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Abstract. This paper proposes tweakable block cipher (TBC) based
modes PFB Plus and PFBω that are efficient in threshold implementa-
tions (TI). Let t be an algebraic degree of a target function, e.g. t = 1
(resp. t > 1) for linear (resp. non-linear) function. The d-th order TI
encodes the internal state into dt + 1 shares. Hence, the area size in-
creases proportionally to the number of shares. This implies that TBC
based modes can be smaller than block cipher (BC) based modes in TI
because TBC requires s-bit block to ensure s-bit security, e.g. PFB and
Romulus, while BC requires 2s-bit block. However, even with those TBC
based modes, the minimum we can reach is 3 shares of s-bit state with
t = 2 and the first-order TI (d = 1).
Our first design PFB Plus aims to break the barrier of the 3s-bit state
in TI. The block size of an underlying TBC is s/2 bits and the output
of TBC is linearly expanded to s bits. This expanded state requires only
2 shares in the first-order TI, which makes the total state size 2.5s bits.
We also provide rigorous security proof of PFB Plus. Our second design
PFBω further increases a parameter ω: a ratio of the security level s to
the block size of an underlying TBC. We prove security of PFBω for any ω
under some assumptions for an underlying TBC and for parameters used
to update a state. Next, we show a concrete instantiation of PFB Plus
for 128-bit security. It requires a TBC with 64-bit block, 128-bit key
and 128-bit tweak, while no existing TBC can support it. We design a
new TBC by extending SKINNY and provide basic security evaluation.
Finally, we give hardware benchmarks of PFB Plus in the first-order TI
to show that TI of PFB Plus is smaller than that of PFB by more than
one thousand gates and is the smallest within the schemes having 128-bit
security.

Keywords:Authenticated encryption, threshold implementation, beyond-
birthday-bound security, tweakable block cipher, lightweight.

1 Introduction

Data communication through IoT devices is getting more and more popular.
This requires lightweight authenticated encryption (AE) schemes that can be



used comfortably in a resource-restricted environment. Since March 2019, NIST
has organized a competition for determining the lightweight AE standard [39].
56 designs were chosen as Round 1 candidates and 32 designs have been chosen
as Round 2 candidates in August 2019. The design of lightweight AE schemes is
one of the most actively discussed topics in the symmetric-key research filed.

Many of AE designs with provable security adopt a block cipher (BC), a
cryptographic permutation, or a tweakable block cipher (TBC) as an underlying
primitive. The conventional security model regards those modules as a black box
and discusses the security under the black box setting. In contract, NIST’s com-
petition optionally takes into account the security in the grey box setting, where
the cryptographic modules leak side-channel information. It is now important to
design lightweight AE schemes such that countermeasures against side-channel
attacks (SCA) can be implemented efficiently.

Masking is by far the most common countermeasure against SCA [25, 38],
and thus implementing an AE scheme using a BC/TBC primitive protected by
masking is the natural way to realize an SCA-resistant AE. Threshold implemen-
tation (TI) introduced by Nikova et al. [38] is a masking particularly popular for
hardware implementation. Masking, however, easily multiply the computational
cost. Although hardware designers have been tackling the problem by design-
ing serialized implementations in order to achieve an extreme of the area-speed
trade-off, implementation-level optimization is reaching its limit. To push the
limit further, researchers have been studying a BC optimized for TI by design,
mostly focusing on TI-friendly Sboxes [13, 21]. In this paper, we follow this line
of research and go one step further by introducing the TI-friendly AE mode.

TI encodes the internal state (mostly consists of the internal state to compute
the underlying primitive) into multiple shares, and apply the round transforma-
tion to each of them. Hence, the area size in TI increases proportionally to the
number of shares. The number of shares is dt+1 for the order of masking d and
the algebraic degree of a target function t, and thus it is t+1 for the first-order
TI with d = 1.

In lightweight AE schemes, register occupies the major circuit area. To be
more precise, let b and s be the bit sizes of the underlying primitive and the
aiming security, respectively. Then the key size needs to be at least s, and thus
we need a b-bit register for the data block and an s-bit key for the key. We need
different number of shares for the data and key because the data needs three
shares for the nonlinear round function (t > 1), but the key needs only two shares
because the key schedule function is often linear for recent algorithms. Naito and
Sugawara recently proposed a TBC-based scheme which is particularly efficient
with TI by exploiting this asymmetry [35].

The problem we address in this paper is to further exploit this asymmetry.
More specifically, we let ω = s/b be an indicator of the asymmetry, and consider
designing a scheme with higher ω. Following Naito and Sugawara, we pursue
TBC-based schemes because of disadvantages of other approaches as follows.
The comparison is also given in Table 1.



Drawbacks of BC based schemes: To minimize a register size, i.e., the reg-
ister size is (almost) equal to the BC size, the security level is compromised
to the birthday-bound security regarding the block size, because birthday
attacks are principally unavoidable. Hence, 2s-bit block and s-bit key are
necessary to ensure s-bit security even without TI. SAEB [33] is an example
of this case. To apply the first-order TI by assuming a linear key schedule, we
need 3 shares for the data block and 2 shares for the key. Hence, we need a
register of size 8s(= 3×2s+2×s) bits. Note that the key register may not be
protected in the same level as the data block register because computation
of the key schedule is not dependent on the value of the data block. In this
strategy, the register size is 7s(= 3×2s+ s) bits. Note that there are several
beyond-the-birthday-bound (BBB) modes, but those require very unsuitable
structures for TI i.e., in TI the register sizes of BBB modes are grater than
those of birthday-bound ones.

Drawbacks of permutation based schemes: Let r and c be the number of
bits for the rate and the capacity, respectively. When attackers are allowed
to make decryption queries, the security of the simple duplex construction
can be proven only up to the birthday bound of the capacity [12, 28]. Hence
to ensure s-bit security, the permutation size must be at least 2s+r bits. For
the first-order TI, we need 3× (2s+ r) bits of the register size. Beetle [14], a
recently proposed design, is provably security up to min(c− log r, b/2, r). To
ensure s-bit security, we basically balance r and c to s bits for the second
term, but slightly increases c to compensate ‘− log r’ in the first term. Hence,
the register size is 2s+ log s bits without TI and 3× (2s+ log s) for TI.

Advantages of TBC based schemes: To ensure s-bit security, the block size
can be s bits. Along with an s-bit key and an s-bit tweak, the register size
without TI is 3s bits, e.g. PFB [35] and Romulus [26]. To apply the first-order
TI by assuming a linear key schedule, we need 3 shares for the data block
and 2 shares for the key. s-bit tweak is a public value, and it does not need
any protection. Hence, we need a register of size 6s(= 3s + 2s + s) bits for
TI. By the same analogy for BC, the protection of the key register may not
be needed. In this case, the register size for TI becomes 5s bits.

Form the above comparison, we investigate a TBC-based scheme to design a
mode that is efficient for TI. In particular, we focus our attention on the property
that the area size of TI mainly depends on how big ω(= s/b) is, and we aim a
TBC-based mode with a large ω.

Before stepping into the TI-friendly design, we first briefly introduce some
knowledge that is general to the designs of AE schemes.

– To be lightweight, the use of “nonce”, a value that is never repeated under
the same key, offers significant advantages.

– As shown by ΘCB [29], privacy can be ensured by injecting the nonce and
the block counter into the tweak for an underlying TBC.

– Authenticity can be ensured by preparing the double internal state size (the
block size of an underlying TBC is a part of the internal state size) of the
security level.



Table 1. Comparison of State Sizes with and without (w/o) TI. The (twea)key func-
tions are assumed to be linear. Without TI, permutation based schemes achieve the
smallest state size by using a small rate, while with TI, TBC based schemes in partic-
ular PFB Plus outperform the others.

base BC Permutation TBC
example mode SAEB Duplex Beetle PFB,Romulus PFB Plus PFBω

reference [33] [12, 28] [14] [35, 26] Ours Ours

data block 2s 2s+ r 2s+ log s s 0.5s s/ω
key s s s s s s

w/o TI tweak − − − s s s
extra state − − − − 0.5s s− s/ω

total 3s 2s+ r 2s+ log s 3s 3s 3s

TI
protect key 8s 6s+ 3r 6s+ 3 log s 6s 5.5s 5s+ s/ω

not protect key 7s 6s+ 3r 6s+ 3 log s 5s 4.5s 4s+ s/ω

– The key size must be greater than or equal to the security level.
– The maximum number of processed input blocks by all queries should be

equal to the security level.

Our goal is to design a TBC-based AE mode that has a large ω(= s/b). The
biggest ω among the exiting TBC modes is 1, hence we first aim a TBC-based
AE mode with ω = 2. To achieve the goal, we have the following obstacles.

– b is a block size of TBC. For ω = 2, we need to ensure the security up to the
double of the block size. Hence, we need to design a mode that expands an
b-bit TBC output to a 2b-bit internal state. The expanded state needs to be
updated only linearly, otherwise we need 3 shares for the expanded state in
TI and thus does not yield any advantage compared to the case with ω = 1.

– To avoid using 3 shares for the key, the key schedule must be linear. To leave
the tweak state unprotected (only with 1 share), the tweak and key states
must be kept independent. We observe that the tweakey framework [27] is
suitable for this design.

– The key size must be 2b bits. To process up to 2b-bit block inputs, the size
of the combination of the nonce and the block counter must be 2b bits.
Namely, we need to process 4b bits for the key plus tweak, which is not easy
with existing TBCs. The tweakey framework conceptually defines a way to
process 4b-bit tweakey (tweak plus key), while exiting concrete designs only
support up to 3b-bit tweakey. Note that Lilliput-AE [1], one of the first-round
candidates at the NIST competition, specifies TBCs with 5b-, 6b-, and 7b-
bit tweakeys. However, those ignored the rationale of the original tweakey
framework to ensure the security, and were actually attacked practically [20].

