (PPT) adversaries A, ∃ a negligible function
negl(·) such that

Pr[fTRP.pk(x) = y : (TRP.pk,TRP.sk)← TRP.KeyGen(1λ);

y ← {0, 1}λ;x← A(1λ,TRP.pk, y)] ≤ negl(λ)

3 Ideal Functionality for PoS Anonymous Selection

In this section we present a definition of our anonymous selection functionality FEligible
Anon-Selection in the

UC-framework of [18].

Assumptions. We first describe the assumptions of our ideal functionality.
Stake: We consider a setting where each party is associated with exactly one unit of stake. This ideal
functionality can be used to replace selection in lottery based protocols like [11] and [7] if, for [7],
we assume that each party is associated with one unit of stake. We take this approach to describe a

6

lottery functionality to pick winners with the same weight (=1). This simpler functionality will allow
to showcase how anonymity can be achieved in a simpler protocol, without trivializing the problem.
To keep the notation general we use stakei to denote the stake of party Pi. We also describe a
modification of our ideal functionality to capture the lottery of [7] in the multi-stake scenario (under
the assumption that majority of stake belongs to honest parties) where parties are selected with some
weight in Section 7.2 and Appendix C.
Registration: Before the execution of the functionalities, all parties register themselves along with
their stakes - (Pi, stakei) with the functionality. By n we denote the number of registered parties.
Similar to [8] we consider a static setting where new parties cannot register once the functionalities
are being executed.
Corruption model: We assume static corruption, i.e. the corrupted parties are fixed throughout
the entire execution. Note that we can achieve security against an adaptive adversary for correctness
but achieve only static security for anonymity.

Our proposed functionality. We describe our anonymous selection functionality FEligible
Anon-Selection in Fig-

ure 1. By tag we denote all public values corresponding to one execution of the protocol such as
round and step number, random seed for the current round etc. Each registered party checks if it is
“eligible” to speak for a tag tag by using the EligibilityCheck command which returns a bit b ∈ {0, 1}.
If the party is eligible to speak for tag, then b = 1, otherwise b = 0. We stress that we add stake as
an input for generality only. As mentioned above we assume that stakei = 1. If a party is eligible to
speak and wishes to send the message msg, she can later query the ideal functionality via the com-
mand (CreateProof, tag,msg) to obtain a proof π that she can use in any other protocol. Note that

the FEligible
Anon-Selection will provide such proof if the party was marked as Eligible for the tag. Any party

that receives such a pair (msg, π) for a tag, can verify that the proof is correct by simply querying

(Verify, π, tag,msg) to FEligible
Anon-Selection. Note that the verification does not require any information on

the identity of the sender of the proof, thus capturing the property of anonymity. Moreover, we note
that the ideal functionality only maintains a list of proofs and does not store the identity of the party
along with the proof in the list L.

7

The ideal functionality is parameterized by an Eligible predicate and maintains the following
elements: (1) A global set of registered parties P = ((P1, stake1), . . . , (Pn, staken)). (2) A
table T , which has one row per party and a column for each tag ∈ N given by parties when
checking eligibility. The table stores the eligibility information of each party in each tag.
(3) A list L, to store a proof π corresponding to a message msg in some tag.

– Upon receiving (EligibilityCheck, sid, tag) from a party Pi do the following :

1. If Pi ∈ P and T (Pi, tag) is undefined, sample r ∈ {0, 1}` run
Eligible(r, stakei, tag) to get b ∈ {0, 1}. Set T (Pi, tag) = b

2. Output (EligibilityCheck, T (Pi, tag)) to Pi

– Upon receiving (CreateProof, sid, tag,msg) from Pi

1. If T (Pi, tag) = 1, send (Prove, tag,msg) to A. Else, send (Declined, tag,msg) to
Pi.

2. Upon receiving (Done, ψ, tag,msg) from A. Set π ← ψ and record (π, tag,msg)
in L. Send (Proof, π, tag,msg) to Pi

– Upon receiving (Verify, sid, π, tag,msg) from some party P ′:

1. If (π, tag,msg) ∈ L output (Verified, sid, (π, tag,msg), 1) to P ′.

2. If (π, tag,msg) /∈ L, send (Verify, sid, (π, tag,msg)) to A and wait for a witness
w from the adversary A. Check if w is valid as follows:

– Parse w = (Pi, tag,msg) and check that T (Pi, tag) = 1

– If yes, store (π, tag,msg) in the list L and send (Verified, sid, (π, tag,msg), 1)
to P ′.

If either of these checks are false output (Verified, sid, (π, tag,msg), 0) to P ′.

Figure 1: Anonymous selection functionality

Functionality FEligible
Anon-Selection

Our implementation additionally requires the standard random oracle functionality FRO which is
defined in Figure 2.

8

The functionality is parameterized by the security parameter λ. We write T [x] = ⊥ to de-
note the fact that no pair of the form (x, ·) is in T .

• Upon receiving (EVAL, x) from a party P do:

1. If T [x] = ⊥, sample a value y uniformly at random from {0, 1}λ, set T [x]← y
and add (x, T [x]) to T .

2. Return (EVAL, x, T [x]) to the requester.

Figure 2: The random oracle functionality

Functionality FRO

4 Realization of FEligible
Anon-Selection

In this section we propose a protocol ΠEligible
Anon-Selection to realize the ideal functionality FEligible

Anon-Selection from
Section 3. Our realization is inspired by the selection algorithm of Algorand [7], which is run by
every party to check if they are selected into a committee. To ease presentation we first describe
how the selection algorithm of Algorand works in Section 4.1 before we present our implementation
ΠEligible

Anon-Selection in Section 4.2.

4.1 Selection Function in Algorand

In Figure 3 we describe the selection function used in Algorand (that we recast using our notation).
Specifically, we consider the function described in the so called “theoretical paper” [7] where it is
assumed that each public key is associated with one unit of stake. This implies that during the
selection process each party is either selected to participate in the next round of the Algorand protocol
or not1. This is a quite natural property of lottery protocols where each party holds one or more tickets
(public keys for the case of Algorand) and some of them are selected while others aren’t. Though
our main construction is in this single-stake setting we give an intuition to extend the protocol to the
multistake setting in Section 7.2.

The Algorand selection process works as follows. Parties run the Initialization protocol to generate
their keys as soon as they join the network and publish their public keys: a master public key and
a signature verification key, as (MPK,SIG.pki). Using the master public key, each party generates a
large number of ephemeral keys (U = 106 ×m according to [7], where m is the expected number of
steps of each execution of the protocol).

Parties run the selection function at different stages of the protocol to check if they are selected
to speak in a specific stage. In Algorand a stage is identified by step number, round number and a
random seed . We will use the notation tag to capture the item for which the party wishes to test
if she is selected. To check if a party can speak for an item tag the party first computes a value
vi = H(σi) where σi is the signature computed over tag using the signing key. The random value vi
is then used as input to the function Eligible described in Figure 4.

Note that the Eligible function takes as input stakei as well, but is not explicitly used since in our
setting we assume that only one unit of stake is associated with each public key.

Parties who are eligible to speak can obtain a publicly verifiable proof via the algorithm CreateProof,
which takes in input the message they want to send. Note that CreateProof also includes an ephemeral

1Note that in a later paper which describes the implementation of the Algorand system [19], it is assumed that each
public key can have variable amounts of stake and during the selection process each selected party receives a weight
that defines the power of the party in the later steps.

9

signature on the message to ensure adaptive security, that is if the party is corrupted later, it cannot
create a valid signature since the ephemeral key is deleted immediately.

To verify, parties use procedure Verify, which will check the validity of the signatures using the
public key and check that the hash satisfies the properties required by the function Eligible.

A party (Pi, stakei) runs the selection algorithm to check if it is eligible to send messages in
a following step of Algorand’s protocol. Each party maintains a Table that stores the tag

the party is eligible to speak in.

Initialization(1λ)

• Generate signature key pair (SIG.vki,SIG.ski)← SIG.KeyGen(1λ).

• Generate a master key pair (MPK,MSK)← KeyGen(1λ).

• Generate ephemeral signature key pairs for |U | number of tag,
{ESIG.skij,ESIG.vkij}j∈1...|U |.

• Publish (MPK, {ESIG.vkij},SIG.vki)

CheckEligibility(tag)

• Compute sorthashi = H(SIGski(tag))

• Run bi ← Eligible(sorthashi, stakei, tag).

