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Abstract

Threshold ECDSA signatures have received much attention in recent years due to the
widespread use of ECDSA in cryptocurrencies. While various protocols now exist that admit
efficient distributed key generation and signing, these protocols have two main drawbacks.
Firstly, if a player misbehaves, the protocol will abort, but all current protocols give no way to
detect which player is responsible for the abort. In distributed settings, this can be catastrophic
as any player can cause the protocol to fail without any consequence. General techniques to
realize dishonest-majority MPC with identifiable abort add a prohibitive overhead, but we
show how to build a tailored protocol for threshold ECDSA with minimal overhead. Secondly,
current threshold ECDSA protocols (that do not rely on generic MPC) have numerous rounds
of interaction. We present a highly efficient protocol with a non-interactive online phase al-
lowing for players to asynchronously participate in the protocol without the need to be online
simultaneously. We benchmark our protocols and find that our protocol simultaneously re-
duces the rounds and computations of current protocols, while adding significant functionality:
identifiable abort and noninteractivity.

1 Introduction

Digital signatures are a crucial component to modern internet-based systems. When technology
companies issue software updates, they digitally sign those updates so that users can verify their
authenticity. Certificate Authorities (CAs) secure the web by issuing certificates attesting to the
authenticity of a website’s public key, and web servers in turn use those authenticated keys to
securely communicate with clients. In cryptocurrencies, digital signatures are used to authenticate
transactions, and the ability to generate a signature is equivalent to the ability to spend one’s
money. The commonality between all of these applications is that the theft or loss of the signing
key can be catastrophic, and a key difficulty is how to store signing keys in a manner that is both
easy to use and resilient to theft and loss.

Threshold cryptography [18], and threshold signatures in particular, has been gaining traction as
an approach to solving this problem. In a threshold signature scheme, signing keys are distributed
among several servers which need to act jointly in order to issue a signature. More specifically, in
a threshold signature scheme, a key is split into n shares and a parameter t is defined such that
an adversary that compromises t or fewer shares is unable to generate a signature and learns no
information about the key. On the other hand, in a threshold optimal scheme, t + 1 shares can
be used to jointly issue a signature without ever reconstructing the key. Splitting the key in this
way eliminates a single point of failure and allows the honest parties to recover even in the face of
partial compromise.

Perhaps the most popular signature algorithm in deployed systems is the Elliptic Curve Digital
Signature Algorithm (ECDSA) [1]. Building a threshold signature scheme for (EC)DSA has been
a research topic for over two decades [28], but has gained increased interest recently due to the
adoption of ECDSA in Bitcoin, Ethereum, and other cryptocurrencies. Over the past two years,
several highly efficient schemes have been proposed that support threshold signatures with any



number of participants [21, 26, 39], and indeed at least a dozen companies are now integrating
threshold ECDSA into their commercial products.

Identifiable and attributable aborts. The current state-of-the-art threshold ECDSA protocols
operate in the dishonest majority model. This model is highly desirable as it allows building
threshold signature protocols where the threshold ¢ can take on any value so long as it is less than
n, the total number of players.

It is well known that in this model, guaranteeing output delivery is impossible, and indeed
if parties misbehave, the protocol may abort without producing a signature. Clearly, as t + 1
players are required to sign, and the adversary can corrupt up to ¢ nodes, there is no guarantee
in the dishonest majority setting that a signature will be generated since there may simply not be
t + 1 honest nodes. But even if aborts are unavoidable, one may want to identify which player(s)
misbehaved and caused the abort. Unfortunately, current protocols do not address this issue and
aborts are completely unattributable.

For some uses of threshold ECDSA, identifying aborting parties is merely a convenience. Con-
sider for example a cryptocurrency exchange that splits its signing key among two servers that it
controls in order to gain resilience against an attacker that compromises one of the servers. When
the exchange wishes to sign, it can do so using a threshold signature scheme that requires the
participation of both servers. If the signing protocol fails, it knows that something has gone wrong
and needs to reboot one of its servers. It would certainly be convenient to know which server is
the corrupted one, but it is by no means critical as it is perfectly feasible to simply reset all of the
servers.

However, for other use cases, particularly ones which involve key shares that are controlled
by several distinct participants, the inability to identify aborts can be catastrophic. One such
use case is a protocol that was recently presented by Keep Network ! to enable users to trade
bitcoins on the Ethereum blockchain. To facilitate this, a committee of nodes “locks up” coins in
a jointly held address on the Bitcoin blockchain and simultaneously unlocks them on Ethereum.
Conversely, when an Ethereum user wants to “cash out”, the committee will unlock funds on the
Bitcoin blockchain and send them to the user’s address. To lock up funds in their protocol, coins
are sent to a Bitcoin address that is jointly controlled by the committee. To achieve this, they
employ the threshold protocol of Goldfeder and Gennaro [26].

Crucial to their design is incentivizing the committee to lock and unlock user funds when
requested. But there’s a problem. What happens if one of the committee members misbehaves
and causes the signing protocol to abort? The ability to punish only the misbehaving player is
crucial, but doing so is impossible since in [26] (and all known protocols) there is no way to identify
which party caused the abort. In other words, a single rogue committee member could deny service
to the protocol and go completely undetected. Indeed Keep acknowledges this issue as problematic,
but it is impossible to fix using any known dishonest-majority threshold ECDSA protocol.

Off/Online Processing. One major advantage of ECDSA (and all the other Schnorr-based [44]
signature schemes) is the ability to move all the expensive computation (in the case of ECDSA an
expensive point multiplication/group exponentiation) to an offline preprocessing stage that can be
performed before the message is known. Once the message to be signed is available a single scalar
multiplication needs to be performed.

Ideally one would like this property to be replicated in a distributed system that computes
signatures as well. Unfortunately all the recent dishonest-majority proposals that do not rely on
generic MPC do not have this property, and indeed, it’s much worse. The protocols of [27, 26, 39, 21]
require players to perform many rounds of expensive computation after the message is known. The
reason for this is that all the schemes above must perform a multi-round “distributed validity check”
which outputs the signature if the players indeed hold shares of a valid signature, but otherwise
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reveals nothing except the fact that the protocol failed. The intuitive reason for the necessity of
this check is that an adversary controlling most of the players can induce incorrect signatures that
if reconstructed may reveal information about the key.

Our Contribution. In this paper, we present two new threshold ECDSA protocols. Our main
result (Section 3) is a new protocol with the following properties

e Noninteractive online phase. The protocol can be split into an offline preprocessing stage
with most of the computation and communication, and an online stage when the message
is known, consisting of a single communication round where each player performs a single
scalar multiplication. Interestingly, our protocol has an overall lower number of rounds than
[21, 26, 39], so even if the entire protocol was run online, it would still be fewer rounds.

e Identifiable Abort. The protocol allows the efficient detection of aborting parties.

Our protocol can be proven secure in a simulation-based definition that assures that the ad-
versary learns nothing beyond a valid signature. However, the simulation game assumes that the
adversary sees the randomizer r before he chooses the message m to be signed (this is an inevitable
consequence of enforcing a single round in the online phase). This implies that the security of our
distributed protocol reduces to a stronger but thoroughly reasonable assumption on the unforge-
ability of the centralized ECDSA scheme (details in Section 2.7).

Our second protocol (Section 5) stems from the realization that for settings in which identifiable
abort is not necessary, we can use a further simplified version that also only requires a single online
round, but with a pre-processing phase of reduced round and computational complexity.

Our analysis shows that the protocol with anonymous aborts (Section 5) is slightly faster than
the identifiable abort protocol (Section 3) and both are slightly slower but competitive with [26]
(roughly 10% slower), and both of our protocols use less bandwidth than [26] as well.

We implemented both protocols and the results of our experimental benchmarks agree with the
analysis. The results of our extensive experimental evaluations are shown in Section 6.

Overview of our approach. We start with the protocol of Gennaro and Goldfeder [26], which
as mentioned above does not support identifying aborts and requires several rounds even in the
online phase once the message is known.

Using the multiplicative group notation, recall that an (EC)DSA signature is defined over a
group G of order g generated by g. A public key is defined as y = ¢* € G with x €r Z,. To sign a
message M we first hash it to obtain m = H (M) and then choose k €r Z, and compute R = g’fl7
r=H'(R) and s = km + kxr mod gq.

SINGLE ROUND. The protocol of [26] starts with additive sharings of x, k and uses techniques due to
Gilboa [31] and Beaver [3] to create additive sharings of k=1 and kz and, by linear homomorphism,
additive shares of s. Then a “distributed signature verification” check is performed on shares of s
to make sure they reconstruct a correct signature.

Our first major observation is that we identify a new distributed verification check can be
performed on the shares of k~! and kx before the message is known, and therefore can be done in
a pre-processing phase. If those sharings are consistent and correct, then it is safe to reveal shares
of s once the message m is known. This will take just a single scalar multiplication per player and
one communication round (i.e. each player sends just a single message) and no online interactivity
is required.

Both of our protocols use this new distributed check. Our protocol in Section 5 replaces the
signature check from [26] with our new check, yielding a more efficient protocol both in terms of
round complexity, computation, and bandwidth. Our protocol in Section 3 additionally adds the
ability to identify and attribute misbehavior.



IDENTIFICATION OF BAD PLAYERS. We use the definition of identifiable abort from [34]. A
standard way to identify malicious players is to require each player to prove in zero-knowledge
that he is performing the protocol correctly [32], though alternative approaches exist (e.g. [34]).
Although such ZK proofs could be instantiated for the [26] protocol, they would result in an
unacceptable level of communication and computation for the players.

