
Efficient and Round-Optimal Oblivious Transfer and Commitment

with Adaptive Security∗

Ran Canetti
Boston University
canetti@bu.edu

Pratik Sarkar
Boston University
pratik93@bu.edu

Xiao Wang
Northwestern University

wangxiao@cs.northwestern.edu

Abstract

We construct the most efficient two-round adaptively secure bit-OT in the Common Ran-
dom String (CRS) model. The scheme is UC secure under the Decisional Diffie-Hellman (DDH)
assumption. It incurs O(1) exponentiations and sends O(1) group elements, whereas the state
of the art requires O(κ2) exponentiations and communicates poly(κ) bits, where κ is the com-
putational security parameter. Along the way, we obtain several other efficient UC-secure OT
protocols under DDH :

– The most efficient yet two-round adaptive string-OT protocol assuming global programmable
random oracle. Furthermore, the protocol can be made non-interactive in the simultaneous
message setting, assuming random inputs for the sender.

– The first two-round string-OT with amortized constant exponentiations and communication
overhead which is secure in the global observable random oracle model.

– The first two-round receiver equivocal string-OT in the CRS model that incurs constant
computation and communication overhead.

We also obtain the first non-interactive adaptive string UC-commitment in the CRS model
which incurs a sublinear communication overhead in the security parameter. Specifically, we
commit to polylog(κ) bits while communicating O(κ) bits. Moreover, it is additively homomor-
phic in nature.

We can also extend our results to the single CRS model where multiple sessions share the
same CRS. As a corollary, we obtain a two-round adaptively secure MPC protocol in this model.

∗This work was supported by the the IARPA ACHILLES project, the NSF MACS project and NSF grant CNS-
1422965. The first author also thanks the Check Point Institute for Information Security.

Contents

1 Introduction 2
1.1 Our Contributions . 2

1.1.1 Global Random Oracle Model. 2
1.1.2 Common Random String Model. 4
1.1.3 Single Common Random String model . 5

1.2 Key Insights . 6

2 Preliminaries 7

3 Technical Overview 10
3.1 Adaptively Secure OT in the Global Programmable RO Model 10
3.2 Receiver Equivocal Oblivious Transfer in the CRS model 11
3.3 Adaptively Secure Oblivious Transfer in the CRS model 12
3.4 Non-Interactive Commitment with Adaptive Security 13

4 Oblivious Transfer in the Global Random Oracle Model 14
4.1 Adaptively Secure OT in the Global Programmable RO Model 14

4.1.1 Practical optimizations. 21
4.2 Statically Secure OT in the Global Observable RO Model 22

4.2.1 Security proof. 23

5 Receiver Adaptively Secure OT in the CRS Model 25
5.1 Properties of CRS . 25
5.2 Security Proof . 26
5.3 Efficient Static OT . 28

6 Adaptively Secure Oblivious Transfer in the CRS Model 28
6.1 Semi-adaptively secure OT . 29

6.1.1 Security Proof . 29
6.2 Obtaining Full Adaptive Security . 31

6.2.1 Efficiency . 32

7 Adaptively Secure Non-Interactive Commitment in the CRS Model 32
7.1 Security Proof . 32
7.2 Concrete Instantiation and Efficiency . 33

8 Results in the Single CRS Model 34
8.1 Security requirements from CRSssid . 36
8.2 Adaptively Secure OT in the sCRS model . 37
8.3 Adaptively Secure Non-interactive Commitment in the sCRS model 40
8.4 Adaptively Secure MPC in the sCRS model . 40

1

1 Introduction

Oblivious Transfer (OT), introduced in [Rab05, EGL82], is one of the main pillars of secure
distributed computation. Indeed, OT is a crucial building block for many MPC protocols, e.g.
[Yao82, GMW87, Kil88, GS18, BL18, BLPV18]. As a result, significant amount of research has
been dedicated to constructing OT protocols that are efficient enough to and secure enough to be
of practical use.

