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Abstract. Time-based primitives like time-lock puzzles (TLP) are find-
ing widespread use in practical protocols, partially due to the surge of
interest in the blockchain space where TLPs and related primitives are
perceived to solve many problems. Unfortunately, the security claims
are often shaky or plainly wrong since these primitives are used under
composition. One reason is that TLPs are inherently not UC secure and
time is tricky to model and use in the UC model. On the other hand, just
specifying standalone notions of the intended task, left alone correctly
using standalone notions like non-malleable TLPs only, might be hard
or impossible for the given task. And even when possible a standalone
secure primitive is harder to apply securely in practice afterwards as its
behavior under composition is unclear. The ideal solution would be a
model of TLPs in the UC framework to allow simple modular proofs. In
this paper we provide a foundation for proving composable security of
practical protocols using time-lock puzzles and related timed primitives
in the UC model. We construct UC-secure TLPs based on random ora-
cles and show that using random oracles is necessary. In order to prove
security, we provide a simple and abstract way to reason about time in
UC protocols. Finally, we demonstrate the usefulness of this foundation
by constructing applications that are interesting in their own right, such
as UC-secure two-party computation with output-independent abort.
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1 Introduction
The Universal Composability (UC) framework [17] is widely used for formally
analyzing cryptographic protocols as it provides strong security guarantees that
allow UC-secure protocols to be arbitrarily composed. This is a very useful prop-
erty and enables the modular design of cryptographic protocols. However, the
original UC framework is inherently asynchronous and does not support the no-
tion of time. Katz et al. [36] introduced a clock functionality in order to define
universally composable synchronous computation. Their clock functionality cap-
tures the essence of synchronized wall clocks that are available to all parties. This
notion is particularly useful in reasoning about synchronous protocols in the UC
framework, since the honest parties can use the clock to achieve synchronization.

However, many cryptographic protocols do not depend on concrete time pro-
vided by a wall clock, but just on the relative order of events, such as the arrival
of messages or the completion of some computation. In particular, protocols
in a semi-synchronous communication model (e.g. [25,5]) rely on the fact that
there exists a finite (but unknown) upper bound for the delay in communication
channels, without requiring that events (e.g. the arrival of a message) occur at
a specific wall clock time (or even within a concrete delay) as long as they occur
in a certain order. In this case, using a clock can make the design and security
analysis of such protocols unnecessarily complicated.

Another important challenge lies in modeling sequential computation and
computational delays in the UC framework. Since the environment may operate
in many parallel sessions and activate parties arbitrarily, it obtains an unfair
computational advantage in relation to the parties. For example, even if its
computational power is constrained within a session, the environment can use
multiple sessions to solve faster than a regular party a computational problem
assumed to require at least a certain amount of computational steps (and thus
time). This precludes the UC modeling and construction of primitives based on
sequential computation and computational delays, such as time-lock puzzles [45].

1.1 Our Contributions

In this work, we introduce a new abstract notion of time in the UC framework
that allows us to reason about communication channels with delays as well as
delays induced by sequential computation. We demonstrate the power of our
approach by introducing the first definition and construction of composable time-
lock puzzles (TLPs) without resorting to clocks, which we use to obtain the
first two-party computation protocol with output-independent abort. Finally,
we establish that a programmable random oracle is necessary for obtaining UC-
secure TLPs. Our contributions are summarized below:

– Abstract Time in UC: we put forth a novel abstract notion of time for
the UC framework capturing relative event ordering without a clock.

– Impossibility of UC-Secure TLPs without Programmable Random
Oracles: we prove that programmable random oracles are necessary for con-
structing UC-secure TLPs, yielding a new separation between programmable
and non-programmable random oracles.
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– First Composable Treatment of Time-Lock Puzzles (TLPs): we in-
troduce the first composable definition and construction of time-lock puzzles.
Our construction uses a RO, as it must. However, it has a flavor of “graceful
degradation”: if the hash function is not modeled as a random oracle, our
TLPs are still non-malleable, which is in some sense optimal without a RO.

– First Two-Party Computation Protocol with Output Independent
Abort: we use TLPs to construct a UC-secure two-party computation pro-
tocol where the adversary cannot see the output before deciding to abort.

The incompatibility of time-lock puzzles and UC security is easy to explain.
All that is needed is to recall that UC has straight-line simulation. Let P =
TLP(x, T, t) be a timed commitment to x which can be opened in time T and
is hiding for time t < T . Consider simultaneous message exchange. In the UC
functionality Alice inputs a, Bob inputs b and only then are both given (a, b).
Here is a toy protocol which does not work for many reasons. Alice and Bob
each publish PA = TLP(a, T, t) and PB = TLP(b, T, t) and then open the puzzles
or brute force them. Assume that Alice is supposed to send her puzzle first,
and Bob is corrupted. In the security proof, the UC simulator needs to extract
Bob’s input b in order to query the ideal functionality and learn a. However, the
simulator needs to learn PB for that. PB though is only sent by Bob after seeing
PA. As a result, the simulator has to produce PA without knowing a. Rewinding
is not allowed, so the simulator cannot go back and replace the puzzle PA.
The simulator had to put some a′ inside PA and is now committed to it. If a
is random then with noticeable probability a′ 6= a. In UC these problems are
typically handled by having trapdoors which allow to do equivocation. Had PA
been a UC commitment we could have changed a′ to a before opening. But PA is
a TLP, so there is no way to cheat. The UC environment can simply take PA and
brute-force it open. So the a′ is irrevocably committed to by PA. A shorter way
to explain the problem is as follows. In a UC simulation the simulator must for
all puzzles it sends agree on what is inside at the point in time where they were
sent. And the UC experiment will keep running as long as the environment wants,
so it can allow itself time enough to open all puzzles eventually. Hence puzzles
will not afford us the power of a UC commitment which can be equivocated.
Unfortunately, equivocation is exactly the power needed for simulating time-
lock puzzles in the UC framework for most interesting applications.

Although the above argument only shows that one particular protocol does
not work, we show that the problem cannot be circumvented by any protocol
even allowing setup like a CRS. Assuming a random oracle, however, one can
cheat and use the random oracle to get equivocation. Note the if we model H as
a random oracle and send TLP(r), H(r)⊕m in a simulation, we can reprogram
H at r as long as TLP(r) is hiding r such that H was not queried at r. This is
of course an unsatisfactory solution, but some comfort can be gained from the
fact that we provably cannot do without such a cheat if we want UC security.

There is a clear need for a UC model of time-lock puzzles and other time-
based primitives, since those are finding widespread use in complex scenarios like
the widely distributed and concurrent blockchain setting, where there is no way
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around having composable security for the protocol building blocks. Many of the
proposed uses are often relatively simple a la the above simultaneous message
exchange example. However, the security statements are often provably wrong,
as TLPs for instance cannot yield composable simultaneous message exchange.
Reverting to non-composable game-based definitions of the intended tasks and
using non-malleable TLPs for the standard model is in principle a solution, but
the proofs are typically complicated and the protocols inefficient. We therefore
introduce a foundation for practical TLP-based protocols using a UC model of
TLPs that allows simple analysis of practical protocols. This model is motivated
in the same vein as the random oracle model, which was also proposed as a basis
for analysing efficient, practical protocols.

Clearly, when using TLPs we also need a notion of time. If a TLP that can
be broken in an hour is received through a network, it should not be trusted to
be hiding an hour later. That requires a notion of time (e.g. a clock). Often the
reliance on time in practical protocols using TLPs if fairly light. In line with the
motivation above, we therefore provide also a simple abstract notion of time.

The advantage of our new abstract notion of time for the UC framework
is twofold: 1. it captures delays without explicitly referring to wall clock time
and 2. it allows for modeling delays induced by sequential computation. This
notion makes it possible to state protocols and security proofs in terms of the
relative delays between events (e.g. the arrival of a message or completion of a
computation) and the existence of large enough delays that ensure that these
events occur in a certain order.

Building on this model, we introduce the first definition and construction of
UC-secure time-lock puzzles. Our construction is based on the classical time-lock
assumption of Rivest et al. [45] and uses a restricted programmable and observ-
able global random oracle, which we prove to be necessary. As an application of
our composable TLPs, we introduce the notion of two-party computation (2PC)
with output independent abort (OIA) along with the first OIA-2PC protocol.
This new security notion for secure computation guarantees that an adversary
who aborts the execution cannot learn any information about the output before
deciding to abort, only obtaining the output after this decision is made. Our
new definition improves on the standard security notion with abort (realized by
all known 2PC protocols), which allows for the adversary to decide whether to
force the honest parties to abort without obtaining the output after learning the
output itself. We argue that this new security notion is optimal, since fairness
(i.e. ensuring all parties obtain the output if the adversary does so) for 2PC
protocols is impossible [22].

1.2 Related Work.

Composition frameworks with time and fairness. Composition frameworks for
cryptographic protocols (e.g. UC [17], constructive cryptography [40], the reac-
tive simulatability (RSIM) framework [43]) provide strong security guarantees
for protocols under concurrent composition. In all mentioned frameworks, com-
munication is through inherently asynchronous channels. Several works have
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therefore studied general composition guarantees with synchronous communica-
tion by introducing a shared source of time or restricting adversarial scheduling.
Modeling network timing assumptions such as bounded message delay and clock
drift and the resulting concurrent composition guarantees for specific tasks was
studied for zero-knowledge [26], [30] and MPC [34]. In the context of composition
frameworks, Backes et al. [4] model traffic-related timing attacks in GNUC [32]
by allowing the adversary to measure the local time at which a message arrives.
In this setting, each party has a local execution time, and the EXEC function of
GNUC maps the local times into a global time. Backes et al. [3] studied fairness
in the RSIM framework and achieve a composable notion of fairness by restrict-
ing the adversary model to fair schedulers who deliver any message after at most
a polynomial number of steps.

The work that is most closely related to ours is that of Kiayias et al. [37],
which points out limitations of the local clock functionality of Katz et al. [36]
and adapts it to the Global UC (GUC) framework [18] to provide all parties with
access to a global clock functionality for the purpose of synchronization. Their
model requires all parties executing a (semi-)synchronous protocol to keep track
of current global clock time and to actively query the global clock functionality in
order to advance of time. In particular, even if their model is used to define semi-
synchronous communication, it implies that all parties are kept synchronized and
may learn how much time has elapsed since their last activation (i.e. by obtaining
the current time from the global clock), which is a rather strong synchrony
assumption. However, many protocols cast in this model do not crucially rely on
obtaining concrete time stamps or determining concrete delays between party
activations, as long as messages are guaranteed to be delivered within certain
delays and in a certain order (e.g. as in [5]). This is exactly the kind of guarantees
that our model captures without explicitly exposing time keeping to parties
or requiring them to keep track of concrete time sources. By doing that, our
model allows us to analyse many protocols cast in their model while significantly
relaxing synchrony assumptions. Moreover, our model can be used to capture
delays induced by sequential computation, which is not captured by the global
clock model of Kiayias et al..

Another work technically related to ours is the notion of resource-fairness
for protocols in UC introduced by Garay et al. [29]. Resource fairness ensures
that honest parties who invest a certain amount of resources (e.g. computational
time) can always recover from an abort and obtain the protocol output in case
the adversary causes an abort in such a way that it learns the output. In order to
realize this notion, Garay et al. show a generic compiler based on a “time-line”
construction and a secure computation functionality. Essentially, this time-line
encodes a number of computational states into a programmable common refer-
ence, which parties use in order to commit to messages that can be recovered by
another party who invests enough computational steps. This idea differs from
our work in that it limits TLP delay a priori, since the maximum number of
computational states used to ensure delay is fixed by the CRS. This crucial dif-
ference also forces the resource-fairness framework to modify the UC framework
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in such a way that environments, adversaries and simulators must have an a pri-
ori bounded running time. On the other hand, our modelling of computational
time and TLPs does not make modifications or restrictions to the UC environ-
ment, as well as allowing us to define TLPs in a more natural way where there’s
no a priori bound to the TLP delay. In particular, this means that TLPs can be
parameterized with any arbitrary delay and that honest parties are always able
to solve a TLP, which also allows us to realize our notion of output independent
abort in such a way that honest parties can always either retrieve the output
of the computation or determine that the adversary has aborted (by solving the
adversary’s TLPs).

Another relation to [29] is that both papers circumvent the problem that
TLPs are not UC simulatable. We do it using the simple hack of using a random
oracle, to get a simple model to work with. In [29] it is done by letting the
simulator depend on the running time of the environment.

As an example of how to exploit this consider a party that wants to commit to
s. It secret shares it into (s1, . . . , sk) and makes public P1 = TLP(s1), . . . , Pk =
TLP(sk). The hardness of Pi is set to 2i and k is the security parameter. So
Pk cannot be brute-forced open. For each si it also gives a UC commitment
to si and a ZK proof that the commitment is to the value in the TLP. To
do fair message exchange both Alice and Bob do the above with s = a and
s = b. Then the parties open the commitments (not the TLPs) to the shares in
the order sk, sk−1, . . ., taking turns to reveal a share. If a party stops opening
commitments, then use the TLPs to learn the remaining shares, if the hardness
of the remaining TLPs is feasible. Now in the simulation, if the running time of
the environment is upper bounded to some polynomial t, then there exists i0 < k
such that 2i0 > t. Now the simulator can put dummy shares s′i in Pj for j ≥ i.
When it learns the message a of Alice it can then adjust the UC commitments to
be a secret sharing of a. It does not have to adjust the TLPs as the environment
will not have time to open them. The fact that there is an ”end of time” in the
simulation allows to simulate some TLPs. On the other hand, the fact that there
is an “end of time” in the simulation makes composition cumbersome. Indeed [29]
gets a complicated notion of security where a protocol to be called secure must
be secure in two ways. It must be secure in a so-called resource game, and it
must also be so-called full simulation secure. This requires [29] to develop a new
variant of the UC framework. This variant does not imply security in the normal
UC model which does not have an “end of time”.

It also seems hard to prove security of most practical protocols in [29]. The
reason is that it seems hard to exploit the simulator’s knowledge of the running
time of the environment (which can be any polynomial) without using TLPs
of super-polynomial running time, as in the above examples with TLPs of dou-
bling hardness. This seems to make it hard to prove security of many simple and
intuitively secure scheme like the first protocol above with two TLPs for simul-
taneous message exchange. Either these two TLPs have a hardness set such that
real-world parties can brute-force them (and then so can the environment) or it
is set so hard that the environment cannot brute-force them, then neither can
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the parties. In the first case the protocols falls prey to our impossibility result.
In the later case the TLPs seems useless.

We find the techniques and models in our paper and [29] complementary. Our
model is built on the normal (G)UC model without modifying it and is simple
to specify and use. But needs a random oracle. The paper [29] shows that even
without random oracles not everything is lost. It is possible to get models and
some constructions with UC like security.

Time-Lock Puzzles and Computational Delay The original construction of time-
lock puzzles was proposed by Rivest, Shamir and Wagner [45]. Boneh and Naor
[14] introduced the notion of timed commitments. An alternative construction
of time-lock puzzles was presented by Bitansky et al. [12]. Recently, the related
notion of verifiable delay functions has been investigated [13,44,49]. These con-
structions are closely related in that they rely on sequential computational tasks
that force parties to spend a certain amount of time before they are able to
obtain an output. However, none of these works have considered composability
issues for such time-based primitives. In particular, the issues of malleability
for these time-based primitives and the relationship between computational and
communication delay are notably ignored in previous works. The lack of compos-
abillity guarantees for time-lock puzzles is a significant shortcoming, since these
primitives are mostly used as building blocks for more complex protocols and
current constructions do not ensure that their security guarantees are retained
when composed with other primitives to obtain such protocols. Our composable
treatment of time-lock puzzles addresses theses issues by introducing construc-
tions that can be arbitrarily composed along with a framework for analysing
complex protocols whose security relies on the relative delays in computation
and communication.