Our key observation however is that if the abort happens during the preprocessing stage then
the full signature has not been revealed yet (and indeed the message being signed may not even be
known at this point). Therefore it is safe for the players to reveal the random choices they made
during the protocol so far (that includes “opening up” any encryption, etc.) so that their behavior
can be verified, and bad players identified.

Moreover, an abort during the online stage can be easily attributed as the shares of the signature
s that each player reveals can be easily checked to be correct against public information produced
by the offline stage.

The key technical complication in the security proof is that when simulating the identification
of bad players during the offline phase, the simulator may not be able to correctly “open” an
encryption due to the fact that the simulation is proceeding with a value different than the one
encrypted. Without the identification step this would not be a problem as the semantic security
of the encryption would guarantee the simulated and real protocol views to be computationally
indistinguishable. But the encryption commits the simulator to the value so if identification requires
opening it, then the views would be distinguishable.

We solve this problem by carefully constructing the protocol in a way that allows the simulator
to make sure that whenever the protocol fails and opening the randomness is required, then the
simulator can decommit to the correct value and not be “caught”. The full details appear in the
proof, but we are able to accomplish this without resorting to any heavyweight primitives such as
non-commiting encryption, and indeed, the ability to detect aborts efficiently is a key contribution
of our paper.

1.1 Related Work

The first scheme for threshold DSA was presented by Gennaro, Jarecki, Krawczyk, and Rabin
[28, 29] in the honest majority setting. The key drawback of this scheme is that generating a
signature requires the participation of 2¢ 4+ 1 players, whereas an adversary need only corrupt
t 4+ 1 players to learn the key. Moreover, as it is in the honest majority setting, it restricts ¢ and
requires ¢ < n/2. This rules out n-of-n threshold signatures, and in particular the oft-desired 2-of-2
threshold signatures.

Noticing this limitation, Mackenzie and Reiter [40] partially addressed it by building a scheme
tailored for the 2-of-2 setting. This scheme uses a multiplicative sharing of the secret key and
employed Paillier’s additively homomorphic encryption scheme [42] to facilitate additions.

Gennaro, Goldfeder, and Narayanan revisited the multiparty case and presented a scheme that
supports arbitrary thresholds ¢ < n [27] (subsequently improved in [6]) in the dishonest-majority
setting. In their scheme, the ECDSA key is encrypted under a distributed threshold Paillier key
and the ciphertext is held by each participant. Beginning with the encrypted key and using the
homomorphic properties of Paillier, the players interactively create a ciphertext of the signature
and then jointly decrypt it using Paillier threshold decryption. While signing in [6, 27] is efficient,
the key generation requires the distributed generation of an RSA modulus. While at the time it
was not known how to do this efficiently for more than two parties, recent work [13] may make
this approach feasible.

Lindell [38] and Doerner et al.[22] revisited the 2-of-2 setting and presented highly efficient
constructions. Like [40], Lindell’s protocol used Paillier encryption, but it removed the expensive
zero-knowledge proofs required by [40]. Doerner et al. replaced Paillier with an oblivious transfer
protocol. The resulting scheme was fast and had a security proof that did not rely on Paillier
assumptions, but the cost of achieving this was greatly increasing the bandwidth of the protocol.



Subsequently, Gennaro and Goldfeder [26], Lindell and Nof [39] and Doerner et al. [21] pre-
sented efficient protocols in the multiparty case that supported efficient distributed key generation.
While all three boasted excellent concrete performance, [26] and [39] are constant round protocols,
while the number of communication rounds in [21] is logarithmic in the number of players.

In two papers, Castagnos et al. [11, 10] presented efficient protocols for the two party case
and multiparty case respectively. Their protocols employ an additively homomorphic encryption
scheme based on class groups. The advantage of using this scheme is that it is homomorphic
modulo the same prime g over which ECDSA is defined, and they are therefore able to eliminate
the need for expensive range proofs that were required by [26, 39] due to the mismatch between
the Paillier modulus and the ECDSA modulus and the potential for “overflow” that could leak
information about the key. Their schemes require less communication but are more expensive
computationally than the Paillier-based protocols.

While all of the above papers use non-generic tailored protocols, Dalskov et al. [14] show a
one-round (online) protocol based on generic MPC — however their techniques achieve comparable
or better efficiency than the above protocols only for a small number of participants and thresholds
of size 2 or 3.

Right before the submission date to this conference, three additional papers? appeared on the
TACR Eprint Archive, including [16] which presents an improved protocol for threshold ECDSA
with honest majority which is incomparable to our dishonest majority result. More relevant to
our work are the results in [9] and [24] which both present efficient online signing in the dishonest
majority model.

The protocol in [9] has one-round on-line signing but does not achieve identifiable aborts —
indeed their protocol is very similar to our weaker protocol in Section 5. Another disadvantage
of the approach in [9] is that they make much more extensive use of Zero-Knowledge proofs of
consistency between group elements (in the cyclic group where ECDSA is run) and ring elements
(in the RSA ring where the Paillier encryption is constructed). As pointed out in [26], these ZK
proofs are an efficiency bottleneck and our protocol minimizes their use. No code was available
for [9] to perform a direct comparison, but if one refers to their complexity estimation they claim
an almost 2x slowdown compared to [26]. Our experimental results instead show that both of our
protocols are roughly 1.1x slower than [26]. The protocol in [9] provides proactive security, which
was not the focus of our effort, but we believe could be easily achieved for our protocol as well,
and we plan to do so in the future.

The protocol in [24] achieves 3-round on-line signing. It provides for a very weak form of
accountability, where aborts are only identified during the online phase. The off-line phase, requires
the full cooperation of all parties to succeed, which is a serious drawback as it allows unattributed
DoS attacks during the offline phase, and anybody can prevent it from completing without being
caught. While this may be justified in some applications, this is a strong assumption, which is not
needed in our protocol, where the offline component of the signature protocol is fully accountable
as well. No implementation, benchmark or complexity estimation is available for [24].

2 Background

2.1 Communication and adversarial model

We assume the existence of a broadcast channel as well as point-to-point channels connecting every
pair of players. As in [26, 39], security does not require a full reliable broadcast channel, but a
simple echo broadcast suffices in which each party sends to every other party the hash of all of
the broadcasted messages. If any party receives an inconsistent hash from some other party, it
aborts and notifies every other party. While unforgeability does not rely on full broadcast, the
identification protocol does require broadcast. The use of a broadcast channel is standard in all

2We point out that our work is independent from these.



work of MPC-with-abort and indeed it has been shown that MPC-IA indeed implies the existence
of a broadcast channel.

We assume a probabilistic polynomial time malicious adversary, who may deviate from the
protocol description arbitrarily. The adversary can corrupt up to t players, and it learns the
private state of all corrupted players. As in previous threshold ECDSA schemes [6, 27, 28, 38|, we
limit ourselves to static corruptions, meaning the adversary must choose which players to corrupt
at the beginning of the protocol. There are standard techniques for converting a protocol secure
against static corruptions to secure against adaptive corruptions [8, 35, 9].

We assume a rushing adversary, meaning that the adversary gets to speak last in a given round
and, in particular, can choose his message after seeing the honest parties’ messages.

Following [6, 27] (but unlike [28, 29]), we assume a dishonest majority, meaning ¢, the number
of players the adversary corrupts, can take on any value up to n — 1. In this setting, there is no
guarantee that the protocol will complete, and we therefore do not attempt to achieve robustness,
or the ability to complete the protocol even in the presence of some misbehaving participants.
Instead, we show security with abort meaning that the adversary can cause the protocol to abort,
but in doing so cannot learn any useful information, other than its outputs. In this model, we
cannot guarantee that the honest parties will receive a signature. In this paper, unlike previous
works, we guarantee that aborts are identifiable meaning that the identity of at least one party
responsible for causing the protocol to abort becomes known to the honest players.

2.2 Signature Schemes

A digital signature scheme S consists of three efficient algorithms:

e (sk, pk)<Key-Gen(1%), the randomized key generation algorithm which takes as the security
parameter and returns the private signing key sk and public verification key pk.

e o<Sig(sk,m), the possibly randomized signing algorithm which takes as input the private
key sk and the message to be signed m and outputs a signature, o. As the signature may be
randomized, there may be multiple valid signatures. We denote the set of valid signatures as
{Sig(sk,m)} and require that o € {Sig(sk,m)}.

e b +\Ver (pk,m, o), the deterministic verification algorithm, which takes as input a public key
pk, a message m and a signature ¢ and outputs a bit b which equals 1 if and only if ¢ is a
valid signature on m under pk.

To prove a signature scheme secure, we recall the standard notion of existential unforgeability
against chosen message attacks (EU-CMA) as introduced in [33].

[Existential unforgeability] Consider a PPT adversary A who is given public key pk output by
Key-Gen and oracle access to the signing algorithm Sig(sk, -) with which it can receive signatures
on adaptively chosen messages of its choosing. Let M be the set of messages queried by A. A
digital signature scheme S =(Key-Gen,Sig,Ver) is said to be existentially unforgeable if there is no
such PPT adversary A that can produce a signature on a message m ¢ M, except with negligible
probability in A.

2.3 Threshold Signatures

Threshold secret sharing. A (¢,n)—threshold secret sharing of a secret = consists of n shares
1,...,T, such that an efficient algorithm exists that takes as input ¢ + 1 of these shares and
outputs the secret, but t or fewer shares do not reveal any information about the secret.

