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Abstract. Smart contracts present a uniform approach for deploying
distributed computation and have become a popular means to develop
security critical applications. A major barrier to adoption for many ap-
plications is the public nature of existing systems, such as Ethereum.
Several systems satisfying various definitions of privacy and requiring
various trust assumptions have been proposed; however, none achieved
the universality and uniformity that Ethereum achieved for non-private
contracts: One unified method to construct most contracts.
We provide a unified security model for private smart contracts which is
based on the Universal Composition (UC) model and propose a novel core
protocol, Kachina, for deploying privacy-preserving smart contracts,
which encompasses previous systems. We demonstrate the Kachina
method of smart contract development, using it to construct a contract
that implements privacy-preserving payments, along the lines of Zero-
cash, which is provably secure in the UC setting and facilitates concur-
rency.

1 Introduction

Distributed ledgers put forth a new paradigm for deploying online services be-
yond the classical client-server model. In this new model, it is no longer the
responsibility of a single organization or a small consortium of organizations to
provide the platform for deploying relevant business logic. Instead, services can
take advantage of decentralized, “trustless” computation to improve their trans-
parency and security as well as reduce the need for trusted third parties and
intermediaries.

Bitcoin [29], the first successfully deployed distributed ledger protocol, does
not lend itself easily to the implementation of arbitrary protocol logic that can
support this paradigm. This led to many adaptations of the basic protocol for
specific applications, such as NameCoin [20], a distributed domain registration
protocol, or Bitmessage [34], a ledger-based communications protocol. An ob-
vious problem with this approach is that, even though the Bitcoin source code
can be copied arbitrarily often, the Bitcoin community of software developers
and miners cannot, and hence such systems are typically not sustainable. Smart
contracts, originally posited as a form of reactive computation [32], were pop-
ularized by Ethereum [36], solving these problems by providing a uniform and
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standardized approach for deploying decentralized computation over the same
back-end infrastructure.

Smart contract systems rely on a form of state-machine replication [30]: All
nodes involved in maintaining the smart contract keep a local copy of its state,
and advance this copy with a sequence of requests. This sequence of requests
needs to match for each node in the system – thus the need for consensus over
which requests are made, and their order. In practice, this is achieved through
a distributed ledger.

A seemingly inherent limitation of the decentralized computation paradigm
is the fact that protocol logic deployed as a smart contract has to be completely
non-private. This, naturally, is a major drawback for many of the applications
that can potentially take advantage of smart contracts. Promising cryptographic
techniques for lifting this limitation are zero-knowledge proofs [19], and secure-
computation [18, 11]. Motivated by such cryptographic techniques, systems sat-
isfying various definitions of privacy – and requiring various trust assumptions
– have been proposed [4, 25, 37, 21], as we detail in Subsection 1.2. Their re-
liance on trust assumptions nevertheless fundamentally limits the level of de-
centralization which they can achieve, especially compared to their non-private
counterparts. For instance, a common restriction of such systems is to assume
a small, fixed set of participants at the core of the system. This fundamen-
tally clashes with the basic principles of a decentralized platform like Bitcoin or
Ethereum (collectively classified as Nakamoto consensus). In these systems, the
set of parties maintaining the system can be arbitrarily large and independent of
all platform performance parameters. This puts forth the following fundamental
question that is the main motivation for our work.

Is it feasible to achieve a privacy-preserving and general-purpose
smart contract functionality under the same availability and decentral-
ization characteristics exhibited by Nakamoto consensus?

In this work we carve out a large class of distributed computations that we
express as smart contracts, which we collectively refer to as “Kachina core con-
tracts”. In particular, this includes contracts with privacy guarantees, which can
be implemented without additional trust assumptions beyond what is assumed
for Nakamoto consensus and the existence of a securely generated common ref-
erence string. The latter is not an assumption to be taken lightly – however it is
a common requirement for privacy-preserving blockchain protocols with strong
cryptographic privacy guarantees, and can be reduced to the same assumptions
as the distributed consensus algorithm itself [22]. This class allows us to ex-
press the protocol logic of dedicated privacy-preserving, ledger-based protocols
such as Zerocash [3] as smart contracts. Existing smart contract systems such
as Zexe [4], Hawk [25], Zether [6], Enigma [37], zkay [31], and Arbitrum [21]
can be expressed, preserving their privacy guarantees, as Kachina contracts.
These protocols mainly rely on either zero-knowledge or signature authentication
for their security. Kachina is flexible enough to allow contract authors to ex-
press each of these systems, together with a concise description of the privacy
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they afford. It does not supersede these protocols, but rather gives a common
foundation on which one can build further privacy-preserving systems.

1.1 Our Contributions

We make four contributions to the area of privacy-preserving smart contracts:

a) We model privacy-preserving smart contracts.
b) We realize a large class of such contracts.
c) We enable concurrent interactions with smart contracts, without com-

promizing on privacy.
d) We demonstrate a general methodology to efficiently and composably

build smart contract systems.

Combined, they provide a method for both reasoning about privacy in smart
contracts, and construct an expressive foundation to build smart contracts with
good privacy guarantees upon.

Our model. We provide a universally composable model for smart contracts in
the form of an ideal functionality that is parameterized to model contracts both
with and without privacy, capturing a broad range of existing systems. The ex-
pressiveness and relative simplicity of our model lends itself to further analyses
of smart contracts and their privacy. Moreover, existing privacy-preserving sys-
tems benefit from the model as a means to define their security, and contrast
their security with other systems.

We consider a smart contract to be specified by a transition function ∆ and
a leakage function Λ, which parameterize the smart contract functionality F∆,Λ

sc .
∆ models the behavior of the contract, were it to be run locally or by a trusted
party. It is a program that updates a shared state, and has its inputs provided
by, and outputs returned to, the calling party. F∆,Λ

sc models network, ledger, and
contract specific “imperfections” that also exist in the ideal world by interacting
with a Gledger-GUC functionality [10], and captures the fundamental ideal-world
leakage through the parameterizing function Λ.

Some combinations of ∆ and Λ are not obviously realizable, in particular
the more restricted the leakage becomes. They are able to capture existing
smart contract systems however, both privacy-preserving and otherwise. For
instance, a leakage function which leaks the input itself corresponds closely to
Ethereum [36], while a leakage function returning no leakage makes many tran-
sition functions hard or impossible to realize. This paper focuses on a more in-
teresting middle ground. By defining the ideal behavior to interact with Gledger,
we avoid having to duplicate the complex adversarial influence of ledger proto-
cols. We make few assumptions about this ledger, requiring only the common
prefix property, and interfaces for submitting and reading transactions to be well
defined.
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Our protocol. We construct a practical protocol for realizing many privacy-
preserving smart contracts, utilizing only non-interactive zero-knowledge. The
primary goal of this protocol is to provide a sufficiently low-level and general
purpose basis for further privacy-preserving systems, without requiring the un-
derlying system to be upgraded with each new extension or change. We focus on
the Nakamoto consensus setting of a shifting, untrusted set of parties. The pro-
tocol’s core idea is to separate a smart contract’s state into a shared, on-chain,
public state, and an individual, off-chain, private state for each party. Parties
then prove in zero-knowledge that they update the public state in a permissible
way: That there exists a private state and input for which this update makes
sense.

Dealing with concurrency in a privacy-preserving manner. There exists a fun-
damental conflict between concurrency and privacy that needs to be accounted
for to remain true to our objective of providing a smart contract functionality as
decentralized as Nakamoto consensus. To illustrate, suppose an ideal smart con-
tract is at a shared private state φ and two parties wish to each apply a function
f and g respectively to this state. They wish (in this specific case) the result to
be independent of the order of application – i.e. f(g(φ)) = g(f(φ)) = φ′. In any
implementation of the above in which parties do not coordinate, the first party
(resp. the second) should take into account the publicly known encoding [φ] of
φ and facilitate its replacement with an encoded state [f(φ)] (resp. [g(φ)]) as it
results from the application of the desired transition in each case. It follows that
the encoded states [f(φ)], [g(φ)] must be publicly reconciled to a single encoded
state [φ′] which necessarily must leak some information about the transitions f
and g. Being able to achieve this type of public reconciliation while retaining
some privacy requires a mechanism that enables parties to predict transition
conflicts and specify the expected leakage.

We achieve this through the novel concept of state oracle transcripts, which
are records of which operations are performed on the contract’s state, when
interacting with it through oracle queries. These allow contract authors to op-
timize when transactions are in conflict: ensuring minimal leakage occurs while
still allowing reorderings. We provide a mechanism for analyzing when reordering
transactions is safe with respect to a user’s individual private state, by specifying
a sufficient condition for when transactions must be declared as dependencies.

Efficient modular construction. Kachina is designed to be deployed at scale:
Previous works using zero-knowledge do not explicitly maintain a contract state.
If such a state φ was modeled anyway, (e.g. as inputs to these systems), the
zero-knowledge proofs involved would scale poorly, with a proving complexity of
Θ(|φ|) before any computation is performed. A naive approach to state cannot
scale to handle systems with a large state – such as a privacy-preserving currency
contract, without these being handled as special cases. Our abstracting of state
accesses solves this problem.

Regardless of the size of our state, the state is never accessed directly, but
only through oracles specified by the contract. As a result the complexity of
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what must be proven is under the full control of the contract author, and can
be optimized for. A proving complexity of Θ(|Tρ|+ |Tσ|) prior to performing any
computation can be expected in Kachina, where Tρ is oracle transcript for the
private state, and Tσ is the one for the public state. This constitutes a clear
improvement, as the state of smart contracts deployed in practice may be very
large, however transcripts, similar to the inputs and outputs of traditional public
contracts, are generally short. This increase in efficiency allows us to construct
an entire smart contract system, akin to Ethereum [36], as a Kachina contract
in Appendix J.

Not all contracts a user wishes to write will directly match the requirements
for realizing a smart-contract with the Kachina core protocol. However, our
model is sufficiently flexible to allow direct application of the transitivity of UC-
emulation to solve this: If the originally specified “objective” contract (∆,Λ) is
not in the class of Kachina core contracts, the author can find an equivalent
(∆′,Λ′) which is. The author can provide a proof that F∆′,Λ′

sc UC-emulates F∆,Λ
sc ,

and by the transitivity of UC-emulation, can use the Kachina core protocol to
realize (∆,Λ). We facilitate such proofs by including adversarial inputs and leak-
ages in our model, which allow the simulator limited control over the objective
smart contract. This method to develop private smart contracts is illustrated
in Figure 1. It is further showcased by the implementation of the salient fea-
tures of Zerocash [3] as a Kachina contract in Section 5, and the proof that it
UC-emulates a much simpler ideal payments contract.

Fig. 1. An overview of the Kachina method to develop private smart contracts: 1) An
intuitive description of the objective smart contract is developed in the form of F∆,Λ

sc .
2) A Kachina compatible F∆′,Λ′

sc , from the set of all equivalent contracts F∆′′,Λ′′
sc is

selected, and the equivalence proven. 3) Theorem 1 is applied to obtain its realization.
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1.2 Related Work

There has been an increasing amount of research into smart contracts and their
privacy over the past few years. The results of these often focus on specific
use-cases or trust assumptions. We briefly discuss the most notable of these.

Ethereum. As the first practically deployed smart contract system, Ethereum [36]
is the basis of a lot of our expectations and assumptions about smart contracts.
Ethereum is not designed for privacy, and hides no data by itself. We assume
that the reader is familiar with Ethereum.

Zexe. Zerocash [3] is a well-known privacy-preserving payment system, allowing
direct private payments on a public ledger. Zexe [4] extends its expressiveness
by allowing arbitrary scripts, reminiscent of Bitcoin-scripts, to be evaluated in
zero-knowledge in order to spend coin outputs. It is a major improvement in
expressiveness over Zerocash, which only permits a few types of transactions.

zkay. zkay [31] extends Ethereum smart-contracts with types for private data. It
allows users to share encrypted data on-chain, and prove that data is correctly
encrypted and correctly used in subsequent interactions. These proofs are man-
aged through the ZoKrates [15] framework, which compiles Ethereum contracts
into NIZK-friendly circuits. Its usage is limited to fixed size pieces of private
data.

Hawk. One of the earliest works on privacy in smart contracts, Hawk [25] is
also one of the most general. It describes how to compile private variants of
smart contracts, given that all participants of the contract trust the same party
with its privacy. This party, the “manager”, can break the contract’s privacy
guarantees if they are corrupt, however they cannot break the correctness of the
contract’s rules. The construction used in Hawk for the manager party relies of
zero-knowledge proofs of correct contract execution.

Zether. A lot of work on privacy in smart contracts has focused on retro-fitting
privacy into existing systems. Zether [6], for instance, constructs a privacy-
preserving currency within Ethereum, which can be utilized for a number of
more private applications, such as hidden auctions. As with most retro-fitted
systems, Zether is constrained by the system it is built for, and does not gener-
alize to many applications.

Enigma. There are two forms of Enigma: A paper discussing running secure
multi-party computation for smart contracts [37], and a system of the same
name designed to use Intel’s SGX enclave to guarantee privacy [16]. The former
has a lot of potential advantages, but is severely limited by the efficiency of
general-purpose MPC protocols. The latter is a practical construction, and can
claim much better performance than any cryptography-based protocol. The most
obvious drawbacks are the reliance on an external trust assumption, and the poor
track record of secure enclaves against side-channel attacks [5].
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Arbitrum. Using a committee-based approach, Arbitrum [21] describes how to
perform and agree on off-chain executions of smart contracts. A committee of
managers is charged with execution, and, in the optimistic case, simply posts
commitments to state updates on-chain. In the case of a dispute, an on-chain
protocol can resolve the dispute with a complexity logarithmic in the number
of computation steps taken. Arbitrum provides correctness guarantees even in
the case of a n− 1 out of n corrupt committee, however relies on a fully honest
committee for privacy.

State channels. State channels, such as those discussed in [14], occupy a similar
space to Arbitrum, due to their reliance on off-chain computation and on-chain
dispute resolution. The dispute resolution process is different, more aggressively
terminating the channel, and typically it considers only participants on the chan-
nel that interact with each other. The privacy given is almost co-incidental, due
to the interaction being local and off-chain in the optimistic case.

Piperine. Piperine [26] uses a similar model and approach as presented in this
paper, relying on zero-knowledge proofs of correct state transitions, and modeling
smart contracts as replicated state machines. Piperine focuses on efficiency gains
from this approach, rather than privacy gains, which it does not capture, while
our work does not account for the benefit of transaction batching. Our notion of
state oracles can be seen as a generalization of the state interactions presented
in [26].

2 Technical Overview

We first informally establish the goals and core technical ideas of this paper.
These will be fleshed out in the remainder of the paper’s body, with some of
the technical details – primarily in-depth UC constructions and proofs – in the
appendix. We will discuss each of our contributions in turn, and discuss how,
combined, they present a powerful tool for constructing privacy-preserving smart
contract systems.

Our model. We model smart contracts as reactive state machines, which users
interact with by submitting transactions to a distributed ledger. A user submits
a transaction, with the intention to issue some high-level command to the smart
contract, e.g. to cast a vote, or withdraw funds. Once the transaction is confirmed
by the distributed ledger, the user obtains information about the results of this
high-level command: both whether it has been processed, and any information
it may have computed using the contract’s state.

As multiple users can interact with the same smart contract system concur-
rently, users cannot always predict the effect of their actions; a vote may end
before a user’s voting transaction is processed, for instance. As a result the user
may not be able to predict the outcome of the command, or even if it can be
carried out.
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To capture privacy, the act of creating a transaction to post on the distributed
ledger is the only point at which we permit privacy leakage. As a user may
go offline at any point, any private information they reveal – a bid during an
opening phase of an auction for instance – must be revealed in the on-chain
transaction itself. Formally, we model this with a leakage function Λ, which
describes what information is leaked if a user, seeing a specific contract state,
issues a specific command. This function can also fix choices that an interaction
may make – for instance if the command is “send a coin to Bob”, it may decide
which coin to send to Bob. To give users full control over their privacy, even
when these decisions are complex or randomized, we ask them to sign off on a
description of the leakage before the transaction is broadcast. The leakage in
Kachina captures information which a user purposely decides to reveal, as the
functionality they gain by doing so is worth whatever damage they take to their
private information. It is further worth noting that nothing prevents a malicious
contract from finding clever ways to leak information without being observable.
This highlights the importance of interacting only with trustworthy contracts,
and the importance of the leakage descriptor being accurate.

Similarly to the leakage function, the semantics of the contract itself are
largely dictated by a transition function ∆. It describes how the state of a smart
contract evolves given a command and a few auxiliary inputs (such as the choice
of coin alluded to above).

The core protocol idea. The Kachina core protocol restricts itself to contracts
which divide their state into a public state σ, and, for each party p, a private
state ρp. These correspond to the shared ledger, and a party’s local storage re-
spectively. Transition functions are over pairs (σ, ρp) instead of over all private
states – a party may only change their own private state. Honest users maintain
their own private state in accordance with the contracts’ rules, while the contract
must anticipate that dishonest parties may set it arbitrarily (this can be circum-
vented by committing to private states, as descripted in Appendix G, although
it comes at the cost of increased public state sizes, and loss of anonymity).

A natural construction to achieve privacy in smart contracts utilizing zero-
knowledge proof systems is apparent: On creating a transaction, a user p evalu-
ates the transition function against the current contract state (σ, ρp), resulting
in a state (σ′, ρ′p). He creates a zero-knowledge proof that σ 7→ σ′ is a valid
transition of public states (i.e. there exists a corresponding private state and
input such that this transition takes place), and posts the proof and transition
as a transaction. Locally, the user updates his private state to ρ′p.

We can also clearly describe the leakage of this sketched protocol: The tran-
sition σ 7→ σ′ is precisely the information which is revealed!

State oracles. The core protocol sketched above has two major problems:

1. Due to each transaction containing a proof of transition from one state to
another, concurrent transactions will almost certainly fail once the state is
changed.
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2. The size of the statement being proved, and therefore the size of transactions,
grows linearly with the overall size of the contract’s state.

These drawbacks are especially notable in systems with many users and a
high frequency of transactions: On Ethereum a transaction is almost certainly
applied after many other transactions the author never knew about, nor should
need to know about. The state the contract will be in once it executes a trans-
action, is something the transaction’s author cannot predict accurately. In the
naive system proofs only succeed in the state they were originally created for,
as Figure 2 suggests. Instead of capturing a transition from σ 7→ σ′, we would
rather want to capture a (partial) function from states to successor states.

∅ σo

σπ σn

σπ σn

σ1 7
σ2 7

· · ·

σπ 7→σn

σπ 7→σn

σπ 7→σn

σπ 7→σn

··
·

· · ·
· · ·
· · ·

Transaction creation T
ransaction

application(s)

Fig. 2. Direct state-transition based transactions can be applied only in the state σπ

they were proven for.

To solve these issues, we add a layer of indirection for accessing and updat-
ing contract states: Instead of the state being a direct input to the transition
function, the contract has access to oracles operating on the public and private
states. The contract makes queries to these oracles: functions which update the
state, and return information about it. To prove the interaction with the pub-
lic state correct, users capture the queries they made, and the responses they
expect, in a sequence ((q1, r1), . . . , (qn, rn)): a transcript of oracle interactions.
The user proves that, given the responses expected, they know an input which
will make this series of queries.

Conversely, a user validating this transcript can verify this proof, and eval-
uate the queries in turn against the public state, ensuring the responses match.
This defines a partial function over public states, which is defined wherever the
responses recorded in the transcript match the results obtained by evaluating
the queries on the current state.

Selecting what queries a contract makes provides a great deal of control
over the domain of the function: a query which has an empty response will
always succeed! In limiting queries to returning only essential information, many
conflicts can be avoided. Transcripts can also be concise about what changes are
made, assuming the queries are encoded in a sufficiently succinct language, such
as most Turing-complete languages.
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While not all conflicts are resolved through this as the responses may not
match those expected, it allows the proof to focus on the relevant parts of the
state, being compatible with more concurrent transactions, as pictured in Fig-
ure 3.

∅ σo

σπ σn

σπ σn

σ1 σ′
1

σ2 7

· · ·

T

T

T

T
··
·

· · ·
· · ·
· · ·

Transaction creation T
ransaction

application(s)

Fig. 3. Oracle-transcript based transactions can be applied in any compatible state.
The transcript T defines a partial function {σπ 7→ σn, σ1 7→ σ′

1, . . .}.

In order to be able to model partial transaction success, which is crucial for
modeling transaction fees, we allow for a special query to be made, commit.
commit queries mark checkpoints in a transaction’s execution, such that if an
error occurs after it, the execution up to this point is still meaningful. This
effectively partitions the transcript into atomic segments. We primarily use this
to construct transaction fees within a smart contract itself, the details of which
can be seen in Appendix J.5.

High-level usage. Even when using state oracles, this protocol is limited to con-
tracts which have their state fit neatly into accessing only shared public state,
and local private state. The natural description of many contracts does not
match this. For instance: a private currency contract is most directly described
through a shared private state tracking the balances of all parties.

However, it is simple to express the Zerocash [3] protocol in terms of interac-
tions with shared public, and local private states. This provides a practical means
to achieve what we can describe using a shared private state. It is important to
have both the most natural description of a contract, and the realization. The
former provides a good understanding of the features and security properties of
a contract, while the latter realizes it.

This idea is nothing but the notion of simulation-based security itself! We
use multiple stages of UC-emulation: First moving from our objective contract
(a private payments contract) to a contract within the Kachina constraints
on state (a Zerocash contract), and second moving on to the Kachina core
protocol. Due to the transitivity of UC emulation, we may therefore use this
“Kachina method” to construct the objective of private payments. This process
is outlined in Figure 1.
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Our model is designed to facilitate this usage. Specifically for modeling ob-
jective contracts the model allows the adversary to provide an additional adver-
sarial input to each transaction. This input allows the simulator to control some
parts of the ideal behaviour similar to the simulator’s influence on an ideal func-
tionality, for instance to ensure ideal world addresses match real-world public
keys.

3 Defining Smart Contracts

Smart contracts are typically implemented as replicated state machines. If a
replicated state machine is the implementation, the natural model is that of the
state machine itself. Inputs are drawn from a ledger of transactions, and passed
to this state machine.

This definition is unsuitable for privacy-preserving smart contracts: If the
state machine’s behavior is known, and its inputs are on a ledger, there is no
privacy. A simple tweak can solve this: Inputs are replaced with identifiers on the
ledger, with the smart contract functionality tracking what their corresponding
inputs are.

3.1 Interactive Automata Interpretation

Smart contracts are a form of reactive computation: Parties supply an input to
the contract, the latter internally performs a stateful computation, and returns
a result to the original caller. The result is returned asynchronously, and may
depend on interactions with other users. This is quite close to the concept of a
trusted third party, although real-world systems have caveats:

– They leak information about the computation performed.
– They allow some adversarial influence, partly due to relying on the transac-

tion ordering of an underlying ledger.
– They may carry some impure execution context: A transaction may depend

on what the state is at the time it is created, for instance.

Often when talking about smart contracts, only the “on-chain” component is
considered. This is insufficient for privacy, as by its nature, everything on-chain
is public. We therefore model the off-chain component of the interaction as well.
This can be as simple as placing inputs directly on the ledger, but can involve
more complex pre-computation. Even without the need for privacy, the need to
model off-chain computation of smart contracts had been observed [12], and we
believe a formal model should account for it.