Our Contributions. This paper proposes new TBC based modes that are
efficient for TI. We first propose our new mode PFB Plus (Fig. 1) that is a TI-
friendly TBC-based mode for ω = 2 with rigorous security proof. The block size
b of the underlying TBC is 0.5s bits for s-bit security. As its construction, we



combine the structure of PFB with f9 [44] in order to generate 2b-bit internal
state from b-bit TBC outputs and only use linear operations to update the
expanded state. We then provide rigorous security proofs of PFB Plus. The proof
is advantageous in a sense that the security only depends on the number of
decryption queries and independent of the length of the each query. PFB Plus
is optimized for the first-order TI, namely, 3 shares for the TBC of 0.5s-bit
block, 2 shares for the 0.5s-bit extended state, 2 shares for the s-bit key and
no protection (1 share) for the s-bit tweak. The total state size is 5.5s in TI or
even 4.5s when the key is not protected. Those are shown in Table 14. We also
provide a tradeoff between the area size and the target security by truncating
the extended 2b-bit internal state, which offers arbitrary security level between
b to 2b bits. Note that such a feature cannot be achieved by PFB and Romulus:
one of the second-round candidates in the NIST competition.

While PFB Plus is optimized for the first-order TI, one may be interested in
finding the theoretical limitation of our approach, i.e. how large ω can be. To
answer this question, we propose an extended version called PFBω (Fig. 2) that
can handle an arbitrary ω with security proof under some assumptions for the
existence of the underlying primitives (a TBC with 2ωb-bit tweakey and suitable
coefficients for multiplications over a finite field). When ω becomes larger, to
satisfy the assumption becomes more difficult and the number of operations
increases, while the area size in TI becomes smaller. The state size of PFBω is
shown in Table 1.

Next, we design a concrete TBC for PFB Plus. The underlying TBC must be
small in area and needs to support 4b-bit tweakey. In addition, to increase the ef-
ficiency in TI, the tweakey schedule should not contain any non-linear operation.
We choose SKINNY with 64-bit block as a base of our TBC because SKINNY is
lightweight and indeed used in several designs submitted to the NIST competi-
tion. We extend the design of SKINNY to support TK4, called SKINNYe, so that
the existing third-party security analysis remains available up to TK3. With
this approach, our SKINNYe-64-256 up to TK3 is secure as long as the original
SKINNY is secure. We then provide the lower bounds of the number of active
S-boxes in TK4 as the designers of SKINNY did the same. Moreover, we update
the security analysis of SKINNY: the designers of SKINNY sometimes provided
upper bounds of the number of active S-boxes both in differential and linear
cryptanalysis. Alfarano et al. updated the bounds for differential cryptanalysis
[4], while we update the bounds for linear cryptanalysis with the tight ones. We
benchmark TI of PFB Plus instantiated with SKINNYe-64-256 in hardware by
using the most practical parameters for TI.5

4 In the table, the (twea)key functions are assumed to be linear. If the functions are
non-linear, 3 shares of the functions are required, and the state sizes of the TBC-
based modes are grater than those of the permutation-based ones.

5 With respect to the reliability, it can be disadvantageous that our modes cannot be
instantiated with existing well-known TBCs. However, from a different viewpoint,
PFB Plus is the first use case where 2n-bit tweak and 2n-bit key sizes are useful.



Finally, we give hardware performance evaluation of PFB Plus combined with
SKINNYe-64-256, and compare it with the conventional PFB. As a masking
scheme, we choose the first-order TI in which the TBC state and key are pro-
tected with three and two shares, respectively. Thanks to the larger ω, the TI of
PFB Plus is smaller than that of PFB by more than one thousand gates (7,439
and 8,448 [GE], respectively), and is the smallest within the schemes having
128-bit security.

Recommendation. PFBω is designed as a proof-of-concept of using a smaller
block size, and our recommendation is PFB Plus.

Limitations. The proposed method becomes efficient with TI, and the benefit
extends to other masking schemes with dt+1 shares (for t > 1) [25]; meanwhile,
it is no longer efficient with (d + 1)-share masking schemes [16]. We believe
that (dt + 1)-shares schemes are still important. First, the 1st-order TI is a
very practical option because of its reasonable circuit area and no need for fresh
randomness. Second, (dt + 1)-share schemes can be an only option under some
security requirements, e.g., when we need non-completeness to eliminate leakage
by glitches without relying on registers in between gates.

PFB Plus and PFBω are secure if no unverified plaintext is released and no
nonce is repeated, and we do not ensure the misuse security.

Previous Works. In this paper, we focus on designing TI-friendly AE schemes
with respect to implementation size. Another approach to design an AE scheme
with SCA resistance is leakage-resilient cryptography. The schemes [9, 10, 11,
23, 24] based on the Pereira et al.’s approach [40] assume a leak-free component,
and are optimized for minimizing the number of calls to it6. However, the way
how to realize the leak-free component, that determines the implementation
size, is usually out of scope. Moreover, they need additional components such
as hash function and pseudo-random function. Barwell et al. [7] studied another
approach using pairing-based cryptography, but it is also costly.

The Sponge-based leakage resilient AE scheme ISAP [18] has a potential for
lightweight implementation because it does not rely on a leak-free component.
However, its implementation cost (14 [kGE]) is still larger than PFB Plus (7.439
[kGE]). There are recent works following ISAP. The works [17, 19] gave security
proofs for the Sponge-based schemes which was missing in the original paper.
Degabriele et al. [17] proposed a a variant using a random function. Dobraunig
and Mennink [19] gave the security proof of the duplex [12] with respect to
leakage resiliency.

Another line of research is to design cryptographic primitives using mini-
mum number of non-linear operations thereby reducing the cost for TI [3, 2]. In

This can give new insight to TBC designers considering that there is no consensus
about the adequate tweak size to support.

6 Note that some works even have misuse resistance that our research does not.



contrast to those studies, we approach the problem from the mode of operation
by exploiting the asymmetry between non-linear round function and linear key
scheduling, rather than improving the non-linear function itself. We designed
SKINNYe-64-256 for providing a small block length and a larger tweakey state,
and not for minimizing the number of non-linear operations. We also note that
the conventional works focus on minimizing non-linear operations and thus their
target primitive is BC rather than TBC (TBCs typically require a higher amount
of operations than BCs in order to process a tweak), while the use of TBC is
the central part of our study.

2 Preliminaries

2.1 Notation

Let ε be an empty string and {0, 1}∗ be the set of all bit strings. For an integer
i ≥ 0, let {0, 1}i be the set of all i-bit strings, {0, 1}0 := {ε}, and {0, 1}≤i :=
{0, 1}1 ∪ {0, 1}2 ∪ · · · ∪ {0, 1}i be the set of all bit strings of length at most i,
except for ε. Let 0i resp. 1i be the bit string of i-bit zeros resp. ones. For an
integer i ≥ 1, let [i] := {1, 2, . . . , i} be the set of positive integers less than or

equal to i, and (i] := {0} ∪ [i]. For a non-empty set T , T $←− T means that
an element is chosen uniformly at random from T and is assigned to T . The
concatenation of two bit strings X and Y is written as X∥Y or XY when no
confusion is possible. For integers 0 ≤ i ≤ j and X ∈ {0, 1}j , let msbi(X) resp.
lsbi(X) be the most resp. least significant i bits of X, and |X| be the number of
bits ofX, i.e., |X| = j. For integers i and j with 0 ≤ i < 2j , let strj(i) be the j-bit
binary representation of i. For an integer b ≥ 0 and a bit string X, we denote the

parsing into fixed-length b-bit strings as (X1, X2, . . . , Xℓ)
b←− X, where if X ̸= ε

then X = X1∥X2∥ · · · ∥Xℓ, |Xi| = b for i ∈ [ℓ − 1], and 0 < |Xℓ| ≤ b; if X = ε
then ℓ = 1 and X1 = ε. For an integer b > 0, let ozp : {0, 1}≤b → {0, 1}b be a
one-zero padding function: for a bit string X ∈ {0, 1}≤b, ozp(X) = X if |X| = b;
ozp(X) = X∥10b−1−|X| if |X| < b.

2.2 Tweakable Block Cipher

A tweakable blockcipher (TBC) is a set of permutations indexed by a key and a
public input called tweak. Let K be the key spece, T W be the tweak space, and
b be the input/output-block size. An encryption is denoted by Ẽ : K × T W ×
{0, 1}b → {0, 1}b, Ẽ having a key K ∈ K is denoted by ẼK , and ẼK having a

tweak TW ∈ T W is denoted by ẼTW
K .

In this paper, a keyed TBC is assumed to be a secure tweakable-pseudo-
random permutation (TPRP), i.e., indistinguishable from a tweakable random

permutation (TRP). A tweakable permutation (TP) P̃ : T W×{0, 1}b → {0, 1}b
is a set of b-bit permutations indexed by a tweak in T W. A TP P̃ having a

tweak TW ∈ T W is denoted by P̃TW . Let P̃erm(T W, {0, 1}b) be the set of all



TPs. For a set of all TPs:T W×{0, 1}b → {0, 1}b denoted by P̃erm(T W, {0, 1}b),
a TRP is defined as P̃

$←− P̃erm(T W, {0, 1}b). In the TPRP-security game, an

adversary A has access to either the keyed TBC ẼK or a TRP P̃ , where K
$←− K

and P̃
$←− P̃erm(T W, {0, 1}b), and after the interaction, A returns a decision bit

y ∈ {0, 1}. The output of A with access to O is denoted by AO. The TPRP-
security advantage function of A is defined as

Advtprp

ẼK
(A) := Pr

[
K

$←− K;AẼK = 1
]
−Pr

[
P̃

$←− P̃erm(T W, {0, 1}b);AP̃ = 1
]
,

where the probabilities are taken over K, P̃ and A.