Designing good OT protocols is a multi-dimensional challenge: One obvious dimension is the
complexity, in terms of computational and communication overhead, as well as the number of
rounds. Another dimension is the level of security guaranteed. Here the standard measure is
Universally Composable (UC) security [Can01], in order to enable seamless modular composition
into larger MPC protocols. Yet another dimension is the setup used. Commonplace models include
the common random string model (CRS), the common reference string (CReS) model and the
random oracle (RO) model. (Recall that UC-secure OT does not exist in the plain model [CF01],
thus it is essential to use some sort of setup.) Yet another dimension is the computational hardness
assumptions used.

A final dimension, which is the focus of this work, is whether security is guaranteed for adaptive
corruption of one or both of the participants, or alternatively only for the static case where one
of the parties is corrupted, and the corruption takes place before the computation starts. Indeed,
most of the recent works towards efficient OT concentrates on the static case, e.g. [PVW08, CJS14,
MR19, DGH+19].

We concentrate on the case of two-round, adaptively UC-secure OT. We only consider the case
of malicious adversaries. It is easy to see that two rounds is the minimum possible, even for static
OT. Furthermore, two-round OT enables two-round MPC [AMPR14, GS18, BL18, BLPV18] which
is again round-optimal. More importantly, the efficiency of the two-round MPC protocol crucially
depends on the efficiency of the underlying two-round UC-OT protocol. Still, there is a dearth of
efficient two-round adaptively UC-secure OT protocols which can tolerate malicious corruptions.

1.1 Our Contributions

We present a number of two-round UC-secure OT protocols. Our protocols are all based on the
plain DDH assumption and work with any group where DDH is hard. While the protocols are
quite different and in particular work in very different settings, they all use the same underlying
methodology, which we sketch in Section 1.2. But first we summarize our results and compare it
with the relevant state-of-the-art protocols. We organize the presentation and comparison based
on the setup assumptions - the global random oracle (GRO) model, and the common reference and
random string models. A stronger notion of RO is the GRO model where the same instance of
RO is shared globally among different sessions. We have results in the global observable random
oracle (GORO) model and the global programmable random oracle (GPRO) model. Our results
are further subdivided into cases based on static and adaptive corruptions. A detailed comparison
can be found in Table 1. We assume that the number of bits required to represent a group element
(for which DDH holds) is O(κ). For example, the DDH assumption holds in the elliptic curve
groups and a group element can be represented with O(κ) bits.

1.1.1 Global Random Oracle Model.

Our protocols are proven to be secure in the well established GRO [CDG+18, CJS14] model. Our
results in the GRO model are as follows:

2

Table 1: Comparing our actively-secure UC-OT protocols with state-of-the-art DDH-based 2-round
actively-secure UC-OT protocols.

Setting Protocols Setup Security
Sender-input

Exponentiations
Communication

size (bits) (bits)

1
[MR19]

GPRO
Adaptive κ 6 4log |G| + 2κ

[BPRS17] Adaptive κ 11 6κ
πaOT-GPRO (Fig. 4)1 Adaptive κ 5 2log |G|+2κ

2
[CJS14]

GORO Static
κ O(κ) O(κ2)

πsOT-GORO (Fig. 10)2 κ 5 2log |G|+2κ

3
[PVW08]3 CReS

Static
log |G| 11 6log |G|

πsOT-CRS(Fig. 16) CRS log |G| 8 5log |G|

4
[GMS18] CRS

Receiver
log |G| poly(κ) poly(κ)

[BLPV18]3 CReS
Equivocal

log |G| O(κ) O(κ2)
πreOT-CRS(Fig. 13) CRS log |G| 9 5log |G|

5
[BLPV18]3 CReS

Adaptive
1 Ω(κ2) + 2 · NCEE = O(κ2) poly(κ)

