
There Can Be No Compromise:
The Necessity of Ratcheted Authentication in

Secure Messaging

Benjamin Dowling1 and Britta Hale2?

1 Department of Computer Science, ETH Zurich
benjamin.dowling@inf.ethz.ch

2 Department of Computer Science, NPS, Naval Postgraduate School
britta.hale@nps.edu

Abstract. Modern messaging applications often rely on out-of-band commu-
nication to achieve entity authentication, with human users actively verifying
and attesting to long-term public keys. This “user-mediated” authentication
is done primarily to reduce reliance on trusted third parties by replacing that
role with the user. Despite a great deal of research focusing on analyzing
the confidentiality aspect of secure messaging, the authenticity aspect of
it has been largely assumed away. Consequently, while many existing pro-
tocols provide some confidentiality guarantees after a compromise, such as
post-compromise security (PCS), authenticity guarantees are generally lost.
This leads directly to potential man-in-the-middle (MitM) attacks within
the intended threat model. In this work, we address this gap by proposing a
model to formally capture user-mediated entity authentication in ratcheted
secure messaging protocols that can be composed with any ratcheted key
exchange. Our threat model captures post-compromise entity authentica-
tion security. We demonstrate that the Signal application’s user-mediated
authentication protocol cannot be proven secure in this model and suggest a
straightforward fix for Signal that allows the detection of an active adversary.
Our results have direct implications for other existing and future ratcheted
secure messaging applications.

Keywords: Secure Messaging · Ratcheted Authentication · Signal · Double Ratchet
· User-Mediated Authentication · Ceremonies

1 Introduction

Entity authentication is a critical pillar in secure communication, yet one that
has been fundamentally abstracted away in the analysis of modern, ratcheted key
exchange protocols. Protocols of this type have gained extreme popularity in recent
years due to the strong security guarantees achievable in such designs, including for-
ward secrecy (FS) and post-compromise security (PCS) for confidentiality. The Signal

? The views expressed in this document are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

protocol is one example, being one of the most ubiquitous cryptographic protocols
used in practice, it enables end-to-end encryption for widespread secure messaging
applications including WhatsApp [30], Wire [14], Skype [28], and Facebook Mes-
senger Secret Conversations [11]. On a high-level, ratcheted key exchange protocols
are two-party multi-stage key exchange protocols, where the two parties repeatedly
exchange “update” information to derive independent and secret symmetric keys.
Despite the popularity of ratcheted key exchange protocols, entity authentication –
a critical pillar of secure communication – has been fundamentally abstracted away
in their analysis. This has left a critical gap in the understanding of ratcheted key
exchange protocol security. An attacker that can impersonate a party or modify
updates undetected can also break confidentiality and data authenticity. Thus entity
authentication is closely tied to confidentiality FS and PCS. To put it succinctly: a
lack of meaningful authentication allows for an active man-in-the-middle (MitM)
attack in the “after compromise” security threat model – the very threat model
applied to confidentiality analyses of ratcheted key exchange protocols [25, 3, 8]. This
distinction is clearly stated with precision by Bellare et al. [3], who remark:

In practice, these [ratcheting] keys are the result of a session-key exchange
protocol that is authenticated either via the parties’ certificates (TLS) or
out-of-band (secure messaging), but ratcheting is about how these keys are
used and updated, not about how they are obtained, and so we will not be
concerned with the distribution method, instead viewing the initial keys as
created and distributed by a trusted process.

Such an omission may seem initially surprising due to the possible implications.
In practice, this omission is due to the out-of-band (OOB) nature of the entity au-
thentication that is usually employed and the challenge of analyzing it systematically.
Signal and similar protocols rely heavily on user mediation, where users actively
engage in the verification of long-term keys, effectively replacing a trusted third
party or certificate authority. Thus, consideration of entity authentication within
analyses of such ratcheting protocols necessitates extending the computational model
to capture unpredictable user behavior and the user-device interface.

In this work, we investigate user mediation in the ratcheted key environment,
formalising a computational model for user-mediated protocol analysis. Our model
builds on previous work by capturing post-compromise security with respect to
entity authentication. We apply this model to Signal, and note that the Signal
authentication mechanism does not satisfy our security requirements. Finally, we
present a straight-forward solution for the Signal ratcheted key exchange protocol
that can detect active attackers.

Now we briefly introduce the surrounding context, including the problem of
active attackers against PCS security, the Signal authentication protocol, and the
practical use and analysis of user mediation in security protocols.

Signal Protocol The Signal protocol (or simply “Signal”) [19] is a ratcheted key
exchange and encryption protocol which has become synonymous with secure mes-
saging. Mutual entity authentication in Signal is performed through user interaction
via the Signal authentication protocol: a user manually compares “safety numbers”

on both devices, either through visual comparison or a QR code reader, and finishes
by selecting “verified” on each device. At any time the user may also deselect the
“verified” status of the conversation. In addition to the Signal app, this mechanism for
entity authentication is used in Wire [13], WhatsApp [30], and Facebook Messenger
Secret Conversations [11].

Compared to research on the Signal ratcheted key exchange, the Signal authenti-
cation protocol has been left almost entirely unconsidered. Aside from a comparative
usability study on Signal’s safety numbers [4], Signal authentication protocol has not
been formally treated in the literature focused on the Signal protocol [1, 7, 5, 8, 27],
with focus instead being on FS and PCS confidentiality guarantees following device
compromise. The Signal specification itself notes the problematic consequence of a
compromise scenario on security, calling it “disastrous”, and specifically stating for
authentication that loss of identity keys “allows impersonation of that party” [20].

Post-Compromise Security vs. Active Adversary Detection PCS (also known
as future secrecy or self-healing) [9] is a recent security notion that formally cap-
tures a protocol’s ability to “lock out” an attacker following full state compromise,
contingent on the attacker being passive for some period. To achieve PCS, protocols
such as Signal use a technique known as key ratcheting. Ratcheting protocols first
establish a shared “root” secret (which we will denote rk) that for each epoch is then
continually ratcheted forwards in a chain by a keyed function f , taking the current
root key rki and additional entropy eki as input (i.e. rki+1 ← f(rki, eki)). These
root secrets can then used to derive further keys that will be used in an arbitrary
symmetric-key protocol. Note that the definition of an epoch here is defined by
the period between the derivation of new root secrets. It follows that even if an
attacker has exposed the root secret rki, if the communicating parties are able to
secretly establish new entropy eki in that epoch, then the attacker cannot compute
the following root secret rki+1.

Typically, PCS is considered only in terms of confidentiality, where an attacker will
not be able to read future messages following a compromise. However confidentiality
only represents a partial view of security in the post-compromise threat model (i.e.
following a compromise). We extend the view of the post-compromise threat model
to include entity authentication – not only by healing from a passive attacker but
also detect active impersonation.

Consider the following scenario to demonstrate why this matters: A user wishes
to verify that their session is not being compromised by an active attacker, able
to inject messages between the two devices, and decides to use the Signal entity
authentication protocol described in Section 2.4. A successful verification indicates
that an attacker has not modified the long-term keys of either party in the session.
However, as the verification is tied only to long-term keys and not the current session
state, there is no indication of who the current communication partner really is.
Following a compromise, an attacker can send/receive messages and impersonate a
partner device, and this will not be detected during the Signal entity authentication
protocol.

Due to the failure of entity authentication, messaging protocol participants
are no longer assured of being the sole entities privy to correspondence if there is

compromise by an active attacker (i.e. PCS confidentiality healing fails). In particular,
an active MitM attacker may continually inject its own messages, preventing PCS
from healing the protocol and locking out the attacker. Thus, under a standard
model of communication (i.e. two devices and a single channel) and following a full
state compromise, users must rely on the attacker to be passive in order to recover
security – something that is by no means assured.

Achieving PCS healing for entity authentication therefore requires session ratchet-
specific information to be tied to verification checks. One possible, but naive, approach
to this would be to include all public keys exchanged during the protocol execution
in the verification check. However, this leaves open another form of impersonation
that is not reliant on prior compromise: an attacker could generate the same QR
code or safety numbers as a valid user and post it for comparison elsewhere, since it
is generated over public information. This is should not be surprising; traditional
entity authentication in the form of certificates require some proof of private key
ownership before the third-party certifying authority approves the key. In the context
of ratcheting, it is likewise necessary to tie together proof of private key ownership
over all ratchets. In the context of user mediated protocols, the user is the third-party
certifying authority. This leads to our suggested construction in Section 4, where we
compute MACs over session-specific information derived from the PCS secrets.

To summarize: we extend the PCS concept to entity authentication and provide
active attacker detection. We provide a security model that addresses this gap, and an
example ratcheted key exchange and authentication solution that is provably secure
in our new model. In particular, we describe the Signal user-mediated authentication
protocol, which does not achieve our strong guarantees, and propose a modified
variant called the Modified Device-to-User Signal Authentication (MoDUSA) protocol.
We prove that the MoDUSA protocol achieves our strong notions of security. By
linking authentication to ratcheting epochs, MoDUSA:

1. provides detection of an active MitM during sessions,
2. achieves PCS healing such that an entity is assured of their only communication

partner following key updates and a run of the authentication protocol,
3. provides authentication for epochs before MoDUSA is run, and
4. can be run multiple times during the lifetime of a session.

User Mediated Authentication Traditionally, cryptographic analysis considers
only device-to-device communication, with all user interactions OOB. However, such
a perspective leads to erroneous security assumptions on user-input data and honest
user behaviour. In practice, a user reads information from a device display and acts
accordingly – an attacker may eavesdrop on the user input data, the display data, or
may even obtain access to the device. Using malware, an attacker may also display
data via a display overlay, without having access to private keys. The Tap n’ Ghost
attack [23] is one such example, where the attacker affects both the user input to
the device and display but has no access to internal keys or state, by externally
injecting electrical noise that affects capacitive touch screens.

User mediated authentication was first considered in [15] with a user mediated
security model being applied in the analysis of an ISO authentication protocol.

In this model, an adversary was considered under three different capability levels,
ranging from eavesdropping to device control. We extend their model, and consider
a more fine-grained control method, enabling separate consideration of an attacker’s
control of a device display and control of user input. Moreover, we consider two
security goals: authentication security under display and user compromise, and
authentication security under device compromise (including all keys). We denote
this security framework the Mediated Epoch Three-party Authentication (META)
model. META has implications not only for the analysis of Signal, but also other
user-mediated protocols such as Bluetooth.

META is not an authenticated key exchange (AKE) model per se. In mainstream
messaging applications [14, 19, 30] the ratcheted key exchange and messaging pro-
tocols are neatly composed, where per-epoch root secrets established by the key
exchange are given as input to the symmetric-key messaging protocol. We instead
modify the Signal protocol to output per-epoch authentication secrets and public
update messages, and then authenticate these public update messages. Thus, META
aims to capture authentication per ratchet epoch, defined by the derivation of new
ratchet secrets. We define two variants of ratcheting freshness and corresponding
security experiments for ratcheting authentication, dependent on adversarial capabil-
ities – under user compromise (CompUser) and under device compromise (CompDev)
threat models.

CompUser formalises freshness against an attacker capable of controlling a user’s
actions and controlling information displayed to the user on a single device. This
formalises security guarantees when one device may be infected with malware,
leading to control of a device display but no access to keys. It also captures shoulder-
surfing attacks and the Tap n’ Ghost mentioned above. When the user is an active
protocol participant, any malicious application that can display content to the
user can conceivably mirror a viable output and trick the user. One can think of
this as a pop-up ad that is designed to look like the legitimate application. Such
attacks are on the user interface and may not require access to internal application
secrets (see e.g. the Strandhogg vulnerability [16]). CompDev security, in comparison,
allows device state to be compromised but limits adversarial capabilities on the
user-to-device channels. CompDev security is closely linked to tradition channel
security experiments. Note that in both CompUser and CompDev security we allow
an eavesdropping adversary that can read all information between a user and device
(e.g. shoulder-surfing). It is under CompUser security that we capture stronger notions
of PCS for entity authentication. Interestingly, the choice of session identifier defines
whether satisfaction of CompUser security may imply authentication of the entire
session up to that epoch (see Section 4).

Ceremonies vs. User-Mediation The concept of reaching beyond normal proto-
col interaction to consider use-context can also be seen in ceremonies [10], which can
be seen as the OOB roles and actions of users in the context of security protocols,
and aims to model and analyze traditionally out-of-scope aspects of these protocols,
including user interactions and societal contexts [2]. The concept been applied to
public key infrastructure [22] and to verifiable elections [17]. Radke et. al. [26] explore
the potential strengths and weaknesses of this approach and recently, Carlos et. al.

[6] explored a threat model for security ceremonies, using their adapted model to
examine the Bluetooth pairing protocol. Intrinsically, the modelling approach that
ceremonies take differ from our approach in fundamental goals and assumptions –
we build on computational models while ceremonies are based on the Dolev-Yao
model. Ceremonies provide a simpler, but wider view of the environment, while we
expand upon lines of research capturing complex secure messaging and user-mediated
security frameworks.

Contributions In this work, we address the incongruity of PCS without authenti-
cation.

– We describe security for user-mediated authentication in the post-compromise
threat model (under both CompUser and CompDev attacks), and introduce the
META model.

– We demonstrate that the Signal authentication protocol is unable to satisfy
META security and instead propose a modification of the Signal key exchange
and authentication protocol, called MoDUSA, to counter potential MitM vulner-
abilities. As in the traditional Signal authentication protocol, a user may initiate
the authentication check whenever and however often they desire.

– We analyse MoDUSA, and demonstrate that it achieves META security, allowing
for detection of active MitM attackers. Combining traditional confidentiality
PCS and our solution, a user is guaranteed that, should a compromise occur,
the protocol will either detect the attack or self-heal it.