2.3 Nonce-Based Authenticated Encryption with Associated Data

A nonce-based authenticated encryption with associated data (nAEAD) scheme

based on a keyed TBC ẼK , denoted by Π[ẼK ], is a pair of encryption and

decryption algorithms (Π.Enc[ẼK ],Π.Dec[ẼK ]). K,N ,M, C,A and T are the
sets of keys, nonces, plaintexts, ciphertexts, associated data (AD) and tags of

Π[ẼK ], respectively. In this paper, the key space of Π[ẼK ] is equal to that of the
underlying TBC. The encryption algorithm takes a nonce N ∈ N , AD A ∈ A,
and a plaintextM ∈M, and returns, deterministically, a pair of a ciphertext C ∈
C and a tag T ∈ T . The decryption algorithm takes a tuple (N,A,C, T ) ∈ N ×
A×C×T , and returns, deterministically, either the distinguished invalid (reject)

symbol reject ̸∈ M or a plaintext M ∈M. We require |Π.Enc[ẼK ](N,A,M)| =
|Π.Enc[ẼK ](N,A,M ′)| when these outputs are strings and |M | = |M ′|. We
consider two security notions of nAEAD, privacy and authenticity. Hereafter,
we call queries to the encryption resp. decryption oracle “encryption queries”
resp. “decryption queries.”

Privacy. The privacy notion considers the indistinguishability between the en-
cryption Π.Enc[ẼK ] and a random-bits oracle $, in the nonce-respecting setting.

$ has the same interface as Π.Enc[ẼK ] and for a query (N,A,M) returns a

random bit string of length |Π.Enc[ẼK ](N,A,M)|. In the privacy game, an ad-

versary A interacts with either Π.Enc[ẼK ] or $, and then returns a decision bit
y ∈ {0, 1}. The privacy advantage function of an adversary A is defined as

Advpriv

Π[ẼK ]
(A) := Pr[K

$←− K;AΠ.Enc[ẼK ] = 1]− Pr[A$ = 1] ,

where the probabilities are taken over K, $ and A. We demand that A is nonce-
respecting (all nonces in encryption queries are distinct).

The maximum over all adversaries, running in time at most t and making
encryption queries of σE the total number of TBC calls invoked by all encryp-
tion queries, is denoted by Advpriv

Π[ẼK ]
(σE , t) := maxA Advpriv

Π[ẼK ]
(A). When an

adversary is a computationally unbounded algorithm, the time t is disregarded.



Authenticity. The authenticity notion considers the unforgeability in the nonce-
respecting setting. In the authenticity game, an adversary A interacts with
Π[ẼK ] = (Π.Enc[ẼK ],Π.Dec[ẼK ]), and the goal of the adversary is to make
a non-trivial decryption query whose response is not reject. The authenticity
advantage of an adversary A is defined as

Advauth
Π[ẼK ]

(A) := Pr[K
$←− K;AΠ.Enc[ẼK ],Π.Dec[ẼK ] forges] ,

where the probabilities are taken over K and A. We demand that A is nonce-
respecting (all nonces in encryption queries are distinct), that A never asks
a trivial decryption query (N,A,C, T ), i.e., there is a prior encryption query

(N,A,M) with (C, T ) = Π.Enc[ẼK ](N,A,M), and thatA never repeats a query.

AΠ.Enc[ẼK ],Π.Dec[ẼK ] forges means that A makes a decryption query whose re-
sponse is not reject.

The maximum over all adversaries, running in time at most t and making
at most qE encryption queries and qD decryption queries of σ the total number
of TBC calls invoked by all queries, is denoted by Advauth

Π[ẼK ]
((qE , qD, σ), t) :=

maxA Advauth
Π[ẼK ]

(A). When an adversary is a computationally unbounded algo-

rithm, the time t is disregarded.

3 PFB Plus: Specification and Security Bounds

We design PFB Plus, a TBC-based nAEAD mode with b+ τ -bit security where
0 ≤ τ ≤ b, by extending the existing TBC-based lightweight mode PFB [35]. Re-
garding the relation between security and internal state size, in order to achieve
s-bit security, the internal state size must be at least s bits. Thus PFB Plus is
designed so that the internal state size is minimum, i.e., b + τ bits. To do so,
we extend PFB, which is a b-bit secure nAEAD mode and whose security level
equals to the internal state size. For the extension, we need to define an ad-
ditional τ -bit internal state in order to have b + τ -bit security. The additional
internal state is designed using the idea of f9 [44], which is a BC-based message
authentication code.

– The first b-bit internal state is updated by iterating a TBC and absorbing a
data block (AD/plaintext/ciphertext block), and the output of the last TBC
call becomes the first b-bit tag. The idea comes from PFB.

– The remaining τ -bit internal state is defined by XORing outputs of TBC
calls. The idea comes from f9, but our structure is slightly different from f9.
In PFB Plus, a TBC is not performed after XORing all outputs of TBC calls
(with b− τ -bit truncation), which keeps the internal state size b+ τ bits. On
the other hand, in f9, a block cipher is performed after XORing all outputs
of block cipher calls.

Regarding tweak elements, as shown by ΘCB [29], for the sake of perfect privacy,
the nonce and the block counter are injected.



Algorithm 1 PFB Plus

Encryption PFB Plus.Enc[ẼK ](N,A,M)

1: (M0, T2)← PFB Plus.Hash[ẼK ](A)
2: if A = ε then x← 1; else if A ̸= ε ∧ |A| mod b = 0 then x← 6; else x← 11

3: M1, . . . ,Mm
b←−M ; if M = ε then

{
m← 0; S1 ←M0; goto Step 7

}
4: for i = 1, . . . ,m−1 do

{
Wi ← ẼN,i,x

K (Mi−1); Ci ←Wi⊕Mi; T2 ← T2⊕ lsbτ (Wi)
}

5: Wm ← ẼN,m,x
K (Mm−1); Cm ← msb|Mm|(Wm)⊕Mm

6: T2 ← T2 ⊕ lsbτ (Wm); S1 ← ozp(Mm)⊕ (0|Mm|∥lsbb−|Mm|(Wm))
7: if |M | mod b = 0 then y ← x+ 1; else y ← x+ 3

8: S2 ← ẼN,m,y
K (S1); T2 ← lsbτ (S2)⊕ T2; T1 ← ẼN,m,y+1

K (S2)
9: C ← C1∥ · · · ∥Cm; T ← T1∥T2; return (C, T )

Decryption PFB Plus.Dec[ẼK ](N,A,C, T̂ )

1: (M0, T2)← PFB Plus.Hash[ẼK ](A)
2: if A = ε then x← 1; else if A ̸= ε ∧ |A| mod b = 0 then x← 6; else x← 11

3: C1, . . . , Cm
b←− C; if C = ε then

{
m← 0; S1 ←M0; goto Step 7

}
4: for i = 1, . . . ,m−1 do

{
Wi ← ẼN,i,x

K (Mi−1); Mi ←Wi⊕Ci; T2 ← T2⊕ lsbτ (Wi)
}

5: Wm ← ẼN,m,x
K (Mm); Mm ← msb|Cm|(Wm)⊕ Cm

6: T2 ← T2 ⊕ lsbτ (Wm); S1 ← ozp(Mm)⊕ (0|Cm|∥lsbb−|Cm|(Wm))
7: if |C| mod b = 0 then y ← x+ 1; else y ← x+ 3

8: S2 ← ẼN,m,y
K (S1); T2 ← lsbτ (S2)⊕ T2; T1 ← ẼN,m,y+1

K (S2); T ← T1∥T2

9: if T = T̂ then return M ←M1∥ · · · ∥Mm; else return reject

Hash PFB Plus.Hash[ẼK ](A)

1: if A = ε then return (0b, 0τ )

2: V0 ← 0b; H2 ← 0τ ; A1, . . . , Aa
b←− A

3: for i = 1, . . . , a− 1 do
{
Vi ← Ẽ0n,i,0

K (Ai ⊕ Vi−1); H2 ← lsbτ (Vi)⊕H2

}
4: Va ← Ẽ0n,a,0

K (ozp(Aa)⊕ Va−1); H1 ← Va; H2 ← lsbτ (Va)⊕H2; return (H1, H2)

3.1 Specification

The specification of PFB Plus is given in Algorithm 1 and is illustrated in Fig. 1.
Let ℓmax be a maximum number of AD/plaintext/ciphertext blocks, i.e., a ≤

ℓmax and m ≤ ℓmax. The tweak space T W consists of a nonce space N := {0, 1}n,
a block counter space (ℓmax] and a space for tweak separations (15]. The space
for tweak separations (15] is used to offer distinct permutations for handing AD,
encrypting plaintexts (or decrypting ciphertexts) and generating a tag. Hence,
the tweak space is defined as T W := {0, 1}n × (ℓmax]× (15].

The procedure of handing AD is given in PFB Plus.Hash. The procedure of
encrypting a plaintext is given in the steps 2-5 of PFB Plus.Enc, and the proce-
dure of generating a tag is given in the steps 6-9. The procedure of decrypting
a ciphertext is given in the steps 2-5 of PFB Plus.Dec, and the procedure of ver-
ifying a tag is given in the steps 6-9. Note that the tweaks x and y are defined
according to the lengths of AD A and of a plaintext M (more precisely, whether
AD is empty or not, whether the one-zero padding is applied to A or not, and
whether it is applied to M or not). The concrete values are given below:
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Fig. 1. PFB Plus.Hash and PFB Plus.Enc. A1, . . . , Aa
b←− A (in the hash procedure);

M1, . . . ,Mm
b←−M (in the encryption procedure).

– if A = ε ∧ |M | mod b = 0 then (x, y) = (1, 2),
– if A = ε ∧ |M | mod b ̸= 0 then (x, y) = (1, 4),
– if A ̸= ε ∧ |A| mod b = 0 ∧ |M | mod b = 0 then (x, y) = (6, 7),
– if A ̸= ε ∧ |A| mod b = 0 ∧ |M | mod b ̸= 0 then (x, y) = (6, 9),
– if A ̸= ε ∧ |A| mod b ̸= 0 ∧ |M | mod b = 0 then (x, y) = (11, 12), and
– if A ̸= ε ∧ |A| mod b ̸= 0 ∧ |M | mod b ̸= 0 then (x, y) = (11, 14).

3.2 Privacy and Authenticity Bounds of PFB Plus

Theorem 1.