πaOT-CRS (Fig. 20)4 CRS 1 11 + 2 NCEE = O(1) 6 log |G| + 2 NCEC = O(κ)

Note: The computational security parameter is κ and G denotes a group where DDH holds with log |G| = O(κ). NCEE
and NCEC denotes the exponentation and communication cost of an augmented NCE on a bit respectively. It can be
instantiated using the DDH-based scheme of [CDMW09] where NCEC = O(κ) and NCEE = O(1). 1 πaOT-GPRO requires
a one-time communication of 2 group elements and κ bits and computation of 4 exponentiations. 2 πsOT-GORO requires a
one-time communication of 2 group elements and κ bits and computation of 2 NIZKPoKs and 5 exponentiations. 3Can
be instantiated from QR and LWE too. 4 πaOT-CRS has a one-time communication cost of log |G| and one exponentiation.

– Efficient Adaptive OT in Programmable GRO model. The work of “Simplest OT” [CO15]
presented a 3-round OT in the programmable RO (PRO) model, which was later shown as not UC-
statically secure [LM18, BPRS17]. Inspired by their protocol, we design a 2-round adaptively
secure OT πaOT-GPRO in the GPRO model. Our protocol requires roughly 5 exponentiations and
communicates 2 group elements and 2κ bits when the sender’s input messages are κ bits long and
the computational security parameter is κ.

State-of-the-art. The work of [BPRS17] presents an adaptively secure OT assuming DDH. They
require 11 exponentiations and 5κ bits of communication. The work of [MR19] obtains a two-
round OT based on DDH using 6 exponentiations. They obtained static security assuming PRO.
We observe that it can be proven to be adaptively secure under the same assumptions. They also
provide an optimized variant requiring 4 exponentiations under the non-standard assumption of
Interactive DDH, which is not known to be reducible to standard DDH. The work of [HPV17]
presented a 8 round adaptive OT protocol from semi-honest UC adaptive-OT and observable GRO
(i.e. GORO) model in the tamper-proof hardware model. We do not compare with them due
to difference in the underlying setup assumptions. A detailed comparison with other protocols is
shown as Setting 1 in Table 1.

– One-round random OT in the GPRO + short single CRS model. Our GPRO-based
protocol can be further improved to obtain a one-round random OT (where the sender’s messages
are randomly chosen) πaROT-GPRO in the simultaneous message (where the parties can send messages
in parallel) setting assuming a single short CRS of two group elements. By single CRS, we refer
to the setting of [CLOS02] where the same CRS is shared among all sessions and the simulator
knows the trapdoor of the CRS. In our protocols, each random OT requires communicating 2
group elements and computing roughly 5 exponentiations. This is particularly useful to compute
the base OT in OT extension [KOS15, PSS17] non-interactively during the offline phase.

State-of-the-art. In comparison, the work of [MR19] can obtain a one-round random OT in
the simultaneous message setting from non-interactive Key Agreement protocols. Assuming DDH,

3

they can instantiate their protocol using 6 exponentiations.1 The work by Doerner et al. [DKLs18]
presented an OT with selective failure based on observable RO (ORO) and used it to obtain OT
extension while computing roughly 3 exponentiations per base-OT and 1 NIZKpok. However, their
OT requires 5 rounds of interaction and communication of 4 group elements and 3κ bit strings,
yielding a 6 round OT extension. On the other hand, our protocol would give a 3 round OT
extension with communication of 2 group elements per base-OT and it should outperform theirs in
the WAN setting where interaction dominates the computation time.

– Static OT in the Observable GRO model. We replace the GPRO by a non-programmable
GORO, with an extra one-time cost of 2 NIZKPoKs for Discrete Log and 5 exponentiations, which
can be reused across multiple executions. One-time cost is a cost that is incurred only once per
session/subsession even if multiple OT protocols are run in that session/subsession between the
pair of parties. The remaining per-OT cost of this protocol is 5 exponentiations, except that now
the protocol is only statically secure.