Concurrently to us, Katz et al. [35] as well as Ephraim et al. [27] have con-
structed Non-Malleable Timed Commitments. Among others, [24] have shown
that UC (non-timed) Commitments imply Non-Malleable Commitments. A sim-
ilar argument can be made for timed commitments as well. In that sense, our
construction of UC-secure TLPs implies [35,27]. At the same time, our work
crucially relies on a programmable Random Oracle (and indeed shows that it
is necessary to achieve UC security). Neither [35] nor [27] require such strong
assumptions and can be seen as realising the strongest notion of non-malleability
achievable without using a (programable) random oracle or similar assumption:
the beautiful construction of [35] does not require any Random Oracle-type as-
sumption and builds upon RSW-TLPs in the Algebraic Group Model, while [27]
use an observable Random Oracle but their construction can be realized from
a generic TLP. At the same time, [27] also constructs publicly verifiable TLPs
departing from generic strong trapdoor VDFs. We’d like to stress that our con-
struction of a UC-secure TLP is publicly verifiable, although this is only shown
in recent follow-up work [7]. We further note that the work of [27] shows a bound
on the composability of non-malleable TLPs, but their bound does not apply to
our setting as they assume a distinguisher with an arbitrary runtime, while the
UC environment is computationally restricted in our setting.
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Aborts and Fairness in Secure Computation An MPC protocol is said to be fair
if a party can obtain the output if and only if all other parties also obtain the
output. It is a well-known fact that fair MPC in the standard communication
model is impossible with a dishonest majority [22]. Given the impossibility to
achieve fairness, techniques for identifying misbehaving parties responsible for
causing an abort have been investigated [33,8,9]. In the last few years a line
of work developed which imposes financial penalties on parties who are identi-
fied as misbehaving by using cryptocurrencies and smart contracts, thus giving
financial incentives for rational parties to behave in a fair way. Protocols have
been designed to punish misbehavior at any point of the protocol execution (Fair
Computation with Penalties) [2,39,37] or to only punish participants that learn
the output but prevent others from doing the same (Fair Output Delivery with
Penalties) [1,11,38,6]. However, these protocols allow the adversary to make a
decision on whether to abort or not after seeing the output that will be obtained
by the honest parties in case the execution proceeds.

The recent work of Couteau et al. [23] studies the problem of obtaining
partially-fair exchange from time-lock puzzles, but in much weaker security and
adversarial models. In particular, their work does not consider composability
issues and is limited to the specific problem of fair exchange rather than the
general problem of secure computation considered in our results.

Random oracle separation results. Our impossibility result provides yet another
separation between the programmable and non-programmable random oracle
models, complementing the few previously known separations [41,48,28,10].

1.3 Our Techniques

In the remainder of this section, we briefly outline the new techniques behind
our results and their implications.

Abstract Time: Our goal is to express different timing assumptions (possibly
related) within the GUC framework in such a way that protocols are oblivious
to them. We do so by providing the adversary with a way of advancing time
in the form of ticks. A tick represents a discrete unit of time. Time can only
be advanced, and moreover only one unit at a time. In contrast to Katz et al.
[36,37], however, these ticks and thus the passing of time are not supposed to
be directly visible to the protocol. Thus instead of a (global) clock that parties
can ask for the current time, we add a ticking interface to ideal functionali-
ties. This way, timing-related observable behavior becomes an assumption of the
underlying functionalities, e.g. of a computational problem or a channel. Par-
ties may now observe events triggered by elapsed time, but not the time itself.
Ticked functionalities are free to interpret ticks in any way they like; this way we
can synchronize and relate ticks representing elapsed time in different “units”
like passed time or computation steps. The technical challenge is to ensure in a
composable way that all honest parties have a chance at observing all relevant
timing-related events. Katz et al. solved this issue inside the clock by keeping
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track of which parties have been activated in the current time period (and thus
asked for the time) and refusing to advance time if necessary. We enforce the
requirement that all honest parties must be activated between ticks by defining a
global ticker functionality that makes sure this constraint is obeyed. In contrast
to the global clock, our global ticker does not provide any information about the
time elapsed between queries by functionalities, only informing functionalities
that a new tick has ocurred. From the point of view of honest parties, our global
ticker is even more restricted, since it does not inform parties whether a tick
has occurred or not. To further control the observable side effects of ticks, we
restrict protocols and ideal functionalities to interact in the “pull model” known
from Constructive Cryptography, precluding functionalities from implicitly pro-
viding communication channels between parties and instead requiring parties
to actively query functionalities in order to obtain new messages. Apart from
presenting a clear abstraction of time, this notion explicitly exposes issues that
must be taken in consideration when implementing protocols that realize our
functionalities, i.e. the concrete delays in real world communication channels
and computation. In particular, while the theoretical protocol description and
security analysis can be carried in terms of such abstract delays, our techniques
clarify the relationship between concrete time-based parameters (e.g. timeouts
vs. network delays) that must be respected in protocol implementations. We will
go into this in more detail in Section 2.

Composable Treatment of Time-Lock Puzzles: To illustrate the potential uses
of our framework, we present the first definition and construction of UC-secure
Time-Lock Puzzles (TLP). We depart from the classical construction by Rivest
et al. [45] and provide the first UC abstraction of the Time-Lock Assumption,
which is modeled in a “generic group model” style, hiding the group description
from the environment and limiting its access to group operations. A party acting
as the “owner” of an instance of the TLP functionality can generate a puzzle
containing a certain message that should be revealed after a certain number of
computational steps. The functionality allows the parties to make progress on
the solution of the puzzle every time that it is ticked. Once a party solves a
puzzle, it can check that a certain message was contained in that puzzle. The
ticks given to this functionality come externally from the adversary and we
require in the framework that the parties get activated often enough. We show
that our UC abstraction of the Time-Lock Assumption allows us to implement
UC-secure TLPs in the restricted programmable and observable global random
oracle model of Camenisch et al. [15] (which turns out to be necessary for UC-
realizing TLPs). We introduce our notion of TLP in the UC model with a global
ticker in Section 4 and our construction of a protocol realizing this notion in
Section 5.

Two-Party Computation with Output Independent Abort: To further showcase
our framework we construct the first protocol for secure two-party computation
(2PC) with output-independent abort, i.e., the adversary must decide whether
to abort or not before seeing the output. In order to do so, we build on techniques
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from [6]: there, the authors combine an MPC protocol with linearly secret-shared
outputs and an additively homomorphic commitment by having each party com-
mit to its share of the output and then reconstruct the output inside the commit-
ments. In [6], the output of the secure computation is obtained by opening the
final commitments resulting from the reconstruction procedure, which allows the
adversary to learn the output before the honest parties do. He can then refuse
to open its commitment, causing the protocol to abort, based on this informa-
tion. Similarly to [6], we combine a 2PC protocol with secret-shared outputs and
an additively homomorphic commitment, but we define and construct commit-
ments with a new delayed opening interface. When a delayed opening happens,
the receiver is notified after a communication delay but only receives the re-
vealed message after an opening delay. Hence, we can obtain output independent
abort by delayed opening the final commitments obtained after reconstructing
the output and considering that a party aborts if it does not execute a delayed
opening of their commitments before the other parties delayed openings reveal
their messages. Finally, we show how to obtain UC-secure additively homomor-
phic commitments with delayed opening by modifying the scheme of Cascudo
et al. [20] with the help of the delayed secure message transmission and TLP
functionalities. We present these results in Section 6.

Impossibility Result. Finally, we prove that a non-programmable random oracle
is not sufficient for obtaining UC-secure fair-coin flip, secure 2PC with output-
independent abort or TLP. Therefore a programmable random oracle is necessary
to implement these primitives, yielding a separation between the programmable
and non-programmable random oracle models. This also shows that our TLP
construction which requires this strong assumption is in that sense “optimal”.
We present this impossibility result in Section 7.

2 UC with Relative Time

This section describes our notion of abstract time. In order to obtain universal
composability, we model our ideas on top of the GUC framework [18]. The
framework is further discussed in Appendix A. The goal is to capture time in
such a way that parties are oblivious to it and can only observe the progression
of time indirectly through events like the arrival of messages or the completion
of a computation. At the same time, the passing of abstract time is completely
under adversarial control. And most importantly, the notion is meant to be
composable.

Timing assumptions. Our first observation is that timing assumptions are
assumptions about physical systems and should thus be captured at the level of
ideal functionalities. Such a timed functionality has a notion of passing time and
can adapt its behavior as time progresses. This will allow us to reduce properties
of a protocol that require concrete timing assumptions. Note that the time is only
a proof construct, it is not visible to the actual protocol, much like physical time.
Most importantly, having a notion of passing time should not imply synchrony
like in the UC clock models of [37,36].
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Functionality Gticker

Initialize a set of registered parties P = ∅, a set of registered functionalities F = ∅,
a set of activated parties LP = ∅, and a set of functionalities LF = ∅ that have
been informed about the current tick. Gticker communicates with an adversary S.

Party registration: Upon receiving (register, pid) from honest party Pi with
pid pid, add pid to P and send (registered) to Pi.

Functionality registration: Upon receiving (register) from F , add F to F and
send (registered) to F .

Tick: Upon receiving (tick) from the environment, do the following:
1. If P = LP , reset LP = ∅ and LF = ∅, and send (ticked) to S.
2. Else, send (notticked) to the environment.

Ticked request: Upon receiving (ticked?) from F ∈ F , do the following:
– If F /∈ LF , add F to LF and send (ticked) to F.
– If F ∈ LF , send (notticked) to F.

Record party activation: Upon receiving (activated) from party Pi with pid
pid ∈ P, add pid to LP and send (recorded) to Pi.

Fig. 1. Global ticker functionality Gticker.

Global ticker functionality Gticker. This idea leads to natural questions.
Where does this “time” come from? And if there are multiple timed functional-
ities, how is it coordinated between them to support the kind of reductions we
want? The first question can be answered by the well-known concept of adver-
sarial “ticks” that model discrete units of passing time. To answer the second
question, we propose a global ticker functionality Gticker that receives ticks from
the environment and makes them available for ticked functionalities upon re-
quest. Parties themselves have no access to the ticker.

Note that Gticker captures an assumption on the physical world and can there-
fore not be instantiated. It is only a tool for proofs. Similar to the synchronous
setting with a global clock where the next logical round can only start after all
parties have been activated, the global ticker implicitly enforces that all honest
parties can finish their computations for the current tick before advancing to
the next tick. This ensures all honest parties are activated and given a chance to
perform computation without the need to modify the (G)UC framework. Notice
that, while the assumption of a global time is a poor model of reality, we do not
envision our model being used for protocols running in relativistic conditions.

While Gticker allows the ideal adversary to take actions as soon as every tick
happens, it gives no information about passing time to the honest parties. The
only interaction that honest parties have with Gticker is in confirming that they
have been activated. A new tick only happens once all honest parties confirm
they have been activated after the last tick. This mechanism ensures that the
environment or the adversary do not get an unfair advantage in accessing timed
functionalities while preventing the honest parties from also doing so (since in
this case the honest parties will not confirm they have been activated and time
will not progress).
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Only other functionalities (and the ideal adversary) can detect elapsed time
by querying Gticker and receiving a notification in case a new tick happened. In
our model, functionalities take actions such as delivering a message or the output
of a computation once a new tick happens. Hence, honest parties only perceive
time through messages received by other functionalities that have their behavior
conditioned on the progression of time. In particular, if one wants to instantiate
synchronized clocks from Gticker, it would be possible to instantiate a version
of the UC clocks of [37,36] where the clock only progresses when a new tick is
issued by Gticker. With such a construction, parties can access the number of ticks
issued up to a certain point of the execution by querying the clock functionality
(but not Gticker). Note that in this setting, honest parties need to query the clock
functionality regularly to ensure that the clock can in turn query Gticker for ticks.

Conventions. For the sake of readability, we will omit the calls of ideal function-
alities to Gticker which would in the worst case have to occur at every activation.
Functionalities are instead assumed to query Gticker with (tick?) whenever they
are activated, and the behavior upon a positive answer is described as Tick in
the ideal functionality description.

3 Communication Delay

In the context of communication, we interpret abstract time ticks in order to
model message transmission delays. That is, we model the fact that message
transmission is never instantaneous and thus takes time. Moreover, we model
the different synchrony assumptions for communication channels in current lit-
erature. As a concrete example, we will study the secure message transmis-
sion functionality F`smt. Any implementation of an interactive functionality must
strictly speaking be in a F`smt(or similar) hybrid model and hence our model-
ing can be adapted to any interactive functionality. Notice that by interactive
functionalities we mean any functionality that transmits information between
parties, a task that is often done implicitly by UC ideal functionalities such as
those for secure computation.

3.1 Secure Message Transmission with Delays

Secure message transmission (SMT) is the problem of securely sending a single
message m from a sender PS to a receiver PR. Secure means that the power of
an eavesdropper intercepting the channel is restricted to learning some leakage
`(m) on the message and delaying the message delivery. The standard formu-
lation of F`smt [16, 2019 version] assumes that message delivery can be delayed
infinitely by an adversary. Here, we want to add an upper bound on the message
delay. The exact constraints on this upper bound will determine whether a pro-
tocol operates over synchronous, semi-synchronous or asynchronous channels, as
discussed further in Section 3.2

In order to capture elapsed time according to our model, we add a Tick
procedure to obtain a ticked ideal functionality. As mentioned in the previous
section, Tick is run upon each activation if Gticker indicates that a new tick hap-
pened. The functionality is parameterized by a maximal delay ∆ > 0. Requiring
∆ > 0 models the fact that communication always takes time. After a message
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Functionality F∆smt,delay

F∆smt,delay proceeds as follows, when parameterized by maximal delay ∆ > 0, sender
PS , receiver PR and adversary S. Internal variable t is initally set to 0, and flags
msg, released, done to ⊥.

Send: Upon receiving an input (Send, sid,PR,m) from party PS , do:
– If msg = ⊥, record m, set msg = >, and send (Sent, sid,PR, `(m)) to S.
– If msg = >, send (None, sid) to PS .

Receive: Upon receiving (Rec, sid, R) from PR, do:
– If released = ⊥ and done = ⊥, then send (None, sid) to PR.
– If released = > and done = ⊥, then msg = > as well and there exists a

recorded message m. Set done = > and send (Sent, sid,PS ,PR,m) to PR.
– If done = >, then send (done, sid) to PR.

Release message: Upon receiving an input (ok, sid,PS ,PR) from S, do:
– If msg = ⊥, then send (None, sid,PS ,PR) to S.
– If msg = > and released = ⊥, then set released = >.
– If released = >, then send (None, sid,PS ,PR) to S.

Tick:
– If msg = ⊥, then send (None, sid,PS ,PR) to S.
– If msg = > and released = ⊥, then set t = t + 1. If now t = ∆, set

released = >. Then send (Ticked, sid) to S.
– If released = >, then send (None, sid,PS ,PR) to S.

Corrupt: Upon receiving (Corrupt, sid,P) from S where P ∈ {PS ,PR}, do:
– If P = PS and msg = ⊥, send (None, sid,PS ,PR) to S.
– If P = PS and msg = >, then there exists a recorded message m. Send

(Sent, sid,m,PS ,PR) to S.
– If P = PR and done = ⊥, send (None, sid,PS ,PR) to S.
– If P = PR and done = >, then there exists a recorded message m. Send

(Sent, sid,m,PS ,PR) to S.