We begin by introducing the Signal key exchange and its own authentication
protocol. Later, we will demonstrate that Signal’s entity authentication protocol
does not achieve either of our notions of META security. In the following discussion,
Alice and Bob are used to refer to respective devices in the protocol – we continue
to refer to a single human User (see Fig. 3 for example).

2 The Signal Protocol

In this section we give an overview of the Signal Protocol, almost certainly the
most widespread example of a two party asynchronous messaging protocol. Signal’s
structure allows users to send encrypted messages to each other with high-degrees of
forward secrecy and post-compromise security. On a high level, the protocol consists
of three distinct stages:

– A session establishment stage, where one user Alice fetches a prekey bundle
belonging to another user Bob, and uses Bob’s public keyshare information (as
well as generating Alice’s own secret keyshare values) to derive a root key, a
chain key, and a message key. This is called the extended Triple Diffie-Hellman
(X3DH) protocol [21], which we give an overview for in Section 2.2, and describe
in detail in Appendix A.1.

– An asymmetric ratcheting stage, where a user Alice, after receiving a message
from Bob containing a new ratchet key, generates a new ratchet key, performs a
DH computation with Bob’s ratchet, and uses the output and the current root

key in a KDF to generate a new root key, a new chain key and a new message
key. This is an asymmetric ratchet of the Double Ratchet protocol [18], described
in detail in Fig. 8, with a key schedule depicted in Fig. 7.

– A symmetric ratcheting stage, where a user Alice, after sending a message to
Bob decides to send another message to Bob, using the chain key to roll forward
(using a key derivation function) and derive a new chain key and a new message
key, to be used when the user sends a new message. This is the symmetric ratchet
of the Double Ratchet protocol [18]. The symmetric ratchet is outside the scope
for our analysis, and so we limit our description to Appendix A.2.

2.1 Terminology

Here we introduce the terminology of Signal, as well as the notation that we use
to describe its components. We describe all types of keys and shared secret values
that are computed during a Signal protocol execution, as well as user authentication
protocols.

– identity keys (idk, idpk): Long-term DH keypairs used to sign other keys used
in Signal, as well as derive keys in multiple X3DH key exchanges.

– signed prekeys (spk, sppk): Medium-term DH keypairs, signed by the user, and
used to derive keys in multiple X3DH key exchanges.

– one-time-keys (otk, otpk): Ephemeral DH keypairs, used to derive keys in a
single X3DH key exchange.

– ratchet keys (rck, rcpk): Ephemeral DH keypairs, used to derive keys in both
the X3DH key exchange, as well as asymmetric ratcheting stages.

– root keys (rki): A symmetric secret value, used to generate the i-th root and
chain keys during an asymmetric ratchet stage, using the (i-1)-th and ith ratchet
keys.

– chain keys (ckij): A symmetric secret value derived from the (i-1)-th root key,
used to generate the i-th chain and message keys during the j-th symmetric
ratchet stage, with no added entropy.

– message keys (mkij): A symmetric secret key, derived from the (j-1)-th chain
key and used to AEAD-encrypt a plaintext message.

– fingerprint (fprint): a representation of some session identifying information,
used by the human user to authenticate both parties.

2.2 The X3DH Protocol

In Signal, sessions are established in either an offline or online fashion. Either process
uses prekey bundles, a set of keys that are generated locally by each user device
and then either sent to a centralized Signal server (offline mode) or sent upon
request to another user via the server (online mode). When a user Alice wishes to
establish a session with an offline user Bob, Alice retrieves Bob’s prekey bundle
from the Signal server, and uses the values within to create shared secret values.
This process of deriving keys from prekey bundles is referred to as the Extended
Triple Diffie-Hellman (X3DH) key agreement protocol. The full details of the prekey
bundle can be viewed in Appendix A.1.

Alice Server Bob

Key Generation and Registration Phase

(idkB , idpkB)
$← DHGen(1λ)

IDB
$← IDGen(idkB)

(spkB , sppkB)
$← DHGen(1λ)

(otkB , otpkB)
$← DHGen(1λ)

kidB
$← IDGen(sppkB , otkB)

σB
$← SIG.Sign(idkB , sppkB)

PreKeyBundle(B)← {IDB , kidB , sppkB , otpkB , σB , idpkB}
PreKeyBundle(B)

Session Establishment Phase
RequestPreKeyBundle(IDB)

PreKeyBundle(B)

if SIG.Vfy(σB , idpkB , sppkB) 6= 1, abort

(otkA, otpkA)
$← DHGen(1λ)

(rck0A, rcpk
0
A)

$← DHGen(1λ)

pms0 = (sppkB)idkA , pms1 = (idpkB)otkA

pms2 = (sppkB)otkA , pms3 = (otkB)otkA

ms = KDF(pms0‖pms1‖pms2‖pms3, label)

rk0, ck00 = KDF(ms, sppk
rck0A
B)

ck01,mk
0
1 ← KDF(ck00)

Sending Message Phase
AD = {idpkA‖idpkB‖rcpk0A}
InitMsg← {kidB ,AEAD.Enc(mk01, AD, nonce, ptxt)}

InitMsg

Fig. 1. A protocol flow describing the Signal X3DH initial key exchange protocol. In this
protocol execution, user Bob has generated a PreKeyBundle locally, and stored the public
key values (and identifiers) with the Server. At some point, user Alice will request the
PreKeyBundle and use it to establish a message key mk, encrypting a message and sending
the ciphertext to Bob. IDGen is a function that takes either the identity public key idk
or the public prekeys sppk, otpk and generates the tuple (regId, deviceId) (or the key
identifiers for the prekeys, respectively).

After Alice fetches the prekey bundle, the signature σB over the signed prekey
sppkB is verified using Bob’s long-term identity key idpkB . An important observation
here is that Signal, unlike protocols such as Transport Layer Security, has no public
key infrastructure used to authenticate identity keys. Thus, any attacker that controls
the communication channel (such as the Signal server) is capable of injecting its
own identity key idpkB′ , and using it to sign prekeys and impersonate Bob. To
prevent this attack, users will authenticate to each other using “fingerprints.” These
mechanisms are supported within the Signal authentication protocol, not a part of
the Signal protocol itself and are discussed later in Section 2.4.

Alice then generates a fresh ratchet public key (rck0A, rcpk
0
A), a fresh one-time-key

(otkA, otpkA), and combines it with the values listed above, as described in Fig. 1.
The output of this computation is a root key rk0, a chain key ck01 and a message
key mk01, used to encrypt the plaintext message that Alice sends to Bob, marking
the end of the initial X3DH key exchange.

2.3 The Double Ratchet Protocol

Once a session has been established in Signal there are two different mechanisms to
derive new message keys. The first is called asymmetric ratcheting, and is triggered
the first time a user sends a message to their conversation partner after having
received a message. The second is called symmetric ratcheting, and is triggered when
the user sends another message in a chain, without having received a new message
from their conversation partner. Fig. 7 depicts the key schedule for the Signal Double
Ratchet protocol.

Asymmetric Ratchet Asymmetric ratcheting requires the user generate a new
DH key pair (rcki, rcpki) called ratchet keys. This new ratchet key is used with
the previous ratchet key rcpki−1 (from the conversation partner), as well as the
currently maintained root key rki−1 to derive a new root and chain key rki, cki0 ←
KDF(rki−1, (rcpki−1)rck

i

). Since this new chain key will be used to generate sending
message keys for the device until it receives a new message from its conversation
partner, it also updates two counters pctr, ctr3 such that pctr ← ctr, ctr ← 0.

The device then computes the next chain key and the first message key in
this chain cki1,mk

i
1 ← KDF(cki0). The device uses an AEAD symmetric cipher

to encrypt a plaintext message ptxt′. The additional data field AD is set as the
AD field from the first message in the conversation, as well as the sender’s most
recently generated ratchet key and its currently maintained counters, i.e. AD =
{idpkA‖idpkB‖rcpk0A‖rcpkiI‖ctr‖pctr}. Finally, the device sends the ciphertext: ci1 =
AEAD.Encrypt(mki1, AD, nonce, ptxt

′) and sends ci1 to its conversation partner. A
protocol flow diagram is given in Fig. 8.

3 pctr is a counter of messages sent using message keys generated from root key rki−2,
and ctr is the number of messages that have been sent using message keys generated
from root key rki

2.4 Entity Authentication in Signal

Here we introduce the user-mediated entity authentication mechanism used in
the Signal application. The Signal app supports post-session establishment entity
authentication via a human user interface. On a high level, the Signal app produces
fingerprints of the long-term keys and identities of both parties in the communication
channel. These fingerprints can take two distinct forms: QR code representation or
numeric code representation, and below we describe how each is computed. Due to
the lack of formal specification for the Signal authentication protocol, this description
is guided by the implementation [24].

After a user validates their communication partner, the user can mark their
communication partner as “verified.” When the user proceeds, they are alerted when
these fingerprints have changed - this may occur due to their communicating partner
changing their device or identity key. Any further attempt at communication on the
part of the user will require them to manually acknowledge that the message may
be sent to an unverified partner.

2.5 Authentication with QR codes

The QR code verification method (which the repository [24] refers to as “scannable
fingerprints”) allows users to authenticate each other without the risk of human
error while reading and comparing fingerprints. There are two different versions
of generating these scannable fingerprints, version 0 (described in Appendix A.3)
and version 1, which we describe below. For the rest of the paper we focus on the
version 1 method of generating scannable fingerprints, as it is both a more recent
version of the process, and is more closely related to the numeric code verification
method (which the repository refers to as “displayable fingerprints”). While a QR
code is verified out-of-band (OOB) by a user, the verification itself is error-free,
assuming an honest QR code reader.

Scannable Fingerprint Version 1. In version 1, generating scannable fin-
gerprints requires computing a digest of the local and remote identifiers and identity
keys. Each device computes both fingerprints as follows (here A acts as the local
partner, and B the remote partner):

local fprint = Hi(0‖fvers4‖idpkA‖IDA, idpkA)

remote fprint = Hi(0‖fvers‖idpkB‖IDB , idpkB)

Hi(x, y) is an iterative hash, where H0 = H(x), and Hi = H(Hi−1‖y). In
the repository we examined, the Signal authentication protocol uses SHA2 with
512-bits of output as the underlying hash function, with 5200 iterations. The finger-
print is a QR code representation of the following fields: {svers, 0, local fprint,
remote fprint}. Afterwards, the device serializes the fingerprint and generates a
QR code from the serialized data. The devices can then verify the communicating
partner’s scannable fingerprint as described above.

4 fvers here refers to the “fingerprint generation version”. Note that in both QR and
numeric codes, fvers = 0.

2.6 Authentication with numeric codes

Local / Remote Fingerprint

chunk[0]

(40 bits)
. . . chunk[5]

(40 bits)
. . . chunk[11]

(40 bits)

chunk[12]

(32 bits)

Discard (272 bits)

int0=Int(chunk[0])

(40 bits)

. . . int5=Int(chunk[5])

(40 bits)

trunc0 = int0 (mod 105)

(17 bits)

. . . trunc5 = int5 (mod 105)

(17 bits)

display string = trunc[0] ‖ . . . ‖ trunc[5]

(102 bits, or 30 digits)

Fig. 2. Truncation method used by Signal to reduce the length of the (local or remote)
fingerprint output by the hash function to a human-readable state. Int() denotes a function
that converts a bit-string to an integer value.

For numeric codes, the Signal authentication protocol first generates local finger-
print local fprint and remote fingerprints local fprint as described above.

Recall that fingerprint generation uses SHA2 with 512-bit output length as its
underlying hash function. However, the Signal authentication protocol’s numeric
code, read by the users, is not the direct output of the hash function, but instead the
concatenation of two 30-digit representations of truncated hash outputs, described
in Fig. 2.

The displayed fingerprint read by the human users is then the sorted concatenation
of the local and remote “display strings”, e.g.

{local display string, remote display string}

where sorting is according to the relative size of the users’ public keys (idpk).

3 Verifiable Authentication

In this section we introduce a framework to analyse entity authentication in ratcheted
messaging protocols. We formalise entity authentication protocols in the ratcheted
key exchange setting, and to prove such protocols secure, we expand the 3-PUMA
(3-Party Possession User Mediated Authentication) model [15], which separates out
the device-to-device channel and user-to-device channel (e.g. device display and
user input). Our 3-PUMA variant, which we call the “Mediated Epoch Three-party
Authentication” (META) security model, aims at explicit entity authentication and
builds on multi-stage security [12, 8] ratcheted authentication.

3.1 User-Mediated Entity Authentication

On a high level, user-mediated entity authentication protocols creates an easily-
exchanged digest of information, which we denote fingerprints.5 Users then exchange
these fingerprints in an out-of-band channel, and decide to accept or reject the
authentication attempt.

Fig. 3. A high-level figure of our setting. The REA protocol runs on the device, and
provides fingerprints to the users. To simplify analysis, in our security model Alice and
Bob are considered a single user, with a communication channel existing between Device A
and the User, Device B and the User, and between the two Devices.

Recall that the Signal protocol relies on user-mediated entity authentication to
establish trust in long-term keys and long-term identifying information. However, this
is the limit of its guarantee: the Signal authentication protocol does not authenticate
any other information. In particular, it do not authenticate per ratchet update
information, and thus users gain no security benefit if the attacker has already
exposed the long-term key of either party (idpkA, idpkB).

3.2 META Security Model

We now formalise the setting of our META security model capturing user-mediated
authentication protocols; as the name suggests, META extends beyond capturing
devices executing such protocols, but also explicitly captures users interacting with
the devices within the security model. As a result, META can capture a broader class
of attackers: that compromise secret state within the device, and also compromise
the channel between the device and the users.