• Store Table(tag) = bi.

CreateProof(tag,msg)

• If Table(tag) = 0, output ⊥.

• If Table(tag) = 1, output (ESIGskitag(msg),SIGski(tag), sorthashi, tag)

Verify(π, tag,msg)

• Check that SIGski(tag) is a valid signature.

• Check that H(SIGski(tag)) = sorthash.

• Check that Eligible(sorthashi, 1, tag) = 1.

• Output 1, if all checks pass.

Figure 3: Algorand’s selection algorithm

Algorand’s selection algorithm

10

Global variables for the protocol are totalStake and τ . totalStake defines the total stake of
the parties in the network and τ is the expected number of parties to be selected (this de-
pends on the tag).

1 : p← τ

totalStake

2 : bi ← 0

3 : if
vi

2len(vi)
< p then

4 : bi ← 1

5 : return bi

Figure 4: The eligibility predicate

Function Eligible(vi, stakei, tag)

4.2 Our Anonymized Selection Protocol

We now describe the protocol that realizes the FEligible
Anon-Selection functionality using the selection function

(Eligible) of Algorand. Following [7], we assume that each public key is associated with one unit of
stake. Note that this does not trivialize the problem, since it is still necessary to hide the identity
of the user eligible to speak. Thus in our instantiation and all further descriptions, assume that
stakei = 1.

We assume there is a mechanism in place to register the public keys of the parties. This should
ensure that the party does not create more public keys than the stake it owns. This bootstrapping
ensures that the list of public keys is fixed before the execution of the protocol and all parties can see
this list of public keys.

The cryptographic primitives we require for our construction are:

1. Non-interactive zero knowledge proofs that allow the operations NIZK.Setup, NIZK.Prove and
NIZK.Verify.

2. A trapdoor permutation scheme that allows parties to evaluate a trapdoor permutation on an
input x using their public key TRP.pk by evaluating y = fTRP.pk(x). The parties can compute
the inverse of y using the corresponding secret key TRP.sk by evaluating x = f−1TRP.sk(y).

3. A signature scheme that allows parties to sign a message using their secret key (SIG.sk) - σ =
SIG.sign(SIG.sk,m) and verification is done by SIG.Ver(SIG.pk, σ,m)

4. A commitment scheme that allows parties to commit to a message x, by computing C =
Com(x, s) and a pseudorandom function F , that parties can evaluate using their secret key
PRF.sk by computing Cprf = F (PRF.sk, x)

Described below are the different steps of the protocol:

Setup(1λ) : The public parameters pp contain the common reference string of NIZK, crs← NIZK.Setup(1λ)
and a public list L initialized to ∅.
Initialization(Pi) (Key Generation) : Pi runs the key generation algorithm, KeyGen, as soon as he
registers with the network. KeyGen takes as input the public parameters pp. For each unit of
stake that Pi owns, it does the following : Run KeyGen to output a PRF secret key PRF.ski ←
PRF.KeyGen(1λ) , compute a commitment to the PRF secret key Cprfi = Com(PRF.ski; sprf), a
trapdoor permutation key pair (TRP.pki,TRP.ski) ← TRP.KeyGen(1λ) and a signature key pair

(SIG.ski,SIG.vki) ← SIG.KeyGen. Pi then publishes pki = (TRP.pki,SIG.vki, C
prf
i) and stores the

11

secret key ski = (PRF.ski,TRP.ski, sprf ,SIG.ski). The pki is published to a public list L. A Merkle
tree, MTree(pk) with root rtpk is created with this list

L = {(Cprfi ,SIG.vk1,TRP.pk1), · · · , (Cprfn ,SIG.vkn,TRP.pkn)}

and can be viewed by all parties in the world. The initialization protocol is described in Figure 6.

The algorithm takes as input a tag and does the following:

• For all i ∈ [n]:

1. Query (Eval, tag‖i) to the ideal functionality FRO.

2. Receive message (Eval, tag‖i, Vi) from FRO.

• Output a vector ~V where each element ~V [i] = Vi.

Figure 5: ProcessRO algorithm

Protocol ProcessRO(tag)

1 : Generate (TRP.pki,TRP.ski)← TRP.KeyGen(1λ)

2 : Generate (PRF.ski)← PRF.KeyGen(1λ)

3 : Generate (SIG.pki, SIG.ski)← SIG.KeyGen(1λ)

4 : Sample s← {0, 1}λ and compute

Cprfi := Com(s,PRF.ski)

The protocol publishes the variables : pki := (TRP.pki,SIG.vki, C
prf
i) as leaves of MTree(pk)

and returns ski = (TRP.ski,SIG.ski, (s,PRF.ski)) to Pi.

Figure 6: Initialization protocol for ΠEligible
Anon-Selection

Protocol Initialization(Pi, sid)

EligibilityCheck(Pi, tag) : For each tag Pi runs the ProcessRO algorithm (see Figure 5) to compute

a vector ~Vtag = (~Vtag[1], ~Vtag[2], · · · , ~Vtag[n]), where n is the total number of keys (also equal to

totalStake, since one key is generated for one unit of stake) in the system. The ~Vtag is stored as a

Merkle tree, MTree(~Vtag) with root rt~Vtag
. The idea is that for each key, Pi owns in MTree(pk), there is

a corresponding ~Vtag[i] in the same position in MTree(~Vtag). This vector ~Vtag is computed for each tag

and serves as a trapdoor permutation whose inverse (vi) is computed by the party. Only party Pi can
compute the inverse of this permutation since only Pi knows the trapdoor secret key. To ensure that
the party uses the correct secret key, we require that the position of ~Vtag[i] and the tuple containing
TRP.pki are the same in the corresponding merkle trees.

Using this ~Vtag[i] Pi computes

vi = f−1TRP.ski
(~Vtag[i]). (1)

Pi then evaluates the Eligible function as shown in Figure 4 to check if the party can speak for item
tag. The eligibility check is shown in Figure 7.

12

1 : Call processRO(tag) and receive ~Vtag

2 : Compute vi = f−1
TRP.ski

(~Vtag[i])

3 : Call Eligible(vi, stakei, tag) and receive btag

4 : Output (btag, vi, ~Vtag).

Figure 7: Eligibility check for ΠEligible
Anon-Selection

Protocol EligibilityCheck(Pi, sid, tag)

CreateProof(Pi, tag,msgi, vi, ~Vtag) : If Pi is eligible to speak for item tag it commits to its winning
ticket vi. The commitment is implemented using a pseudorandom function F and is constructed as
follows : Cvi = F (PRF.ski, vi‖tag).

We are required to hide the value vi so that identity of the party is not revealed. (One may simply
run fTRP.pki(vi) for all identities and identify who sent the message).

At the same time we require the commitment to be deterministic, else a malicious party may speak
multiple times in the same tag, with the same vi by just using a different randomness each time. To
ensure that a malicious party cannot send multiple (potentially conflicting) messages, we require the
commitment to be deterministic and hence use a PRF.

Pi then constructs a NIZK that proves the following statements:

• “I know vi, such that ~Vtag[i] = fTRP.pki(vi)”

• “I am eligible to speak for tag according to randomness vi.”

• “Cvi is correctly computed as F (PRF.ski, vi‖tag)”

• “I know the path from pki which is the leaf of a Merkle tree MTree(pk), that contains commitment
of my PRF secret key, trapdoor public key and signature verification key, to the root of the
Merkle tree.”

• “I know the path from ~Vtag[i], which is the leaf of a Merkle tree MTree(~Vtag) that contains all

the elements in vector ~Vtag, to the root of the Merkle tree. ”

More formally, the NIZK statement and proof for the language L characterized by the relation R is
computed as follows:

π ← NIZK.Prove(crs, x, w) (2)

• statement x = (rt~Vtag
, rtpk, tag,msg, C

v
i ,
~Vtag).

• witness w = (i,PRF.ski, vi, σ, sprf , pki, pathpk, path~Vtag
),

where pki = (TRP.pki,Sig.vki, Cprf).

• R(x,w) = 1 if and only if:

1. Cvi = F (PRF.ski, vi‖tag)

2. Cprfi = Com(PRF.ski; sprf)

3. Vi = fTRP.pki(vi)

4. Vi = ~Vtag[i]

5. Eligible(vi, stakei, tag) = 1

6. σ = SIG.Sign(SIG.ski,msg‖tag)

13

7. SIG.Ver(SIG.vki, σ,msg‖tag) = 1

8. validPathh(pathpk, rtpk, pki) = 1

9. validPathh(path~Vtag
, rt~Vtag

, ~Vtag[i]) = 1

The protocol for creating proof is shown in Figure 8.