To represent a contract, we use a transition function, operating over the con-
tract’s state. We denote the initial state as ∅. Transition functions are determin-
istic, although limited nondeterminism can be simulated by including random-
ness in the execution context. Notably, such randomness is fixed on transaction
creation, allowing the creator to input (potentially biased) randomness, which is
subsequently used in the (replicated) execution of the contract’s state machine.
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Potential uses include the creation of randomized ciphertexts or commitments.
The transition function will also output if a transaction should be considered
“confirmed” or not, with the latter indicating failure or only partial success,
which dependant transactions should not build on.

A contract transition function ∆ is a pure, deterministic function with the
format (φ′, c, y)← ∆(φ, p, w, z, a), with the following inputs and outputs:

– The current state φ
– The calling party p
– The input w
– The execution context z

– The adversarial input a
– The successor state φ′

– The output y
– The confirmation state c

In addition to the transition function, it is necessary to capture what leak-
age an interaction with the contract has. The two are separated due to the
asynchronous nature of smart contracts – a transaction is made, and leaks in-
formation, before the corresponding transition function is run on-chain.

The leakage is captured by a leakage function, which receives the same in-
put, and further receives the creating user p’s “view” ω of the contract as an
input. ω = (`, Up, T, φ) consists of four items: a) The length of p’s view of the
ledger `. b) p’s unconfirmed transactions Up. c) A map T from τ ∈ Up to (p, w, z,
a,D). These are ∆’s inputs, and the transaction’s dependencies, which we will
introduce shortly, D. d) The contract’s state according to p’s view of the ledger,
φ. This “view” may be used to avoid attempting double-spends by selecting a
coin to spend which no other unconfirmed transaction uses, for instance. For this
purpose the leakage function can also abort by returning ⊥, refusing to create
a transaction. The function returns a leakage value lkg, which is passed to the
adversary, a description of the leakage which occurred, desc, a list of transactions
to depend on, D, and the context z. While lkg may be arbitrary, it is important
that desc provides an accurate and readable description of this leakage. Its pri-
mary purpose is to allow parties to decide not to go ahead with a transaction if
they notice the leakage is more than expected. With complex contracts, antici-
pating what will be leaked should not be relied upon. The usage of a descriptor
highlights that Λ should not be maliciously supplied, and facilitates simulation,
as shown in Section 5.

It is worth emphasising that the leakage discussed in this paper is deliberate;
this is not leakage observed over a network, which can be hard to identify, but
is instead information which users accept to reveal. For instance, a leakage in
Zerocash [3] is the length of the ledger at the time a transaction is created,
with the security of the protocol guaranteeing that this – but nothing more – is
revealed to an adversary.

The list of dependencies D is a list of transactions, which must occur in
the same order before the newly created transaction can be applied. This can
be used to enforce basic ordering constraints between transactions. Finally, the
context z allows information about the state at the time of transaction creation
to be passed to the transition function. This may include the current state, un-
confirmed transactions, and a source of randomness. Its content is left arbitrary
at this point.
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A leakage function Λ is a pure, non-deterministic function with the format
(desc, lkg, D, z)← Λ(ω, p, w), with the following inputs and outputs:

– p’s contract view ω
– The calling party p
– The input w
– The leaked data lkg

– The leakage descriptor desc
– The tx dependencies D

– The context z

We consider the pair (∆,Λ) to define a smart contract. The ideal world
interaction with a smart contract follows the below pattern:

1. A party submits a contract input w.
2. The corresponding context and leakage are computed.
3. The party agrees to the leakage description, or cancels (in the latter case,

the transaction never takes place, and no information is revealed).
4. The adversary is given (lkg, D), and provides the adversarial input a.
5. The submitting party can retrieve the output of ∆ (if any), while other

parties can interact with the modified state.

The level of privacy guaranteed depends greatly on the leakage function Λ: A
leakage function which returns its input directly as leakage provides no privacy,
while one which returns no leakage at all provides almost total privacy (notably
the fact some interaction was made is still leaked). By tuning this, the privacy
of Ethereum, Zerocash, and everything in between can be captured.

Our model relies on users querying the result of transactions manually – they
are not notified of the acceptance of a transaction, and can not modify it once
made. If a transaction is not yet confirmed by the ledger, the user gets the result
not-found, if the transaction depends on failed transactions, ⊥ is returned,
and otherwise the result is provided by the contract itself (which may also inform
of partial success).

3.2 UC Specification

The ideal smart contract functionality F∆,Λ
sc captures the notion of a contract as a

leaky state machine whose inputs are drawn from a ledger. It is parameterized by
the transition function ∆ and the leakage function Λ, and it operates in a hybrid
world with a global ledger functionality Gledger. A candidate for such a ledger is
GsimpleLedger, as introduced in Appendix B, although any compatible functionality
is sufficient. Its privacy guarantees stem from only revealing explicitly leaked
data, i.e. lkg, and only allowing the creator of a transaction to access the result.

Functionality F∆,Λ
sc (sketch)

The smart contract functionality F∆,Λ
sc allows parties to query a deterministic

state machine determined by ∆ and Λ in a ledger-specified order.

Executing a ledger view:
Starting with an initial state φ ← ∅, and an empty set of confirmed trans-

actions: For each transaction in the ledger’s view, if the transaction is unknown,
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allow the adversary to supply its inputs. Next, verify the transaction’s dependen-
cies, and that, for (φ′, c, y) ← ∆(φ, . . .), φ′ 6= ⊥. If both are satisfied, update φ
to φ′, and record the transaction as confirmed if c is >. If an execution output is
requested, return y, or ⊥ if the execution failed. If, on the other hand, one of the
preconditions is not satisfied, skip this transaction.

Prior to any interaction by p:
Compute which transactions have been rejected in p’s view of the ledger state,

and remove any unconfirmed transactions for p that (directly or indirectly) depend
on them.

When receiving a message (post-query, w) from an honest party p:
Retrieve p’s current view ω of the contract. Feed this, together with the party

identifier, and the input w to Λ.
Ask p if the leakage description returned is acceptable. If so, query the ad-

versary for a unique transaction ID τ , and some adversarial input corresponding
to the leakage, and the transaction’s dependencies. Record the original input, the
adversarial input, the context returned by Λ, and the transaction’s dependencies
as being associated with τ and p. Record the transaction as unconfirmed for p,
send (submit, τ) to Gledger, and finally return τ .

When receiving a message (check-query, τ) from an honest party p:
If τ is owned by p, and is in their current view of the ledger, compute and

return the output by executing the ledger view up to τ . If τ is not in their ledger
view, return not-found.

4 The Kachina Protocol

As mentioned in Section 2, a naive construction divides a contract’s state into
a shared public state, and a local private states for each party. Specifically, the
ideal state φ is defined as the tuple (σ,ρ), where ρ consists of ρp for each party
p. A user proves the validity of any public state transition – that there exists
a private state and input, such that this transition takes place. This clearly
does not scale well, as it assumes that the ledger state does not change between
the submission and processing of a transaction, and requires zero-knowledge
proofs about potentially large states – hundreds of Gigabytes in systems like
Ethereum [17]!

In reality, a user’s query may not be evaluated immediately, and the ledger
may change drastically in the meantime. Simply proving a direct state transi-
tion would lead to a high proportion of queries being rejected. To solve both
problems, we require contracts to access their state through a layer of abstrac-
tion which both tolerates reordering interactions, and allows for more efficient
proofs. We further allow for partial transaction success, by introducing transac-
tion checkpoints. Our primary purpose for this notion is to be able to capture
the payment of transaction fees, such as gas. We detail our approach to do this
in Appendix J.5.
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4.1 State Oracles and Transcripts

We introduce state oracles and state oracle transcripts to abstract interaction
with a contract’s state. We choose this abstraction primarily for its flexibility,
and many other approaches are possible, such as byte-level memory accesses, or
specific data structures such as set of unspent transactions. These can be seen
as instances of state oracles. We make use of the notation [a, b, c] to denote a list
of a, b, and c, with the concatenation operator ‖ , and the empty list ε. We use
the function last to retrieve the last element of a list, and L[i] to denote the ith
element of the list L.

An example. To better motivate the need to abstract interactions with a con-
tract’s state, we will use a representative example smart contract, and discuss
how different abstractions of its state will affect it.

Our example is a sealed bid auction contract1, which we assume has some
means of interacting with two on-chain assets, one public and one private. These
may be constructed similarly as in Section 5, however should be holdable and
spendable by other contracts. We do not go into detail of this construction; this
idea is fleshed out in detail in Zether [6]. The auction is opened by the seller
party, and multiple buyer parties may bid on it. The auction has three stages:
Bidding, opening, and withdrawing. The auction contract allows for the following
interactions:

– At initialization, the seller transfers ownership of the public asset A to the
auction contract.

– In Stage 1, buyers submit their bids, transferring some amount of the private
asset B to the auction contract, which remains anonymous.

– In Stage 2, buyers reveal their bid. If the buyer’s bid exceeds the currently
maximum revealed bid, they reveal their committed asset, increase the max-
imum bid, and they record themselves as the winning bidder. Otherwise,
they withdraw their bid from the contract without revealing its value.

– In Stage 3, buyers withdraw any assets they own after the auction – either
their (losing) bids, or the sold asset (for the highest bidder). The seller
withdraws the highest bid, or the original asset if no bids were made.

– In Stage 1 and 2, the seller may advance the stage.

This contract needs to maintain in its state:

– The current stage the auction is in.
– A reference to the asset being sold.
– A set of bids made.
– The winning bid, its value, and who made it, during the reveal phase.
– A set of losing bids, which have not yet been withdrawn, during the reveal

phase.
1 This contract is designed to make a good example, not a good auction – we do not

recommend using it as presented.
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– Privately, a user remembers which bids are theirs, and how to reveal them.

Suppose we adopted a naive approach to state transitions, and proved the
transitioning from one state to another directly, with no abstraction of any kind.
During the bidding phase it is easily possible for multiple users to attempt to
bid simultaneously (especially considering the delay until transactions become
confirmed by an underlying ledger). In this case, only one of these transactions
will succeed – as soon as this transaction changes the state by adding its own
bid, the proof of any other simultaneous transaction becomes invalid.

The simple abstraction of byte-level access would allow a buyer and a seller
to withdraw concurrently, as their withdrawals affect different parts of the state.
It does not do so well in allowing concurrent bids to be made, however. If the
set is implemented with a linked list, for instance, two users attempting to add
their own bid simultaneously will change the same part of the state: the pointer
to the next element.

A smart abstraction should realize that whichever user bids first, the resulting
set of bids is the same, even if its binary representation may not be. Even if
the order of the interactions matters, a smart abstraction may allow concurrent
interactions. When claiming the maximum bid in the auction, Alice may increase
it to 5, while Bob may increase it to 7 concurrently. It should not matter to Bob’s
transaction if the maximum bid is currently 3, or 5 – although Alice’s must be
rejected if the bid is increased to 7 first.

General-purpose state oracles. The abstraction we propose is that of programs.
Appending a value to an linked list can be encoded as a program which a)
traverses to the end of the current list, b) creates a new cell with the input
value, and c) links this from the end of the list. Formally, these programs are
executed by a universal machine called a state oracle with access to the current
(public or private) state α, and potentially an additional context z.

Definition 1. A state oracle O = U(α0, z), given an initial state α0, and context
z, is an interactive machine internally maintaining a state α, a transcript T , and
a vector of fallback states ~α (initially set to the input α0, ε, and [α0] respectively),
which permits the following interactions:

– Given a commit query, set ~α← ~α ‖ [α], and append commit to T .
– Given a query q while α is ⊥, return ⊥.
– Otherwise, given a query q, compute (α′, r)← q(α, z). Update α to α′, append

(q, r) to T , and return r.
– state(O) returns (~α ‖ [α], T ).

The context z is empty (∅) for state oracles operating on the public state,
and is used in state oracles operating on the private state for fine-grained read-
only access to the state during transaction creation, e.g. to allow private state
oracles to read the public state. Specifically, the oracle operating on the private
state can read both the public and private states for: a) the confirmed state at
the time the transaction was created (σo and ρo), and b) the projected state, an
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optimistic state in which all of the user’s unconfirmed transactions are executed,
at the time the transaction was created (σπ and ρπ). This can be used to make
sure new transactions do not conflict with pending ones: Selecting which coin to
spend uses the confirmed state to ensure the coin can be spent, and the projected
state to ensure a coin is not double spent. The context is also used to provide a
source of randomness η to the private state oracle. In total, the context of the
private state oracle is (σo, ρo, σπ, ρπ, η). The context to the public state oracle
is empty (∅), and we will sometimes omit it.

We say that the oracle aborts if it sets its state to ⊥. The state will then be
rolled back to a safe point, specifically the last commit where the state was
non-⊥. Looking forward, we will decompose the transition function ∆ into three
components: An oracle operating on the public state σ, an oracle operating on
p’s private state ρp, and a “core” transition function Γ. This process is described
in detail in Subsection 4.4, with an overview of the interactions of Γ with public
and private state oracles given in Figure 4.

U Γ U

qσ1

rσ1

qσn

rσn

qρ1

rρ1

qρn

rρn

z ρ w σ

σ′ρ′ y

...
...

Private

Trusted

Fig. 4. The interaction of the core contract Γ, with two universal machines U , acting as
state oracles over the public state σ, and the private state ρ, together with the context
z.

The notion of oracle transcripts is crucial in the functioning of Kachina,
as it provides a means to decouple the part of a transaction which is proven in
zero-knowledge from both the public and private states entirely: We only prove
that given some input, and a sequence of responses recorded in the public state
transcript, the smart contract must have made the recorded queries.

Revisiting our example. As an illustration, we show how our auction example
interacts with state oracles. We define the auction’s states more precisely first,
where users are identified by public keys, denoted with pk:

– The current stage, stage ∈ {1, 2, 3}.
– A reference to the asset being sold and who is selling it: a, pks.
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– A set of bids made S.
– The winning bid, its value, and who made it: b, v, pkb.
– A set of not yet withdrawn losing bids: R.
– Privately, a user remembers openings to their bids, the committed bid itself,

and its value: bidOpen, bidComm, v.

Overall, the public state is defined as σ := (stage, pks, a, b, v, pkb, S,R), and
the private state is defined as ρ := (bidOpen, bidComm, v). The public state is
initialized by the seller to (1, pks, a,∅, 0,∅,∅,∅).

The oracle queries corresponding to each interaction with the contract are
given as closures, i.e. sub-functions which make use of some of their parents
local variables. To clarify where this is the case, we place such variables in the
subscript of the function name. These functions are passed to either the public
or private state oracle as the input q, as specified in Definition 1.

– Bidding: Given a asset opening bidOpen, with value v, corresponding to an
asset commitment bidComm, which has been bound to the auction contract,
Γ first makes the following public oracle query:

function makeBidbidComm((stage, pks, a, b, v, pkb, S,R))
assert stage = 1
return ((stage, pks, a, b, v, pkb, S ∪ {bidComm} , R),>)

Further, it makes the following private oracle query:
function recordBidbidOpen,bidComm,v(·, ·)

return ((bidOpen, bidComm, v),>)

– Revealing: Given a public key to redeem the funds to in case of losing the
auction, Γ first makes a private oracle query to retrieve which bid is owned:

function retrieveBid((bidOpen, bidComm, v), ·)
return ((bidOpen, bidComm, v), (bidOpen, bidComm, v))

Next, the contract makes a further private oracle query for the expected
maximum bid, to determine if the buyer’s bid is higher:

function projMax(ρ, z = (·, ·, σπ = (. . . , v′, . . .), ·, ·))
return (ρ, v′)

If this query returns v′ < v, the contract attempts to claim the maximum
bid with the public oracle query2:

function claimMaxbidOpen,bidComm,v,pk(σ)
let (stage, pks, a, bo, vo, pko, S,R)← σ
assert bidComm ∈ S ∧ v > vo ∧ stage = 2
return ((stage, pks, a, bidOpen, v, pk, S \ {bidComm},

R ∪ {(bo, pko)}),>)

If the original value test fails, on the other hand, instead the contract trans-
fers the ownership of bidComm via the underlying asset system to pk, and
runs the public oracle query:

2 Note that the claim may fail if the maximum bid increased from the one projected
at the time of transaction creation.
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function claimLossbidComm((stage, pks, a, b, vo, pko, S,R))
assert bidComm ∈ S ∧ stage = 2
return (>, (stage, pks, a, b, vo, pko, S \ {bidComm} , R))

– Withdrawing: Given a public key pk, which the caller knows the correspond-
ing secret key for, the contract will make an oracle query to determine which
assets to transfer ownership of, and to un-record them in a public oracle
query:

function withdrawpk((stage, pks, a, b, v, pkb, S,R))
assert stage = 3
if pk = pks ∧ b 6= ∅ then

return ((stage,∅, a,∅,∅, pkb, S,R), (B, b))
else if pk = pkb ∧ a 6= ∅ then

return ((stage, pks,∅, b, v,∅, S,R), (A, a))
else if ∃c : (c, pk) ∈ R then

return ((stage, pks, a, b, v, pkb, S,R \ {(c, pk)}), (B, c))

– Advancing the stage: The seller (given their public key pk) may advance the
contracts stage from 1 or 2 to 2 or 3 respectively with a public oracle query:

function advanceStagepk((stage, pks, a, b, v, pkb, S,R))
assert pk = pks ∧ stage ∈ {1, 2}
return ((stage + 1, pks, a, b, v, pkb, S,R),>)

This example does not handle corner cases (such as buyers bidding multiple
times), and is not intended for practical use. Instead, its purpose is to illustrate
the advantages state oracles provide: The query an interaction will make, and the
response it will receive, are often not affected by other interactions. Concurrent
bids do not conflict, for instance. The representation of data is also not crucial,
as the state oracles may themselves interact with abstract data types.

We complete our example by specifying the core transition function Γ, under
the assumptions that a means to call into a separate asset management system
(a contract that permits transferring ownership of assets between public keys),
such as presented in Appendix J.4, exists. We also assume that a user’s public
key can be retrieved with a shared “identity” contract.

Transition Function Γauction

A simple private auction contract.

When receiving an input (bid, v):
send (bind, v,Γauction) to ΓB and

receive the reply (bidOpen, bidComm, v)
send makeBidbidComm to Oσ and receive the reply >
send recordBidbidOpen,bidComm,v to Oρ and

receive the reply >
When receiving an input reveal:

send retrieveBid to Oρ and
receive the reply (bidOpen, bidComm, v)
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send identity to Γid and receive the reply pk
send projMax to Oρ and receive the reply v′

if v′ < v then
send (assertValidFor, bidOpen, bidComm, v, pk,Γauction) to ΓB

send claimMaxbidOpen,bidComm,v,pk to Oσ and
receive the reply >

else
send (unbind, bidOpen, pk) to ΓB

send claimLossbidComm to Oσ and receive the reply >
When receiving an input withdraw:

send identity to Γid and receive the reply pk
send withdrawpk to Oσ and receive the reply (X,x)
if X = A then

send (transfer, x, pk) to ΓA

else
send (unbind, x, pk) to ΓB

When receiving an input advance-stage:
send identity to Γid and receive the reply pk
send advanceStagepk to Oσ and receive the reply >

Using transcripts. Kachina relies on a few key observations on how transcripts
relate to the original state oracle execution. To begin with, we define a few ways
in which transcripts may be used.

Definition 2. A state oracle transcript T may be applied to a state α in a
context z. We write ~α ← T (α, z), or if z = ∅, ~α ← T (α), the operation of
which is defined through the following loop:

function T (α, z)
let O ← U(α, z)
for (qi, ri) in T do

send qi to O and receive the reply r
if r 6= ri then return ⊥

let (~α, ·)← state(O)
return ~α

If a transcript is malformed, applying it will result in [α,⊥].

The returned ~α′ is indistinguishable from the internal state ~α ‖ [α] of the
state oracle U(α0, z), given the same sequence of queries. This allows users to
replicate the effect other users’ queries have on the public state, without knowing
why these queries were made.

Definition 3. A sequence of transcripts and contexts X = ((T1, z1), . . . , (Tn, zn))
is applied by applying each transcript in order. We write T ∗

X(α), which has the
recursive definition:

– T ∗
ε (α) := α

– T ∗
X ‖ [(T ,z)](α) := last(T (T ∗

X(α), z))
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Definition 4. A transcript T = ((q1, r1), . . . , (qn, rn)) (potentially including
commit messages) induces a transcript oracle O(T ), which behaves as follows:

– Recorded commit messages are ignored.
– For the ith query q′i, return ri if q′i = qi, otherwise abort by returning ⊥ for

this, and all subsequent queries.
– When consumed(O) is queried, return > if exactly n queries were made,

otherwise return ⊥.

If in an interaction with the oracle, consumed holds, the transcript was minimal
for this interaction.

If the transcript oracle O(T ) doesn’t abort when used as an oracle in some
function, then it behaves identically to the original universal oracle that was used
to generate the transcript. We use this fact to generate zero-knowledge proofs
about transactions – we prove that each oracle query in a transcript was made,
and that the behavior is correct, given the responses the transcript claims. We
also prove that consumed(O) holds, ensuring the transcript doesn’t just start
with the queries an honest execution would make, but that it matches them
exactly.

These are used together to define how a transaction is made, and how it is
applied: Alice generates a transcript for the oracle accesses her transaction will
perform, and proves this transcript both correct and minimal. She sends the
transcript and proof to Bob, who is convinced by the proof of correctness and
minimality, and can therefore reproduce the effect of the transaction by applying
the transcript to the state directly.

Inherent conflicts. Abstracting the interaction with the state has many benefits,
but it is not a panacea. Some conflicts are inherent, and unavoidable – a contract
may operate on a first-come first-serve basis, and no trick will ease the pain of
coming second. A contract may also simply be badly designed, not making good
use of the abstractions provided – at the most extreme, it can make only queries
retrieving or setting the entire state, negating all benefit of using oracles.

4.2 Interaction Between Smart Contracts

The example in Subsection 4.1, makes the natural assumption (in the setting
of smart contracts), of being able to interact with other components – in this
case with an asset system. Most interesting applications of smart contracts seem
premised on such interactions. We consider how multiple contracts may interact
in Appendix J.3, however we stress that a full treatment is left as future work.

In particular, how various contracts can be independently proven secure and
composed in a general system alongside other, potentially malicious contracts,
is not handled in this paper. Instead, where we assume interaction, we limit
ourselves to a closed smart contract system with a small set of non-malicious
contracts, such as the auction contract and the asset system in Subsection 4.1.
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While it is tempting to delegate such interactions to the native composi-
tionality and interactiveness of UC, this does not reflect the reality of smart
contract interactions, where the executions of multiple contracts are atomically
intertwined. While related issues of interaction with the environment have been
considered in the literature, for instance in [8, 7], they do not fully address our
scenario, in which multiple branches can be executed in projection. We therefore
believe that studying the interaction and composition of smart contract tran-
sition and leakage functions requires further work, with this work providing a
foundation.