Fig. 2. Ticked ideal functionality F∆smt,delay for secure message transmission with maxi-
mal message delay ∆.

is input to the functionality by the sender, each tick will increase a counter.
The message is released to the receiver after at most ∆ ticks are counted or
whenever the ideal adversary instructs the functionality to release it.5 However,
a tick cannot directly trigger the activation of parties other than the adversary.
Otherwise, we would be exposing the elapsed time towards the parties and im-
plicitly synchronizing them. As a consequence, the functionality cannot send the
message to the receiver as in [16]. We solve this issue by requiring the receiver
to actively query the functionality for newly released messages. Finally, the ad-
versary can adaptively request to corrupt a party P ∈ {PS ,PR}, in which case
they will learn the message if the corresponding party knows it already. Note
that this corruption behavior differs crucially from Canetti’s formulation: Since

5 The delay model could generalized even further by introducing two delay parameters
∆min and∆max to model that communication must take time. In that case, messages
are only forwarded after ∆min ticks were received.
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message transmission is explicitly taking time, adaptive corruptions at runtime
are actually meaningful now. In particular, it is no longer possible to first observe
leakage on a sent message to then corrupt the sender and change the message
that was sent. The resulting ideal functionality F∆smt,delay is shown in Fig. 2.

In principle, one can transform a UC-functionality also by adding a wrap-
per that buffers messages and handles ticks. Due to the differences in handling
adaptive corruption, we chose a standalone solution for this concrete example.

3.2 Modeling (Semi)-Synchronous Channels

Besides establishing that all messages must be delivered with a maximal delay ∆,
our formulation of F∆smt,delay does not specify if it operates as a synchronous, semi-
synchronous or asynchronous channel. This modeling choice is made so that this
single model can capture all of these assumptions on communication synchrony
by imposing constraints of the maximal delay ∆. We obtain a channel satisfying
each communication synchrony assumption by constraining ∆ as follows:

– Synchronous Channel, finite and publicly known ∆: a synchronous
channel is modeled by setting a finite ∆ > 0 and allowing all parties to learn
∆, which makes it possible for parties to determine if a given message was
sent or not (since a message must be delivered within the known delay ∆).

– Semi-Synchronous Channel, finite but unknown ∆: a semi-synchronous
channel is modeled by setting a finite ∆ > 0 that is only known to the ad-
versary, which ensures parties that all messages will be eventually delivered
but does not allow them to explicitly distinguish a delayed message from a
dropped message (since they do not know the maximal delay ∆ after which
messages are guaranteed to be delivered).

– Asynchronous Channel, infinite ∆: an asynchronous channel is modeled
by setting ∆ =∞, which allows the adversary to never release messages sent
through F∆smt,delay (i.e. essentially dropping these messages).

In the synchronous and asynchronous cases, the constraints on ∆ simply
model the usual notions of synchronous and asynchronous channels. In the semi-
synchronous case, the constraints limit the way a protocol can use ∆, since no
information about it is given to honest parties, precluding them from setting
other parameters of the protocol relatively to a previously known ∆. We remark
that ∆ can potentially be chosen by the adversary itself or preset before exe-
cution starts, as long as the right constraints for the communication synchrony
assumption considered in the proof are obeyed (i.e. in the synchronous case the
adversarially chosen ∆ must be made public to the honest parties and in the
semi-synchronous case ∆ is not revealed to the honest parties). Notice that the
exact value of ∆ does not affect the behavior of honest parties in our model
because the honest parties cannot perceive the advance of abstract time (i.e. the
honest parties cannot tell when a tick happened).

4 Modeling Time-Lock Puzzles and Computational Delay

We will now introduce a concept for modeling sequential computation inside
the UC framework that does not suffer from degradation through composition
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or adversarially chosen activation of parties. As an example, we will realize the
notion of a “time-lock puzzle” [45] in a composable fashion. In a time-lock puzzle
(TLP), the owner generates a computational puzzle that outputs a message to
the receiver when solved. The main property of the construction is that none of
the solvers can obtain the message from the puzzle substantially faster than any
other solvers, thus introducing problems that cannot be parallelized.

To the best of our knowledge, this has not been formalized in the UC frame-
work before and there are multiple pitfalls that one has to avoid when formalizing
TLPs. First, UC allows the environment to activate parties at its will through-
out the session and it might be that an honest party does not even get activated
before the puzzle was solved by the adversary. Even worse, such a modeling
might permit that the environment can solve the puzzle in another session, so
even by enforcing regular activation inside a session (as in the previous section)
or equal computational powers between the iTM modeling the parties as well as
the adversary one cannot achieve the aforementioned notion.

Ticked ideal functionalities help us to overcome both issues, and the resulting
ticked time lock puzzle ideal functionality Ftlp is shown in Fig. 3. It can easily
be seen that the functionality fulfills our definitions as outlined before. First,
any new instance of a puzzle can be tied to a specific party, namely the owner
Po, who can initialize the puzzle by providing a number of computation steps
Γ and a message m. The functionality outputs a puzzle puz = (st0, Γ, tag)
consisting of an initial state st0, the number of steps Γ needed for reaching
a final state and tag tag used to encode the message. After every tick, each
party can use a puzzle state sti to call the Solve interface, which will append
the next state sti+1 to a list of messages delivered to the party after the next
tick. By buffering messages containing the next states, we essentially limit all
parties’ (and the environment’s and adversary’s) ability to attempt performing
more than one solving step per tick and puzzle. Notice that any party who tries
to call Solve more than once per tick for a puzzle would have to guess the next
state sti+1 in order to perform the second call, which can only be done with
negligible probability. Once the final state stΓ is reached, parties can call the
Get Message interface in order to retrieve the message associated with the
puzzle by presenting the puzzle puz and the final state stΓ obtained through
successive calls to Solve. Finally, Ftlp will at the beginning of any activation
query Gticker if a clock-tick happened and execute the Tick procedure if it indeed
did. This will allow each party to obtain a new value, which may get it closer to
the solution of the puzzle.

Observe that this model does neither restrict the actual computational power
of the environment nor any other iTM. The environment can activate any party
arbitrarily often, as long as the honest parties also occasionally can have the
ability to access the restricted resource. Care must also be taken to allow limited
ideal adversarial control over the functionality’s answers to queries to Solve
containing undefined states and queries to Get Message containing undefined
(puz, st) tuples. While the adversary is allowed to provide an arbitrary sequence
of states st0, . . . , stΓ and an arbitrary tag tag, the functionality enforces the fact
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Functionality Ftlp

Ftlp is parameterized by a set of parties P, an owner Po ∈ P, a computational
security parameter τ , a state space ST and a tag space T AG. In addition to P the
functionality interacts with an adversary S. Ftlp contains initially empty lists steps
(honest puzzle states), omsg (output messages), in (inbox) and out (outbox).

Create puzzle: Upon receiving the first message (CreatePuzzle, sid, Γ,m) from Po
where Γ ∈ N+ and m ∈ {0, 1}τ , proceed as follows:

1. If Po is honest, sample tag
$← T AG and Γ + 1 random distinct states stj

$←
{0, 1}τ for j ∈ {0, . . . , Γ}. If Po is corrupted, let S provide values tag ∈ T AG
and Γ + 1 distinct values stj ∈ ST .

2. Append (st0, tag, stΓ ,m) to omsg, append (stj , stj+1) to steps for j ∈
{0, . . . , Γ − 1}, and output (CreatedPuzzle, sid, puz = (st0, Γ, tag)) to Po and
S. Ftlp stops accepting messages of this form.

Solve: Upon receiving (Solve, sid, st) from party Pi ∈ P with st ∈ ST , if there
exists (st, st′) ∈ steps, append (Pi, st, st

′) to in and ignore the next steps. If there
is no (st, st′) ∈ steps, proceed as follows:

– If Po is honest, sample st′
$← ST .

– If Po is corrupted, send (Solve, sid, st) to S and wait for answer
(Solve, sid, st, st′).

Append (st, st′) to steps and append (Pi, st, st
′) to in.

Get Message: Upon receiving (GetMsg, sid, puz, st) from party Pi ∈ P with st ∈
ST , parse puz = (st0, Γ, tag) and proceed as follows:

– If Po is honest and there is no (st0, tag, st,m) ∈ omsg, append (st0, tag, st,⊥)
to omsg.

– If Po is corrupted and there exists no (st0, tag, st,m) ∈ omsg, send
(GetMsg, sid, puz, st) to S, wait for S to answer with (GetMsg, sid, puz, st,m)
and append (st0, tag, st,m) to omsg.

Get (st0, tag, st,m) from omsg and output (GetMsg, sid, st0, tag, st,m) to Pi.
Output: Upon receiving (Output, sid) by Pi ∈ P, retrieve the set Li of all entries
(Pi, ·, ·) in out, remove Li from out and output (Complete, sid, Li) to Pi.
Tick: Set out← in and set in = ∅.

Fig. 3. Functionality Ftlp for time-lock puzzles.

that, once defined, the same sequence of steps will be deterministically obtained
by all honest parties invoking Solve. However, queries to Ftlp involving undefined
states and puzzles are answered with messages provided by the ideal adversary.
This is necessary for capturing adversaries that construct different versions of a
puzzle departing from different initial states of the original sequence st0, . . . , stΓ
or from an arbitrary state that eventually leads to this sequence.

5 Constructing Time-Lock Puzzles in UC

The functionality given in Fig. 3 from Section 4 describes how we ideally model
a TLP in our framework. We will now instantiate Ftlp departing from the well-
known construction by Rivest et al. [45]. In order to obtain a UC-secure protocol,
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we will first model the assumption that underpins Rivest et al.’s construction
under our notion of sequential computation with ticks. Moreover, we will resort
to a global random oracle, which turns out to be necessary for UC-realizing Ftlp

as discussed later in this section.
The TLP construction of Rivest et al. [45] is based on the assumption that

it is hard to compute successive squarings of an element of (Z/NZ)
×

(i.e. the
group of primitive residues modulo N) with a large N in less time than it takes
to compute each of the squarings sequentially, unless the factorization of N is

known. In other words, for a random element g
$← (Z/NZ)

×
and a large N whose

factorization is unknown, this assumptions says that it is hard to compute g2
Γ

in less time than it takes to compute Γ sequential squarings g2, g2
2

, g2
3

, . . . , g2
Γ

.
On the other hand, if N = pq is generated following the key generation algorithm
of the RSA cryptosystem, one obtains a trapdoor (i.e. the order of (Z/NZ)

×
)

φ(N) = (p − 1)(q − 1) that allows for fast computation of g2
Γ

requiring two
exponentiations: first compute t = 2Γ mod φ(N) and then gt. Hence, a TLP
encoding a message m ∈ (Z/NZ)

×
with a number of steps Γ can be generated by

a party who knows N = pq, p, q by sampling a random g
$← (Z/NZ)

×
, computing

t = 2Γ mod φ(N), g2
Γ

= gt and mg2
Γ

, arriving at a puzzle puz = (g, Γ,mg2
Γ

).
From the assumption of Rivest et al., it follows that any party must compute

Γ sequential squarings departing from g in order to obtain g2
Γ

and compute

m = mg2
Γ

g−2
Γ

.
In employing Rivest et al.’s time-lock assumption to UC-realize Ftlp we face

an important challenge: even if the environment is computationally constrained
in a session, it can use the representation of (Z/NZ)

×
(i.e. N) to compute all Γ

squarings needed to obtain g2
Γ

from g across multiple sessions. Hence, it would
be impossible to construct a simulator for a protocol realizing Ftlp, since the
environment would be able to immediately extract the message encoded in the
puzzle. Notice that an environment that can immediately solve a TLP makes it
impossible for the simulator to provide a TLP containing a random message and
later equivocate the opening of this TLP so that it yields an arbitrary message
obtained from Ftlp. In order to address this issue, we need to model this time-
lock assumption using our notion of sequential computation with ticks, which will
limit the environment’s power for computing squarings of elements of (Z/NZ)

×
.

5.1 Modeling Rivest et al.’s Time-Lock Assumption [45]
We describe in Fig. 4 an ideal functionality Frsw that captures the hardness
assumption used by Rivest et al. [45] to build a time-lock puzzle protocol. This
functionality essentially treats group (Z/NZ)

×
as in the generic group model [47]

and only gives handles to the group elements to all parties. In order to perform
operations, the parties then need to interact with the functionality. They can ask
for any number of operations to be performed between two computational ticks.
However, the outcome of the operation (i.e. the handle of the resulting group
element) will only be released after the next computational tick occurs. However,
a special owner party Po who initializes Frsw receives a trapdoor td that allows
it to perform arbitrary operations on group elements. Upon learning td any
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Functionality Frsw

Frsw is parameterized by a set of parties P, an owner Po ∈ P, an adversary S and a
computational security parameter τ and a parameter N ∈ N+. Frsw contains a map
group which maps strings el ∈ {0, 1}τ to N as well as maps in and out associating
parties in P to a list of entries from ({0, 1}τ )2 or ({0, 1}τ )3. The functionality
maintains the group of primitive residues modulo N with order φ(N) denoted as
(Z/NZ)×.

Create Group: Upon receiving the first message (Create, sid) from Po:
1. If Po is corrupted then wait for message (Group, sid, N, φ(N)) from S with

N ∈ N+, N < 2τ and store N,φ(N).

2. If Po is honest then sample two random distinct prime numbers p, q of length
approximately τ/2 bits according to the RSA key generation procedure. Set
N = pq and φ(N) = (p− 1)(q − 1).

3. Set td = φ(N) and output (Created, sid, td) to Po.
Random: Upon receiving (Rand, sid, td′) from Pi ∈ P, if td′ 6= td, send

(Rand, sid, Invalid) to Pi. Otherwise, sample el
$← {0, 1}τ and g

$← (Z/NZ)×, add
(el, g) to group and output (Rand, sid, el) to Pi.
GetElement: Upon receiving (GetElement, sid, td′, g) from Pi ∈ P, if g /∈
(Z/NZ)× or td′ 6= td, send (GetElement, sid, td′, q, Invalid) to Pi. Otherwise, if there
exists an entry (el, g) in group then retrieve el, else sample a random string el and
add (el, g) to group. Output (GetElement, sid, td′, g, el) to Pi.
Power: Upon receiving (Pow, sid, td′, el, x) from Pi ∈ P with x ∈ Z, if td′ 6= td

or there is no a such that (el, a) ∈ group, output (Pow, sid, td′, el, x, Invalid) to Pi.
Otherwise, proceed:
1. Convert x ∈ Q into a representation x ∈ Zϕ(N). If no such x exists in Zϕ(N)

then output (Pow, sid, td′, el, x, Invalid) to Pi.
2. Compute y ← ax mod N . If there is no (el′, y) ∈ group then sample el′

$←
{0, 1}τ randomly but different from all group entries and add (el′, y) to group.

3. Output (Pow, sid, td, el, x, el′) to Pi.
Multiply: Upon receiving (Mult, sid, el1, el2) from Pi ∈ P:
1. If there are no a, b s.t. (el1, a), (el2, b) ∈ group, then output (Invalid, sid) to Pi.
2. Compute c ← ab mod N . If there is no (el3, c) ∈ group then sample el3

$←
{0, 1}τ randomly but different from all group entries and add (el3, c) to group.

3. Add (Pi, (el1, el2, el3)) to in and return (Mult, sid, el1, el2) to Pi.
Invert: Upon receiving (Inv, sid, el) from some party Pi ∈ P:
1. If there is no a such that (el, a) ∈ group then output (Invalid, sid) to Pi.
2. Compute y ← a−1 mod N . If there is no el′ s.t. (el′, y) ∈ group, sample el′

$←
{0, 1}τ randomly but different from all group entries and add (el′, y) to group.

3. Add (Pi, (el, el′)) to in and return (Inv, sid, el) to Pi.
Output: Upon receiving (Output, sid) by Pi ∈ P, retrieve the set Li of all entries
(Pi, ·) in out, remove Li from out and output (Complete, sid, Li) to Pi.
Tick: Set out← in and in = ∅.

Fig. 4. Functionality Frsw capturing the time lock assumption of [45].
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party gains the power to perform arbitrary operations in Frsw but parties who
do not know td are restricted to sequential operations and have no information
about the group representation. In particular, in case of an honestly generated
group the order will remain completely hidden from the adversary. Finally, this
functionality is treated as a global functionality in order to make sure that a
simulator does not obtain an unreal advantage in computing the solution of a
TLP without waiting for enough ticks.

