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Abstract. Higher-order differential attacks are among the most powerful attacks
against low-degree ciphers and hash functions. Predicting the evolution of the
algebraic degree of the cipher (as a function of the number of rounds) is the main
obstacle in assessing the feasibility of these attacks. For an SPN cipher over a finite
field F of characteristic 2 with round function of algebraic degree δ, it is a common
belief that the degree of the cipher grows almost exponentially with δ. However, for an
iterated Even–Mansour cipher whose round function can be described as an invertible
low-degree polynomial over F2n it has recently been shown that the algebraic degree
grows linearly with the number of rounds, and not exponentially.
In this paper we generalise these results for SPN ciphers, showing that the growth of
the algebraic degree is often linear for SPN ciphers with low-degree S-Boxes as well.
We prove that the initial exponential growth of the degree turns into a linear growth
after a certain number of rounds. Our analysis includes iterated Even–Mansour
and MiMC-like ciphers as a special case, but most notably it also applies to SPN
ciphers designed to be competitive for recent applications like MPC, FHE, SNARKs,
and STARKs (e.g., HadesMiMC). Our findings have been practically verified on
small-scale ciphers.
Keywords: Higher-Order Differential Cryptanalysis · SPN · Algebraic Degree

1 Introduction
One of the most powerful cryptanalytic methods in the literature for low-degree symmetric
primitives working over Fn2 is higher-order differential cryptanalysis. In essence, this
method allows to distinguish a given Boolean function from a random one. More precisely,
given an instance of a block cipher Ek : Fn2 → Fn2 under a fixed but unknown secret key
k, higher-order differential cryptanalysis exploits the fact that for any vector subspace
V ⊆ Fn2 with dimension strictly greater than the algebraic degree of Ek and any c ∈ Fn2∑

x∈V
Ek(x+ c) = 0.

Since the same property does not, in general, hold for a permutation drawn at random, it
can be exploited to set up distinguishers and/or key-recovery attacks. The idea was first
introduced by Lai [Lai94], albeit without a concrete application. Knudsen [Knu94] then used
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higher-order differentials to break low-degree ciphers which were deemed secure against
standard differential cryptanalysis. Several generalisations of higher-order differential
attacks have since been proposed in the literature, including cube attacks [DS09] and the
division property [Tod15].

1.1 Preventing Higher-Order Differential Attacks – State of the Art
We focus on the case of iterated block ciphers, that is, ciphers consisting of several iterations
of the same round function parameterized by different round keys. To prevent higher-order
differential attacks on ciphers over Fn2 , ideally one would like to make a statement such as:

“After r rounds, there is no output bit with algebraic degree strictly smaller
than n− 1.”

To achieve this goal, one needs to estimate the growth of the algebraic degree, which is in
general a difficult task. In other words, predicting the evolution of the algebraic degree
of the cipher when the number of rounds varies is the main challenge in higher-order
differential cryptanalysis. A trivial bound for the algebraic degree of the composition of
two functions F,G : Fn2 → Fn2 is given by

deg(G ◦ F ) ≤ deg(G) · deg(F ). (1)

This bound allows to derive a first estimate about the number of rounds necessary to
reach the full algebraic degree in SPN ciphers. For an SPN cipher defined over (F2n)t
with S-Box layer of algebraic degree δ it follows that at least dlogδ(n · t− 1)e rounds are
necessary to prevent higher-order differential attacks (the affine layer does not increase the
algebraic degree).

A Better Estimation for deg(G ◦ F ). In general, the upper bound (1) does not reflect
the real growth of the algebraic degree when considering iterated ciphers, and the problem
of estimating the growth of the algebraic degree has therefore been studied in the literature.
After the initial work of Canteaut and Videau [CV02], a tighter upper bound was presented
by Boura, Canteaut, and De Cannière in [BCD11]. In there, the authors show how to
deduce a new bound for the algebraic degree of iterated permutations for a special category
of SP networks over (F2n)t, which includes functions that have a number of t ≥ 1 balanced
S-Boxes as their non-linear layer. As a consequence, the number of rounds necessary to
prevent higher-order differential attacks is in general higher than the one obtained using
the trivial bound in (1). Apart from the bounds of Boura, Canteaut and De Cannière,
Boura and Canteaut studied the influence of F−1 on the algebraic degree of deg(G ◦ F )
[BC13]. As main result, they discuss how the algebraic degrees of F−1 and F affect each
other, which subsequently allows them to bound the algebraic degree of G ◦F by means of
the degrees of G and F−1.

MiMC-Like Ciphers. MiMC [AGR+16] is an iterated Even–Mansour cipher, i.e. a cipher
natively defined over F2n , where the S-Box is given by the cube function x 7→ x3. Only
recently a new upper bound on the algebraic degree growth of MiMC-like ciphers has been
proposed in [EGL+20]. More precisely, the authors show that when the round function can
be described as a low-degree polynomial function over F2n of degree at most d, the algebraic
degree δ(r) grows linearly with the number of rounds, and not (almost) exponentially as
previously believed, i.e.

δ(r) ≤ min{log2(dr), n− 1}.
Consequently, this observation implies that roughly (n− 1) · logd(2) rounds are necessary
for security against higher-order differential distinguishers. As a concrete application, the
authors in [EGL+20] were able to exploit this result for setting up the first higher-order
differential attack on MiMC better than exhaustive search.
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Figure 1: Growth of upper bounds of the algebraic degree for an SPN cipher with S-Box
x 7→ x3 over (F219)27.

1.2 Our Contribution
Results for SPN Ciphers. In this work, we generalise the result presented in [EGL+20]
and extend it to SPN ciphers, where one round consists of the parallel application of t ≥ 2
invertible low-degree polynomial functions over F2n . As such, we work with permutations
over (F2n)t. In particular, we improve on the best currently known estimation for the
growth of the algebraic degree published in [BCD11]. We show in Section 4 that for all
SPN ciphers with the parallel application of t copies of the same low-degree S-Box, the
algebraic degree grows almost linearly with the number of rounds, and not exponentially as
previously believed. More precisely, if d denotes the degree of the S-Boxes as a polynomial
over F2n and δ denominates the corresponding algebraic degree, we prove that

n · logd(2) + logδ(t)

rounds are necessary to provide security against higher-order differential attacks. This
result improves on the belief that around

logδ(n · t− 1) ≈ logδ(n) + logδ(t)

rounds are necessary, which is based on the assumption of an exponential growth of the
algebraic degree. A concrete comparison of our bound and other upper bounds of the
algebraic degree of a SHARK-like cipher [RDP+96] over (F219)27 (with the cubing function
x 7→ x3 as S-Boxes and an MDS matrix as mixing layer) is depicted in Fig. 1.

Preliminary Results for Feistel and Partial SPN Ciphers. Finally, we mention that our
results apply to the case of Feistel schemes and partial SPN ciphers as well (that is, ciphers
with a partial non-linear layers), by combining the results on SPN ciphers and the fact
that the non-linear layers are not full. Also in this case, it is possible to show that for
low-degree polynomial functions the algebraic degree of the cipher grows linearly. More
details are given in Section 6.

2 Preliminaries
In this section, we recall the most important results about polynomial representations of
Boolean functions and summarize the currently best known results regarding bounding the
algebraic degree in the context of SP networks. We start with a clarification about what
we mean by the necessary and the sufficient number of rounds to provide security against
an attack. Informally, ‘necessary’ means at least and ‘sufficient’ can be read as at most.
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Definition 1. Given an iterated cipher and a certain number of rounds R ≥ 1, we say
R rounds are necessary to prevent a certain attack if this attack can be set up for each
number of rounds r with r < R. Similarly, a certain number of rounds R ≥ 1 is sufficient
to prevent an attack if the attack cannot be set up for all r with r ≥ R.

While upper-bounding the algebraic degree (i.e., lower-bounding the number of rounds)
is more important from an attacker’s point of view, lower-bounding the algebraic degree
(i.e., upper-bounding the number of rounds) is more relevant when arguing about the
security from a designer’s viewpoint. However, at the current state of the art and to the
best of our knowledge, it seems very hard to find such a lower bound for a given cipher
without investigating concrete instances experimentally. An experimental approach of
course limits the scope of any analysis. We emphasize that in general it is only possible to
provide a necessary number of rounds to provide security against higher-order differential
attacks.

2.1 Polynomial Representations over Binary Extension Fields
We denote addition (and subtraction) in binary extension fields and polynomial rings over
binary extension fields by the symbol ⊕. For n, t ∈ N, every function F : (F2n)t → F2n

can be uniquely represented by a polynomial over F2n in t variables with maximum degree
2n − 1 in each variable, i.e., as

F (X1, . . . , Xt) =
⊕

u=(u1,...,ut)∈{0,1,...,2n−1}t
ϕ(u) ·Xu1

1 · · · · ·X
ut
t , (2)

for certain ϕ(u) ∈ F2n . We refer to this representation as the word-level representation. At
the same time, the function F admits a unique representation as an n-tuple (F1, . . . , Fn)
of polynomials over F2 in N := n · t variables with maximum degree 1 in each variable.
Here, Fi takes the form

Fi(X1, . . . , XN ) =
⊕

u=(u1,...,uN )∈{0,1}N
ϕi(u) ·Xu1

1 · . . . ·X
uN
N , (3)

where the coefficients ϕi(u) ∈ F2 can be computed by the Moebius transform with time
complexity O(n · 2n). We call this alternative description the bit-level representation of F .
Combining Eq. (3) into a single polynomial representation leads to a description of F as a
single polynomial in n · t variables, but now with coefficients in Fn2 , instead of F2.