1 : Compute Cvi = F (PRF.ski, vi‖tag)

2 : Let rt~Vtag be the root of MTree(~Vtag)

3 : Let path~Vtag[i] be the path to ~Vtag[i] in MTree(~Vtag)

4 : Let rtpk be the root of MTree(pk)

5 : Let pathpki be the path to pki in MTree(pk).

6 : Compute σi = SIG.Sign(SIG.ski,msgi‖tag)

7 : Let x = (rt~Vtag , rtpk, tag,msgi, C
v
i)

8 : Let w = (i,PRF.ski, vi, pki, pathpki , path~Vtag[i], σi)

9 : Compute πNIZK := NIZK.Prove(crs, x, w)

as shown in Equation 2

10 : Set πi := (rt~Vtag , rtpk, C
v
i , πNIZK)

11 : Output πi

Figure 8: Creating a proof in ΠEligible
Anon-Selection

Protocol CreateProof(Pi, sid,msgi, tag, vi, ~Vtag)

Verify(tag,msg, π) : Party Pi on receiving a message from another party first runs ProcessRO algo-

rithm to compute ~Vtag. The zero knowledge proof π is parsed as (rt~V , rtpk, C, πNIZK). Pi then sets the
statement x to be (rt~Vtag

, rtpk, tag, msg, C) and checks if NIZK.Verify(crs, x, πNIZK) = 1. If it checks

out then Pi accepts the message, else it rejects the message. The protocol for verification of a message
is shown in Figure 9.

1 : Call ProcessRO(tag) and receive ~Vtag

2 : Parse π = (rt~Vtag , rtpk, C, πNIZK)

3 : Set x = (rt~Vtag , rtpk, C, tag,msg)

4 : Check that NIZK.Verify(crs, x, πNIZK)
?
= 1

5 : If yes, output 1; else output 0

Figure 9: Verifying a proof in ΠEligible
Anon-Selection

Protocol Verify(sid, tag,msg, π)

The overall protocol is described below in Figure 10.

14

A party Pi executes the protocol ΠEligible
Anon-Selection in the following way:

1 : Call Initialization(Pi, sid) to get (pki, ski)

2 : To publish a message msgi in tag :

3 : Call EligibilityCheck(Pi, sid, tag) to get

btag, ~Vtag and vi.

4 : if btag = 1 then

call CreateProof(Pi, sid,msgi, tag, vi, ~Vtag)

to get πi

5 : Output (msgi, tag, πi)

6 : To verify a message(msg, tag, π) in tag :

7 : Call Verify(sid, tag,msg, π)

and output the bit it returns.

Figure 10: Anonymous Selection protocol - ΠEligible
Anon-Selection

Protocol ΠEligible
Anon-Selection(sid)

5 Proof(Sketch)

Theorem 1. The protocol πEligible
Anon-Selection (Fig. 10) UC-realizes the FEligible

Anon-Selection functionality (Fig. 1)
in the FRO-hybrid model, assuming anonymous multicast communications, secure pseudorandom func-
tions, secure simulation-sound extractable NIZKs, trapdoor permutations and unforgeable signatures,
in the presence of a PPT adversary.

Overview of the Simulator. In order to prove UC-security we need to show that there exists a PPT
simulator interacting with FAnon-Selection that generates a transcript that is indistinguishable from the
transcript generated by the real world adversary running the protocol πEligible

Anon-Selection.
We first give a high-level description of the simulator (described in Figure 12 and Figure 13)

- SAnon-Selection. Our simulator leverages the programmability of the random oracle FRO and the
extractability and simulatability of the underlying NIZK. Hence, the simulator SAnon-Selection will make
use of the NIZK simulators (S1,S2) to correctly setup the CRS in simulation mode and to simulate
NIZK proofs and the algorithm Extract to extract the witness from proofs received from the adversary.
SAnon-Selection first sets up a crs using S1. Then, for each honest party Pi present in the system

(recall that we are in the static setting, so on the onset the simulator knows the set of honest parties),
the simulator generates their public key: (TRP.pk,SIG.vk, Cprf). Differently from a honest key, Cprf

is a commitment to 0 instead of the PRF secret key.
When the simulator receives (Prove,msg,tag) from the ideal functionality FEligible

Anon-Selection, it must
provide a proof for the pair (msg, tag), even without knowing the identity of the party requiring this
proof. The simulator will use the underlying zero-knowledge simulator S2 to compute the proof π and
return it to the ideal functionality, as well as storing π in a list L of proofs computed so far.

The simulator detects whether a malicious party is attempting to learn if she is eligible to speak,
by monitoring the queries to the random oracle FRO. When the query has the form (tag, i) for a index
i such that Pi is corrupted, the simulator will first query FAnon-Selection with command EligibilityCheck
to check if Pi is eligible to speak for tag. If so, the simulator will program the random oracle with a
value that makes Pi pass the selection function.

Finally, when the adversary sends Verify for a pair (msg, π), the simulator SAnon-Selection first checks
if this proof is in the list L. If so, answers Verified to the party. Otherwise, the simulator checks if π

15

Statement Primitive used No. of constraints
Check PRF SHA256Compress 27536

Check Commitment Pedersen (Sapling) 2542
Check trapdoor perm RSA exponentiation 3252

Check eligibility Range Proof 256
Check sign EDDSA 7000

Check path (×2) Merkle tree path 44160
Check index Equality Proof 32

Table 1: Number of constraints per statement

is valid, by running NIZK.Verify. If the proof is valid, the simulator attempts to extract the witness
using Extract. If the extraction fails, the simulator will abort with a message ExtractionFailure. Else,
if the extracted witness contains key material from an honest party, then the simulator abort with
a message SoundnessFailure. Else, the simulator sends CreateProof to FAnon-Selection on input msg. If
FAnon-Selection replies a message Declined, then abort the protocol.
SAnon-Selection also simulates the random oracle, where for any query (i, tag) where Pi belongs to

the set of honest party, the simulator replies with a uniformly sampled random value.
We prove indistinguishability of the simulation through a series of hybrids. The crux of the proof

is to show that the probability of the simulator aborting is negligible. In the following we summarize
the failure events and give an intuition on why they happen with negligible probability.

• ROFailure - The simulator aborts with this message, if the output of a FRO query from a malicious
party is already stored in the table for some other previously queried value. We show that this
happens with negligible probability in Lemma 1.

• ExtractionFailure - The simulator aborts with this message if it is unable to extract a witness
from zero knowledge proof, using its simulated crs. This occurs with negligible probability since
we assume simulation-extractable zero knowledge proofs.

• SoundnessFailure - The simulator aborts with this message if the extracted witness corresponds
to that of an honest party, and the NIZK proof was not in the list of proofs that is maintained
by the simulator. This would imply that the real-world adversary spoofed a valid witness for an
honest party, which implies that the real-world adversary has either broken the one-wayness of
the trapdoor permutation, unforgeability of the signature scheme, or the collision resistance of
the hash function used in the Merkle tree.

• GetProofFailure - The simulator aborts with this message if the ideal functionality FAnon-Selection
replies with message Declined for a query that corresponds to a party that is eligible. This occurs
with negligible probability if the FRO was programmed correctly and is shown in Lemma 5

Finally, we stress that in our proof we will assume that all messages are exchanged via a secure
anonymous multicast channel. For the full proof please refer to Appendix ??.

6 Performance Estimates

In this section we give estimates for the number of R1CS constraints to prove each of the statements
in our zero knowledge proofs of Equation 2 in section 4.2. Assuming that we implement our NIZK
statements with SNARKs [12, 13] we give an overview of the primitives we use and the number of
constraints to prove correct evaluation of each of them. We assume a SHA256 compression function
for the PRF construction. To check that this is evaluated correctly, one can create a SNARK with
27,904 constraint. We use the windowed Pedersen commitment of Sapling [20] for our commitment

16

scheme which uses a Pedersen hash function. The number of constraints for the Pedersen hash function
is 984 constraints making the Pedersen commitment scheme to be 1740 constraints. The trapdoor
permutation check is done by evaluating a simple RSA function, which can be implemented using a
variable base affine-ctEdwards scalar multiplication [20] and this takes a total of 3252 constraints.
To verify signatures we use EdDSA signature scheme that can be implemented using approx 7000
constraints. To check the path of the Merkle tree each layer requires 1380 constraints and assuming
a total of 32 layers- we have 44,160 constraints for each tree. Finally to check that the same i is
used for pki and ~V [i], one would have to check that the paths on both merkle trees are the same.
Assuming we have 32 layers, we would require 32 constraints to check that each index is the same.
The ZK-SNARKs used in our implementations will require approximately 129K R1CS constraints.