We remark that our modeling of this time-lock assumption is corroborated
by a recent result [46] showing that delay functions (such as TLPs) based on
cyclic groups that do not exploit any particular property of the underlying group
cannot be constructed if the order is known. It is clear that we cannot reveal
any information about the group structure to the environment, since it could use
this information across multiple sessions to solve TLPs quicker than the parties.
Hence, in order to make it possible to UC-realize Ftlp based on cyclic groups
(and in particular the time-lock assumption of Rivest et al. [45]), we must model
the underlying group in such a way that both its structure and its order are
hidden from the environment and the parties.

5.2 Realizing Ftlp in the Frsw,GrpoRO-hybrid model

Using Rivest et al.’s time-lock assumptions modeled in Frsw following our se-
quential computation with ticks framework, we can instantiate Rivest et al.’s
original time-lock puzzle without running into the issues described before. How-
ever, we now face different issues: 1. because all parties are forced by Frsw to do
sequential computation, a simulator for Rivest et al.’s construction would not be

able to extract m from mg2
Γ

; 2. because Frsw deterministically assigns handles

to each group element, a simulator would not be able to equivocate mg2
Γ

in such
a way that it yields an arbitrary message m′. In order to address these issues,
we must resort to a random oracle. More specifically, we work in the restricted
programmable and observable global random oracle model GrpoRO of [15] (see
Fig. 10 in Appendix A for the description). It turns out that a programmable
random oracle is indeed necessary for UC-realizing Ftlp, as it implies coin flip-
ping with output independent abort as shown in Section 6, which is impossible
without a programmable random oracle as shown in Section 7.

We present Protocol πtlp in Figure 5. The main idea behind this protocol
is to follow Rivest et al.’s construction to compute puz = (el0, Γ, tag) while
encoding the initial random group element el0, the message m, the final group
element elΓ and the trapdoor td for Frsw in a tag generated with the help of
the random oracle. This tag is generated in such a way that a party who solves
the puzzle can retrieve td,m and test whether the tag is consistent with these
values and with initial and final group elements el0, elΓ . More specifically, the
tag tag = (tag2, tag2) is generated by computing h1 = H1(el0|elΓ ), tag1 =
h1⊕ (m|td) and tag2 = H2(h1|m|td), where H1(·), H2(·) are random oracles. A
party who solves this puzzle obtaining elΓ by performing Γ sequential squarings
of el0 can retrieve h1, obtain (m|td) and check that these values are consistent
with h2. Notice that this also allows a simulator who observes queries to random
oracles H1(·), H2(·) to extract all parameters of a puzzle (including the message)
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Protocol πtlp

Protocol πtlp is parameterized by a security parameter τ , a state space ST = {0, 1}τ
and a tag space T AG = {0, 1}τ × {0, 1}τ . πtlp is executed by an owner Po and a
set of parties P interacting among themselves and with functionalities Frsw, GrpoRO1

(an instance of GrpoRO with domain {0, 1}2τ and output size {0, 1}2τ ) and GrpoRO2

(an instance of GrpoRO with domain {0, 1}4τ and output size {0, 1}τ ).

Create Puzzle: Upon receiving input (CreatePuzzle, sid, Γ,m) for m ∈ {0, 1}τ , Po
proceeds as follows:
1. Send (Create, sid) to Frsw obtaining (Created, sid, td).

2. Send (Rand, sid, td) to Frsw, obtaining (Rand, sid, el0).

3. Send (Pow, sid, td, el0, 2
Γ ) to Frsw, obtaining (Pow, sid, td, el0, 2

Γ , elΓ ).

4. Send (Hash-Query, (el0|elΓ )) to GrpoRO1, obtaining (Hash-Confirm, h1).

5. Send (Hash-Query, (h1|m|td)) to GrpoRO2, obtaining (Hash-Confirm, h2).

6. Compute tag1 = h1⊕(m|td) and tag2 = h2, set tag = (tag1, tag2) and output
(CreatedPuzzle, sid, puz = (el0, Γ, tag)) to Po. Send (activated) to Gticker.

Solve: Upon receiving input (Solve, sid, el), a party Pi ∈ P, send (Mult, sid, el, el)
to Frsw. If Pi obtains (Invalid, sid), it aborts. Send (activated) to Gticker.

Get Message: Upon receiving (GetMsg, puz, el) as input, a party Pi ∈ P parses
puz = (el0, Γ, tag), parses tag = (tag1, tag2) and proceeds as follows:
1. Send (Hash-Query, (el0|el)) to GrpoRO1, obtaining (Hash-Confirm, h1).

2. Compute (m|td) = tag1 ⊕ h1 and send (Hash-Query, (h1|m|td)) to GrpoRO2,
obtaining (Hash-Confirm, h2).

3. Send (Pow, sid, td, el0, 2
Γ ) to Frsw, obtaining (Pow, sid, td, el0, 2

Γ , elΓ ).

4. Send (IsProgrammed, (el0|el)) and (IsProgrammed, (h1|m|td)) to GrpoRO1

and GrpoRO2, obtaining (IsProgrammed, b1) and (IsProgrammed, b2), respec-
tively. Abort if b1 = 0 or b2 = 0,.

5. If tag2 = h2 and el = elΓ , output (GetMsg, sid, el0, tag, el,m). Otherwise,
output (GetMsg, sid, el0, tag, el,⊥). Send (activated) to Gticker.

Output: Upon receiving (Output, sid) as input, a party Pi ∈ P sends (Output, sid)
to Frsw, receiving (Complete, sid, Li) and outputting it. Send (activated) to Gticker.

Fig. 5. Protocol πtlp realizing time-lock puzzle functionality Ftlp in the Frsw,GrpoRO-
hybrid model.

and check whether it is a valid puzzle. A simulator who also has the additional
(and provably necessary) power of programming the output of these random
oracles can deliver an arbitrary message m′ to a party who solves the puzzle.
We formally state the security of πtlp in Theorem 1. Due to space limitations,
the proof is contained in Appendix B.

Theorem 1. Protocol πtlp UC-realizes Ftlp in the GrpoRO,Frsw-hybrid model with
computational security against a static adversary. Formally, for every static ad-
versary A there exists a simulator S such that for any environment Z, the
environment cannot distinguish πtlp composed with GrpoRO,Frsw and A from S
composed with Ftlp.
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6 Secure Two-Party Computation with Output-
Independent Abort

We show how to obtain 2PC with output independent abort from any 2PC with
secret-shared outputs using homomorphic commitments with delayed opening.

Functionalities. We will use the following functionalities, for which we present
new definitions which take time into consideration:

– The functionality F∆,δ2pcoia (Fig. 6) for 2PC with Output-Independent Abort.

– The functionality F∆2pcsso (Fig. 7 and Fig. 8) for secure 2PC with secret-shared
output which naturally arises from existing protocols.

– The functionality F∆,δahcom (Fig. 14) for homomorphic commitments with de-
layed non-interactive openings that naturally arises from homomorphic com-
mitments that are combined with Ftlp.

An additional functionality Fct for coin-flipping with abort in the timed
message model appears in Appendix A. All of the functionalities assume that
one of the parties is honest while the other is corrupted, but this is only for
simplicity of exposition of the functionalities. We write functionalities where the
parties have to send messages to trigger “regular behavior” instead of giving
full one-sided control to S as this appears more natural. Messages to dishonest
parties, on the other hand, go directly to S that can act upon them.

2PC with Output-Independent Abort. The functionality F∆,δ2pcoia as out-
lined in Fig. 6 shows how Output-Independent Abort for 2PC can be modeled.
Similar to other 2PC functionalities, it allows parties to fix the circuit C to be
computed, provide inputs, compute with these inputs and then obtain the result
of the computation. In comparison to regular UC functionalities, there are two
differences how this is handled:

– Parties using F∆,δ2pcoia do not receive messages from F∆,δ2pcoia in a push-model
where they get activated upon each new message, but instead they have to
pull messages from the functionality (which was also already the case for
F∆smt,delay). The reasoning behind this is that the functionality is ticked and
it might happen that multiple messages arrive to multiple receivers in the
same “tick” round. But upon receiving a message from F∆,δ2pcoia, a party may
not return activation to it. This means that another “tick” may happen
before another message gets delivered, which would break the guaranteed
delivery requirement. A pull-model is a solution as each party is guaranteed
to get activated between any two “ticks” in our model, allowing it to re-
ceive messages if it wants to. We will also use this modeling for the other
functionalities in this section.

– The functionality does not directly deliver messages to receivers, but instead
internally queries them first. This is because it is necessary to use commu-
nication using F∆smt,delay, which means that the adversary may arbitrarily
control how messages get delivered, and he may reorder delivery at his will
within the maximal delay that F∆smt,delay permits. We also allow the adver-
sary to influence delivery “adaptively”, meaning depending on other events
outside of F∆,δ2pcoia’s scope.
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Functionality F∆,δ2pcoia

The functionality runs with parties P1,P2 and an adversary S who may corrupt
either of the parties. It is parameterized by parameters ∆, δ ∈ N+. The computed
circuit is defined over F2. The functionality internally has three lists M,Q,O and
flags output, noabort← ⊥.

Init: On input (Init, sid, C) by Pi ∈ {P1,P2}:
1. Add (∆,mid, sid,P3−i, (Init, C)) to Q for an unused mid.

2. If both parties sent (Init, sid, C) then store C locally.

3. Send (Init, sid,Pi, C,mid) to S.

Input: On first input (Input, sid, i, xi) by Pi for i ∈ {1, 2}:
1. Add (∆,mid, sid,P3−i, (Input,Pi)) to Q for an unused mid.

2. Accept xi as input for Pi.
3. Send (Input, sid,Pi, xi,mid) to S if Pi is corrupted and (Input, sid,Pi,mid) oth-

erwise.

Computation: On first input (Compute, sid) by Pi ∈ {P1,P2} and if both x1, x2
were accepted:
1. Add (∆,mid, sid,P3−i, (Compute)) to Q for an unused mid.

2. If both parties sent (Compute, sid) compute y = C(x1, x2) and store y.

3. Send (Compute, sid,Pi,mid) to S.

Output: On first input (Output, sid) by both parties and if y has been stored then
add (δ, sid,S, (Output, y)) to O.

Fetch Message: Upon receiving (FetchMsg, sid) by P ∈ {P1,P2} retrieve the set
L of all entries (P, sid, ·) in M, remove L from M and return (FetchMsg, sid, L) to
P.

Scheduling: On input from S:
– If S sent (Deliver, sid,mid) and then remove each (c,mid, sid,P,m) from Q and

add (P, sid,m) to M.

– If S sent (Abort, sid) and noabort = ⊥ then add (P1, sid,Abort), (P2, sid,Abort)
toM and ignore all further calls to the functionality except to Fetch Message.

Tick:
1. For each query (0,mid, sid,P,m) ∈ Q:

(a) Remove (0,mid, sid,P,m) from Q.

(b) Add (P, sid,m) to M.

2. Replace each (c,mid, sid,P,m) in Q with (c− 1,mid, sid,P,m).

3. For each entry (c, sid,S, y) ∈ O, proceed as follows:
– If c = 0, send (OutputOrAbort, sid) to S. Sample a fresh mid

and set noabort ← >. If S responds with (Abort, sid) then add
(∆,mid, sid,Pj , (Abort)) to Q for the honest party Pj , otherwise add
(∆,mid, sid,Pj , (Output, y)). Finally send (Output, sid,mid, y) to S.

– If c > 0, replace (c, sid,S, y) with (c− 1, sid,S, y) in O.

Fig. 6. The F∆,δ2pcoia Functionality for 2PC with Output-Independent Abort.

Towards achieving this pull-model and adversarial reordering of messages, F∆,δ2pcoia

has three internal lists Q,M and O. Q contains all the buffered messages which
can be delivered in the future, while messages in M can be retrieved right now
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by the respective receivers. Whenever F∆,δ2pcoia notices that a tick happened it will
run Tick, which will then move all messages from Q to M which get available
in the next round, and which can be retrieved via the interface Fetch Message.
S may use Scheduling to prematurely move messages to M by sending a

special message that contains the message id mid — that means that S gets
notified about every new mid whenever a message is added to Q which S can
influence. S may also cancel the delivery of messages, though this will lead to
a break-down of the functionality as F∆smt,delay does not allow to drop messages
altogether.

We let Tick be responsible to realize the output-independent abort property
of F∆,δ2pcoia. To see why this is the case, observe that once both parties activate the
output phase the functionality stores a message to S that represents the output
in O. In comparison to Q, S cannot make F∆,δ2pcoia output values in O any faster.
Once this message will be delivered to S, the functionality will then ask S if the
honest party should obtain the output or not. It will also give S control over
when the output message should be delivered to the honest party. Observe that
once S obtained the output then the Abort command cannot be used anymore.

Two-Party Computation with Secret-Shared Output. In Fig. 7 and Fig. 8
we describe a 2PC functionality F∆2pcsso which will be the foundation for our

compiler that will realise F∆,δ2pcoia. F∆2pcsso has the same initialization, input and
computation interfaces as other 2PC functionalities. The two main differences
between a standard 2PC functionality and F∆2pcsso are: first, F∆2pcsso is again a

“ticked” functionality, meaning that it similarly to F∆,δ2pcoia considers a 2PC pro-

tocol that implements communication via F∆smt,delay. Second, F∆2pcsso does not
directly output the outcome of the computation. Instead, it reveals a secret-
sharing of it to both parties. The parties can then manipulate shares using the
functionality, generate additional random shares or reconstruct them.

We will not show in this work how to realize F∆2pcsso. This is because it’s
output-sharing property is rather standard (albeit not always modeled as ex-
plicitly as here) and it follows directly from any 2PC protocol that is entirely
based on secret-sharing [42] or BMR protocols that secret-share the output [31,6].

Additively Homomorphic Commitments with Delayed Openings. In
order to implement F∆,δ2pcoia we also need a special commitment scheme that allows
for delayed openings. The functionality is naturally ticked, as its implementation
will use both F∆smt,delay and Ftlp. Due to space limitations, the functionality as well
as its implementation is delayed to Supplementary Material C. In addition to
regular commit and opening procedures, the functionality has a special Delayed
Open command which releases the message in a commitment after a delay δ. The
adversary A may introduce a (communication) delay of maximum ∆ ticks before
the honest party receives the delayed opening notification (or it may decide to
abort the opening process altogether). However, A cannot choose to abort the
delayed opening anymore once the honest party has received the notification.
A will learn the opening δ ticks after PR initiated the delayed opening (as he
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Functionality F∆2pcsso (Computation, Message Handling)

The functionality interacts with two parties P1,P2 and an adversary S which may
corrupt either of the parties. The functionality will internally have two lists M,Q.

Init: On input (Init, sid, C) by Pi ∈ {P1,P2}:
1. Add (∆,mid, sid,P3−i, (Init, C)) to Q for an unused mid.

2. If both parties sent (Init, sid, C) then store C locally and let m be the length of
the output of C. Then send (Init, sid,Pi, C,mid) to S.

Input: On first input (Input, sid, i, xi) by Pi for i ∈ {1, 2}:
1. Add (∆,mid, sid,P3−i, (Input,Pi)) to Q for an unused mid.

2. Accept xi as input for Pi. Then send (Input, sid,Pi, xi,mid) to S if Pi is cor-
rupted and (Input, sid,Pi,mid) otherwise.

Computation: On first input (Compute, sid) by Pi ∈ {P1,P2} and if both x1, x2
were accepted:
1. Add (∆,mid, sid,P3−i, (Compute)) to Q for an unused mid.

2. If both parties sent (Compute, sid) compute y = (y1, . . . , ym) ← C(x1, x2) and
store y. Then send (Compute, sid,Pi,mid) to S.

Fetch Message: Upon receiving (FetchMsg, sid) by P ∈ {P1,P2} retrieve the set
L of all entries (P, sid, ·) inM, remove L fromM and return (Output, sid, L) to P.