State-of-the-art. In comparison, the only two-round OT protocol from GORO is known from
[CJS14]. The authors generate a statically-secure one-sided simulatable OT under DDH assump-
tion. It is used to obtain a UC-secure 2PC protocol using garbled circuits [AMPR14]. The 2PC
can be instantiated as an UC-secure OT protocol. Each such OT would cost O(κ) exponentiations,
which cannot be amortized for large number of OTs. A detailed comparison can be found in Setting
2 of Table. 1.

1.1.2 Common Random String Model.

Next we present our results in the CRS model. We would like to note that the state-of-the-art
protocols are in a stronger model, i.e. the common reference string model and yet we work in the
common random string model and still outperform them. Our results and detailed comparison
follows:

– Static OT in the CRS model. We replace the GRO with a non programmable CRS. This gives
us an efficient two-round static OT πsOT-CRS which requires 8 exponentiations and communication
of 5 group elements.

State-of-the-art. In contrast, The state-of-the-art is obtained by [PVW08] in the common refer-
ence string model from DDH, Quadratic Residuosity (QR) and Learning with Errors (LWE). Their
DDH based instantiation required 11 exponentiations and communicated 6 group elements, while
other instantiations required more. Following this, [CKWZ13] presented constructions in the single
common reference string model (of [CLOS02]), which is a weaker setup assumption. They have
a 2 round construction from Decision Linear Assumption which requires 20 exponentiations and
they have a 4 round construction from DDH and Decisional Composite Residuosity Assumption.
The recent work of [DGH+19] presents a theoretical construction based on CDH and Learning with
Parity. Detailed comparison can be found in Setting 3 of Table. 1.

– Receiver equivocal OT in the CRS model. Next, we add security against adaptive cor-
ruption of receiver at the cost of one extra exponentiation. This yields a receiver equivocal OT
πreOT-CRS which requires 9 exponentiations and communication of 5 group elements. Such an OT
can find useful applications in efficient adaptively-secure zero knowledge [GKPS18] schemes.

1They have an optimized variant (in Appendix D.2 of their paper) from Interactive DDH requiring 4 exponentia-
tions based on a non-standard assumption, not known to be reducible to standard DDH assumption.

4

State-of-the-art. Previous receiver equivocal OT protocol of [GMS18] required somewhere equiv-
ocal encryption leading to a practically infeasible solution. On the other hand, [BLPV18] required
O(κ) instances of static string-OTs and non-blackbox usage of non-interactive equivocal commit-
ment to construct a receiver equivocal OT. A detailed comparison can be found in Setting 4 of
Table. 1.

– Adaptive OT in the CRS model. Finally, we add sender equivocation in our receiver equivocal
OT to obtain a semi-adaptive OT (which is secure against static corruption of one party and
adaptive corruption of another party) πsaOT-CRS in two rounds. Then, we apply the transformation
of [BLPV18] to obtain our adaptively-secure bit OT πaOT-CRS in two rounds. Their transformation
upgrades a semi-adaptively secure OT to an adaptively secure OT in the augmented NCE model.
Our final protocol πaOT-CRS computes 11 exponentiations and communicates 7 group elements. In
addition, it encrypts 2 bits using NCE. Upon instantiating the NCE scheme using the DDH-based
protocol of [CDMW09], we obtain the first two round adaptively secure bit-OT which has constant
communication and computation overhead.

State-of-the-art. In this setting, few works [GP15, CPV17a, GP15] achieve adaptive security
based on general two-round MPC protocol using indistinguishability obfuscation. The only round
optimal adaptively-secure protocol under standard computational assumption is due to [BLPV18]
from DDH, LWE, and QR. They obtain a semi-adaptive bit-OT by garbling a non-interactive
equivocal commitment scheme using equivocal garbling techniques of [CPV17b]. The construction
also requires O(κ2) invocations to a static string OT with oblivious sampleability property. Then,
they provide a generic transformation to obtain an adaptively secure bit OT from a semi-adaptively
secure bit-OT in the augmented NCE model. On efficiency measures, the work of [BLPV18] con-
structs the equivocal garbled circuit by communicating poly(κ) bits and their semi-adaptive bit
OT requires O(κ2) exponentiations, thus yielding a feasibility result. In contrast, our protocol is
concretely efficient. We have compared with their protocol in Setting 5 of Table. 1.