7 Extensions for adaptivity and the multi-stake setting

7.1 Extending to correctness in Presence of Adaptive Adversaries

Our protocol in section 4.2 assumes static corruption of parties. In the following we give an intuition as
to how we can achieve adaptive security for the correctness of the protocol, though not for anonymity
(since we do not use adaptive secure NIZKs).

Ephemeral Keys of Algorand [7] - Algorand uses ephemeral keys and secure erasures to achieve
adaptive security for the safety property. Parties sign a message in a step of a round with an ephemeral
key and then erase this key as soon as they send their message.

A party Pi generates a master public key and master secret key (MPKi,MSKi) at initialization.
Using the MSK, Pi generates ephemeral keys of the form skr,si . Here r ∈ [r′ + 1, r′ + 106] for some
r′ and s ∈ [1,m] where m is the upper bound in number of steps in a round. Once the keys are
generated, Pi erases MSK. Pi also erases skr,si at the end of the step. To verify a message signed
using skr,si a party needs to know the MPK and r, s.

Adaptive secure protocol idea : To achieve adaptive security in our protocol we assume
erasures and ephemeral signatures as in Algorand. We describe the modifications to the protocol
below:

Initialization : A party Pi generates a signature key pair (SIG.mski,SIG.mvki)← SIG.KeyGen. Gen-
erate a fixed number (say t) of ephemeral secret keys {eskji}tj=1 such that for any j, Verify(SIG.mvki,Sig(eskji ,m)) =
1. Pi erases SIG.mski after computing these ephemeral keys. After t number of tag has elapsed, the
party generates new signature keys. We assume each key esktag is linked to an tag as in Algorand
where - (mvk, tag) is used to verify a signature signed using esktag.

Create Proof : The party Pi now has to prove an additional statement which says - “I know a
master public key that can verify a signature signed by an ephemeral key for a particular tag” More
formally

Statement : x = (rtpk, tag)
Witness : w = (esktagi , pki = (·,SIG.mvki, ·), pathpk)

Proof : Verify(SIG.mvki,Sig(esktagi ,m‖tag)) = 1 and validPathh(pathpk, rtpk, pki) = 1
Remark. We note that in order to achieve adaptive security, we need to make new assumptions and

additionally pay higher computational costs. In terms of efficiency, each party now has to maintain
a large number of ephemeral keys. They need to update these keys after a certain number of tag.
In terms of assumptions we need to assume secure erasures and that all parties erase their keys after
they use them in a specific tag. We do not have these issues if we assumed a weaker static adversary,
but are necessary for an adaptive adversary.

Since we only claim adaptive security for the correctness of the protocol, the simulator SAnon-Selection
can simulate the protocol. The only change would be that the simulator now sets up a master
verification key in the pk for all parties.

17

7.2 Extending to multi-stake setting

Our protocol in section 4.2 assumes that each pki is associated with exactly one unit of stake. In the
following we give an intuition as to how we can associate multiple units of stake to each public key.
The key idea is that if a party has multiple stake then the party is selected with a weight denoted
wti, similar to the sortition algorithm shown in [19] (See Fig 11). The challenge we observe here is
that we cannot reveal wti, since wti is proportional to the stake of the party. Therefore for a party
Pi to publish a message it sends wti unlinkable proofs for the same message msgi. We refer to each
unit of wt as an index. We must ensure that the party Pi does not send more than wti messages nor
does it send different messages with different proofs for the same index, else a malicious party could
send more messages than wti.

Multi-stake protocol idea : We describe the modifications required of the protocol ΠEligible
Anon-Selection

described above :
Initialization : We assume that parties create commitments to their stake, cmi = Com(vi) and

publish this commitment to create a merkle tree of coin commitments (MTree(cm) with root rtcm).
Eigibility Check : The function Eligible now returns wttagi instead of btag
Create Proof : We first modify the “deterministic commitment” - Cvi as Cvi,index = F (PRF.ski, ‖vi‖tag‖index).

The party evaluates wti number of Cvi,index (basically for each index ∈ [1,wti]. This ensures that a
party can create exactly one proof for one index.

Pi now proves the following statements :

• “I know vi, such that ~Vtag[i] = fTRP.pki(vi)”

• “I know the path from cmi which is the leaf of a Merkle tree MTree(cm), that contains commit-
ment of my stakei to the root of the Merkle tree.”

• “I am eligible to speak for tag according to randomness vi and stake stakei with weight wti.”

• “Cvi,index is correctly computed as F (PRF.ski, vi‖tag‖index) and index ∈ [1,wti]”

• “I know the path from pki which is the leaf of a Merkle tree MTree(pk), that contains commitment
of my PRF secret key, trapdoor public key and signature verification key, to the root of the
Merkle tree.”

• “I know the path from ~Vtag[i], which is the leaf of a Merkle tree MTree(~Vtag) that contains all

the elements in vector ~Vtag, to the root of the Merkle tree. ”

More formally, the NIZK statement and proof for the language L characterized by the relation R is
computed as follows (we denote in red the differences in the statements we prove for the single stake
setting):

π ← NIZK.Prove(crs, x, w) (3)

• statement x = (rt~Vtag
, rtpk, rtcm, tag,msg, C

v
i,index,

~Vtag)

• witness w = (i,wti, stakei, index,PRF.ski, vi, σ, sprf , pki, pathpk, path~Vtag
, pathcm, cmi),

where pki = (TRP.pki,Sig.vki, Cprf).

• R(x,w) = 1 if and only if:

1. Cvi,index = F (PRF.ski, vi‖tag‖index)

2. index ∈ [1,wti]

3. Cprfi = Com(PRF.ski; sprf)

4. cmi = Com(stakei)

5. Vi = fTRP.pki(vi)

18

6. Vi = ~Vtag[i]

7. Eligible(vi, stakei, tag) = wti

8. σ = SIG.Sign(SIG.ski,msg‖tag)

9. SIG.Ver(SIG.vki, σ,msg‖tag) = 1

10. validPathh(pathpk, rtpk, pki) = 1

11. validPathh(path~Vtag
, rt~Vtag

, ~Vtag[i]) = 1

12. validPathh(pathcm, rtcm, cmi) = 1

Global variables for the protocol are totalStake and τ . totalStake defines the total stake of
the parties in the network and τ is the expected number of parties to be selected (this de-

pends on the tag). Here B(k; stake, p) =
(
stake
k

)
pk(1 − p)stake−k and

∑stake
k=0 B(k; stake, p) = 1

as in [19]

p← τ

totalStake

wti ← 0

while
vi

2len(vi)
/∈ [

wti∑
k=0

B(k; stakei, p),

wti+1∑
k=0

B(k; stakei, p))

wti = wti + 1

return wti

Figure 11: The eligibility function for multi stake

Function Eligible(vi, stakei, tag)

Remarks. Note that this protocol does not realize the ideal functionality defined in Figure 1,
instead it realizes a modified functionality for multi-stake presented in Appendix C. Note that for
multiple stake we assume that we have commitments to stake as in Zerocash [9]. For this work we do
not consider updates to stake. We also note that we will need an additional range proof for proving
index is in the correct range (256 constraints) and that there is a valid path to the commitment to
stake (22080 constraints).

The simulator SAnon-Selection will be modified in the following way to simulate the multi-stake
protocol. In initialization create a cmi = Com(0λ; r) for each honest party Pi and publish it. Create a
merkle tree MTree(cm) with root rtcm. The statement of the proofs created in response to Prove will
now include rtcm. For Verify, when the simulator extracts the witness it now includes stakei, wti, pathcm

and cmi. SAnon-Selection now sends to FAnon-Selection a message (CreateProof, sid, tag,msg) at most wti
times. If it receives (Declined, sid, tag,msg) for any of these queries, output “GetProofFailure”. In
the simulation of FRO the simulator now receives wti when it sends (EligibilityCheck, sid, tag) to the
FAnon-Selection. The simulator then finds an r such that Eligible(r, stakei, tag) = wti (pick an r in the

interval [
∑wti
k=0B(k; stakei, p),

∑wti+1
k=0 B(k; stakei, p)))

References

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” no. 2012, p. 28, 2008.