Scheduling: On input of S:
– If S sent (Deliver, sid,mid) then remove each (c,mid, sid,P,m) from Q and add

(P, sid,m) to M.

– If S sent (Abort) add (PS , sid,Abort), (PR, sid,Abort) to M and ignore all fur-
ther calls to the functionality except to Fetch Message.

Tick:
1. For each query (0,mid, sid,P,m) ∈ Q:

(a) Remove (0,mid, sid,P,m) from Q.

(b) Add (P, sid,m) to M.

2. Replace each (c,mid, sid,P,m) in Q with (c− 1,mid, sid,P,m).

Fig. 7. 2PC with Secret-Shared Output and Linear Share Operations.

receives messages immediately), while an honest receiver PR might have to wait
δ +∆ ticks in total as the ticking for the delayed opening of a commitment can
only happen once the opening notification arrives on the receiver’s side.

Coin Tossing. In our protocol we additionally need to use a functionality for
coin tossing, as mentioned before. It could actually already be implemented, al-
beit inefficiently, using F∆,δahcom. For completeness, we instead use the functionality
Fct which can be found in Supplementary Material A.

6.1 Achieving Output-Independent Abort for 2PC in UC

Intuitively, the protocol realizing F∆,δ2pcoia works as follows: first, both parties

use F∆2pcsso to perform the secure computation. They then don’t directly obtain
an output, but instead each get a vector of shares si. Afterwards, the parties
will commit to si using F∆,δahcom and use the homomorphic property of F∆,δahcom
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Functionality F∆2pcsso (Computation on Outputs)

Share Output: Upon input (ShareOut, sid, I) by Pi ∈ {P1,P2} for fresh identifiers
I = {cid1, . . . , cidm} and if Computation was finished:
1. Add (∆,mid, sid,P3−i, (ShareOut)) to Q for an unused mid. Then send

(ShareOut, sid,Pi,mid) to S.

2. If both parties sent ShareOut (and letting Pj be the corrupted party):
(a) Send (ReqShares, sid, I) to S, which replies with (OutShares, sid,
{(cid, sj,cid)}cid∈I) for the corrupted party Pj . Then set s3−j,cidh = yh ⊕
sj,cidh .

(b) For cid ∈ I store (cid, s1,cid, s2,cid). Then add (∆,mid1, sid,P3−j ,
(OutShares, {(cid, s3−j,cid)}cid∈I)) for a fresh mid1 to Q and send
(OutShares, sid,P3−j ,mid1) to S.

Share Random Value: Upon input (ShareRand, sid, I) by both parties, for fresh
identifiers I and letting Pj be the corrupted party:

1. Send (ReqShares, sid, I) to S, which replies with (RandShares, sid,

{(cid, sj,cid)}cid∈I) for the corrupted party Pj . Then sample s3−j,cid
$← F

for each cid ∈ I.

2. For each cid ∈ I store (cid, s1,cid, s2,cid). Then add (∆,mid1, sid,P3−j ,
(RandShares, {(cid, s3−j,cid)}cid∈I)) for a fresh mid1 to Q and send
(RandShares, sid,P3−j ,mid1) to S.

Linear Combination: Upon input (Linear, sid, {(cid, αcid)}cid∈I , cid
′) from both

parties: If all αcid ∈ F, all cid ∈ I have stored values and cid′ is unused, set si,cid′ ←∑
cid∈I αcid · si,cid for i ∈ {1, 2} and record (cid′, s1,cid′ , s2,cid′).

Reveal: Upon input (Reveal, sid, cid) by Pi ∈ {P1,P2}, if (cid, s1, s2) is stored and
Pj is corrupted:
1. Add (∆,mid, sid,Pi, (Reveal)) to Q for an unused mid. Then send

(Reveal, sid,Pi,mid) to S.

2. If both parties sent (Reveal, sid, cid) then send (Reveal, sid, cid, s1 ⊕ s2) to S.

3. If S sends (DeliverReveal, sid, cid) then add (∆,mid, sid,P3−j , (Reveal, cid, s1 ⊕
s2)) for a fresh mid to Q.

4. Send (DeliverReveal, sid, cid,P3−j ,mid) to S.

Fig. 8. 2PC with Secret-Shared Output and Linear Share Operations, Part 2.

to show consistency between the values in F∆,δ2pcoia,F
∆,δ
ahcom. For this, they sample

a random matrix using Fct and perform an identical linear operation on both
functionalities.

At this stage the protocol might still fail and an adversary might still abort,
but no information will leak as the consistency check does only reveal a uniformly
random value. Finally, both parties use the Delayed Open to reveal their share
si which allows each party to reconstruct the output. At this stage, A might
decide not to activate Delayed Open, but we can set the parameters of F∆,δahcom

such that it will have to do so before the commitment of the honest party opens.
If it does not activate its delayed opening before that point, then the honest
party will decide that an abort happened and just ignore any future messages
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Protocol π2pcoia

This protocol is for two parties P1,P2 and uses the functionalities F∆,δahcom, F∆2pcsso

and Fct. The parties compute the circuit C over F with output length m. We assume
that the commitment functionality F∆,δahcom commits to vectors of length m.
Throughout the protocol, we say “Pi ticks” when we mean that it sends (activated)
to Gticker. We say that “Pi waits” when we mean that it, upon each activation, first
checks if the event happened and if not, sends (activated) to Gticker.

Init: Each Pi sends (Init, sid, C) to F∆2pcsso and ticks. Then it waits and queries
F∆2pcsso for an output (Init, sid, C).

Input: Each Pi sends (Input, sid, i, xi) to F∆2pcsso and ticks. Then it waits and queries
F∆2pcsso for an output (Input, sid,P3−i).

Computation: Each Pi sends (Compute, sid) to F∆2pcsso and ticks. Then it waits
and queries F∆2pcsso for an output (Compute, sid).

Output:
1. Each party Pi sends (ShareOutput, sid, cid1, . . . , cidm) for fixed cidh to F∆2pcsso

and ticks. Then it waits and queries F∆2pcsso to receive its shares s1,i, . . . , sm,i.

2. Each party Pi sends (RandomOutput, sid, ĉid1, . . . , ĉidm·κ) for fixed ĉidt to
F∆2pcsso and ticks. Then it waits and queries F∆2pcsso until it receives its shares
r1,i, . . . , rm·κ,i.

3. Each party uses F∆,δahcom to commit to si = (s1,i, . . . , sm,i) as well as rk,i =
(r(k−1)·m+1,i, . . . , rk·m,i) for k ∈ [κ] using the cid’s cidsi , cid

r
1,i, . . . , cid

r
κ,i and

ticks. Then it waits and queries F∆,δahcom to see if the other party committed.

4. Each Pi sends (Toss, sid, κ) to Fct and ticks. Then it waits and queries Fct until
obtains α1, . . . , ακ.

5. For i ∈ [2], k ∈ [κ] the parties use Linear Combination on F∆,δahcom to com-
pute commitments for the κ values dk,i = αk · si ⊕ rk,i. These have cid’s
cidd1,i, . . . , cid

d
κ,i.

6. For k ∈ [κ], h ∈ [m] the parties use Linear Combination on F∆2pcsso to compute
the linear relations dk,h = αk · sh ⊕ r(k−1)·m+h.

7. The parties use Reveal on F∆2pcsso to open dk,h for all k ∈ [κ], h ∈ [m].

8. Each Pi sends (DOpen, sid, cidsi , cid
d
1,i, . . . , cid

d
κ,i, δ) to its instance of F∆,δahcom.

9. Each party Pi now waits and:
(a) Queries the instance of F∆,δahcom where Pi was a receiver to see if it obtained

a message (DOpen, cids3−i, cid
d
1,3−i, . . . , cid

d
κ,3−i). If so, then exit the loop.

(b) Queries the instance of F∆,δahcom where Pi was a sender to see if it obtained
a message (DOpened, cidsi , cid

d
1,i, . . . , cid

d
κ,i). If so, then exit the loop.

10. After having obtained either of the above messages, Pi does the following:
– If DOpened arrived before DOpen then output ⊥.

– If DOpen arrived before DOpened then wait until s̃3−1, d̃1,3−i, . . . , d̃κ,3−i is
obtained from F∆,δahcom. Then output y = si⊕s̃3−i if d̃k,3−i[h] = dk,h⊕dk,i[h]
for all k ∈ [κ], h ∈ [m] and ⊥ otherwise.

Fig. 9. Protocol π2pcoia For 2PC with Output-Independent Abort.

of A. The full protocol π2pcoia can be found in Fig. 9. In Appendix D we show
the following theorem:
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Theorem 2. Let δ > ∆ and κ ∈ N+ be a statistical security parameter. Then
the protocol π2pcoia UC-implements F∆,δ2pcoia in the F∆2pcsso,F

∆,δ
ahcom,Fct-hybrid model

against any static active adversary corrupting at most one of the two parties.

7 The Impossibility Result

We show that in the UC model one cannot implement fair coin-flip without using
a random oracle, or similar programmable setup assumption. This holds even if
one is allowed to use time-lock puzzles, and non-programmable random oracles
and 2PC with abort. We first show the impossibility result for the simple case
where we assume there is no setup, no random oracles and that the protocol has
a fixed round complexity. This allows us to focus on the central new idea. After
that we show the result for the full case.

The ideal functionality Fcf for fair coin-flip (without abort) proceeds as fol-
lows. When activated by any party in round 0 it will sample a uniformly random
bit c and output it to both parties in some round ρ specified by the adversary.
The adversary cannot refuse the output to be given. The ideal functionality is
rushing: the adversary gets c in round 0. The honest parties do not get the coin
until round ρ.

Implications. Below we show that in several settings, called the excluded set-
tings, one cannot UC securely realize Fcf. By the UC composition theorem this
impossibility result has wide implications. In particular, it holds for all ideal
functionalities G that if one can UC securely realize Fcf in the G-hybrid model,
then one cannot UC realize G in the excluded settings either.

Impossibility of Two-Party Coinflip with Output-Independent Abort.
It follows that two-party coin-flip with output-independent abort is impossible in
the excluded settings. Namely, given a protocol πcfoia for two-party coin-flip with
output-independent abort one can get a two-party coin-flip protocol πcf without
abort as follows. We describe the protocol in the Fcfoia-hybrid model and get the
result by composition. Run Fcfoia. If neither of the parties aborts, take the output
of Fcfoia to be the output. If one of the parties aborts, let the other party sample
and announce a uniformly random c and take c as the output. To simulate the
protocol, get from Fcf the coin c to hit in the simulation. Simulate a copy of
Fcfoia to the adversary. If the adversary does not abort, let the output of Fcfoia

be c. Otherwise, let the output of Fcfoia be a uniformly random c′, and then
simulate that the honest party samples and announces c.

Notice that it was crucial for this simulation that we could change the output
of Fcfoia from c to an independent c′ when there was an abort. Namely, when
there is an abort we still need to hit the c output by Fcf in the simulation, so
we are forced to simulate that the honest party samples and announces c in the
simulation. But if we were then also forced to let Fcfoia output c, then in the
simulation the bits output by Fcfoia and the honest party when there is an abort
will always be the same. In the protocol they are independent. This would make
it easy to distinguish. A generalisation of this observation will later be the basis
for our impossibility result.
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Impossibility of UC 2PC with Output-Independent Abort. It also fol-
lows that 2PC with output-independent abort is impossible in the excluded
settings. Namely, given a functionality F2pcoia for 2PC with output-independent
abort (as described in the previous section) one can UC securely realize Fcfoia.
Namely, use F2pcoia to compute the function which takes one bit as input from
each party and outputs the exclusive or. Let each party input a uniformly ran-
dom bit. If any party aborts on F2pcoia, abort in πcfoia. It is straight forward to
simulate πcfoia given F2pcoia.

Impossibility of UC Time-lock Puzzles. It also follows that UC time-lock
puzzles are impossible in the excluded settings. Namely, we have shown that
given UC time-lock puzzles one can UC securely realize F2pcoia, which was ex-
cluded above.

Proofs. We present the proofs in Appendix E.
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A Universal Composability and Additional
Functionalities

A.1 Universal Composability

We use the (Global) Universal Composability or (G)UC model [17,18] for ana-
lyzing security and refer interested readers to the original works for more details.

In UC protocols are run by interactive Turing Machines (iTMs) called parties.
A protocol π will have n parties which we denote as P = {P1, . . . ,Pn}. The
adversary A, which is also an iTM, can corrupt a subset I ⊂ P as defined by the
security model and gains control over these parties. The parties can exchange
messages via resources, called ideal functionalities (which themselves are iTMs)
and which are denoted by F .

As usual, we define security with respect to an iTM Z called environment.
The environment provides inputs to and receives outputs from the parties P. To
define security, let πF1,... ◦ A be the distribution of the output of an arbitrary
Z when interacting with A in a real protocol instance π using resources F1, . . . .
Furthermore, let S denote an ideal world adversary and F ◦S be the distribution
of the output of Z when interacting with parties which run with F instead of π
and where S takes care of adversarial behavior.

Definition 1. We say that F UC-securely implements π if for every iTM A
there exists an iTM S (with black-box access to A) such that no environment Z
can distinguish πF1,... ◦ A from F ◦ S with non-negligible probability.

In the security experiment Z may arbitrarily activate parties or A, though only
one iTM (including Z) is active at each point of time.

A.2 Additional Functionalities

We also employ functionalities GrpoRO restricted observable and programmable
global random oracle from [15] (described in Figure ??) and Fct for coin tossing
(described in Figure 11).
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Functionality GrpoRO

GrpoRO is parameterized by an output size function ` and a security parameter τ ,
and keeps initially empty lists ListH,prog.

Query: On input (Hash-Query,m) from party (P, sid) or S, parse m as (s,m′)
and proceed as follows:

1. Look up h such that (m,h) ∈ ListH. If no such h exists, sample h
$← {0, 1}`(τ)

and set ListH = ListH ∪ {(m,h)}.
2. If this query is made by S, or if s 6= sid, then add (s,m′, h) to the (initially

empty) list of illegitimate queries Qs.
3. Send (Hash-Confirm, h) to the caller.

Observe: On input (Observe, sid) from S, if Qsid does not exist yet, set Qsid = ∅.
Output (List-Observe,Qsid) to S.

Program: On input (Program-RO,m, h) with h ∈ {0, 1}`(τ) from S, ignore the
input if there exists h′ ∈ {0, 1}`(τ) where (m,h′) ∈ ListH and h 6= h′. Otherwise, set
ListH = ListH ∪ {(m,h)}, prog = prog ∪ {m} and send (Program-Confirm) to S.

IsProgrammed: On input (IsProgrammed,m) from a party P or S, if the input
was given by (P, sid) then parse m as (s,m′) and, if s 6= sid, ignore this input. Set
b = 1 if m ∈ prog and b = 0 otherwise. Then send (IsProgrammed, b) to the caller.

Fig. 10. Restricted observable and programmable global random oracle functionality
GrpoRO from [15].
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Functionality Fct

Fct interacts with two parties P1,P2 and an adversary S. The functionality will
internally have two lists M,Q.

Toss: Upon receiving (Toss, sid,m) from Pi ∈ {P1,P2} where m ∈ N:

1. Add (∆,mid, sid,Pi, (Toss,m)) to Q for an unused mid. Then send
(Toss, sid,Pi,mid) to S.

2. If both parties sent (Toss, sid,m):

(a) Uniformly sample m random elements x1, . . . , xm
$← F and send

(Tossed, sid,m,F, x1, . . . , xm) to S.
(b) If S sends (DeliverCoins, sid) and Pj is corrupted then add

(∆,mid, sid,P3−j , (Coins, x1, . . . , xm)) for a fresh mid to Q.
(c) Send (DeliverCoins, sid,P3−j ,mid) to S.