Advpriv

PFB Plus[ẼK ]
(σE , t) ≤ Advtprp

ẼK
(σE , t+O(σE)) ,

Advauth
PFB Plus[ẼK ]

((qE , qD, σ), t) ≤
qD · 2b−τ+1

(2b − 1)2
+Advtprp

ẼK
(σ, t+O(σ)) .

3.3 Parallelizable Version

Although PFB Plus is not parallelizable, a parallelizable nAEAD with 2b-bit
security can be designed by basing on ΘCB (instead of PFB). In ΘCB, a b-bit
value is defined by XORing plaintext blocks, and then the result becomes an
input to the TBC call to define a tag. In the modified version, a 2b-bit value
is defined by PMAC Plus’s state updating with plaintext blocks, and then the
result becomes inputs to the TBC calls to define a tag. Note that the state size
of the parallelizable version is grater than that of PFB Plus by the additional
b-bit internal state. The detail is given in the full version of this paper [34].

4 Proof of Theorem 1

Firstly, the keyed TBC ẼK forK
$←− K is replaced with a TRP P̃

$←− P̃erm
(
T W, {0, 1}b

)
.

The replacement offers the TPRP-termsAdvtprp

ẼK
(σE , t+O(σE)) andAdvtprp

ẼK
(σ, t+



O(σ)), and then the remaining works are to upper-bound the advantagesAdvpriv

PFB Plus[P̃ ]
(σE)

and Advauth
PFB Plus[P̃ ]

(qE , qD, σ), where adversaries are computationally unbounded

algorithms and the complexities are solely measured by the numbers of queries.
Without loss of generality, adversaries are deterministic.

Regarding Advpriv

PFB Plus[P̃ ]
(σE), as tweaks of P̃ are all distinct, all output

blocks of P̃ defined by encryption queries are chosen independently and uni-
formly at random from {0, 1}b. We thus have Advpriv

PFB Plus[P̃ ]
(σE) = 0.

In the following, we focus on upper-bounding Advauth
PFB Plus[P̃ ]

(qE , qD, σ).

4.1 Upper-Bounding Advauth
PFB Plus[P̃ ]

(qE , qD, σ)

Firstly, we fix a decryption query (N (d), A(d), C(d), T̂ (d)), and upper-bound the
probability that an adversary forges at the decryption query.

In the analysis, we use the following notations. Values/variables correspond-
ing with the decryption query are denoted by using the superscript of (d) such
as N (d), M (d), etc. Hence, this analysis upper-bounds Pr[T (d) = T̂ (d)]. The
lengths a and m are denoted by ad and md, respectively. Similarly, for an en-
cryption query (N (e), A(e),M (e)), values/variables corresponding with the en-
cryption query are denoted by using the superscript of (e), and the lengths a
and m are denoted by ae and me, respectively.

We next define two cases that are used to upper-bound Pr[T (d) = T̂ (d)].

– Case1: for any previous encryption query (N (e), A(e),M (e)),

N (e) ̸= N (d) ∨me ̸= md ∨ y(e) ̸= y(d).

– Case2: for some previous encryption query (N (e), A(e),M (e)),

N (e) = N (d) ∧me = md ∧ y(e) = y(d).

Using these cases, we have

Pr[T (d) = T̂ (d)] ≤ max
{
Pr

[
T (d) = T̂ (d)

∣∣∣Case1] ,Pr [T (d) = T̂ (d)
∣∣∣Case2]} .

These probabilities are analyzed in Subsect. 4.2 and Subsects. 4.3-4.9, respec-
tively. The upper-bounds are given in Eqs. (1) and (4), respectively, and give

Advauth
PFB Plus[P̃ ]

(qE , qD, σ) ≤ qD ·max

{
1

2b+τ
,
2b−τ+1

(2b − 1)2

}
=

qD · 2b−τ+1

(2b − 1)2
.

4.2 Upper-Bounding Pr
[
T (d) = T̂ (d)

∣∣∣Case1]
In Case1, the tweak tuples (y(d), N (d), z(d)) and (y(d) + 1, N (d), z(d)) with which

the outputs of P̃ define S
(d)
2 and T

(d)
1 are distinct from the tweak triples defined



by the previous encryption queries. Hence, T
(d)
1 and T

(d)
2 are chosen uniformly

at random from {0, 1}b and independently of the previous outputs of P̃ . We thus
have

Pr
[
T (d) = T̂ (d)

∣∣∣Case1] ≤ 1

2b+τ
. (1)

4.3 Upper-Bounding Pr
[
T (d) = T̂ (d)

∣∣∣Case2]
In Case2, S

(d)
2 = S

(e)
2 ⇔ S

(d)
1 = S

(e)
1 is satisfied (as P̃N(d),y(d),md and P̃N(e),y(e),me

are the same permutation). Hence, we can focus on the cases: S
(d)
1 ̸= S

(e)
1 ∧S

(d)
2 ̸=

S
(e)
2 ; S

(d)
1 = S

(e)
1 ∧ S

(d)
2 = S

(e)
2 . Using these cases, we have

Pr
[
T (d) = T̂ (d)

∣∣∣Case2] = Pr
[
T (d) = T̂ (d) ∧ S

(d)
1 ̸= S

(e)
1 ∧ S

(d)
2 ̸= S

(e)
2

∣∣∣Case2]
+ Pr

[
T (d) = T̂ (d) ∧ S

(d)
1 = S

(e)
1 ∧ S

(d)
2 = S

(e)
2

∣∣∣Case2]
≤Pr

[
T (d) = T̂ (d)

∣∣∣Case2 ∧ S
(d)
1 ̸= S

(e)
1 ∧ S

(d)
2 ̸= S

(e)
2

]
︸ ︷︷ ︸

=:p1

(2)

+ Pr
[
S
(d)
1 = S

(e)
1 ∧ T

(d)
2 = T̂

(d)
2

∣∣∣Case2]︸ ︷︷ ︸
=:p2

. (3)

The probabilities p1 and p2 are analyzed in Subsect. 4.4 and Subsects. 4.4-4.9,
respectively. The upper-bounds are given in Eqs. (5) and (6), respectively, and
give

Pr
[
T (d) = T̂ (d)

∣∣∣Case2] ≤ 2b−τ

(2b − 1)2
+

2b−τ

(2b − 1)2
=

2b−τ+1

(2b − 1)2
. (4)

4.4 Upper-Bounding p1 in (2)

By S
(d)
1 ̸= S

(e)
1 ∧S

(d)
2 ̸= S

(e)
2 , T

(d)
1 is chosen uniformly at random from {0, 1}b\{T (e)

1 },
and S

(d)
2 is chosen uniformly at random from {0, 1}b\{S(e)

2 }, i.e., T
(d)
2 is chosen

uniformly at random from at least (2b − 1)/2b−τ values. Hence, we have

p1 = Pr
[
T̂ (d) = T (d)

∣∣∣S(d)
1 ̸= S

(e)
1 ∧ S

(d)
2 ̸= S

(e)
2 ∧ Case2

]
≤ 2b−τ

(2b − 1)2
. (5)

4.5 Upper-Bounding p2 in (3)

Let

I ̸=V =
{
i ∈ [max{ae, ad}]

∣∣∣V (d)
i ̸= V

(e)
i

}
, I ̸=W =

{
i ∈ [md]

∣∣∣W (d)
i ̸= W

(e)
i

}
be sets of indexes with distinct blocks for V and W , respectively, where V

(d)
i := ε

for i > ad, and V
(e)
i := ε for i > ae.

This analysis uses the following four sub-cases of Case2.



– Case2-1 : Case2 ∧ ad = ae ∧ |I ̸=V |+ |I
̸=
W | = 1.

– Case2-2 : Case2 ∧ ad = ae ∧ |I ̸=V |+ |I
̸=
W | ≥ 2.

– Case2-3 : Case2 ∧ ad ̸= ae ∧ |I ̸=W | = 0 ∧A(d) ̸= ε ∧A(e) ̸= ε.

– Case2-4 : Case2 ∧ ad ̸= ae ∧ |I ̸=W | ≥ 1 ∧A(d) ̸= ε ∧A(e) ̸= ε.

Note that Case2⇒ Case2-1 ∨ Case2-2 ∨ Case2-3 ∨ Case2-4 is satisfied by the fol-
lowing reasons. Regarding the sets I ̸=V and I ̸=W , the non-equation (A(d), C(d)) ̸=
(A(e), C(e)) and the condition y(e) = y(d) (from Case2) ensure the following:

|I ̸=V |+ |I
̸=
W | ≥ 1.

Regarding the AD A(d) and A(e), the condition y(e) = y(d) ensures the following:(
A(d) = A(e) = ε

)
∨
(
A(d) ̸= ε,A(e) ̸= ε

)
.

Let CollS,T := S
(d)
1 = S

(e)
1 ∧ T̂

(d)
2 = T

(e)
2 . Then, using the four cases, we have

p2 = Pr [CollS,T |Case2] ≤max
{
Pr [CollS,T |Case2-1] ,Pr [CollS,T |Case2-2] ,

Pr [CollS,T |Case2-3] ,Pr [CollS,T |Case2-4]
}

.