4.3 The Challenge of Dependencies

If a transaction τ1 moves funds from Alice to Bob, and τ2 moves funds from
Bob to Charlie, the order τ2 . . . τ1 may not be valid, if τ2 relies on the funds Bob
received from Alice. When a dependency like this is violated in interacting with
the public state, attempting to apply the dependent transaction first will fail,
and the transaction is rejected.

How such interactions affect a user’s private state is more tricky to han-
dle. While two different parties cannot conflict with each other on private state
changes due to domain separation, parties may encounter internal dependencies.

A party starting with the private state ρ1, makes a transaction τ1 which
advances their private state to ρ2. Afterwards, they make the transaction τ2,
their private state ending up as ρ3. If these transactions are made shortly after
each other, τ2 may be placed before τ1 on the ledger. It is possible that τ2 uses
information from τ1, such as a secret key, and that it makes no sense without it.

Should a user ignore the reordering, and stick with the state ρ3? This can
introduce inconsistencies between the public state and private state. Should the
user apply the private state transcript of τ2 and hope for the best – but risk
a catastrophic failure if it cannot be applied? Neither are ideal. Instead, we
propose that τ2 should publicly declare that it depends on τ1, and rely on on-
chain validation to ensure they are applied in the correct order.

If a user has a set of unconfirmed transactions U , and is adding the new
transaction τ in the ledger state, dependencies should ensure that any permuta-
tion of U ∪ {τ} results in a consistent interaction with the user’s private state –
i.e. result in a non-⊥ private state. Further, this should even be the case if these
transactions are only partially successful – regardless as to which commit point
was reached.

An overeager approach would be to ensure all unconfirmed transactions are
dependencies, and in the order that they were made. With domain separation and
sufficiently abstract interactions it is likely that only few transactions actually
depend on each other. This can be application specific, and to account for this
we allow for contracts to specify a function dep to declare dependencies. We
constrain how this function may behave, and provide the all-purpose fallback of
all unconfirmed transactions.

For most practical cases that we have observed, private state oracles do not
conflict or enter into complex dependencies with each other. Most often, their
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state management is simple: sampling and storing secrets. The formal machinery
presented in this section is to allow this intuition that the transactions do not
depend on each other to be justified in many cases.

Formal definition. The formal definition of dependency functions is complex; we
begin by introducing some mathematical notations. In addition to this notation,
we make use of the following functions: a) the higher-order function map. b)
an index function, which returns the index of an element in a list, idx. c) the
tuple projection functions proji, which return the ith element of a tuple. d) the
list flattening function flatten, which, given a list of lists, returns a list of the
inner lists concatenated. e) the function take, which returns the prefix of a list
containing a specified number of items. f) the function zip, which combines n
lists into a list of n-tuples.

Definition 5. For any finite set X, SX is the set of all permutations of X,
where each permutation is a list.

Definition 6. The subsequence relation X v Y indicates that each element of
the list X is present in Y , in the same order:

X v Y := X ⊆ Y ∧ (∀a, b ∈ X : idx(X, a) < idx(X, b)

=⇒ idx(Y, a) < idx(Y, b))

We define an expansion of transactions into useful components: As a transaction
has no private data within it, we use this to refer to this data.

Definition 7. A transcript T ’s corresponding commit-separated transcript ~T
is a list of lists of query/response pairs, corresponding to splitting T at each
commit. We write ~T = split(T ,commit).

Definition 8. A secret-expanded transaction is a tuple (τ, ~T , z,D), consisting
of the transaction object τ , the commit-separated private state transcript ~T , the
context z, and the dependencies D.

We define the format of transactions handled by the dependency function. We
make use of “confirmation depth”, the vector of which is denoted ~c. This is a
vector of natural numbers, representing how many parts of the corresponding
commit-separated transcript executed successfully.

Definition 9. A list X of secret-expanded transactions’ dependencies may be
satisfied given a set of still unconfirmed transaction U and a list of confirmation
depths ~c, denoted by sat(X,~c, U), which is defined formally below. Informally,
it states that each transaction in X must be preceeded by its dependencies, in
order, and that each of these dependencies should have executed fully, rather than
partially.

– sat(ε,~c, U) := >
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– sat(X ‖ (·, ·, ·, D),~c ‖ ·, U) := sat(X,~c, U) ∧ (D ∩ U) v map(proj1, X) ∧ ∀d ∈
D, ~T , z,D′, i : (d, ~T , z,D′) = X[i] =⇒ |~T | = ~c[i]

We write sat∗(X,U) as a shorthand for the case where ~c are maximal: i.e.
~c[i] = |proj2(X[i])|.

We define what transcripts will actually be executed for a given sequence of
confirmation levels.

Definition 10. The effective sequence of transcripts (denoted ES(X,~c)), given
a list of secret-expanded transactions and a list of confirmation depths of equal
length, is the sequence of confirmed transcript parts, along with their contexts,
defined as:
ES(X,~c) := flatten(map(λ((·, ~T , z, ·), c) : map(λT : (T , z), take(~T , c)), zip(X,~c)))

We write ES∗(X) as a shorthand for the case where ~c are maximal: i.e.
proji(~c) = |proj2(proji(X))|.

We define the central invariant the dependencies must preserve: That the private
state can always be advanced.

Definition 11. The dependency invariant J(X, ρ), given a set X of secret-
expanded transactions, states that any permutation of a subset of X’s private state
transcripts which have their dependencies satisfied can be successfully applied to
ρ. J(X, ρ) := ∀Y ⊆ X,Z ∈ SY ,~c : sat(Z,~c,map(proj1, X)) =⇒ T ∗

ES(Z,~c)(ρ) 6=
⊥

Finally, we define the constraints on the dependency function.

Definition 12. A dependency function dep(X, T , z) is a pure function taking
as inputs a set of secret-expanded unconfirmed transactions X, a new private
state transcript T , and a new context z, returning a list of transaction objects.
It must satisfy the following conditions:

1. If called with non-honestly generated transcripts or contexts, no constraints
need to hold.

2. The result must be a subsequence of the transactions in X: dep(X, T , z) v
map(proj1, X)

3. When adding a new transaction τ , with the corresponding private state tran-
script T (where its commit-separated form is ~T ) and context z, the depen-
dency invariant J is preserved: let Y = X ‖ (τ, ~T , z = (·, ρo, ·, ·, ·), dep(X,
T , z)) in T ∗

ES∗(Y )(ρ
o) 6= ⊥ ∧ J(X, ρo) =⇒ J(Y, ρo)

The dependency function dep(X, T , z) = map(proj1, X) can always be used,
as it maximally constraints the possible permutations which satisfy dependen-
cies.
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4.4 The Contract Class
The core Kachina protocol can realize a class of smart contracts, with each
contract being primarily defined by a restricted transition function Γ. This tran-
sition function is given oracle access to the calling user’s private state ρp and
the shared public state σ, as described in Definition 1. In addition to these ora-
cle accesses, Γ can make (commit, y) queries, which a) send commit to both
oracles, and b) record the value y in a vector of partial results ~y. We write
~y ← ΓOσ,Oρ

(w) as running the transition function against input w, with oracles
Oσ and Oρ, returning the vector of partial results ~y. The final output of Γ is
appended to ~y when it returns. The adversary can program its own private state
oracle – it corresponds to local computation, after all! Two minor functions are
also used to define the corresponding ideal contract:

– The leakage descriptor desc, which receives the time t, the sequence of secret-
expanded unconfirmed transactions X, transcripts Tσ, Tρ, original input w,
and context z of new transactions as inputs, and returns a description of
what leakage this interaction will incur.

– A dependency function dep satisfying Definition 12.

Definition 13. CKachina is the set of all pairs (∆Kachina(Γ),ΛKachina(Γ, desc,
dep)), for any parameters Γ, desc and dep, satisfying Definition 12.

∆Kachina and ΛKachina operate as follows, with a full description in Appendix C.
We assume the set of honest parties H – in the ideal world, this is known by the
functionality, while in the real world we assume each party p will use H = {p}.

Transition Function ∆Kachina(Γ) (sketch)

When receiving an input ((σ,ρ), p, w, (Tσ, z), ·):
let (~σ, T ′

σ, ~ρ, ·, ~y)← run-Γ(σ,ρ[p], w, z, p ∈ H)
let σ′ ← σ; y ← ⊥;C ← >
let ~T ← split(Tσ,commit); ~T

′
← split(Tσ,commit)

for (Ti, Tc, σ′, ρ′, y′) in zip(~T , ~T
′
, ~σ, ~ρ, ~y) do

if σ′ = ⊥ ∨ ρ′ = ⊥ ∨ Tr 6= Tc then
let C ← ⊥
break

let σ ← σ′;ρ[p]← ρ′; y ← y′

return ((σ,ρ), C, y)

Where run-Γ(σ, ρ, w, z, ·) runs ΓOσ,Oρ(w), and returns (~σ, Tσ, ~ρ, Tρ, ~y) (see Ap-
pendix C for a full specification).

Leakage Function ΛKachina(Γ, desc, dep) (sketch)

When receiving an input (ω = (`, U, T, φ = (σo,ρo)), p, w):
Simulate applying all unconfirmed transactions in order, for a new projected

state (σπ,ρπ). Select a randomness stream η, and set the context z to the old
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state (σo,ρo[p]), the projected state (σπ,ρπ[p]), and η. Run Γ against this pro-
jected state and context, and retrieve the new states and transcripts Tσ, Tρ.
Compute the dependencies D and leakage description description, and return
(description, Tσ, D, (Tσ, z)).

4.5 The Core Kachina Protocol

The construction of the core protocol itself is now fairly straightforward. We use
non-interactive zero-knowledge to prove statements about transition functions
interacting with an oracle. When creating a transaction, users prove that the
generated transcript is consistent with the transition function and initial input.
Instead of evaluating transactions, users apply the public (and, if available, pri-
vate) state transcripts associated with them. We sketch the protocol here, the
full details can be found in Appendix C.

Formally, the language L of the NIZK used is defined as follows, for any given
transition function Γ: ((Tσ, ·), (w, Tρ)) ∈ L if and only if, where Oσ ← O(Tσ),
and Oρ ← O(Tρ), last(ΓOσ,Oρ

(w)) 6= ⊥, and after it is run, consumed(Oσ) ∧
consumed(Oρ) holds. This is efficiently provable provided that Tσ, w, and Tρ
are short, and Γ itself is efficiently expressible in the underlying zero-knowledge
system.

Protocol Kachina (sketch)

The Kachina protocol realizes the ideal smart contract functionality when pa-
rameterized by a transition function Γ, a leakage descriptor desc, and a depen-
dency function dep, satisfying Definition 12. It operates in the (FL

nizk,GsimpleLedger)-
hybrid model.

Executing a ledger state:
Starting with an initial state (σ, ρ)← (∅,∅), and an empty set of confirmed

transactions, for each transaction in the ledger verify their dependencies and
proofs. If they are satisfied, apply Tσ in commit-separated parts, up to (not in-
cluding) the first ⊥ result, if any. If available, execute Tρ to the same depth, and if
this depth is the full depth of the transcript, mark the transaction as confirmed. If
an output is requested, and the transaction’s output vector ~y is available, return
the output indexed with the confirmation depth. Otherwise, skip it.

Prior to any interaction:
Compute which transactions have been rejected in the ledger state, and remove

any unconfirmed transactions that – directly or indirectly – depend on them.

When receiving a message (post-query, w) from a party p:
Read the ledger state, and compute the corresponding smart-contract state

(σo, ρo). Create a projected contract state (σπ, ρπ) by applying in order the tran-
scripts from unconfirmed transactions to the already computed contract state.

Select a randomness stream η, and set the context z to the old state (σo, ρo),
the projected state (σπ, ρπ), and η. Run Γ against against this projected state and
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context, and retrieve the new states and transcripts Tσ, Tρ, as well as the output
vector ~y. Compute the dependencies D and leakage description description.

Ask p if description is an acceptable leakage. If so, create a NIZK proof π
that ((Tσ, D), (Tρ, w)) ∈ L. Record Tρ and z, and the result vector ~y, and publish
τ = (Tσ, D, π) on Gledger. Record τ as unconfirmed, and return it.

When receiving a message (check-query, τ) from a party p:
If τ is in the current view of the ledger, execute the ledger to retrieve the

output associated with τ , if any.

Theorem 1. For any contract (∆,Λ) ∈ CKachina, Kachina UC-emulates F∆,Λ
sc ,

in the FL
nizk-hybrid world, in the presence of GsimpleLedger.

We prove Theorem 1 through a detailed case-analysis of any action an en-
vironment, in conjunction with the dummy adversary, may take. The full case
analysis may be found in Appendix D. We define an invariant I between the
real and ideal executions in the UC security statement, roughly encoding that
“the real and ideal states are equivalent”. This ranges from simple equivalences,
such as them having the same ledger states, or the same NIZK proofs considered
valid, to complex invariants, such as all unconfirmed honest transactions satis-
fying the sub-invariant J of Definition 11. This invariant is used to argue that
the environment, in combination with a dummy adversary, cannot distinguishing
between the real and ideal worlds. Specifically, for any action the environment
takes, I is preserved, and from I holding, we can conclude that the information
revealed to it, or the dummy adversary, is insufficient to distinguish the two
worlds.

The simulator for Kachina is quite straightforward; it simply creates simu-
lated NIZK proofs for all honest transactions, and forces the adversary to reveal
witnesses to the simulated NIZK functionality in time for these to be input to
the ideal smart contract. Fundamentally, the security proof relies on state tran-
scripts being interchangeable with full state oracles in the same setting, and this
setting being enforced by both the protocol and functionality.

While a lot of factors must be formally considered, this is derived from re-
ceiving NIZK proofs as part of valid transactions, which prove precisely that if
the preconditions for the transaction are met, then the update performed on the
public state is the same. The private state is a little more tricky, but is guar-
anteed by the dependency invariant J holding for honest parties. This lets us
similarly argue that the private state transcript will have the same effect as the
ideal-world execution.

5 A Case Study: Private Payments

To demonstrate the versatility of Kachina, we take a closer look at the (private)
token contract, which is prone to the scalability issues Kachina addresses.
Public token contracts are well understood, and standardized [33], with the
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typical implementation being to maintain a mapping of “addresses” (hashes of
public keys) to balances in the contract’s public state. We write the first provably
private token contract to demonstrate the expressive power of Kachina.

A private token contract also implies that currency is not a primitive – it can
be built as a contract, a key factor in simplifying our model, as it does not need to
encode currency as a special case. It provides an asset to build contracts around
in the first place, as well as a means of denial-of-service mitigation, through
transaction fees. Bad fee models have resulted in devastating DoS attacks [35],
highlighting their necessity.

We detail how to construct a fee model in Appendix J.5. The fundamental
idea of this construction is to embed the transition function Γ in a wrapper
which performs the following steps:

1. In the private state oracle, estimate the cost of transaction fees.
2. Given an input gas price, and this estimate, pay these fees using a designated

currency contract.
3. Commit this as a partial execution success.
4. Execute Γ with a modified Oσ, which deducts from available gas for each

operation and aborts if this runs out.
5. Transfer any remaining gas back to the transaction author.

5.1 Indirect Construction

Following the design of Zerocash [3], we write a contract that maintains the
necessary Zerocash secrets: coin randomnesses, commitment openings, and se-
cret keys. The private state oracle computes the off-chain information required
to make a Zerocash transaction: Merkle-paths to your own commitments, the
selection of randomness for new coins, and the encryption of the secret informa-
tion of these coins. This information is handed to the central, provable core of
the contract, which computes a coin’s serial number, verifies the Merkle-path,
and verifies the integrity of the transaction. Finally, the serial number and new
commitment are sent to the public state oracle, which ensures the former is new,
and adds the latter to the current tree.

This design is not self-evidently correct, and is not the objective itself. Spec-
ifying what goal it achieves, in terms of an ideal leakage and transition function,
allows us to build a clean ideal world, with a clear private token contract. This
ideal world is constructed in two steps: First showing that the Zerocash con-
tract UC-emulates it, and second showing that the Zerocash contract is in turn
UC-emulated by Kachina.

5.2 Ideal Private Payments

To simplify the external interface, we only use single denomination coins. The
same approach can be applied to the full Zerocash protocol, with some caveats
on coin selection and leakage.

We formally specify the private token contract through its transition and
leakage functions, ∆pp and Λpp. The contract supports the following inputs:
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– init, giving a party a unique public key
– (send, pk), sending a coin to the public key pk
– mint, creating a new coin for the calling party
– balance, returning the current balance

Transition Function ∆pp (sketch)

The state transition function for a private payments system. Parties have asso-
ciated public keys and balances. Parties may generate a public key, transfer and
mint single-denomination coin, and query their balance.

When receiving an input (φ, p, init, ·, pk):
Assert p’s public key is not set, and ensure pk is unique. Record pk as p’s

public key, and return it.
When receiving an input (φ, p, (send, pk) , ·, a):

If p is honest, spend from their associated public key. If not, spend from the
public key a, provided it is not honestly owned. Decrease the spending key’s
balance by one, asserting it is non-negative. Increase pk’s balance by 1.
When receiving an input (φ, p,mint, pk, ·):

Increase pk’s balance by 1.
When receiving an input (φ, p,balance, B, ·):

Return the balance B.

Leakage Function Λpp (sketch)

Each operation on ∆pp has minimal leakage, revealing only which operation was
performed, and in the case of a transfer, the ledger length and the recipient – if
and only if the recipient is corrupted.

When receiving an input (ω = (`, U, T, φ), p, w):
Reject initialization transactions if φ is already initialized, or a transaction in

U is an initializing transaction. Reject spending transactions if the coins held in
φ, minus the coins spend in each transaction in U is not greater than zero.

Leak the type of transaction (init, send, mint, or balance). If the trans-
action is send, leak the ledger length `, and, if the receiving public key is adver-
sarial, the recipient. There are no dependencies. In the case of minting, provide
the calling party’s public key as a context, in the case of balance queries, combine
the available balance and provide this as a context.

5.3 The Zerocash Kachina Contract

The contract implementing Zerocash, which we will use to realize the private
token contract, follows its source protocol closely, albeit with single denomination
coins.
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Transition Function Γzc (sketch)

The state transition function for a Zerocash token contract.

When receiving an input init:
Instruct the private state oracle to sample new Zerocash secret keys, and

record them in the private state. Return the corresponding public keys.
When receiving an input (send, (pkz, pke)):

Process new messages through the private state oracle. Privately select an
available coin to spend, retrieving its secrets. Assert that the coin’s Merkle path
is valid, and that the secrets are internally consistent. Compute the corresponding
serial number, and publicly assert its uniqueness, marking it as spent. Publicly
assert that the proven Merkle tree root is valid. Privately compute a new coin
commitment and encryption, and publish these in the public state, updating the
list of past Merkle roots.
When receiving an input mint:

Assert the existence of secret keys. Sample a new coin commitment by the
recorded private key, and privately record the commitment and associated secrets
as a held coin. Add the commitment to the public set of commitments, and update
the public list of past Merkle roots.
When receiving an input balance:

Process new messages through the private state oracle. Return the size of the
set of coins held in both the confirmed and projected private states.

function depzc(X, T , z)
return ε

function desczc(t, ·, ·, ·, w, ·)
if w = init then return init
else if ∃pk : w = (send, pk) then return (send, t, pk)
else if w = mint then return mint
else if w = balance then return balance
else return ⊥

Lemma 1. Γzc and depzc satisfy Definition 12, and therefore the pair (∆zc,
Λzc) := (∆Kachina(Γzc),ΛKachina(Γzc, desczc, depzc)) is in the set CKachina.

Proof (sketch). Transcripts generated by run-Γ fall into three categories: They
set a private key (initialization), they insert a coin (minting), or they remove a
coin, and insert some number of coins (sending).

Consider first a new initialization transaction. It does not affect the behavior
of unconfirmed minting and sending transactions, as these do not use the current
private state’s secret key. Further, it cannot co-exist with another unconfirmed
initialization transaction, as this would initialize the private keys, ensuring an
abort, which violates the preconditions of dependencies.

If the new transaction is a minting or balance transaction, this functions
independently of other transactions, not having any requirements on the current
private state. Likewise for sending transactions, the state transcript itself only
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depends on ρ{o,π}, not the dynamic ρ. The only thing varying is which coins get
added and removed from the set of available coins, but this information is not
directly used – its purpose is to reduce the necessary re-computation the next
time around. ut

We can observe that (with some help from the simulator), the ideal Zero-
cash contract, given by (∆zc,Λzc) = (∆Kachina(Γzc),ΛKachina(Γ, desczc, depzc)),
is equivalent to the ideal private payments contract (∆pp,Λpp). Formally, we in-
stantiate two instances of F∆,Λ

sc , as presented in Subsection 3.2, and show that
any attack against (∆zc,Λzc) can be simulated against (∆pp,Λpp).

Theorem 2. F∆pp,Λpp
sc is UC-emulated by F∆zc,Λzc

sc in presence of GsimpleLedger.

This proof can also be carried out via invariants. Here the invariant tracking
is simple: The real and ideal world have the same coins owned by the same users
at any time. Our simulator, described in Appendix C.4, has a lot of book-keeping
to do, mostly to conjure up fake commitments and encryptions for the real-world
adversary, and replicating them in the real world. We provide a full proof sketch
in Appendix E.

Corollary 1. F∆pp,Λpp
sc is UC-emulated by Kachina, parameterized by Γzc, depzc,

and desczc, in the FL
nizk-hybrid world, in the presence of GsimpleLedger.

6 Conclusion

We have shown in this paper how to build a large class of smart contracts with
only zero-knowledge and distributed ledgers, and outline how this can be used
and extended upon. To do so we have modeled formally what smart contracts
with privacy are, represented as a state transition function that is fed inputs
from a ledger, and a leakage function that decides what parts of the input are
visible on this ledger. We have then defined which class of such contracts we will
consider in this paper, and presented a protocol, Kachina, to construct them.
This protocol utilizes non-interactive zero-knowledge proofs and state oracles
to achieve the desired smart contract behavior while leaking only part of the
computation performed.

While the designs are largely theoretical and detached from any actual imple-
mentation, we stress that they were designed with real-life constraints in mind:
The use of state oracles allows moving most computationally hard, or storage
intensive operations outside of the NIZK itself, reducing their cost. While the
NIZK must still be universal, zero-knowledge constructions with universal ref-
erence strings exist [27], and are practical to use in our setting, although they
have not yet been proven in the UC model.

In ending this paper, we would like to make clear that this problem space is
by no means solved. We have shown how to realize a specific class of privacy-
preserving smart contracts, however privacy is not such a simple issue to be
addressed by a single paper. In Appendix I, we sketch the relation of trust models
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with privacy, and we believe this taxonomy of trust, and how each level can be
addressed, formalized, and brought into a unified model, is a crucial long-term
research question for providing meaningful privacy to smart contract systems.
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A UC Conventions

This paper is modeled and proven in the Universal Composability Framework
[9], with global functionalities [10]. Although we assume a basic familiarity with
these concepts from the reader, the style of writing UC protocols and functional-
ities may differ greatly from author to author. As a result potentially important
corner cases may be overlooked, as the exact behavior of a given functional-
ity is sometimes unclear. We adopt a more explicit style (at least in our full
functionalities), while at the same time attempting to avoid writing unnecessary
information in the definition of the functionalities. While the proofs, protocols
and functionalities can be read and understood without explicit knowledge of the
notation described in this section, we define what behavior our notation leaves
implicit in this section. Further, we introduce some notations used throughout
the paper that simplify our code, however which are unrelated to UC.