Fetch Message: Upon receiving (FetchMsg, sid) by P ∈ {P1,P2} retrieve the set
L of all entries (P, sid, ·) in M, remove L from M and return (Output, sid, L)
to P.

Scheduling: On input of S:
– If S sent (Deliver, sid,mid) then remove each (c,mid, sid,P,m) from Q and

add (P, sid,m) to M.
– If S sent (Abort) add (PS , sid,Abort), (PR, sid,Abort) to M and ignore all

further calls to the functionality except to Fetch Message.
Tick:

1. For each query (0,mid, sid,P,m) ∈ Q:
(a) Remove (0,mid, sid,P,m) from Q.
(b) Add (P, sid,m) to M.

2. Replace each (c,mid, sid,P,m) in Q with (c− 1,mid, sid,P,m).

Fig. 11. Functionality Fct for Coin Tossing.
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B Proof of Theorem 1

Proof. In order to prove this theorem we construct a simulator S that interacts
with the functionality Ftlp, the environment Z and an internal copy of the ad-
versary A, towards which it executes πtlp and simulates GrpoRO,Frsw. We describe
S separately for two important cases: Corrupted Po in Figure 12 and Honest Po
in Figure 13. In the case of a corrupted Po, we focus on the steps necessary for
dealing with an adversary A who corrupts Po and leave the steps necessary for
dealing with an A who also corrupts parties in P to the case of an honest Po.

In the case of a corrupted Po, the simulator S must extract the message
m from a puzzle puz = (el0, Γ, tag = (tag1, tag2)) and deliver it to Ftlp if
puz is valid. In order to do this, S observes the queries to GrpoRO2 and finds
a query (Hash-Query, (h1|m|td)) from A to GrpoRO2 for which there was a
response (Hash-Confirm, tag2), i.e. a query matching tag2. Using td and el0,
S can compute elΓ with the help of Frsw. Finally, the simulator checks GrpoRO1

returns (Hash-Confirm, h1) when queried with (Hash-Query, (el0|elΓ )). If
this check succeeds S sends (CreatePuzzle, sid, Γ,m) to Ftlp. This procedure works
because S performs exactly the same computation that an honest party would
in order to obtain and verify the solution to this puzzle, with the difference that
it can perform all steps without waiting for the next tick, since it extracts td

from tag2.
In the case of an honest Po, there is no need to extract the message from

a puzzle. Instead, in this case we focus on dealing with an adversary A that
corrupts parties in P. Now the simulator S must provide a puzzle toA containing
a random message in such a way that later on it can simulate a solution of this
puzzle yielding an arbitrary message upon learning the ideal puzzle solution
from Ftlp. The main point to be observed in this case, is that S provides a
puzzle puz = (el0, Γ, tag) with a random tag that remains indistinguishable
from an honestly generated puzzle until the moment A obtains elΓ from Frsw

after performing Γ sequential squarings. At this point, A would be able to query
GrpoRO1 and GrpoRO2 and find out that this puzzle is invalid. However, S learns
about new ticks before A does and can learn m immediately after sending the
last of the Γ ticks needed for solving the puzzle to Ftlp and before any other
party learns the outputs of operations performed with Frsw (i.e. learning elΓ ).
This allows S to program GrpoRO1 and GrpoRO2 with negligible probability of
failure, since the probability GrpoRO1 has been queried on (el0|elΓ ) is negligible
before the elΓ randomly sampled by Frsw is known by other parties. S can also
program GrpoRO2 with negligible probability of failure, since the probability of
GrpoRO2 having been queried on (h1|m|td) before these values become known is
also negligible. ut

34



Simulator S for the case of a corrupted Po in πtlp

Simulator S interacts with environment Z, functionalities Ftlp,GrpoRO1,GrpoRO2,Frsw

and an internal copy of an A corrupting Po. S forwards all messages between A
and Z. Moreover, S forwards all queries to GrpoRO1, GrpoRO2 and Frsw unless explicitly
stated, keeping lists of all such requests, which are updated every time S checks
these lists by appending the Qs set of request obtained by sending (Observe, sid) to
GrpoRO1 and GrpoRO2. All queries to GrpoRO1 or GrpoRO2 made by S go through dummy
honest parties so that the queries are not marked as illegitimate. S keeps a initially
empty lists tag-tag, el-st, omsg. S simulates Gticker towardsA by forwarding all queries
and keeping track of ticks.

Create Puzzle: Upon receiving a puzzle puz from A, S proceeds as follows to
check if the tag is valid with respect to the puzzle and extract the message m:
1. Parse puz = (el0, Γ, tag), parse tag = (tag1, tag2) and check that there exists

a request (Hash-Query, (h1|m|td)) from A to GrpoRO2 for which there was a
response (Hash-Confirm, tag2).

2. Send (Pow, sid, td, el0, 2
Γ ) to Frsw, obtaining (Pow, sid, td, el, 2Γ , elΓ ). Check

that there exists a request (Hash-Query, (elΓ |elΓ )) from A to GrpoRO1 for
which there was a response (Hash-Confirm, h1).

3. Check that (m|td) = tag1 ⊕ h1.
If any of the checks above fail, it means that verifying the opening of this puzzle
will always fail, so S sets m = ⊥. S proceeds as follows to simulate the creation of
a puzzle with message m:

1. For j ∈ {0, . . . , Γ}, sample stj
$← {0, 1}τ , add (elj , stj) to el-st and send

(Pow, sid, td, elj , 2) to Frsw, obtaining (Pow, sid, td, sti, 2, elj+1).

2. Sample tag
$← T AG, append (tag, tag) to tag-tag and append

(st0, tag, stΓ ,m) to omsg.

3. Send (CreatePuzzle, sid, Γ,m) to Ftlp and provide st0, . . . , stΓ , tag.

Solve: Upon receiving (Solve, sid, st) from Ftlp, S proceeds as follows:

– If there is (el, st) ∈ el-st, send (Pow, sid, td, el, 2) to Frsw, obtaining
(Pow, sid, td, st, 2, el′).

– If there is no (el, st) ∈ el-st, send (Rand, sid) to Frsw, obtaining (Rand, sid, el′).

Sample st′
$← {0, 1}τ and add (el′, st′) to el-st. Finally, send (Solve, sid, st, st′) to

Ftlp.

Get Message: Upon receiving (GetMsg, sid, puz, st) from Ftlp, S parses puz =
(st0, Γ, tag) and proceeds as follows:
1. Check that there exist entries (el0, st0) and (el, st) in el-st and (tag, tag) in

tag-tag, using el0, el, tag for the remaining checks.

2. Check that the tag tag = (tag1, tag2) is valid with respect to the puzzle puz and
the solution el by proceeding as in the protocol: Send (Hash-Query, (el0|el))
to GrpoRO1, obtain(Hash-Confirm, h1), compute (m|td) = tag1 ⊕ h1,
send (Hash-Query, (h1|m|td)) to GrpoRO2, obtain (Hash-Confirm, h2), send
(Pow, sid, td, el0, 2

Γ ) to Frsw, obtaining (Pow, sid, td, st0, 2
Γ , elΓ ). Check that

tag2 = h2 and el = elΓ .
If the above checks are successful, S sends (GetMsg, sid, st0, tag, st,m) to Ftlp.
Otherwise, S sends (GetMsg, sid, st0, tag, st,⊥) to Ftlp.

Fig. 12. Simulator S for the case of a corrupted Po in πtlp .
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Simulator S for the case of an honest Po in πtlp

Simulator S interacts with environment Z, functionalities Ftlp,GrpoRO1,GrpoRO2,Frsw

and an internal copy of an A corrupting one or more parties Pi ∈ P \ Po. S
forwards all messages between A and Z. Moreover, S forwards all queries to GrpoRO1,
GrpoRO2 and Frsw unless explicitly stated, keeping lists of all such requests. However,
for every query (IsProgrammed,m) to GrpoRO1 or GrpoRO2, S always answers with
(IsProgrammed, 0) if m has been programmed by S itself. S keeps an initially
empty lists el-st, omsg, next. S simulates Gticker towards A by forwarding all queries
and keeping track of ticks.

Create Puzzle: Upon receiving (CreatedPuzzle, sid, puz = (st0, Γ, tag)) from Ftlp,
S proceeds as follows to create a puzzle (el0, Γ, tag) that can be later programmed
to yield an arbitrary message obtained from Ftlp:

1. Sample a random m
$← {0, 1}τ and tag1

$← {0, 1}2τ and tag2
$← {0, 1}τ .

2. Send (Create, sid) to Frsw obtaining (Created, sid, td). Send (Rand, sid) to
Frsw, obtaining (Rand, sid, el0). Send (Pow, sid, td, el, 2Γ ) to Frsw, obtaining
(Pow, sid, td, el, 2Γ , elΓ ).

3. Append (el0, st0) to el-st, set tag = (tag1, tag2), append (tag, tag) to tag-tag
and output (CreatedPuzzle, sid, puz = (el0, Γ, tag)).

Solve: If A makes a query (Mult, sid, el, el) to Frsw on behalf of Pi ∈ P \ Po such
there exists an entry (el, st) in el-st, S proceeds as follows:
1. Send (Pow, sid, td, el, 2) to Frsw, obtaining (Pow, sid, td, el, 2, el′).

2. If there is no entry (el′, st′) in el-st, append (el′, st) to next and send
(Solve, sid, st) to Ftlp on behalf of Pi.

Get Message: Forward queries to GrpoRO1, GrpoRO2 and Frsw from A on behalf
of corrupted parties Pi ∈ P \ Po, allowing A to perform the necessary steps for
GetMessage. However, for every query (IsProgrammed,m) to GrpoRO1 or GrpoRO2,
S always answers with (IsProgrammed, 0).

Ticks: Immediately after each tick, if S sent a query (Solve, sid, st) to Ftlp before
this tick, it sends (Output, sid) to Ftlp on behalf of each corrupted PiP\Po, obtaining
(Output, sid, Li). For each Li and each entry (Pi, st, st′) ∈ Li, S proceeds as follows:

1. If there exists an entry (el′, st) in next, remove (el′, st) from next and append
(el′, st′) to el-st.

2. If there is an entry (elΓ , st
′) in el-st, it means A should be able to execute Get

Message and obtain message m in puzzle puz when activated after this tick.
S proceeds as follows to program the global random oracles so that executing
Get Message with (el0, Γ, tag), elΓ will return m:

(a) Send (GetMsg, sid, puz, st′) to Ftlp, obtaining (GetMsg, sid, puz, st′,m).

(b) Compute h1 = tag1 ⊕ (m|td) and send (Program-RO, (el0|elΓ ), h1) to
GrpoRO1. Since elΓ is randomly chosen by Frsw and still unknown to A, Z or
any other party at this point, the probability that this programming fails
in negligible.

(c) Send (Program-RO, (h1|m|td)), h2) to GrpoRO2. Since h1 is randomly cho-
sen by S and still unknown to A, Z or any other party at this point, the
probability that this programming fails in negligible.

Fig. 13. Simulator S for the case of an honest Po in πtlp.
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C Additively Homomorphic Commitments with Delayed
Opening

We present a protocol πahcom for additively homomorphic commitments realizing
functionality F∆,δahcom, which is also presented here.

F∆,δahcom can be found in Figure 14, while the protocol is presented in Fig-
ures 15, 16 and 17. Protocol πahcom is based on a protocol for additively ho-
momorphic commitments with multiple verifiers presented in [20]. As it is the
case in [20], we actually construct a protocol for commitments to random mes-
sages rather than a protocol for commitments to arbitrary messages. As observed
in [21,20], such a protocol for additively homomorphic commitments to random
messages can be trivially transformed into a protocol that realizes a function-
ality supporting arbitrary message. In order to obtain πahcom we add a delayed
opening phase to the protocol of [20] and modify it in the following way:

Delayed Communication via F∆smt,delay: All messages between sender PS and

PR are exchanged through secure channels with delays modeled by F∆smt,delay

with a maximum message delay ∆, whereas the protocol of [20] employs
standard secure channels with no delay. This is necessary in order to cap-
ture the fact that our additively homomorphic commitment functionality
with delayed openings F∆,δahcom allows for adversarially controlled delays in
the delivery of commitments and openings to honest parties.

Support for only one receiver: Protocol πahcom only realizes additively ho-
momorphic commitments with delayed opening for one receiver PR instead
of supporting multiple receivers as in the protocol of [20]. While it would be
possible to obtain a multiple receiver version of our protocol with delayed
openings, this would require a broadcast functionality with adversarially con-
trolled message delays (i.e. a generalization of F∆smt,delay for multiple receivers)
in order to ensure that all messages exchanged are eventually received by all
receivers. Such a multiple receiver version of πahcom is not necessary for re-
alizing two party computation with output independent abort as defined in
Section 6 and is thus left as future work.

Hardcoded global random oracle commitments: Instead of basing our con-
struction on a generic (non-homomorphic) commitment functionality as in [20],
we explicitly use canonical random oracle commitments based on a restricted
observable and programmable global random oracle GrpoRO as presented
in [15]. This concrete construction of non-homomorphic commitments works
by having the sender sample some randomness w and compute a commitment
to a message m by querying the global random oracle on (m|w) and sending
the output scom to the receiver as a commitment. Later on, the receiver
can check that an opening (m′|w′) is valid by querying the global random
oracle on (m′|w′) and verifying that the output scom′ is equal to scom. This
allows us to obtain time lock puzzles containing an opening (m′|w′) of such
commitments scom through Ftlp in such a way that this opening can be ver-
ified locally by the receiver once the time lock puzzle is solved (i.e. after
receiving and solving the time lock puzzle containing (m′|w′), the receiver
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Functionality F∆,δahcom

F∆,δahcom is parameterized by h,∆ ∈ N and interacts with two parties PS ,PR and
an adversary S who may corrupt either of PS ,PR. The functionality has initially
empty lists M,Q and O, a map com, and a flag open = 0.

Commit: Upon receiving (Commit, sid, cid,x) from PS where cid is an unused iden-
tifier and x ∈ Fh, ignore if open = 1. Otherwise, proceed as follows:
1. Set com[cid] = x and add (∆,mid, sid,PR, (Commit, cid)) to Q for an unused

mid.

2. Send (Commit, sid,mid, cid) to S. If S answers with (sid, abort), then halt.

Open: Upon receiving (Open, sid, cid1, . . . , cido) from PS , ignore if open = 1. Oth-
erwise, if com[cidi] = xi 6=⊥ for i ∈ [o], proceed as follows:
1. Add (∆,mid, sid,PR, (Open, (cidi,xi)i∈[o]) to Q for a fresh mid.

2. Send (Open, sid,mid, (Open, (cidi,xi)i∈[o]) to S and set open = 1.

Delayed Open: Upon receiving (DOpen, sid, cid1, . . . , cido, δ) from PS , ignore if
open = 1. Otherwise, if com[cidi] = xi 6=⊥ for i ∈ [o], proceed as follows:
1. Add (∆,mid, sid,PR, (DOpen, cid1, . . . , cido)) to Q for a fresh mid.

2. Add (δ,PR, (cidi,xi)i∈[o]) and (δ,S, (cidi,xi)i∈[o]) to O.

3. Send (DOpen, sid, cid, . . . , cido, δ) to S and set open = 1.

Linear Combination: Upon receiving (Linear, sid, {(cid, αcid)}cid∈I ,β, cid
′) where

all αcid ∈ F and β ∈ Fh from PS , ignore if open = 1. Otherwise, if com[cid] = xcid 6=⊥
for all cid ∈ I and cid′ is unused, set com[cid′] = β +

∑
cid∈I αcid · xcid.

Fetch Message: Upon receiving (FetchMsg, sid) by P ∈ {PS ,PR} retrieve the set
L of all entries (P, sid, ·) inM, remove L fromM and return (Output, sid, L) to P.

Scheduling: If S sent (Deliver, sid,mid) then remove each (c,mid, sid,P,m) from
Q and add (P, sid,m) to M.