Whenever we refer to the degree of a single variable in F (or Fi), we shall speak of the
univariate degree. In contrast, the degree of F (or Fi) as a multivariate polynomial shall
be called its multivariate degree, or just its degree. We denote functions F : Fn2 → F2 as
Boolean functions and hence functions of the form F : Fn2 → Fm2 , for n,m ∈ N, as vectorial
Boolean functions. If not explicitly stated otherwise, we work with vectorial Boolean
functions where m = n. The unique polynomial representation of a Boolean function is
called its algebraic normal form (ANF), which we emphasize with the following definition.

Definition 2. Let F : Fn2 → F2 be a Boolean function. The algebraic normal form (ANF)
of F is the unique representation as a polynomial over F2 in n variables and with maximum
univariate degree 1, i.e., the representation

F (X1, . . . , Xn) =
⊕

u=(u1,...,un)∈{0,1}n
ϕ(u) ·Xu1

1 · . . . ·Xun
n .

The algebraic degree δ(F ) of F is the degree of the above representation of F as a
multivariate polynomial over F2. When the function F is clear from the context, we also
write δ instead of δ(F ). If G : Fn2 → Fn2 is a vectorial Boolean function and (G1, . . . , Gn)
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is its representation as an n-tuple of multivariate polynomials over F2, then its algebraic
degree δ(G) is defined as the maximal algebraic degree of its coordinate functions Gi, i.e.
as δ(G) := max1≤i≤n δ(Gi).

The link between the algebraic degree and the univariate degree of a vectorial Boolean
function is well-known, e.g. it is established in [CCZ98, Sect. 2.2]: due to the isomorphism
of F2-vector spaces F2n ∼= Fn2 , every function over Fn2 can be considered as a function
over F2n and thus admits a representation as an univariate polynomial over F2n . Thus,
the algebraic degree of a vectorial Boolean function can be computed from its univariate
representation. Lemma 1 makes this link explicit.

Lemma 1. Let F : F2n → F2n be a function over F2n and let F (X) =
∑2n−1
i=0 ϕi · Xi

denote the corresponding univariate polynomial description over F2n . The algebraic degree
δ(F ) of F as a vectorial Boolean function is the maximum over all Hamming weights1 of
exponents of non-vanishing monomials, that is

δ(F ) = max
0≤i≤2n−1

{hw(i) |ϕi 6= 0} .

2.2 Higher-Order Differentials and SPN Ciphers – State of the Art
The currently best-known generic upper bound for the algebraic degree of the composition
of two functions is given by Boura, Canteaut, and De Cannière.

Proposition 1 ([BCD11]). Let F be a function from FN2 to FN2 corresponding to the
concatenation of t smaller balanced2 S-Boxes S1, . . . , St defined over Fn2 . Then, for any
function G from FN2 to FN2 , it holds

deg(G ◦ F ) ≤ min
{

deg(F ) · deg(G), N − N − deg(G)
γ

}
, (4)

where
γ := max

i=1,...,n−1

n− i
n− δi

≤ n− 1, (5)

and δi is defined as the maximal degree of the product of any i coordinates of any of the
smaller S-Boxes.

We emphasize that γ and δi depend on the details of the S-Box. Namely, two S-Boxes
with the same algebraic degree have in general different γ. Exploiting relation (4), we
present a direct upper bound of the algebraic degree after a certain number of rounds in
the simplest but most common case of an SPN cipher where all S-Boxes are equal. With
direct upper bound we mean that we iteratively apply (4) to the round functions of an
SPN cipher and thus obtain a statement about the algebraic degree after a certain number
of rounds. We refer to Appendix A for the details of the proof.

Proposition 2. Let F be a function from FN2 to FN2 corresponding to the concatenation
of t copies of a balanced S-Box S over F2n with algebraic degree δ ≥ 2. For any affine
functions L1, L2, . . . , Lr−1 from FN2 to FN2 and any integer r ≥ 1 consider the function E
from FN2 to FN2 defined as

E := F ◦ Lr−1 ◦ F ◦ · · · ◦ L2 ◦ F ◦ L1 ◦ F.

Then the algebraic degree δ(r) of E after r rounds is upper-bounded by

δ(r) ≤
{
δr if r ≤ R :=

⌊
logδ

(
N · γ−1

γ·δ−1

)⌋
,

N − γ−r · γR · (N − δR) if R < r ≤ R[BCD11],
(6)

1Given x =
∑s

i=0 xi · 2
i ∈ Z, for xi ∈ {0, 1}, then hw(x) =

∑s

i=0 xi.2A function f : Fn2 → Fm2 is said to be balanced if each element in Fm2 has exactly 2n−m preimages.
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where R[BCD11] is the number of rounds necessary to prevent secret-key zero-sum distin-
guishers defined by

R[BCD11] :=
⌊

logδ
(
N · γ − 1

γ · δ − 1

)⌋
︸ ︷︷ ︸

=:R0

+
⌈
logγ

(
N − δR0

)⌉
(7)

and where γ is defined as in Eq. (5).

A proof how to derive R[BCD11] can be found in Appendix A. We note that a similar
result has been proposed in [BKP16] for the particular case in which γ = n− 1, meaning
that all S-Boxes have maximum algebraic degree, that is, δ = n− 1.

3 Higher-Order Differential Analysis of Iterated
Even–Mansour Ciphers

As a main result, in [EGL+20] the authors show that the algebraic degree of iterated
Even–Mansour ciphers may grow much slower than what is commonly suggested in the
literature. More precisely, they show that in some cases the algebraic degree grows linearly
with the number of rounds and not exponentially. In this section, we briefly recall the
results published in [EGL+20].

We start by considering an iterated Even–Mansour cipher EMr
k : F2N → F2N defined

as
EMr

k (x) := kr ⊕ (· · ·R(k1 ⊕R(k0 ⊕ x)) · · · ) (8)

for r ≥ 1 rounds, where k0, . . . , kr ∈ F2N are derived from a master key k ∈ F2N using a
certain key schedule, and where each round function R : F2N → F2N is simply defined as
some invertible polynomial function

R(x) := ρ0 ⊕
d⊕
i=1

ρi · xi (9)

of degree d ≥ 3 and with ρi ∈ F2N , ρd 6= 0. A cipher in the literature that falls into
this category is e.g. MiMC. In [EGL+20], the authors derive a necessary condition on
the number of rounds to prevent higher-order differential attacks against iterated Even–
Mansour ciphers, see Proposition 3. In the remarks following Proposition 3 we discuss its
scope in more detail.

Proposition 3 ([EGL+20]). Let R be the round function of an iterated Even–Mansour
cipher EMr

k with degree d defined as in Eq. (9). The number of rounds3 RLinear necessary
to prevent a secret-key higher-order differential distinguisher is given by

RLinear =
⌈
logd

(
2N−1 − 1

)⌉
≈ (N − 1) · logd(2). (10)

The idea of the proof is simple: to prevent higher-order differential attacks, the algebraic
degree of EMr

k must reach its maximum value N − 1. Due to the relation between the
word-level degree and the algebraic degree (see Section 2.1), EMr

k has algebraic degree
N − 1 if at least one monomial with exponent 2N − 2j − 1 (for 0 ≤ j < N) is present in the
univariate polynomial representation. Since the smallest exponent of this form is 2N−1− 1,
the number of rounds r must satisfy r ≥ dlogd(2N−1 − 1)e.

3We use the notation RLinear to indicate that the algebraic degree grows almost linearly.
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Forward versus Backward Direction. As recalled in [EGL+20] and originally proved
in Corollary 3 of [BC13], given a fixed key k, the algebraic degrees of EMr

k and its
compositional inverse EM−rk are related in a particular way: the algebraic degree of EMr

k

is maximal (i.e. n − 1) if and only if the algebraic degree of EM−rk is maximal. As an
immediate consequence we state the following observation for iterated Even–Mansour
ciphers:

“The number of rounds to reach maximal algebraic degree in encryption and
decryption direction is the same.”

This fact is particularly surprising if one direction of an iterated Even–Mansour cipher
has a low-degree round function, while the inverse direction is built from a round function
of high degree. For example, when R(x) = x3, the inverse round function is given by
R−1(x) = x(2N+1−1)/3. Here, R has algebraic degree 2, while R−1 has algebraic degree
(n+ 1)/2.