[2] S. Dziembowski, S. Faust, V. Kolmogorov, and K. Pietrzak, “Proofs of space,” in Annual Cryp-
tology Conference, pp. 585–605, Springer, 2015.

19

[3] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A provably secure proof-of-stake
blockchain protocol,” in CRYPTO, pp. 357–388, 2017.

[4] “Algorand blockchain.” https://www.algorand.com.

[5] T. Kerber, A. Kiayias, M. Kohlweiss, and V. Zikas, “Ouroboros crypsinous: Privacy-preserving
proof-of-stake,” in 2019 2019 IEEE Symposium on Security and Privacy (SP), (Los Alamitos,
CA, USA), pp. 984–1001, IEEE Computer Society, may 2019.

[6] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch, “Verifiable delay functions,” in Annual Interna-
tional Cryptology Conference, pp. 757–788, Springer, 2018.

[7] J. Chen and S. Micali, “Algorand: A secure and efficient distributed ledger,” Theoretical Com-
puter Science, vol. 777, pp. 155–183, 2019.

[8] C. Ganesh, C. Orlandi, and D. Tschudi, “Proof-of-stake protocols for privacy-aware blockchains,”
in Advances in Cryptology – EUROCRYPT 2019, vol. 11476 of Advances in Cryptology – EU-
ROCRYPT 2019, pp. 690–719, Springer, 2019.

[9] E. Ben Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza, “Zerocash:
Decentralized anonymous payments from Bitcoin,” in IEEE S&P, 2014.

[10] P. Fauzi, S. Meiklejohn, R. Mercer, and C. Orlandi, “Quisquis: A new design for anonymous
cryptocurrencies.” Cryptology ePrint Archive, Report 2018/990, 2018. https://eprint.iacr.

org/2018/990.

[11] B. David, P. Gaži, A. Kiayias, and A. Russell, “Ouroboros praos: An adaptively-secure, semi-
synchronous proof-of-stake blockchain,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Springer, 2018.

[12] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct non-interactive zero knowledge
for a von neumann architecture,” in 23rd {USENIX} Security Symposium ({USENIX} Security
14), pp. 781–796, 2014.

[13] J. Groth, “On the size of pairing-based non-interactive arguments,” in Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pp. 305–326, Springer,
2016.

[14] C. Ganesh, C. Orlandi, and D. Tschudi, “Proof-of-stake protocols for privacy-aware blockchains.”
Cryptology ePrint Archive, Report 2018/1105, 2018. https://eprint.iacr.org/2018/1105.

[15] J. Groth, R. Ostrovsky, and A. Sahai, “New techniques for noninteractive zero-knowledge,” Jour-
nal of the ACM (JACM), vol. 59, no. 3, p. 11, 2012.

[16] A. Kosba, Z. Zhao, A. Miller, Y. Qian, H. Chan, C. Papamanthou, R. Pass, s. abhi, and E. Shi,
“Coco: A framework for building composable zero-knowledge proofs.” Cryptology ePrint Archive,
2015.

[17] M. Bellare and M. Yung, “Certifying permutations: Noninteractive zero-knowledge based on any
trapdoor permutation,” Journal of Cryptology, vol. 9, no. 3, pp. 149–166, 1996.

[18] R. Canetti, “Universally composable security: A new paradigm for cryptographic protocols,”
in Proceedings 2001 IEEE International Conference on Cluster Computing, pp. 136–145, IEEE,
2001.

[19] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand: Scaling byzantine
agreements for cryptocurrencies,” in ACM-OSP, 2017.

20

https://www.algorand.com
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=695658
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=695658
https://eprint.iacr.org/2018/990
https://eprint.iacr.org/2018/990
https://eprint.iacr.org/2018/1105

[20] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox, “Zcash protocol specifica-
tion: Version 2019.0.9 [overwinter+ sapling],” tech. rep., Tech. rep. available at
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf, 2019.

[21] P. MacKenzie and K. Yang, “On simulation-sound trapdoor commitments,” in TCC, Springer,
2004.

[22] O. Goldreich, S. Goldwasser, and S. Micali, “How to construct random functions,” in SFCS,
pp. 464–479, IEEE, 1984.

21

A Preliminaries (Continued)

Here we provide some standard definitions of cryptographic primitives.

Commitment Schemes. A commitment scheme allows a party to commit to a chosen value while
keeping it hidden to others and the party cannot change his mind to reveal another value after he
has committed to it. We provide a formal definition of commitments below (borrowing some notation
from [21]).

Definition 2 (Commitment Scheme). CS = (Com,Ver) is a commitment scheme if Com and Ver are
probabilistic polynomial-time algorithms such that the following properties are satisfied:

• Completeness: For all messages m ∈ {0, 1}`(λ) and randomness r ← {0, 1}λ,

Pr[c← Com(m; r) : Ver(c,m, r) = 1] = 1

• Perfect Binding: For all malicious senders A, and all m0,m1 ∈ {0, 1}`(λ):

Pr[(c,m0,m1, r0, r1)← A(1λ) :

Ver(m0, c, r0) = Ver(m1, c, r1)] = 0

• Computational Hiding: For all PPT malicious receivers A, a pair of equal-length messages
m0,m1 ∈ {0, 1}` and randomness r ← {0, 1}λ, there exists a negligible function negl(·) such that

|Pr[c← Com(m0; r) : A(c,m0, r) = 1]

− Pr[c← Com(m1; r) : A(c,m1, r) = 1]|
≤ negl(λ)

Pseudorandom Functions.

Definition 3 (Pseudorandom Functions [22]). A family F ={PRFK : {0, 1}n(λ) → {0, 1}m(λ), K ∈
K} of efficiently-computable functions is pseudorandom if for every PPT adversary A there exists a
negligible function negl(·) such that∣∣∣∣ Pr

K←K
[APRFK(·)(1λ) = 1]− Pr

R←U
[AR(·)(1λ) = 1]

∣∣∣∣ ≤ negl(λ)

for all sufficiently large λ ∈ N, where U is the set of all functions from {0, 1}n(λ) → {0, 1}m(λ).

Digital Signatures. A digital signature scheme Sig consists of three PPT algorithms (Sig.KeyGen ,
Sig.Sign , Sig.Ver) such that:

• Key Generation Algorithm Sig.KeyGen takes as input a security parameter λ in unary and
outputs a key pair (Sig.vk,Sig.sk) (called verification key and secret key respectively).

• Signing Algorithm Sig.Sign takes as input a secret key Sig.sk and a message m. It outputs a
signature σ. We write this as σ ← Sig.Sign(Sig.sk,m).

• Verification Algorithm Sig.Ver takes as input a verification key Sig.vk, a message m, and a
signature σ. It outputs a bit b with b = 1 indicating valid and b = 0 meaning invalid. We write
this as b = Sig.Ver(Sig.vk,m, σ).

We require the digital signature scheme Sig satisfying the following properties:

22

• Correctness: Except with negligible probability over the key pair (Sig.vk,Sig.sk) generated by
Sig.KeyGen(1λ), it holds that
Sig.Ver(Sig.vk,Sig.Sign(Sig.sk,m)) = 1 for every valid message m.

• Existential Unforgeability under Chosen Message Attack : A digital signature scheme is existen-
tially unforgeable under chosen message attack if an adversary should not be able to output a
forgery (i.e., a message m along with a valid signature σ) even if it obtains signatures on many
other messages of its choice. More formally, for all probabilistic polynomial-time adversaries A,
there is a negligible function negl(·) such that

Pr[(Sig.vk,Sig.sk)

← Sig.KeyGen(1λ),

(m,σ)← ASig.Sign(Sig.sk,·)(1λ,Sig.vk) :

Sig.Ver(Sig.vk,m, σ) = 1 ∧m /∈ Q] ≤ negl(λ)

where Q denotes the set of all queries that A asked to oracle Sig.Sign(Sig.sk, ·).

B Proof(Continued)

Proof. Indistinguishability Proof. We prove that the real execution of the protocol in the FRO-hybrid
world is indistinguishable from the execution in the simulated world through a series of hybrids.

• Let the hybrid H0 denote the real world execution.