Threshold signature schemes. Consider a signature scheme, S=(Key-Gen, Sig, Ver). A (t,n)-
threshold signature scheme 7S for S enables distributing the signing among a group of n players,



Py, ..., P, such that any group of at least t 4+ 1 of these players can jointly generate a signature,
whereas groups of size t or fewer cannot. More formally, 7S consists of two protocols:

e Thresh-Key-Gen, the distributed key generation protocol, which takes as input the security
parameter 1*. Each player P; receives as output the public key pk as well as a private output
sk;, which is P;’s share of the private key. The values sky, ..., sk, constitute a (¢,n) threshold
secret sharing of the private key sk.

e Thresh-Sig, the distributed signing protocol which takes as public input a message m to be
signed as well as a private input sk; from each player. It outputs a signature o € {Sig(sk,m)}.

Notice that the signature output by Thresh-Sig is a valid signature under Sig, the centralized
signing protocol. Thus we do not specify a threshold variant of the verification algorithm as we
will use the centralized verification algorithm, Ver.

In some applications, it may be acceptable to have a trusted dealer generate the private key
shares for each party. In this case, Thresh-Key-Gen would not be run. We require our protocols to
be simulatable (see e.g. [27, 28, 38]), meaning that

e There exists a simulator STM; that, on input the public key y runs an execution of the Thresh-
Key-Gen on behalf of the honest players which results in y as the output and generates a view
for the adversary which is indistinguishable from the real one.

e There exists a simulator SIMs that, on input the public input of Thresh-Sig (in particular
the public key y and the message m) and the resulting signature o, runs an execution of the
Thresh-Sig on behalf of the honest players which results in ¢ as the output and generates a
view for the adversary which is indistinguishable from the real one.

2.4 Identifiable Abort

We use the notion of secure multi-party computation with identifiable abort presented in [34],
which allows the computation to fail (abort), while guaranteeing that all the honest parties agree
on the identity P; of a corrupted player.

If F is the functionality computed by the original MPC protocol, then a protocol for F' with
identifiable aborts, computes a modified functionality F’ that either computes F' or outputs the
identity P; of a corrupted player in case of an abort.

2.5 Additively Homomorphic Encryption

Our protocol relies on an encryption scheme £ that is additively homomorphic modulo a large
integer N. Let Ep(-) denote the encryption algorithm for £ using public key pk. Given ciphertexts
c1 = Epk(a) and c2 = Epk(b), there is an efficiently computable function + g such that

c1+E c2 = Ex(a+bmod N)
The existence of a ciphertext addition operation also implies a scalar multiplication operation,
which we denote by xg. Given an integer a € N and a ciphertext ¢ = Eyx(m), then we have
a X g ¢ = Ey(am mod N)

Informally, we say that £ is semantically secure if for the probability distributions of the en-
cryptions of any two messages are computationally indistinguishable.

We instantiate our protocol using the additively homomorphic encryption scheme of Paillier
[42], and we recall the details here:



e Key-Gen: generate two large primes P, @ of equal length, and set N = PQ. Let \(N) =
lem(P — 1,Q — 1) be the Carmichael function of N, and denote T'toencryptamessagem
€ Zn, select  €r Z3 and return ¢ = 'z mod N2.

e Decryption: to decrypt a ciphertext ¢ € Zyz, let L be a function defined over the set {u €
Zn2 :u=1mod N} computed as L(u) = (u— 1)/N. Then the decryption of ¢ is computed
as L(c*™))/L(T*™)) mod N.

e Homomorphic Properties: Given two ciphertexts ¢, co € Zy2 define ¢; +5 c2 = c¢1c mod N2,
If ¢; = E(m;) then ¢; +g ca = E(m1 +mg mod N). Similarly, given a ciphertext ¢ = E(m) €
Zn> and a number a € Z,, we have that a Xz ¢ = ¢ mod N? = E(am mod N).

The security of Paillier’s cryptosystem relies on the N-residuosity decisional assumption [42],
which informally says that it is infeasible to distinguish random N-residues from random group
elements in Z3,.

2.6 Non-Malleable Equivocable Commitments

A trapdoor commitment scheme allows a sender to commit to a message with information-theoretic
privacy. i.e., given the transcript of the commitment phase the receiver, even with infinite com-
puting power, cannot guess the committed message better than at random. On the other hand
when it comes to opening the message, the sender is only computationally bound to the committed
message. Indeed the scheme admits a trapdoor whose knowledge allows to open a commitment in
any possible way (we will refer to this also as equivocate the commitment). This trapdoor should
be hard to compute efficiently.

Formally a (non-interactive) trapdoor commitment scheme consists of four algorithms KG, Com,
Ver, Equiv with the following properties:

e KG is the key generation algorithm, on input the security parameter it outputs a pair {pk,
tk} where pk is the public key associated with the commitment scheme, and tk is called the
trapdoor.

e Com is the commitment algorithm. On input pk and a message M it outputs [C(M), D(M)] =
Com(pk, M, R) where r are the coin tosses. C'(M) is the commitment string, while D(M) is
the decommitment string, which is kept secret until opening time.

e Ver is the verification algorithm. On input C, D and pk it either outputs a message M or L.

e Equiv is the algorithm that opens a commitment in any possible way given the trapdoor infor-
mation. It takes as input pk, strings M, R with [C'(M), D(M)] = Com(pk, M, R), a message
M’ # M and a string T. If T = tk then Equiv outputs D’ such that Ver(pk, C(M), D) = M’.

We note that if the sender refuses to open a commitment we can set D = 1| and Ver(pk,C, L) = L.
Trapdoor commitments must satisfy the following properties
Correctness If [C(M), D(M)] = Com(pk, M, R) then

Ver(pk, C(M),D(M)) = M.

Information Theoretic Security For every message pair M, M’ the distributions C(M) and
C(M') are statistically close.

Secure Binding We say that an adversary A wins if it outputs C, D, D’ such that Ver(pk, C, D) =
M, Ver(pk,C,D’) = M’ and M # M’'. We require that for all efficient algorithms A, the
probability that A wins is negligible in the security parameter.



Such a commitment is non-malleable [23] if no adversary A, given a commitment C to a messages
m, is able to produce another commitment C’ such that after seeing the opening of C' to m, A can
successfully decommit to a related message m’ (this is actually the notion of non-malleability with
respect to opening introduced in [19]).

The non-malleable commitment schemes in [19, 20] are not suitable for our purpose because
they are not “concurrently” secure, in the sense that the security definition holds only for ¢t = 1
(i.e. the adversary sees only 1 commitment).

The stronger concurrent security notion of non-malleability for ¢ > 1 is achieved by the schemes
presented in [15, 25, 41]), and any of them can be used in our threshold DSA scheme.

However in practice one can use any secure hash function H and define the commitment to
x as h = H(z,r), for a uniformly chosen r of length A and assume that H behaves as a random
oracle. We use this efficient random oracle version in our implementation.

2.7 The Digital Signature Standard

The Digital Signature Algorithm (DSA) was proposed by Kravitz in 1991, and adopted by NIST in
1994 as the Digital Signature Standard (DSS) [5, 37]. ECDSA, the elliptic curve variant of DSA,
has become quite popular in recent years, especially in cryptocurruencies.

All of our results in this paper apply to both the traditional DSA and ECDSA. We present our
results using the generic G-DSA notation from [27], which we recall here.

The Public Parameters consist of a cyclic group G of prime order g, a generator g for G, a hash
function H : {0,1}* — Z,, and another hash function H' : G — Z,,.

Key-Gen On input the security parameter )\, outputs a private key = chosen uniformly at random in
Z4, and a public key y = g* computed in G.

Sig On input an arbitrary message M,
— compute m = H(M) € Z,
— choose k €r Z,
compute R = g¥ " in G and r = H'(R) € Z,

compute s = k(m + zr) mod ¢

output o = (r, s)
Ver On input M, o and y,

— check that r,s € Z,
_ compute R/ _ gm871 mod qyr571 mod ¢ in g

— Accept (output 1) iff H'(R') = r.

The traditional DSA algorithm is obtained by choosing large primes p, ¢ such that g|(p — 1)
and setting G to be the order ¢ subgroup of Z;. In this case the multiplication operation in G is
multiplication modulo p. The function H' is defined as H'(R) = R mod gq.

The ECDSA scheme is obtained by choosing G as a group of points on an elliptic curve of
cardinality ¢. In this case the multiplication operation in G is the group operation over the curve.
The function H’ is defined as H'(R) = R, mod ¢ where R, is the a-coordinate of the point R.

We assume a stronger notion of unforgeability for ECDSA. In this notion we allow the attacker
to see the randomizer R before queriying the message m during a chosen-message attack.

We believe that this in practice is not an issue. This corresponds to assuming that ECDSA
is secure in the presence of what we may call a state compromise attack where the adversary is
allowed to see the internal state of the signer (but not its secret keys). This models the real-life



situation in which the signer pre-computes all the randomizers R’s in advance and stores them in
regular memory (while keeping the secret key x and the secret nonces k in a protected memory).
We assume that the adversary manages to read the regular memory contents (i.e. all the R’s) and
still will not be able to forge.

Jumping ahead, the reason we do this is that in our one-round protocol, the distributed players
will use pre-computed R which are known to all of them, including the corrupted ones, i.e. to the
adversary. We point out that this assumption is also used in [9] (and in there it is shown that
under certain reasonable conditions it is equivalent to the standard notion of unforgeability for
ECDSA)3.