Only a Necessary Condition. We stress once more, the condition on the number of
rounds in Proposition 3 is only a necessary condition, not a sufficient one. This comes
from the (complicated) cancellation behaviour of powers of polynomials over finite fields:
even if the univariate degree satisfies dr ≥ 2N−1 − 1 after a certain number of rounds
r, it is not guaranteed that monomials of algebraic degree N − 1 will be present in the
encryption polynomial. A deeper analysis and concrete examples of this behaviour are
given in [EGL+20, Sect. 3.1] and in Section 5.2.

Full versus Partial Zero-Sums. Another point to keep in mind is that the result of
Proposition 3 only focuses on security against full zero-sums, i.e. zero-sums over all
outputs bits. We mention that this does not provide security against partial zero sums, i.e.
zero-sums only in some particular output bits. For example, consider the extreme case of
a function over FN2 with ANF y0 = x0 +

∏n−1
i=1 xi and yi = xi for 1 ≤ i ≤ N − 1. Even if a

zero-sum cannot be set up for output bit y0, it is straightforward to set up a zero-sum
distinguisher over the remaining N − 1 bits, since the degree of yi, for 1 ≤ i ≤ N − 1, is
just 1.

4 Higher-Order Differential Analysis of SPN Ciphers
In this section we prove a new upper bound on the growth of the algebraic degree in SPN
ciphers with low-degree polynomial S-Boxes. In the following, let Erk : (F2n)t → (F2n)t
denote the application of r rounds of an SPN cipher under a fixed but unknown secret key
k ∈ (F2n)t with n ≥ 3, t ≥ 2, and N := n · t. For every x = (x1, . . . , xt) ∈ (F2n)t we write

Erk(x) := (Fr ◦ · · · ◦ F1) (x⊕ k0), (11)

where Fi : (F2n)t → (F2n)t is defined as Fi(x) := R(x)⊕ ki, for 1 ≤ i ≤ r. The subkeys
k0, . . . , kr ∈ (F2n)t may be derived from the master key k ∈ (F2n)t by means of a key
schedule, or they may just as well be randomly chosen elements. Here, R denotes the
composition of the S-Box and the linear layer, i.e., we have R : (F2n)t → (F2n)t with

R(x) := (M ◦ S)(x) := M(S1(x1), . . . , St(xt)),

where all Si : F2n → F2n are assumed to be non-linear polynomial S-Boxes of degree d ≥ 3
defined as

Si(x) :=
d⊕
j=0

σ
(i)
j · x

j , (12)
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for σ(i)
j ∈ F2n and σ

(i)
d 6= 0. Finally, M denotes an invertible non-trivial linear layer

M : (F2n)t → (F2n)t defined by the multiplication with a matrix

M(x) :=


M1,1 M1,2 . . . M1,t
M2,1 M2,2 . . . M2,t
...

. . .
...

Mt,1 Mt,2 . . . Mt,t

 ·


x1
x2
...
xt

 , (13)

where Mi,j ∈ F2n for i, j = 1, . . . , t. The notion of a non-trivial linear layer is made precise
in the following definition.

Definition 3. A linear layer M is non-trivial if it ensures full diffusion (in the sense that
each word of the output depends on each word of the input and vice versa) after a finite
number of rounds.

We remark that all SPN ciphers over (F2n)t can be written as described above. Just
to give some examples, if the linear layer is defined by an MDS matrix4, the cipher is
similar to SHARK [RDP+96]. For AES [DR02] or AES-like ciphers, where the linear layer
is obtained by a combination of the ShiftRows and the MixColumns operations, many
elements of the matrix M are equal to 0 (see e.g. [BB02]).

4.1 New Bound on the Necessary Number of Rounds to Prevent
Higher-Order Differential Attacks

The main result in this section is the following.

Theorem 1. Let n ≥ 3 and t ≥ 2. Consider r rounds of an SPN cipher Erk over (F2n)t as
defined in Eq. (11), with the additional assumption that all S-Boxes S1, . . . , St are defined
via the same function S of degree d ≥ 3 and of algebraic degree δ ≥ 2. Then the algebraic
degree after r rounds, denoted by δ(r), is upper-bounded by

δ(r) ≤
{
δr if r ≤ R := 1 + dlogδ (t)e ,
t · δ +

⌈
t · log2(dr−R)

⌉
if R < r ≤ RLinear,

(14)

where
RLinear := dn · logd(2)e+ dlogδ(t)e (15)

is the number of rounds necessary to prevent a higher-order differential distinguisher.

We emphasize that we are speaking of a necessary number of rounds to prevent higher-
order differential distinguishers. While we do not claim the above number of rounds to be
sufficient for Erk to have maximum algebraic degree, the finesse of our new bound is that
it is considerably closer to a sufficient bound than the currently best known results in the
literature.

4.1.1 Idea of the Proof

Before we prove Theorem 1, we give a brief overview of the proof itself and explain some
of the terminology and general assumptions.

4A matrix M ∈ Ft×t is called a maximum distance separable (MDS) matrix iff every u× u submatrix
of M is invertible, where u ≤ t.
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Idea of the Proof. The roadmap for the proof of Theorem 1 reads as follows:

1. Lemma 2 makes a statement about which monomials can occur in the polynomial
representation of the encryption function.

2. In Lemma 3 we tightly upper-bound the number of rounds with exponentially growing
algebraic degree.

3. Finally, we use this observation to prove Proposition 4, which is a slightly reformulated
equivalent to Theorem 1.

Terminology. We recall part of our terminology relevant for this section. For an un-
known but fixed secret key k = (k1, . . . , kt) ∈ (F2n)t let Erk = (Erk,1, . . . , Erk,t) denote
the representation of an SPN cipher Erk : (F2n)t → (F2n)t after r rounds as a t-tuple of
polynomials over F2n with maximum univariate degree 2n − 1. The variables X1, . . . , Xt

shall represent n-bit words. Furthermore, let mα := Xα0
1 · · ·X

αt
t denote the monomial

with exponent vector α = (α1, . . . , αt) ∈ {0, . . . , 2n − 1}t. The word-level degree of the
S-Box S(X) = Xd is denominated by d, while the algebraic degree of S is denoted by
δ := hw(d). The base-2 expansion of d is written as d =

∑δ
i=1 2di , for appropriate di ∈ N.

When we speak of monomials to be expected5 in the encryption polynomial we allude to
the fact that the actual number of non-zero coefficients in the polynomial representation
of Erk also depends on the secret key k, and as a result, the coefficient of a monomial may
be zero under a specific key. We presume to be sloppy on this point and occasionally just
speak of monomials that appear.

General Assumptions. For simplicity, and since this is the most common case in the
literature, we assume that all S-Boxes S1, . . . St are defined via the same monomial function
S : F2n → F2n with S(x) := S1(x) = . . . = St(x) = xd. We remark that our results can be
extended to the case where the S-Boxes are defined via more general polynomial mappings
as described in Eq. (12).

According to the remark about the connection of forward and backward direction in
Section 3, it suffices to focus only on one direction of the cipher when attempting to reach
the maximal algebraic degree. We focus on the forward direction.

Furthermore, our analysis is independent of the concrete instantiation of the linear
layer, besides the fact that we assume the matrix M to be non-trivial (see Definition 3).
However, depending on the instantiation of the linear layer the algebraic degree might
grow slower than we predict, but never faster because a linear function does not increase
the algebraic degree. Therefore our analysis focuses on the polynomial representation of a
single output word Ej for a certain 1 ≤ j ≤ t. Hence, when we refer to the encryption
polynomial, it is one of the polynomials Erj .

4.1.2 Details of the Proof

Here we provide the details of the proof, following the strategy just presented.

Lemma 2. Let r ≥ 1 and d =
∑δ
i=1 2di be the base-2 expansion of d. Letmα1 ,mα2 , . . . ,mαδ

be monomials in the encryption polynomial after r rounds. Only those monomials given by

m2d1
α1
·m2d2

α2
· . . . ·m2dδ

αδ

are to be expected in the encryption polynomial after r + 1 rounds.
5This notion of expectation has nothing to do with statistical expectation.
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Proof. For each j = 1, . . . , t, the expression

Er+1
j = Mj,1 · (Er1 ⊕ k1)d ⊕Mj,2 · (Er2 ⊕ k2)d ⊕ · · · ⊕Mj,t · (Ert ⊕ kt)d

describes the encryption polynomial of word j after r + 1 rounds. If we write

Erj ⊕ kj =
⊕

α∈(0,1,...,2n−1)t
ϕα ·mα,

and use the fact that char(F2n) = 2, we obtain

(Erj ⊕ kj)d =

 ⊕
α∈(0,1,...,2n−1)t

ϕα ·mα

2d1 +···+2dδ

=
δ∏
i=1

 ⊕
α∈(0,1,...,2n−1)t

ϕ2di
α ·m2di

α

 =
⊕

α1,...,αδ∈(0,1,...,2n−1)t

(
δ∏
i=1

ϕ2di
αi ·m

2di
αi

)
.

Hence, we conclude that only monomial products of the form

m2d1
α1
·m2d2

α2
· . . . ·m2dδ

αδ
(16)

are expected to occur in the encryption polynomial after r + 1 rounds. The monomials
mα1 , . . . ,mαδ are not necessarily different, therefore the exponents in Eq. (16) are either
powers of 2 or sums of powers of 2.