– Non-interactive adaptive commitment. As an independent result, we demonstrate that the
first message of any two-round receiver equivocal OT behaves as an adaptively-secure commitment.
By applying this result to our receiver equivocal OT πreOT-CRS, we obtain the first non-interactive
adaptive string commitment scheme with sublinear communication in κ. More specifically, we
commit polylog(κ) bits using 4 exponentiations and communicating 2 group elements. Interestingly,
our scheme is additively homomorphic.

State-of-the-art. On the other hand, the previous non-interactive adaptively-secure commitment
schemes [CF01, CLOS02, ABB+13, ABP17] in the common reference string model were bit com-
mitments requiring O(1) exponentiations and O(κ) bits communication to commit a bit. There
are string commitments [DN02, DG03] but they require 3 rounds of interaction for commitment.
The work of [HV15] presented a theoretical construction from the minimal assumption of public
key encryption with oblivious ciphertext generation. It has an interactive commitment phase and
communicates O(κ2) bits to commit to a single bit. Table. 2 provides a qualitative comparison of
our protocol with other schemes.

1.1.3 Single Common Random String model

Currently, our results in this subsection are in the local CRS model. We can extend it to the single
common random string, i.e. sCRS model of [CLOS02], where all parties share the same sCRS for

5

Table 2: Comparing our protocol with state-of-the-art Adaptively Secure (without erasures) UC
commitment schemes where the commitment size is O(κ) bits

Protocols
Message No. of rounds

Setup Assumptions
bit length Commit Decommit

[CF01] 1 1 1 CReS DDH + UOWHF

[CLOS02] 1 1 1 CReS TDP

[ABB+13] 1 1 1 CReS SXDH

[ABP17] 1 1 1 CReS DDH

[DN02] κ 3 1 CReS DCR

[DG03] κ 3 1 CReS DCR + SRSA

Our DDH-based
polylog(κ) 1 1 CRS DDH

protocol (Fig. 24)

Notations:
UOWHF - Universal One-Way Hash Functions
TDP - Trapdoor Permutations, SXDH - Symmetric External Diffie–Hellman,
DCR - Decisional Composite Residuosity, SRSA - Strong RSA

their subsessions. A subsession is computed between a pair of parties with unique roles (party A
is the sender of an OT subsession and Party B is the receiver). The local CRS is generated from
sCRS by the parties during the protocol. There can be multiple instances of the same protocol
within a subsession with the same local CRS between same parties with their roles preserved, i.e.
A will be the sender and B will be the receiver. The simulator knows the hidden trapdoors for
sCRS. This benefit comes at a cost of keeping the sCRS length to 4κ + 2 group elements. The
length is independent of the number of parties or the number of instances of the protocol being
run. However, we assume that the subsession ids are chosen statically by the environment Z before
seeing sCRS. Using our adaptive OT and commitment protocol in the sCRS model, we obtain a
two-round adaptively secure MPC protocol in the sCRS model. Similar result was observed in the
work of [BLPV18].

1.2 Key Insights

Our OT protocols are in the dual-mode [PVW08, Lin15] paradigm. In this paradigm, the protocol
can be either in extractable mode or equivocal mode based on the mode of the setup assumption.
In the extractable mode, the input of a corrupt receiver can be extracted by a simulator(playing
the role of sender) using a trapdoor; whereas in the equivocal mode the simulator(playing the
role of honest receiver) can use the trapdoor to compute randomness that would equivocate the
receiver’s message to both bit values b ∈ {0, 1}. This would enable the simulator to extract a
corrupt sender’s input messages corresponding to both bit values. Previous protocols ensured that
the real world protocol was always in the extractable mode by programming the setup distribution
[PVW08, Lin15]. However, this required programming the setup based on which party is statically
corrupt and this was incompatible with adaptive security.