These probabilities are analyzed in Subsects. 4.6, 4.7, 4.8, and 4.9, respectively.
These upper-bounds are given in Eqs. (7), (8), (9), and (10), respectively, and
give

p2 ≤
2b−τ

(2b − 1)2
. (6)

4.6 Upper-Bounding Pr
[
S

(d)
1 = S

(e)
1 ∧ T

(d)
2 = T̂

(d)
2

∣∣∣Case2-1]
In Case2-1, the number of positions with distinct output blocks is 1, and thus

the output difference is propagated to S1, i.e., S
(d)
1 ̸= S

(e)
1 is satisfied. Hence, we

have
Pr

[
S
(d)
1 = S

(e)
1 ∧ T

(d)
2 = T̂

(d)
2

∣∣∣Case2-1] = 0 . (7)

4.7 Upper-Bounding Pr
[
S

(d)
1 = S

(e)
1 ∧ T

(d)
2 = T̂

(d)
2

∣∣∣Case2-2]
First, notations used in the analysis are introduced. Let I ̸= = I ̸=V ∪

{
i+ ad

∣∣∣i ∈ I ̸=W}
be the set of indexes with distinct output blocks (counting from the hash func-
tion). Let I ̸= = {i1, i2, . . . , iγ} where i1 < i2 < · · · < iγ and γ ≥ 2. For i ∈ I ̸=,
the i-th output block is denoted as Zi, where Zi := Vi if i ≤ ad; Zi := Wi−ad

if
i > ad, and the data block (AD or ciphertext block) XORed with Zi is denoted
as Di: Di = Ai+1 (if i ≤ ad − 2); Dad−1 = ozp(Aad

); Dad
= 0b; Di = Ci−ad

(if
ad < i < ad +md); Dad+md

= ozp(Cmd
).



Then, the collision S
(d)
1 = S

(e)
1 is considered. The collision occurs if and

only if Z
(d)
iγ
⊕ D

(d)
iγ

= Z
(e)
iγ
⊕ D

(e)
iγ

is satisfied. In order to satisfy the equation,

D
(d)
iγ
̸= D

(e)
iγ

and Z
(d)
iγ
̸= Z

(e)
iγ

must be satisfied. As Z
(d)
iγ

is chosen uniformly

at random from {0, 1}b\{Z(e)
iγ
}, we have Pr[S

(d)
1 = S

(e)
1 ] = Pr[Z

(d)
iγ
⊕ D

(d)
iγ

=

Z
(e)
iγ
⊕D

(e)
iγ

] ≤ 1/(2b − 1).

Next, the collision T
(d)
2 = T̂

(d)
2 is considered. The collision is of the form:

lsbτ
(
Z

(d)
i1

)
= T̂

(d)
2 ⊕ lsbτ

(⊕
i∈[ad+md]\{i1} Z

(d)
i ⊕ S

(d)
2

)
. As Z

(d)
i1

is chosen uni-

formly at random from {0, 1}b\{Z(e)
i1
}, we have Pr[T (d)

2 = T̂
(d)
2 ] ≤ 2b−τ/(2b− 1).

These upper-bounds give

Pr
[
S
(d)
1 = S

(e)
1 ∧ T

(d)
2 = T̂

(d)
2

∣∣∣Case2-2] ≤ 2b−τ

(2b − 1)2
. (8)

4.8 Upper-Bounding Pr
[
S

(d)
1 = S

(e)
1 ∧ T

(d)
2 = T̂

(d)
2

∣∣∣Case2-3]
First, the collision T

(d)
2 = T̂

(d)
2 is considered. The collision is of the form lsbτ (V

(d)
1 ) =

T̂
(d)
2 ⊕lsbτ

(⊕ad

i=2 V
(d)
i ⊕

⊕md

i=1 W
(d)
i ⊕ S

(d)
2

)
. As V

(d)
1 is chosen uniformly at ran-

dom from {0, 1}b\{V (e)
1 } (if the input blocks of V

(d)
1 and V

(e)
1 are the same,

“\{V (e)
1 }” is removed), we have Pr[T

(d)
2 = T̂

(d)
2 ] ≤ 2b−τ/(2b − 1).

Next, the collision S
(d)
1 = S

(e)
1 is considered. In Case2-3, S

(d)
1 = S

(e)
1 ⇔

H
(d)
1 = H

(e)
1 ⇔ V

(d)
ad = V

(e)
ae is satisfied. When ad > ae ≥ 1, V

(d)
ad is chosen

independently of V
(d)
1 , and chosen uniformly at random from {0, 1}b. When

1 ≤ ad < ae, V
(e)
ae is chosen independently of V

(d)
1 , and chosen uniformly at

random from {0, 1}b. Hence, we have Pr[S
(d)
1 = S

(e)
1 ] ≤ 1/2b.

These upper-bounds give

Pr
[
S
(d)
1 = S

(e)
1 ∧ T

(d)
2 = T̂

(e)
2

∣∣∣Case2-3] ≤ 1

2τ (2b − 1)
. (9)

4.9 Upper-Bounding Pr
[
S

(d)
1 = S

(e)
1 ∧ T

(d)
2 = T̂

(d)
2

∣∣∣Case2-4]
First, the collision S

(d)
1 = S

(e)
1 is considered. Let i = max I ̸=W . The collision

implies W
(d)
i ⊕ C

(d)
i = W

(e)
i ⊕ C

(e)
i . As W

(d)
i are chosen uniformly at random

from {0, 1}b\{W (e)
i }, we have Pr[S

(d)
1 = S

(e)
1 ] ≤ 1/(2b − 1).

Next, the collision T
(d)
2 = T̂

(d)
2 is considered. The collision is of the form

lsbτ
(
V

(d)
1

)
= T̂

(d)
2 ⊕ lsbτ

(⊕ad

i=2 V
(d)
i ⊕

⊕md

i=1 W
(d)
i ⊕ S

(d)
2

)
. As V

(d)
1 is chosen

uniformly at random from {0, 1}b\{V (e)
1 } (if the input blocks of V

(d)
1 and V

(e)
1

are the same, “\{V (e)
1 }” is removed), we have Pr[T

(d)
2 = T̂

(d)
2 ] ≤ 2b−τ/(2b − 1).



These upper-bounds give

Pr
[
S
(d)
1 = S

(e)
1 ∧ T

(d)
2 = T̂

(d)
2

∣∣∣Case2-4] ≤ 2b−τ

(2b − 1)2
. (10)

5 PFBω: Specification and Security Bounds

We design PFBω, a TBC-based nAEAD mode with ωb-bit security (under some
condition), where 1 ≤ ω. PFBω is an extension of PFB Plus, and the internal
state size is ωb bits for achieving ωb-bit security. The procedure of updating
the first b-bit internal state of PFBω is designed by using the PFB’s idea [35].
The procedure of updating the remaining (ω − 1)b-bit internal sate is designed
by extending the PMAC Plus’s idea [46]7. Using these ideas, the procedure of
updating the internal state of PFBω is designed as follows.

– The first b-bit internal state is updated by iterating a TBC and absorbing a
data block (AD/plaintext/ciphertext block), and the output of the last TBC
call becomes the first b-bit tag. The idea comes from PFB.

– The i-th b-bit internal state (2 ≤ i ≤ ω) is updated by multiplying an output
of a TBC with a constant over GF (2b)∗ and then XORing the result with
the current internal state. This is an extension of the PMAC Plus’s idea. In
order to have ωb-bit security, a condition on the constants is required, which
is given in the next subsection.

Regarding tweak elements, as PFB Plus, the nonce and the block counter are
injected in order to ensure perfect privacy.

5.1 Specification

For the sake of simplifying the specification and the security proof, we consider
only the case where the bit lengths of AD and plaintext/ciphertext are multiple of
b, i.e., |A| mod b = 0, |M | mod b = 0 and |C| mod b = 0. Note that arbitrary
length data can be handled by introducing the one-zero padding ozp as PFB Plus,
and an extra TBC call by the padding can be avoided by adding 2 bits to the
tweak space for distinguishing whether the padding is applied or not for each of
AD and plaintext/ciphertext.

The specification of PFBω is given in Algorithm 2 and is illustrated in Fig. 2.
Let amax be a maximum number of AD blocks, i.e., a ≤ amax, and mmax

be a maximum number of plaintext/ciphertext blocks, i.e., m ≤ mmax. The
tweak space T W consists of a nonce space N := {0, 1}n, a counter space for
AD blocks (amax], a counter space for plaintext/ciphertext blocks (mmax], and
a space for tweak separations (ω]. Hence, the tweak space is defined as T W :=

N × (amax] × (mmax] × (ω]. Let α
(ℓ)
i,j be a b-bit constant in GF (2b)∗ with the

following condition.

7 PMAC Plus is a block-cipher-based message authentication code and has 2b-bit in-
ternal state, which is updated by using outputs of BC calls, XOR operations and
constant field multiplications.



Algorithm 2 PFBω

Encryption PFBω.Enc[ẼK ](N,A,M)

1: M1, . . . ,Mm
b←−M ; (M0, S2, . . . , Sω, a, ℓ)← PFBω.Hash[ẼK ](A,m)

2: if M = ε then
{
m← 0; goto Step 7

}
3: for j = 1, . . . ,m do
4: Za+j−1 ← ẼN,a,j,0

K (Mj−1); Cj ← Za+j−1 ⊕Mj

5: for i = 2, . . . , ω do
{
Si ← α

(ℓ)
i,a+j−1 · Za+j−1 ⊕ Si

}
6: end for
7: S1 ←Mm; Za+m ← ẼN,a,m,1

K (S1); T1 ← Za+m

8: for i = 2, . . . , ω do
{
Si ← α

(ℓ)
i,a+m · Za+m ⊕ Si; Ti ← ẼN,a,m,i

K (Si)
}

9: C ← C1∥ · · · ∥Cm; T ← T1∥ · · · ∥Tω; return (C, T )

Decryption PFBω.Dec[ẼK ](N,A,C, T̂ )

1: (M0, S2, . . . , Sω, a, ℓ)← PFBω.Hash[ẼK ](A,m); C1, . . . , Cm
b←− C

2: if C = ε then
{
m← 0; goto Step 7

}
3: for j = 1, . . . ,m do
4: Za+j−1 ← ẼN,a,j,0

K (Mj−1); Mj ← Za+j−1 ⊕ Cj ;

5: for i = 2, . . . , ω do
{
Si ← α

(ℓ)
i,a+j−1 ·Wa+j−1 ⊕ Si

}
6: end for
7: S1 ←Mm; Za+m ← ẼN,a,m,1

K (S1); T1 ← Za+m

8: for i = 2, . . . , ω do
{
Si ← α

(ℓ)
i,a+m · Za+m ⊕ Si; Ti ← ẼN,a,m,i

K (Si)
}

9: T ← T1∥ · · · ∥Tω; if T = T̂ then return M ←M1∥ · · · ∥Mm; else return reject

Hash PFBω.Hash[ẼK ](A,m)

1: if A = ε then return (0b, . . . , 0b, 0,m)

2: Z0 ← 0b; A1, . . . , Aa
b←− A; ℓ← a+m; for i = 2, . . . , ω do Hi ← 0b

3: for j = 1, . . . , a− 1 do
4: Zj ← Ẽ0n,j,0,0

K (Zj−1 ⊕Aj); for i = 2, . . . , ω do Hi ← α
(ℓ)
i,j · Zj ⊕Hi

5: end for
6: H1 ← Za−1 ⊕Aa return (H1, . . . , Hω, a, ℓ)

– Cond: for any 1 ≤ ℓ ≤ amax + mmax, a ω − 1 × ℓ matrix with an i-th row

and j-th column element α
(ℓ)
i,j is MDS, i.e., for any 1 ≤ µ ≤ min{ℓ, ω − 1},

2 ≤ i1 < i2 < · · · < iµ ≤ ω, and 1 ≤ j1 < j2 < · · · < jµ ≤ ℓ,

rank


α
(ℓ)
i1,j1

α
(ℓ)
i1,j2

· · · α(ℓ)
i1,jµ

α
(ℓ)
i2,j1

α
(ℓ)
i2,j2

· · · α(ℓ)
i2,jµ

...
...