• Hybrid H1 is the same as H0 except that any calls to random oracle FRO is replaced with simu-
lated responses as shown in Figure 13. When the simulation aborts, it outputs “ROFailure”. Note
that H0 and H1 can be distinguished in the event of “ROFailure”. We prove in Lemma 1 that
H0 and H1 are indistinguishable, since the event “ROFailure” occurs with negligible probability.

• Hybrid H2 executes in the same way as H1, except that the crs is now replaced by a simulated
crs and all honest proofs are now simulated.

H1:
crs← NIZK.Setup(1λ)

π ← NIZK.Prove(crs, stmt, w)

H2:
(crs, ek, τ)← S1(1λ)

π ← S2(crs, τ, stmt)

H2 and H1 are computationally indistinguishable due to the computational zero-knowledge
property of NIZK as proved in Lemma 2.

• Hybrid H3 executes in the same way as H2, except that when a party (the adversary) sends a
pair (msg, π) for a tag, and the NIZK π was not generated by the simulator, the latter attempts
to extract a witness from π. That is, it runs Extract (crs, ek, stmt, πNIZK). It the output is ⊥,
then the experiments terminates with output “ExtractionFailure”. We prove in Lemma 3 that this
occurs with negligible probability, and hence H3 and H2 are computationally indistinguishable.

23

• Hybrid H4 works in the same way as H3, except that if Extract(crs, ek,stmt, π) = w, and the
witness corresponds to an honest party whose π is not in L, then the experiment terminates
with output “ SoundnessFailure”. We prove by Lemma 4 that this happens with negligible
probability, and hence H4 and H3 are computationally indistinguishable.

• Hybrid H5 works the same way as H4, except that the simulator sends (CreateProof, tag,msg)
to the ideal functionality (and when asked will later provide π). If the functionality replies with
(Declined), output “GetProofFailure”. We prove by Lemma 5 that this happens with negligible
probability, which therefore implies that H5 and H4 are computationally indistinguishable.

• Hybrid H6 works the same way as H5, except that the outputs of the pseudorandom functions
are replaced by totally random strings.

H5:
Cvi = F (PRF.ski, vi‖tag)

H6:

Cvi ← {0, 1}λ

By the pseudorandomness property of pseudorandom functions as shown in Lemma 6, H6 and
H5 are computationally indistinguishable.

• Hybrid H7 works the same way as H6, except that the commitments to PRF secret keys are
replaced by commitments to the zero string.

H6:
Cprfi ← Com(PRF.ski; sprf)

H7:
r ← {0, 1}λ

Cprfi ← Com(0λ; r)

By the hiding property of the commitment scheme, as shown in Lemma 7, H7 and H6 are
computationally indistinguishable.

Note that H7 is identical to the simulated world as described in Figure 12. By a summation over the
previous hybrids we show that H0 ≈ H7 by presenting the following supporting lemmas.

24

Setup : Run S1 to generate a simulated crs, trapdoor τ and extraction key ek.

Initialization : For each honest party Pi :

• Generate a valid TRP.pki by running TRP.KeyGen(1λ).

• Generate a valid SIG.vki by running SIG.KeyGen(1λ)

• Sample a randomness r and commit to zero - Cprf = Com(0λ; r).

• Publish pki = (TRP.pki,SIG.vki, C
prf).

Generate a Merkle tree, MTree(pk) with all pki as leaves and obtain the root rtpk.

CreateProof: Upon receiving (Prove, sid,msg, tag) from ideal functionality FEligible
Anon-Selection.

• Compute a zero knowledge proof πZK for the message (msg, tag), by calling the
simulator S2 on (crs, τ, stmt), where stmt = (rt~Vtag

, rtpk, tag,msg, C), where C is

sampled uniformly at random.

• Set π = (rt~Vtag
, rtpk, C, πZK) and store (π,msg, tag) in a list L.

• Send (Done, π, tag,msg) to FEligible
Anon-Selection.

Verify: Upon receiving (Verify, sid, tag,msg, π) from a corrupted party.

• If (π,msg, tag) ∈ L, then send (Verified, sid, π, tag,msg,1).

• Else, compute ~V ∗ = ProcessRO(tag) and create a Merkle tree MTree(~Vtag), with all
~V ∗[i] as leaves and set the root of the Merkle tree as rt~V ∗ .

• Set stmt = (tag,msg, C, rt ~V ∗ , rtpk)

• If NIZK.Verify(crs, stmt, π) = 0, ignore the message.

• Else run Extract(crs, stmt, π, ek) to get w.

– If w = ⊥, output “ExtractionFailure”

– Else let w = (i, pki, ski, vi, σi, sprf , C
prf
i , pathpk, path ~V ∗) be the extracted witness.

Obtain identity i. If Pi is honest and π was not in L, output “SoundnessFailure”.

• Send (CreateProof, sid, tag,msg) to FEligible
Anon-Selection on behalf of Pi.

• If FEligible
Anon-Selection replies with (Prove, sid, tag,msg), then send (Done, sid, π, tag,msg)

• Else if FEligible
Anon-Selection replies (Declined, sid, tag,msg), output “GetProofFailure”

Figure 12: Simulator for FEligible
Anon-Selection

Simulator SAnon-Selection

25

• Initialize list Q = ∅

• Upon receiving query x to FRO from some party P : if there exists (x, y) ∈ Q, output
y,
Else parse x = (tag, i) and does the following.

– if i such that Pi /∈ set of malicious parties, sample y randomly and store
Q = Q∪ (x, y).

– else send (EligibilityCheck, sid, tag) to FEligible
Anon-Selection on behalf Pi and obtain b.

∗ find r such that Eligible(r, (Pi, stakei), tag) = b.

∗ Compute V = f(TRP.pki, r).

∗ If there exists (x, V) ∈ Q, abort and output “ROFailure”.

∗ Set y = V , and store (x, y) ∈ Q.

∗ Output y.

Figure 13: Simulating random oracle queries

Simulating FRO

Lemma 1. If FRO is modeled as random oracle then the event ROFailure happens with negligible
probability.

Proof. Recall from Figure 13 that when SAnon-Selection receives a query x for FRO it parses x = (tag, i).
Three cases may arise:

1. Case 1: Pi is honest : In this case, SAnon-Selection simply outputs a random value y. This
output is distributed identically to the output of FRO.

2. Case 2: Pi is malicious and eligible : In this case SAnon-Selection repeatedly samples a random
value r until Eligible(r, stake, tag) = 1. This is done by picking an r such that r < p · 2len(v) (See
Definition of of Eligible in Figure 4).

Now, note that since r = vi is a random value, and since f is a permutation, it follows that Vi
is also random and thus is distributed identically to the output of FRO.

3. Case 3: Pi is malicious and not eligible : Similar argument as Case 2.

The bad case is when the simulator SAnon-Selection obtains a value V = f(TRP.pk, r) that was already
provided in output for a previous FRO query (i.e., there exists a pair (x′, V) ∈ Q). In this case the
simulator aborts and outputs ROFailure.

The probability of such event is q
2λ

, where q is the number of queries to the random oracle made
by the adversary, which is negligible.

Lemma 2. Assuming the zero-knowledge property of NIZK proof, hybrid H1 and hybrid H2 are
computationally indistinguishable.

Proof. Assuming that there exists a PPT adversary A12 such that :

Pr[A(H1) = 1]− Pr[A(H2) = 1] > p

26

then we can construct a PPT reduction BNIZK that uses A12 as a subroutine to break the zero-
knowledge property of NIZK. We prove this by showing a challenger that interacts with the BNIZK

adversary and outputs fail with negligible probability.
Challenger CNIZK

1. Flip a coin b← {0, 1}.

2. If b = 0: crs is generated by crs← NIZK.Setup(1λ)

3. If b = 1: (crs, τ, ek)← S1(1λ)

4. Give crs to BNIZK and get back b′.

5. If b = b′ output fail

BNIZK(1λ)

1. Receive a common reference string crs from a NIZK challenger CNIZK

2. Forward crs to the adversary A12 internally.

3. Execute the Initialization phase and ELIGIBLE phase for all honest parties as in H1.

4. In the CreateProof phase:

• stmt = (rt~V , rtpk, tag,msg, C
v
i)

• w = (i,PRF.ski, vi, σi, sprf , pki, pathpk, path~V)

• Forward (stmt, w) to the NIZK challenger CNIZK

5. Receive back a NIZK proof πNIZK

6. Send (msg, tag, π = (rt~V , rtpk, C
v
i , πNIZK)) to A12

7. Output the bit b′ received from A12

Note that when b = 0, the view of the adversary A12 is exactly the same as in hybrid H1. When
b = 1, then the view of the adversary A12 is exactly the same as in hybrid H2.