In addition, META is primarily concerned with asynchronous messaging protocols,
and this is reflected in how we capture authentication. An asynchronous protocol is
one that does not require both parties to be online at the same time. As a result of
this restriction, in our setting we do not have a guarantee that both parties have
received all messages sent between the communicating devices. One of the technical
difficulties our model addresses then is determining the right “level” of authentication:
due to our focus on ratcheted protocols, we decide to target entity authentication per

5 The use of “fingerprint” here is rooted in the Signal terminology, which we stay consistent
with for the rest of the paper.

asymmetric ratchet, which we refer to as epochs. As in [15], we use session identifiers
instead of matching conversations for defining partnering, which is more standard
in authenticated key exchange models. This is due to the expected asynchronicity
between the three communication channels (User-to-DeviceA, DeviceA-to-DeviceB,
and User-to-DeviceB), which precludes matching conversations. Ratcheting protocols
are a form of continuous key agreement and consequently have an evolving session
identifier. We indicate the session identifier at any given epoch as epid and call it
an epoch identifier.

Note that to simplify analysis and complexity in our framework, we follow the
direction of [15], and model the two device users as a single user, see Figure 3.
Protocol Participants. A participant in a META protocol is either a device I ∈ ID
or a user U . The set of all participants is the union ID∪{U}, where the elements of
ID are devices or identities. There may be multiple sessions at any participant, such
that πPs is the s-th session at P . Below is a description of the internal state of the two
types of participants. At the beginning of the experiment, the challenger C generates
a list of nP public keys pairs for each device I ∈ ID, (sk1, pk1), . . . (sknP

, pknP
).

Note that devices do not have access to the list of public keys; they instead set
partner public keys during the protocol.

To capture the Signal authentication protocol (and eventually our modified
version) in META, devices maintain values used by these protocols – specifically,
long-term public keys (sk , pk), any secret state (i.e., rck), and ratcheting secret
outputs esk[T], which we denote epoch secret keys. For example, in the Signal

Protocol the epoch secret keys esk[T] = rcpk
rckT
T−1 are derived from the asymmetric

ratchets sent between both parties (see Section 2). This allows our model to be
specific about the values that are compromised in the META security experiment,
simplifying how we capture freshness conditions and in particular, post-compromise
security.

Devices In META, each device I ∈ ID is modelled as a set of session oracles, where
each session maintains the following list of variables:

– role ∈ {initiator, responder}: a variable indicating the role of I in the session.
– T ∈ N ∪ ⊥: A counter indicating the current epoch of the session, initialised as
⊥.

– st[T] ∈ {0, 1}∗: a variable storing any additional state for a given epoch T,
initialised as ⊥.

– esk[T] ∈ ESK: a variable storing the private epoch secret key output for a given
epoch T, where ESK is the private epoch key space. Initialised as ⊥. Updated
ratchets to esk[T] are denoted esk[T] ← esk[T + 1] (note that this also implies
T← T + 1).

– pid ∈ ID \ {I}: a variable storing the partner identity for the session, initialised
as ⊥.

– pkpid ∈ PK: a variable storing the public key for the session partner, where PK
is the public key space, initialised as ⊥. This variable is set during the protocol
execution.

– (sk, pk) ∈ SK × PK: a variable storing the private and public key for I, where
SK × PK is the private/public key space.

– α[T] ∈ {accept, reject,⊥}: a variable indicating if the session accepts for a given
epoch T, rejects, or has not yet reached a decision. Initialised as ⊥.

– epid[T] ∈ {0, 1}∗ ∪ ⊥: a variable storing the epoch identifier at each epoch T,
initialised as ⊥.

The internal state of each session oracle πIs owned by identity I is initial-
ized to (role,T, st[T], esk[T], pid, pkpid, (sk, pk), α[T], epid[T]) = (⊥,⊥,⊥,⊥,⊥,⊥,
(skI , pkI), ⊥,⊥). We disallow pidI = I, such that devices do not authenticate
themselves.

User U is similarly modelled via session oracles, where each session πUt maintains
at minimum the following variables:

– Two device-session pair identifiers (I, s) and (I ′, s′)

This follows practice that a user should identify messaging conversations that it
wishes to authenticate. See Appendix D for extended notes on modelling user sessions.

Definition 1 (Matching Epoch ID). We say that identities I and I ′ have
matching epoch IDs for sessions s and s′, respectively, and for an epoch T if
πIs .epid[T] = πI

′

s′ .epid[T], where T 6= ⊥ and πIs .epid[T] 6= ⊥.

Note that unlike most key exchange or authentication models, we do not require
prefix-matching. This is an artifact of asynchronous messaging protocols using lossy
channels. Each epoch represents a chain or flow of messages from one device to
another, rather than individual messages themselves, as we have no guarantees that
any given message in the flow reaches the destination. Thus our epoch identifiers are
initialised as ∅, updated only once, and we need to consider only exact matching.

Definition 2 (Partnering Device to Device). Two sessions πIs , π
I′

s′ , with I, I ′ ∈
ID, are partnered in an epoch T if πIs .pid = I ′, πIs .role 6= πI

′

s′ .role, π
I′

s′ .pid = I,

πIs .α[T] = πI
′

s′ .α[T] = accept, and finally, πIs .epid[T]s,I = πI
′

s′ .epid[T].

Adversarial Model Let A be a probabilistic polynomial-time (PPT) algorithm
against authentication with the following abilities and allowed queries in the experi-
ment ExpMETA-type,A

Π,nP ,nS ,nT
.

We highlight that there are two communication channels that are modelled in
our META security framework. The Device-to-Device channel, captures a “standard”
network modelled in most cryptographic protocols, and models messages sent between
devices, perhaps over the internet. The second, User-to-Device, captures the channel
between a User and a Device. This captures messages displayed on the screen of a
smart phone, and the keyboard that a User enters input to the device over.

Device-to-Device (DtD) For messages between participants I and I ′, such
that I, I ′ ∈ ID, the adversary is able to read, modify, replay, reorder, and delete
messages.

User-to-Device (UtD) For messages sent between identities I ∈ ID and the
user U , the adversary may not modify a message’s sender/recipient. The adversary

Fig. 4. A high-level view of allowed META queries. Adversarial control on the depicted
channels is enabled through the associated queries.

is allowed to read, replay, reorder, and delete UtD messages, but may not modify
UtD messages.

The above adversarial abilities are standard such that the adversary can control
the network (DtD). Adversarial message modification is restricted between the user
and device only (UtD), thereby capturing the concept that the adversary cannot
modify what the user sees or inputs on the device. However, we provide a query that
allows complete compromise of the user whereby the adversary can gain such control.
The reason for this is similar to allowing protocol participant corruption in the
traditional sense. A strong protocol should be robust to user compromise (i.e. such as
those protocols not relying on the user at all), such that an adversary cannot falsely
force authentication in spite of controlling user activity. Meanwhile, a weak protocol
depends entirely on an honest and reliable user. This aligns with the historical
development of key exchange models, where security could not meaningfully be
considered under a party’s corruption for weak protocols, but with advent of better
understanding of protocol security models, such compromise becomes possible for
some protocols which do not rely solely on long-lived keys. We expect that user
control, or conditional user control, need not be fatal to security for all user-mediated
authentication protocols.

Queries The adversary is able to interact with the Devices and Users with the
following queries:

– SendDevice(πIs ,m). The adversary sends a message m to a session oracle πIs . The
message is processed according to the protocol specification and any response is
returned to the adversary. If πIs (where I ∈ ID) receives m as a first message, then
the oracle checks if m consists of a special initiation message (m = (init, I ′)),
for I ′ ∈ ID, to which it responds by setting pid = I ′, role = initiator, and
outputs the first protocol message. Otherwise it responds by setting pid = I ′,
role = responder, and responding according to the protocol specification.

– SendUser(πUt ,m). Using this query, the adversary sends a message m to a session
oracle of his choice, where πUt is an oracle for session t at user U . The message
is processed according to the protocol specification and any response is returned
to the adversary. If @I, s such that m has been honestly generated by πIs , this
query outputs ⊥.

– Reveal(πIs ,T). This query returns the epoch key esk[T]s,I as well as any additional
epoch session state st[T] of the T-th epoch for the s-th session for the identity
I ∈ ID.

– Corrupt(I). This query returns the private key skI of identity I ∈ ID.
– ShowUser(I). This query returns ⊥. After this query the adversary is allowed to

modify or create any UtD message from I to the user.
– ControlUser(). This query returns ⊥. After this query the adversary is allowed

to modify or create any UtD message from U .
– Test(πIs): This query initiates user interaction with the devices, in the current

epoch at πIs , and according to protocol specification. The query returns the
result of the protocol execution.

We separate out an adversary’s ability to control user input to devices and display
device output to a user via ControlUser and ShowUser queries. ControlUser models
an adversary’s ability to take full control of the user (such as by acting as the user
itself or by manipulating actions by social engineering). ShowUser on the other hand
provides device control to the adversary, e.g. manipulating what a user sees. For
example, malware on a device may manipulate what is shown to the user on the
output interface, while not actually gaining access to any secret values. Consequently,
ShowUser is meaningfully distinct from a Reveal or Corrupt query.

At this point, we describe freshness conditions for our security experiment. On a
high-level, freshness conditions (which we separate into device and user freshness)
restrict the adversary from issuing Reveal, Corrupt or ShowUser and ControlUser (for
device and user compromises, respectively) queries that would allow them to trivially
win the security experiment.

We begin by introducing the first threat setting, compromised user (CompUser),
where an adversary is allowed to inject messages displayed to the user U from one
of the devices in an epoch t, but is restricted from being able to trivially expose
secrets associated with that epoch. Second, we introduce the compromised device
(CompDev) setting, where an adversary is allowed to expose secrets at will, but is
restricted from (separately) controlling what is displayed to the user and the user
input back to the device.

Under CompUser security, we consider a variant of PCS for entity authentication.
Even after an adversary learns the keys associated with a session, if a fresh update
to the keying material is sent and received while the adversary is passive, it should
not be possible for the adversary to force a device into accepting an authentication
attempt without actual matching epoch identifiers. Dependent on the choice of epoch
identifier, satisfaction of CompUser security may imply authentication of not only
the current epoch, but the entire session up to that epoch (e.g. see Section 4).

Definition 3 (Device Freshness CompUser). An oracle πIs for an identity I ∈
ID is called fresh under compromised user (CompUser-fresh) for an epoch T if the
following hold:

1. If ∃T∗, such that A issued a query Reveal(πIs ,T
∗) (resp. Reveal(πI

′

s′ ,T
∗)) then

– pidI,s = I ′ and pidI′,s′ = I, and

– πIs .role = initiator and T is even (resp. odd), or πIs .role = responder and T is
odd (resp. even), and

– ∃T′,T′′, where T ≥ T′ > T′′ > T∗ such that esk[T′]s,I = esk[T′]s′,I′ and

esk[T′′]s,I = esk[T′′]s′,I′ and A has not issued Reveal(πIs , T̄) or Reveal(πI
′

s′ , T̄)
where T̄ ∈ {T′,T′′}.

2. If ∃T∗, such that A issued a query Reveal(πIs ,T
∗) (resp. Reveal(πI

′

s′ ,T
∗)) then

– pidI,s = I ′ and pidI′,s′ = I, and

– πIs .role = initiator and T is odd (resp. even), or πIs .role = responder and T is
even (resp. odd), and

– ∃T′, where T ≥ T′ > T∗ such that esk[T′]s,I = esk[T′]s′,I′ , and A has not

issued Reveal(πIs ,T
′) or Reveal(πI

′

s′ ,T
′).

3. If A issued a Corrupt(I) or Corrupt(I ′) query at any time, where pidI,s = I ′,
then ∃s′,T′ such that pidI′,s′ = I, T ≥ T′, and esk[T′]s,I = esk[T′]s′,I′ .

These freshness restrictions differ from standard authentication freshness in the
handling of PCS for authentication. In particular that we allow Reveal queries so
long as the adversary is passive for some period (one or two epochs depending on
whether the session is sending or receiving an update when revealed). Similarly,
Corrupt queries are also allowed provided that the adversary has been passive at
some stage. Since epoch level authentication is dependent on both long-term and
epoch-specific keys, we allow corruption of long-term keys after such a passive epoch.

Definition 4 (User Freshness CompUser). A user U is called fresh under
compromised user (CompUser-fresh) for an epoch T at a session oracle πIs , I ∈ ID,
unless

– ShowUser(I) is issued before or during epoch T in πIs , or
– ControlUser() is issued query occurs before or during epoch T in πIs .

Now we introduce our second threat setting, compromised-device or CompDev,
where an adversary is allowed to expose any secrets from either device, but is
restricted from injecting messages displayed to the user from either device.

Definition 5 (Device Freshness CompDev). A session oracle πIs for an identity
I ∈ ID is always called fresh under compromised device (CompDev-fresh) for an
epoch T, regardless of Corrupt and Reveal queries issued by the adversary.

Definition 6 (User Freshness CompDev). A user U is called fresh under com-
promised device (CompDev-fresh) for an epoch T at a session oracle πIs , I ∈ ID,
unless

– ShowUser(I) is issued before or during epoch T in πIs , or
– ShowUser(I ′) is issued before or during epoch T in πI

′

s′ , where πI
′

s′ and πIs are
partnered in T, or

– ControlUser() is issued before or during epoch T in πIs .

We define device freshness under device compromise as syntactic sugar for the
following experiment. Particularly, we consider security under META-CompUser
and META-CompDev , with a combined META experiment dependent on the device
and user freshness combination selected (CompUser or CompDev).