. . .
...

α
(ℓ)
iµ,jµ

α
(ℓ)
iµ,jµ

· · · α(ℓ)
iµ,jµ

 = µ .

Examples of constants for ω = 2, 3 are given below.

– ω = 2: α
(ℓ)
2,j := 1 for all ℓ, j. The second b-bit internal state is updated by

XORing all outputs of TBC calls. This is the same as the PFB Plus’s internal
state updating (without truncations).
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Fig. 2. PFBω.Enc and PFBω.Hash.

– ω = 3: α
(ℓ)
2,j := 1 and α

(ℓ)
3,j := 2ℓ−j for all ℓ, j. This is the same as the

PMAC Plus’s internal state updating.

5.2 Privacy and Authenticity Bounds of PFBω

Theorem 2.

Advpriv

PFBω[ẼK ]
(σE , t) ≤ Advtprp

ẼK
(σE , t+O(σE)) ,

Advauth
PFBω[ẼK ]

((qE , qD, σ), t) ≤
2ω · qD

(2b − 1)ω
+Advtprp

ẼK
(σ, t+O(σ)) .

5.3 Parallelizable Version

Although PFBω is not parallelizable, a parallelizable nAEAD with ωb-bit security
can be designed by basing on ΘCB (instead of PFB). In ΘCB, a b-bit value is
defined by XORing plaintext blocks, and then the result becomes an input to
the TBC call to define a tag. In the modified version, a ωb-bit value is defined
by the PFBω’s state updating (with the condition Cond) and plaintext blocks,
and then the result becomes inputs to the TBC calls to define a tag. Note that
the state size of the parallelizable version is grater than that of PFB Plus by
the additional b-bit internal state. The detail is given in the full version of this
paper [34].



6 Proof of Theorem 2

Firstly, the keyed TBC ẼK forK
$←− K is replaced with a TRP P̃

$←− P̃erm
(
T W, {0, 1}b

)
.

The replacement offers the TPRP-termsAdvtprp

ẼK
(σE , t+O(σE)) andAdvtprp

ẼK
(σ, t+

O(σ)) in the upper-bounds, and then the remaining works are to upper-bound

the advantages Advpriv

PFBω[P̃ ]
(σE) and Advauth

PFBω[P̃ ]
(qE , qD, σ), where adversaries

are computationally unbounded algorithms and the complexities are solely mea-
sured by the numbers of queries. Without loss of generality, adversaries are
deterministic.

Regarding Advpriv

PFBω[P̃ ]
(σE), as tweaks of P̃ are all distinct, all output blocks

of P̃ defined by encryption queries are chosen independently and uniformly at
random from {0, 1}b. We thus have Advpriv

PFBω[P̃ ]
(σE) = 0.

Hereafter, we focus on upper-bounding Advauth
PFBω[P̃ ]

(qE , qD, σ).

6.1 Upper-Bonding Advauth
PFBω[P̃ ]

(qE , qD, σ)

We first fix a decryption query (N (d), A(d), C(d), T̂ (d)) and upper-bound the prob-
ability that A forges at the decryption query. Values/variables corresponding
with the decryption query are denoted by using the superscript of (d) such as
N (d), M (d), etc. The lengths a, m and ℓ are denoted by ad, md and ℓd, respec-
tively. Thus Pr[T (d) = T̂ (d)] is upper-bounded in the analysis. Similarly, for an
encryption query (N (e), A(e),M (e)), values/variables corresponding with the de-
cryption query are denoted by using the superscript of (e), and the lengths a, m
and ℓ are denoted by ae, me and ℓe, respectively.

Then, Pr[T (d) = T̂ (d)] is upper-bounded using the following two cases.

– Case1: ∀enc. query (N (e), A(e),M (e)): N (e) ̸= N (d) ∨ ae ̸= ad ∨me ̸= md.
– Case2: ∃enc. query (N (e), A(e),M (e)) s.t. N (e) = N (d) ∧ ae = ad ∧me = md.

Using these cases, we have

Pr[T (d) = T̂ (d)] ≤ max
{
Pr

[
T (d) = T̂ (d)

∣∣∣Case1] ,Pr [T (d) = T̂ (d)
∣∣∣Case2]} .

These probabilities are analyzed in Subsects. 6.2 and 6.3, respectively. The
upper-bounds are given in Eqs. (12) and (13), respectively, and give

Advauth
PFBω[P̃ ]

(qE , qD, σ) ≤
2ω · qD

(2b − 1)ω
. (11)

6.2 Upper-Bounding Pr
[
T (d) = T̂ (d)

∣∣∣Case1]
In Case1, tag blocks T

(d)
1 , T

(d)
2 , . . . , T

(d)
ω are chosen independently and uniformly

at random from {0, 1}b. Hence, we have

Pr
[
T (d) = T̂ (d)

∣∣∣Case1] ≤ 1

2ωb
. (12)



6.3 Upper-Bounding Pr
[
T̂ (d) = T (d)

∣∣∣Case2]
Let (N (e), A(e),M (e)) be an encryption query with N (e) = N (d)∧ae = ad∧me =
md. The analysis considers the following sub-cases where 0 ≤ µ ≤ ω.

Case2-µ : ∃µ indexes i1 < · · · < iµ s.t.
(
∀i ∈ [i1, . . . , iµ] : S

(d)
i = S

(e)
i

)
∧(

∀i ∈ [ω]\{i1, . . . , iµ} : S(d)
i ̸= S

(e)
i

)
.

Using the sub-cases, we have

Pr
[
T (d) = T̂ (d)

∣∣∣Case2] ≤ ω∑
µ=0

Pr
[
T (d) = T̂ (d) ∧ Case2-µ

∣∣∣Case2]
≤ 1

(2b − 1)ω
+

ω∑
µ=1

2 ·
(
ω − 1

µ− 1

)
· 1

(2b − 1)ω
≤ 2ω

(2b − 1)ω
. (13)

The probabilities Pr
[
T (d) = T̂ (d) ∧ Case2-µ

∣∣∣Case2] for 0 ≤ µ ≤ ω are upper-

bounded below. In the analyses, the following set is used: I ̸= =
{
j
∣∣∣Z(e)

j ̸= Z
(d)
j

}
.

• µ = 0. In this case, for all i, S
(d)
i ̸= S

(e)
i is satisfied, and thus T

(d)
i is chosen

uniformly at random from {0, 1}b\{T (e)
i } (as both T

(e)
i and T

(d)
i are defined by

the same permutation P̃N(d),ad,md,i). Hence, we have

Pr
[
T (d) = T̂ (d) ∧ Case2-0

∣∣∣Case2] ≤ 1

(2b − 1)ω
.

• 1 ≤ µ ≤ ω− 1∧ S(d)
1 = S

(e)
1 . Note that one has i1 = 1. First, µ− 1 indexes

1 < i2 < · · · < iµ are fixed, and the following case is considered:

– ∀i ∈ {1, i2, . . . , iµ} : S(d)
i = S

(e)
i is satisfied, and

– ∀i ∈ [ω]\{1, i2, . . . , iµ} : S(d)
i ̸= S

(e)
i is satisfied.

For each i ∈ [ω]\{1, i2, . . . , iµ}, T (d)
i is chosen uniformly at random from

{0, 1}b\{T (e)
i }, we have Pr[∀i ∈ [ω]\{1, i2, . . . , iµ} : T (d)

i = T̂
(d)
i ] ≤ 1/(2b−1)ω−µ.

Next, the collisions S
(d)
i = S

(e)
i where i ∈ {1, i2, . . . , iµ} are considered. Let

I ̸= = {j1, . . . , jγ} such that j1 < · · · < jγ (note that ∀j ∈ I ̸= : Z
(d)
j ̸= Z

(e)
j ).

The collisions are of the following forms:

S
(d)
1 = S

(e)
1 ⇔ Z

(d)
jγ
⊕ Z

(e)
jγ︸ ︷︷ ︸

=:Zjγ

= D
(d)
jγ+1 ⊕D

(e)
jγ+1,

where Djγ+1 ∈ {Ajγ+1, Cjγ−a+1}, and for i ∈ {i2, . . . , iµ},

S
(d)
i = S

(e)
i ⇔ α

(ℓd)
i,j1
· (Z(e)

j1
⊕ Z

(d)
j1

)︸ ︷︷ ︸
=:Zj1

⊕ · · · ⊕ α
(ℓd)
i,jγ
· (Z(e)

jγ
⊕ Z

(d)
jγ

)︸ ︷︷ ︸
=:Zjγ

= 0b.