From our hypothesis, A12 can distinguish the transcripts with non-negligible probability p, thus the
reduction can use A12 to break the zero-knowledge property of NIZK with non-negligible probability.
We thus we have a contradiction since we assumed a secure NIZK proof system.

Lemma 3. If NIZK has simulation sound extractability property, then “ExtractionFailure” happens
with negligible probability.

Proof. If Extract(crs, stmt, π) outputs a w = ⊥, this immediately breaks the simulation sound ex-
tractability property of NIZK, since :

Pr[(crs, τ, ek)← S1(1λ); (stmt, π)← AS2(crs,τ,·)(crs, ek);

w ← Extract(crs, ek, stmt, π) :

stmt /∈ Q ∧ (stmt, w) /∈ L ∧ NIZK.Verify(crs, stmt, π) = 1] ≈ 0

Therefore with only very negligible probability do we get the case “ ExtractionFailure”.

Lemma 4. Assuming the security of trapdoor permutation TRP, EUF-CMA unforgeability property
of signature scheme SIG and collision resistance of hash function H, SoundnessFailure happens with
negligible probability.

27

Proof. Recall that the difference between H3 and H4 is that in H4 when the simulator extracts a
witness

w = (i, pki,PRF.ski, vi, σi, sprf , C
prf
i , pathpk, path~V)

it outputs SoundnessFailure in the case of a bad event. The bad event being: the witness belongs to
some honest party i and the proof π is not in the list L. For this bad event to occur, there must exist
an adversary ASoundnessFailure, that can forge a valid proof for some honest party.

To prove that such a bad event occurs with negligible probability we construct a reduction which
executes ASoundnessFailure as a subroutine to break at least one of the following properties.

• Security of trapdoor permutation. That is, we construct a reduction Btrp that takes as input
(TRP.pk, y) from the trapdoor permutation challenger Ctrp and it uses the adversaryASoundnessFailure

as a subroutine to find the inversion x corresponding to y.

• EUF-CMA unforgeability property of signature scheme. That is, we construct a reduction Bsig
that takes as input a signature verification key SIG.vk from the signature challenger Csig and it
uses ASoundnessFailure as a subroutine to find a valid forgery (m,σ), where m = msg‖tag.

• Collision-resistance of hash function. That is, we construct a reduction Bhash that usesASoundnessFailure

as a subroutine to find a collision of collision-resistant hash function and send it to a hash func-
tion challenger Chash.

Claim 1. Assuming that there exists an adversary ASoundnessFailure that can forge a valid proof for some
honest party with non-negligible probability, then we can build a reduction Btrp that uses ASoundnessFailure

to break the one-wayness of the trapdoor permutation with non-negligible probability.

Proof. We describe how the reduction Btrp works. The reduction Btrp takes as input a trapdoor
permutation public key TRP.pk and a random value y from the trapdoor permutation challenger Ctrp.
The goal of Btrp is to output a preimage of y.
Btrp

1. It computes the simulated common reference string crs by computing (crs, τ, ek) ← S1(1λ) and
forwards crs to ASoundnessFailure.

2. Guess at random which index i∗ ∈ H, ASoundnessFailure will try to forge in the CreateProof phase,
where H is the set of honest parties.

(a) Set TRP.pki∗ = TRP.pk.

(b) Generate each public key pki for each honest party, except that when it computes public
key pki∗ for the party Pi∗ , it includes the trapdoor public key TRP.pki∗ .

(c) Execute EligibilityCheck phase and simulate FRO as in the previous hybrid but respond
with the random string yi∗ = y when the honest party Pi∗ queries the random oracle.

(d) It runs the adversary ASoundnessFailure to obtain (msg, tag, π) from the CreateProof phase,
then it parses π = (rtpk, rt~V , C, πNIZK) and runs the extraction algorithm Extract to extract
the witness w ← Extract(crs, ek, stmt, πNIZK), where

w = (i, pki, vi, σi, sprf ,PRF.ski, pathpk, path~V)

and i is the index of some honest party that the adversary ASoundnessFailure is trying to forge.

3. If the guess i∗ 6= i, the reduction simply aborts and outputs a random string x to the challenger
Ctrp. Otherwise, the reduction BTRP forwards x = vi to the challenger Ctrp as the preimage of y.

When ASoundnessFailure can forge a valid proof for some honest party Pi with some non-negligible prob-
ability p, then the reduction BTRP can break the security of trapdoor permutation with non-negligible
probability p/|H|, which contradicts our assumption.

28

Claim 2. Assuming that there exists an adversary ASoundnessFailure that can forge a valid proof for some
honest party with non-negligible probability, then we can build a reduction Bsig that uses ASoundnessFailure

to break the EU-CMA unforgeability property of signature scheme with non-negligible probability.

Proof. The reduction Bsig proceeds as follows. It takes as input a signature verification key SIG.vk
from the signature challenger Csig and its goal is to output a valid signature σ corresponding to some
message m. It does the following:

• Compute the simulated common reference string crs by computing (crs, τ, ek) ← S1(1λ) and
forwards crs to the adversary ASoundnessFailure.

• Randomly guess an index i∗ ∈ H of an honest party, where H is the set of honest parties.

1. Set SIG.vki∗ = SIG.vk.

2. Generate public key pki for each honest party Pi, i ∈ H, except that for party Pi∗ it includes
SIG.vki∗ = SIG.vk into pki∗ .

3. It executes the EligibilityCheck phase and simulates the random oracle interacting with
ASoundnessFailure as we described in the simulation.

4. It runs ASoundnessFailure and obtains (msg, tag, π) and extracts the witness

w = (i, pki, vi, σi, sprf ,PRF.ski, pathpk, path~V)

where i is some index of honest party.

• If i∗ 6= i, the reduction simply aborts and output a random forgery (msg‖tag, σi) to the chal-
lenger. Otherwise, the reduction B forwards a forgery of signature (msg‖tag, σi) to the chal-
lenger Csig.

Since Pi is some honest party in the set H, which means the adversary ASoundnessFailure has successfully
forged a valid proof for an honest party without knowing the corresponding signature secret key
SIG.ski with non-negligible probability p, thus the reduction B can break the EUF-CMA unforgeability
property with non-negligible probability p/|H|, but this contradicts our security assumption.

Claim 3. Assuming that there exists an adversary ASoundnessFailure that can forge a valid proof for
some honest party with non-negligible probability, then we can build a reduction Bhash that uses the
adversary ASoundnessFailure to find a collision of the collision-resistant hash function used in the Merkle
tree with non-negligible probability.

Proof. We describe the reduction Bhash as follows. The reduction Bhash takes input a hash key and the
goal of it is to find two different paths path and path′ from a Merkle tree root rt to a leaf. It proceeds
as follows:

• Compute the simulated common reference string crs by computing (crs, τ, ek)← S1(1λ).

• Generate public keys pki for all honest parties as in the previous hybrid argument and computes
Merkle tree roots rtpk and rt~V . Note that the reduction knows the Merkle tree path pathpk from

rtpk to the leaf pki and the path pathV [i] from rt~V to the leaf ~V [i] for each honest party Pi.

• It executes the EligibilityCheck phase and simulates the random oracle functionality.

• It runs the adversary ASoundnessFailure and obtains (msg‖tag, π) and then extracts the witness

w = (i, pki, vi, σi, sprf ,PRF.ski, path′pk, path′~V)

29

• It outputs the Merkle tree root rtpk and two different paths pathpk and path′pk from the root to
the public key pki.

Since the party Pi is an honest party, which means that the adversary ASoundnessFailure has success-
fully forged a proof that passed the verification check with non-negligible probability. This means
that the reduction Bhash can find two different paths pathpk and path′pk with non-negligible probabil-
ity, which means the reduction breaks the collision resistance property of Merkle tree and hence the
collision resistance property of hash function. This contradicts to our assumption made. Also, note
that the same argument also works when the reduction outputs the root rt~V and two different paths
path~V and path′~V .