Definition 7 (META Experiment). Let A be a PPT adversarial algorithm
against a user mediated authentication protocol Π, interacting with a challenger
via the queries defined above in the experiment ExpMETA−type,A

Π,nP ,nS ,nT
, where nT is the

maximum number of epochs, nP is the maximum number of devices, nS is the max-
imum number of sessions at any party, and type is a freshness type. We say that
the challenger outputs 1, denoted ExpMETA−type,A

Π,nP ,nS ,nT
(λ) = 1, if a Test query is made in

session πIs and any of the following conditions hold at any T 6= ⊥:

1. Matching epid, but no acceptance.

– META-type is CompDev and
– Oracles πIs and πI

′

s′ have matching epid and

– either πIs or πI
′

s′ does not accept and
– the user is type-fresh in T at πIs .

2. Acceptance, but no matching epid.

– There exists a type-fresh oracle πIs at epoch T which has accepted and
– there is no partner oracle πI

′

s′ at epoch T which is type-fresh and
– the user is type-fresh in T at πIs .

Otherwise the experiment outputs 0.
We define the advantage of the adversary A in the experiment ExpMETA-type,A

Π,nP ,nS ,nT
(λ)

as

AdvMETA-type,A
Π,nP ,nS ,nT

(λ) := Pr[ExpMETA-type,A
Π,nP ,nS ,nT

(λ) = 1] .

Definition 8 (Security of META-CompUser). We say that a user mediated pro-
tocol Π is META-CompUser secure if there exists a negligible function negl(λ) such
that for all PPT adversaries A interacting according to the experiment
ExpMETA-CompUser,A

Π,nP ,nS ,nT
(λ), it holds that

AdvMETA-CompUser,A
Π,nP ,nS ,nT

(λ) ≤ negl(λ) .

Definition 9 (Security of META-CompDev). We say that a user mediated proto-
col Π is META-CompDev secure if there exists a negligible function negl(λ) such that
for all PPT adversaries A interacting according to the experiment
ExpMETA-CompDev,A

Π,nP ,nS ,nT
(λ), it holds that

AdvMETA-CompDev,A
Π,nP ,nS ,nT

(λ) ≤ negl(λ) .

Note that under META-CompUser, it is not possible to require that matching epid
implies acceptance (and hence is excluded under the first condition of Definition 7).
Under this model type, the best that can be required is that acceptance at two
devices implies possession of a matching epid. Protocols which rely on user mediation
cannot force acceptance if the information provided to the user (e.g. through a device
display – ShowUser query) is corrupted.

3.3 Signal (In)security under META

The Signal authentication protocol does not provide META-CompUser or META-
CompDev security. Here we provide one counter-example for each.

META-CompUser Signal fails to meet META-CompUser due to the unilateral
nature of QR code comparison. A ShowUser query can be made on the device
scanning the QR code, enabling failure of condition 2) of Definition 7 despite user
freshness (the attacker is able to display a simple confirmation to the user, despite a
non-match). Note however that this attack also easily holds if a ShowUser query is
made on the device displaying the QR code instead, since the QR code relies only
on long-term static public information. More details of similar attacks appear in
Appendix C.

META-CompDev Signal authentication protocol fails to meet META-CompDev
under condition 2) of Definition 7. SupposeA issues a Reveal(I) query and a Reveal(I ′)
query at epoch T and epoch T + 1, respectively. These queries return the full epoch
state rki, allowing A to fully MitM the communication by providing ratchet key
shares of its choice to I and I ′, respectively. Since the Signal authentication protocol
uses only on the long-term keys, an active MitM session-specific modification is
successful. More details of similar weaknesses appear in Appendix C.

Table 1 shows a comparison of various achievable CompUser and CompDev
scenarios in the context of scannable QR codes with strict yes/no confirmation
(which we denote by “scan”) and displayable numeric code comparison (which
we denote by “display”). Displayed or scanned values can either be the same on
both devices when role separation is not considered (“match”) or different when
the values are computed separately for each role (“no match”). Scan and display
categories are usually paired (e.g. QR code scanning a static displayed code) but scan
can also be bi-directional, where the scanning process is repeated bi-directionally.
META explicitly allows eavesdroppers on the UtD channel (the adversary may read
messages sent between the device and a user); however, for illustration purposes
Table 1 compares CompUser and CompDev both under the presence and absence of
an eavesdropper (E.). We ignore the case of display non-match / display non-match,
as this would imply a scenario where two devices display different numeric codes
(computed according to initiator and responder), but with no user-decipherable link
between the codes.

In brief, under CompDev we assume that the user to device channels are reliable,
and thus the third-party authentication performed by the user occurs as expected
(first and second columns of Table 1). If the values scanned or displayed on the
different devices are not distinct, such as by role separation, then an adversary that
can read one display can replay or display on the other device under CompUser
(fourth column, rows one through four of Table 1). As authentication is allowed
at various times throughout the session lifetime, it cannot be assumed that such a
display is secret. If the values are scanned by the second device, there is no guarantee
at the first device of entity authentication under CompUser . This is due to the
yes/no confirmation display at the second device, which can always be impersonated
by the adversary regardless of read capability on the session (rows two and five of
Table 1). If the scan matching is honest, or the user has the ability to confirm honest
matching of displays, then entity authentication is achievable under CompUser in
absence of the attacker’s ability to read displays (third column, rows one, three and
four of Table 1). Finally, if the values scanned or displayed on the different devices

are distinct and confirmation to the user is honest then, regardless of eavesdropper
ability, it is possible to achieve entity authentication under CompUser (rows six and
seven of Table 1).

The displayed goals are stated as achievable for a MoDUSA epoch identifier
(see Section 4) despite the failure of the Signal authentication protocol, since a
different selection of numeric code generation parameters produces improved results.
Notably, to achieve META-CompDev security in the presence of an eavesdropper,
it is necessary to employ at least one non-legible comparison (e.g. QR codes) with
non-matching comparison values for the initiator and responder. This leads us to
the MoDUSA protocol of Section 4.

I I ′ CD w/o E. CD w/ E. CU w/o E. CU w/ E.

Display match Display match X X X X

Display match Scan match X X X X

Scan match Display match X X X X

Scan match Scan match X X X X

Display no match Scan no match X X X X

Scan no match Display no match X X X X
Scan no match Scan no match X X X X

Table 1. Cross comparison of achievable security guarantees based on a MoDUSA session
identifier, where display refers to a static verification code display, scan refers to a yes/no
confirmation on the other device’s static display (e.g. QR code scanner), match refers to
matching verification codes on both devices, and non-match refers to separate verification
codes for authenticating initiator I and authenticating responder I ′. E. is an eavesdropper
aligned with the adversaries ability to read UtD messages. We abbreviate CompUser as
CU and CompDev as CD.

4 Modified Signal Authentication Protocol

In this section we describe our Modified Device-to-User Signal Authentication
(MoDUSA) protocol. MoDUSA provides epoch-level authentication and is strong
against both device and user compromise attacks. Similarly to the Signal authenti-
cation protocol described in Section 2.4, MoDUSA is intended to work using both
scannable QR codes and displayable numeric codes, offering different levels of user
interaction and security. 6 In both cases we must first expand the key schedule of
Signal’s underlying Double Ratchet protocol.

6 As shown in Table 1, it is not possible to achieve META-CompUser security under an
eavesdropper on the UtD channel using displayable numeric codes. This is due to the
necessity of one-to-one matching of numeric codes (short of user computation), while QR
codes allow for distinct codes for each role. Consequently, MoDUSA is designed with
the goal of satisfying META-CompUser and META-CompDev with use of QR codes, and
META-CompDev security with use of displayable numeric codes.

Alice

Root

Keys

Bob

Ratchet

Keys

Ratchet

Keys

Chain

Keys

rki−1

rckiB

KDFpms

rkiaki cki0

KDF

. . .
rcki+1

A

pms KDF

rki+1aki+1 cki+1
0

KDF

. . .

Fig. 5. The modified key schedule for the Signal Double Ratchet protocol. We expand
the output of the KDF for each ratchet, outputting aki for each “epoch” i as well as the
standard Signal outputs (rki, and cki

0)

In Figure 5 we describe our modification to the key schedule for each asymmetric
ratchet, which adds the derivation of an additional authentication key aki for each
epoch (associated with an asymmetric ratchet) i. This will then be used in generating
the fingerprints that will be displayed (in the numeric code variant), or scanned (in
the QR code variant).

One difficulty in creating an authentication protocol that will iteratively cover all
epochs is that Signal is an asynchronous messaging protocol, run over a potentially
lossy channel. Thus, it is impossible to guarantee that any single message from a
message chain has been delivered from sender to receiver. As a result, our MoDUSA
protocol (or any authentication protocol) cannot be used to guarantee user agreement
on all messages sent and received by the devices. However, due to the strict “ping-
pong” nature of the asymmetric ratchet used in Signal’s Double Ratchet protocol, it
is possible to guarantee that at least one message of the previous epoch from the
communicating partner has been received, as otherwise the partner does not generate
a new ratchet key, and thus the epoch does not increment forward. Consequently,
for correctness in MoDUSA we have that devices must agree either on:

– all ratchet keys sent between the two devices, or

– all ratchet keys sent between the two devices, except for the last ratchet key,

If an entire chain of messages may have been dropped (or not yet delivered), one
device would believe that it is in epoch i, while the other believes that it is in epoch
i− 1.

To compute fingerprints in the MoDUSA protocol, each device maintains and
updates two chaining hash values with each asymmetric ratchet7:
Hi−1 = H(PKB‖idpkA‖idpkB‖otpkA‖rcpk0A‖ . . . ‖rcpk

i−1
A) and Hi = H(PKB‖ . . .

‖rcpki−1A ‖rcpkiB), where PKB is the prekey bundle received by the initiator.

Note that this contains all the public keyshare and identity information used
in the initial X3DH key exchange, in addition to all ratchet keys used in each
asymmetric ratchet up to the point of fingerprint computation. Since all hash input
information is public, no secret keys are maintained in memory for this computation,
and consequently this does not affect forward secrecy.

In addition to the hash chains, each party maintains aki−1, aki, the two most
recently computed authentication keys (see Figure 5). However, we distinguish the
computation of fingerprints for QR or numeric codes. The reason for this is that
META-CompUser security (including adversarial read ability on the UtD channel)
is achievable under QR codes using role separation as discussed in Section 3.3.
Meanwhile numeric comparison does not allow for role separation. More details
appear under the analysis of the MoDUSA protocol in Appendix E. For displayable
numeric codes, fingerprints are computed as fprinti = HMAC(aki, Hi‖fvers).

For QR codes, fingerprints are computed as fprinti = HMAC(aki, Hi‖fvers‖role)
where role is the role of the device displaying the QR code (instead of scanning
the QR code) in the X3DH key exchange. This change causes the QR codes to be
domain-separated, and thus even if an attacker has access to one QR code (perhaps
via shoulder-surfing), the attacker cannot compute the other.

Whenever a given device sends or receives a new asymmetric ratchet key, a new
“epoch” is triggered due to the computation of a new epoch key (which we set as
pms, the DH output from each successive pair of ratchet keys). Each party then rolls
the chaining hash values forward (i.e Hi−1 ← Hi, aki−1 ← aki, etc.) and computes
a new chaining hash value Hi, a new authentication key aki and a new fingerprint
fprinti. When users compare fingerprints, they compare the highest fingerprint
value i that both devices share. If the two fingerprints are equal, then authentication
was successful for all epochs, from the initial key exchange (epoch 0) to the most
recent epoch that both parties have completed (epoch i− 1 or i).

Note that this solution does not imply evolving QR codes, or that fingerprints
need to be generated per epoch. It is only required that the authentication keys ak
evolve per epoch. When the user decides to authenticate, the current authentication
keys aki and aki−1 can be “locked” (e.g. once the user selects “view safety number”
in Signal, aki and aki−1 are not changed or overwritten until the user exits that
view). The QR code and/or numeric codes can then be computed for the given
epoch. More details on usability of this solution are discussed in Appendix B.

7 For implementations, these may be computed using iterated hashes such as Hi =
H(Hi−1‖rcpki

B). For simplicity in the security proof we consider a single hash computa-
tion.

Remark 1. It is natural to ask “why not simply maintain epoch i − 1 instead of
both epochs?” The first reason is that memory management is not significantly
reduced by maintaining a single epoch i− 1. Since future authentication keys aki are
derived from the previous root key rki−1 and the DH output from the most recent
pair of ratchet keys rcpki−2, rcpki−1, the secret values associated with these must
be stored to derive the next aki regardless. Keeping these secret values accessible
in memory impacts the confidentiality forward secrecy of all message keys in that
epoch, whereas maintaining only the aki and the chaining hash value Hi−1 does
not.

Also, in practice, the arguably most common scenario here is that both parties
will have received the most recently generated ratchet key, and thus both parties
will agree on the most recent epoch i. Since authentication will occur intermittently
in real-world scenarios, we should attempt to authenticate the highest epoch that is
possible. However, we consider an asynchronous messaging protocol with a potential
lossy channel, and thus must account for this in our authentication solution by
allowing authentication at epoch i− 1.

5 MoDUSA Security

Now we prove that the proposed Modified Device-to-User Signal Authentication
(MoDUSA) protocol achieves META security, under both compromised user (CompUser-
fresh) and compromised device (CompDev-fresh) attacks.

We set the epoch identifier to be the transcript of all public keyshare information
(i.e. identity keys, one-time-keys, ratchet keys, and any key identifiers associated with
these values) as well as the public identifiers of both parties. This maps naturally to
the information included in the derivation of the message keys, and the fingerprints
themselves. This choice of epoch identifier means that an identifier for an epoch T is
a superstring of the identifiers for any previous epoch T′ < T. We define this notion
below.

Definition 10 (MoDUSA Epoch Identifier). The MoDUSA epoch identifier
at epoch T for a session oracle πIs in the META experiment is πIs .epid[T] =
PreKeyBundle‖idkI‖idkR‖otkI‖rcpk0I‖ . . . ‖rcpk

T−1
role .8

As discussed previously, our notion of an epoch aligns with asymmetric ratchets.
As a result, our solution generically does not capture an attacker that modifies/injects
messages in an epoch, but instead attempts to modify ratchet keys. We argue that if
our solution can prevent an adversary from injecting ratchet keys, then they must
be able to continuously compromise message keys, thus raising the level of difficulty
for an active attacker.