If γ ≤ µ − 1, by Cond, the collisions S
(d)
i = S

(e)
i where i ∈ {i2, . . . , iµ} offer a

unique solution (Zj1 , . . . , Zjγ ) = (0b, · · · , 0b). Hence, the collisions do not occur.

If γ ≥ µ, then the collision S
(d)
1 = S

(e)
1 offers a solution Zjγ = D

(d)
jγ+1⊕D

(e)
jγ+1. The

collisions S
(d)
i2

= S
(e)
i2

, . . . , S
(d)
iµ

= S
(e)
iµ

, fixing Zjω , . . . , Zjγ−1 , offer a unique solu-

tion for (Zj1 , . . . , Zjω−1) by Cond. Since for each j ∈ {j1, . . . , jω−1, jγ}, Z(d)
j is

chosen uniformly at random from {0, 1}b\{Z(e)
j }, we have Pr[∀i ∈ {1, i2, . . . , iµ} :

S
(d)
i = S

(e)
i ] ≤ 1/(2b − 1)µ.

These upper-bounds give

Pr
[
T (d) = T̂ (d) ∧ Case2-µ

∣∣∣Case2] ≤ (
ω − 1

µ− 1

)
· 1

(2b − 1)ω
.

• 1 ≤ µ ≤ ω − 1 ∧ S
(d)
1 ̸= S

(e)
1 : This analysis is the same as that of the case:

1 ≤ µ ≤ ω − 1 ∧ S
(d)
1 = S

(e)
1 . µ indexes 1 < i1 < i2 < · · · < iµ are fixed, and the

following case is considered:

– ∀i ∈ {i1, i2, . . . , iµ} : S(d)
i = S

(e)
i is satisfied, and

– ∀i ∈ [ω]\{i1, i2, . . . , iµ} : S(d)
i ̸= S

(e)
i is satisfied.

Using the same analysis, we have Pr[∀i ∈ {i1, i2, . . . , iµ} : S(d)
i = S

(e)
i ] ≤ 1/(2b−

1)µ, and Pr[∀i ∈ [ω]\{i1, i2, . . . , iµ} : T (d)
i = T̂

(d)
i ] ≤ 1/(2b−1)ω−µ. These upper-

bounds give

Pr
[
T (d) = T̂ (d) ∧ Case2-µ

∣∣∣Case2] ≤ (
ω − 1

µ− 1

)
· 1

(2b − 1)ω
.

7 SKINNYe-64-256

SKINNY [8] is a tweakable block cipher adopting the tweakey framework [27]
that treats the key input and the tweak input in the same way. The combined
state is called tweakey which does not make a particular distinction about which
part is used as a key and the tweak. For the 64-bit block, SKINNY supports the
tweakey sizes up to 192 bits, (i.e. SKINNY-64-192) while what we need is 256-bit
tweakey. In Sect 7.1, we show how to extend the design of SKINNY to support a
256-bit tweakey. The rationale of our design choices are explained in Sect. 7.2.
Security evaluation of SKINNYe-64-256 is given in Sect. 7.3.

7.1 Specification

Round Transformation. We only briefly explain the round transformation
of SKINNYe-64-256 because it does not modify the round transformation of
SKINNY. Refer to the original SKINNY document [8] for the details of each
operation.



The 64-bit internal state is viewed as a 4×4 square array of nibbles. SKINNYe-
64-256 consists of 44 rounds, in which one round transformation is defined
as an application of the following 5 operations: SubCells, AddRoundConstant,
AddRoundTweakey, ShiftRows and MixColumns.

SubCells. A 4-bit S-box is applied for each nibble.

AddRoundConstant. A 6-bit constant generated by an LFSR and a single
fixed bit are XORed to the top three rows of the first column.

AddRoundTweakey. The top two rows of all tweakey arrays are extracted
and XORed to the top two rows of the state.

ShiftRows. Each nibble in row i is rotated by i positions to the right.

MixColumns. Each column is multiplied by a 4× 4 binary matrix.

New Tweakey Schedule. The 256-bit tweakey state consists of four 4 × 4
square arrays of nibbles. Each of them are called TK1, TK2, TK3 and TK4.

The tweakey states are updated as follows. First, a permutation PT is applied
on the nibble positions of all tweakey arrays TK1, TK2, TK3, and TK4, where

PT is defined as (0, . . . , 15)
PT7−→ (9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7).

Finally, every nibble of the first and second rows of TK2, TK3, and TK4 are
individually updated with the following LFSRs.

TK2 : (x3∥x2∥x1∥x0)→ (x2∥x1∥x0∥x3 ⊕ x2)

TK3 : (x3∥x2∥x1∥x0)→ (x0 ⊕ x3||x3||x2||x1)

TK4 : (x3∥x2∥x1∥x0)→ (x2∥x1∥x2 ⊕ x0∥x3 ⊕ x2 ⊕ x1)

7.2 Rationale for Newly Designed Parts

Design from Scratch vs Extension of the Original. The designers of
SKINNY first searched for good parameters of ShiftRows and MixColumns to
maximize the security in the single-key setting, and then later searched for the
tweakey schedule to maximize the security in the TK2 and TK3 settings. Later
Nikolić searched for better parameters to achieve higher number of active S-boxes
[37]. The first choice we made is whether we should search for good parameters
for TK4 from scratch as Nikolić did or we should extend the original SKINNY
that was optimized for TK1, TK2, and TK3. In the end, we determined to design
SKINNYe-64-256 as a natural extension of the original SKINNY-64, i.e. not mod-
ify any components to realize TK1, TK2, and TK3, though we do not have any
application to use smaller tweakey sizes. This is all for higher reliability. The
original SKINNY has received a lot of cryptanalytic effort by third-party and
seems to generate a consensus that the design choice of SKINNY is conservative,
and thus secure. We would like to design SKINNYe-64-256 so that those existing
results contribute to the reliability of the security of SKINNYe-64-256.

We stress that SKINNYe-64-256 was designed independently of the design
team of the original SKINNY. Security arguments on SKINNYe-64-256 in TK4
do not have any impact on the security of the original SKINNY.



Number of Rounds. Once the above strategy was established, the only com-
ponents we need to design are an LFSR to update the TK4 state and the number
of rounds. In SKINNY, the number of rounds for TK1, TK2 and TK3 are defined
to be 32, 36, and 40, respectively. As mentioned above, those choices look quite
conservative. Indeed, the maximum number of attacked rounds so far is 19 for
TK1 by related-tweaky impossible differential attacks [30, 42], 23 for TK2 by
related-tweaky impossible differential attacks [5, 30, 42], and 27 for TK3 by a
related-tweakey rectangle attack [30]. This made us think about not increasing
the number of rounds from TK3. In the end, to be consistent with the first deci-
sion, i.e. to make it a natural extension of the original SKINNY, we determined
to keep the same rate for increasing the number of rounds, namely 44 for TK4.

LFSR for TK4. To be a secure instantiation of the tweakey framework [27],
the LFSR must have a cycle of 15. The original LFSRs in SKINNY for TK2 and
TK3 are quite efficient: they only require a single XOR to the LFSR. By the
exhaustive search, We found that there is no more LFSR achieving cycle 15 only
with a single XOR. Moreover, we found that

– there is no LFSR having cycle 15 even with two XORs.
– it is impossible to achieve cycle 15 only by updating one output bit

In the end, we picked up the LFSR that updates 2 output bits with 3 XORs.

7.3 Bounds of the Number of Active S-boxes

Bounds for SKINNYe-64-256 (TK4). The designers of SKINNY evaluated
the tight bounds of the number of active S-boxes by using Mixed Integer Linear
Programming (MILP) by describing how to model the problem in details. We
extended their MILP model to derive the number of active S-boxes of SKINNYe-
64-256 (in TK4). The lower bounds of the number of active S-boxes for SK,
TK1, TK2, TK3 and TK4 are compared in Table 2. Note that according to the
designers, MILP sometimes took too long, and the designers only could give
upper bounds of the number of active S-boxes in such cases. The upper bounds
are denoted with the upper bar in Table 2.

Table 2 shows that TK4 is a natural extension of TK3 also for the increase
of the bounds. In particular, the comparison is clear in the following part.

– The bounds for 21 to 24 rounds for TK2 are 59, 64, 67, and 72, respectively.
– The bounds for 24 to 27 rounds for TK3 are 58, 60, 65, and 72, respectively.
– The bounds for 27 to 30 rounds for TK4 are 58, 62, 66, and 72, respectively.

The bounds for r rounds in TK2, r+3 rounds in TK3, and r+6 rounds in TK4
are almost the same. This also implies that our choice of the total number of
rounds (44 rounds for TK4, while 40 rounds for TK3 and 36 rounds for TK2) is
quite reasonable.

To be more precise, the designers of SKINNY need to ensure at least 64
active S-boxes because their 8-bit S-box for 128-bit block versions also allows
differential propagation with probability 2−2. For SKINNY-64, to ensure at least



Table 2. Lower bounds of the number of active Sboxes of SKINNY and SKINNYe. The
numbers for SK, TK1, TK2, TK3 and Lin are from the evaluation by the designers
[8], where numbers with upper line are the upper bounds. SK[4] shows the updated
tight bounds by Alfarano et al. [4]. Numbers for Lin’ and TK4 were derived by us.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SK 1 2 5 8 12 16 26 36 41 46 51 55 58 61 66
TK1 0 0 1 2 3 6 10 13 16 23 32 38 41 45 49
TK2 0 0 0 0 1 2 3 6 9 12 16 21 25 31 35
TK3 0 0 0 0 0 0 1 2 3 6 10 13 16 19 24
TK4 0 0 0 0 0 0 0 0 1 2 3 6 9 12 16

Lin 1 2 5 8 13 19 25 32 38 43 48 52 55 58 64

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

SK 75 82 88 92 96 102 108 114 116 124 132 138 136 148 158
SK[4]75 82 88 92 96 102 108 112 116 124 128 132 136 142 148
TK1 54 59 62 66 70 75 79 83 85 88 95 102 108 112 120
TK2 40 43 47 52 57 59 64 67 72 75 82 85 88 92 96
TK3 27 31 35 43 45 48 51 55 58 60 65 72 77 81 85
TK4 19 21 24 30 35 39 41 43 46 50 54 58 62 66 72

Lin 70 76 80 85 90 96 102 107 110 118 122 128 136 141 143
Lin’ 70 76 80 85 90 96 102 107 110 115 121 127 130 135 141

32 active S-boxes is sufficient to resist a single differential characteristic, which
is ensured only by 20 rounds even in TK4. Hence, our choice of 44 rounds is
more conservative than the original SKINNY supporting the 128-bit block.