Therefore, assuming ASoundnessFailure can forge a valid proof for some honest party with non-
negligible probability, then we can construct a reduction to break at least one of the following prop-
erties: security of trapdoor permutation, unforgeability of signature and collision resistance of hash
function. However, this contradicts to the assumption we made. Therefore this completes the proof
of the lemma.

Lemma 5. Assuming that the simulation of FRO is correctly programmed “ GetProofFailure” occurs
with negligible probability.

Proof. “GetProofFailure” is output only when FEligible
Anon-Selection replies with (Declined, tag,msg), when

queried with the message (CreateProof, tag,msg).

Note that FEligible
Anon-Selection sends the Declined command only when T (Pi, tag) 6= 1.

The ideal functionality FEligible
Anon-Selection sets T (Pi, tag) = 1 only if Eligible((Pi, stakei), tag, r) = 1. This

implies for Pi, the predicate Eligible returned 0 if it received Declined from the ideal functionality.
In H1 we show that the the simulator creates a y for malicious parties such that they are eligible or
ineligible according to the predicate Eligible. Therefore if an extracted witness has vi such that Pi
is eligible to speak for tag, then Eligible(y, (Pi, stakei), tag) = 1 and therefore the ideal functionality
sets T (Pi, tag) = 1. This implies FAnon-Selection will not send back Declined. We thus arrive at a
contradiction.
Therefore the “ GetProofFailure” occurs only with negligible probability.

Lemma 6. Assuming pseudorandomness property of PRFs, the view of the adversary in hybrid H5

is indistinguishable from the view of the adversary in hybrid H6.

Proof. Assuming that there exists some adversary A56 that can distinguish the transcripts of the
protocol between hybrid H5 and hybrid H6. We can construct a reduction Bprf that uses A56 as
a subroutine to break the pseudorandomness property of pseudorandom function. Bprf sends to the
challenger Cprf a message msg and receives back from the challenger(depending on the output of the
coin (= b)) either a PRF evaluation on the message msg (b = 0) or a uniformly random string (b = 1),
tossed by the challenger. The goal of the reduction is to guess the bit b.
Bprf proceeds as follows:

• Generate the common reference string by (crs, τ, ek)← S1(1λ) and forwards crs to A56.

• It executes the Initialization and EligibilityCheck phases as in the previous hybrids.

• In the CreateProof phase, the reduction Bprf forwards the message vi‖tag to the PRF challenger
Cprf and receives a string C from the challenger. Then the reduction prepares the NIZK statement
stmt = (rtpk, rt~V , C

v
i = C,msg, tag) and computes πNIZK ← S2(crs, stmt, τ, ek).

• It forwards (msg, tag, π) to A56, where π = (rtpk, rt~V , C
v
i , πNIZK) for all honest parties i.

• The adversary A56 outputs a bit b′ and the reduction Bprf forwards it to the challenger Cprf .

30

Note that when b = 0, the view of the adversaries is exactly the same as in the hybrid H5. When
b = 1, the view of the adversaries is exactly the same as in the hybrid H6. Since we assumed the
adversary A56 can distinguish the transcripts of π56 protocol with non-negligible probability, then the
reduction Bprf can distinguish the PRF output from truly random string with non-negligible, which
contradicts to pseudorandomness property of pseudorandom function as we assumed.

Lemma 7. Assuming the hiding property of commitment scheme Com, the view of the adversary in
hybrid H6 is indistinguishable from the view of the adversary in hybrid H7.

Proof. Assuming that there exists an adversary A67 that can distinguish the transcripts of H6 and
H7 with non-negligible probability, then we construct a PPT reduction Bhiding that uses A67 as a
subroutine to break the hiding property of the commitment scheme. The reduction Bhiding sends the
challenger Chiding two messages m0 and m1 and receives back as input a commitment C, which can be a
commitment to m0 or m1 depending on the coin flipped by the challenger (b = 0 or b = 1 respectively)
by Chiding. The goal of the reduction Bhiding is to find the bit b. The reduction internally executes A67.
The reduction Bhiding proceeds as follows:

• Generate the simulated common reference string (crs, τ, ek) ← S1(1λ) and forwards crs to the
adversary A67.

• In the Initialization phase, the reduction does the following. For each honest party i, he generates
the trapdoor permutation public key TRP.pki and signature verification key SIG.vki as before,

but in order to compute Cprfi , he prepares two messagesm0 = PRF.ski andm1 = 0λ and forwards
(m0,m1) to the hiding challenger Chiding and receives back a commitment C = Com(mb; sprf).

Then Bhiding sets Cprfi = C and publish pki = (TRP.pki,SIG.vki, C
prf
i).

• The adversary A67 is given C and it outputs a bit b′ and the reduction Bhiding outputs this bit
b′. The adversary wins if b = b′

Note that when b = 0, the view of adversary A67 is exactly the same as in the hybrid H6. When
b = 1, the view of adversary A67 is exactly the same as in the hybrid H7. Since A67 is able to
distinguish the transcripts of H6 and H7 with non-negligible probability, it guesses b′ correctly. This
implies the reduction Bhiding can break the hiding game of commitment scheme. This contradicts
the hiding property of the commitment scheme that we assumed. This completes the proof of the
lemma.

This completes the proof of the theorem.

C The multi-stake ideal functionality

In this section we present an ideal functionality for anonymous lottery where parties are associated
with multiple units of stake and not necessarily a single unit of stake.

31

The ideal functionality is parameterized by an Eligible predicate and maintains the follow-
ing elements: (1) A global set of registered parties P = ((P1, stake1), . . . , (Pn, staken)). (2)
A table T , which has one row per party and a column for each tag given by parties when
checking eligibility. The table stores a tuple (wti, wt

′
i) of each party in each tag. (3) A list

L, to store a proof π corresponding to a message msg in some tag.

– Upon receiving (EligibilityCheck, sid, tag) from a party Pi ∈ P do the following :

1. If Pi ∈ P and T (Pi, tag) is undefined, sample a random number r ∈ {0, 1}` run
Eligible(r, (Pi, stakei), tag) to get a weight value wti. Set
T (Pi, tag) = (wti,wt′i = wti)

2. Output (EligibilityCheck, sid, T (Pi, tag)) to Pi.

– Upon receiving (CreateProof, tag,msg,wtj) from Pi ∈ P

1. Get (wti,wt′i) from T (Pi, tag). If wti > 0 and wt′i − wtj ≥ 0, send
(Prove, tag,msg) to A for each k ∈ [1,wtj]. Else, send (Declined, tag,msg) to Pi.

2. Upon receiving (Done, ψk, tag,msg) from A for each k. Set πk ← ψk and record
(πk, tag,msg) in L for each k ∈ [1,wtj]. Send (Proof, πk, tag,msg) to Pi for each
k ∈ [1,wtj] and set wt′i = wt′i − wtj in T (Pi, tag)

– Upon receiving (Verify, π, tag,msg) from some party P ′:

1. If (π, tag,msg) ∈ L output (Verified, (π, tag,msg), 1) to P ′.

2. If (π, tag,msg) /∈ L, send (Verify, (π, tag,msg) to A and wait for a reply w from
the adversary A. Check if w is valid If yes :

– Extract (Pi, tag,msg) from w and check that T (Pi, tag) > 0

– If yes, store (π, tag,msg) in the list L and send (Verified, (π, tag,msg), 1) to
P ′.

If either of these checks are false output (Verified, (π, tag,msg), 0) to P ′.

FEligible
Anon-Selection-MS

Unlike the lottery functionality of FEligible
Anon-Selection, here parties receive a weight wt when they check

their eligibility. This wt is the number of messages they are allowed to propose with a proof. The ideal
functionality maintains a variable wt′i for each party Pi such that that for each message sent in a tag,
the functionality decrements wt′i by 1 (as long as wt′ > 0). This ensures that a party cannot create
proofs for > wti number of messages in one tag. The verification works like the single stake case,
except that the functionality now checks if T (Pi, tag) > 0 for a witness received from the adversary.
We highlight the differences from the single stake ideal functionality in blue.

32

	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Ideal Functionality for PoS Anonymous Selection
	Realization of FAnon-SelectionEligible
	Selection Function in Algorand
	Our Anonymized Selection Protocol

	Proof(Sketch)
	Performance Estimates
	Extensions for adaptivity and the multi-stake setting
	Extending to correctness in Presence of Adaptive Adversaries
	Extending to multi-stake setting

	Preliminaries (Continued)
	Proof(Continued)
	The multi-stake ideal functionality