Definition 11 (MoDUSA Epoch Secret Key). The MoDUSA epoch secret key
for an epoch T maintained by a session oracle πIs in the META security experiment

8 I and R here are abbreviations for initiator and responder, and role refers to the role of
the party that sent the T-th ratchet key. If T is even, then role = initiator, otherwise
role = responder.

is πIs .esk[T]=rcpk
T-1
role

rckTrole . Note that role and role here refer to the role of the session

πIs and its communication partner.9

We can now begin the analysis of the MoDUSA protocol against compromised
device attacks. Since Theorem 1 does not rely on role inclusion, it applies to both
MoDUSA QR code and displayable fingerprint comparison.

Theorem 1 (MoDUSA is META-CompDev- secure). Numeric code-based and
QR code-based MoDUSA is META-CompDev-secure against compromised devices,
irrespective of role inclusion. That is, for any PPT algorithm A in the META
security experiment under CompDev freshness conditions, AdvMETA-CompDev,A

MoDUSA,nP ,nS ,nT
(λ)

is negligible under the collision-resistance of the hash function.

Proof. We provide a proof sketch here. Full proof details for Theorem 1 appear in
Appendix E. Since A cannot modify messages between the User and the devices,
CompDev security follows from the collision-resistance of the hash function. Both de-

vices compute the fingerprints fprintT = HMAC(ãkT = HT‖f vers‖role) honestly
and send the fingerprints to the User. If A has modified any of the public keys used
in the protocol execution, HT will differ for both devices, and thus the User will see
two distinct fingerprints, and reject the authentication attempt.

Lastly, we consider the MoDUSA protocol under a compromised user (CompUser)
attack. Note the domain-separation of QR codes in MoDUSA (specified by the
requirement of role inclusion, see Section 4). In absence of this, we would face a
similar weakness as in the unmodified Signal authentication protocol: specifically,
under CompUser freshness conditions, a ShowUser query can be issued on one of the
devices attempting authentication and displaying the numeric code. This allows the
adversary to display any numeric code that they wish. Since the adversary can also
read messages between the second and the user, the adversary simply duplicates the
numeric code to the ShowUser-specified device.10

Theorem 2 (MoDUSA with role inclusion is META-CompUser-secure). QR-
code based MoDUSA is META-CompUser-secure against compromised users under
role inclusion. For any PPT algorithm A in the META security experiment un-
der CompUser freshness conditions, AdvMETA-CompUser,A

MoDUSA,nP ,nS ,nT
(λ) is negligible under the

collision-resistance of the hash function H, the kdf security of key derivation function
KDF, the euf-cma security of the MAC algorithm HMAC, and the hardness of the
sym-ssPRFODH assumptions.

Proof. We provide a proof sketch here. Full proof details for Theorem 2 appear
in the second half of Appendix E. For each case corresponding to a condition in

9 In our modelling of the Signal/MoDUSA Protocol, we assume that each message received
by a session oracle is replied to with a message attached to a new ratchet key. This
is to simplify analysis, and capture the Signal protocol, where devices generate new
ratchet keys upon receipt of a partner ratchet key, even if it does not send a message
immediately.

10 Note that this attack is not preventable under unmodified Signal authentication protocol
even under bi-directional QR code scanning on both devices.

CompUser security, our analysis is structured as a series of game hops, where we
begin with the standard META security experiment and iteratively make changes in
successive games based on the restrictions placed on the adversary to prevent trivial
wins. In the final game, we show that the adversary cannot force a test session (i.e.,
a session πIs such that A has issued Test(πIs)) to accept without a matching partner
after executing an authentication attempt. For each case the proof is structured
almost identically, and differences between each case are mostly concerned with
whether or not the test session is acting as the initiator in the initial key exchange.
We give a summary of each game hop below:

Game 0 This is the standard META game, with CompUser freshness conditions. Thus
we have AdvMETA-CompUser,A,C1

MoDUSA,nP ,nS ,nT
(λ) = Adv(break0).

Game 1 In this game abort if there is ever a hash collision. Thus we have Adv(break0) ≤
Adv(break1) + Advcoll,B2

H (λ).

Game 2 In this game we guess the index of the first session πIs that reaches a status
πIs .α[T]← accept, and abort if there is no session πI

′

s′ such that πI
′

s′ .epid[T] =
πIs .epid[T]. Thus we have Adv(break1) ≤ nP · nS ·Adv(break2).

Game 3 In this game we guess the index of the intended session partner πI
′

s′ such that

πIs .pid← I ′, and πI
′

s′ .esk[T′′] = πIs .esk[T′′], and abort if there is no such session

πI
′

s′ . Thus we have Adv(break1) ≤ nS ·Adv(break2).

Game 4 In this game we guess the index of the epoch T′′ such that πIs .esk[T′′] =
πI
′

s′ .esk[T′′], and T′′ > T∗, and abort if we guess incorrectly. By the CompUser def-
inition, this epoch must exist. Thus we have Adv(break3) ≤ nT ·Adv(break4).

Game 5 In this game, we replace the computation of the root, chain and authentication
keys rkT

′′
, ck0T′′ , ak

T′′ values with uniformly random and independent values

r̃kT′′ , c̃k0T′′ , ãk
T′′ , by interacting with a sym-ss-PRFODH challenger. By this

change, πIs and its communicating partner πI
′

s′ now have an epoch where rkT
′′

is uniformly random and independent from the protocol execution, and by the
hardness of the sym-ss-PRFODH, A is unable to distinguish this change. Thus
we have Adv(break4) ≤ Advsym-ss-PRFODH,B3

G,q,KDF (λ) + Adv(break5).

Game 6 In this game, we iteratively replace the computation of akT
′
, rkT

′
, ck0T′ (for

T′′ < T′ ≤ T) with uniformly random values ãkT′ , r̃kT′ , c̃k0T′ from the same

distribution in the session πIs (and its partner session πI
′

s′). By this change, πIs and

its communicating partner πI
′

s′ now have authentication keys for “authenticating
epoch” T and its prior epoch T− 1 where akT and akT−1 are uniformly random
and independent of the protocol execution, and by the hardness of the KDF
assumption, A is unable to distinguish this change. Thus we have Adv(break5) ≤
(T-T′) ·Advkdf,B4

KDF (λ) + Adv(break6).

Game 7 In this game, we replace the computation of the fingerprints fprintT -1 =

HMAC(ãkT-1, HT-1‖f vers‖role), fprintT = HMAC(ãkT = HT‖f vers‖role),
by initialising two MAC challengers to compute the fingerprints fprintT-1,
fprintT in the test session πIs . By this change, A has no advantage in generating
a fingerprint for πIs such that πIs .α[T] ← accept, and thus Adv(break6) ≤
2 ·Advmac,B5

HMAC (λ).

6 Conclusion

User mediated protocols have long been in use in real-world applications, but their
security is not well understood. In part this is due to the difficulty of cryptograph-
ically modelling an unpredictable and error-prone user. Our systematic method
of modelling security in such protocols concretely captures not only traditional
adversarial capabilities, but also social engineering (through control of user inputs),
shoulder surfing (through read ability of display outputs and user inputs), and partial
device control such as via malware (through control of display outputs). In our model,
as in practice, users can check for authentication at any time, as well as checking
more than once. Any successful verification attempt automatically authenticates
the parties involved against impersonation and MitM attacks. By modularizing the
compromise viewpoint, we are able to state realizable security goals on both the user
side and device side. Signal fails to provide basic entity authentication; however, we
prove that under a slight modification it could achieve quite strong guarantees.

This research opens the door for analysis of traditionally out-of-scope protocol
aspects. It has implications for Internet of Things protocols, such as Bluetooth and
NFC, which rely on user interaction for device commissioning, decommissioning,
authentication, and even key exchange.

References

1. Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: Security notions, proofs, and
modularization for the signal protocol. In: EUROCRYPT (2019)

2. Bella, G., Coles-Kemp, L.: Layered analysis of security ceremonies. In: Gritzalis, D.,
Furnell, S., Theoharidou, M. (eds.) Information Security and Privacy Research. pp.
273–286. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

3. Bellare, M., Singh, A.C., Jaeger, J., Nyayapati, M., Stepanovs, I.: Ratcheted encryption
and key exchange: The security of messaging. pp. 619–650. LNCS, Springer, Heidelberg
(2017). doi: 10.1007/978-3-319-63697-9 21

4. Bicakci, K., Altuncu, E., Sahkulubey, M.S., Kiziloz, H.E., Uzunay, Y.: How safe is
safety number? A user study on SIGNAL’s fingerprint and safety number methods for
public key verification. In: ISC 2018. pp. 85–98. LNCS, Springer, Heidelberg (2018).
doi: 10.1007/978-3-319-99136-8 5

5. Blazy, O., Bossuat, A., Bultel, X., Fouque, P.A., Onete, C., Pagnin, E.: SAID: Reshaping
Signal into an Identity-Based Asynchronous Messaging Protocol with Authenticated
Ratcheting. IACR Cryptology ePrint Archive (2019)

6. Carlos, M.C., Martina, J.E., Price, G., Custódio, R.F.: An updated threat model for
security ceremonies. In: Proceedings of the 28th annual ACM symposium on applied
computing. pp. 1836–1843. ACM (2013)

7. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal security
analysis of the signal messaging protocol. In: 2017 IEEE European Symposium on
Security and Privacy (EuroS P). pp. 451–466 (2017)

8. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal security
analysis of the signal messaging protocol. Cryptology ePrint Archive, Report 2016/1013
(2016), http://eprint.iacr.org/2016/1013

9. Cohn-Gordon, K., Cremers, C.J.F., Garratt, L.: On Post-compromise Security. In:
IEEE 29th Computer Security Foundations Symposium, CSF 2016. pp. 164–178 (2016).
doi: 10.1109/CSF.2016.19

10. Ellison, C.: Ceremony design and analysis. Cryptology ePrint Archive, Report 2007/399
(2007), http://eprint.iacr.org/2007/399

11. Facebook: Messenger Secret Conversations Technical Whitepaper. Tech. rep.
(July 2016), https://fbnewsroomus.files.wordpress.com/2016/07/secret_

conversations_whitepaper-1.pdf

12. Fischlin, M., Günther, F.: Multi-stage key exchange and the case of Google’s QUIC
protocol. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 14. pp. 1193–1204. ACM
Press (Nov 2014). doi: 10.1145/2660267.2660308

13. GmbH, W.S.: Key verification to secure your conversations . Tech. rep. (January 2017),
https://wire.com/en/blog/key-verification-secure-conversations/

14. GmbH, W.S.: Wire Security Whitepaper. Tech. rep. (August 2018), https://

wire-docs.wire.com/download/Wire+Security+Whitepaper.pdf

15. Hale, B.: User-mediated authentication protocols and unforgeability in key collision.
In: ProvSec 2018. pp. 387–396. LNCS, Springer, Heidelberg (2018). doi: 10.1007/
978-3-030-01446-9 22

16. Høegh-Omdal, J., Kaya, C., Ottensmann, M.: The StrandHogg vulnerability (2019),
https://promon.co/security-news/strandhogg/

17. Kiayias, A., Zacharias, T., Zhang, B.: Ceremonies for end-to-end verifiable elections.
In: IACR International Workshop on Public Key Cryptography. pp. 305–334. Springer
(2017)

18. Marlinspike, M., Perrin, T.: The Double Ratchet Algorithm. Tech. rep. (November
2016), https://signal.org/docs/specifications/doubleratchet/

19. Marlinspike, M., Perrin, T.: The Signal Protocol. Tech. rep. (November 2016), https:
//signal.org/docs/specifications/x3dh/

20. Marlinspike, M., Perrin, T.: The Signal Protocol: Key Compromise. Tech. rep. (Novem-
ber 2016), https://signal.org/docs/specifications/x3dh/#key-compromise

21. Marlinspike, M., Perrin, T.: The X3DH Key Agreement Protocol. Tech. rep. (November
2016), https://signal.org/docs/specifications/x3dh/

22. Martina, J.E., de Souza, T.C.S., Custodio, R.F.: Ceremonies formal analysis in pki’s
context. In: 2009 International Conference on Computational Science and Engineering.
vol. 3, pp. 392–398. IEEE (2009)

23. Maruyama, S., Wakabayashi, S., Mori, T.: Tap ’n ghost: A compilation of novel attack
techniques against smartphone touchscreens. In: 2019 2019 IEEE Symposium on
Security and Privacy (SP). pp. 628–645. IEEE Computer Society, Los Alamitos, CA,
USA (may 2019). doi: 10.1109/SP.2019.00037, https://doi.ieeecomputersociety.
org/10.1109/SP.2019.00037

24. OpenWhisperSystems: Signal Protocol library for JavaScript. Tech. rep. (June 2019),
https://github.com/signalapp/libsignal-protocol-javascript

25. Poettering, B., Rösler, P.: Towards bidirectional ratcheted key exchange. pp. 3–32.
LNCS, Springer, Heidelberg (2018). doi: 10.1007/978-3-319-96884-1 1

26. Radke, K., Boyd, C., Nieto, J.G., Brereton, M.: Ceremony analysis: Strengths and
weaknesses. In: IFIP International Information Security Conference. pp. 104–115.
Springer (2011)

27. Rösler, P., Mainka, C., Schwenk, J.: More is less: On the end-to-end security of group
chats in signal, whatsapp, and threema. In: 2018 IEEE European Symposium on
Security and Privacy (EuroS&P). pp. 415–429 (2018)

28. Signal: Signal partners with Microsoft to bring end-to-end encryption to Skype. Tech.
rep. (January 2018), https://signal.org/blog/skype-partnership/

29. Tan, J., Bauer, L., Bonneau, J., Cranor, L.F., Thomas, J., Ur, B.: Can unicorns help
users compare crypto key fingerprints? In: Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems. pp. 3787–3798. CHI ’17, ACM, New York, NY,

USA (2017). doi: 10.1145/3025453.3025733, http://doi.acm.org/10.1145/3025453.
3025733

30. WhatsApp: WhatsApp Encryption Overview Technical white paper. Tech. rep. (De-
cember 2017), file:///Users/bwt/Downloads/WhatsApp-Security-Whitepaper.pdf

A Details of the Signal Protocol

In this section, we describe the initial key exchange and the asymmetric ratchet of
the Signal protocol in detail, complete with protocol flow and key schedule diagrams.
We will be modifying the Signal key schedule to generate new authentication keys
that will be used in our Modified Signal Authentication Protocol MoDUSA. We
begin by describing the so-called X3DH key exchange, used to generate the initial
secret values for Alice and Bob to begin communication.