The novelty of our paper lies in programming the mode of the protocol, during the protocol
execution, without explicitly programming the setup. We achieve this by relying on the Computa-
tional Diffie-Hellman(CDH) and DDH assumption. The protocols either start off with a common
random string - (g, h, T1) or generate one by invoking the GRO on a random string. The receiver

6

is required to generate T2 and execute the OT protocol using (g, h, T1, T2) as the setup tuple. The
protocol ensures that if the tuple is non-DDH then the protocol is in extractable mode, else it is in
equivocal mode. The CDH assumption guarantees that the tuple is a non-DDH tuple and hence
the real world protocol is in extractable mode. Meanwhile, the simulator can compute T2 = htd

s.t. the tuple is in equivocal mode by using the trapdoor td = logg T1. The simulated tuple is
indistinguishable from real tuple due to DDH assumption. This trick follows by carefully tweaking
the DDH based instantiation of the PWV framework such that it satisfies an additional property,
i.e. the CRS for the protocol will be in extractable mode (a.k.a messy mode according to PVW)
and it can be set to equivocal mode (a.k.a decryption mode according to PVW) by the simulator,
given a trapdoor. This enables simulation in the adaptive setting as the simulator can conveniently
program the CRS based on which party gets corrupted. Extending our techniques to hold under
additional assumptions is an intriguing open question, especially LWE and QR since PVW can be
instantiated from them. See Section 3 for a more detailed overview.

Paper Organization. In the next section, we introduce some notations and important concepts
used in this paper. In Section 3, we present the key intuitions behind our protocols. This is followed
by our results in the global random oracle model in Section 4. Then, we replace the random oracle
assumption with a CRS setup to obtain a receiver equivocal OT in Section. 5. Our optimized
static-OT is present in the same section. In Section 6 we add sender equivocation in our receiver
equivocal OT to obtain adaptively-secure OT in the CRS model. We present our independent
result on adaptively-secure commitment scheme in Section 7. Finally, we conclude by replacing our
local CRS with a single CRS in Section 8. In the same section we provide our two round adaptive
MPC protocol in the single CRS model.

2 Preliminaries

Notations. We denote by a← D a uniform sampling of an element a from a distribution D. The
set of elements {1, . . . , n} is represented by [n]. We denote polylog(a) and poly(b) as polynomials in
log a and b respectively. We denote a probabilistic polynomial time algorithm as PPT. We denote
the computational security parameter by κ. Let Zq denote the field of order q, where q = p−1

2 and
p are primes. Let G be the multiplicative group corresponding to Z∗p with generator g, where DDH
assumption holds. We denote the set of natural numbers as N. When a party S gets corrupted we
denote it by S∗. Our protocols have the following naming convention π〈sec〉〈prot〉-〈setup〉 where 〈sec〉
refers to the security model and it can be either s (static), re (receiver equivocal) or a (adaptive).
〈prot〉 refers to the protocol which is either OT or ROT or COM based on OT or random OT or
commitment protocol respectively. Similarly, 〈setup〉 refers to the setup assumption where it can
be either PRO (PRO model) or ORO (ORO model) or CRS (CRS). Our security proofs are in the
Universal Composability (UC) framework of [Can01]. We refer to the original paper for details.