Lemma 3. Let d =
∑δ
i=1 2di for appropriate di ∈ N. Only for the first 1 + dlogδ(t)e

rounds the algebraic degree of the encryption polynomial grows as fast as δr.

Proof. The idea of the proof is to observe the growth of the algebraic degree with the help
of Lemma 2. After the first round, all monomials of the form Xd

1 , . . . , X
d
t appear in the

encryption polynomial. The algebraic degree of each of these monomials is δ. According
to Lemma 2, after one more round the monomial

(Xd
1 )2d1 · (Xd

2 )2d2 · · · · · (Xd
δ )2dδ

appears in the encryption polynomial, and it has algebraic degree δ2. To see why it has
algebraic degree δ2, we note that: (a) raising a (word-level) monomial m to the power of
2k, k ∈ N, does not change its algebraic degree, and (b) if two (word-level) monomials
m1,m2 do not contain any shared variable, the algebraic degree of the product m1 ·m2
is the sum of the algebraic degrees. In the same way as before, after another round, the
monomial

(Xd2d1
1 · · ·Xd2dδ

δ )2d1︸ ︷︷ ︸
algebr. degree δ2

(Xd2d1
δ+1 · · ·Xd2dδ

2δ )2d2︸ ︷︷ ︸
algebr. degree δ2

· · · (Xd2d1
(δ−1)δ+1 · · ·X

d2dδ
δδ )2dδ︸ ︷︷ ︸

algebr. degree δ2

has algebraic degree δ3 and, again, appears in the encryption polynomial. Continuing this
way, we conclude that the algebraic degree grows as fast as δr until all t variables are
exhausted, i.e., until δr = δ · t.

It remains to show that dlogδ(δ · t)e = 1 + dlogδ(t)e is the maximum number of rounds
with exponential growth. To see this, we argue with the connection between the word-level
degree and the bit-level degree (which is the algebraic degree). After 1 + dlogδ(t)e rounds,
we have a monomial that uses all t variables X1, . . . , Xt. Therefore, the algebraic degree
cannot be increased any further by multiplying bit variables that belong to different words,
but only by multiplying bit variables that belong to the same word. As we have discussed
in Section 3, in this case the algebraic degree in each variable Xi grows at most as fast as
log2(d) · r, and hence in total at most by t · log2(d) · r.
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Proposition 4. Only after at least

dn · logd(2)e+ dlogδ(t)e

rounds is the encryption polynomial expected to have the maximum algebraic degree n · t−1.

Proof. As shown in Lemma 3, only for the first 1 + dlogδ(t)e rounds the algebraic degree
grows exponentially with the number of rounds and, eventually, adds up to t · δ. The
idea of the proof is to give the minimum additional number of rounds until the maximum
algebraic degree n · t− 1 is reached.

As discussed at the end of the proof of Lemma 3, from now on it suffices to observe
the algebraic degree in a single variable Xi. Hence, to reach algebraic degree n in a single
variable and maximum overall algebraic degree n · t− 1 respectively, it takes at least

dn · logd(2)e − 1

more rounds, because the algebraic degree in each variable is already δ and we need degree
n in t− 1 variables and degree n− 1 in one variable to reach maximum overall degree.

4.2 Comparison with Related Work in the Literature
4.2.1 Linear Growth versus Exponential Growth

We compare the growth of the degree predicted by our formula with the currently best
known results in the literature. Let us focus on the case in which n · logd(2) is large
compared to logδ (t), namely in the case of large S-Boxes (i.e., n ≥ t) described by a
low-degree polynomial (i.e., d� n). In such a case, after some initial rounds for which the
growth is exponential, the growth of the degree predicted by our formula is linear in r,
that is according Eq. (14)

δ(r) ≈ t · δ + t · log2(dr−R) = r · t · log2(d) + t · δ −R · t · log2(d)︸ ︷︷ ︸
constant

.

For a concrete example we refer to Fig. 2. There we compare the upper bound predicted
by our formula and the one proposed in [BCD11] in the case of an SPN cipher with the
cube S-Box S(x) = x3 over (F2n)t for n = 63 and t = 16.

4.2.2 When is RLinear ≥ R[BCD11]?

For a better insight when the bound RLinear improves upon the one given by R[BCD11] we
ask the following question: For which values of n, t, d and δ is

RLinear ≥ R[BCD11]

satisfied? Substitung the corresponding expression we obtain the following inequality

dlogd(2n − 1)e+ dlogδ(t)e ≥
⌊

logδ
(
N · γ − 1

γ · δ − 1

)⌋
+
⌈

logγ
(
N · γ · (δ − 1)

γ · δ − 1

)⌉
.

Using the relations γ · δ − 1 ≥ γ − 1 and γ · δ − 1 ≥ δ − 1 (note that γ,δ ≥ 2), an upper
bound for R[BCD11] is given by

R[BCD11] ≤ 1 + blogδ(N)c+ dlogγ(N)e ≤ 1 + dlogδ(N)e+ dlog2(N)e.

Thus, the condition RLinear ≥ R[BCD11] is satisfied if

RLinear = dlogd(2n − 1)e+ dlogδ(t)e ≥ 1 + logδ(n · t) + log2(n · t),
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Figure 2: Growth of upper bounds of the algebraic degree for an SPN cipher over (F263)16

with S-Box x 7→ x3. Trivial bound in black corresponds to the case δ(r) = 2r. The line
in blue indicates the bound obtained by exploiting (6) , which almost identical to the
trivial bound, except at r = 10. Our new bound from relation (14) is depicted by the red
line. After a first exponential growth up to (5, 32), the growth of the algebraic degree
is basically linear. The green line indicates the degree sufficient to prevent higher-order
differential attacks.

or to put it another way, if

logd(2n − 1) ≈ n · logd(2)︸ ︷︷ ︸
∈O(n)

≥ log2(n) ·
(

1 + 1
log2(δ)

)
+ log2(t) + 1︸ ︷︷ ︸

∈O(log2(n))

.

It is easy to see that for any fixed values of d, δ, and t, the previous inequality can be
satisfied if n is large enough.

5 Practical Results
In this section, we present our practical results on SPN ciphers over (F2n)t (defined as in
Section 4) with low-degree S-Boxes. The practical tests have been performed in the same
way as described in [EGL+20]: Instead of computing the ANF of a keyed permutation
(which is quite expensive already for small field sizes), we evaluate the zero-sum property
for a specific input vector space. Namely, for random keys and constants, given an input
subspace of dimension N − 1, where N = n · t, we look for the minimum number of
rounds r for which the corresponding sum of the ciphertexts is different from zero. Such a
number corresponds to the number of rounds necessary to prevent higher-order differential
distinguishers. To avoid a bias by weak keys or “bad” round constants, we have repeated
the tests multiple times (with new random keys and round constants). The code we used
for the practical tests can be found on GitHub:

https://github.com/IAIK/higher-order-differential.

The practical number of rounds we report is the smallest number of rounds among all tested
keys and round constants to prevent zero-sum distinguishers. This means that potentially
a higher number of rounds can be attacked by choosing the keys and round constants in a
particular way.

Practical Results on SPN ciphers with S(x) = x3. For our practical results, we focus
on a SHARK-like cipher [RDP+96], namely an SPN cipher over (F2n)t, where the S-Box

https://github.com/IAIK/higher-order-differential
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Table 1: Theoretical and practical round numbers necessary to guarantee security against
secret-key zero-sum distinguishers on SPN ciphers over (F2n)t for several values of n and
t ≥ 2 (where N = n · t). The chosen S-Box is the cube function S(x) = x3. To better
understand the influence of the linear layer, we consider both the case of a matrix that
provides full diffusion after one round (e.g., an MDS matrix, if possible) – denoted by
“Practical R (MDS)” – and the case of a matrix that provides the “worst” possible diffusion
(e.g., a sparse matrix as in Eq. (17)) – denoted by “Practical R (Sparse)”. R[BCD11] are
computed assuming γ = (n+ 1)/2.

Param. Theoretical Practical
N n t RLinear R[BCD11] Practical R (MDS) Practical R (Sparse)
35 5 7 7 6 8 15
35 7 5 8 5 8 12
36 9 4 8 6 9 11
33 11 3 9 5 10 10
39 13 3 11 6 11 12
34 17 2 12 6 12 12
38 19 2 13 6 14 14
66 11 6 9 6 - -
65 13 5 11 6 - -
60 15 4 12 6 - -
66 17 4 13 7 - -
63 21 3 15 6 - -
66 33 2 22 7 - -
132 11 12 10 8 - -
135 15 9 14 8 - -
133 19 7 14 7 - -
132 33 4 23 8 - -
129 43 3 29 7 - -
130 65 2 43 8 - -

is S(x) = x3 and the mixing layer is defined by the multiplication with an invertible t× t
matrix. Our practical results are reported in Table 1. As in [EGL+20], the theoretical
values for R[BCD11] are computed assuming γ = (n+1)/2 (we refer to [EGL+20, Lemma 2]
for a detailed argument supporting this point). We observe that the number of rounds that
can be covered by a zero-sum distinguisher is (almost) always equal to the one predicted
by our formula (in some cases a little higher, but never smaller). Moreover, especially
when the size of the S-Box is not too small, the round numbers RLinear predicted by our
formula is significantly larger than R[BCD11].