Alice Bob

Signed Prekey

Identity Keys

One-Time Keys

Ratchet Key

Message Key

spkB

idkA idkB

otkA otkB

pms0

pms1

pms2

pms3

pms0‖pms1‖pms2‖pms3

KDF

ms

rck0A

KDF pms4

rk0 ck00

KDF

ck01 mk01

Fig. 6. The key schedule for the Signal X3DH key exchange. Alice is the initiator, having
recieved Bob’s PreKeyBundle from the centralised Signal server. Dotted lines indicate
Diffie-Hellman operations to generate shared secret values from two Diffie-Hellman values,
while connected lines indicate inputs to key derivation functions.

A.1 The X3DH Protocol

Recall that in Signal, when a device A owned by Alice wishes to communicate with
another device B owned by Bob, in practice A fetches what is known as a prekey
bundle, containing a set of public keys that were (in theory) generated by B, and
uses these values to generate the initial message sent from A to A. Each prekey
bundle contains the following:

– regId: a 32-bit integer value, generated by each device I during registration.
– deviceId: a 32-bit integer value that distinguishes between prekey bundles for

each device that the user maintains.11

– preKeyPublic: a one-time-use DH public key, generated frequently by the device
I, which we denote with otpkI .

12

– signedPreKeyPublic: the medium-term DH public key, generated at regular
intervals, which we denote sppkI .

– signedPreKeySignature: the signature σI over sppkI using the identity key
idkI .

– identityKey: the long-term DH public key of the responder, generated during
registration, which we denote idpkI .

– protocolAddress: a regID and deviceID pair.

Alice then generates a one-time keypair (otkA, otpkA), and with the long-term
identity keypair (idkA, idpkA), derives the following values:

pms0 = (sppkB)idkA , pms1 = (idpkB)otkA

pms2 = (sppkB)otkA , pms3 = (otkB)otkA

Alice can now compute the master secret ms, where ms = KDF(pms0‖pms1‖
pms2‖pms3), and generates the first ratchet keypair (rckA0 , rcpk

A
0) to derive the first

root and chain key (rk0, ck00)← KDF(ms, (sppkB)rck
A
0). Finally, Alice computes the

next chain key and the first message key ck01,mk
0
1 ← KDF(ck00).

Alice uses an AEAD symmetric cipher to encrypt a plaintext message ptxt. The
additional data field AD is set as the concatenation of the identity public keys of both
Alice and Bob, as well as Alice’s first ratchet key, i.e. AD = {idpkA‖idpkB‖rcpk0A}.
Finally, Alice sends the ciphertext c01 = AEAD.Encrypt(mk01, AD, nonce, ptxt) and
sends {kidB , c01} to Bob, where kidB are some identifiers for the signed prekey and
the one-time key.

A.2 Symmetric Ratchet

Symmetric ratcheting requires simply use of the currently maintained chaining key
as input to a KDF to generate a new chain key and message key in order to send an

11 In our representation of the Signal X3DH key exchange in Figure 1, we pair the regId

with the deviceId together as IDI for conciseness.
12 The prekeys (both signed and unsigned) are paired with a prekey identifier, which we

have omitted here for conciseness.

Alice
Root
Keys

Bob
Ratchet

Keys
Ratchet

Keys
Chain
Keys

Message

Keys

rki−1

rckiB

KDFpms

rki cki0

KDF

cki1 mki1

KDF

cki2 mki2

rcki+1
A

pms KDF

rki+1 cki+1
0

KDF

cki+1
1 mki+1

1

Fig. 7. The key schedule for the Signal Double Ratchet protocol. Bob does one asymmetric
ratchet, and one symmetric ratchet, each associated with the same ratchet key rcpki

B .
Afterwards, Alice does one asymmetric ratchet, but no symmetric ratchets afterwards.
Note that root key rki depicted here is typically given the name tmp in the specification,
and is not considered a typical root key in the specification [18] – instead each root key
is associated with a pair of message chains for sending and receiving. We change the
nomenclature here for readability, and for ease of describing “epochs”, which consist of a
single chain of message keys.

Alice Server Bob

Asymmetric Ratchet Phase (i)

(rckiA, rcpk
i
A)

$← DHGen(1λ)

pctr ← ctr, ctr ← 0

rki, cki0 = KDF(rki−1, (rcpki−1B)rck
i
A)

cki1,mk
i
1 ← KDF(cki0)

AD = {idpkA‖idpkB‖rcpkiA‖ctr‖pctr}
SigMsg← {AEAD.Enc(mki1, AD, nonce, ptxt)}

SigMsg

. . .

Fig. 8. A protocol flow describing the Signal Double Ratchet protocol. In this protocol
execution, user Alice has received the (i− 1)-th ratchet public key rcpki−1

B , and wants to
send a new message. Afterwards, Alice has not yet received a new ratchet key from Bob,
and thus will engage in a symmetric ratchet, generate a new chain and message key and
message key, encrypt a message and send the ciphertext to Bob. Note that ctr and pctr
are both counters - ctr maintains the number of messages the user has sent in this chain of
messages, while pctr maintains the number of messages the user sent in the previous chain
of messages.

AEAD encrypted message. Straightforwardly, the device computes the next chain key
and the first message key in this chain ckij ,mk

i
j ← KDF(ckij−1), and updates their

current message counter ctr ← ctr + 1. This is outside the scope for our analysis,
and so we do not provide a protocol flow diagram for the symmetric ratchet phase.

A.3 QR Code Authentication Version 0

The first method (version 0) of generating scannable fingerprints is straightforward.
The fingerprint itself is the following fields: {svers13, IDA

14, idpkA, IDB , idpkB}. The
device then serializes the fingerprint and generates a QR code from the serialized
data.

When verifying the QR code, the device scans the communicating partner’s
scannable fingerprint, de-serializes the information in the QR code into the fields
described above, and compares the scanned fingerprint with the locally-computed
fingerprint.

B MoDUSA Usability

When comparing the MoDUSA protocol to the original Signal authentication pro-
tocol, it is clear that a potential impediment to usability would come from users

13 svers here refers specifically to the “scannable fingerprint version”, not the current
version of the Signal app..

14 According to design, IDA is defined as A’s phone number.

being required to pick between two fingerprints when comparing numeric codes. This
requires users to check the index associated with both fingerprints (on both devices)
and compare the highest-indexed fingerprint that both devices have. This can be
streamlined (for instance, a two-step mechanism where users first select a button that
displays the highest index that both devices have, and then the device afterwards
will displays only a single fingerprint), but any type of barrier will cause certain
types of end-users to disregard this authentication mechanism. Some interesting
future work would be to improve our suggested solution to avoid presenting this
additional complexity to users of numeric comparison.

It is interesting to note that for QR code-based fingerprints, this dual-fingerprint
problem does not occur. Instead, the QR code can contain both fingerprints, and
the scanning device need only check that one of the fingerprints match, simplifying
the authentication mechanism significantly for users.

In addition, to make collision attacks on fingerprints more difficult, our solution
does not truncate the numeric code fingerprints. In practice, it is unlikely that users
will actually compare the full fingerprints, depending on how they are encoded or
represented. A possible direction to follow is visual representations of fingerprints
[29] that may prevent user-driven truncation.

Another impediment to usability is the fact that the MoDUSA fingerprints
change depending on the epoch in which the user authenticates. In comparison,
the Signal authentication protocol fingerprints (since they only contain identifier
and public-key information) are stable. Stable fingerprints allow for Alice to host
her fingerprint on a publicly-accessible resource, and she only needs to upload it
once, never updating it. Of course, this leads to the breaks in security previously
mentioned. However, from a usability perspective, a MoDUSA fingerprint is only
useful for authenticating ratchets up to the specific epoch – if Bob accesses an old
fingerprint without having saved the authentication key for that epoch, Bob cannot
recompute the fingerprint locally and use it to detect an active adversary. Thus
any OOB channel using MoDUSA fingerprints must be able to update as frequently
as comparison is expected (note that this need not be per epoch, but does require
storage of authentication keys between expected comparisons). It is important to
note that in MoDUSA fingerprints (whether QR code or numeric codes) are only
required to be computed when authenticating – it is not necessary to constantly
“evolve” the fingerprints with each epoch.

Computational and Storage Costs In the original Signal authentication protocol,
since the fingerprints are generated via an iterative hash, each fingerprint takes
10,400 hash operations to generate (5,200 hash computations for each user’s half of
the fingerprint). However, this is only required once: from then on, users need only
store the 60 digit fingerprint / QR code and retrieve the fingerprints whenever they
use the Signal authentication protocol. This differs from MoDUSA, where users are
required to either store a transcript (containing each of the public keys sent between
devices) or two rolling hash values (if the implementation uses updating hash values),
as well as two authentication keys (for the current and previous epoch) and a counter
containing the current index of the epoch. Computationally, MoDUSA requires two
hash operations and two MAC operations whenever generating a fingerprint (again,

this being on demand and not necessarily per epoch), but the upfront cost is lower –
there is no need to perform 5,200 hash operations to generate the initial fingerprint.

C Flaws in the Signal Authentication Protocol

Here we discuss weaknesses in the Signal Authentication Protocol that mean that
we cannot prove meaningful guarantees within the META security model.

It should be noted that the Signal authentication protocol includes entity au-
thentication only as a user-initiated option and not by default. This is an explicit
goal of the Signal, which operates on a “trust on first-use” assumption. However,
the form and meaning of the entity authentication which is provided to the user is
not explicit.

C.1 Identity key collision attacks

Recalling the details of Figure 2, it is clear that the “displayable fingerprint”,
or numeric codes read by the users is significantly truncated from the original
hash output that contains both users’ identifiers and identity keys. Indeed, the
truncation process immediately discards the final 272 bits of both the local fprint

and the remote fprint. Thus, if one can compute another fingerprint fprint =
H(0‖fvers‖idpkE‖IDE‖idpkE) such that [remote fprint]2390 = [fprint]2390 (i.e.
cause a collision between the first 240 bits of the remote user’s fingerprint), then a
malicious E can inject a maliciously controlled PreKeyBundle to one of the parties
and still get the two partners to accept the verification of their fingerprints without
detection, even if the users are acting completely honestly with respect to the
expected user behaviours.

Due to the further truncation described in Figure 2 (specifically, reducing the
40-bit “blocks” to integers modulo 100,000), it is even easier for the attacker: E
only requires a collision on the specific 102 bits that are represented in the remote
fingerprint itself15. By the birthday bound and iteratively generating new identity
keys and computing fingerprints using the same identifiers, an attacker can produce
a pair of colliding fingerprints for distinct identity keys with 50% probability by
generating only 251 long-term keys. Note that this method can then be used to
attack any conversation that uses these colliding identity keys. This does not allow
the attacker to compute colliding identity keys with specific targets, but we argue
that the ability of an attacker to compute any colliding keys constitutes a valid
attack against the Signal authentication protocol.

C.2 Weak User Mediation

Users play an active role in the entity/device authentication process, whether by
comparing numeric codes or scanning QR codes. However, the Signal authentication
protocol is even more reliant on the user, allowing the user to decide the final

15 Precisely, the last 17 bits of each of the first six 40-bit “chunks” of the hashed output of
the fingerprint.

authentication outcome. Namely, after comparison, a user may choose to select
“Verified” or not. The user may also later deselect the “Verified” status of the session.
It should be noted that marking a session “Verified” does not in fact require any
comparison to take place, even for comparison of QR codes.

Consequently, it is possible for the malicious third party E to trick a user A into
believing that A’s session with B is verified when it has not been. This is possible
via social engineering or temporary access to the device.16

Notably, a user may continue a session even after a comparison failure, and
without any warning in the session. This is most relevant for QR code comparison,
where an automatically issued warning to the user is possible. Even after comparison
failure, the user may mark the conversation as verified.

C.3 One-way QR code authentication

QR code authentication in Signal functions by one device scanning the QR code
displayed by the second device. A confirmation notice is displayed to the user on the
first device if the QR code is correct. No interaction or confirmation is performed on
the second device, or is the any device-to-device confirmation of the result of the
QR code scan. The one-way nature of the QR code matching implies that the user’s
decision regarding whether or not the entity authentication is successful depends
entirely on its interaction with one device. If an adversary was able to interfere with
the device’s display, such as by a display overlay via malware operating on the one
device, then the user could be tricked into approving the authentication.

Note that this differs intrinsically in the trust model from the numeric code
comparison alternative. When a user visually compares numeric codes displayed on
two devices, they are performing a two-way verification. An attacker would need
access to both displays or minimally access to one and full knowledge of the other
to trick the user in the above sense. For QR code verification, the attacker requires
only access to the display on one device – no knowledge of the display on the second
device or any pairing keys is required.