[ECDSA unforgeability under state compromise] Consider a PPT adversary .4 who is given and
ECDSA public key y output by Key-Gen(\). A has oracle access to

e to Ug to obtain R a uniformly random element in G;

e to Sig'(sk, R, m) which returns (r, s) a valid signature for m with r = H’(R), if R was queried
to Ug, otherwise returns L

Let M be the set of messages queried by A. We say that ECDSA is existentially unforgeable
under chosen message with state compromise attack if there is no such PPT adversary A that can
produce a signature on a message m ¢ M, except with negligible probability in A.

In terms of the simulation of our protocol, this means that we are simulating a functionality
that outputs R (given to the simulator) during the online phase, and the matching s during the
online one.

2.8 Verifiable Secret Sharing (VSS)

Shamir Secret Sharing In Shamir’s secret sharing scheme [45], to share a secret o € Z,, the
dealer generates a random degree ¢ polynomial p(-) over Z, such that p(0) = 0. The secret shares
are evaluations of the polynomial

p(z) = 0+ a1z + azx® + --- + azz’ mod ¢

Each player P; receives a share o; = p(i) mod q.

In a verifiable secret sharing scheme, auxiliary information is published that allows players to
check that their shares are consistent and define a unique secret.

Feldman’s VSS is an extension of Shamir secret sharing in which the dealer also publishes
v; = g% in G for all ¢ € [1,¢] and vg = ¢° in G.

Using this auxiliary information, each player P; can check its share o; for consistency by veri-
fying:

t

ag; _ ij :

g ij in g
=0

If the check does not hold for any player, it raises a complaint and the protocol terminates.
Note that this is different than the way Feldman VSS was originally presented as it assumed an
honest majority and could recover if a dishonest player raised a complaint. However, since we
assume dishonest majority in this paper, the protocol will abort if a complaint is raised.

While Feldman’s scheme does leak g7, it can be shown via a simulation argument that nothing
else is leaked, but we omit the details here.

3This notion is not discussed in [14], yet it seems to be implicitly assumed, as they also have a one-round online
solution where the adversary is allowed access to the randomizers before the message is known.
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2.9 Assumptions

DDH. Let G be a cyclic group of prime order ¢, generated by g. The DDH Assumption states that
the following two distributions over G* are computationally indistinguishable: DH = {(g¢, ¢°, g%*)
for a,b €g Z,} and R = {(g%, 4", g°) for a,b,c €r Z,}.

STRONG-RSA. Let N be the product of two safe primes, N = pq, with p = 2p’ +1 and ¢ = 2¢' +1
with p’, ¢’ primes. With ¢(N) we denote the Euler function of N, i.e. ¢(N) = (p—1)(¢—1) =p'q’.
With Z3 we denote the set of integers between 0 and /N — 1 and relatively prime to N.

Let e be an integer relatively prime to ¢(N). The RSA Assumption [43] states that it is
infeasible to compute e-roots in Z3,. That is, given a random element s € Z} it is hard to find
x such that 2® = s mod N.

The Strong RSA Assumption (introduced in [4]) states that given a random element s in Zy
it is hard to find z,e # 1 such that ¢ = s mod N. The assumption differs from the traditional
RSA assumption in that we allow the adversary to freely choose the exponent e for which she will
be able to compute e-roots.

We now give formal definitions. Let SRSA(n) be the set of integers N, such that N is the
product of two n/2-bit safe primes.

Assumption 1 We say that the Strong RSA Assumption holds, if for all probabilistic polynomial
time adversaries A the following probability

Prob| N + SRSA(n); s« Zyx : A(N,s) = (z,e) s.t. z°=smod N ]

is negligible in n.

2.10 Multiplicative-to-additive share conversion protocol (MtA) of [26]

We now recall the Multiplicative-to-Additive share conversion MtA protocols as presented in [26],
which is a central building block in their protocol as well as ours. We present the protocol of [26],
but we note that a similar protocol is also used in [17, 36, 38, 39, 40].

The setting consists of two players, P; and Ps, who hold multiplicative shares of a secret z. In
particular, P; holds a share a € Z,, and P; holds a secret share b € Z, such that x = ab mod ¢. The
goal of the MtA protocol is to convert these multiplicative shares into additive shares. P; receives
private output o € Z,; and P, receives private output 8 € Z, such that o + § = = ab mod gq.

MtAwc. In the basic MtA protocol, the player’s inputs are not verified, and indeed the players
can cause the protocol to produce an incorrect output by inputting the wrong values a, b. In the
case that B = ¢° is public, the protocol can be enhanced to include an extra check that ensures
that Py inputs the correct value b = log,(B). This enhanced protocol is denoted as MtAwc (for
MtA “with check”).

We assume that player P; is associated with a public key F; for an additively homomorphic
scheme & defined over an integer N. Let K > ¢ also be a bound which will be specified later.

1. P; initiates the protocol:

e Compute cq = Fq(a)
e Compute a zero knowledge range proof w4 that {a: Di(ca) =aAa < K}

e Send (ca,ma) to Po
2. Upon receiving (ca,m4) from Py, P does the following:

e Verifies m4, and aborts if it fails to verify

11



Choose ' & ZN

Set output = -3’

Compute cg = b Xgca+g E1(8') = E1(ab+ 5')

Compute a zero knowledge range proof mh that {b, 3’ : b < K Acg =bxgca+rEi1(8")}

o (MtAwc, i.e. if B = g" is public): Compute a zero knowledge proof of knowledge 7%
that he knows {b,3' : B=g* Acg =bxgca+gr F1(8)}

e Send (cp,7g, [13]) to Py
3. Upon receiving (cp, 7%, [1%]) from P2, P; does the following:

e Verifies 75 and 7% if they are running MtAwc, and aborts if either proof fails to verify
e Compute o/ = Dq(cp)

e Set output o = @’ mod ¢

CORRECTNESS. Assume both players are honest and N > K2g. Then note that Alice decrypts the
value o = ab + B8 mod N. Note that if 8/ < N — ab, then the reduction mod N is not executed.
Conditioned to this event, then the protocol correctly computes «, 8 such that o + 8 = z mod gq.

Since ab < K% and N > K?q we have that 8/ > N — ab with probability at most 1/q (i.e.
negligible).

SIMULATION. As shown in [26], as a standalone protocol, we can prove security of MtA/MtAwc even
without the range proofs. We show this via a simulation argument, showing that if the adversary
corrupts player P;, we can construct a simulator for P;_;, thus showing that P;_; leaks no useful
information.

Simulating P;. If the adversary corrupts Py, then Py’s message can be simulated without knowl-
edge of its input b. Indeed a simulator can just choose a random o’ € Z; and follow the rest of the
protocol as Py. The distribution of the message decrypted by P; in this simulation is identical to
the message decrypted when Py uses the real b, because the “noise” 8’ is uniformly distributed in
ZN.

Simulating P>. If the adversary corrupts P, then P;’s message can be simulated without knowl-
edge of its input a. Indeed a simulator can just choose a random o’ € Z, and act as Alice. In this
case the view of Bob is computationally indistinguishable from the real one due to the semantic
security of the encryption scheme &.

Although MtA is fully simulatable as a standalone protocol, if the range proofs are not used,
a malicious P; or P, can cause the protocol to “fail” by choosing large inputs that “overflow” the
Paillier modulus cause a reduction mod IN. As a standalone protocol this is not an issue since
the parties are not even aware that the reduction mod NV took place and no information is leaked
about the other party’s input. However, when used inside a threshold ECDSA protocol, this attack
will cause the signature verification to fail, and this information is linked to the size of the other
party’s input.

Consider for example the case of P; running the protocol with input a’ = ¢%+a. If Po’s input is
“small” then the reduction mod N will not take place and the protocol will succeed, and eventually
the signature produced by the threshold ECDSA protocol will verify (since ¢’ = a mod ¢). But if
P2’s input is “large” the protocol will fail.

Thus, in our setting, we need security in the presence of an oracle that tells the parties if the
reduction mod N happens or not, but due to the ZK “range proofs” such a reduction will only
happen with negligible probability and security holds.
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REMARK. An alternative approach. The above protocol is overwhelmingly correct, and hides b
perfectly. An alternative approach is to choose 3’ uniformly at random in the interval [0...N — K?].
This distribution is statistically close to the uniform one over Zy (since K > ¢), and the value b
is now statistically hidden. On the other hand, the protocol in this variant is always correct.

REMARK. On the ZK proofs and the size of the modulus N. For the ZK proofs required in
the protocol we use the proofs from [26], which are based on proofs from [40]. These are zero
knowledge arguments with security holding under the Strong RSA Assumption. Moreover they
require K ~ ¢3 which in turns require N > ¢”. We point out that for typical choices of parameters,
N is approximately ¢® (since ¢ is typically 256-bit long while N is a 2048-bit RSA modulus), so
this requirement is not problematic?.

We note that these proofs make use of Fujisaki-Okamoto commitments, and therefore the
appropriate setup procedure must be followed. In practice, it suffices for the verifier to generate
the parameters, N, k1, h2 and prove the the discrete log between h; and hg exist.

3 One-Round Threshold ECDSA with identifiable abort

In this section we present our main result: a new protocol for threshold ECDSA that has two main
advantages over existing protocols:

e ONE ROUND ONLINE. Unlike [21, 26, 39], our protocol does not require the distributed
verification step of the validity of the signature. Removing this check makes the protocol
more round efficient, but even more significantly, we are able to remove any dependency on
the message from the multi-round interactive parts of the protocol. In particular, our protocol
allows the computation of the signature in a single round, after some message-independent
preprocessing. It also has fewer rounds in total than all existing protocols that support
efficient key generation [21, 26, 39], and thus is more efficient even if run fully online without
pre-processing.

e IDENTIFIABLE ABORT.Additionally the protocol improves on all existing protocols by en-
abling the efficient identification of misbehaving parties.