Global Random Oracle Model. We present the global random oracle functionality from
[CDG+18] in Fig. 1. It allows a simulator to observe illegitimate queries that are made by the
adversary from outside the session by invoking the Observe command. It also enables the sim-
ulator to program (using the Program command) the random oracle on unqueried input points.
Meanwhile, an adversary can also program (using the Program command) the random oracle on
a point but an honest party can check whether that point has been programmed or not by invoking
the IsProgrammed command. In the ideal world, a simulator can successfully program the RO
since it can always return the result of IsProgrammed command as 0 when the adversary invokes
it to verify whether a point has been programmed or not. More details can be found in Section 8

7

Figure 1: The ideal functionality FGRO for Global Random Oracle

FGRO

FGRO is parameterized by a domain D and range R and it proceeds as follows, running on security
parameter κ:

– FGRO maintains a list L (which is initially empty) of pairs of values (ŝid, m̂, ĥ), s.t. m̂ ∈ D, ĥ ∈ R
and ŝid is a session id.

– Upon receiving a value (Query,m, sid′) (where m ∈ D) from a party P, from session with session

id sid, perform the following: If there is a pair (sid′,m, ĥ), for some ĥ ∈ R, in the list L, set h := ĥ.
If there is no such pair, sample h←R R and store the pair (sid′,m, h) in L. If sid 6= sid′, then add
(sid′,m, h) to the illegitimate query set Qsid. Once h is set, reply to the activating machine with
(sid, h).

– Upon receiving a value (Observe, sid) from the adversary output Qsid to the adversary.

– Upon receiving a value (Program,m, h′, sid) from the adversary, if there exists an entry (sid,m, h)
and h 6= h′ then ignore this input. Else, store then return (sid, h). Else, store (sid,m, h) in L and
in prog and return (ProgramConfirm) to adversary.

– Upon receiving a value (IsProgrammed,m, sid′) from a party (P, sid), if sid 6= sid′ then ignore
the input. Else, set b = 1 if (m,h, sid) ∈ L for some value h. Otherwise set b = 0. Return
(IsProgrammedResult, b) to the calling entity.

of [CDG+18]. In our OT protocols we require multiple instances of the GRO due different distri-
butions on the domain and range of the GRO. We denote them as FGRO1, FGRO2 and so on. We
assume FGROi is indexed by a parameter i ∈ N, in addition to sid. We avoid writing i as part of
the parameters to avoid notation overloading.

Common Random String Model. In this assumption, the parties of a session sid have access
to a string randomly sampled from a distribution. A CRS is local to the session sid and should not
be used for protocols outside the session. In the security proof, the simulator would have access to
the trapdoors of the CRS which would enable him to simulate the ideal world adversary. In the
MPC literature, the acronym CRS can also refer to common reference string which is a stronger
assumption than common random string. In this paper, we always use CRS for common random
string unless explicitly mentioned. We also use the single CRS model [CLOS02] where a single CRS
- sCRS is shared among all sessions and the simulator knows the trapdoor of the sCRS.

Oblivious Transfer. In a 1-out-of-2 OT, we have a sender (S) holding two inputs a0, a1 ∈ {0, 1}n
and a receiver (R) holding a choice bit b. The correctness of OT means that R will obtain ab as
the outcome of the protocol. At the same time, S should learn nothing about b, and R should
learn nothing about the other input of S, namely ab̄. The ideal OT functionality FOT is shown in
Figure 2. We also consider the multi-session variant FmOT (Figure 25) where multiple parties can
run pairwise OT protocols, while sharing the same setup resources. This captures our OT protocols
in the single CRS model.

Adversarial Model. We initially consider security security against static corruptions by a malicious
adversary. Later, we need different levels of adaptive security and we enlist them as follows:

- Static corruption: The adversary corrupts the parties at the beginning of the protocol.
- Receiver/Sender equivocal corruption: The adversary corrupts the sender/receiver statically

and he the receiver/sender adaptively.

8

Figure 2: The ideal functionality FOT for Oblivious Transfer

FOT

FOT interacts with a sender S and a receiver R as follows:

– On input (Choose, rec, sid, b) from R where b ∈ {0, 1}; if no message of the form (rec, sid, b) has
been recorded in the memory, store (rec, sid, b) and send (rec, sid) to S.