Deriving Tight Bounds for Linear Cryptanalysis. As mentioned above,
the designers sometimes could not derive the tight bounds. Alfarano et al. [4]
later identified the tight bound for differential cryptanalysis in SK, but did not
show the bound for linear cryptanalysis. To present a better picture, we derived
the tight bounds.

Our approach is to apply the combination of Matsui’s search strategy [31]
with MILP proposed by Zhang et al. [47]. In short, this considers the bound
derived for r − 1 rounds to efficiently search for the bounds for r rounds. In
more precise, it restricts the sum of the number of active S-boxes from round 1
to round r − 1 and from round 2 to round r. This small changes allowed us to
derive the tight bounds for linear cryptanalysis up to 30 rounds.

8 Hardware Performance Evaluation

We evaluate the hardware performance of PFB Plus combined with SKINNYe-
64-256 and compare it with a conventional BBB scheme, namely PFB.



Choice of Competitor. We choose PFB as a competitor in hardware per-
formance evaluation because (i) it is the scheme PFB Plus based on, and (ii)
it shows the best performance in TI at the time of writing [35]. To achieve
the same security level, we use a 128-bit variant of the SKINNY family, namely
SKINNY-128-256 as an underlying cipher.

Design Policy. We follow the design policy for the previous PFB implemen-
tation [35]. The design defines a set of commands for processing block-aligned
data, and an external microcontroller is supposed to dispatches the commands
in an appropriate order to realize AD processing, encryption, and decryption
of AEAD. The design aims to accelerate the main processing part, while the
microcontroller is responsible for preparing the block-aligned data by padding
and choosing an appropriate ID. The designs store a key, nonce, and tweak in
its internal registers, and can process multiple data blocks without feeding the
data redundantly. For the purpose, the tweak is updated in place by integrated
nonce-updating circuitry.

Side-Channel Attack Countermeasure. We implement unprotected and
protected designs for each of the algorithms. For protected implementation, we
implement 3-share TI secure up to the first-order attacks. For protected im-
plementations, we also protect the on-the-fly tweakey schedule considering a
profiling attack8.

Register Cost. We first compare the register costs of PFB Plus[SKINNYe-64-
256] and PFB[SKINNY-128-256] with and without TI in Table 3. The table also
shows PFB[SKINNY-64-192] and SAEB[GIFT-128-128] in the previous work [35]
for comparison. Without TI, the security level determines the register cost: the
ones with 128- and 64-bit security need 386 and 256 bits of registers, respectively.
With TI, on the other hand, PFB Plus[SKINNYe-64-256] uses a smaller number
of registers than PFB[SKINNY-128-256]. The difference comes from the different
number of shares for each component: the state needs three shares, while the key
and tag need only two shares because the operation is linear. There are 2-share
masking schemes that can protect the state with two shares [15], but we do not
consider them because they need fresh randomness during the execution and the
cost for random number generation is overwhelming [43].

8.1 PFB Plus with SKINNYe-64-256

Tweakey Configuration. We use the tweakey TK1 and TK2 for storing
a 128-bit secret key, and TK3 and TK4 for a tweak. The tweak comprises the
4-bit ID x, 96-bit nonce N , and a 28-bit counter ctr. TK3 and TK4 combined
store these values as:

TK3∥TK4 = str4(x)∥str96(N)∥str28(ctr). (14)

8 The designs in this paper has a room for more aggressive optimization by skipping
portection of (twea)key-scheduling [8, 41, 45].



Table 3. Comparison of the number of registers with and without TI. We imple-
ment and evaluate the ones with 128-bit security (PFB Plus[SKINNYe-64-256] and
PFB[SKINNY-128-256]) in this section. The table also shows the conventional ones with
64-bit security (PFB[SKINNY-64-192] and SAEB[GIFT-128-128]) [35] for comparison.

Name TI Sec. Total State Key Tweak Tag Ref.

PFB Plus[SKINNYe-64-256] — 128 386 64 128 128 64 Ours

PFB[SKINNY-128-256] — 128 386 128 128 128 0 Ours

PFB Plus[SKINNYe-64-256] ✓ 128 704 192 256 128 128 Ours

PFB[SKINNY-128-256] ✓ 128 768 384 256 128 0 Ours

PFB[SKINNY-64-192] — 64 256 64 128 64 0 [35]

SAEB[GIFT-128-128] — 64 256 128 128 0 0 [35]

PFB[SKINNY-64-192] ✓ 64 512 192 256 64 0 [35]

SAEB[GIFT128-128] ✓ 64 640 384 256 0 0 [35]
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Fig. 3. Hardware architecture of PFB Plus[SKINNYe-64-256]. f and g functions are the
decomposed 4-bit S-box [8].

Circuit Architecture for SKINNYe-64-256. Following the conventional
SKINNY implementations, we use the nibble-serial architecture based on 2-
dimensional arrays of scan flip-flops [32, 8, 35] with the decomposed 4-bit S-
box (f and g functions) integrated. The design uses in-place on-the-fly tweakey
schedule capable of reverting it to the original state after the final round [35].
Moreover, the TK4 array has an integrated 28-bit adder for incrementing ctr in
place.

Circuit Architecture for Mode of Operation. PFB Plus is a thin wrapper
on top of the SKINNYe-64-256 circuit similar to the conventional PFB implemen-
tation. The shift register (4 × 16 bits) with a feedback XOR realizes the tag
accumulator.
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Latency. The design finishes the round function in 16 cycles, and the entire
SKINNYe-64-256 in 704 (=16 × 44) cycles. With one more cycle for updating
the tweak, the circuit consumes a single-block message with 705 cycles.

Sharing. Fig. 3 shows the number of shares in the protected implementation.
As mentioned in the previous section, the implementation is heterogeneous in
terms of the number of shares: (I) there is no sharing on TK3 and TK4 storing
the public tweak, (II) TK1, TK2, and the tag accumulator use 2-share repre-
sentation as they use linear operations only, and (III) the state array that goes
through the non-linear S-box operation has three shares.

8.2 PFB with SKINNY-128-256

Tweakey Configuration. The first tweakey array TK1 stores a 128-bit
secret key, and another tweakey TK2 stores a tweak comprising the 3-bit ID x,
96-bit nonce N , and a 29-bit counter ctr:

TK2 = str3(x)∥str96(N)∥str29(ctr). (15)

Circuit Architecture for SKINNY-128-256. Fig. 4 shows the circuit archi-
tecture of PFB Plus with SKINNY-128-256. The circuit architecture of SKINNY-
128-256 follows the previous implementation [8]: the byte-serial architecture with
the decomposed 8-bit S-box (f , g, h, and i functions) integrated into the state
array. The TK1 and TK2 arrays have the same structure as the SKINNYe-64-
256 circuit (see Fig. 3), and support in-pace tweak updating and reverting after
on-the-fly tweakey schedule.

Circuit Architecture for Mode of Operation. The circuit architecture
for PFB is similar to the previous PFB Plus and also the conventional implemen-
tation [35].

Latency. The design finishes the SKINNYe-64-256 encryption in 768 (=16 ×
44 + 1) cycles.



Sharing. This circuit also has a heterogeneous sharing, as shown in Fig. 4:
(I) there is no sharing on TK2 storing the public tweak, (II) the secret key in
TK1 represented by two shares, and (III) the state array in three shares.

8.3 Performance Evaluation and Comparison

Implementation and Evaluation Procedure. We implemented the designs
in the register-transfer level with a single exception: explicit instantiation of
scan flip-flops following the previous works [32]. We synthesized the design using
Synopsys Design Compiler with the NanGate 45-nm standard cell library [36]
while preserving the structure of major components, as shown in Table 4.

Performance without TI. PFB Plus[SKINNYe-64-256] and PFB[SKINNY-
128-256] have similar circuit areas without TI: 4,351 and 4,400 [GE], respectively.
As consistent with the register counts in Table 3, PFB Plus[SKINNYe-64-256] has
the smaller state array (532 compared to 1,098 [GE], but needs the additional
shift register.

Performance with TI. With TI, on the other hand, PFB Plus[SKINNYe-64-
256] is smaller than PFB[SKINNY-128-256] by 1,009 [GE] (7,439 and 8,448 [GE]).
That is also consistent with Table 3 as PFB Plus[SKINNYe-64-256] has 64-bit
fewer registers. A smaller S-box circuit of PFB Plus[SKINNYe-64-256] (nibble-
wise and two stages) compared to that of PFB[SKINNY-128-256] (byte-wise and
four stages) also contributes to this advantage of over one thousand gates.

Comparison with other AEAD. Table 5 compares the proposed method
with conventional implementations of AEADs protected with TI. PFB[SKINNY-
64-192] is a predecessor with a lower security level and is smaller than PFB Plus[SKINNYe-
64-256] by 1,581 [GE] because it has fewer registers as summarized in Table 3. In
comparison with Ascon having the same 128-bit security level, PFB Plus[SKINNY-
64-256] has a smaller circuit area even compared with the one having no inter-
face9. The advantage of PFB Plus[SKINNYe-64-256] comes from heterogeneous
sharing: PFB Plus[SKINNYe-64-256] can use fewer shares for the tweak, key, and
tag meanwhile Ascon needs three shares for the entire 320-bit state. We also
note that the Ascon implementation has longer latency and needs fresh ran-
dom bits during the execution. Based on the comparison, we can conclude that
PFB Plus[SKINNYe-64-256] has the smallest circuit area in TI among the schemes
having 128-bit security.
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