The players run on input {G, g} the cyclic group used by the ECDSA signature scheme. We
assume that each player P; is associated with a public key E; for an additively homomorphic
encryption scheme €.

3.1 Key generation protocol

The key generation protocol is largely the same as the protocol in [26], but we show how it can be
augmented to identify misbehaving parties. We now present the details of the protocol.

e Phase 1. Each Player P; selects u; €g Z,; computes [KGC;, KGD;] = Com(g*“) and broad-
casts KGC;. Each Player P; broadcasts E; the public key for Paillier’s cryptosystem.

e Phase 2. Each Player P; broadcasts KGD;. Let y; be the value decommitted by P;. The
player P; performs a (t,n) Feldman-VSS of the value u;, with y; as the “free term in the
exponent”

4For the simple range proof that a,b < K one could alternatively use a variation of Boudot’s proof [7] which
establish K ~ ¢ which sets N ~ ¢3. This proof is less efficient that the ones from [27, 40] which are anyway required
for Bob in the MtAwc protocol. Moreover as we said earlier, N > ¢® in practice anyway so the improvement in the
size of N is irrelevant for ECDSA.
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The public key is set to y =[], vi;. Each player adds the private shares received during the
n Feldman VSS protocols. The resulting values xz; are a (t,n) Shamir’s secret sharing of the
secret key x = ). u;. Note that the values X; = ¢g” are public.

e Phase 3 Let N; = p;q; be the RSA modulus associated with F;. Each player P; proves in
ZK that he knows x; using Schnorr’s protocol [44], that N; is square-free using the proof of
Gennaro, Micciancio, and Rabin [30], and that h; hy generate the same group modulo N;.

3.2 Signing protocol

We now describe the signing protocol, which is run on input m (the hash of the message M
being signed) and the output of the key generation protocol described above. We note that the
latter protocol is a t-out-of-n protocol (and thus the secret key x is shared using (¢,m) Shamir
secret-sharing).

Let S C [1..n] be the set of players participating in the signature protocol. We assume that
|S| = ¢+ 1. For the signing protocol we can share any ephemeral secrets using a (¢,t + 1) secret
sharing scheme, and do not need to use the general (t,n) structure. We note that using the
appropriate Lagrangian coefficients \; s each player in S can locally map its own (¢,n) share z; of
x into a (f,t + 1) share of x, w; = (N s)(7;), i.e. ¥ =Y, gw;. Since X; = g”* and \; s are public
Ai,s

values, all the players can compute W; = g% = X

e Phase 1. Each Player P; selects k;,v; €r Zg; computes [C;, D;] = Com(g"*) and broadcast
C;.

Define k =}, g ki, ¥ = _,cqVi- Note that

€S

kv = Z kiv; mod ¢
i,jES

kx = Z k;w; mod ¢
i,j€S

e Phase 2. Every pair of players F;, P; engages in two multiplicative-to-additive share conver-
sion subprotocols. Note that the first message for these protocols is the same and is only
sent once.

— P;, P; run MtA with shares k;,y; respectively. Let c; [resp. B;;] be the share received
by player P; [resp. P;] at the end of this protocol, i.e.
kivg = aij + Bij
Player P; sets &; = k;~y; + Zj# a;j + Z#i Bji- Note that the §; are a (t,t+ 1) additive
sharing of kv =Y. ¢ d;

— P;, P; run MtAwc with shares k;, w; respectively. Let y;; [resp. v;;] be the share received
by player P; [resp. P;| at the end of this protocol, i.e.

i€S

kiwj = pij + vij

Player P; sets o; = k;w; + zj# i + Ej# vj;. Note that the o; are a (¢,t+1) additive
sharing of kx =), 50y

e Phase 3. Every player P; broadcasts

d; = k7. The players compute 6~ mod g.

— 0; and the players reconstruct 6 = ), g
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3.3

— T; = g% h% with ¢; €g Z4 and proves in ZK that he knows o, ¢;.
Phase 4. Each Player P; broadcasts D;. Let I'; be the values decommitted by P;.
The players compute I' = [[,. ¢ I's, and

R = F571 = g(Zz‘eS%)kil’yil = ngil,Y?l = gk71

as well as r = H'(R).

Phase 5. Each player P; broadcasts R; = R as well as a zero-knowledge proof of consistency
between R; and F;(k;), which each player sent as the first message of the MtA protocol in

Phase 2. If -
9 # H R;
€S
the protocol aborts.

Phase 6. Each player P; broadcasts S; = R as well as a zero-knowledge proof of consistency
between S; and T;, which each player sent in Phase 3. If

Z/#Hsz

€S
the protocol aborts.
Phase 7. Each player P; broadcasts s; = mk; + ro; and set s = >_ s;. If the signature (r, s)

is correct for m, the players accept, otherwise they abort.

The Zero-Knowledge Proofs

In this section we drop the indices for simplicity.
In Phase 3 a player P outputs T' = g° h’ and must prove that he knows o, £ satisfying the above
relationship. A classic (honest-verifier) ZK argument for this task is as follows:

The Prover chooses a,b €r Z, and sends o = g*h?
The Verifier sends a random challenge ¢ €r Z,
The Prover answers with ¢t = ¢ + co mod ¢ and v = b + ¢/ mod gq.

The Verifier checks that gth* = oT*

In Phase 5 a player P outputs R = R* and has to prove that the exponent k is consistent with
a previously posted Paillier ciphertext C' = E(k). A ZK proof for this statement is provided in
[40, 27, 38].

In phase (6) a player P outputs S = R’ and must prove that he knows o, ¢ such that S = R”
and T = g°h*. A (honest-verifier) ZK argument for this task is as follows:

The Prover chooses a,b €r Z, and sends o = R® and 8 = g®ht
The Verifier sends a random challenge ¢ €r Z,
The Prover answers with ¢ = a + co mod ¢, © = b+ ¢/ mod ¢

The Verifier checks that R? = aS¢ and gth% = BT*
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4 Identifying aborts

A key problem with all known threshold ECDSA protocols is that in the case of aborts, it is not
possible to always identify which party is responsible for causing the signature to fail. In this
section, we will show how to identify aborts.

First of all we assume that all messages transferred between players are signed, so that it is
possible to determine their origin.

The protocol will abort in case any player deviates from the protocol in a clearly identifiable
way by not complying with the protocol instructions — e.g. not sending a message when required.
In this case the bad player is clearly identified and removed. Note that we assume a broadcast
channel so if a player behaves badly, everybody knows that. In the case a message from a player
fails to appear, we apply a local timeout bound before marking that player as corrupted, to account
for possible delays in message delivery.

We focus our attention here on aborts that are not clearly identifiable as deviations from the
protocol — i.e. where the player sent a message of the correct form at the correct time, but the
contents of the message was crafted in a way that caused the protocol to fail.

4.1 Identifying aborts in the Key Generation protocol

In the key generation protocol, there are two possible places that an abort can occur:

e Phase 2. If a player complains that the Feldman share it received is inconsistent and therefore
does not verify correctly, the protocol will abort.

e Phase 3. When each player is proving knowledge of z; and proving the correctness of their
Paillier key, if one of these proofs fails to verify the protocol will abort.

If the protocol aborts in Phase 3 because a ZK proof fails, then we immediately know who the
bad player is. However, if the protocol aborts in Phase 2, it means that a player P; complains
about a player P; meaning that P; claims the private share he received does not match the public
information of P;’s Feldman VSS. In this case it might be useful to identify who the bad player is,
in order to remove it from the n players when the key generation protocol is re-run. Here there is
ambiguity as if the bad player is P; (dealing a bad Feldman VSS) or P; (trying to frame F;).

A SIMPLE IDENTIFICATION PROTOCOL. Notice that if the failure happens during the key generation
protocol, it is safe to abandon the protocol and publish the would-be private key since it has not
yet been established or used. Thus, if P; raises a complaint about a share he received from P;, the
simplest identification protocol has him publish the share that he received from P; in the clear,
and indeed anyone can now check whether the share that he received is consistent (recall that we
assume that all messages are signed, so the share can be authenticated and P; cannot be framed
by publishing an incorrect share). After the misbehaving player is identified, the key generation
protocol will need to be re-run with fresh randomness to establish a secure key.

4.2 Identifying aborts in the signing protocol
In our signing protocol, aborts can occur in the following parts of the protocol:
1. Phase 2. If the range proofs of the MtA/MtAwc or zero knowledge proofs for MtAwc fail.
2. Phase 3. If the ZK proof about o;, ¢; fails.
3. Phase 4. If the decommitment D; fails to verify.
4. Phase 5. If the ZK proof about R; fails to verify
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5. Phase 5. If g # [[ R;
6. Phase 6. If the ZK proof about 5; fails to verify
7. Phase 6. If y # [ S;

8. Phase 7. If the signature (r, s) is not valid for the message m

For items 1,2,3,4,6, identification of the cheating player is simple. In these steps, the aborts
result due to the failure of a commitment opening or zero knowledge proof to verify, and the abort
is thus attributable to the player who gave the faulty proof or the faulty opening.

For aborts of type 8, i.e. in Phase 7 when the signature (r, s) does not verify on message m, we
note that if we got to that point then g = [[ R; (where R; = R*)) and y = [[ S; where S; = R°:.
Note at this phase player P; should broadcast s; = mk; + ro; mod q. We can check if

R = RP- S (1)

if all the above equations hold then the signature should verify. Indeed
RS = RZ Si [H Rz]m . [H Si]r = g"y"

which holds for correct signatures. So we can identify the malicious player by checking for which
player Equation 1 does not hold.