Test Methodology. In order to derive the results shown in Table 1, we wrote a custom
script in C. We then searched for zero sums with various round numbers, using different
random input subspaces of dimension N − 1, together with random round constants and
random round keys for each test. The round numbers we found for full zero sums were
then verified again using additional test runs.

5.1 Influence of the Linear Layer
In order to understand how the linear layer influences the number of rounds necessary to
provide security against zero-sum distinguishers, in our practical tests we consider two
extreme cases:

1. We evaluate the case in which the linear layer is defined as the multiplication with
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an MDS matrix (for parameters n and t that allow us to do so6), which corresponds
to the case of the “strongest” linear layer from a diffusion point of view.

2. We also evaluate the case in which the linear layer is “weak”, which could happen if
it is defined by the multiplication with a matrix containing a large number of zero
coefficients. For this second case, we used a t× t matrix M with coefficients Mr,c,
for r, c = 0, . . . , t− 1, given by

Mr,c =
{

1 if r = 0 OR if c ≡ r + 1 mod t,

0 otherwise.
(17)

We note that by using M we need t rounds to have full diffusion (at word level), instead
of just one round as for the MDS case. Hence, especially for large t, we expect that more
rounds than previously predicted may be necessary to guarantee security against zero-sum
distinguishers. In Table 1 we report empirical evidence for this expectation: the gap
between the number of rounds predicted by our formula and the one found by practical
tests in the case of a sparse matrix is close to zero for “small” t, and grows for “large” t.
An open problem for future research would be to take into account the details of the linear
layer for a more accurate prediction of the number of rounds that can be covered by a
zero-sum distinguisher.

5.2 Practical Results for d = 2d′ ± 1
Besides the effect of the linear layer, we also tried to better understand the impact of the
details of the S-Box. As already mentioned in [EGL+20, Sect. 3.1], whenever the output
of the S-Box is sparse, or full, this fact will affect the gap between the practical number of
rounds needed for security and the one predicted by our formula (which is just a lower
bound since it is only a necessary condition). In particular, focusing on an S-Box defined
by a power map x 7→ xd there are two “extreme” cases, namely d = 2d′ ± 1 for some d′ ∈ N.
For these cases it is possible to observe that for d = 2d′ + 1 the output of a single round

(x+ y)2d
′
+1 = x2d

′
+1 + x2d

′

· y + y2d
′

· x+ y2d
′
+1

is sparse. Note that it contains only 4 terms instead of d+1 = 2d′ + 2. While for d = 2d′ − 1
the output of a single round

(x+ y)2d
′
−1 =

2d
′
−1∑

i=0
xi · y2d

′
−1−i

contains much more monomials. In order to better understand this fact, we performed
practical tests on a MiMC-like cipher with different S-Boxes x 7→ xd of the form d = 2d′ + 1
and d = 2d′ − 1. We emphasize that the choice of working on MiMC-like ciphers and not
on SPN ciphers has been made to prevent the influence of the linear layer. Our practical
results are presented in Appendix B, see Table 4 and Table 5 for more details. As expected,
we found that the polynomial that describes the encryption function is in general dense
in the case d = 2d′ − 1. As a result, for d = 2d′ − 1 the sufficient number of rounds that
provides security against secret-key zero-sum distinguishers is close to RLinear previously
given, while the gap between these two figures is in general larger for the case d = 2d′ + 1.
These observations match the theoretical expectation expressed before, and the results
concerning “Variants of MiMC” presented in [AGR+16].

6We recall that a t× t MDS matrix with elements in GF (2n) exists if the condition log2(2t+ 1) ≤ n is
satisfied.
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6 Preliminary Results for Partial-SPN and Feistel Ciphers
Finally, we point out that the results presented in the previous sections, and from [EGL+20]
(for the Even–Mansour case), may be also exploited to derive preliminary results for the
case of Partial-SPN ciphers over (F2n)t or for Feistel schemes over (F2n)2 in the case in
which:

(1) the S-Box/round function can be described by a low-degree polynomial over F2n ,

(2) the input space has dimension n.

6.1 Partial-SPN Ciphers
First of all, here we show how to extend the previous results on Even–Mansour and SPN
ciphers to analyze the growth of the algebraic degree of Partial-SPN ciphers. The main
difference to SPN ciphers regards the S-Box layer. In Partial-SPN ciphers over (F2n)t, the
round function is defined as

R = M ◦ (S1, . . . , Ss, I, . . . I︸ ︷︷ ︸
t branches

), (18)

for 1 ≤ s < t, where the Si : F2n → F2n denote some non-linear functions on F2n and
where I denotes the identity function on F2n . The function M : (F2n)t → (F2n)t can be
regarded as the multiplication of the state vector with a t× t-matrix over F2n . In other
words, the distinctive feature of a Partial-SPN cipher is that the non-linear functions Si
are only applied to part of the state, while the rest of the state remains unchanged by the
S-Box layer. In the case of Partial-SPN ciphers, the attacker can employ several strategies
to set up a higher-order differential zero-sum distinguisher. The two most extreme ones
are:

1. use a proper initial subspace with “maximum” dimension n · t− 1 bits;

2. use a proper initial subspace of dimension n · r bits for a certain 1 ≤ r ≤ t− 1. If
the choice of such an initial subspace is made in a clever way (e.g., as described in
the following), it is possible to “skip” at most r initial rounds (in the sense that
the input of the S-Box in the first r rounds is always constant, hence the algebraic
degree does not change in the first r rounds).

Depending on the details of the cipher, each of the previous strategies can be the best one,
in the sense that it can cover the highest number of rounds with a higher-order differential
zero-sum distinguisher. For SPN ciphers, the first strategy is in general always the best,
since it is not possible to “skip” rounds for free without activating any S-Box.

For simplicity, we limit ourselves to consider the case in which s = 1, that is one single
S-Box is applied in each round (which e.g. corresponds to the instantiation of LowMC
used in the Picnic signature scheme [CDG+17, CDG+19] and to the partial rounds in the
recently proposed HadesMiMC permutation [GLR+20] permutation).

Proposition 5. Let Ek : (F2n)t → (F2n)t be a Partial-SPN cipher in which the S-Box
layer is composed of one S-Box and t − 1 identity functions. Let us assume that the
S-Box is defined as some invertible (low degree) polynomial function over F2n of the form
S(x) := ρ0 ⊕

⊕d
i=1 ρi · xi of degree d ≥ 3 and with ρi ∈ F2n , ρd 6= 0. Then at least

RLinear := t− 1 + dlogd(2n − 1)e

rounds are necessary to prevent higher-order differential distinguishers. In particular, to
prevent higher-order differential distinguishers on (t− 1) · n bits (namely, all bits except
the n ones corresponding to the position of the S-Box), one more round is necessary.
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Proof. Without loss of generality, we assume that the S-Box is applied to the first word7.
In such a case, it is possible to “skip” t − 1 rounds (namely, to impose that no S-Box
is active in the first t − 1 rounds) if the initial input x = (x0, x1, . . . , xt−1) satisfies the
condition

∀i = 0, . . . , t− 2 : [M i · x]0 = constant

where M i is just the i-fold product of M , with M0 being the identity matrix I, and where
for y = (y0, y1, . . . , yt−1) the expression [y]0 := y0 denotes the word at position 0. Hence
the first t− 1 rounds do not increase the degree.

After at least t rounds (we remark that depending on the details of the linear layer it
is potentially possible to skip more rounds), the S-Box is active. Since only one word is
active, we can simply reuse the results presented for the Even–Mansour case: a necessary
condition to guarantee security is that the algebraic degree is at least n, which happens
only in the case where a monomial of the form x2n−1 appears in the encryption polynomial.
Since the degree of the monomial over F2n grows as fast as dr−(t−1), it follows that the
number of rounds r must satisfy dr−(t−1) ≥ 2n − 1, to prevent higher-order differential
zero-sum distinguishers.

6.1.1 Related Work

We note that the result just presented is less surprising than the corresponding one given
for SPN ciphers. Indeed, the linear growth of the algebraic degree in case of Partial-SPN
ciphers had already been observed in the literature when considering the security of LowMC
[ARS+15] and Bison [CLL+19]. For example, we quote from Section 6.2 of [CLL+19]:

“[...] the degree of any NLFSR increases linearly with the number of rounds.
To the best of our knowledge, this is the first time this have been observed
in this generality. We like to add that this is in sharp contrast to how the
degree increases for SPN ciphers. For SPN ciphers the degree usually increases
exponentially until a certain threshold is reached.”

A formal analysis of the growth of the algebraic degree in a Partial-SPN cipher has been
given e.g. for LowMC in [ARS+15].