Flow of execution. Session identifiers are formally used in UC to shield a protocol
from external calls, except when allowed by the control function. While they are
effectively a technical detail of the description in UC, they are often replicated
in the description of functionalities and protocols. We leave all session identifiers
implicit instead. In a similar vein, it is often a convention to replicate (part of)
the input to a functionality when returning the result, to ensure that it is clear
which query is being answered. We omit this as well, in favor of simply stating
the actual value returned. Both of these are how a protocol would be written
in a channel-based communications model, such as that of [28], rather than the
tape-based model of UC itself.

When a functionality is processing something, it is always processing on
behalf of some party, which may be the adversary itself, or may be corrupted.
Likewise when a protocol is processing something, it is processing this on behalf
of its owning party. When a functionality or protocol hands off execution to
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another entity, by making a query to another functionality, or the adversary,
execution for this party is suspended, and resumes only when the query returns.
Attempts by the environment to make queries to a suspended protocol will be
ignored. Likewise, if the environment attempts to query a functionality with a
party which is currently suspended, the query will also be ignored. Crucially,
the environment may still query a functionality with another party while one is
suspended, ensuring that parties may still act concurrently. We observe that this
behaves equally in protocols and functionalities, as the functionality is suspended
in the same situation is the corresponding party’s protocol is suspended. Finally,
we assume that queries will eventually return – this is equivalent to queries which
do not return, as we allow the environment and adversary to hold off indefinitely
until returning. While this is possible, in practice, due to the implicit suspension
mechanism described above, this means disabling a party permanently.

This above mechanism is not a great deviation from UC – it can easily be
implemented by having a functionality or protocol record locally the suspension,
and reject new queries from the suspended party until it receives an input of
a specified form. We simply omit this mechanism when writing our protocols.
Something similar is in fact necessary for our security, as parties could otherwise
easily shoot themselves in the foot by concurrently creating conflicting transac-
tions. Responsive environments [8] are a strictly stronger form of this idea.

We assume the existence of a set of all parties P, of which there is a subset of
honest parties H ⊆ P. We assume H 6= ∅. Correspondingly, the set of corrupted
parties is P\H. In this paper, static corruption is assumed, and all functionalities
are assumed to have knowledge of these sets. Real world protocols, when they
interact with these sets, will assume that, if the party running them is p, P =
H = {p}.

As a slight note, we use a somewhat unconventional model of having multiple
functionalities interacting with each other in the ideal world. This is largely to
avoid monolithic functionality design, using composition as a software design
primitive, rather than a security one.

Notation. In terms of notation, we will explicitly declare and initialize all state
variables of functionalities and protocols, to make formal statements about them
more precise. For the same reason, the behavior of functionalities and protocols
is described via detailed pseudocode, instead of text. Most of the notation is self-
explanatory, however adversarial queries are not. As the adversary may respond
arbitrarily to queries, we include with each query a well-formedness condition,
and a fallback distribution. In particular, we write query A with x and receive
the reply y, satisfying P , else sampling from D to mean the following:
Send x to A, then wait for the response y. If P (y) does not hold, instead ran-
domly sample y from D. This allows us to ensure responses are well-formed,
while avoiding the common technique of aborting in the ideal world on receiving
unexpected input, something we try to avoid, as it effectively permits denial-of-
service in the “ideal” world. Finally, we use the period (“.”) as a membership
access operator, to talk about variables of simulated functionalities, or in the
proof, to talk about state variables of various functionalities and protocol in-
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stances. For instance, we write F.X to mean the state variable X within the
(possibly simulated) functionality F.

Functional Programming Constructs. Besides understanding the message pass-
ing mechanics of UC, we assume only the basic programming knowledge needed
to read pseudo-code. We sometimes use functional programming expressions,
including the following for precision:

– Lambda expressions:
(λx : 2x)(2) = 4

– List and tuple literals:
[1, 2], and (1, 2).

– The higher-order function filter:
filter(λx : x ≡ 0 mod 2, [1, 2]) = [2]

We interpret maps as functions from keys to values. The symbols ⊥ and
∅ are overloaded, with the former representing both “false”, and “error/abort”,
while the latter represents the empty set, empty map, and in the case of contract
states, the initial state (which the contract itself may ascribe a different format
to). Further, for a map M , we will write k ∈M to mean that the map contains
the key k. A key is not in the map iff M(k) := ⊥. For lists, we use ε to denote
the empty list, and ‖ to denote list concatenation. Single non-list items can be
interpreted as a singleton list.

We will use the following functions throughout the paper. prefix(L, x) returns
the shortest prefix of L containing x, or L itself, if not such prefix exists. idx(L, x)
returns the index of the first occurrence of x in L, or ⊥ if x /∈ L.

function prefix(L, x)
let L′ ← ε
for y in L do

L′ ← L′ ‖ y
if y = x then break

return L′

function idx(L, x)
let i← 0
for y in L do

if y = x then return i

let i← i+ 1

return ⊥
Finally, we write a ≺ b for the list prefix relation, where we assume reflexivity.

B Ledger Functionalities

As smart contracts utilize an inderection layer of an underlying ledger, for com-
pleteness we will define the behaviour of this underlying ledger. The key char-
acteristics of the ledgers used here are that they maintain a sequence of trans-
actions, which any user may submit new transactions to, which may then even-
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tually appear in this sequence. The sequence itself is public, and can be read by
anyone.

We note in particular that for the purposes of this paper, many common
features of ledgers are not required – in particular liveness is optional, although
the ideal-world guarantees for a ledger without liveness are naturally lessened.
Further, we do not specify a validation predicate, instead performing the valida-
tion in our definition of smart contracts. This is solely to have a clean separation
between the consensus system and the semantics of transactions – to prevent
denial-of-service attacks in a real system, this line would need to be blurred, and
transaction validation partially done in the consensus algorithm.

One feature typical ledger functionalities do not have, which we do explicitly
use here, is that of transactional privacy. Typically ledgers leak which party
created a new transaction, something we wish to avoid to strengthen the privacy
of our protocols. It is worth noting that this leakage is entirely network based,
and using a sender-anonymous network is sufficient to adapt “leaky” ledgers to
this more private variant.

Finally, readers may be surprised that the “private ledger” of [23] is not used.
This is largely for the same reason that validation predicates are avoided – the
separation of the ledger and transaction semantics is not possible in this private
ledger. While it would be possible to encode ideal smart contracts as specific
ledger blinding functions, this does not accurately model what we intend to
capture, and results in a large, monolithic, and hard-to-understand functionality
– decidedly not ideal.

B.1 The Perfect Ledger

The perfect ledger is a platonic ideal form of a distributed ledger – it allows any
party to instantly append to its record, and allows any party to read the current
sequence of recorded transactions. This ledger is very similar to that used in [24],
however it is not realized by existing distributed ledger protocols – not least as
there is by necessity some network delay.

Functionality GperfectLedger

The perfect ledger is strictly more powerful than actual ledger implementations.

State variables and initialization values:

Variable Description
Σ := ε Authoritative ledger state

When receiving a message (submit, τ) from a party p:
let Σ← Σ ‖ τ

When receiving a message read from a party p:
return Σ
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B.2 The Simplified Practical Ledger

The simplified ledger captures the essence of the traditional persistence property
of ledgers, although it does not capture liveness. Any user may post transactions,
which are deemed unconfirmed. The adversary may decide when and which
unconfirmed transactions to move to an append-only ledger, and may decide
how long a prefix of this ledger honest parties see – provided it does not remove
anything previously revealed to them.

While the liveness property is not captured by this ledger, due to the large
amount of adversarial control, it is straightforward to see – although we will
not demonstrate it here – that more complex ledgers, such as those defined in
[2, 1], UC-emulate GsimpleLedger. In particular, this means that if replaced in the
ideal world with such a ledger, which does have the liveness property, we also in
practice have liveness for our protocol. We discuss the issue of liveness more in
Appendix F.

Functionality GsimpleLedger

The simplified interface to Gledger is strictly less powerful than actual ledger im-
plementations, allowing reasoning about a less complex ledger functionality.

State variables and initialization values:

Variable Description
Σ := ε Authoritative ledger state

M := λp.ε Mapping of parties to ledger states

When receiving a message (submit, τ) from a party p:
// The adversary is not required to ever put
// transactions on the ledger.
// Where it doesn't, the execution is unlikely
// to be interesting, however.
query A with (transaction, τ)

When receiving a message read from a party p:
if p = A then return Σ
else return M(p)

When receiving a message (extend,Σ′) from A:
let Σ← Σ ‖ Σ′

When receiving a message (advance, p,Σ′) from A:
if M(p) ≺ Σ′ ≺ Σ then let M(p)← Σ′.

C Fully Specified Functionalities and Protocols

C.1 Ideal World
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Functionality F∆,Λ
sc

The smart contract functionality F∆,Λ
sc allows parties to query a deterministic

state machine determined by ∆ and Λ in a ledger-specified order. The exact
semantics of the call are subject to adversarial influence, who is provided some
leakage, as defined in Λ.

State variables and initialization values:

Variable Description
T := ∅ Mapping from transactions to their executing compo-

nents.
Up := ε Sequence of unconfirmed transactions, for all parties p

When receiving a message (post-query, w) from an honest party p:
let Σp ← updateState(p)
let ω ← (|Σp|, Up, filter(λ(τ, ·) : τ ∈ Up, T ), execState(Σp))
let (desc, lkg, D, z)← Λ(ω, p, w)
if desc = ⊥ then

return rejected
send (leak, desc) to p and receive the reply b
if b then

query A with (transaction, lkg, D) and receive the reply (τ, a),
satisfying T (τ) = ⊥ ∧ τ 6= ⊥, else sampling from ({0, 1}κ ,⊥)

let T (τ)← (p, w, z, a,D);Up ← Up ‖ τ
send (submit, τ) to Gledger on behalf of p
return (posted, τ)

else
return rejected

When receiving a message (check-query, τ) from an honest party p:
let Σp ← updateState(p)
if τ ∈ Σp then

if T (τ) = (p, . . .) then
return execResult(prefix(Σp, τ))

else return ⊥
else return not-found

Helper procedures:
procedure updateState(p)

send read to Gledger through p and
receive the reply Σp

let C ← execConfirmed(Σp)
let U ′

p ← Up

repeat
let Up ← U ′

p

for τ in Up do
let (. . . , D)← T (τ)
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if D * (C ∪ Up) ∨ (D ∩ C) 6v Σp then
let U ′

p ← U ′
p \ {τ}

until Up = U ′
p

return Σp

procedure execState(Σ)
let (φ, ·, ·)← exec(Σ) in return φ

procedure execResult(Σ)
let (·, y, ·)← exec(Σ) in return y

procedure execConfirmed(Σ)
let (·, ·, C)← exec(Σ) in return C

procedure exec(Σ)
let φ← ∅; y ← ⊥;C ← ∅
for τ in Σ do

if τ ∈ C then continue
if T (τ) = ⊥ then

query A with (input, τ) and receive the reply x = (p, w, z, a,D),
satisfying p /∈ H, else sampling from {none}

if T (τ) = ⊥ then
let T (τ)← x

y ← ⊥
if T (τ) = none then continue
let (p, w, z, a,D)← T (τ)
if D \ C 6= ∅ ∨D 6v Σ then continue
let (φ′, c, y)← ∆(φ, p, w, z, a)
if φ′ 6= ⊥ then let φ← φ′

if c then let C ← C ∪ {τ}
return (φ, y, C)

C.2 Kachina

Transition Function ∆Kachina(Γ)

The Kachina transition function, running an internal transition function Γ with
oracle access to the public contract state, and the private state of the party making
the query. The query has an associated context z, which the private state oracle
may access, and an associated public state transcript Tσ, which must be consistent
with the current public state in order for the query to run successfully.

When receiving an input ((σ,ρ), p, w, (Tσ, z), ·):
let (~σ, T ′

σ, ~ρ, ·, ~y)← run-Γ(σ,ρ[p], w, z, p ∈ H)
let σ′ ← σ; y ← ⊥;C ← >
let ~T ← split(Tσ,commit); ~T

′
← split(Tσ,commit)

for (Ti, Tc, σ′, ρ′, y′) in zip(~T , ~T
′
, ~σ, ~ρ, ~y) do

if σ′ = ⊥ ∨ ρ′ = ⊥ ∨ Tr 6= Tc then
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let C ← ⊥
break

let σ ← σ′;ρ[p]← ρ′; y ← y′

return ((σ,ρ), C, y)

Helper procedures:
function run-Γ(σ, ρ, w, z, h)
Oσ ← U(σ,∅);Oρ ← U(ρ, z)
if ¬h then let Oρ ← z

~y ← ΓOσ,Oρ(w)
(~σ, Tσ)← state(Oσ); (~ρ, Tρ)← state(Oρ)
return (~σ, Tσ, ~ρ, Tρ, ~y)

Leakage Function ΛKachina(Γ, desc, dep)

The Kachina leakage function reveals the public state transcript generated by
Γ during the projected transition. This projected transition takes the state of the
contract as the party currently sees it, and first replays all currently unconfirmed
transactions from the same party. Both the initial (latest confirmed) contract
state, as well as the projected state, and a randomness stream are considered the
transaction’s context.

When receiving an input (ω = (`, U, T, φ = (σo,ρo)), p, w):
let (σπ, ρπ)← (σo,ρo[p])
for u in U do

let (p′, w′, (Tσ, z), ·, ·, D)← T (u)
if Tσ(σπ) = ⊥ then

return (⊥,⊥,⊥,⊥,⊥)
let (~σ, ·, ~ρ, T , ·)← run-Γ(σπ, ρπ, w′, z, p′ ∈ H)
let σπ ← last(~σ); ρπ ← last(~ρ)
let X ← X ‖ (u, T , z,D)

let η be a randomness stream.
let z ← (σo,ρo[p], σπ, ρπ, η)
let (~σ, Tσ, ~ρ, Tρ, ·)← run-Γ(σπ, ρπ, w, z,>)
if last(~σ) = ⊥ ∨ last(~ρ) = ⊥ then

return (⊥,⊥,⊥,⊥,⊥)
else

let D ← dep(X, Tρ, z)
return (desc(t,X, Tσ, Tρ, w, z), Tσ, D, (Tσ, z))

Protocol Kachina

The Kachina protocol realizes the ideal smart contract functionality when pa-
rameterized by a transition function Γ, a leakage descriptor desc, and a depen-
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dency function dep, such that the corresponding (∆,Λ) pair is in CKachina. It
operates in the (FL

nizk,GsimpleLedger)-hybrid model, where L is defined below.
((Tσ, ·), (w, Tρ)) ∈ L if and only if, where Oσ ← O(Tσ), and Oρ ← O(Tρ),

last(ΓOσ,Oρ(w)) 6= ⊥, and after it is run, consumed(Oσ) ∧ consumed(Oρ) holds.

State variables and initialization values:

Variable Description
T := ∅ Mapping from transactions to their private state tran-

scripts and contexts.
Y := ∅ Mapping from transactions to their outputs.
U := ε Sequence of unconfirmed transactions.

When receiving a message (post-query, w) from a party p:
let Σ← updateState(p)
let (σo, ρo)← execState(Σ)
let σπ ← σo; ρπ ← ρo;X ← ε
for u = (Tσ, D, ·) in U do

let (Tρ, z)← T (u)
let σπ ← Tσ(σπ); ρπ ← Tρ(ρπ, z)
let X ← X ‖ (u, split(Tρ,commit), z,D)

let η be a randomness stream.
let z ← (σo, ρo, σπ, ρπ, η)
let (~σ, Tσ, ~ρ, Tρ, ~y)← run-Γ(σπ, ρπ, w, z)
if last(~σ) = ⊥ ∨ last(~ρ) = ⊥ then

return rejected
let D ← dep(X, Tρ, z)
send (leak, desc(|Σ|, X, Tσ, Tρ, w, z)) to p and

receive the reply b
if b then

send (prove, (Tσ, D), (w, Tρ)) to FL
nizk and

receive the reply π
let τ ← (Tσ, D, π)
let T (τ)← (Tρ, z);Y (τ)← ~y;U ← U ‖ τ
send (submit, τ) to GsimpleLedger
return (posted, τ)

else
return rejected

When receiving a message (check-query, τ) from a party p:
let Σ← updateState(p)
if τ ∈ Σ then return execResult(prefix(Σ, τ))
else return not-found

Helper procedures:
procedure updateState(p)

send read to GsimpleLedger and receive the reply Σ
let C ← execConfirmed(Σ)
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let U ′ ← U
repeat

let U ← U ′

for τ = (·, D, ·) in U do
if D * (C ∪ U) ∨ (D ∩ C) 6v Σ then

let U ′ ← U ′ \ {τ}
until U = U ′

return Σ
procedure execState(Σ)

let (σ, ·, ·)← exec(Σ) in return σ

procedure execResult(Σ)
let (·, y, ·)← exec(Σ) in return y

procedure execConfirmed(Σ)
let (·, ·, C)← exec(Σ) in return C

procedure exec(Σ)
let σ ← ∅; ρ← ∅; y ← ⊥;C ← ∅
for τ = (Tσ, D, π) in Σ do

if τ ∈ C then continue
let y ← ⊥
send (verify, (Tσ, D), π) to FL

nizk and
receive the reply b

if ¬b then continue
if D \ C 6= ∅ ∨D 6v Σ then continue
let C ← C ∪ {τ}
if T (τ) 6= ⊥ then

let parts← zip(split(Tσ,commit), split(T (τ),commit), Y (τ))
for (T ′

σ, Tρ, y′) in parts do
if T ′

σ(σ) = ⊥ then
let C ← C \ {τ}
break

let σ ← T ′
σ(σ); ρ← Tρ(ρ); y ← y′

else
for T ′

σ in split(Tσ,commit) do
if Tσ(σ) = ⊥ then

let C ← C \ {τ}
break

let σ ← T ′
σ(σ)

return ((σ, ρ), y, C)

C.3 Non-Interactive Zero-Knowledge

Functionality FL
nizk

The (non-malleable) non-interactive zero-knowledge functionality FL
nizk allows

proving of statements in an NP language L.
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State variables and initialization values:

Variable Description
W := ∅ Mapping of statement/proof pairs to witnesses
Π := ∅ Set of statement/proof pairs
Π := ∅ Set of known invalid statement/proof pairs

When receiving a message (prove, x, w) from a party p:
if (x,w) /∈ L then

return ⊥
query A with (prove, x) and receive the reply π,

satisfying π 6= ⊥ ∧ (x, π) /∈ Π ∧ (·, π) /∈ Π, else sampling from {0, 1}κ
let Π← Π ∪ {(x, π)};W (x, π)← w
return π

When receiving a message (verify, x, π) from a party p:
if (x, π) /∈ Π ∪Π ∧ π 6= ⊥ then

query A with (verify, x, π) and receive the reply R
if (x, π) /∈ Π ∪Π then

if ∃w.R = (witness, w) ∧ (x,w) ∈ L then
let Π← Π ∪ (x, π);W (x, π)← w

else
let Π← Π ∪ (x, π)

return (x, π) ∈ Π

C.4 Private Payments

Transition Function ∆pp

The state transition function for a private payments system. Parties have asso-
ciated public keys, and balances. The payments system allows for parties with-
out a public key to generate one, and for parties to transfer and mint single-
denomination coins, as well as query their own balance.

State variables and initialization values:

Variable Description
K := ∅ Mapping of parties to public keys

B := λpk : 0 Mapping of public keys to their spendable coins

When receiving an input (φ, p, init, ·, pk):
if φ.K(p) = ⊥ then

while ∃p′ : pk = φ.K(p′) ∨ pk ∈ {∅,⊥} do
let pk R←− {0, 1}κ

let φ.K(p)← pk
return (φ,>, pk)

else
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return (⊥,⊥,⊥)
When receiving an input (φ, p, (send, pk) , ·, a):

if p /∈ H ∧ a 6= ∅ then
let pk′ ← a
assert @p′ ∈ H : pk′ = φ.K(p′)

else if φ.K(p) 6= ⊥ then let pk′ ← φ.K(p)
else return (⊥,⊥,⊥)
if φ.B(pk′) > 0 then

let φ.B(pk′)← φ.B(pk′)− 1
let φ.B(pk)← φ.B(pk) + 1
return (φ,>,>)

else return (⊥,⊥,⊥)
When receiving an input (φ, p,mint, pk, ·):

let φ.B(pk)← φ.B(pk) + 1
return (φ,>,>)

When receiving an input (φ, p,balance, B, ·):
return (φ,>, B)

Leakage Function Λpp

Each operation on ∆pp has minimal leakage, revealing only which operation was
performed, and in the case of a transfer, the time and the recipient – if and only
if the recipient is corrupted.

When receiving an input (ω = (`, U, T, φ), p, w):
let φπ ← φ
let B− ← 0
for u in U do

let (·, w′, z, a, ·, ·)← T (u)
if w′ = (send, ·) then let B− ← B− + 1

let (φπ, ·)← ∆pp(φ
π, p, w′, z, a)

if w = init then
if φ.K(p) = φπ.K(p) = ⊥ then

return (init, init, ε,∅)
else return (⊥,⊥,⊥,⊥)

else if ∃pk : w = (send, pk) then
let c

R←− {0, 1}κ
if φ.B(φ.K(p))−B− > 0 ∧ φ.K(p) = φπ(p) 6= ⊥ then

let lkg← t
if @p′ ∈ H : pk = φ.K(p′) then let lkg← (`, pk)
return ((send, `, pk) , lkg, ε,∅)

else return (⊥,⊥,⊥,⊥)
else if w = mint ∧ φ.K(p) 6= ⊥ then

return (mint,mint, ε, φ.K(p))
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else if w = balance ∧ φ.K(p) 6= ⊥ then
return (balance,balance, ε, φ.B(φ.K(p))−B−)

else
return (⊥,⊥,⊥,⊥)

Transition Function Γzc

The state transition function for a Zerocash-based token contract. In green are
parts run in the public state oracle, in red are parts run in the private state oracle.

Public state variables and initialization values:

Variable Description
cms := ∅ Public coin commitment set
sns := ∅ Public serial number set

~R := ε Vector of commitment Merkle tree roots
~M := ε Vector of encrypted messages

Private state variables and initialization values:

Variable Description
i := 0 Index of ~M processed.
~C := ε Vector of coins available.

Ke := ⊥ Encryption secret key.
Kz := ⊥ Zero-knowledge secret key.