The core difficulty is attributing aborts of type 5 or 7: when [[,cq Ri # g or [;cq Si # y. At
a high level, this means that the distributed values used to compute the signature are wrong, but
it gives no indication as to where things went wrong. Indeed, this could be caused by a failure of
the MtA protocol itself where a player sent an incorrect ciphertext to another player (Phase 2).
But even if the MtA protocols themselves succeeded, the failure could also be caused by players
later revealing wrong values that are not consistent with the values they received during the MtA
protocols. This could happen if a player reveals the wrong §; or I'; (Phase 3 or 4) which would
lead to an incorrect R and thus an invalid signature. It could also be caused by a player inputting
an incorrect value o; in either Phase 3 or Phase 6 (which would lead to an incorrect s). Previous
protocols such as [26, 39, 21] are not able to efficiently disentangle the identity of the bad players
from similar distributed verification checks.

In order to prove that the players indeed ran the protocol correctly, it is necessary and sufficient
to prove the following:

1. The values k; that were input to the MtA with k; and 7, are consistent with the k; that is
input to the MtAwc protocol with k; and w;.

2. The value w; that was input to the MtAwc protocol is consistent with the public value
W; = g™ that is associated with player P;.

3. The value 7; that was input to the MtA protocol is consistent with I'; that is decommited
to in Phase 4.

4. The value d; that is published in Phase 3 is consistent with the shares received during the
MtA protocol. In particular, the following should hold:

0 = ki + Z%‘j + Zﬂji

J#i J#i

where «;; and j3;; are the shares output by the MtA protocol for player F;.
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5. The value S; published in Phase 6 is consistent with the shares received during the MtAwc
protocol. In particular, recall that S; = R?* and

i = kiwi + Y g+ Y vji

i j#i
where p;; and vj; are the shares output by the MtAwc protocol for player F;.

Notice that Property 1 is already enforced by the protocol since indeed the first message of
both the MtA and the MtAwc protocol are shared and only a single message is sent by each player.
Thus consistency is guaranteed. Moreover, Property 2 is also guaranteed by the protocol since we
run MtAwc which guarantees that the value input by P; is indeed consistent with g*7.

Thus, in order to make our protocol identifiable, we need only consider the final three properties
which are not immediately guaranteed by the protocol.

4.3 How Identification Works

Recall that when a signature is public it is important that k be kept secret as given k and the a
signature using k, one can compute the secret key, z. Similarly, if a player published its values s;
and k;, then this would leak its secret share x;. The problem stems from publishing both k; as
well as a signature share s; in which k; was used. However, if s; has not been published, k; has no
special significance and indeed can be published without leaking any information about the key.

Consider now the abort in Phase 5 when g # [[ R; (Type 5 from the list in Section 4.2). At
this point, the values s; in the signature protocol have not been released. Indeed at this point,
it is completely acceptable for the players to reveal their values k; in the clear. And the same is
true for the ephemeral value ;. Absent the value s;, the value 7; need not be kept secret. This
means that the MtA protocol with k; and 7; can be completely opened. This immediately enables
checking that Properties 3 and 4 are satisfied as all of the values that §; is comprised of are made
public.

Therefore the identification protocol for failures of Type 5 in Phase 5 (g # [[ R;) works as
follows:

e Each player P; publishes its values k;, v;, o, B4 for all j as well as the randomness used to
encrypt these values during the MtA protocol.

e Every other player P; can now verify the correctness of §; in the clear. If for any player they
do not hold, the abort is attributed to that player, and the identification protocol terminates.

Let’s focus now on the abort of Type 7 in Phase 6 (y # [[S;). Here the players cannot
completely open the MtAwc protocol between k; and w; since w; is P;’s long-term secret key and,
unlike the ephemeral values k; and v;, the value w; needs to be kept secret even if the signature
aborts. We show, however, that it is safe to reveal the value v;; in the clear, and using these, we
can check the correctness of o; and s; in the exponent, allowing us to identify the misbehaving
player. We now proceed with the details of the identification protocol for failures of Type 7 (in
Phase 6):

e Each player P; publishes vj; as the decryption of the appropriate ciphertext in the MtAwc
protocol. Recall that in Paillier’s scheme, given a ciphertext and a private key, one can
decrypt the plaintext and also recover the randomness used to encrypt, allowing anybody to
verify the correctness of the claimed decrypted value by re-encryption.
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e Every other player P; can now verify that the value sent by P; to P; was indeed an encryption
of Vji-

Moreover, for all j, since g*7, k;, and vj; are public, everyone can now compute

—Vvji

gl = gvikig

And now they can additionally compute

gG'i —_ gwiki ngz‘j Hgl’ji

J#i J#i

e Each player P; proves in zero knowledge the consistency between ¢g?¢ that was computed in
the previous step and S; = R7:. If for any player this does not hold, the abort is attributed
to that player.

The ZK Proof above is a classic one by Chaum and Pedersen [12]. An honest-verifier protocol is
described below for completeness. The Prover has two values ¥ = ¢° and S = R°. He sends o = g
and = R for a €g Z,;. The Verifier sends ¢ € Z,. The Prover answers with ¢ = a 4 co mod q.
The Verifier checks gt = aX¢ and R! = 35°¢.

5 Simplified one round online ECDSA with anonymous aborts

If one is not concerned with identifiable abort, we can simplify our protocol even further. While
our protocol in Section 3 is concretely efficient and has a round-optimal online phase, the offline
protocol can be further simplified if we can tolerate anonymous aborts. Although the protocols
are quite similar, we present it in its entirety for completeness.

The main difference is that in Phase 3 the players do not commit to the value o; using 7;. This
step, together with the correctness check in Phase 6 of the previous protocol, was necessary to make
sure that players are committed to the correct partial signature s;, allowing the identification
of players who misbehave in that final step (a feature that is lost in this simplified protocol).
Consequently the check in Phase 6 of the previous protocol also disappear.

As before, the players run on input G, g the cyclic group used by the ECDSA signature scheme.
We assume that each player P; is associated with a public key E; for an additively homomorphic
encryption scheme &.

The Key Generation protocol is the same as the previous protocol.

5.1 Signature Generation

We now describe the signature generation protocol, which is run on input m (the hash of the
message M being signed) and the output of the key generation protocol described above. We note
that the latter protocol is a t-out-of-n protocol (and thus the secret key z is shared using (¢,n)
Shamir secret-sharing).

Let S C [1..n] be the set of players participating in the signature protocol. We assume that
|S| = ¢+ 1. For the signing protocol we can share any ephemeral secrets using a (¢,¢ + 1) secret
sharing scheme, and do not need to use the general (¢,n) structure. We note that using the
appropriate Lagrangian coefficients \; g each player in S can locally map its own (¢,7n) share x; of
x into a (t,t 4 1) share of z, w; = (N s)(;), i.e. x =Y, gw;. Since X; = g* and \; s are public

values, all the players can compute W; = g = Xi)‘i‘s.
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Phase 1. Each Player P; selects k;,y; €r Zy; computes [Cy, D;] = Com(g"¢) and broadcast
C;.
Define k =), g ki, Y= _,cg Vi- Note that

ky = Z kiv; mod ¢
i,jES

kr = Z k;w; mod ¢
1,j€S

Phase 2. Every pair of players P;, P; engages in two multiplicative-to-additive share conver-
sion subprotocols. Note that the first message for these protocols is the same and is only
sent once.

— P;, P; run MtA with shares k;,~; respectively. Let a;; [resp. f3;;] be the share received
by player P; [resp. P;] at the end of this protocol, i.e.
kiv; = cuj + Bij
Player P; sets §; = k;~y; + Z#i o+ Z#i Bji- Note that the §; are a (¢,t+ 1) additive
sharing of ky =), ¢ d;
— P;, P; run MtAwc with shares k;, w; respectively. Let p;; [resp. v;;] be the share received
by player P; [resp. P;] at the end of this protocol, i.e.
kiw; = pi; + v
Player P; sets o; = k;w; + Zj# Wij + Zj# vj;. Note that the o; are a (¢,t+1) additive
sharing of kx =", 4 0;

Phase 3. Every player P; broadcasts ; and the players reconstruct 6 = >, ¢ 0; = k. The
players compute 6! mod q.

Phase 4. Each Player P; broadcasts D;. Let I'; be the values decommitted by P;.

The players compute I' = [[, . [';, and

i€S
R = F671 = g(ziesﬂ”)kil’yil = 97k71771 = gk71
as well as r = H'(R).

Phase 5. Each player P; broadcasts A; = I'*¢ as well as a zero-knowledge proof of consistency
between A; and E;(k;), which each player sent as the first message of the MtA protocol in
Phase 2.

Phase 6. Each player computes

A=A

i€S

If A = g%, player P; broadcasts s;. Otherwise, they abort.
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6 Implementation and Evaluation

We implemented our protocol in Go using Binance’s tss-lib [2] implementation of [26] as a starting
point. We note that the tss-lib library is high quality production-level code, and not heavily
optimized for speed. While tss-lib did not contain a benchmark facility, we added one to time the
computation time of the protocol on a single thread and used it to benchmark and compare both
of our protocola as well as the original protocol from [26].