Proposition 6 ([ARS+15]). Let F be a function that corresponds to the parallel application
of s balanced n-bit S-Boxes and an identity function of width l = N − s · n. Thus, F is a
mapping from Fn·s+l

2 to Fn·s+l
2 . Let δk be the maximum algebraic degree of the product of

any k output bits of the S-Box. Then for any function G from Fn·s+l
2 to FN2 , we have

deg(G ◦ F ) ≤ min
{

deg(G) · deg(F ), β · s+ deg(G)
}
,

where β = max1≤i≤n(δi − i).

As before, focusing on the case where only one S-Box is applied in each round (s = 1),
it is possible to obtain a closed formula that describes the growth of the degree.

Proposition 7. Let F be a function on (F2n)t corresponding to the concatenation of s = 1
balanced S-Box defined over F2n and the identity function on (F2n)t−1. Moreover, assume
that the S-Box has algebraic degree δ ≥ 2, and let β := max1≤i≤n(δi − i), where δk is the
maximum algebraic degree of the product of any k output bits of the S-Box. For any affine
functions L1, L2, . . . , Lr−1 on Ft2n , consider the encryption function E(r) : (F2n)t → (F2n)t
defined as

E(r) = F︸︷︷︸
r-th round

◦ Lr−1 ◦ F︸ ︷︷ ︸
(t−1)-th round

◦ · · · ◦ L2 ◦ F︸ ︷︷ ︸
2-nd round

◦ L1 ◦ F︸ ︷︷ ︸
1-st round

7If this is not the case, it is always possible to find an equivalent representation – via a different but
equivalent linear layer – for which this is the case.
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Table 2: Theoretical and practical round numbers necessary to prevent (full) zero-sum
distinguishers on N bits for a P-SPN cipher with a single (s = 1) S-Box of the form x 7→ x3.
The mixing layer is defined as the multiplication with an MDS matrix (or, in the case
in which it does not exist, with a matrix that maximizes the branch number). We give
the practical results obtained by using an initial subspace of dimension N − 1, and one of
dimension n (chosen in order to skip as many initial rounds as possible). The numbers
R[ARS+15] are computed under the assumption β = (n− 1)/2 and γ = (n+ 1)/2.

Param. Theoretical Practical R
N n t RLinear R[ARS+15] dimension n dimension N − 1
35 5 7 10 18 10 19
35 7 5 9 12 9 15
36 9 4 10 10 9 13
33 11 3 9 8 9 12
39 13 3 11 8 11 14
34 17 2 12 7 12 14
38 19 2 12 7 13 15
65 5 13 16 33 16 -
65 13 5 13 12 13 -
63 7 9 13 22 13 -
63 9 7 12 17 12 -
68 17 4 14 11 14 -
133 7 19 23 45 23 -
133 19 7 18 17 18 -
135 9 15 20 35 20 -
135 15 9 18 21 18 -

for a certain number of rounds r ≥ 1. Then, the minimum number of rounds R[ARS+15]

rounds of E(r) necessary to prevent higher-order differential distinguishers on N = n · t
bits is given by

R[ARS+15] ≥ 1 +
⌊

logδ
(

β

δ − 1

)⌋
+
⌊
N

β
− 1
δ − 1 −

γ

γ − 1

⌋
+
⌈

logγ
(

β

γ − 1

)⌉
, (19)

where γ and β are defined as before. In particular, to prevent higher-order differential
distinguishers on (t − 1) · n bits one more round with respect to the number above is
necessary.

The proof can be found in Appendix C. Note that a full zero sum on N bits after the
S-Box layer implies always (at least) a partial zero sum on n · (t− 1) bits after the next
S-Box layer.8

6.1.2 Practical Results and Open Problems

Our practical results for the cubing S-Box are shown in Table 2, and they are obtained
using the strategy described before. We considered the two extreme cases, namely an
initial subspace of maximum dimension N − 1 and an initial subspace of dimension n
chosen in order to skip as many initial rounds as possible without increasing the degree.
As can be seen, the number of rounds obtained in practice in this last case matches the
theoretical ones.

8Indeed, a full zero sum on N bits after the S-Box layer implies a full zero-sum on N bits after the
mixing layer (since it is linear). The result follows from the fact that the non-linear layer is partial (in our
case, just 1 S-Box and t− 1 identity functions are applied).
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On the other hand, the gap for the number of rounds obtained in the case of an initial
subspace of maximum dimension N − 1 is in many cases non-trivial. This choice of the
initial subspace seems to allow an attacker to break more rounds than by using an initial
subspace of dimension n. As a result, in many cases it seems it is possible to break many
more rounds than the ones predicted by RLinear and/or R[ARS+15]. We conjecture that
this result is due to the fact that several cancellations of monomials in the encryption
polynomial occur. Thus, our understanding of the degree growth for P-SPN ciphers is far
from complete and we leave this as an open problem. As future work, the goal would be
to estimate the growth of the degree in the case in which N − 1 bits are active.

6.2 Feistel Ciphers over (F2n)2

Similar results can be proposed for Feistel schemes over (F2n)2 in the case in which one
branch is active (i.e., n bits).

Proposition 8. Let Ek : (F2n)2 → (F2n)2 be a Feistel cipher for which the i-th round
function Rki is defined as

(x, y) 7→ (y ⊕R(x⊕ ki), x),

where R : F2n → F2n is simply defined as some invertible (low-degree) polynomial function
R(x) := ρ0⊕

⊕d
i=1 ρi ·xi of degree d ≥ 3 and with ρi ∈ F2N , ρd 6= 0. Here ki ∈ F2n denotes

the i-th subkey. In the case in which n bits (i.e., one branch) are active, at least

1 + dlogd(2n − 1)e

rounds are necessary to guarantee security against higher-order differential distinguishers.

Proof. Let us consider the case of n active bits in an initial structure of the form (C,A),
where C denotes a constant word and A denotes an active word. The first round does
not activate any S-Box. The output of the r-th round for r ≥ 2 can be described as a
polynomial of degree at most dr−1. Working in the same way as in the Even–Mansour
case, a monomial of degree 2n − 1 is expected to appear if the number of rounds r satisfies
dr−1 ≥ 2n − 1. In case where more bits are active, the number of rounds necessary to
guarantee security cannot be smaller.

6.2.1 Practical Results

We consider the setting of a balanced Feistel network, where the number of branches is
t = 2. Each of the branches is n bits long (i.e. the block size is 2n). In our practical tests,
we considered two scenarios:

1. We set the number of active bits to only n (namely, 1 branch) in the first approach.

2. We set the number of active bits to 2n− 1 in the second one.

We summarize our results in Table 3. They were obtained using the same testing method-
ology as described in Section 5 (i.e., random subspaces9, random round constants, random
keys). For the first case (one active branch – n active bits), we provide a comparison
between the practical results and the ones obtained using the theoretical result given in
the previous proposition. As expected, the theoretical results for the number of rounds
necessary were always lower than what we observed in practice. Moreover, as for the
Even–Mansour case or for the SPN/P-SPN cases, the gap between the two cases decreases
by increasing the size of the branch n.

9Namely, one branch is active and the remaining n− 1 active bits are distributed at random in the
other branch. Our practical results are (almost) not influenced by this distribution.
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Table 3: Practical number of rounds necessary to prevent zero-sum distinguishers for the
case of Feistel ciphers over F2n , where the round function is of the form R(x) = x3. Note
that we explicitly try to avoid zero sums, and we ignore subspaces and round numbers
resulting in constant-sum distinguishers.

Param. Theoretical Practical R
n dimension n dimension n dimension 2n− 1
3 3 5 6
5 5 7 10
7 6 8 12
9 7 9 14
11 8 9 16
13 10 11 17

6.2.2 Related Work

The theoretical result just presented for the case of one active branch is analogous to the
analysis presented in [BCD+20] for the case of a Feistel scheme over Fp. In such a case,
the authors exploit the fact that for any polynomial function f over Fp

deg(f) ≤ p− 2 =⇒
∑
x∈Fp

f(x) = 0

in order to estimate the number of rounds that can be broken via a natural generalisation
of higher-order differential attacks over Fp (see [BCD+20, Prop. 1]). Since our previous
result is derived without exploiting the fact that the Feistel scheme is defined over a
Boolean field (we indeed assume that the entire branch is active), it is not a surprise that
the results are equivalent.

7 Summary and Open Problems
7.1 Summary
Our results on the security of SPN ciphers against higher-order differential attacks can
be summarized as follows: The number of rounds necessary to prevent full secret-key
zero-sum distinguishers on SPN ciphers over (F2n)t defined as in Eq. (11) is given by

RLinear =
⌈
logd

(
2n − 1

)⌉
+ dlogδ(t)e ,

where all S-Boxes are defined via the same low-degree polynomial function S. We refer
to the remark about full versus partial zero sums in Section 3 for a clarification of our
terminology in this regard.

7.2 Open Problems
Below we list the main open problems we identified during our research, and which we
leave for future work.

1. One may take into account the details of the linear layer for improving the bounds
on the growth of the degree presented in this paper.