Tick:
1. For each query (0,mid, sid,P,m) ∈ Q remove (0,mid, sid,P,m) from Q and add

(P, sid,m) to M.

2. Replace each (c,mid, sid,P,m) in Q with (c− 1,mid, sid,P,m).

3. For each entry (c,S, cid,x) ∈ O, proceed as follows:
– If c = 0, output (DOpen, sid,S, (cidi,xi)i∈[o]) to S and append

(PS , sid, (DOpened, cid1, . . . , cido)) to M.

– If c > 0, replace (c,S, (cidi,xi)i∈[o]) with (c− 1,S, (cidi,xi)i∈[o]) in O.

4. For each entry (c,PR, (cidi,xi)i∈[o]) ∈ O, if there is no entry
(c,mid, sid,PR, (DOpen, cid1, . . . , cido)) ∈ Q , proceed as follows:

– If c = 0, output (DOpen, sid,PR, (cidi,xi)i∈[o]) to PR.

– If c > 0, replace (c,PR, (cidi,xi)i∈[o]) with (c− 1,PR, (cidi,xi)i∈[o]) in O.

Fig. 14. Functionality F∆,δahcom For Homomorphic Commitments with Delayed Opening.

can simply query the global random oracle in order to verify it without any
further communication with the sender).
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While these modifications allow us to obtain delayed openings, πahcom’s pro-
cedures for committing, performing addition of commitments and opening essen-
tially work as in the protocol of [20] for the case where there is only one verifier.
In this case, the only difference between πahcom and [20] is that πahcom specifically
uses global random oracle commitments (as proven UC-secure in [15]) instead
of a non-homomorphic commitment functionality as in [20]. Hence, all the ar-
guments in the security proof for the protocol of [20] carry on to πahcom and we
only need to prove security of the delayed opening procedure in order to prove
Theorem 3.

C.1 Security Analysis

The security of πahcom is formally expressed in Theorem 3.

Theorem 3. Protocol πahcom UC-realizes F∆,δahcom in the GrpoRO,Ftlp,F∆smt,delay-
hybrid model with computational security against a static adversary. Formally,
there exists a simulator S such that for every static adversary A, and any envi-
ronment Z, the environment cannot distinguish πahcom composed with GrpoRO,Ftlp,F∆smt,delay

and A from S composed with F∆,δahcom. That is:

IDEALF∆,δ
ahcom,S,Z

≈c HYBRID
GrpoRO,Ftlp,F∆

smt,delay

πahcom,A,Z .

Proof. (Sketch) As it is the case in [20], we actually construct a protocol for
commitments to random messages rather than a protocol for commitments to
arbitrary messages. As observed in [21,20], such a protocol for additively homo-
morphic commitments to random messages can be trivially transformed into a
protocol that realizes a functionality supporting arbitrary message. We omit this
straightforward transformation and focus on the case of random messages.

We construct a simulator S that interacts with the functionality F∆,δahcom, the
environment Z an internal copy of the adversary A, towards which it executes
πahcom and simulates GrpoRO,Ftlp,F∆smt,delay. S honestly responds to requests of

Ftlp or F∆smt,delay to Gticker by querying the global ticker. As observed previously,
we can use the instructions from the simulator for the protocol of [20] in the
case with 1 verifier in order to construct S for the commitment, addition and
opening phases of πahcom. The only difference is that instead of simulating a non-
homomorphic commitment functionality as in [20], S follows the instructions
of a simulator for the global random oracle commitment scheme of [15] (used
explicitly by πahcom in place of a commitment functionality) in order to extract
the messages from A when the simulator of [15] would do so by simulating the
commitment functionality towards A. Besides that, S simulates message delivery
through F∆smt,delay exactly as indicated by F∆,δahcom.

In order to simulate the delayed opening phase, S takes advantage of its
simulation of Ftlp towards A. In case the adversary A corrupts PS , S learns
(si,r[i]|wi,r[i]) for i ∈ [n] (resp. (A0[·, j],A1[·, j])j∈J)|w)) contained in puzs
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Let C be a systematic binary linear [n, k, s] code, where s is the statistical security
parameter and n is k +O(s). Let τ be a computational security parameter. Let H
be a family of linear almost universal hash functions H : {0, 1}m → {0, 1}l. Let
PRG : {0, 1}` → {0, 1}m+l be a pseudorandom generator. Protocol πahcom is run
by a sender PS and a receiver PR, who interact with GrpoRO (having output size
τ), instances of Ftlp and instances of F∆smt,delay with message delay parameter ∆,
proceeding as follows:

Commitment Phase
1. On input (commit, sid, cid1, . . . , cidm,PS ,PR), PS proceeds as follows:

(a) For i ∈ [n] and j ∈ {0, 1} PS commits to si,j by performing the fol-
lowing steps: (1) Sample wi,j ← {0, 1}τ and si,j ← {0, 1}`; (2) Send
(Hash-Query, (si,j |wi,j)) to GrpoRO, obtaining (Hash-Confirm, scomi,j);
(3) Send scomi,j to PR via F∆smt,delay.

(b) Compute Rj[i, ·] = PRG(si,j) and set R = R0 + R1 so that R0,R1 forms
an additive secret sharing of R.

(c) Adjust the bottom n− k rows of R so that all columns are codewords in C
by constructing a matrix W with dimensions as R and 0s in the top k rows,
such that A := R + W ∈ C�m+l (recall that C is systematic). Set A0 =
R0,A1 = R1 + W and send to PR via F∆smt,delay (sid, cid1, . . . , cidm,W)
(only sending the bottom n− k = O(s) rows).

2. Upon receiving all messages scomi,j and (sid, cid1, . . . , cidm,W) from PS , PR
proceeds as follows:

(a) Sample r′ ← {0, 1}`, and send it to PS via F∆smt,delay.

3. Upon receiving r′ from PR via F∆smt,delay, PS proceeds as follows:

(a) Use r′ as a seed for a random function H ∈ H (note that we identify the
function with its matrix and all functions in H are linear).

(b) Set matrices P, P0 and P1 as the first l columns of A, A0 and A1, re-
spectively, and remove these columns from A, A0 and A1. Renumber the
remaining columns of A, A0 and A1 from 1 and associate each scomi,j (for
i ∈ [n] in step 1) with a different column index in these matrices. Notice
that P = P0 + P1.

(c) For i ∈ {0, 1}, compute Ti = AiH + Pi and send
(sid, cid1, . . . , cidm,T0,T1) to PR via F∆smt,delay. Note that AH + P =

A0H + P0 + A1H + P1 = T0 + T1, and AH + P ∈ C�l.

Fig. 15. Modified version of the Commit phase for the protocol πahcom of [20] with
delayed opening.

(resp. puzo) by observing the queries of A to the simulated Ftlp. S checks
that these values are valid openings for the global random oracle commitments
scoms, scomo sent by A are valid by following the instructions of the global ran-
dom oracle commitment simulator of [15]. If these are valid openings, S uses
(A0[·, j],A1[·, j])j∈J) and (si,r[i]|wi,r[i]) for i ∈ [n] to execute the steps of an
honest receiver PR in order to check that the opening each commitment identi-
fied by cid1, . . . , cido is valid. If any of these checks fails, S outputs whatever A
outputs and aborts. Otherwise, it sends (DOpen, sid, cid1, . . . , cido, δ) to F∆,δahcom
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Addition of Commitments
1. On input (add, sid, cid1, cid2, cid3,PS ,PR), PS finds indexes i and j correspond-

ing to cid1 and cid2 respectively and check that cid3 is unused. PS appends
the column A[·, i] + A[·, j] to A, likewise appends to A0 and A1 the sum of
their i-th and j-th columns, and associates cid3 with the new column index. PS
sends (add, sid, cid1, cid2, cid3) to PR via F∆smt,delay.

2. Upon receiving (add, sid, cid1, cid2, cid3) from PS via F∆smt,delay, PR stores the
message.

Opening
1. On input (reveal, sid, cid1, . . . , cido), PS finds the set J = {j1, . . . , jo} of indexes

associated to cid1, . . . , cido and sends (A0[·, j],A1[·, j])j∈J to PR via F∆smt,delay.
2. Upon receiving message (A0[·, j],A1[·, j])j∈J from PS via F∆smt,delay, PR samples
r ← {0, 1}n and sets the diagonal matrix ∆ such that it contains r[1], . . . , r[n]
in the diagonal. Send r to PS via F∆smt,delay.

3. Upon receiving r from PR via F∆smt,delay, PS opens commitments scomi,r[i] by
sending (si,r[i]|wi,r[i]) to PR via F∆smt,delay and halts.

4. Upon receiving (si,r[i]|wi,r[i]) from PS via F∆smt,delay for i ∈ [n], PR proceeds as
follows:

(a) For i ∈ [n], check the validity of the openings to scomi,r[i]
by sending (Hash-Query, (si,r[i]|wi,r[i])) to GrpoRO, obtaining
(Hash-Confirm, scomi,r[i]) and aborting if scomi,r[i] 6= scomi,r[i].

(b) Compute S[i, ·] = PRG(si,r[i]), obtaining a matrix S. Set B = ∆W + S.
Define the matrix Q as the first l columns of B and remove these columns
from B, renumbering the remaining columns from 1. Check that ∆T1 +
(I−∆)T0 = BH + Q and that T0 + T1 ∈ C�l. If any check fails, abort.

(c) For every message (add, sid, cid1, cid2, cid3) received from PS , append
B[·, j] + B[·, i] to B, where i and j are the index corresponding to cid1
and cid2 respectively and associate cid3 with the new column index.

(d) For every j ∈ J , check that A0[·, j] + A1[·, j] ∈ C and that, for i ∈ [n],
it holds that B[i, j] = Ar[i][i, j] (recall that r[i] is the i-th entry on the
diagonal of ∆). If all checks succeed, for every j ∈ J , output the first k
positions in A0[·, j] + A1[·, j] as the opened string and halt. Otherwise,
abort by outputting (sid, cidj ,⊥).

Fig. 16. Addition of commitments and modified opening phase for the protocol πahcom

of [20] with delayed opening.

and halts. Essentially, upon receiving the messages for a delayed commitment,
S checks that they will result in an honest receiver accepting this delayed open-
ing, either performing a similar delayed opening via F∆,δahcom if this is the case, or
aborting and outputting what A outputs if the checks fail.

If A corrupts PR, upon receiving (DOpen, sid, cid, . . . , cido, δ) from F∆,δahcom,
S simulates the steps of an honest sender for a delayed commitment, with the
difference that the puzzles puzs, puzo are generated for random messages. Upon
receiving (DOpen,S, (cidi,xi)i∈{1,...,o}), S simulates the solutions of puzzles in a
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Delayed Opening
1. On input (reveal, sid, cid1, . . . , cido), PS finds the set J = {j1, . . . , jo} of

indexes associated to cid1, . . . , cido, samples wo
$← {0, 1}τ and commits to

(A0[·, j],A1[·, j])j∈J by sending (Hash-Query, (((A0[·, j],A1[·, j])j∈J)|wo))
to GrpoRO, obtaining (Hash-Confirm, scomo). PS commits to
(sid, cid1, . . . , cido, (A0[·, j],A1[·, j])j∈J) towards PR by sending scomo to
PR via F∆smt,delay.

2. Same as Step 2 of Opening Phase, except that PR proceeds upon receiving
scomo from PS via F∆smt,delay.

3. Upon receiving r from PR via F∆smt,delay, PS creates time lock
puzzles containing the opening of commitments scomi,r[i] sends
(CreatePuzzle, sid, δ,

(
(s1,r[1]|w1,r[1]), . . . , (sn,r[n]|wn,r[n])

)
) (resp.

(CreatePuzzle, sid, δ, (((A0[·, j],A1[·, j])j∈J)|wo)))) to Ftlp, obtaining
(CreatedPuzzle, sid, puzs) (resp. (CreatedPuzzle, sid, puzo) ). PS sends puzs, puzo
to PR via F∆smt,delay. In order to determine the earliest point when these time
lock puzzles can be opened, PS parses puzs = (st − s0, Γ − s, tag − s), sets
cst− s = 0 and performs the following loop:
(a) Send (Solve, sid, st− scst−s) to Ftlp.
(b) Send (Output, sid) to Ftlp and checks that there is an entry (PR, st −

scst−s, st− scst−s+1) in Li. If yes, increment cst− s.
(c) If cst−s = Γ , PS outputs (DOpened, sid, cid1, . . . , cido) and exits the loop.

4. Upon receiving time lock puzzles puzs, puzo via F∆smt,delay, PR uses Ftlp to obtain
(si,r[i]|wi,r[i]) (resp. ((A0[·, j],A1[·, j])j∈J)|wo)), i.e., PR parses puzs = (st −
s0, Γ − s, tag − s) (resp. puzo = (st − o0, Γ − o, tag − o)), sets cst − s = 0
(resp. cst− o = 0) and performs the following loop:
(a) Send (Solve, sid, st− scst−s) (resp. (Solve, sid, st− scst−o)) to Ftlp.
(b) Send (Output, sid) to Ftlp and checks that there is an entry (PR, st −

scst−s, st− scst−s+1) (resp. (PR, st− scst−o, st− scst−o+1)) in Li. If yes,
increment cst− s (resp. cst− o).

(c) If cst − s = Γ (resp. cst − o = Γ ), send
(GetMsg, sid, puzs, st − scst−s) ((GetMsg, sid, puzo, st − ocst−o)), obtain-
ing (GetMsg, sid, puzs, st − scst−s,

(
(s1,r[1]|w1,r[1]), . . . , (sn,r[n]|wn,r[n])

)
)

(resp. (GetMsg, sid, puzo, st−ocst−o, (((A0[·, j],A1[·, j])j∈J)|wo)))). If both(
(s1,r[1]|w1,r[1]), . . . , (sn,r[n]|wn,r[n])

)
and (((A0[·, j],A1[·, j])j∈J)|wo))

have been obtained, PR exits the loop and proceeds to the next step.
5. For each commitment scom where scom = scomi,r[i] (resp. scomo) and mes-

sage of the form (m|w) where m = si,r[i] and w = wi,r[i] (resp. m =
((A0[·, j],A1[·, j])j∈J) and w = wo), PR checks the validity of the openings
obtained from the time lock puzzles by sending (Hash-Query, (m|w) to GrpoRO,
obtaining (Hash-Confirm, scom) and aborting if scom 6= scom.

6. PR uses (si,r[i]|wi,r[i]) for i ∈ [n] and
(sid, cid1, . . . , cido, (A0[·, j],A1[·, j])j∈J)|w) obtained in the previous step
to execute Step 4 of the Opening Phase.

Fig. 17. Delayed Opening phase for the protocol πahcom of [20] with delayed opening.
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way that they yield delayed openings to messages xi for commitments identified
by cidi. Notice that S can do that following the construction of the simulator
of [20] for the case of a corrupted receiver in order to obtain (A0[·, j],A1[·, j])j∈J)

consistent with x1, . . . ,xo obtained from F∆,δahcom and then make puzo open to
these simulated values when A queries the simulated Ftlp to obtain this solution.

ut

D Proof of Theorem 2

In the proof, we make crucial use of the following standard fact:

Lemma 1. Fix values s, r1, . . . , rm, s
′, r′1, . . . , r

′
m ∈ Fh. Then pick αk

$← F for
k ∈ [κ] uniformly at random. If for all k ∈ [κ]

rk ⊕ αk · sk = r′k ⊕ αk · s′k

then s = s′ and rk = r′k for all k ∈ [κ] except with probability O(2−κ).