Our benchmark machine was a 2018 Macbook Pro laptop with a 2.3 GHz Intel Core i5 processor
and 16GB of RAM (although our code is not memory intensive). For the sake of a fair comparison,
we ran all benchmarks using only a single core. It should be noted, however, that much of our
code is highly parallelizable and in practice the runtime could thus be significantly reduced with
parallelization. Indeed, the most computationally expensive part of our code is generating the
range proofs and Paillier consistency proofs. As these proofs must be generated separately for each
player, this is trivially parallelizable.

Following [26, 27, 38], we compare the raw computation time of the protocol without accounting
for network latency in Figure 1. In our setup, players were run as separate processes on a single
machine. All benchmarks were taken as averages over 50 runs using Go’s built-in benchmarks
facility, and we report our results in milliseconds. We show the raw data in Table 1.

=@— Section 3
== Section 5
4000 { =—+— Goldfeder and Gennaro [26]

3500 4

N w
v =}
= S
S} o

#-Participants

1500 4

1000 1

500 -

3 3 A 5 6 7 4 s 10
Time (ms)

Figure 1: Comparing the signing time of our identifiable abort protocol with [26] for thresholds up
to size 10. Note that unlike [26], the expensive parts of our protocol can be run offline. The x-axis
represents t + 1, the number of active participants in the signing protocol.

As we can see, the running times of both of our protocols are quite similar, with the anonymous
protocol performing slightly better (although it has one fewer round in the offline phase). The
offline running time of both of our protocols is slightly slower than [26]. However, whereas their
protocol required online interactivity, the computation for the online phase of our protocol consists
of only a single elliptic curve multiplication and a single addition, and runs in 0.0008 milliseconds.

Our benchmarks account only for computation and not network latency. Thus, it’s important
to remember that our protocols 6 (5 offline and one online) and 7 (6 offline and one online)
rounds respectively, whereas [26] has 9 rounds. Thus even if our entire protocol is run online, it is
likely that requiring two fewer rounds of communication would compensate for the slightly higher
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# participants  [26]  Identifiable (Section 3) Anonymous (Section 5)

2 442 487 484

3 856 960 991

4 1322 1432 1418
) 1735 1900 1879
6 2133 2366 2355
7 2565 2834 2822
8 2997 3327 3306
9 3434 3826 3758
10 3849 4289 4257

Table 1: Comparing the running times of our protocols and [26] with number of participants
ranging from 2 to 10 players. Times are averaged over 50 runs and given in milliseconds.

computational costs. In the final version of this paper, we will include networked versions of our
benchmarks.

The benchmarks we obtain for [26] are higher than those reported in [26] which is due to the fact
that we include all of the expensive zero-knowledge range proofs in their protocol as well as in ours
in order to achieve full simulation security. In the benchmarks given in [26], the range proofs were
omitted based on a plausible, but unproven conjecture (and indeed if this conjecture is correct then
we can remove them from our protocol as well). Moreover, the code in [26] was heavily optimized
for speed, whereas our implementation builds on Binance’s tss-lib, which is higher quality but less
speed-optimized.
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A Security proof for the identifiable protocol (Section 3)

In this section we prove the following
Assuming that

e The Strong RSA Assumption holds;
e KG, Com, Ver, Equiv is a non-malleable equivocable commitment scheme;
e The encryption scheme used in the MtA protocols is semantically secure

then our threshold DSA schemes is simulatable.

Let A be an adversary who controls players P, ..., Pry1 and that P; is the honest player. We
point out that because we use concurrently non-malleable commitments (where the adversary can
see many commitments from the honest players) the proof also holds if the adversary controls less
than ¢ players and we have more than 1 honest player. So the above assumption is without loss of
generality.

Because we are assuming a rushing adversary, P; always speaks first at each round. Our
simulator will act on behalf of P, and interact with the adversary controlling P, ..., P,. Recall
how A works: it first participates in the key generation protocol to generate a public key y for the
threshold scheme. Then it requests the group of players to sign several messages my,...,my, and
the group engages in the signing protocol on those messages.

A.1 Simulating the key generation protocol

The simulation Sim-Key-Gen is described below. On input a public key y = ¢g* for DSA the
simulator plays the role of P; as follows. It runs on input a Paillier public key E for which he does
not know the matching secret key (this is necessary for when we have to make a reduction to the
semantic security of the Paillier encryption scheme).

Simulation:

e P selects a random value u; € Z,, computes [KGC1, KGD;]= Com(g**) and broadcasts
KGC;. A broadcasts commitments KCG; for i > 1;

e Each player P; broadcasts KGD;; let y; be the decommitted value and the accompanying
Feldman-VSS. Each player broadcasts F;. P; follows the protocol’s instructions.
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e Let y; denote the revealed commitment values of each party. The simulator rewinds the
adversary to the decommitment step and

— changes the opening of P; to KGD; so that the committed value revealed is now
vi=y- Il
— simulates the Feldman-VSS with free term 3

e The adversary A broadcasts K GD;. Let 7; be the committed value revealed by A at this
point (this could be L if the adversary refused to decommit).

e The players compute § = []', §; (set to L if any of the g; are set to L in the previous step).

We now prove a few lemmas about this simulation.

The simulation is indistinguishable from the real protocol, and it either outputs y or it aborts.

[Proof of Lemma A.1] The only differences between the real and the simulated views is that P;
runs a simulated Feldman-VSS with free term in the exponent g; for which it does not know the
discrete log. But we know (see Section 2.8) that this simulation is identically distributed from the
real Feldman-VSS. So the simulation of the protocol is perfect. Because of the rewinding step if
the simulation does not end in an abort, it will output y.

A.2 Simulating the signing protocol

After the key generation is over, the simulator must handle the signature queries issued by the
adversary A. Recall that A can issue two type of queries:

e to Ug to obtain R a uniformly random element in G;

e to Sig'(sk, R, m) which returns (r, s) a valid signature for m with » = H'(R), if R was queried
to Ug, otherwise returns L

The simulator will engage in a simulation of the threshold signature protocol running P; and
on input R for the offline phase (Phases 1-6), and a correct signature (r, s) for m under the public
key y for the online phase 7.

We point out that the simulator does not know the secret values associated with P;y: its correct
share w; of the secret key, and the secret key corresponding to its public key E;. The latter is
necessary in order to reduce unforgeability to the semantic security of the encryption scheme.

However the simulator does know the shares w; of all other players. It also knows the “public
key” of Py, W; = g"* from the simulation of the key generation protocol.

Finally the simulator aborts whenever in the protocol P; is supposed to abort.

Simulation of Phases 1 to 4

e Phase 1. P, runs the protocol correctly. That is, all the players execute the protocol by
broadcasting C; .

e Phase 2. Recall that during the regular run of the protocol, P; will engage in two MtA
protocols and two MtAwc protocols with each other player P;~1. S runs the protocol for Py
as follows:

— Initiator for MtA with ki and ;. S runs the protocol correctly for P;, as it knows k.
However, since S does not know P;’s private key, it will be unable to decrypt o;;.
S extracts P;’s values 7; and 3;; from the range proofs and computes o; = ki7y; —
61]‘ mod q
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— Respondent for MtA with k; and -y;. S runs the protocol correctly for P;, as it knows ;.
From P;’s range proof, S also extracts k;. It knows its own share $;; and using the
value it extracts, it can compute P;’s share as a1 = k;y1 — 851 mod q.

— Initiator for MtAwc with k; and w;. S runs the protocol correctly for P, as it knows k;
and indeed this first message is identical for all players in both MtA and MtAwc. Here
again, S will be unable to decrypt its share f;;, but it learns it from extracting w; and
v1; from P;’s range proof and computing u1; = kiw; — v1; mod gq.

— Respondent for MtAwc with k; and w;. Here, S does not know wy, so it simulates P;
according to the simulation described in Section 2.10. In particular, it chooses a random
w; and runs the protocol normally with the exception that it now simulates the zero
knowledge proof of consistency with g**. S knows its own share v;; and using the value
it extracts, it can compute P;’s share as u;1 = k;jw; — v;; mod g.

Note that at this point S knows:

— Its own values k1, v, as well as all of its own shares from the MtA and MtAwc protocols:
Oélj,ﬁjl for j > 1.

— The values k;,7;, w; belonging to every other players as well as their shares for the MtA
and MtAwc protocols that interacted with P : pt 1,1, for j > 1.

Recall the definitions of §; and o;:

8 = ki + Y i+ »_ B mod g

J#i J#i
g; = k‘{wi -+ Z‘LL” -+ Zyji mod q
J#i J#i

S can compute P;’s value §; using the above definition, but it cannot compute o since it
doesn’t know ws.

Moreover, S does not know the internal values from the MtA and MtAwc protocols executed
by two players that are both controlled by the adversary. Indeed, S does not see these
messages during the protocol, and even if it did see them, it could not force the adversary
to provide different values that would enable extraction. Thus § is not able to compute the
individual values o; and §; for Pjs.

Nevertheless, since S knows all shares k;,y; including its own, it can compute:

5zzéi=<zki>~<2w)modq

Although & can compute 6, it cannot similarly compute o =) . 0; since it doesn’t know its
own value w;. Instead, we define o4 as the summation of all the adversaries values. That is:

oA = g o; mod ¢
j>1

Notice that we can express o4 as a function of values that are known to S. In particular:

UA:ZUZ': Z kiijrZ,ulerZVlj IIlOdq
J

i>1 i,j>1 j

and S knows all the values on the right hand side of the equation.
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e Phase 3. All the players execute the protocol by revealing §;. Let § = >;0;. S runs the
protocol correctly for P; as it knows all of its correct shares from Phase 2.