2. HadesMiMC [GLR+20] is probably the most suitable candidate in order to apply
our results. A natural question arises immediately: by combining the results for SPN
ciphers and partial SPN ciphers presented here, how many rounds of this scheme
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is it possible to break by higher-order differential attacks? Moreover, is it possible
to break the full scheme by exploiting the slow growth of the algebraic degree in
the case of a weak linear layer [KR20, BCD+20] (namely, a linear layer M for which
M2 = µI for a certain µ ∈ F where I is the identity matrix)?

3. The analysis of the growth of the degree for partial SPN ciphers and Feistel schemes
is far from being complete. Our current results are similar to the ones obtained for
the Fp-case in [BCD+20]. However, we expect that better results can be obtained
for the Boolean cases, due to the larger number of subspaces that exist in (F2n)t.

4. Finally, a next step would be to extend the higher-order differential distinguishers
presented in this paper to e.g. key-recovery attacks, as was already done for MiMC
in [EGL+20].

Acknowledgements. The authors thank Willi Meier for his valuable comments on an
intermediate version of this paper.
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A Closed Formula for SPN Ciphers – Proof
Proposition 9. Let F be a function from FN2 to FN2 corresponding to the concatenation
of t balanced S-Boxes S1, . . . , St defined over Fn2 . Moreover, assume that all S-Boxes are
equal, that is S := S1 = · · · = St, with algebraic degree δ ≥ 2. Then, for any sequence of
affine functions L1, L2, . . . , LR−1 from FN2 to FN2 , consider the function E(R) from FN2 to
FN2 defined as

E(R) := F︸︷︷︸
R-th round

◦ LR−1 ◦ F︸ ︷︷ ︸
(R−1)-th round

◦ · · · ◦ L2 ◦ F︸ ︷︷ ︸
2-nd round

◦ L1 ◦ F︸ ︷︷ ︸
1-st round

for a certain number of rounds R ≥ 1. The minimum number of rounds R[BCD11]

necessary to prevent (secret-key) zero-sum distinguishers is given by

R[BCD11] :=
⌊

logδ
(
N · γ − 1

γ · δ − 1

)⌋
︸ ︷︷ ︸

≡R0

+
⌈
logγ

(
N − δR0

)⌉
, (20)

where γ is defined as in Proposition 1.

Proof. First of all, note that since neither a linear function nor an affine function can
increase the algebraic degree, it follows that the algebraic degree of the function E(R) is
trivially upper-bounded by

deg
(
E(R)

)
≤ δR.

In order to prove the result, we assume the bound Eq. (4) of deg(G ◦ F ) is as given in
Proposition 1:

deg(G ◦ F (·)) ≤ min
{

deg(G) · deg(F ), N · (γ − 1)
γ

+ deg(G)
γ

}
.

Note that we are not considering a generic function G , but rather are interested in a
concrete encryption function E(R), and thus G is the composition of R rounds L ◦ F (·),
where F is the non-linear layer and L is the affine layer.

For our specific case, the previous formula can be rewritten as an iterative sequence.
Let xi denote the degree of E(R) at round i = R ≥ 1. It follows that

xi+1 ≤ min
{
δ · xi;

N · (γ − 1)
γ

+ xi
γ

}
,

where in the following f(x) = δ · x and g(x) = N ·(γ−1)
γ + x

γ . By simple computation, note
that [

f ′(x) = δ

]
>

[
g′(x) = 1

γ

]
since δ ≥ 2 and γ ≥ 1. Given x0, let i be the minimum positive index s.t. f(xi) ≥ g(xi).
It follows that

∀j ≥ i : xj+1 ≤ min {f(xj); g(xj)} = g(xj).
In order to apply the bound Eq. (4), we work by induction. In the first step, G(·) is

just an identity function I(·) (of degree 1). This means that

deg( G︸︷︷︸
≡I(·)

◦F (·)) = deg(F (·)) = δ ≤ min

deg(G) · deg(F )︸ ︷︷ ︸
=deg(F )=δ

,
N · (γ − 1)

γ
+ deg(G)

γ︸ ︷︷ ︸
=N−N−1

γ

 .
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Due to the previous considerations, we now look for the maximum number of rounds R0
such that deg(G) · deg(F ) ≤ N ·(γ−1)

γ + deg(G)
γ .

In our case, this corresponds to

δR0+1 ≤ N · (γ − 1)
γ

+ δR0

γ
.

By simple computation, we obtain that δR0 · (γ · δ − 1) ≤ N · (γ − 1), that is,

R0 =
⌊

logδ
(
N · γ − 1

γ · δ − 1

)⌋
.

In other words, for any number of rounds R ≤ R0, the degree of E(R) is upper-bounded
by the left term of Eq. (4).

Next, we need to find the minimum number of rounds in order to prevent higher-order
differential attacks. Remember that given a function f(·) of algebraic degree δ, the sum
over the outputs of the function applied to all elements of a vector space V of dimension
≥ δ + 1 is zero. Since we only consider attacks that use less than the full code book, the
biggest subspace of F2N has dimension N − 1. As a result, a zero-sum distinguisher can
be set up for at most R rounds, where

deg
(
E(R)

)
≤ N − 2.

By simple computation (using the left term of Eq. (4)), it follows that the degree of E(R)

after R = R0 +R1 > R0 rounds (for a certain R1 > 0) is upper-bounded by10

deg
(
E(R)

)
≤ N · (γ − 1) ·

R1∑
j=1

(
1
γ

)j
+ δR0

γR1
= N · (γR1 − 1)

γR1
+ δR0

γR1
,

where δR0 is the degree of E(R) after R0 rounds. Indeed, after R0 + 1 rounds the degree is
upper-bounded by

N · (γ − 1)
γ

+ δR0

γ
,

after R0 + 2 rounds it is upper-bounded by

N · (γ − 1)
γ

+ 1
γ
·
(
N · (γ − 1)

γ
+ δR0

γ

)
= N · (γ − 1) ·

(
1
γ

+ 1
γ2

)
+δR0

γ2 ,

and so on. As a result, it follows that deg(E(R)) ≥ N − 1 if

N · (γR1 − 1)
γR1

+ δR0

γR1
≥ N − 1,

that is, N − δR0 ≤ γR1 , or equivalently

R1 ≥
⌈
logγ

(
N − δR0

)⌉
.

In conclusion, The number of rounds R[BCD11] necessary to prevent zero-sum distin-
guishers is given by

R[BCD11] :=
⌊

logδ

(
N · γ − 1

γ · δ − 1

)⌋
︸ ︷︷ ︸

≡R0

+
⌈
logγ

(
N − δR0

)⌉
≈

≈
⌊

logδ

(
N · γ − 1

γ · δ − 1

)⌋
+
⌈

logγ

(
N · γ · (δ − 1)

γ · δ − 1

)⌉
.

10Remember that for each 0 ≤ X < 1:
∑n

j=1 X
j = X−Xn+1

1−X .
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Table 4: Theoretical and practical round numbers necessary to prevent zero-sum dis-
tinguishers for MiMC-like ciphers over F2N , in the case of a round function of the form
R(x) = xd for several values of d = 2d′ + 1.

Param. Theoretical Practical
d N RLinear R[BCD11] Practical R

5

13 6 5 7
17 8 5 8
33 15 6 15
65 28 7 -
129 56 8 -

9

13 5 5 6
17 6 5 7
33 11 6 12
65 21 7 -
129 41 8 -

17

13 4 5 6
17 5 5 7
33 9 6 10
65 16 7 -
129 32 8 -

33

13 3 5 6
17 4 5 7
33 7 6 9
65 13 7 -
129 26 8 -

65

13 4 5 7
17 3 5 7
33 6 6 9
65 11 7 -
129 22 8 -

B Practical Tests on Iterated Even–Mansour Ciphers
In this section, we present our practical results for Even–Mansour Ciphers instantiated
with S-Boxes x 7→ xd for which the exponent is of the form d = 2d′ + 1 and d = 2d′ − 1
(see Table 4 and Table 5 for more details). We recall that x 7→ xd is a permutation in F2N
iff gcd(d, 2N − 1) = 1. Before going on, we recall that we work on Even–Mansour Ciphers
rather than SPN ciphers in order to get results that are independent of the linear layer.

Estimation for R[BCD11] and Bound for γ. In the case in which d = 2d′ + 1, the
algebraic degree of the round function x 7→ xd is always 2. This means that we can reuse
the bound for γ given in [EGL+20, Sect. 3.1], namely γ = (n+ 1)/2.

In the case in which d = 2d′ − 1, the algebraic degree of the round function x 7→ xd is
equal to d′. Hence, it is not hard to show that

γ ≤ max
{

N − b(N − 1)/d′c
N − δ · b(N − 1)/d′c , n−

⌊
N − 1
d′

⌋
− 1
}
. (21)

Practical Results. As we have already explained in Section 3, we expect that the gap
between the theoretical and the practical results can be larger for d = 2d′ + 1 than for the
case d = 2δ − 1. Again, this is due to the fact that in the case d = 2d′ + 1, the encryption
polynomial is in general far from being full (or at least dense for large d′).
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Table 5: Theoretical and practical round numbers necessary to prevent zero-sum distin-
guishers for the case of MiMC-like ciphers over F2N , in the case of a round function of the
form R(x) = xd for several values of d = 2d′ − 1.