When receiving an input init:
send init to Oρ and receive the reply pk
return pk

When receiving an input (send, (pkz, pke)):
send (send, pke) to Oρ and

receive the reply (p, r,Kz, p
′, r′, rt, path,M)

assert path is a valid Merkle tree path with root rt, to the element
commr((prfpk

Kz
(1), p))

let sn← prfsn
Kz

((p, r))
let cm← commr′(pkz, p

′)
send (spend, sn, rt) to Oσ

send (msg,M) to Oσ

send (mint, cm) to Oσ

return >
When receiving an input mint:

send mint to Oρ and receive the reply cm
send (mint, cm) to Oσ

return >
When receiving an input balance:
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send balance to Oρ and receive the reply B
return B

When receiving an private oracle query init:
assert ρπ.Ke = ⊥ ∧ ρπ.Kz = ⊥
let ρ.Kz

R←− {0, 1}κ
let (ρ.Ke, pke)← keyGen(1κ)
return (prfpk

ρ.Kz
(1), pke)

When receiving an private oracle query (send, pke):
let ρo ← update(ρo, σo)
let ρπ ← update(ρπ, σπ)
let ρ← update(ρ, σπ)
assert (ρo. ~C ∩ ρπ. ~C) 6= ε
let (p, r)← (ρo. ~C ∩ ρπ. ~C)[0]
let ρ. ~C ← ρ. ~C \ {(p, r)}
let rt← merkleroot(σo.cms)
let path← merklepath(commr((prfpk

ρo.Kz
(1), p)), rt)

let (p′, r′)
R←− {0, 1}κ × {0, 1}κ

let M ← enc((r′, p′), pke)
let Kz ← ρo.Kz

return (p, r, ρo.Kz, p
′, r′, rt, path,M)

When receiving an private oracle query mint:
assert ρo.Ke 6= ⊥ ∧ ρo.Kz 6= ⊥
let (p, r)

R←− {0, 1}κ × {0, 1}κ
let cm← commr(prfpk

ρo.Kz
(1), p)

let ρ. ~C ← ρ. ~C ‖ (p, r)
return cm

When receiving an private oracle query balance:
let ρo ← update(ρo, σo)
let ρπ ← update(ρπ, σπ)
return |ρo. ~C ∩ ρπ. ~C|

When receiving an public oracle query (spend, sn, rt):
assert sn /∈ σ.sns
assert rt ∈ σ. ~R
let σ.sns← σ.sns ∪ {sn}

When receiving an public oracle query (msg,M):
let σ. ~M ← σ. ~M ‖M

When receiving an public oracle query (mint, cm):
let σ.cms← σ.cms ∪ {cm}
let σ. ~R← σ. ~R ‖ merkleroot(σ.cms)

Helper procedures:
function update(ρ, σ)
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let ~N ← σ. ~M [ρ.i:]; ρ.i← max(ρ.i, |σ. ~M |)
for M ∈ ~N do

if ∃r, p : (r, p) = dec(M,ρ.Ke) then
if commr((prfpk

ρ.Kz
(1), p) /∈ σ.cms then continue

if prfsn
ρ.Kz

(p) ∈ σ.sns then continue
let ρ. ~C ← ρ. ~C ‖ (r, p)

return ρ

Simulator Szc

The fully detailed Zerocash simulator.

State variables and initialization values:

Variable Description
B := ∅ Unspent adversarial coins.
K := ∅ Honest public/private key pairs.
T := ∅ Mapping of transactions to created coin commitments.

When receiving a message (transaction, x,D) from F∆pp,Λpp
sc :

if x = init then
let Tσ ← ε
query A with (transaction, Tσ, D) and

receive the reply (τ, ·),
satisfying T (τ) = ⊥ ∧ τ 6= ⊥, else
sampling from ({0, 1}κ ,⊥)

let (Ke, pke)← keyGen(1κ)
let Kz

R←− {0, 1}κ
let pkz ← prfpk

Kz
(1)

let K ← K ∪ {((Kz,Ke), (pkz, pke))}
let T (τ)← ∅
return (τ, (pkz, pke))

else if x = (send, `, (pkz, pke)) then
let p

R←− {0, 1}κ ; r
R←− {0, 1}κ

let sn R←− prfsn
{0,1}κ({0, 1}

κ × {0, 1}κ)
let rt← root(t)
let cm← commr(pkz, p)
let B ← B ∪ {(pkz, pke, cm)}
let M ← enc((r, p), pke)
let Tσ ← ((spend, sn, rt) ,∅) ‖ ((msg,M) ,∅) ‖

((mint, cm) ,∅)
query A with (transaction, Tσ, D) and

receive the reply (τ, ·),
satisfying T (τ) = ⊥ ∧ τ 6= ⊥, else
sampling from ({0, 1}κ ,⊥)

let T (τ)← {cm}
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return (τ,∅)
else if x = (send, `) then

let (·, pk) R←− keyGen(1κ)
let rt← root(t)
let cm R←− comm{0,1}κ(prfpk

{0,1}κ(1), {0, 1}
κ)

let sn R←− prfsn
{0,1}κ({0, 1}

κ × {0, 1}κ)
let M

R←− enc(({0, 1}κ , {0, 1}κ), pk)
let Tσ ← ((spend, sn, rt) ,∅) ‖ ((msg,M) ,∅) ‖

((mint, cm) ,∅)
query A with (transaction, Tσ, D) and

receive the reply (τ, ·),
satisfying T (τ) = ⊥ ∧ τ 6= ⊥, else
sampling from ({0, 1}κ ,⊥)

let T (τ)← {cm}
return (τ,∅)

else if x = mint then
let cm R←− comm{0,1}κ(prfpk

{0,1}κ(1), {0, 1}
κ)

let Tσ ← ((mint, cm) ,∅)
query A with (transaction, Tσ, D) and

receive the reply (τ, ·),
satisfying T (τ) = ⊥ ∧ τ 6= ⊥, else
sampling from ({0, 1}κ ,⊥)

let T (τ)← {cm}
return (τ,∅)

else if x = balance then
let Tσ ← ε
query A with (transaction, Tσ, D) and

receive the reply (τ, ·),
satisfying T (τ) = ⊥ ∧ τ 6= ⊥, else
sampling from ({0, 1}κ ,⊥)

return (τ,∅)
else abort
return (τ, a′)

When receiving a message (input, τ) from F∆pp,Λpp
sc :

send (input, τ) to A and
receive the reply (p, w, (Tσ,Oρ), ·, D)

if T (τ) 6= ⊥ then return none
let T (τ)← ∅
if w = (send, (pkz, ·)) then

if Tσ = ((spend, sn, rt) ,∅) ‖ ((msg,M) ,∅) ‖
((mint, cm′) ,∅) then
send (send, pke) to Oρ and

receive the reply (p, r,Kz, p
′, r′, rt′, path,M ′)

let cm← commr((prfpk
Kz

, p))
let b← >
send read to Gledger and receive the reply Σ
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if @t : 0 ≤ t ≤ |Σ| ∧ rt = root(t) ∧
∃τ : (T (τ) = cm ∧ τ ∈ Σ[:t]) then
let b← ⊥

if sn 6= prfsn
Kz

((p, r)) ∨ rt 6= rt′ ∨M 6= M ′ then
let b← ⊥

if cm′ 6= commr′(pkz, p
′) then let b← ⊥

if ¬b then return none
// We now know the transaction is valid.
// We must determine if M can be
// honestly decrypted, and which
// adversarial coin is being spent.
if ∃((·,Ke), (pkz, pke)) ∈ K then

let d = dec(M,Ke)
if d = (r′, p′) then

let w ← (send, (pkz, pke))
else

let w ← (send, (simkey,⊥))
else

let B ← B ∪ {(simkey,⊥, cm′)}
let w ← (send, (simkey,⊥))

if ∃(pk′
z, pk′

e, cm) ∈ B : pk′
z = prfpk

Kz
then

let a← (pk′
z, pk′

e)
else abort
let T (τ)← {cm′}
let z ← ∅

else return none
else if w = mint ∧ Tσ = ((mint, cm) ,∅) then

let B ← B ∪ {(simkey,⊥, cm)}
let T (τ)← {cm′}
let z ← (simkey,⊥); a← ∅

else return none
return (p, w, z, a,D)

Helper procedures:
procedure root(t)

let cms← ∅
send read to Gledger and receive the reply Σ
for τ ∈ Σ[:t] do

let cms← cms ∪ T (τ)

return merkleroot(cms)

D Security Analysis

Proof (of Theorem 1). If an environment can distinguish between the ideal and
real executions in presence of our simulator (see Appendix D.1), then there must
exist some polynomial sequence of interactions permitting it to distinguish with
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a non-negligible advantage. Broadly, each of the environment’s actions fall into
one of three categories: a) Honestly interacting with the protocol. b) Honestly
interacting with the ledger. c) Commanding the adversary to perform some ac-
tion in the real world. We will consider the responses the environment makes
to queries given to the dummy adversary separately, in each case at the point
where the query is made.

We will consider in parallel two random variables of the state of the ideal
world execution, and that of the real world execution at any time. We leave out
of our analysis the “stack” of partial executions (as described in Appendix A),
except to show that the flow of each party – i.e. when it is waiting for which
query to be answered – is the same in both worlds. In particular, the state of the
ideal world has the following functionalities’ states as a part of it: 1. the state
of the simulator, S, 2. the state of the smart contract functionality, F∆,Λ

sc , and
finally 3. the state of the ledger GiL. In the real world, for each p ∈ H, p’s protocol
state, which we refer to as φp, is part of the state, along with the (shared) NIZK
hybrid functionality FL,r

nizk , and the real-world ledger GrL . For convenience, we will
often talk about these states as concrete variables, and not random variables.

We will prove inductively that any action the environment takes will do two
things: First, it will preserve an invariant I, which holds after the state of both
worlds at any point during the two experiments. Second, if the invariant holds,
the environment gains at most negligible advantage in distinguishing from its
next action. To begin, we will specify the simulator, the invariant I, followed by
a few lemmas helpful in the proof. Finally, we will perform the induction itself.

D.1 The Simulator

The simulator for Kachina has fairly little work to do. It creates simulated
transactions by creating a simulated NIZK proof, and attaching it to the leakage
x. Secondly, when presented with an unknown transaction, and, asked for the
corresponding input, it attempts to extract the input from the simulated zero-
knowledge functionality.

Simulator SKachina

The simulator SKachina has two main points of interaction in the ideal world:
First, it gets notified of the leakage of honest submissions, in the form of the new
public state σ′, and decides their format on the ledger. Second, it gets queried
when an adversarial transaction is seen on the ledger, and must assign meaning
to them. Furthermore, it simulates the non-global functionality FL

nizk, which the
adversary may interact with.

State variables and initialization values:

Variable Description
FL

nizk Simulation of FL
nizk
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When receiving a message (transaction, Tσ, D) from F∆,Λ
sc :

query A with (prove, (Tσ, D)) and
receive the reply π,
satisfying π 6= ⊥ ∧ (·, π) /∈ FL

nizk.Π ∧ (x, π) /∈ FL
nizk.Π, else

sampling from {0, 1}κ , on behalf of FL
nizk

let FL
nizk.Π← FL

nizk.Π ∪ {((Tσ, D), π)}
return ((Tσ, D, π),∅)

When receiving a message (input, (Tσ, D, π)) from F∆,Λ
sc :

simulate sending (verify, (Tσ, D), π) to FL
nizk and receive the reply b

if b ∧ ∃w, Tρ : FL
nizk.W ((Tσ, D), π) = (w, Tρ) then

return (A, w, (Tσ,O(Tρ)),∅, D)
else

return none

Forward all queries to FL
nizk to the simulated instance. Forward all queries, to

global functionalities directly.

D.2 The Invariant I

Definition 14. The invariant I is the conjunction of all of the constraints
below, over the state variables of UC experiment on a pair of matching real and
ideal worlds:

(1) The ledgers are indistinguishable:
GiL.Σ = GrL .Σ ∧ ∀p ∈ H : GiL.M(p) = GrL .M(p)

(2) The simulated and real NIZKs consider the same statement/proof pairs valid
and invalid:
S.FL

nizk.Π = FL,r
nizk .Π ∧ S.FL

nizk.Π = FL,r
nizk .Π

(3) Real world witnesses have a corresponding ideal world witness:
∀Tσ, D, π : ∃Tρ, w : FL,r

nizk .W (((Tσ, D), π)) = (Tρ, w) =⇒ S.FL
nizk.W (((Tσ,

D), π)) = (Tρ, w) ∨ [∃p ∈ H, z = (σo, ρo, σπ, ρπ, η) : φp.T ((Tσ, D, π)) =

(Tρ, z) ∧ F∆,Λ
sc .T ((Tσ, D, π)) = (p, w, (Tσ, z),∅, D) ∧ run-Γ(σπ, ρπ, w, z,>) =

(·, Tσ, ·, Tρ, φp.Y ((Tσ, D, π)))]
(4) Recorded transactions are proven, and only adversarial witnesses are known

by the simulator:
∀Tσ, D, π, p : F∆,Λ

sc .T ((Tσ, D, π)) = (p, . . .) =⇒ ((Tσ, D), π) ∈ FL,r
nizk .Π∧(p /∈

H ⇐⇒ ((Tσ, D), π) ∈ S.FL
nizk.W )

(5) Honest parties record transactions correctly:
∀p ∈ H, τ : τ ∈ φp.T ⇐⇒ τ ∈ φp.Y ⇐⇒ F∆,Λ

sc .T (τ) = (p, . . .) ∧ τ ∈
φp.U =⇒ τ ∈ φp.T

(6) All recorded transactions respect dependencies and transcripts:
∀τ ∈ F∆,Λ

sc .T : F∆,Λ
sc .T (τ) = none∨(∃T , D, π : τ = (T , D, π)∧F∆,Λ

sc .T (τ) =
(·, ·, (T , ·),∅, D))

(7) Recorded as rejected transactions are disproven:
∀Tσ, D, π : F∆,Λ

sc .T ((Tσ, D, π)) = none =⇒ ((Tσ, D), π) ∈ FL,r
nizk .Π
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(8) The dependency invariant J holds for all honest unconfirmed transac-
tions: ∀p ∈ H, let Σ be the longest prefix of GrL .M(p) such that Σ ∩
φp.U = ∅; define X(u = (·, D, ·)) := let (T , z) = φp.T (u) in (u, split(T ,
commit), z,D), and ((·, ρ), ·, C) := φp.exec(Σ). Then J(map(X,φp.U), ρ)∧
sat(map(X,φp.U), φp.U) ∧ ∀(·, D, ·) ∈ φp.U : D \ C \ φp.U = ∅ holds.

(9) Transactions owned by an honest party, and not in their view of the ledger,
are considered unconfirmed, or can never be accepted: Let Σ be the longest
prefix of GrL .M(p) such that ∀τ ∈ Σ : τ ∈ F∆,Λ

sc .T .
∀p ∈ H, τ /∈ Σ : F∆,Λ

sc .T (τ) = (p, . . .) =⇒ τ ∈ φp.U ∨ (@Σ′ � GrL .M(p) : τ ∈
F∆,Λ

sc .execConfirmed(Σ′ ‖ τ)
(10) All results and state updates are consistent with the input and transcripts:

function transcriptConsistent(σ0, ρ0, w, z, Tσ, Tρ, Y )
let (~σ, ·, ~ρ, ~y)← run-Γ(σ0, ρ0, w, z,>)
let ~T σ ← split(Tσ,commit)
let ~T ρ ← split(Tρ,commit)
let σ ← σ0; ρ← ρ0
let parts← zip(~σ, ~ρ, ~T σ, ~T ρ, ~y, Y )
for (σ′, ρ′, T ′

σ, T ′
ρ , y1, y2)← parts do

let σ ← Tσ(σ); ρ← Tρ(ρ)
if σ = ⊥ then break
else if σ 6= σ′ ∨ ρ 6= ρ′ ∨ y1 6= y2 then return ⊥

return >
∀p ∈ H, Tσ, τ = (Tσ, ·, ·), w, z : F∆,Λ

sc .T (τ) = (p, w, z,∅, ·) =⇒ [∃Tρ :
φp.T (τ) = (Tρ, z)∧φp.Y (τ) = ΓO(Tσ),O(Tρ)(w)∧[∀σ, ρ : transcriptConsistent(σ,
ρ, w, z, Tσ, Tρ, φp.Y (τ))]]

(11) Execution results should be equivalent for prefixes and extensions of the ledger
state containing no new adversarial transactions:
∀Σ, p ∈ H : ((Σ ≺ GrL .Σ ∨ GrL .Σ ≺ Σ) ∧ ∀τ ∈ Σ : F∆,Λ

sc .T (τ) 6= ⊥) =⇒
let ((σi,ρi), yi, Ci) ← F∆,Λ

sc .exec(Σ); ((σr, ρr), yr, Cr) ← φp.exec(Σ) in σi =

ρi∧ρi[p] = ρr∧Ci = Cr∧ if F∆,Λ
sc .T (Σ[−1]) = (p, . . .) then yr = yi else yr =

⊥
(12) Recorded transactions which are canonically preceeded by a (yet) unrecorded

transaction, are honest, and considered unconfirmed by their owner:
∀τ ∈ (F∆,Λ

sc .T ∩ GrL .Σ), τ ′ ∈ (GrL .Σ \ F
∆,Λ
sc .T ), p ∈ H : idx(GrL .Σ, τ ′) <

idx(GrL .Σ, τ) ∧ F
∆,Λ
sc .T (τ) = (p, . . .) =⇒ τ ∈ φp.U ∨ (@Σ′ � GrL .Σ : τ ∈

F∆,Λ
sc .execConfirmed(Σ′ ‖ τ))

(13) The ledger is ahead of any party’s ledger:
∀p ∈ H : GrL .M(p) ≺ GrL .Σ

(14) The same transactions are unconfirmed in both worlds:
∀p ∈ H : φp.U = F∆,Λ

sc .Up

(15) NIZK proofs have witnesses:
∀x, π : (x, π) ∈ FL,r

nizk .Π ⇐⇒ (∃w : FL,r
nizk .W ((x, π)) = w∧S.FL

nizk.W ((x, π)) ∈
{w,⊥} ∧ (x,w) ∈ L)

(16) Recorded transactions are either on the ledger, considered unconfirmed by an
honest party, or can never be satisfied:
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∀τ ∈ F∆,Λ
sc .T : τ ∈ GL.Σ∨(∃p ∈ H : τ ∈ φp.U∧F∆,Λ

sc .T (τ) = (p, . . .))∨(@Σ′ �
GL.Σ : τ ∈ F∆,Λ

sc .execConfirmed(Σ′ ‖ τ))

Often many of these parts of the invariant are trivially preserved due to the
state variables constrained in them being left unchanged. Such trivial cases will
be omitted in our analysis.

D.3 Supporting Lemmas

Both F∆,Λ
sc and Kachina have exec functions, which executes an entire ledger

state given to it. Lemma 2 is a generalization of invariant (11), and simply states
that this execution will preserve the invariant, and return the same values in the
real and ideal world.

Lemma 2. For any p ∈ H,Σ where Σ ≺ GrL .Σ ∨ GrL .Σ ≺ Σ, and after sending
the message (extend,Σ \ GrL .Σ) to GL, ((σi,ρi), yi, Ci) is the result of running
exec(Σ) in F∆,Λ

sc , and ((σr, ρr), yr, Cr) is the result of running exec(Σ) in φp,
these interactions preserve I, and the returned values are equivalent: σi = σr ∧
ρi[p] = ρr. If the last transaction τ in Σ is owned by p (i.e. F∆,Λ

sc .T (τ) = (p, . . .)),
then yi = yr, otherwise yr = ⊥.

Proof. First, we consider the extend call. This will only extend if Σ is longer
than GL.Σ – otherwise it extends with ε, which is a no-op. This call preserves I,
as demonstrated in Appendix D.4.

We prove by induction over Σ. In the base case, Σ = ε. The invariant is
trivially preserved, and the returned values are equivalent (when ∅ is interpreted
as public/private state pairs). In the induction step, we proceed by case analysis
for the new transaction τ = (T , D, π):

Case 1. The τ ∈ F∆,Λ
sc .T , and all processed transactions so far have been also

been recorded (are in F∆,Λ
sc .T ). If so, then by (11), the return values are equiva-

lent. Further, this iteration does not change the state in the ideal world. By (4)
and (7), we also know that the transaction is either in FL,r

nizk .Π, or FL,r
nizk .Π. As a

result, no state changes will be made in the real-world execution either, trivially
preserving I.

Case 2. τ /∈ F∆,Λ
sc .T , but ((T , D), π) ∈ FL,r

nizk .Π. In this case, the real world will
skip this transaction, and set y to ⊥. In the ideal world, the simulator will ensure
that F∆,Λ

sc .T (τ) is set to none, and equally this transaction is skipped, with y
set to ⊥. This affects and preserves the following invariants:

(3) As by (15), τ has no witness.
(4) As F∆,Λ

sc .T (τ) = none, not satisfying the precondition.
(5) As τ was not in F∆,Λ

sc .T in the induction hypothesis, and is not associated
with an honest party.

(6) By F∆,Λ
sc .T (τ) being none, satisfying the postcondition.
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(7) Due to ((T , D), π) ∈ FL,r
nizk .Π.

(9) As F∆,Λ
sc .T (τ) = none, not satisfying the precondition.

(10) As τ was not in F∆,Λ
sc .T in the induction hypothesis, it cannot be in any

φp.Y , by (5).
(11) By the output equivalence part of the induction step holding.
(12) By τ being previously unrecorded, further restricting the quantification do-

main, and F∆,Λ
sc .T (τ) = none, not satisfying the precondition.

(16) By the newly recorded transaction being in the ledger state, as this has been
extended if necessary.

Case 3. τ /∈ F∆,Λ
sc .T , but ((T , D), π) ∈ FL,r

nizk .Π. In this case, by (15) a witness
must be recorded, and by (3) this witness must be accessible to the simulator.
As a result, the simulator will ensure that T (τ) is set to (A, w, (Tσ,O(Tρ)),∅,
D). As this is an adversarial transactions, the ρ-value of the adversary is not
constrained, and neither is the output y-value. As a result, to show the execution
equivalence holds, it suffices to show that both worlds will have the same σ-value
after this new transaction is the same in both worlds. In the real world, the
commit-separated form of Tσ is applied to σ in parts, with the last non-⊥ state
being adopted. In the ideal world, the Tσ is recomputed, and the parts compared
with those passed as inputs. The confirmation depth is derived from how many
parts match before the computed and input transcripts diverge, or the result is
⊥. The ideal world runs run-Γ(σ, T ′

σ, w,O(Tρ),⊥). Since ((Tσ, D), (Tρ, w)) ∈ L
(by (15)), we know that the public state oracle in run-Γ can be replaced with
O(Tσ), up to the confirmation depth, after which the executions may diverge.
As a result, the σ returned in the ideal world – ~σ indexed at the confirmation
depth – matches that returned in the real world. As F∆,Λ

sc .T is set, the following
parts of the invariant are affected and preserved:

(3) By the left hand side of the disjunction already being satisfied.
(4) By the transaction being recorded in the NIZK, and the simulator knowing

its witness.
(5) As τ was not in F∆,Λ

sc .T in the induction hypothesis, and is not associated
with an honest party.

(6) By the newly recorded transaction satisfying the postcondition.
(7) By the newly recorded transaction not being recorded as rejected.
(9) By the newly recorded transaction not being honestly owned, not satisfying

the precondition.
(10) As τ was not in F∆,Λ

sc .T in the induction hypothesis, it cannot be in any
φp.Y , by (5).

(11) By the output equivalence part of the induction step holding.
(12) By τ being previously unrecorded, further restricting the quantification do-

main, and F∆,Λ
sc .T (τ) = (A, . . .), not satisfying the precondition.