C.4 No session authentication

From Sections 2.5 and 2.6 it follows that the only information that is used in
the computation of the numeric or QR codes are the identity keys and the users’
identities. These authentication protocols can only protect against an adversary
injecting its own identity keys, but not against an adversary that is capable of
injecting signed prekeys or ephemeral keys (whether ratcheting, or one-time prekeys)
without detection.

Consider the attack shown in Figure 9. The adversary corrupts the long-term
identity key idkB of the responder, and then uses it to authenticate its own maliciously
generated signed prekey and one-time keys. Since the adversary has not impersonated
the responder by injecting its own distinct identity key (but instead uses the

16 Note that such access does necessarily imply access to the message contents of the
session.

Initiator Attacker Responder

CorruptLTK

idkB

otkB
$← Zp, spkB

$← Zp
σ

$← SIG.Sign(idkB , spkB)

PreKeyBundle← {B, gidkB , gotkB , gspk}
RequestPreKeyBundle

PreKeyBundle

otkA
$← Zp, rckA

$← Zp
ms← (gspkB)idkA‖(gidkB)otkA‖(gspkB)otkA‖(gotkB)otkA

mk ← SKDF(ms, rckA, spkB), Enc(mk, ptxt)

c0 ← idA, kidB , idpkA, otpkA, rcpkA, ctxt

c0

User Authentication Phase
lf = Hi(0‖fvers‖idpkA‖IDA, idpkA)

rf = Hi(0‖fvers‖idpkB‖IDB , idpkB)

lf = Hi(0‖fvers‖idpkA‖IDA, idpkA)

rf = Hi(0‖fvers‖idpkB‖IDB , idpkB)

Alice display = Trunc(lf)‖Trunc(rf)

Bob display = Trunc(lf)‖Trunc(rf)

If Alice display
?
= Bob display, authentication successful.

Fig. 9. An attack on session authentication against users using authentication mechanisms.
Note that kidB denotes both the identifiers for Bob’s one-time prekey and Bob’s signed
prekey, for conciseness. SKDF denotes the iteration of KDF steps necessary to compute a
message key mk from the initial secrets used in the X3DH protocol, and Hi is an iterated
hash function.

responder’s public key), the fingerprints are computed identically on both sides,
and thus the communicating parties do not detect the malicious behaviour of the
adversary.

Consequently, the Signal authentication protocol only aims to offer a very weak
form of entity authentication. One justification for not providing session authen-
tication is deniability. Namely, by not linking message keys to the authentication,
messages are deniable. However, it can be noted from Fig. 6 that message keys
are not the only session data available which could be used to indicate possible
compromise to the user.

D Other Notes on META Model

Similarly to device session oracles which maintain a list of variables, we can consider
the User as modelled via session oracles in the following manner.

User U is modelled via session oracles, where each session πUt maintains the
following set of variables:

– initiator ∈ ID: a variable indicating the initiator device’s identity.
– sinitiator ∈ [1, . . . , nS]: a variable indicating the session at initiator.
– Tinitiator: a counter indicating the current epoch of the initiator device, initialised

at ⊥.
– responder ∈ ID: a variable indicating the responder device’s identity.
– sresponder ∈ [1, . . . , nS]: a variable indicating the session at responder.
– Tresponder: a counter indicating the current epoch of the

The internal state of the session oracle πUt is initialized as (initiator, sinitiator,Tinitiator

responder, sresponder,Tresponder)← (⊥,⊥,⊥,⊥,⊥,⊥,). For ease of the security model,
we consider that U maintains session and epoch variables. This does not reflect a
requirement on the user to remember session state information, etc. nor does it play
an intrinsic role to our security experiment and proofs; rather it allows ordering of
adversarial queries.

E Proofs of MoDUSA Security

Proof (Proof of Theorem 1). We begin by separating the proof into two cases (and

denote with AdvMETA-CompDev,A,Cl

MoDUSA,nP ,nS ,nT
(λ) the advantage of the adversary winning the

META security game in Case l. These cases correlate to the two winning conditions
of the META security experiment:

1. There has been some pair of sessions πIs , πI
′

s′ with session identifiers πIs .epid[T] =

πI
′

s′ .epid[T] but πIs .α[T] 6= accept or πI
′

s′ .α[T] 6= accept, and πIs is CompDev fresh.
2. There has been a session πIs with πIs .α[T] = accept, but there exists no partner

session πI
′

s′ such that πIs .epid[T] = πI
′

s′ .epid[T], πIs is CompDev fresh.

It is clear then that AdvMETA-CompDev,A
MoDUSA,nP ,nS ,nT

(λ) ≤ AdvMETA-CompDev,A,C1

MoDUSA,nP ,nS ,nT
(λ) +

AdvMETA-CompDev,A,C2

MoDUSA,nP ,nS ,nT
(λ). We bound the advantage of winning both cases and

demonstrate that under certain assumptions, A’s advantage of winning overall is
negligible.

Recall that πIs .epid[T-1] is a substring of πIs .epid[T], as each additional epoch
simply concatenates another ratchet key to the session identifier of the previous
epoch. We now treat Case 1.

Case 1: Matching epids without acceptance. In this case, we bound the
probability that a device will reject an authentication attempt between two sessions
πIs , πI

′

s′ with matching session identifiers. We do this via the following sequence of
games.

Game 0 This is the standard META game in Case 1. Thus we have
AdvMETA-CompDev,A,C1

MoDUSA,nP ,nS ,nT
(λ) = Adv(break0).

Game 1 In this game, we define an abort event abortr that occurs if, during the
execution of the experiment any session πIs sets πIs .α[T]← reject, but there exists a
session πI

′

s′ such that πIs .epid[T] = πI
′

s′ .epid[T]. Thus: Adv(break0) ≤ Adv(abortr).
We now bound the advantage of A in triggering abortr. We note that by the

definition of CompDev freshness, in order for a session πIs to be fresh, A cannot
have issued a ControlUser, ShowUser(I), or ShowUser(I ′) query before epoch T is
completed (i.e. when πIs .α[T] ← reject). Since abortr is triggered when any fresh
session πIs .α[T]← reject when it has a communication partner πI

′

s′ with a matching
epid[T], in what follows, ControlUser, ShowUser(I), ShowUser(I ′) have not been
issued. By definition, A cannot have injected or modified any messages that are
sent between the user U and the oracle πIs , or between U and the matching session
πI
′

s′ . Thus fingerprints that the devices πIs and πI
′

s′ sent were received by U without
modification.

Recall that in MoDUSA, numeric fingerprints are computed as fprintT =
HMAC(akT, HT‖f vers).17 Similarly, QR fingerprints are computed as fprintT

= HMAC(akT, HT‖f vers‖role), where role is πI
′

s′ .role. Since epid[T] contains

the prekey bundle of πI
′

s′ , and πI
′

s′ has the same epid[T] as πIs , both sessions
agree on the roles of their partners. Both of the devices will compute HT =
H(PreKeyBundle‖idkI‖idkR‖otkI‖rcpk0I‖ . . . ‖rck

T−1
role). Thus the input to the hash

function is exactly equal to the session identifiers maintained by both sessions. It
follows that session oracles with the same session identifier then each compute HT

identically.
The authentication key akT is derived akT =

KDF(. . .KDF(pms0‖pms1‖pms2‖pms3, label), . . .), where πIs .esk[T] = πI
′

s′ .esk[T] =

(rcpkT-2I′)
rckT-1I . Note that we assume that the last ratchet key was sent by I. The

case where the last ratchet key was sent by I ′ follows analogously up to a change
in notation. Note that all ratchet keys were sent without modification (as the

17 Since both sessions have the same session identifiers, this means that the ratchet keys
sent between both sessions have been received, so we need only focus on the “most recent”
fingerprint.

session identifiers, which contain the ratchet public keyshare values are equal)
and thus πIs and πI

′

s′ both compute akT identically (and it follows that the fin-

gerprint values computed by πIs and πI
′

s′ , and sent to the user without modifi-
cation, are also equal). If the user U acts in accordance to protocol specifica-
tion then the advantage of A in trigging abortr is Adv(abortr) = 0. Thus we

find AdvMETA-CompDev,A
MoDUSA,nP ,nS ,nT

(λ) ≤ AdvMETA-CompDev,A,C2

MoDUSA,nP ,nS ,nT
(λ) and we can now turn to

bounding the advantage of A in Case 2.
Case 2: Acceptance without matching session identifiers. In this case, we

bound the probability that a session will accept an authentication attempt without
a partner oracle with matching session identifiers. We do this via the following
sequence of games.

Game 0 This is the standard META game in Case 2. Thus we have
AdvMETA-CompDev,A,C2

MoDUSA,nP ,nS ,nT
(λ) = Adv(break0).

Game 1 In this game, we guess the first πIs to set πIs .α[T] ← accept after A
issues Test(πIs) without a matching partner session πI

′

s′ in epoch T. To do so, we
first guess an index (I, s) ∈ [nP] × [nS], and define an abort event abortg that is
triggered if there exists a session πI

∗

s∗ (such that I 6= I∗) that is the first session
oracle to set πI

∗

s∗ .α[T]← accept without a matching partner session. Thus we have
Adv(break0) ≤ nP · nS ·Adv(break1).

Game 2 In this game, we bound the advantage of A causing a hash collision. We
define an abort event aborth that occurs if, during the execution of the experiment,
two inputs are found such that H(in) = H(in′). Now, during the experiment we know
that a hash collision cannot occur. Thus we have Adv(break1) ≤ Adv(break2) +

Advcoll,B1

H (λ)

Game 3 Before we begin, we note that due to the previous game, there are no
hash collisions in Game 3. In addition, by the definition of CompDev freshness, the
adversary has not issued a ControlUser() or a ShowUser(I) query, which means that
A cannot inject or modify messages being sent between the session πIs and the
user U . Since the session identifier πIs .epid[T] does not equal the session identifier
for any other session πI

′

s′ .epid[T], (which itself is equal to the input to the hash
function when computing the fingerprint) it is clear that πIs will not compute the
same fingerprint to any other session in epoch T′ ≥ T. This is important, as the user
may not authenticate the sessions until some future epoch T′. Since A has not issued
a ShowUser(I) query, and there are no collisions in Game 3, the fingerprints received
by U from πIs and any other session πI

′

s′ will not match for any epoch T′ ≥ T. If
the user U acts according to protocol specification, U will reject any authentication
attempt for the session πIs in any epoch T′ ≥ T. Thus we have Adv(break2) = 0,

and it follows that AdvMETA-CompDev,A,C2

MoDUSA,nP ,nS ,nT
(λ) ≤ nP · nS ·Advcoll,B1

H (λ).

Proof (Proof of Theorem 2). Recall that the sole winning condition in the META-
CompUser security experiment is that: there has been a session πIs with πIs .α[T] =
accept, but there exists no partner session πI

′

s′ such that πIs .epid[T] = πI
′

s′ .epid[T],

πIs is CompUser fresh. In what follows, we bound the advantage of an adversary A
in causing this to occur.

Accepted session without matching session identifiers. Here we bound
the advantage of A winning the META security experiment by causing a session to
accept an authentication attempt without a partner oracle with matching session
identifiers. Recall that since the session identifiers contain transcript information,
and are monotonically increasing, this means that at some point A has modified a
message in the protocol flow.

Before we continue, it is worth revisiting the exact conditions that session πIs
requires to be CompUser-fresh in epoch T according to Definition 3.

There are three separate cases to consider, and the proof for each case follows a
similar structure:

Case 1 If A has issued Reveal(πIs ,T
∗) prior to the epoch T (i.e. T∗ < T), where πIs .role =

initiator and T∗ is even, then there must exist a pair of epochs T′,T′′ where the
device session πIs has computed the same epoch secret esk[T′]s,I , esk[T′′]s,I as

some session πI
′

s′ , and A has not issued a Reveal(πIs , T̄) for any epoch T∗ < T̄ ≤ T.

Case 2 If A has issued Reveal(πIs ,T
∗) prior to the epoch T (i.e. T∗ < T), where πIs .role =

initiator and T∗ is even, then there must exist an epochs T′ where the device
session πIs has computed the same epoch secret esk[T′]s,I as some session πI

′

s′ ,
and A has not issued a Reveal(πIs , T̄) for any epoch T∗ < T̄ ≤ T.

Case 3 If A issued a Corrupt(I) or Corrupt(I ′) query at any time, where pidI,s = I ′,
then ∃s′,T′ such that pidI′,s′ = I, T ≥ T′, and esk[T′]s,I = esk[T′]s′,I′ .

The reason why the first two cases are similar is that it captures how long it takes
MoDUSA to recover from a Reveal query - if A has revealed state in an initiator
session when the epoch is odd, then in the following epoch the initiator session will
generate a new ratchet key and combine it with the responder’s ratchet key (that A
has not revealed), thus healing in that epoch. If A has revealed state in an initiator
session where the epoch is even, in MoDUSA the initiator session reuses the ratchet
secret in the following epoch, and does not heal immediately from the Reveal. In
either case however, these will exist some epoch following the Reveal query where
both parties compute the same secret, and the underlying ratchet secrets for both
parties have not been exposed to A via Reveal. In our proof, we will guess which
epoch this is, and replace the ratchet keys (which must be communicated honestly
for both sessions to compute the same epoch secret) with outputs from a PRFODH
challenger.

The third case takes a similar structure - we assume that there exists some epoch
where πIs has honestly computed the same epoch secret to some partner session πI

′

s′

- if A has additionally issued a Reveal query, then we fall back to either Case 1 or
Case 2.

It is clear then that AdvMETA-CompUser,A
MoDUSA,nP ,nS ,nT

(λ) ≤ AdvMETA-CompUser,A,C1

MoDUSA,nP ,nS ,nT
(λ) +

AdvMETA-CompUser,A,C2

MoDUSA,nP ,nS ,nT
(λ)+AdvMETA-CompUser,A,C3

MoDUSA,nP ,nS ,nT
(λ). We bound the advantage of

winning in each case and demonstrate that under certain assumptions, the advantage
of A in winning overall is negligible.