Param. Theoretical Practical
d N RLinear R[BCD11] Practical R

7

13 5 3 5
17 7 3 7
33 12 4 14
65 24 4 -
128 46 5 -

15

13 4 2 4
17 5 3 5
33 9 3 9
65 17 4 -
129 34 4 -

31

13 3 2 4
17 4 2 5
33 7 3 8
64 13 3 -
129 27 3 -

63

13 3 2 3
17 3 2 6
35 6 2 8
65 11 3 -
129 22 3 -

Our practical results confirm this analysis. In more details, we found that – especially in
the case in which d is smaller than (or comparable to) the size of the field – the polynomial
that describes the encryption function is in general dense (even if it is not always full) in
the case d = 2d′ − 1. In the case in which d is bigger than (or comparable to) the size
of the field, a possible gap can occur between the practical round numbers necessary to
provide security and the predicted theoretical ones. We found that the reason of this is
due to the fact that the encryption polynomial is in general sparse11.

As a result, for d = 2d′ − 1 the real number of rounds that provides security against
(secret-key) zero-sum distinguishers is close to RLinear previously given (even if it can be a
little bigger), while the gap between these two numbers is in general bigger for the case
d = 2d′ + 1. This fits with the theoretical prediction made before (and with the results
regarding “Variants of MiMC” presented in [AGR+16]). For completeness, we point out
that RLinear is similar (or even equal) for d = 2d′ + 1 and d = 2d′ − 1, since

log2d′+1(2N − 1) ≈ log2d′−1(2N − 1) ≈ N

d′
.

However, we remark one more time that the gap between RLinear and the (practical/real)
number of rounds necessary to provide security is in general bigger for d = 2d′ + 1 than
for d = 2d′ − 1.

11See the discussion given in Section 3 for d = 3, where we show that even if the polynomial is full after
the first round, it may not be full after the next rounds.
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C Closed Formula for Partial-SPN Ciphers– Proof
Proposition 10. Let F be a function from FN2 to FN2 corresponding to the concatenation of
1 smaller balanced S-Box S defined over Fn2 and an identity function over F2N−n ≡ F2n·(t−1) .
Moreover, assume that the S-Box S has algebraic degree δ ≥ 2, and let β = max1≤i≤n(δi−i),
where δk is the maximum algebraic degree of the product of any k output bits of the S-Box.

Then, for any affine functions L1, L2, . . . , Lt−1 from FN2 to FN2 , consider the encryption
function E from FN2 to FN2 defined as

E(r)(·) = F︸︷︷︸
R-th round

◦ LR−1 ◦ F︸ ︷︷ ︸
(t−1)-th round

◦ · · · ◦ L2 ◦ F︸ ︷︷ ︸
2-nd round

◦ L1 ◦ F︸ ︷︷ ︸
1-st round

(·)

for a certain number of rounds r ≥ 1. The minimum number of rounds R[ARS+15] of
E(R[ARS+15]) necessary to prevent (secret-key) zero-sum distinguishers on N bits is defined
as in Eq. (19). 12 In a similar way, in order to prevent zero-sum distinguisher on t− 1
words, (approximately) 1 +R[ARS+15] rounds of E(R[ARS+15]) – where R[ARS+15] is defined
as before – are needed.

Proof. The proof of this proposition is similar to the one given in Appendix A. For this
reason, here we limit ourselves to highlight the main differences.

As before, let

f(x) = δ · x, h(x) = β ·m+ x, g(x) = N · (γ − 1)
γ

+ x

γ
,

where δ, β,m, γ are constants. It follows that[
f ′(x) = δ

]
>

[
h′(x) = 1

]
>

[
g′(x) = 1

γ

]
,

since δ ≥ 2 and γ ≥ 1.

1st Part. Due to the bounds already recalled, we know that

deg(G ◦ F (·)) ≤ min
{

deg(G) · deg(F ), β ·m+ deg(G), N · (γ − 1)
γ

+ deg(G)
γ

}
,

where β is defined as before.
First of all, note that we are not considering a generic function G, but a concrete

encryption function E(R). Since the growth of the degree is independent of any affine/linear
function, it follows that the degree of such an encryption function E(R) is upper-bounded
by

deg
(
E(R)

)
≤ δR

(note that we are working with S-Boxes with equal algebraic degree).
In order to apply the bound from Eq. (4), the first step is to find the maximum number

of rounds R0 such that deg(G) · deg(F ) ≤ β + deg(G). In our case, this corresponds to

δR0+1 ≤ β + δR0 ,

12We observe that the result is meaningful since

1st)
⌊

logδ
(

β
δ−1

)⌋
≥ 0 since β ≥ δ − 1;

2nd)
⌊
N
β
− 1
δ−1 −

γ
γ−1

⌋
≥ 0 since 1

δ−1 + γ
γ−1 = 1+ 1

δ−1 + 1
γ−1 ≤ 3 and since N

β
≥ N

n−2 ≥ t ·(2+ 2
n−2 ) ≥

2t ≥ 4 (where β ≤ n− 2);

3rd)
⌊

logγ
(

β
γ−1

)⌋
≥ 0 since β ≥ γ − 1.
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which implies that

R0 =
⌊

logδ
(

β

δ − 1

)⌋
.

Note that β ≥ δ − 1 by definition. As a result, R0 ≥ 0.
Next, we find the maximum number of rounds R1 such that β + deg(G) ≤ N ·(γ−1)

γ +
deg(G)
γ . This corresponds to

β · (R1 + 1) + δR0 ≤ N · (γ − 1)
γ

+ β ·R1 + δR0

γ
,

which implies

R1 =
⌊
N

β
− δR0

β
− γ

γ − 1

⌋
.

Finally, we need to find the minimum number of rounds in order to prevent higher-order
differential attacks. Remember that given a function f(·) of degree d, the sum over the
outputs of the function applied to all elements of a vector space V of dimension ≥ δ + 1
is zero. Since we only consider attacks that use less than the full code book, the biggest
subspace of F2N has dimension N − 1. As a result, a zero-sum distinguisher can be set up
for at most R[ARS+15] rounds, where

deg
(
E(R[ARS+15])

)
≤ N − 1.

For this last step, we can simply reuse the computation proposed in the previous proof. It
follows that deg

(
E(R)) ≤ N − 1 if

N · (γR2 − 1)
γR2

+ β ·R1 + δR0

γR2
≤ N − 1,

which means that
R2 =

⌊
logγ

(
N − β ·R1 − δR0

)⌋
.

In conclusion, the minimum number of rounds R[ARS+15] of E(R[ARS+15]) necessary to
prevent (secret-key) zero-sum distinguishers on N bits is given by

R[ARS+15] ≥
⌊

logδ

(
β

δ − 1

)⌋
︸ ︷︷ ︸

≡R0

+
⌊
N

β
− δR0

β
− γ

γ − 1

⌋
︸ ︷︷ ︸

≡R1

+
⌈
logγ

(
N − β ·R1 − δR0

)⌉
≈

≈ 1 +
⌊

logδ

(
β

δ − 1

)⌋
+
⌊
N

β
− 1
δ − 1 −

γ

γ − 1

⌋
+
⌈

logγ

(
β

γ − 1

)⌉
,

where the last inequality is an equality if

logδ
(

β

δ − 1

)
and N

β
− δR0

β
− γ

γ − 1

are integer numbers.

2nd Part. The previous formula is obtained by considering the case in which the
attacker works with a subspace of size N − 1 bits. However, another strategy can be better
in general. Due to the partial S-Box layer, the attacker can skip some initial rounds by
exploiting a clever choice of the input subspace set. In particular, by skipping x rounds,
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the subspace that the attacker can exploit has dimension at most n× (t− x). It follows
that

R[ARS+15] ≥ max
0≤x≤t−1

{
x+

⌊
logδ

(
β

δ − 1

)⌋
︸ ︷︷ ︸

≡R0

+
⌊
n× (t− x)

β
− δR0

β
− γ

γ − 1

⌋
︸ ︷︷ ︸

≡R1

+

+
⌈
logγ

(
n× (t− x)− β ·R1 − δR0

)⌉}
≈

≈ max
0≤x≤t−1

{
x+ 1 +

⌊
logδ

(
β

δ − 1

)⌋
+
⌊
n× (t− x)

β
− 1
δ − 1 −

γ

γ − 1

⌋
+

+
⌈

logγ

(
β

γ − 1

)⌉}
.

3rd Part: Conclusion. What is the best choice for x (equivalently, how many rounds x
does it make sense to “skip”)? By simple computation, note that

d
dxR

[ARS+15] ' 1− n

β
.

By definition of β, it follows that

1 ≤ β = max
1≤i≤n

(δi − i) ≤ n− 1

since −i ≤ −1 and since δi ≤ n (the product of i coordinates of an S-Box over n cannot
be of degree bigger than n). As a result

d
dxR

[ARS+15] ' 1− n

β
≤ 1− n

n− 1 = − 1
n− 1 < 0,

where remember that n ≥ 3. This means that the maximum is taken for x = 0, that is,
the best choice is x = 0.
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