(16) By the newly recorded transaction being in the ledger state, as this has been
extended if necessary.
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Case 4. The transaction has not been previously seen – that is τ /∈ F∆,Λ
sc .T ,

and ((T , D), π) /∈ FL,r
nizk .Π ∪ F

L,r
nizk .Π. In this case, both the real and ideal worlds

will attempt the same NIZK verification (simulated in the ideal world). By (2),
they will both query the adversary for a NIZK witness in the same way, handing
off execution. By the induction hypothesis, I holds as the point of execution
transfer, and as the query made is the same in both worlds, the environment
gains no means to distinguish.

As NIZK verification is the first thing done in both worlds, and NIZK verifi-
cation is agnostic as to which party is verifying, this is equivalent to the environ-
ment first manually verifying the same statement/proof pair. As will be shown in
Appendix D.4, this preserves the invariant, and returns the same result in both
worlds. Therefore, Case 4 is equivalent to either Case 2 (if the NIZK verification
failed), or Case 3 (if the NIZK verification succeeded), as if the NIZK verifica-
tion is done externally beforehand, the statement/proof pair must be either in
FL,r

nizk .Π, or in FL,r
nizk .Π.

Case 5. τ ∈ F∆,Λ
sc .T , however (11) cannot be applied, as other transactions have

since been added. By (12), we know that τ belongs to an honest party p′, and
that τ ∈ φp′ .U . We will use (8) to argue that, where (Tρ, z) = φp′ .T (τ), either
Tρ(ρi[p′], z) 6= ⊥, or the transaction is skipped in both worlds.

First, we consider the possibility that τ /∈ φp′ .U . By (9) we know that τ can-
not ever be confirmed by a suffix of the ledger state referred to in the invariant.
As this is a prefix of GrL .Σ, such that it contains no unrecorded transactions, the
current induction is necessarily a suffix of it. As a result, we know that the ideal
world execution will fail. As transactions are rejected in both worlds under the
same conditions – due to dependencies not being satisfied – we can conclude that
these transactions are also skipped in the real world, preserving I as no state
variables are changed, and satisfying all conditions by the induction hypothesis.
We will now focus on the case that τ ∈ φp′ .U

Next, we determine that, given τ ∈ φp′ .U , the longest prefix Σ∗ referred to in
(8) is a prefix of the ledger state Σ we are currently performing induction over.
We know it to be a prefix of GL.M(p′), such that this prefix contains none of the
transactions in φp′ .U . As τ ∈ φp′ .U , and is either a prefix or extension of GrL .Σ,
of which GrL .M(p′) is itself a prefix by (13), we can conclude that Σ∗ ≺ Σ.

To apply (8), we are only concerned with the parties private state ρ, we
can observe all transactions in Σ \ Σ∗ are either not owned by p′, will not be
accepted in any context, or are in φp′ .U . We can ignore the first possibility, as
the real world execution of them will not affect ρ, regardless. The second can
also be ignored, as these will be skipped by the ideal world execution, and by
induction hypothesis, by the real world execution as well. Next, we consider
which of the transaction in Σ\Σ∗ owned by p′ have been successfully processed.
exec provides replay protection, ensuring that each unconfirmed transaction has
been processed at most once. By induction hypothesis, the sequence A of such
transactions that have results associated for this party is the same in both worlds.
As exec will not set the state to ⊥, we know that there exists a confirmation
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depth vector ~c, such that T ∗
ES(map(φp′ .T,A),~c)(ρ

∗[p′]) 6= ⊥ is the result of applying
these transactions in the real world. Here, ρ∗ is taken to be the private state
corresponding to the prefix Σ∗ in the ideal world.

Now that τ is processed, we know by (8) that its dependencies are either in
confirmed, and in order, in Σ∗, or in φp′ .U . In either case, τ is skipped in both
worlds if it is a replayed transaction.

As τ ∈ φp′ .U , and is not a replay, B = A ‖ τ is a permutation of a subset
of φp′ .U . As a result, by (8), we know that T ∗

ES(map(φp′ .T,B),~c ‖ ·)(ρ
∗[p′]) 6= ⊥. As

we’ve previously established this holds for A, by definition of T ∗, this implies
that applying Tρ to ρ[p′]i to any confirmation depth is non-⊥, where ρ[p′]i is the
same as the ideal world private state for the induction hypothesis, by repeated
application of (10). Likewise, (10) allows us to conclude that σi will also be
non-⊥, as the update applied to it will be equivalent to applying Tσ to the same
confirmation depth, which by definition of confirmation depth is not ⊥.

If the transaction is skipped in both worlds, the induction hypothesis still
applies. Otherwise, up to the confirmation depth, applying both public and pri-
vate state transcript parts is non-⊥. As previously noted in Subsection 4.1, this
is equivalent to partial oracle executions to this confirmation depth, and there-
fore the ideal and real world states match. Likewise, (10) applies (as by (5),
φp′ .Y (τ) is set), and we know the ideal-world result yi = φp′ .Y (τ)[c], where c is
the confirmation depth.

If p = p′, by (5), φp.T is defined, and as a result, the same update is carried
out to ρ in the real world, as to ρi[p] in the ideal world. Further, it will return the
same result yr as the ideal world, as projc(φp.Y (τ)) = yi. If p 6= p′, the ideal world
update does not affect ρi[p], and the correctness of the returned private state is
guaranteed by the induction hypothesis. yr = ⊥ is returned, which satisfies the
requirements. Finally, in both cases, if the confirmation depth is maximal, the
transaction is added to C, ensuring the returned C is the same in both worlds.
Neither world makes any state updates, trivially preserving I. ut

Lemma 3. If I holds, then for all p ∈ H, running updateState(p) in F∆,Λ
sc , and

running updateState in φp preserves I.

Proof. To begin with, both worlds retrieve the same value Σ / Σp from GL, due to
(1). As seen in Appendix D.4, this preserves I. Next, by Lemma 2, both worlds
receive the same value C, and the execConfirmed call preserves I. The worlds now
iterate over φp.U and F∆,Λ

sc .Up respectively, which by (14) are equal in value.
The operations performed are almost identical, with the exception of the real
world deconstructing u = (·, D, ·) for each u ∈ U , while the ideal world extracts
(. . . , D) = F∆,Λ

sc .T (u) instead. By (6), if u ∈ F∆,Λ
sc .T , the two are equivalent,

and by (5), as u ∈ φp.U , it is also in both φp.T , and F∆,Λ
sc .T . We conclude that

both worlds perform the same operations. Updated is only φp.U and F∆,Λ
sc .Up

respectively. The following parts of the invariant are affected and preserved:

(5) By reducing the scope of φp.U .
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(8) This consists of three sub-parts: The satisfaction of J , that of sat, and that
D\C\U = ∅. The first is trivial: J makes a statement about all permutations
of subsets. A smaller initial set merely reduces the scope of the quantifiers.
The second holds due to updateState ensuring that if a transaction is re-
moved from U , any transactions that depend on it are also removed, with
the remaining transactions being in the same order as before. As a result,
a previously satisfied transaction is either removed itself, or still satisfied,
as it does not depend on any removed transactions, and dependencies still
in U being in the same order as before. Finally, D \ C \ U = ∅ is also
preserved due to the recursive removal. Specifically, if D * (C ∪U) the cor-
responding transaction is removed. As a result, only transactions satisfying
this condition will remain.

(9) As the removed transactions either fail confirmation directly (it depends
on a transaction rejected in Σp, or a different transaction order than got
enforced), or depends on a transaction which fails. In either case, any state
Σ′, of which Σp is a prefix, cannot accept these for the same reasons.

(12) As in (9).
(14) By equal update. ut

D.4 Proof of Theorem 1

We proceed with the main inductive proof of Theorem 1. We consider the base
case of the system initializations in the real and ideal worlds. The induction
hypothesis is that after k < 2κ interactions with any environment, the state of
both worlds satisfy the invariant I, and the environment has not gained a non-
negligible advantage in distinguishing. We will assume, without loss of generality,
the adversary being a dummy adversary. We provide a concrete list of actions
the environment may take before taking the induction step. We note that as at
any point the environment cannot distinguish, we can assume that it takes the
same action in both worlds without loss of generality.

Base Case.

Proof. Most base cases hold either due to equal initialization of variables con-
strained to be equal, or due to initialization leaving forall quantifiers to quantify
over the empty set. The former is the case for: (1), (2), (5), and (14). The latter
is the case for: (3), (4), (6), (7), (9), (10), (12), and (16). The remaining hold
for the following reasons:

(8) At initialization, the only prefix of GrL .M(p) is ε. φp.execState(ε) = (∅,∅).
The base case therefore holds iff J(∅,∅) holds. This in turn holds iff T ∗

ε (∅) 6=
⊥, or ∅ 6= ⊥.

(11) At initialization, the only ledger state Σ which satisfies the condition that
∀τ ∈ Σ : F∆,Λ

sc .T (τ) 6= ⊥ is ε. For this, as both worlds are initialized to
equivalent contract states, the outputs of exec will be equal.

(13) By the reflexivity of ≺. ut
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Induction Step.

Proof. We observe that the environment is capable of the following queries:

– ∀p ∈ H, w:3 Sending (post-query, w) to F∆,Λ
sc or Kachina.

– ∀p ∈ H, τ : Sending (check-query, τ) to F∆,Λ
sc or Kachina.

– ∀p ∈ P, τ : Sending (submit, τ) to GL.
– ∀p ∈ P: Sending read to GL.
– ∀Σ′: Sending (extend,Σ′) to GL.
– ∀p,Σ′: Sending (advance, p,Σ′) to GL.
– ∀p ∈ P \ H: Sending (prove, x, w) to FL

nizk.
– ∀p ∈ P:4 Sending (verify, x, π) to FL

nizk.

We will prove that I is preserved across any of these queries, and that they
reveal the same information in both worlds.

Case (post-query, w). We proceed by sub-case analysis. We identify the fol-
lowing cases: 1. The transaction is rejected by the contract. 2. The transaction
is rejected by the user. 3. The transaction is posted. In all cases, updateState is
first run. By Lemma 3, this preserves the invariant, and also ensures that the
returned value Σp = GL.M(p) is the value returned in both worlds (by (1)). In
the ideal world, Λ is called. The real world largely emulates the same, computing
most of the same values identically. Of note are the values σo and ρo/ρo[p], which
are computed in both worlds using execState(Σp). By Lemma 2, this preserves
the invariant, and returns the same values.

The only place where the two worlds diverge in their computation is in han-
dling the unconfirmed transactions – the ideal world executes run-Γ, and updates
σπ, ρπ, and X according to the confirmation depth, while the real world partially
applies Tσ and Tρ to the confirmation depth. Before we go into the main three
cases, we will argue that, if the transaction is not rejected by the contract, then
these two approaches will yield the same result, and that they will reject equally.

To begin with, in the ideal world the confirmation depth is derived from the
number of transcript parts matching between the newly generated and input
transcripts. As a transcript application is non-⊥ if and only if it can be generated
in the same way in the current state, this ensures that the confirmation depth
matches in the two worlds.

Further, we observe that in the real world, the final value of ρπ cannot be ⊥
– to begin with, updateState guarantees that Σp∩φp.U = ∅. This in turn, along
with (8) ensures that J(X) holds, as well as that sat∗(X,U) holds. It follows
T ∗(ρo) 6= ⊥, where T ∗ performs the same repeated applications of Tρ(ρ, z) as
3 We omit without loss of generality the environments ability to make honest queries

with corrupted parties. The environment may simulate running the honest protocol
to replicate these.

4 Technically, as in prove, the environment can only instruct corrupted parties to
verify. As verification for honest parties preserves the invariant as well, and is a
useful lemma, we prove the more general statement.
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the loop in the main protocol, using the same values. Further, by (3) and (4),
we can conclude that the transcripts Tρ, and contexts z are the same in both
worlds. By (10) , we can conclude that the final ρπ values are also the same in
both worlds. Further, as Tρ and z are equal in both worlds, and by (6) D is also
equal, the sequence X is also equal. Subsequently, σ, ρ, and D are computed
equivalently in both worlds.

We now consider the main case analysis: If the contract rejects the transaction
in the ideal world, the returned description is ⊥. This happens if and only if
last(~σ) = ⊥∨ last(~ρ) = ⊥, the same condition as the real world protocol has for
rejecting the transaction before querying the user. If the transaction is rejected,
no variables are modified, preserving I, and the same value is returned in both
worlds, giving the environment no means to distinguish.

If the contract does not automatically reject the query, the leakage descrip-
tor is computed equally in both worlds, and sent to the party to acknowledge.
The party has the opportunity to accept the described leakage, or cancel the
transaction. At the point of handing over execution to the environment, no state
has been modified, trivially preserving I, and as the same leakage descriptor is
given, it has no means to distinguishing.

In the case of the environment subsequently cancelling the transaction, both
worlds immediately return with rejected, again trivially preserving I, and
giving no means to distinguish.

Finally, if the environment accepts the leakage, both worlds obtain the trans-
action identifier τ : The simulator ensures that the real-world adversary is queried
for the same NIZK proof as it is in the real-world, and that the transaction for-
mat matches that of real-world transactions. At the time of the proof query, no
state has been modified, trivially preserving I. As the same statement is queried
for, the environment gains no information to distinguish.

Subsequently, both worlds record the transaction’s information (in F∆,Λ
sc .T

and φp.T ), and note is as unconfirmed (in F∆,Λ
sc .U and φp.U). In the real world,

the result is further recorded in φp.Y . The following parts of I are affected and
preserved (including the prove query):

(2) By ((Tσ, D), π) being added to both worlds’ Π equally.
(3) As φp.T , F∆,Λ

sc .T , and φp.Y are appropriately set to satisfy the RHS of the
disjunction.

(4) As for the newly added transaction, p ∈ H, and ((Tσ, D), π) /∈ S.FL
nizk.W (by

the uniqueness of statement/proof pairs).
(5) As the newly added transaction is added to all of φp.T , φp.U , and F∆,Λ

sc .T ,
where it is associated with p.

(6) As the newly added transaction does consist of transcript, dependencies and
proof, and the former two are recorded in F∆,Λ

sc .T correctly, and S returns
∅ for a.

(7) As the newly recorded transaction is not recorded as none.
(8) By J being preserved when appending a new transaction, J holds after the

induction step (as ρ remains unaffected). sat holds by induction hypothesis,
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and as D v U \{τ}. For the new transaction, D\C \φp.U = ∅ as D ⊆ φp.U ;
for previously transactions this still holds, as φp.U is expanded.

(9) As the newly added transaction is also unconfirmed by the owning party.
(10) By Tσ, Tρ, and ~y having been extracted from run-Γ, operating in the context

of w, z, and some σ, ρ, with these values being recorded in the correspond-
ing state variables (except σ and ρ). As the transcripts are transcripts of
oracle evaluations against w, and ~y is the result of Γ operating with these
oracles, executing ΓO(Tσ),O(Tρ)(w) has the same effect. Further, as the tran-
scripts accurately reproduce the state change in the original state context,
by definition of transcript execution, if the sequence of transcripts up to the
confirmation depth can be applied to be non-⊥, they are indistinguishable
from making the original queries to the state oracle. Combined with the
sequence of queries made depending only on w and the state oracle itself,
we can conclude that the transcript applications are the same as executing
against the state oracles up to the confirmation depth, regardless of which
initial state the transcript could be successfully applied to.

(11) As a new transaction has been recorded, we must now additionally consider
transaction sequences Σ which contain this new transaction at some point.
We cannot directly use Lemma 2, however we can make use of its induction:
If we can show that any Σ ending with the new transaction τ satisfies the
execution equivalences, then induction from Lemma 2 can apply on that as a
base case (in particular, the precondition for Case 5 applies for all subsequent
transactions). The execution equivalence holds for this new base case, as we
know that this new transaction is both honest, and considered unconfirmed
for this party. Therefore, the argument for Case 5 holds for τ itself as well.
As the execution equivalence defined in Lemma 2 is the same as that of (11),
this part of the invariant is preserved.

(12) By the newly added transaction being unconfirmed, it satisfies any quantifi-
cation where τ is set to it. By now being recorded, the range of quantifications
for τ ′ is restricted, relaxing the condition.

(14) By equal update.
(16) By the newly recorded transaction being considered unconfirmed by an hon-

est party.

Finally, both worlds submit to the ledger the same transaction τ , which sim-
ply sent to the adversary. At this point I holds as argued above, and as the same
transaction is sent, the environment cannot distinguish. Finally, (posted, τ) is
returned, giving the environment no information to distinguish for the same
reasons.

Case (check-query, τ). After running updateState, Lemma 3 preserves the
invariant, but also ensures that Σp = GL.M(p), where Σp is the value returned
in both worlds (by (1)).

We consider three cases: 1. τ /∈ Σp, 2. F∆,Λ
sc .T (τ) = (p, . . .), and 3. otherwise.

In Case 1, both worlds return not-found without updating any state, not al-
lowing the environment to distinguish, and preserving I. In Case 2, both worlds
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run execResult(prefix(Σp, τ)), preserving I according to Lemma 2, and returning
the same value in both worlds, giving the environment no information to dis-
tinguish. Finally, in Case 3, only the real world runs execResult, while the ideal
world returns ⊥. As previously in updateState the sub-function execConfirmed
was run, we know that all NIZK-verifications performed in this exec call have
previously been made – as a result the call modifies no state, and preserved I.
Further, by Lemma 2, it returns ⊥, as in the ideal world, giving the environment
no information to distinguish.

Case (submit, τ). In both worlds τ is handed to the adversary, and no other
action is taken. As the same information is relayed, the environment cannot
distinguish, and as no state is changed, I is preserved.

Case read. By (1), both worlds will return the same result; therefore the en-
vironment cannot distinguish. As no state is changed, I is preserved.

Case (extend,Σ′). As nothing is returned, the environment gains no informa-
tion allowing it to distinguish. By (1), the updates done are the same in both
worlds. The parts of the invariant affected and preserved are the following:

(1) By equal update.
(11) Extending GL.Σ further constrains the possible Σ values quantified over.
(12) Without loss of generality, we can assume single-transaction appends to

GrL .Σ. If a new unrecorded transaction is added, it (at first) does not pre-
ceed any transactions, leaving the quantification unchanged, and relaxing
the non-existance quantifier. If a recorded honest transaction is added, then
by (9) and (13), this transaction satisfies the conditions.

(13) By the append-only nature of extend.
(16) By relaxing the constraint.

Case (advance, p,Σ′). As nothing is returned, the environment gains no in-
formation allowing it to distinguish. By (1), the updates done are the same in
both worlds. The parts of the invariant affected and preserved are the following:

(1) By equal update.
(8) Without loss of generality, we can assume single-transaction advances. If
GL.M(p) ∩ φp.U 6= ∅, or the newly added transaction τ ∈ φp.U , this is pre-
served as the longest prefix remains equal. Otherwise, Σ in the induction step
is that of the induction hypothesis, with one transaction τ /∈ φp.U appended.
If τ is not owned by p, by (5), φp.T (τ) = ⊥, and therefore execState(Σ ‖ τ)
returns the same ρ as execState(Σ), preserving the invariant. If τ is owned
by p, by (9), this transaction will be rejected, likewise returning the same ρ.
Further, as D \C \U is already ∅ for all dependency lists D, and extending
Σ can only lead to C growing, this condition remains satisfied.

(9) By further restricting all-quantification and non-existance quantification.
(13) By condition that GrL .M(p) ≺ GrL .Σ.
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Case (prove, x, w). In the ideal world, this query is handled by the simulated
functionality S.FL

nizk. If (x,w) /∈ L the call returns immediately with ⊥ in both
worlds, and no variables are modified, giving the environment no information to
distinguish, and preserving I. Otherwise, the adversary is immediately queried
with (prove, x) in both worlds. Again, at this point no variables have been
modified, preserving I, and the information handed to the adversary is the same
in both worlds, giving the environment no information to distinguish. The adver-
sary will eventually respond with a proof π, which is verified against constraints
in both worlds, and randomly sampled if it does not meet them. By (2), the con-
straints are identical in both worlds. Finally Π and W are set, and π returned
in both worlds, giving no distinguishing information to the environment. The
following parts of the invariant are affected and preserved:

(2) By equal update.
(3) By equal insertion into FL,r

nizk .W , and S.FL
nizk.W .

(4) By relaxing the constraint.
(9) As the possible results of executing transactions consisting of unrecorded

statement/proof pairs is constrained – the environment can no longer decide
if they should be processed or not.

(11) As in (9).
(12) As in (9).
(15) As only members of L are recorded.
(16) As in (9).

Case (verify, x, π). The flow for verification is only slightly more complex
than that for proving. At a high level, the adversary may be given a chance to
produce a last-moment witness for the statement being verified. If it refuses to
do so, the proof is recorded as definitively invalid. We consider three sub-cases: 1.
The statement/proof pair is recorded as either valid or invalid. 2. The adversary
returns a valid witness. 3. The adversary does not return a valid witness.

In Case 1, verify returns the same value in both worlds by (2), giving
the environment no means to distinguish. Case 2 is equivalent to the adversary
first sending a prove query for the given statement, and supplying it with the
corresponding proof, and then running the verify query. We therefore refer to
Case 1, and the case of prove. In Cases 1 and 2, no state is changed, preserving
I. Finally, for Case 3, FL,r

nizk .Π is updated equally in both worlds, and⊥ is returned
in both worlds, giving the environment no information to distinguish. In this
case, the following parts of the invariant are affected and preserved:

(2) By equal update.
(7) By relaxing the condition on FL,r

nizk .Π.
(9) As the possible results of executing transactions consisting of unrecorded

statement/proof pairs is constrained – the environment can no longer decide
if they should be processed or not.

(11) As in (9).
(12) As in (9).
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(16) As in (9). ut

As the environment cannot with non-negligible probability between the real
and ideal world in any single action if I is preserved, and as I is preserved with
overwhelming probability across each action by the environment, and holds at
protocol initialization, we conclude that the environment cannot distinguish in
the UC game. ut

E Proof Sketch of the Zerocash Contract

Proof (sketch, of Theorem 2). To begin with, observe that from the collision resis-
tance of PRFs, commitments, and sampling from {0, 1}κ, all coin commitments,
serial numbers, and public keys will be unique with overwhelming probability.

The environment can perform the following primary actions: a) For any hon-
est party, run (post-query, w). b) For any honest party, run (check-query, τ).
c) For any party, run (submit, τ) against GL. d) For any party, run read against
GL. e) Run (advance, p,Σ′) against GL, and f) for any party, run (extend,Σ′)
against GL.

All but the first two of these are trivial. The simulator forwards all queries
to GL, and the state of GL depends on no other functionality (transactions “sub-
mitted” in the ideal functionality are only passed to the adversary). As a direct
result, the state and return value of GL follow the same distribution in both
worlds, giving the environment no means to distinguish.

During the running of check-query the environment does have a signifi-
cant additional means of input, in the form of being able to assign meaning to
adversarial transactions as they get executed for the first time. It is sufficient to
show the following: a) From the ideal-world leakage, the simulator can create
indistinguishable real-world leakage. b) Ideal-world transactions have the same
leakage descriptions sent to the environment (and are rejected under the same
conditions). c) An invariant holds between the ideal and real-world contract
state, such that it is preserved across both honest and adversarial transactions’
transition function executions.