We can now begin to treat Case 1.

Case 1: A has issued a Reveal query in epoch T∗ (to either πIs or to a
matching session, if one exists) and there exists a pair of epochs T′, T′−1
where πIs has communicated honestly with some session πI

′

s′ .

Game 0 This is the standard META game, with CompUser freshness conditions.
Thus we have AdvMETA-CompUser,A,C1

MoDUSA,nP ,nS ,nT
(λ) = Adv(break0).

Game 1 In this game, we bound the advantage of A causing a hash collision. We
define an abort event abort1 that occurs if, during the execution of the experiment,
two inputs are found such that H(in) = H(in′). Now, during the experiment we know
that a hash collision cannot occur. Thus we have Adv(break0) ≤ Adv(break1) +

Advcoll,B2

H (λ)

Game 2 In this game we guess the index of the first session πIs that reaches a status
πIs .α[T] ← accept, but there is no session πI

′

s′ such that πI
′

s′ .epid[T] = πIs .epid[T].
This requires defining an abort event abort2 where the challenger guesses an index
(I, s) ∈ [nP]× [nS] and will terminate the game if A issues Test(πI

∗

s∗), and πI
∗

s∗ reaches
πI
∗

s∗ .α[T]← accept without a session πI
′

s′ such that πI
′

s′ .epid[T] = πI
∗

s∗ .epid[T], and
(I, s) 6= (I∗, s∗). Thus we have: Adv(break1) ≤ nP · nS ·Adv(break2).

Game 3 In this game we guess the index of the intended session partner πI
′

s′ such

that πIs .pid← I ′, and πI
′

s′ .esk[T′] = πIs .esk[T′]. This requires defining an abort event
abort3 where the challenger guesses an index s′ ∈ [nS] and will terminate the game
if A issues Test(πIs), and πIs reaches πIs .α[T]← accept with a session πI

′

s∗ such that
πI
′

s∗ .esk[T′] = πIs .esk[T′], and s′ 6= s∗. Note that if such a sesssion does not, exist,
then πIs is no longer fresh, and thus A has issued a Test(πIs) query to a non-fresh
session and thus has no advantage in winning in this case. In Case 1, there are two
such epochs - we target the second epoch here, as it is the ”healing” epoch. Thus
we have: Adv(break1) ≤ nS ·Adv(break2).

Game 4 In this game we guess the index of the epoch T′ such that πIs .esk[T′] =
πI
′

s′ .esk[T′], and T′ > T∗. This requires defining an abort event abort3 where the
challenger guesses an index T′ ∈ [nT] and will terminate the game if there does not
exist a session πI

′

s′ such that πIs .esk[T′] = πI
′

s′ .esk[T′]. Thus we have Adv(break3) ≤
nT ·Adv(break4).

Game 5 In this game, we replace the computation of the root, chain and authenti-
cation keys rkT

′
, ck0T′ , ak

T′ values with uniformly random and independent values

r̃kT′ , c̃k0T′ , ãk
T′ . We do so by interacting with a sym-ss-PRFODH challenger in the

following way:
Note that by previous games, we know at the beginning of the experiment the

index of session πIs such that Test(πIs) is issued by the adversary. Similarly, we know
at the beginning of the experiment the index of the intended partner πI

′

s′ of the

session πIs such that πIs .esk[T′] = πI
′

s′ .esk[T′]. Thus, we initialise a sym-ss-PRFODH

challenger, and embed the DH challenge keyshare gu into the ratchet key rckT
′−1

of session πI
′

s′ . Note that by previous game hops and the definition of this case, A

is not able to issue a Reveal(πI
′

s′ ,T
′ − 1) query, as it will cause πIs to be considered

non-fresh, and thus A will have no advantage in winning, and thus we do not need
to reveal the private key u of the challenge DH keyshare to A. Similarly, we embed
the DH challenge keyshare gv into the ratchet key rckT′ of session πIs , and note by
a similar argument, we never need to reveal the private key v of the challenge DH
keyshare to A. In MoDUSA, the ratchet keys are used to compute the following:

– If πIs acts as the initiator and T′ is even, or πIs acts as the responder and T′ is
odd:
rkT

′
, ck0T′ , ak

T′ ← KDF(rkT
′−1, (rcpkT

′−1)rck
T′

),

rkT
′+1, ck0T′+1, ak

T′+1 ← KDF(rkT
′
, (rcpkT

′+1)rck
T′

)

Dealing with the challenger’s computation of these values will be done in two ways:

– The other Diffie-Hellman private key (be it rckT
′−1, or rcpkT

′+1) is a value that
has been generated by another honest session. The challenger can then use its
own internal knowledge of rckT

′−1, rcpkT
′+1 to complete the computations.

– The other Diffie-Hellman private key is a value that is unknown to the challenger,
as it has been generated instead by the adversary

In the second case, the challenger must instead use the ODHv oracle pro-
vided by the sym-ss-PRFODH challenger, specifically querying ODHv(rk

T′−1, X),

or ODHv(r̃kT
′ , X) (where X is the Diffie-Hellman public keyshare such that the

private key is unknown to the challenger) which will output KDF(rkT
′−1, Xu) us-

ing the sym-sm-PRFODH challenger’s internal knowledge of v. We make similar
replacements for the πI

′

s′ where necessary (i.e. in epoch T− 1).

If the test bit sampled by the sym-ss-PRFODH challenger is 0, then r̃kT′ , c̃k0T′ , ãk
T′ ←

KDF(rkT
′−1, (rcpkT

′−1)rck
T′

) and we are in Game 4. If the test bit sampled by the

sym-ss-PRFODH challenger is 1, then r̃kT′ , c̃k0T′ , ãk
T′ $← {0, 1}|KDF| and we are in

Game 5. Thus any adversary A capable of distinguishing this change can be turned
into a successful adversary against the sym-ss-PRFODH assumption, and we find:
Adv(break4) ≤ Advsym-ss-PRFODH,B3

G,q,KDF (λ) + Adv(break5).

Game 6 In this game we iteratively replace the computation of akT
′
, rkT

′
, ck0T′

(for T′′ < T′ ≤ T) with uniformly random values ãkT′ , r̃kT′ , c̃k0T′ from the same

distribution in the session πIs (and its matching partner πI
′

s′). Specifically, we initialise

a KDF challenger and query rkT
′−1, and use the output from the KDF challenger

to replace the computation of akT
′
, rkT

′
, ck0T′ . For the first replacement, r̃kT′′ is a

uniformly random and independent value, and this replacement is sound. For each

subsequent replacement, the r̃kT′-1 value is uniformly random and independent,
and thus this replacement is sound. If the test bit sampled by the KDF challenger

is 0, then ãkT′ , r̃kT′ , c̃k0T′ ← KDF(rkT
′−1, πIs .esk[T′]), and we are in Game 5. Else,

ãkT′ , r̃kT′ , c̃k0T′
$← {0, 1}λ and we are in Game 6. We do this (T-T′′) times, and thus

we have Adv(break5) ≤ (T-T′′) ·Advkdf,B4

KDF (λ) + Adv(break6).

Game 7 In this game, the test session πIs will only set πIs .α ← accept if A is

able to produce values fprintT -1 = HMAC(ãkT-1, HT-1‖f vers‖role) or fprintT =

HMAC(ãkT, HT‖f vers‖role). In this game, we now initialise two MAC challengers
to compute the fingerprints fprintT-1, fprintT in the test session πIs . By Game 6

ãkT-1 and ãkT are uniformly random and independent values, and thus this change is

undetectable. Since ãkT-1 and ãkT are internal values to the MAC challengers, then
it follows that an adversary capable of forging either MAC tag breaks the security of
the MAC scheme. We find that Adv(break6) ≤ 2 ·Advmac,B5

HMAC (λ) + Adv(break7).

We note that A cannot inject or modify messages between πIs and U , nor can it
compute the value fprintT. A user U following protocol specification will compare
the values fprintT (from πIs) with fprintT′ (from some other session). Since the
input to HT contains all information without the session identifier, (and by Game 1,
no hash collisions occur), then fprintT 6= fprintT′, and U will not authenticate
the epochs. Thus we find Adv(break7) = 0.

Summing our advantages, we find AdvMETA-CompDev,A,C1

MoDUSA,nP ,nS ,nT
(λ) ≤ Advcoll,B2

H (λ) +

n2S · nP · nT · (Advsym-ss-PRFODH,B3

G,q,KDF (λ) + (T−T′′) ·Advkdf,B4

KDF (λ) + 2 ·Advmac,B5

HMAC (λ)).

We can now begin to treat Case 2.

Case 2: A has issued a Reveal query in epoch T∗ (to either πIs or to a
matching session, if one exists) and there exists an epoch T′ where πIs
has communicated honestly with some session πI

′

s′ .

The analysis of Case 2 follows closely to the analysis of Case 1, (as there must
exist a epoch T ′ with a matching epoch key esk[T′]I,s) where the only difference lies
in the replacement of the PRFODH challenges in Game 5, which we detail below:

In Game 5 of Case 2, we replace the computation of the root, chain and authen-
tication keys rkT

′
, ck0T′ , ak

T′ values with uniformly random and independent values

r̃kT′ , c̃k0T′ , ãk
T′ . We do so by interacting with a sym-ss-PRFODH challenger in the

following way:

Note that by previous games, we know at the beginning of the experiment the
index of session πIs such that Test(πIs) is issued by the adversary. Similarly, we know
at the beginning of the experiment the index of the intended partner πI

′

s′ of the

session πIs such that πIs .esk[T′] = πI
′

s′ .esk[T′]. Thus, we initialise a sym-ss-PRFODH

challenger, and embed the DH challenge keyshare gu into the ratchet key rckT
′

of
session πI

′

s′ . Note that by previous game hops and the definition of this case, A is not

able to issue a Reveal(πI
′

s′ ,T
′) query, as it will cause πIs to be considered non-fresh,

and thus A will have no advantage in winning, and thus we do not need to reveal
the private key u of the challenge DH keyshare to A. Similarly, we embed the DH
challenge keyshare gv into the ratchet key rckT′−1 of session πIs , and note by a
similar argument, we never need to reveal the private key v of the challenge DH
keyshare to A. In MoDUSA, the ratchet keys are used to compute the following:

– If πIs acts as the initiator and T′ is odd, or πIs acts as the responder and T′ is
even:
rkT

′−1, ck0T′−1, ak
T′−1 ← KDF(rkT

′−2, (rcpkT
′
)rck

T′−1

),

rkT
′
, ck0T′ , ak

T′ ← KDF(rkT
′−1, (rcpkT

′
)rck

T′+1

)

Dealing with the challenger’s computation of these values will be done in two ways:

– The other Diffie-Hellman private key (be it rckT
′−2, or rcpkT

′
) is a value that

has been generated by another honest session. The challenger can then use its
own internal knowledge of rckT

′−2, rcpkT
′

to complete the computations.
– The other Diffie-Hellman private key is a value that is unknown to the challenger,

as it has been generated instead by the adversary

In the second case, the challenger must instead use the ODHv oracle pro-
vided by the sym-ss-PRFODH challenger, specifically querying ODHv(rk

T′−2, X),

or ODHv(r̃kT
′ , X) (where X is the Diffie-Hellman public keyshare such that the

private key is unknown to the challenger) which will output KDF(rkT
′−1, Xu) us-

ing the sym-sm-PRFODH challenger’s internal knowledge of v. We make similar
replacements for the πI

′

s′ where necessary (i.e. in epoch T− 1).

If the test bit sampled by the sym-ss-PRFODH challenger is 0, then r̃kT′ , c̃k0T′ , ãk
T′ ←

KDF(rkT
′−1, (rcpkT

′−1)rck
T′

) and we are in Game 4. If the test bit sampled by the

sym-ss-PRFODH challenger is 1, then r̃kT′ , c̃k0T′ , ãk
T′ $← {0, 1}|KDF| and we are in

Game 5. Thus any adversary A capable of distinguishing this change can be turned
into a successful adversary against the sym-ss-PRFODH assumption, and we find:
Adv(break4) ≤ Advsym-ss-PRFODH,B3

G,q,KDF (λ) + Adv(break5).

Summing our advantages, we find that AdvMETA-CompDev,A,C2

MoDUSA,nP ,nS ,nT
(λ) ≤ Advcoll,B2

H (λ)+

n2S · nP · nT · (Advsym-ss-PRFODH,B3

G,q,KDF (λ) + (T− T′) ·Advkdf,B4

KDF (λ) + 2 ·Advmac,B5

HMAC (λ)).
The analysis of Case 3 follows closely to the analysis of Cases 1 and 2, with a

subcase distinction depending on the role of πIs in the initial X3DH key exchange,
similar to the distinctions between Cases 1 and 2. As a result, we omit repeating
the full analysis and simply state our advantage: AdvMETA-CompDev,A,C3

MoDUSA,nP ,nS ,nT
(λ) ≤ 2 ·

(Advcoll,B2

H (λ) + n2S · nP · nT · (Advsym-ss-PRFODH,B3

G,q,KDF (λ) + (T− T′′) ·Advkdf,B4

KDF (λ) +

2 ·Advmac,B5

HMAC (λ))).
Combining our results for all Cases, we find our final advantage statement:

AdvMETA-CompDev,A
MoDUSA,nP ,nS ,nT

(λ) ≤ 4 ·(Advcoll,B2

H (λ)+n2S ·nP ·nT ·(Advsym-ss-PRFODH,B3

G,q,KDF (λ)+

(T− T′′) ·Advkdf,B4

KDF (λ) + 2 ·Advmac,B5

HMAC (λ))).