The proof of Theorem 2 then works as follows.
Proof. To simplify notation, assume that A will corrupt P2. In the proof,
we will construct a simulator S which will run a “fake” instance of the pro-
tocol π2pcoia with the adversary A while actually interacting with the ideal

functionality F∆,δ2pcoia. It therefore simulates a party P1 as well as functionalities

Fct,F∆,δahcom,F∆2pcsso. During the simulation, whenever any hybrid functionality
queries Gticker then S will query Gticker and respond honestly. Whenever S calls
Scheduling of F∆2pcsso then it will make a similar query at F∆,δ2pcoia.
S will let P1 follow the protocol in steps Init, Input and Computation,

where it will use a random input x1 for F∆2pcsso, additionally extract the input

x2 which A inputs into F∆2pcsso and forward it to F∆,δ2pcoia. The exact delay of

the Init, Input,Computation messages can directly be forwarded by S to F∆,δ2pcoia -
whenever A inputs a message of P2 into these interfaces or accelerates message
delivery, then S can do the respective operation in F∆,δ2pcoia using Scheduling.
During Output S runs the protocol until Step 8 begins. If in Step 3 A will
input values s2, rk,2 into F∆,δahcom that it did not obtain from F∆2pcsso then set
cheated← >.

In Step 8 S will follow the protocol as before, but will send (Output, sid) to

F∆,δ2pcoia and for the next∆ ticks it will wait if it obtains (DOpen, sid,P1, (cidi, ·)i∈[o])
from F∆,δahcom where P1 is receiver. If during this period it will either not obtain

DOpen or cheated = > then S upon (OutputOrAbort) from F∆,δ2pcoia will send

(Abort, sid) to F∆,δ2pcoia, otherwise it will send (Ok, sid). Then, S obtains the out-

put y from F∆,δ2pcoia as well as the message id of the output message to the honest

party, which it can use to schedule output delivery on F∆,δ2pcoia. In the “tick-

round” when F∆,δahcom outputs a value to the simulated P1 send (Deliver, sid,mid)

43



to F∆,δ2pcoia. In the round when F∆,δahcom outputs the committed messages to the
adversary replace the value for cids1 with y ⊕ s2 where the latter was extracted

from the F∆,δahcom instance where P2 was sender and the former is the output from

F∆,δ2pcoia as mentioned above.

Indistinguishability. The output which A obtains is exactly the output of F∆,δ2pcoia

which follows by linearity on how the output s1 of F∆,δahcom is constructed. A
obtains the output in the same round as in the real protocol as the abort or
delivery message is sent by S after δ ticks. The value y can always be programmed
at the moment when F∆,δahcom would reveal the share of P1 but has to query Gticker

beforehand. The other messages which A obtains from F∆,δahcom and F∆2pcsso have
the same distribution as in the protocol as they are generated the same way and
due to the uniform choice of rk,1. For all messages that the honest party obtains,
S is using Deliver to let delivery coincide with the same tick as in the protocol.

The only difference in the output distribution towards A is the influence of
the flag cheated. In the simulation we will make F∆,δ2pcoia output Abort whenever

the values that go into F∆,δahcom are not the same as the ones A received from
F∆2pcsso. In the real protocol, we instead abort if the conditions in Step 10 of
π2pcoia do not hold. The difference is exactly captured by Lemma 1 as being
negligible in the statistical security parameter κ and the claim follows. ut

E Proof of the Impossibility Result

In this section, we provide the full proofs of the impossibility result from Sec-
tion 7.

E.1 Technical Details of the Simple Setting

We now show that one cannot UC securely implement Fcf using a synchronous
protocol using only point-to-point communication even if one is allowed time-
lock puzzles.

We will assume without loss of generality that πcf is of a particular form
described now. Consider a synchronous protocol for two parties Alice and Bob.
They have no inputs. They begin the protocol in the same round, call it round
1. In round 1 Alice first sends m1 to Bob. In round 2 Bob sends m2 to Alice,
and so on. We assume a rushing adversary, so we can without loss of generality
assume the parties take turns sending messages.

To simplify our treatment of abort, we assume that the parties abort by
sending a special symbol abort. We also imagine that in all rounds after the
protocol ended a party sends abort, whereas in practice it would terminate and
send nothing. This is just to make notation easier. We make the convention
that if a party P sends abort in a given round i the other party P ′ proceeds
as if P sends abort in all rounds ≥ i and party P ′ will itself send abort in all
following rounds. Therefore, once a party sent abort the other parties will de
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facto ignore at its future messages. In particular, it follows that a party can
eventually compute its output bit cP the first time it receives abort from the
other party without considering any future message from the other party. This
is purely a notational convenience for talking about aborts. We have to some
extend just made abort a legal message. This is possible as when implementing
Fcf the parties must always output a bit c even when the other party aborts.
The only way to “abort” is hence to send the “end of protocol” signal abort
prematurely. For a given execution, we use ρ to denote the first round in which
a parties sent abort.

Checkpoints. We define a number of so-called checkpoints in the execution.
These are just internal states of parties at particular points in the execution.
We let σ0 be the initial state of Bob. For round 0 < i ≤ ρ we let P be the party
computing mi and we let σi be the state of P right after computing mi and right
before sending mi.

Default Values. For each round i ≥ 0 we define a bit ci called the default value
of round i. This is the value that the party P that sent mi will output as result
of the coin-flip if the other party replies to mi by aborting. Due to the use of for
instance time-lock puzzles P might not be able to compute ci during round i,
but P will eventually be able to compute ci as it is its output if the other party
P ′ sends abort in all following rounds. Therefore P can just start from its state
after computing mi and simulate that P ′ sends abort in all subsequent rounds,
and run until P gives an output. This will by definition be ci.

– We let c0 be the output c that Bob would output if Alice sends abort in
the first round. In more details, let σ0 be the initial state of Bob. Continue
running from σ0 and simulate that Alice sends abort in all subsequent rounds.
When Bob gives an output cBob, let c0 = cBob.

– For each round 0 < i ≤ ρ we let ci be the output bit the sending party
P would give if after sending message mi to the other party that other
party replies with abort. Let σi be the state of P right after computing mi.
Continue running P from σi and simulate that the other party P ′ sends
abort in all subsequent rounds. When P gives an output cP , let ci = cP .

– For each round i > ρ we let ci = ci−2.

We record a property of the default value which is crucial to the proof.

Eventual Revelation: After a party P computedmi it can eventually compute
ci. This holds no matter whether mi is sent or withheld or in general how the
future executing proceeds. This is because ci can be computed solely from
the checkpoint σi, the state of P after computing mi. This property ensures
that the default value ci will eventually be revealed to the party P computing
mi. Note that this would not be true in the presence of an arbitrary ideal
functionality used by Alice and Bob for communication, as the sending of
mi might change the behaviour of the ideal functionality, preventing P from
later computing ci. However, in our simple setting the property clearly holds.
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Let Z be an environment which we will specify below. Let Execπcf ,Z be
the execution in the real world model with a dummy adversary. Let S be any
potential simulator and let ExecFcf,S,Z be the simulation. We will assume that
it holds for all Z that ExecFcf,S,Z ≈ Execπcf ,Z , and reach a contradiction.

For any execution of πcf define the default values ci as above. Let c be the
output of an honest party in πcf . We can assume without loss of generality
that if there are two honest parties, then they output the same c (except with
negligible probability). If not this would allow a trivial distinguishing attack. Let
ei = Pr[ci = c] and let di = Pr[ci = ci−1]. The value ei is the probability that
the default value that P was ”planning” to output after sending mi in case the
other party would abort equals the value it ended up outputting in round ρ. The
value di is the probability that the default value that P was planning to output
after sending mi in case the other party would abort equals the value that the
other party defaulted to in the round before. The key to our impossibility result
is that sometimes the values ei and di are different in the real world execution,
whereas in the simulation they are the same as ci−1 must be the output of Fcf.

Lemma 2. In a random honest run in the real world it holds that e0 ≈ 1
2 .

Proof. If Pr[c0 = c] > 1
2 , then Pr[c = 0|c0 = 0] > 1

2 or Pr[c = 1|c0 = 1] > 1
2 .

Assume without loss of generality that it is Pr[c = 0|c0 = 0] > 1
2 . Recall that

c0 is the output c that Bob would output if Alice sends abort in the first round.
This bits depends only on the random tape of Bob. So, if Pr[c = 0|c0 = 0] > 1

2 ,
then Bob can use a hard coded random tape where c0 = 0 and hence ensure that
Pr[c = 0] > 1

2 in an honest run with that random tape. This biases the coin,
which in particular allows to distinguish the real world execution from the ideal
one, where the coin is unbiased. ut

Lemma 3. In a random honest run in the real world it holds that eρ = 1.

Proof. The party P sending mρ gives output after sending it without consider-
ing any new inputs from the other party, by definition of ρ. Hence the output of
that party is independent of what the other party sends in round ρ+1. Therefore
by definition cρ = cP , which implies that eρ = 1. ut

The following Lemma also follows from [22].

Lemma 4. There exists a round i > 0 such that it is not the case that ei ≈ di.

Proof. It follows from eρ = 1 and e0 = 1
2 that we can find a round i > 0 such

that ei ≈ 1 and ei−1 6≈ 1. At this point di = Pr[ci−1 = ci] ≈ Pr[ci−1 = c] =
ei−1 6≈ 1. ut

Recall that in the impossibility result of Cleve cited above the basis for the
proof is that when ei 6= di then the party P to send mi can bias the coin. If
it withholds the message mi the output is ci−1. If it sends it the output will
be the output of an honest run. By ei 6= di these distributions are different.
We cannot use this attack as we do not necessarily know ci when we are to
withhold mi, for instance due to the use of time-lock puzzles. It is crucial in the
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proof of Cleve that ci is known when mi is about to be sent. This is why it is
impossible to circumvent Cleve’s result using time-lock puzzles in the stand alone
model. However, maybe surprisingly, when security is defined via simulation we
can reestablish impossibility using a variant of Cleve’s techniques. Instead of
mounting Cleve’s witholding attack, the environment will after the execution of
the protocol test whether the witholding attack would have biased the count. In
the real world it sometimes will. In the ideal world it cannot. This will allow to
distinguish.

Consider the following strategy Z0 of the environment when the P to send mi

in round i is corrupted. Run a copy P of the honest P and instruct the corrupted
dummy adversary P̂ to send the same messages as P in all rounds. Record the
checkpoint σi, call it σi0. At the end of the protocol compute the default ci of P
in round i and call it ci0. This is possible by eventual revelation. Let cP′ be the
output of the honest party P ′. In the UC model the environment sees this value.
Output (ci0, c0 = cP′). By definition we have that Pr[ci0 = cP′ ] ≈ ei in the real
world. Therefore this also holds for the output (ci0, c0) in the ideal world or we
would have an attack. Note that in the simulation cP′ = c, where c is the coin
output by Fcf. It follows that in the simulation it holds that

Pr[ci0 = c] ≈ ei .

Note that this follows purely from eventual revelation.

Consider now the following strategy Z1 of the environment when the P to
send mi in round i is corrupted. Run a copy P of the honest P and instruct the
corrupted dummy adversary P̂ to send the same messages as P in all rounds
j < i. Compute mi and record the checkpoint σi, call it σi1. Then abort in round
i, i.e., do not send mi. At the end of the protocol compute the default value ci

of P in round i and call it ci1. Let cP′ be the output of the honest party P ′.
Output (ci1, c1 = cP′). Note that in the real world cP′ = ci−1 (by definition).
Therefore in the real world the distribution of the output (ci1, c1) is that of
(ci, ci−1). Therefore this also holds for the output (ci1, c1) in the ideal world or
we would have an attack. Note that in the simulation cP′ = c, where c is the coin
output by Fcf. It follows that in the simulation (ci1, c) is distributed as (ci, ci−1)
in the real world. In particular Pr[ci1 = c] ≈ Pr[ci1 = ci−1]. By definition this
gives us that

Pr[ci1 = c] ≈ di .

The above was the crucial point where we use simulatability. Also without simu-
latability would We find a way to output (ci, ci−1) in the real world. We then go
to the simulation and force ci−1 = c. This gives us a second correlation between
ci and c.

Consider now the following strategy Z of the environment when the P to
send mi in round i is corrupted. Run a copy P of the honest P and instruct the
corrupted dummy adversary P̂ to send the same messages as P in all rounds
j < i. Compute mi and record the checkpoint σi, call it σi. Pause. We record a
property of the default value which is crucial to the proof.
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Simulator Non-Interference: After an emulated party P in Z computed mi

it can by eventual revelation compute ci from σi, we write ci = ci(σi).
Furthermore, after mi was computed there is no way for the simulator to
affect the computation ci = ci(σi) anymore. Therefore the probability that
ci = c depends only on the distribution of (σi, c). We call this simulator non-
interference. Note that this would not be that case in the programmable
random oracle model where the computation of ci = ci(σi) might involve
querying the oracle. But in our simple setting we clearly have simulator
non-interference.

Notice now that up until and including the computation of mi the three en-
vironments Z0, Z1, and Z have the exact same behaviour. In fact, if we stripped
the continuation after round i, they would be the same environment, namely Z.
In the UC model the simulator therefore cannot distinguish Z0, Z1 and Z until
mi has been computed, as it only has blackbox access to Z. From this it follows
that (σi0, c), (σi1, c), and (σi, c) have identical distributions, where c is the coin in
Fcf. In particular, if we let ci = ci(σi) then Pr[ci = c] = Pr[cib = c] for b ∈ {0, 1}.
This follows from simulator non-interference. This gives us that

Pr[ci = c] = Pr[ci0 = c] ≈ ei and Pr[ci = c] = Pr[ci1 = c] ≈ di .

This is a contradiction as it is not the case that ei ≈ di.

E.2 Excluded Settings

We now describe how to handle non-programmable random oracles as defined in
e.g. [41] and other types of setup. It is straightforward to verify that the above
proofs goes through as long as we can prove eventual revelation and simulator
non-interference. Therefore all settings with eventual revelation and simulator
non-interference are excluded, they do not allow to UC securely realize Fcf. We
now give some examples.

Non-programmable Random Oracles. Adding a random oracle does not
violate eventual revelation. It does, however, violate simulator non-interference,
as it is the simulator which simulates the random oracle to the environment.
We can, however, add a restricted observable global random oracle [19]. Since
the restricted observable global random oracle cannot be programmed by the
simulator it does not violate simulator non-interference. As a special case a
global CRS is not enough to bring us out of the excluded settings.

2PC with Abort. We can also add a special type of ideal functionalities F2pca

working as follows. In each round it has a direction, sending from Alice to Bob
in odd rounds and from Bob to Alice in even rounds. We describe a round i
from Alice to Bob. First both parties give an input xiAlice and xiBob. If a party
does not give an input, the ideal functionality uses 0. Then F2pca computes the
corresponding outputs yiAlice and yiBob given by a randomised function f i being
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part of the description of F2pca. The outputs are only allowed to depend on
the current inputs xiAlice and xiBob and fresh randomness, i.e., the rounds are
run independently. Then it outputs yAlice to Alice who gives an input mi. If
mi = abort, the output to Bob is abort. Otherwise the output to Bob is yBob.
If a party aborts in any round, the other party aborts in all future rounds and
proceed as if the other party aborted in all subsequent rounds rounds, no matter
what values the other party sends. As before we can define the check point σi

of Alice to be her state after computing mi. Rounds with direction from Bob to
Alice are the same except that it is Bob who gets to choose whether to abort
by inputting mi. It is easy to see that this setting has eventual revelation and
simulator non-interference.

As for eventual revelation, consider a party P in the check point σi. If the
other party would abort in the next round, then P will receive no more in-
formation from F2pca. Hence in σi the party P has all the information needed
to compute ci(σi). As for simulator non-interference, note that when computing
ci(σi) one does not access F2pca. Therefore ci(σi) depends only on the local state
of the environment. Again, this would have been different in the programmable
random oracle model.

Note that the above leaves a pretty pessimistic picture. Even with a non-
programmable random oracles, time-lock puzzles, and access to unlimited 2PC
with abort, one cannot UC securely implement even a simple task as fair coin-
flip, which is arguable one of the simplest tasks where abort is an issue. The only
way to UC securely implement fair coin-flip is therefore to cheat in the model in
a strong way, by for instance using a programmable random oracle.
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