The simulator broadcasts T = g"lhé1 for ¢1 €r Z;. Note that the simulator does not know
an opening of this commitment (since it does not know o1) so it simulates the ZK proof.

The simulator extracts the values the adversary committed to in 7} for ¢ > 1 using the proof
of knowledge. Let d; be those values and 64 = Zi>1 J;.

e Phase 4. Each player reveals D; to decommit to I';.

At this point the simulator can detect if the values so far published by the adversary are
consistent. It first computes R = (IIT Z-)‘rl. Then using the values k; extracted during the MtA
protocols, it checks if

The simulator can also detect if the adversary produced commitments S; to the correct o; by
checking if 64 = 04.
We say that an execution is semi-correct if

HR’“ =g and 64 =04

Otherwise, this execution is not semi-correct.
At this point, the simulation will depend on whether or not this execution is semi-correct.

A.2.1 Finishing the simulation of the offline phase

Semi-correct

— & retrieves the randomizer R. Non semi-correct

— S rewinds A to the decommitment
step, and for P changes the decom-
mitment to I'y = RO, I';'. Note
that [fl Hi>1 Fi]571 =R

— Phase 5. S has P; publish
Ry =RM

together with a zkp of consistency with
E1(k1) (S can produce a correct proof, does
not need to simulate it).

— Phase 6. § has P; publish

e Phase 5 § has P; publish

Ri=g H R™F
i>1

: : . S1=R"

together with a simulated zkp of consistency

with F7 (k1) (note that in this case the sim-
ulated Ry # R*' due to the rewinding).

Phase 6 S has P; publish
S1=y H R™
i>1

together with a simulated zkp of consistency
with T} (again in this case the simulated
S1 # Rt due to the rewinding).
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together with a zkp of consistency with T (S
can produce a correct proof, does not need
to simulate it).

Since this execution is not semi-correct, we
know that at least one of the the adversary’s
proofs will fail at either one of these steps
and the protocol will abort.



A.2.2 Simulation of the online Phase 7

Here S receives the correct signature (r, s) on m, where r = H(R) computed in one of the previous
offline phases (in particular in one that was semi-correct, since it concluded successfully).
Note that at this point S knows s4 = Zj>1 s; (i.e., the summed value of all the s; held by the
bad players) since

sa=kam -+ oar

where o4 is as defined in the simulation of Phase 2 and k4 = >_
So S can compute the correct s; held by P; as s — s4.

;.

j>1
e Phase 7 S reveals sy that it computed in the previous step as the share for P;.

A.2.3 Proof

We prove the following lemma about the simulation.
Assuming that

e [ is a semantically secure encryption scheme

e The Strong RSA Assumption holds

e KG, Com, Ver, Equiv is a non-malleable equivocable commitment;
then the simulation has the following properties

e on input m it outputs a valid signature (r, s) or aborts.

e it is computationally indistinguishable from a real execution

[Proof of Lemma A.2.3]

Semi-Correct Executions. The only differences between the real and the simulated views
is the following: In the MtA protocol the values ¢; = E;(k;) are published and in the real protocol
R = g"“_1 where k = ) k;, while in the simulated execution R = g’“—1 for the k chosen by the
signature oracle. This is easily seen to be computationally indistinguishable under the semantic
security of Paillier’s encryption.

Indeed, when S rewinds the adversary to “fix” the value of R, it implicitly changes the value
k1 that S contributes for P; to R. If R = g’(l7 let (implicitly) ki=k— > i1 ki. Note that Rk
is known since Rk1+zi>1 ki g, therefore R = gR~ 2in % So to distinguish between the real
execution and the simulated one, the adversary should detect if the ciphertext sent by S for P;
in the first round of the MtAwc protocol contains a random k; or the random /;71 determined as

logr(gR 2 k") which is infeasible under the semantic security of Paillier’s encryption (given
that all values are proven to be “small” and no wraparound mod N happens).

Note that we are simulating a semi-correct execution with an execution which is not semi-
correct, but that’s okay because the two are indistinguishable.

However, because the real execution is a semi-correct one, we know that the correct shares of
k for the adversary are the k; that the simulator knows. Therefore the value s; computed by the
simulator is consistent with a correct share for P; for a valid signature (r, s), which makes Phase
7 indistinguishable from the real execution to the adversary.

Let (r,s) be the signature that S receives by its signature oracle in Step 2 of Phase 4. This
is a valid signature for m. We prove that if the protocol terminates, it does so with output (r,s).
This is a consequence of the non-malleability property of the commitment scheme. Indeed, if the
adversary correctly decommits, its openings must be the same except with negligible probability.

Non-Semi Correct Execution. In this case the protocol and the simulation both abort when
one of the ZK proofs of the bad players fails.
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A.3 Simulation of the identification protocol

Referring back to Section 4.2, aborts of any type except (5) or (7) happen when a well-defined
player fails a step (either a decommitment or a ZK proof). In this case the player is immediately
identified and no additional steps have to be taken. In particular this event happens with the same
distribution in the simulation and therefore aborts of this type are easily simulated.

Aborts of types (5) and (7) are not immediately attributable because we only know that an
aggregate value is wrong. In this case we require players to open their randomness and the MtA
protocols. But in this case we know that this is a non-semi-correct simulation so the adversary
has not been rewinded, and the simulator knows the correct opening of all the MtA protocols and
those are consistent with the rest of the transcript of the protocol. So the simulation is identical
to the real protocol.

B Security proof for the anonymous abort protocol (Section
5)

Note that Phases 1-4 are identical between the two protocols except for the broadcasting of the
commitments T; + their associated zkps which are omitted in the anonymous abort protocol.
Therefore the simulation of Phases 1-4 of the the anonymous abort protocol is the same as the
simulation of Phases 1-4 of the identifiable abort protocol, except that we omit broadcasting the
commitments T; + their associated zkps in the simulation as well.
At the end of Phase 4 we define a semi-correct execution one in which [, I'* = g° where the
k; are the values defined by the encryptions sent by the players during Phase 2.

B.0.1 Finishing the simulation of the offline phase

Semi-correct
Non semi-correct
— 8 retrieves the randomizer R.

— Phase 5. S has P; publish
— S rewinds A to the decommitment

step, and for P, changes the decom- A =TH
mitment to I'y = R[], I;'. Note
that [I' [Lisy ri]é‘l - R together with a zkp of consistency with
E; (k1) (S can produce a correct proof, does
e Phase 5 S has P, publish not need to simulate it).
A =g° HF’“ Since this execution is not semi-correct, we
i>1 know that at least one of the the adversary’s

proofs will fail at either one of these steps

together with a simulated zkp of consistency and the protocol will abort

with Fy(k;) (note that in this case the sim-
ulated A; # I'** due to the rewinding).

B.0.2 Simulation of the online Phase 6

Here S receives the correct signature (r, s) on m, where r = H(R) computed in one of the previous
offline phases (in particular in one that was semi-correct, since it concluded successfully).

Note that at this point S knows s4 =) ._; s, (i.e., the summed value of all the s; held by the
bad players) since

j>1

sa=kam+ oar
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where o4 is as defined in the simulation of Phase 2 and k4 = >
So § can compute the correct s; held by P; as s — s4.

;.

i>1
e Phase 6 S reveals s; that it computed in the previous step as the share for P;.

B.0.3 Proof

We prove the following lemmma about the simulation:
Assuming that

e [ is a semantically secure encryption scheme

e The Strong RSA Assumption holds

e KG, Com, Ver, Equiv is a non-malleable equivocable commitment;
then the simulation has the following properties

e on input m it outputs a valid signature (r, s) or aborts.

e it is computationally indistinguishable from a real execution

[Proof of Lemma B.0.3]

Semi-Correct Executions. The only differences between the real and the simulated views
is the following: In the MtA protocol the values ¢; = F;(k;) are published and in the real pro-
tocol R = g* " where k = >_; ki, while in the simulated execution R = g"" for the k chosen
by the signature oracle. This is easily seen to be computationally indistinguishable under the
https://www.overleaf.com/project /5d600f66de7b0c16fa84e436 semantic security of Paillier’s en-
cryption.

Indeed, when S rewinds the adversary to “fix” the value of R, it implicitly changes the value
k1 that S contributes for P; to R. If R = g’fl7 let (implicitly) ki=k— > i1 ki. Note that Rk
is known since Rk1+zi>1 ki g, therefore R = gR~ 2in % So to distinguish between the real
execution and the simulated one, the adversary should detect if the ciphertext sent by S for Py
in the first round of the MtAwc protocol contains a random k; or the random lAﬁ determined as

logr(gR 2o k") which is infeasible under the semantic security of Paillier’s encryption (given
that all values are proven to be “small” and no wraparound mod N happens).

Note that we are simulating a semi-correct execution with an execution which is not semi-
correct, but that’s okay because the two are indistinguishable.

However, because the real execution is a semi-correct one, we know that the correct shares of
k for the adversary are the k; that the simulator knows. Let (r, s) be the signature that S receives
by its signature oracle in Phase 6. This is a valid signature for m.

Therefore the value s; computed by the simulator is consistent with a correct share for P;
for a valid signature (r,s), which makes Phase 6 indistinguishable from the real execution to the
adversary.

We prove that if the protocol terminates, it does so with output (r,s). This is a consequence
of the non-malleability property of the commitment scheme. Indeed, if the adversary correctly
decommits, its openings must be the same except with negligible probability. Non-Semi Correct

Execution. In this case the protocol and the simulation both abort when one of the ZK proofs
of the bad players fails.
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