We omit the full detail of this invariant. To sketch the idea behind it, we
must prove that the following are preserved: The public keys recorded in the
ideal contract state, and the simulator must correspond directly to secret keys
recorded in the real contract state, and the same public keys returned by the real
contract. Further, the coins held by honest parties in the real contract should be
valid at any time, and correspond directly to the balance of the same party in
the ideal contract. Honest unconfirmed transactions in both the real and ideal
contracts should still be valid when they are finally executed (also implying they
do not conflict with each other).

These are preserved across honest init calls, as the simulator ensures the
keys it stores, and the public keys returned in the ideal contract, are generated
in the same way as in the real contract. They are preserved across honest send
calls, as they remove one commitment from an honest party’s coins, and poten-
tially add it to the respective recipient party. Further, the leakage functions of
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honest sends in the real contract ensures the same coin cannot be spent again.
They are preserved across honest mints, as again the balance is incremented
alongside a new coin being recorded. For adversarial transactions, as the simula-
tor has all honest private keys, it can, and does, check if an honest party would
register receiving a new coin. If a coin is sent, but no honest party receives it,
the simulator records it as adversarial – even if it may not be spendable by the
real-world adversary. Further, the simulator manages which real-world coin com-
mitments are associated with which adversarial public key in the ideal world.
This ensures it can always spend a corresponding ideal coin to whatever was
spent in the real world (assuming the real world adversary doesn’t spend a coin
he doesn’t own, violating the one-wayness of the PRF).

Transactions remaining valid in the ideal world is guaranteed by ensuring the
balance of a party cannot fall below zero – by assuming the worst case of only
balance removing transactions becoming confirmed. Likewise, in the real world,
the coins eligible for spending are those received in confirmed transactions, but
not spent in unconfirmed ones, ensuring they will not conflict. In both cases, key
generation will be refused if one is currently unconfirmed. mint and balance
queries both only require initialization to have taken place in either world.

To observe that the simulator creates indistinguishable leakage, we first note
that the leakage for real-world init transactions is an empty transcript, which
the simulator indeed recreates. For send transactions, the simulator creates a
public state transcript following the same structure of one in the real contract
execution – spending a coin, creating a new one, and sending a message. Here
there are two cases: either the recipient is adversarial, or they are honest. In the
case of an honest recipient, the simulator does not know the exact public key of
the recipient. Fortunately, however, the environment does not know their secret
keys for the same reason. As a result, it is sufficient to commit to an arbitrary
coin, and encrypt arbitrary secrets. Due to the hiding of the commitments, and
the key-privacy of the encryption scheme, the environment cannot distinguish
this from a real transaction. The simulator creates a random serial number –
revealing nothing due to collision resistance, and from the leakage of the length
of the ledger, can reconstruct the corresponding Merkle tree root, revealing the
same root as the corresponding real-world transaction.

If the adversary is the recipient, the simulator is given the actual public keys
– and can use these directly as in the real protocol, creating a valid spendable
commitment, and a message the adversary can decrypt. Minting is similar to
the case of sending to an honest party – except no message is encrypted. For
the same reason, the leakage is indistinguishable. Finally, honest balance queries
have no leakage in the real world.

For honest parties, the leakage descriptor the environment is asked to sign off
on is identical – for init, mint, and balance consisting of just this string, and
for send, it is (send, t, pk), where pk is the recipient, if it is adversarial, and oth-
erwise is omitted. In each case, assertions made about the current and projected
states are satisfied in either both worlds, or neither, ensuring the transaction is
rejected or posted equally in both worlds. Specifically, all have tests for whether
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keys are initialized (asserting negatively in init, and positively everywhere else).
During spending, a positive spendable balance is also asserted in both worlds.
These holding simultaneously is guaranteed by the invariant holding.

Finally, the transaction outputs the environment receives are the same in
both worlds: For init, the simulator ensures it sees equally distributed public
keys. For balance, the equal distribution is guaranteed by the invariant. For
all other messages, it will only see if they are in the ledger state – as the honest
transactions cannot fail, and return nothing. ut

F Liveness of Smart Contracts

We have presented Kachina in a model without liveness guarantees. In this
section, we discuss how to model, and prove Kachina secure in the presence of
such liveness guarantees. Similar principles can be used to argue for the security
of Kachina for further modifications to the ledger protocol, such as adding
consensus-level validation predicates.

F.1 The δ-delay Ledger

While the simplified ledger GsimpleLedger is nice for the analysis of protocols build-
ing on it as a global functionality, in practice users would like to take advantage
of some liveness guarantees. We present a ledger GδdelayLedger, which annotates
transactions with a time at which they were received. This time is never re-
turned to parties, however it asserts that every party can see a transaction, once
it is δ time slots in the past. This ledger operates under the assumption of a
global clock Gclock, which is also presented here. We posit without proof that
GδdelayLedger UC-emulates GsimpleLedger, by virtue of the latter having far greater ad-
versarial power. We claim that this ledger can also be constructed using existing
UC-secure ledgers such as [2, 1], as these aim to provide the same guarantees.

Functionality GδdelayLedger

The δ-delay ledger adds liveness guarantees to GsimpleLedger, ensuring that suffi-
ciently old transactions are always visible to honest parties.

State variables and initialization values:

Variable Description
Σ := ε Authoritative ledger state

M := λp.ε Mapping of parties to ledger states
U := ∅ Multiset of unconfirmed transactions

When receiving a message (submit, τ) from a party p:
send read to Gclock and receive the reply t
let U ← U ∪ {(τ, t)}
query A with (transaction, τ, t)
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When receiving a message read from a party p:
assert liveness
return map(proj1,M(p))

When receiving a message (extend,Σ′) from A:
if Σ′ ⊆ U then

let U ← U \ Σ′

let Σ← Σ ‖ Σ′

When receiving a message (advance, p,Σ′) from A:
if M(p) ≺ Σ′ ≺ Σ then

let M(p)← Σ′.

Helper procedures:
procedure liveness

send read to Gclock and receive the reply t
if ∃(τ, t′) ∈ U : |t− t′| > δ then return ⊥
else if ∃(τ, t′) ∈ Σ : |t− t′| > δ ∧ ∃p ∈ H : (τ, t′) /∈M(p) then return ⊥
else return >

Functionality Gclock

The global clock allows parties to agree on some discrete notion of time.

State variables and initialization values:

Variable Description
t := 0 Current time

T := ∅ Timekeepers
A := ∅ Agreements to advance

When receiving a message register from a party p:
let T ← T ∪ {p}

When receiving a message deregister from a party p:
let T ← T \ {p}

When receiving a message update from a party p:
let A(p)← >
if ∀p ∈ T.A(t) then

let t← t+ 1;A← λp.⊥
query A with tick-tock

When receiving a message read from a party p:
return t
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F.2 Commutativity of Ledger Realizations

It is of note that since the ledger exists in both the ideal and real world, we would
ideally wish to be able to utilize the stronger δ-delay ledger (and others) in the
ideal world as well. This is not trivial, however – the UC proof presented in this
paper holds for the simple ledger, and while the transitivity and composability of
UC proofs implies that the simple ledger can be replaced by the stronger ledger
in the real world, this is not the only goal.

In order to enable ideal-world replacement, we consider when UC replace-
ments are commutative. Specifically, consider we have four functionalities, A, B,
C, and D, such that: a) A and B both have C as a global functionality, b) A is
UC-emulated by B with the simulator SB, and c) C is UC-emulated by D with
the simulator SD. Observe that this is a generalization of our situation, where
A is F∆,Λ

sc , B is Kachina, C is GsimpleLedger, and D is some other ledger GL.
When can we conclude that A is still UC-emulated by B even if the global

functionality is replaced by D in both worlds? I.e. when can we perform the
inner UC-replacement first, and still be able to perform the outer one?

Theorem 3. Given A, B, C, D, SB, SC as defined in Appendix F.2, if SB
forwards all adversarial queries to C unchanged, and makes no queries to C,
then A is UC-emulated by B with the global functionality D in place of C.

Proof. We will provide this proof largely visually. The environment has a num-
ber of actions it can perform in any given world, in tandem with the dummy
adversary. We will represent these as unconnected wires in a circuit represen-
tation of the different UC functionalities. Each wire is coloured in accordance
with its purpose; these colours serve only to differentiate the wires. We visualize
the preconditions of Theorem 3 in Figure 5 and Figure 6. This crucially includes
the precondition that SB forwards adversarial queries to C, which is represented
equivalently by these queries being made directly instead.

SB A C B C≈

Fig. 5. The first part of the precondition: B UC-emulates A.

SD C D≈

Fig. 6. The second part of the precondition: D UC-emulates C.
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By the UC emulation theorem, for all environments, executions with the
simulator and the ideal-world protocol are equivalent to executions with the
real-world protocol. Due to the all-quantification of the environment, we can
replace any part of a circuit diagram which matches exactly one of the two sides
of the equivalence with the other – this is the foundation of the compositionality
in UC.

We first make use of this in the non-standard direction, of making our ideal-
world protocol more ideal. Specifically, replace the right-hand side of Figure 6
with the left. We start similarly to the left-hand side of Figure 5, however using
D instead of C. Visually, Figure 7 demonstrates the result, which includes two
independent simulators.

SB A D SB A C SD≈

Fig. 7. Visual equivalence for idealizing the sub-protocol D.

From here, we can realize both the ideal-world functionalities, provided it is
in the correct order: We must first realize A, as it relies on the presence of C.
We can directly apply the equivalence of Figure 5, as can be seen in Figure 8.

SB A C SD B C SD≈

Fig. 8. Visual equivalence for substituting the main protocol B.

Finally, nothing stands in the way of realizing C with D, using the equivalence
of Figure 6 again, this time in the more typical direction. As a result, we get in
Figure 9 the final step, leading us to the intended equivalence, and proving the
related UC-emulation statement.

B C SD B D≈

Fig. 9. Visual equivalence for re-substituting D.
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ut

As a final remark, we observe that Kachina satisfies the preconditions for
commutativity, as SKachina does not make adversarial queries to Gledger.

G Enforcing Private State Consistency

The protocol presented so far allows an adversary to arbitrarily set his own
private state. Often it may be desirable to ensure that parties must follow the
rules of the contract, even when it comes to the private state, however. This
is possible, although it also introduces extra costs, and has the caveat of not
functioning with nondeterminism.

The core idea is to store commitments to private states within the public
state of the contract. The contract itself can then verify that the private state
is consistent with this commitment, update it, and then re-commit to the new
state, proving the correctness of every step along the way. Clearly this adds more
work to be verified about the contract, however a more worrying change is that
again the contract needs to be able to process the entirety of the private contract
state. Fortunately using slightly more complex updateable cryptographic datas-
tructures, such as Merkle trees, can mitigate this problem – although it cannot
be eliminated entirely, as computation which aggregates the entire private state
will still be as costly.

H Non-Atomic Executions

Smart contracts are typically closely linked with transactions made on the un-
derlying ledger, and indeed we explicitly make the same link in this paper. That
being said, there are numerous applications which do not rely on a single transac-
tion per interaction with a contract, from Hawk [25], which requires at least two
transactions per round of interaction, to state channels [14], which have many
of the same properties of smart contracts, but may (under optimal conditions)
not require transactions at all.

While the model of smart contracts presented in Section 3 technically ex-
cludes both of these, and a full treatment of both would require further work, it
is nonetheless worth considering how they can be – albeit imperfectly – embed-
ded in this model. First, let us consider contract queries which require multiple
on-chain interactions to “complete”. As an example from Hawk, consider Alice
posts a query to a Hawk-style contract. Naturally, this will not immediately re-
turn – even if Alice’s transaction has made it on-chain. Instead, the transaction
could return a “future object” – a concept often used in concurrent program-
ming design, essentially just being a reference ID, and a promise to associate
some data with it later. Both Alice and the manager party would have to reg-
ularly poll the contract – e.g. send a contract query poll every 10 minutes.
On the manager’s next poll query, he would update the Hawk private state,
and encrypt and post the result for Alice. Finally, when Alice next polls, she

71



would retrieve the result, and associate it with the previous “future object” as
an output. This sketches a protocol running on top of Kachina, which achieves
this style of interaction. It is worth noting that this requirement for end-users to
interact is also a limitation of the underlying model of universal composability:
The environment must manually instruct parties to resume, or messages to be
forwarded by the adversary.

In a similar vein, we can observe that some transactions need not be placed
on a ledger. In particular, if the shared, public state is not used, the transac-
tion is essentially “offchain”, and there is no need to publicly post it. Further,
if the public state is used for message passing (such as in the construction of
a Zerocash contract above), this part of the transaction need not be on-chain
– sending an out of band message is cheaper. Using the same UC-based ap-
proach described above, it would therefore be possible, for example, to first
define an ideal payment-channel contract, and prove that this is UC-emulated
by a contract implementing, for instance, Perun [13]. Finally, we can argue that
most transactions in this contract can be omitted from the ledger, as they are
just two-party channel interactions. This is a rather roundabout means of con-
structing off-chain communication, however it brings a crucial guarantee with it,
namely that it behaves the same under ledger reorderings as a purely on-chain
contract.

I Meta-Parties and Their Relation to Alternative Trust
Models

So far we have presented, and argued for, a model of smart contracts with clear
black-and-white privacy: Users have their own perfectly private local state, and
access to a perfectly public shared state. While we believe this to be the best
starting point for approaching the issue of privacy in smart contracts, reality is
not so simple: Often users have more complex relations with each other.

To consider this more carefully, we can consider that any piece of data in
a smart contract must have a set of owners O, who can interact with it. Fur-
thermore, in any real system, there are parties which can, together, decipher
the actual data itself, and break the privacy of it. Let us refer to the set of all
combinations of parties able to decipher the data as T. While not strictly nec-
essary, in general it is reasonable to assume that the owners are also the users
able to break privacy, that is T ⊆ 2O. While clearly there are many possible
combinations here, a few stand out as interesting, and we observe that they all
relate to some interpretation of privacy-preserving smart contracts:

– O = P, T = 2P : This is the setting of Ethereum, and of the σ used in this
work. Data is public, but can be interacted with by all.

– O = {p}, T = {p}: This is the setting of ρ used in this work. Data is private,
but cannot be interacted with by anyone else.

– O = P, T is all subsets of P with a resource majority (regardless of work,
stake, or what other honest majority assumption is being made): This setting
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is feasible by running MPC across the honest majority of the underlying
consensus protocol.

– O is a fixed-size set, T = {m}: This is the setting of Hawk [25], in which a
single party is trusted with privacy.

– O is a fixed-size set, T = {O}: This is the setting of privacy-preserving
state-channels, in which parties run MPC out-of-band to agree on updates.

– O is a fixed-size set, T = 2O: This is the setting of public state-channels, in
which parties run Arbitrum-like protocols out-of-band to agree on updates.

In particular, this work only directly concerns itself with the first two of
these. It is clear, however that different problems call for different solutions, and
ideally a smart contract system would encode all of these trust systems, not just
one, or a few. Part of the reason for the choice of the first two is that they are
sufficient for constructing the rest, being the exteremes of the spectrum.

The case of Hawk, for instance, was already described above in Appendix H.
We will sketch how state channels might be modeled on top of Kachina, al-
though we stress that a full formal treatment of this, and other settings, will be
left for future work.

A state channel between two users can be interpreted as the two users con-
stituting a “metaparty” – a single entity consisting of multiple parties. This is
subject to some access control for when the constituent parties can act on behalf
of both – commonly requiring agreement from all constituent parties. If Alice
and Bob open a new state channel, this can be seen as creating a new combined
party of (Alice,Bob).

In Kachina, this party again has its own private state, and for state chan-
nels, this can track the most recent update of the channel. Updates are now
operations that only affect the private state of this combined party, and as ar-
gued in Appendix H can be left off the ledger entirely. Interestingly, the access
structure for closing channels, and reading the current state is more permissive
in most state or payment channels – requiring only one user to initiate it.

Given a state channel system, most of it can be implemented in a Kachina
smart contract. It is not new for state or payment channels to use smart con-
tracts, however this is typically only for the opening and closing of the channel.
We observe that in Kachina the update of the channel can also be modeled.

This approach of metaparties is useful, but not optimal. For instance, a con-
tract cannot interact with both Alice’s private state, and the state channel be-
tween Alice and Bob at the same time, as presented here. Further, how the
constituents of a metaparty reach consensus on whether an action is permitted
or not is unclear, and varies from case to case. We leave as future work giving
first-class treatment to data owned by multiple parties.

J Smart Contract Systems

To construct complex systems of multiple smart contracts, no additional machin-
ery is required. In this section, we incrementally construct a complex system with
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similar functionality to Ethereum [36]. We begin by multiplexing between a fixed
set of transition functions, and expand this with the ability to allow new transi-
tion functions to be registered, transition functions to call each other, registered
contracts to hold and transfer funds, and combine in a setting where computa-
tion has an associated cost, which must be paid by the caller. We finally show
how access to the underlying ledger may be modeled.

It is worth noting that we only concern ourselves with the “real world” of
Kachina core contracts. A reasonable question is how to transfer a proof such
as the one we presented in Section 5 into this setting. While we don’t go into the
details here, we observe that (with one exception for the specific token contract
used), only the smart contract’s own transition function affects its state. Running
a multiplexed smart contract is equivalent to running many small smart contracts
independently – only interpreting the ledger differently. This is no longer true
once contracts may call each other – in which case it is sufficient to reason about
the closure of contracts able to call each other instead.

In this section we will assume that the (sub-)contracts do not make use of
commit messages. While this mechanism can be accounted for, it is simpler to
present without it, and the primary purpose of commits in the first place is to
enable gas payments – which this section does.

J.1 Multiplexing Contracts

The basic multiplexing contract takes n different sub-contracts as inputs. Each
party supplies not only the input, but the index i of the contract they wish
to call. The public and private states of the multiplexer consist of the product
of the corresponding sub-contract states, and oracle queries are re-written to
address the correct part of the state. To do some, new oracles O′

σ and O′
ρ are

constructed, which rewrite queries made to them. Then, the requested transition
function is run with these oracles, instead of the original ones.

Transition Function Γmux

The multiplexing transition function Γmux is parameterized by n transition func-
tions Γ1, . . . ,Γn, and allows a users to address any one of them.

Public state variables and initialization values:

Variable Description
σi := ∅ Public states for each sub-contract

Private state variables and initialization values:

Variable Description
ρi := ∅ Private states for each sub-contract

When receiving an input (i, w):
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assert i ∈ Zn

let O′
σ ← λq : Oσ(muxPubOracle(i, q))

let O′
ρ ← λq : Oρ(muxPrivOracle(i, q))

return Γi,O′
σ,O′

ρ
(w)

Helper procedures:
function muxPubOracle(i, q, σ,∅)

let σ′ ← σ.σi

let (σ′, y)← q(σ′,∅)
if σ′ = ⊥ then return (⊥, y)
else

let σ.σi ← σ′

return (σ, y)

function muxPrivOracle(i, q, ρ, (σo, ρo, σπ, ρπ, η))
let ρ′ ← ρ.ρi
let z′ ← (σo.σi, ρ

o.ρi, σ
π.σi, ρ

π.ρi, η)
let (ρ′, y)← q(ρ′, z′)
if ρ′ = ⊥ then return (⊥, y)
else

let ρ.ρi ← ρ′

return (ρ, y)

We assume the existence of unmuxPubOracle and unmuxPrivOracle, which
take an oracle transcript to an Oracle produced by a multiplexed oracle, and
return the pair (i, T ′), where i is the address used in the original multiplexing,
and T ′ is the equivalent un-multiplexed transcript.

function unmuxZmux((σo, ρo, σπ, ρπ, η), i)
return (σo.σi, ρ

o.ρi, σ
π.σi, ρ

π.ρi, η)

function unmuxXmux(X, i)
let X ′ ← ε
for (u, T , z,D) in X do

if ∃T ′ : unmuxPrivOracle(T ) = (i, T ′) then
let X ′ ← X ′ ‖ (u, T ′, unmuxZmux(z, i), D)

return X ′

function descmux(t,X, Tσ, Tρ, (i, w), z)
let (·, T ′

σ)← unmuxPubOracle(Tσ)
let (·, T ′

ρ )← unmuxPrivOracle(Tρ)
let X ′ ← unmuxXmux(X, i); z′ ← unmuxZmux(z, i)
return “Calling sub-contract i: ”+desci(t,X ′, T ′

σ, T ′
ρ , w, z′)

function depmux(X, Tρ, z)
if Tρ = ε then return ∅
else

let (i, T ′
ρ )← unmuxPrivOracle(Tρ)

let X ′ ← unmuxXmux(X, i); z′ ← unmuxZmux(z, i)
return depi(X

′, T ′
ρ , z

′)
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J.2 Multiplexing With Registration

To allow registering new contracts in the multiplexer, it is possible to include
the full contract’s description as part of its address A. In practice it may make
more sense to maintain a mapping from addresses to contract code, however this
is not required. The only other large changes is that, since contracts are created
on the fly, we cannot rely on their states to have been initialized at any point.
Therefore, this initialization takes place at any point where the multiplexed state
is accessed.

function forceInitMaps(((M1, . . . ,Mn), k, v))
for i ∈ {1, . . . , n} do

if k /∈Mi then let Mi(k)← v

return (M1, . . . ,Mn)

Transition Function Γregmux

The multiplexing with registration transition function Γregmux allows addressing
any pair of address and sub-transition function (A,Γ). It uses the specified tran-
sition function on whatever state is associated with this pair, or a new, empty
state for the first use.

Public state variables and initialization values:

Variable Description
Σ := ∅ Mapping from address pairs to public states

Private state variables and initialization values:

Variable Description
P := ∅ Mapping from address pairs to private states

When receiving an input (A = (i,Γ, desc, dep), w):
let O′

σ ← λq : Oσ(muxPubOracle(A, q))
let O′

ρ ← λq : Oρ(muxPrivOracle(A, q))
return ΓO′

σ,O′
ρ
(w)

Helper procedures:
function muxPubOracle(A, q, σ,∅)

if A /∈ σ.Σ then let σ.Σ(A)← ∅
let σ′ ← σ.Σ(A)
let (σ′, y)← q(σ′,∅)
if σ′ = ⊥ then return (⊥, y)
else

let σ.Σ(A)← σ′

return (σ, y)

function muxPrivOracle(A, q, ρ, (σo, ρo, σπ, ρπ, η))
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let (ρ.P, σo.Σ.ρo.P, σπ.Σ, ρπ.P )← forceInitMaps(
(ρ.P, σo.Σ, ρo.P, σπ.Σ, ρπ.P ), A,∅)

let ρ′ ← ρ.P (A)
let z′ ← (σo.σi, ρ

o.ρi, σ
π.σi, ρ

π.ρi, η)
let (ρ′, y)← q(ρ′, z′)
if ρ′ = ⊥ then return (⊥, y)
else

let ρ.P (A)← ρ′

return (ρ, y)

We assume the existence of unmuxPubOracle and unmuxPrivOracle, which
take an oracle transcript to an Oracle produced by a multiplexed oracle, and
return the pair (A, T ′), where A = (i,Γ, desc, dep) is the address used in the
original multiplexing, and T ′ is the equivalent un-multiplexed transcript.

function unmuxZregmux((σo, ρo, σπ, ρπ, η), A)
let (σo.Σ, ρo.P, σπ.Σ, ρπ.P )← forceInitMaps(

(σo.Σ, ρo.P, σπ.Σ, ρπ.P ), A,∅)
return (σo.Σ(A), ρo.P (A), σπ.Σ(A), ρπ.P (A), η)

function unmuxXregmux(X,A)
let X ′ ← ε
for (u, T , z,D) in X do

if ∃T ′ : unmuxPrivOracle(T ) = (A, T ′) then
let X ′ ← X ′ ‖ (u, T ′, unmuxZregmux(z,A), D)

return X ′

function descregmux(t,X, Tσ, Tρ, (A = (·, ·, desc, ·), w), z)
let (·, T ′

σ)← unmuxPubOracle(Tσ)
let (·, T ′

ρ )← unmuxPrivOracle(Tρ)
let X ′ ← unmuxXregmux(X,A); z′ ← unmuxZregmux(z,A)
return “Calling sub-contract A: ”+desc(t,X ′, T ′

σ, T ′
ρ , w, z′)

function depregmux(X, Tρ, (σo, ρo, σπ, ρπ, η))
if Tρ = ε then return ∅
else

let (A = (. . . , dep), T ′
ρ )← unmuxPrivOracle(Tρ)

let (σo.Σ.ρo.P, σπ.Σ, ρπ.P )←
forceInitMaps((σo.Σ, ρo.P, σπ.Σ, ρπ.P ), A,∅)

let z′ ← (σo.Σ(A), ρo.P (A), σπ.Σ(A), ρπ.P (A), η)
let X ′ ← ε
for (u, Tρ, (σo, ρo, σπ, ρπ, η), D) in X do

if ∃T ′
ρ : unmuxPrivOracle(Tρ) = (A, T ′

ρ ) then
let (σo.Σ.ρo.P, σπ.Σ, ρπ.P )← forceInitMaps(

(σo.Σ, ρo.P, σπ.Σ, ρπ.P ), A,∅)
let X ′ ← X ′ ‖

(u, T ′
ρ , (σ

o.σi, ρ
o.ρi, σ

π.σi, ρ
π.ρi, η), D)

return dep(X ′, T ′
ρ , z

′)
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J.3 Loopback Multiplexing

Smart contract systems truly become interesting when contracts are allowed to
call each other. This is not a technically difficult operation: Contracts simply
need to have an additional exit and entry point to allow new queries to other
contracts to be made, and these queries to be responded to. Specifically, we
require contracts to either return (return, y), or (call, A,M), with the latter
invoking a separate contract. we associate a special return value structure with
indicating a new contract address and input to call, and require contracts to
process a specific resume message.

As for the first time, it is possible for multiple separate contracts to get called,
we domain-separate the randomness source η.

function unmuxZloopmux((σo, ρo, σπ, ρπ, η), A)
let (σo.Σ, ρo.P, σπ.Σ, ρπ.P )← forceInitMaps(

(σo.Σ, ρo.P, σπ.Σ, ρπ.P ), A,∅)
Let η′ be a randomness source determinstically and collision-resistantally derived

from the pair (η,A).
return (σo.Σ(A), ρo.P (A), σπ.Σ(A), ρπ.P (A), η′)

Transition Function Γloopmux

The multiplexing with registration and loopback transition function Γloopmux al-
lows addressing any pair of address and sub-transition function (A,Γ). These sub-
transition functions may, return values of either (call, A,M), or (return, y).
In the former case, a different sub-transition function is invoked, and the value
it eventually returns is fed back into the original one, by re-invoking it with
(resume, y).

Public state variables and initialization values:

Variable Description
Σ := ∅ Mapping from address pairs to public states

Private state variables and initialization values:

Variable Description
P := ∅ Mapping from address pairs to private states

When receiving an input (A = (i,Γ, desc, dep), w):
let O′

σ ← λq : Oσ(muxPubOracle(A, q))
let O′

ρ ← λq : Oρ(muxPrivOracle(A, q))
repeat

let y ← ΓO′
σ,O′

ρ
(w)

if ∃A′,M : y = (call, A′,M) then
let w ←

(
resume,Γloopmux,Oσ,Oρ((A

′,M))
)

until ∃y′ : y = (return, y′)
return y′
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Helper procedures:
function muxPubOracle(A, q, σ,∅)

if A /∈ σ.Σ then let σ.Σ(A)← ∅
let σ′ ← σ.Σ(A)
let (σ′, y)← q(σ′,∅)
if σ′ = ⊥ then return (⊥, y)
else

let σ.Σ(A)← σ′

return (σ, y)

function muxPrivOracle(A, q, ρ, z)
let z′ ← unmuxZloopmux(z,A)
if A /∈ ρ.P then let ρ.P (A)← ∅
let ρ′ ← ρ.P (A)
let (ρ′, y)← q(ρ′, z′)
if ρ′ = ⊥ then return (⊥, y)
else

let ρ.P (A)← ρ′

return (ρ, y)

Unlike before, we cannot invert the multiplexing on an entire transcript, as
the transcript may consist of multiple, separate, sub-contract calls. Instead, we
can invert multiplexing each query/response pair in the transcript itself. We
assume the existence of unmuxOracle, which take a query-response pair (q, r),
where the query is muxPubOracle(A, q′) or muxPrivOracle(A, q′), and maps it to
(A, (q′, r)).

As far as descriptions go, it is crucial to note that the leakage description
of a contract is no longer in isolation: what the contract may leak, depends
on what this contract calls. We will assume instead that each sub-contracts
leakage descriptor is aware that it is being run in a loopback system – and
therefore we give it the full transcripts, even of sub-contracts being called. The
assumption here is that the contract directly called by the user is also trusted by
this user – the descriptor it gives should be trusted, not necessarily that of any
further contracts it invoked. It is worth noting that this change of setting for the
descriptor function does not preclude using contracts designed without loopback
systems in mind: As this cannot invoke other contracts, their old descriptor
function can be easily lifted to this setting (a slight caveat is that either the old
descriptor needs to be capable of tolerating unconfirmed transaction transcripts
over multiple calls to the underlying function, or there should exist a function
which splits transcripts into these individual calls).

function liftDesc(A, desc)(t,X, Tσ, Tρ, w, z)
let T ′

σ ← map(proj2 ◦ unmuxOracle, Tσ)
let T ′

ρ ← map(proj2 ◦ unmuxOracle, Tρ)
let X ′ ← unmuxXregmux(X,A); z′ ← unmuxZregmux(z,A)
return desc(t,X ′, T ′

σ, T ′
ρ , w, z′)

function unmuxT(T , A)
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return map(proj2, filter(λ(A′, ·) : A = A′,
map(unmuxOracle, T )))

function unmuxXloopmux(X,A)
let X ′ ← ε
for (u, T , z,D) in X do

let T ′ ← unmuxT(T , A); z′ ← unmuxZloopmux(z,A)
let X ′ ← X ′ ‖ (u, T ′, z′, D′)

return X ′

function descloopmux(t,X, Tσ, Tρ, (A = (·, ·, desc, ·), w), z)
return “Calling sub-contract A: ”+desc(t,X, Tσ, Tρ, w, z)

function deploopmux(X, Tρ, z)
let S ← ∅
for (q, r) in Tρ do

let (A, ·)← unmuxOracle((q, r))
let S ← S ∪ {A}

let D ← ∅
for A = (·, ·, ·, dep) in S do

let T ′
ρ ← unmuxT(Tρ, A)

let z′ ← unmuxZloopmux(z,A)
let X ′ ← unmuxXloopmux(X,A)
let D ← D ∪ dep(X ′, T ′

ρ , z
′)

return map(proj1, X) ∩D

J.4 Integrated Payments Systems

Smart contract systems typically have an associated, native “asset”, which can be
traded not only by users, but by contracts as well. This asset is further typically
tied to a public key, which can be used as an identity of end users, providing a
means to authenticate to contracts. We demonstrate a simple means of achieving
this: We construct a “simple payments” contract, which allows payments by end
users through demonstrating knowledge of secret keys, and arbitrary payments
which will be restricted to system usage. It is worth noting that this could be done
in a privacy-preserving means, as presented in Section 5, although significant
changes would have to be made, as there would be situations where a contract
should publicly own funds, and be able to transfer them, and the simplified
single-denomination design is not ideal.

Transition Function Γsp

The state transition function for a simple payments system. Parties have associ-
ated public/private keys, and balances. The payments system allows for parties
without a key pair to generate one, and for parties to transfer and mint coins, as
well as query their own balance.

Public state variables and initialization values:
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Variable Description
B := λpk : 0 Mapping of public keys to their spendable coins

Private state variables and initialization values:

Variable Description
sk := ∅ The party’s secret key

When receiving an input init:
send init to Oρ and receive the reply sk
let pk← prfpk

sk (1)
return pk

When receiving an input (send, recv, v):
send secretKey to Oρ and receive the reply sk
let pk← prfpk

sk (1)
send (send, pk, recv, v) to Oσ

return pk
When receiving an input (system-send, snd, recv, v):

send (send, snd, recv, v) to Oσ

When receiving an input (mint, v):
send secretKey to Oρ and receive the reply sk
let pk← prfpk

sk (1)
send (mint, pk, v) to Oσ

When receiving an input balance:
send balance to Oρ

When receiving an private oracle query init:
assert ρπ.sk = ∅
let ρ.sk R←− {0, 1}κ
return ρ.sk

When receiving an private oracle query secretKey:
return ρ.sk

When receiving an private oracle query balance:
return σπ.B(prfpk

ρπ.sk(1))

When receiving an public oracle query (send, pk, recv, v):
assert σ.B(pk) ≥ v
let σ.B(pk)← σ.B(pk)− v
let σ.B(recv)← σ.B(recv) + v

When receiving an public oracle query (mint, pk, v):
let σ.B(pk)← σ.B(pk) + v

function descsp(t,X, Tσ, Tρ, w, z)
if Tσ = (init, pk) then
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return (init, pk)
else if Tσ = ((send, snd, recv, v) , ·) then

return (send, snd, recv, v)
else if Tσ = ((mint, pk, v) , ·) then

return (mint, pk, v)
else return ⊥

function depsp(X, T , z)
return ε

Once given such a payments system, the multiplexing system can ensure that
for each call, a transfer to the called contract is initiated first, with the value of
the transfer, and the source address being passed into the contract being called.
Likewise, if this calls another contract, this call may transfer funds from one
contract to another.

Transition Function Γpaymux

The multiplexing with registration, loopback, and payments transition func-
tion Γpaymux allows addressing any pair of address and sub-transition function
(a,Γ). These sub-transition functions may, return values of either (call, A,M),
or (return, y). In the former case, a different sub-transition function is invoked,
and the value it eventually returns is fed back into the original one, by re-invoking
it with (resume, y).

Public state variables and initialization values:

Variable Description
Σ := ∅ Mapping from address pairs to public states

Private state variables and initialization values:

Variable Description
P := ∅ Mapping from address pairs to private states

When receiving an input (token, w):
assert w 6= (system-send, . . .)
let O′

σ ← λq : Oσ(muxPubOracle(token, q))
let O′

ρ ← λq : Oρ(muxPrivOracle(token, q))
return Γsp,O′

σ,O′
ρ
(w)

When receiving an input (call, v, A = (i,Γ, desc, dep), w):
let pk← Γpaymux,Oσ,Oρ (token, (send, A, v))
return callOσ,Oρ(v, pk, A,w)

Helper procedures:
function subCallOσ,Oρ(v,A,A′ = (i,Γ, desc, dep), w)

assert A′ 6= token
let O′

σ ← λq : Oσ(muxPubOracle(token, q))
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let O′
ρ ← λq : Oρ(muxPrivOracle(token, q))

run Γsp,O′
σ,O′

ρ
(system-send, A,A′, v)

return callOσ,Oρ(v,A,A′, w)

function callOσ,Oρ(v,A,A′ = (·,Γ, ·, ·), w)
let O′

σ ← λq : Oσ(muxPubOracle(A′, q))
let O′

ρ ← λq : Oρ(muxPrivOracle(A′, q))
repeat

let y ← ΓO′
σ,O′

ρ
(call, A, v, w)

if ∃v′, A′′, w′ : y = (call, v′, A′′, w′) then
let w ← (resume, subCallOσ,Oρ(v

′, A′, A′′, w′))

until ∃y′ : y = (return, y′)
return y′

function muxPubOracle(A, q, σ,∅)
if A /∈ σ.Σ then let σ.Σ(A)← ∅
let σ′ ← σ.Σ(A)
let (σ′, y)← q(σ′,∅)
if σ′ = ⊥ then return (⊥, y)
else

let σ.Σ(A)← σ′

return (σ, y)

function muxPrivOracle(A, q, ρ, (σo, ρo, σπ, ρπ, η))
let (ρ.P, σo.Σ.ρo.P, σπ.Σ, ρπ.P )← forceInitMaps(

(ρ.P, σo.Σ, ρo.P, σπ.Σ, ρπ.P ), A,∅)
let ρ′ ← ρ.P (A)
let z′ ← (σo.σi, ρ

o.ρi, σ
π.σi, ρ

π.ρi, η)
let (ρ′, y)← q(ρ′, z′)
if ρ′ = ⊥ then return (⊥, y)
else

let ρ.P (A)← ρ′

return (ρ, y)

function descpaymux(t,X, Tσ, Tρ,M, z)
if ∃w : M = (token, w) then

return “Calling token contract:”+descsp(t,X,map(proj2 ◦ unmuxOracle, Tσ),
map(proj2 ◦ unmuxOracle, Tρ), w, z)

else if ∃v,A = (·, ·, desc, ·), w : M = (call, v, A,w) then
return “Calling sub-contract A with pay-in v:

”+desc(t,X, Tσ, Tρ, (⊥, v, w), z)
else return ⊥

deppaymux = deploopmux

J.5 Fees and Cost Models

In order to prevent denial-of-service attacks, the computations performed by
the network in verifying a transaction must be paid for in some way. In public
currencies, there is typically a cost model, which maps each step of computation
to a cost, often referred to as gas. Each transaction declares a limit on how much
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gas it is willing to pay, and what each unit’s value should be. It then pays the
corresponding amount into a fees pool, and while executing the transaction, the
gas usage is counted. If the limit is reached, the transaction is rejected, otherwise
any spare gas is refunded.

We do not explicitly specify how miners are awarded these fees – a simple
approach is to not enable withdrawals from the fee pot within the transition
function, relying on miners to do so themselves, and not include in their block
other transactions which take from the pot.

In Kachina the computation done in public state oracles occupies a similar
space: A modeling of fees must include estimating their likely cost, pay this esti-
mation in advance, and then use up the gas during the actual oracle execution.
In addition to this, the NIZK proof verification must be paid for. We will assume
that this has a flat cost, dependant on the size of its inputs, i.e. the size of the
transcript.

Specifically, we assume two cost models: $zk, and $std, as well as a cost es-
timator Estd. $zk is simply a function from a public state transcript to the gas
cost of verifying a NIZK proof against it. A transaction will publicly declare
what it believes the cost of its transcript is, and will use Estd (as well as a user
input dictating the cost per unit of gas) to estimate the cost of the remaining
transaction. The transaction declares this total fee, which part of the fee is for
the NIZK verification, and what the cost per unit of gas is. Transactions which
pay too little for NIZK verification, or set the cost per unit of gas too low, may
not be picked up by miners, although modeling miner incentives is not within
the scope of this paper.

Formally, g ← $zk(T ) is a function from a public state transcript to a gas cost,
(σ′, g′, y) ∨ ⊥ ← $std(q, σ, g) is a function taking an oracle query, initial state,
and gas limit, and either returning the result and remaining gas, or returning ⊥
if the supplied gas ran out. Finally, (σ′, g′, y) ← Estd(q, σ) returns an estimate
as to the gas cost of running a query q, with the state σ as a reference point.
Estd and $std should return (σ′, y) = q(σ) if they succeed.

In attaching fees to our contract system, we operate as follows:

1. In the private state oracle, simulate the transaction creation process, con-
structing the public state transcript T , and for each public state interaction,
recording the estimated cost, totalling to the overall gas cost g.

2. For a given gas price gasPrice, make two separate, public transfers into the
fee pot: first $zk(T )× gasPrice, and second g × gasPrice

3. Commit this as a partial execution success.
4. Execute the transaction as normal, except making public state oracle queries

through a modified gas cost oracle instead, retains a temporary state of the
remaining gas.

5. Finally, the public state oracle relinquishes the remaining gas, and returns
it to the transaction creator.

We now give an example transition function that combines this gas model
with the integrated payment system of Appendix J.4.
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Transition Function Γscs

The multiplexing with registration, loopback, payments, and fees transition
function Γscs allows addressing any pair of address and sub-transition function
(a,Γ). These sub-transition functions may return values of either (call, A,M),
or (return, y). In the former case, a different sub-transition function is invoked,
and the value it eventually returns is fed back into the original one, by re-invoking
it with (resume, y). The transition function first estimates the cost of this call,
and pays for it in advance. This payment is then deduced from for executions,
until a remainder is refunded at the end of a successful call.

Public state variables and initialization values:

Variable Description
Σ := ∅ Mapping from address pairs to public states

spare := 0 Temporary book-keeping of the value to return

Private state variables and initialization values:

Variable Description
P := ∅ Mapping from address pairs to private states

When receiving an input (token, w):
assert w 6= (system-send, . . .)
let O′

σ ← λq : Oσ(muxPubOracle(token, q))
let O′

ρ ← λq : Oρ(muxPrivOracle(token, q))
return Γsp,O′

σ,O′
ρ
(w)

When receiving an input (call, gasPrice, v, A = (i,Γ, desc, dep), w):
let pk← Γscs,Oσ,Oρ (token, (send, A, v))
send (estimate-cost, v, pk, A,w) to Oρ and

receive the reply (gT , gO)
run Γscs,Oσ,Oρ (token, (send, fee-pot, gT × gasPrice))
run Γscs,Oσ,Oρ (token, (send, fee-pot, gO × gasPrice))
commit gas-paid
send (init-gas, gO) to Oσ

let y ← callOσ,Oρ(v, pk, A,w)
send (deinit, pk, gasPrice) to Oσ

return y

When receiving an public oracle query (init-gas, gO):
let σ.spare← gO

When receiving an public oracle query (deinit, pk, gasPrice):
run Γsp(fee-pot, pk, σ.spare× gasPrice)
let σ.spare← 0

When receiving an private oracle query (estimate-cost, v, pk, A,w):

85



let O′
σ ← O((σπ, ε, 0);O′

ρ ← O(ρπ)
let O′′

σ ← λq : O′
σ(muxEst(q))

run callO′′
σ ,O′

ρ
(v, pk, A,w)

let (·, T , g)← state(Oσ)
return ($zk(T ), g)

Helper procedures:
function subCallOσ,Oρ(v,A,A′ = (i,Γ, desc, dep), w)

assert A′ 6= token
let O′

σ ← λq : Oσ(muxPubOracle(token, q))
let O′

ρ ← λq : Oρ(muxPrivOracle(token, q))
run Γsp,O′

σ,O′
ρ
(system-send, A,A′, v)

let y ← callOσ,Oρ(v,A,A′, w)
return y

function callOσ,Oρ(v,A,A′ = (·,Γ, ·, ·), w)
let O′

σ ← λq : Oσ(muxPubOracle(A′, q))
let O′

ρ ← λq : Oρ(muxPrivOracle(A′, q))
repeat

let y ← ΓO′
σ,O′

ρ
(call, A, y, w)

if ∃v′, A′′, w′ : y = (call, v′, A′′, w′) then
let y ← subCallOσ,Oρ(v

′, A′, A′′, w′)
let w ← (resume, y)

until ∃y′ : y = (return, y′)
return y

function muxPubOracle(A, q, σ,∅)
if A /∈ σ.Σ then let σ.Σ(A)← ∅
let σ′ ← σ.Σ(A)
let r ← $std(q, σ

′, σ.spare)
if r = ⊥ then

σ.spare← 0
return (⊥, y)

let (σ′, g′, y)← r;
if σ′ = ⊥ then

σ.spare← 0
return (⊥, y)

else
σ.Σ(A)← σ′;σ.spare← g′

return (σ, y)

function muxPrivOracle(A, q, ρ, (σo, ρo, σπ, ρπ, η))
let (ρ.P, σo.Σ.ρo.P, σπ.Σ, ρπ.P )← forceInitMaps(

(ρ.P, σo.Σ, ρo.P, σπ.Σ, ρπ.P ), A,∅)
let ρ′ ← ρ.P (A)
let z′ ← (σo.σi, ρ

o.ρi, σ
π.σi, ρ

π.ρi, η)
let (ρ′, y)← q(ρ′, z′)
if ρ′ = ⊥ then return (⊥, y)
else
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let ρ.P (A)← ρ′

return (ρ, y)

function muxEst(q, σ,∅)
let (σ′, T , g)← σ
let (σ′, g′, y)← Estd(q, σ

′,∅)
if σ′ = ⊥ then return (⊥, y)
else

return ((σ′, T ‖ [(q, y)], g + g′), y)

descscs = descpaymux

depscs = deppaymux

J.6 Exporting Ledger Data

Real-world smart contract systems often have some means to extract limited
information about the underlying consensus protocol, such as the hash of the
most recent block, the address of the block’s miner, or the length of the current
chain. These can be useful in applications – in particular the latter, as it gives
an provides an imprecise clock for use in contracts.

Clearly, these rely on tighter integration with the underlying consensus mech-
anism than Kachina provides. We can still capture the core idea, by having
a sub-contract which manages such chain data, and allows this to be read and
set arbitrarily5. We can then assume that the correct usage of this sub-contract
is enforced by the validation of the underlying consensus mechanism – transac-
tions which attempt to “incorrectly” set the chain data – for any definition of
“correct” will never reach the ledger.

Transition Function Γchaindata

The chain data transition function Γchaindata allow arbitrary setting and reading
of state. An external assumption is that the setting of state is both enforced and
restricted by the underlying ledger protocol, to give it meaning – for instance
each block may induce a phantom “chain-data” transaction which appears on the
ledger, and sets the most recent block hash in the chain-data contracts state.

When receiving an input (set, σ′):
run Oσ(λ(·, ·) : (σ′,>))

When receiving an input get:
return Oσ(λ(σ, ·) : (σ, σ))

The contract we present here does have a further issue: Since the loopback
in our multiplexers occurs only in the main transition function, the transcripts
5 This could be expanded to allow only certain types of setting – such as advancing

the time, but not rewinding it.
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it generates will commit to specific values for the ledger data upon transaction
creation – something which is likely not reasonable. A more complex loopback
design, which we do not present here, would solve this: If calling into public
or private parts of other contracts were permitted from within the public and
private state oracles respectively.

For both leakage descriptors and dependencies, we make use of our assump-
tion that users cannot directly call set.

function descchaindata(t,X, Tσ, Tρ, w, z)
return “Reading the chain data”

function depchaindata(X, Tρ, (σo, ρo, σπ, ρπ, η))
return ε
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