– On input (Transfer, sen, sid, (a0, a1)) from S with a0, a1 ∈ {0, 1}n, if no message of the form
(sen, sid, (a0, a1)) is recorded and a message of the form (rec, sid, b) is stored, send (sent, sid, ab) to
R and (sent, sid) to S. Ignore future messages with the same sid.

Figure 3: The ideal functionality FCOM for Commitment Scheme

FCOM

FCOM interacts with committer C and verifier V as follows:

– On receiving input ((Commit,V),C, sid,m) from C, if (sid,C,V,m′) has been recorded, ignore the
input. Else record the tuple (sid,C,V,m) and send (Receipt, sid,C,V) to V.

– On receiving input (Decommit,C, sid) from C, if there is a record of the form (sid,C,V,m′) return
(Decommit, sid,C,V,m′) to V. Otherwise, ignore the input.

- Semi-adaptive corruption: The adversary corrupts one party statically and the other party
adaptively.

- Adaptive corruption: The adversary corrupts both parties adaptively. This scenario covers the
previous corruption cases.

Commitment. A commitment scheme allows a committing party C to compute a commitment
c to a message m, using randomness r, towards a party V in the Commit phase. Later in the
Decommit phase, C can open c to m by sending the decommitment to V. The commitment should
hide m from a corrupt V∗. Binding ensures that a corrupt C∗ cannot open c to a different message
m′ 6= m. In addition, UC-secure commitments require a simulator (for honest V) to extract the
message committed by C∗. Also, it enables a simulator (for honest C) to commit to 0 and later
open it to any valid message by using the trapdoor. The ideal commitment functionality FCOM is
shown in Figure 3. We also consider the multi-session [CLOS02] variant FmCOM (Figure 26) where
multiple parties can run pairwise commitment schemes protocols, while sharing the same setup
resources. This captures our commitment scheme protocol in the single CRS model.

Definition 1. (Non-Committing Encryption). A non-committing (bit) encryption scheme
(NCE) consists of a tuple (NCE.Gen,NCE.Enc,NCE.Dec,NCE.S) where (NCE.Gen,NCE.Enc,NCE.Dec)
is an IND-CPA public key encryption scheme and NCE.S is the simulation satisfying the following
property: for b ∈ {0, 1} the following distributions are computationally indistinguishable:

{(pk, c, rG, rE) : (pk, sk)← NCE.Gen(1κ; rG), c = NCE.Enc(pk, b; rE)}κ,b ≈

{(pk, c, rbG, rbE) : (pk, c, r0
G, r

0
E , r

1
G, r

0
E)← NCE.S(1κ)}κ,b.

Definition 2. (Augmented Non-Committing Encryption). An augmented NCE scheme con-
sists of a tuple of algorithms (NCE.Gen,NCE.Enc,NCE.Dec,NCE.S,NCE.GenObl,NCE.GenInv) where
(NCE.Gen,NCE.Enc,NCE.Dec,NCE.S) is an NCE and:

9

- Oblivious Sampling: NCE.GenObl(1
κ) obliviously generates a public key pk (without knowing

the associated secret key sk.
- Inverse Key Sampling: NCE.GenInv(pk) explains the randomness for the key pk satisfying the

following property.
Obliviousness: The following distributions are indistinguishable:

{(pk, r) : pk← NCE.GenObl(1
κ; r)}κ ≈ {(pk, r′) : (pk, sk)← NCE.Gen(1κ); r′ ← NCE.GenInv(pk)}κ.

Definition 3. (Computational Diffie-Hellman Assumption). We say that the CDH as-
sumption holds in a group G if for any PPT adversary A,

Pr[A(g, h, gt) = ht] = neg(κ).

holds, where h, gt ← G.

Definition 4. (Decisional Diffie-Hellman Assumption). We say that the DDH assumption
holds in a group G if for any PPT adversary A,

|Pr[A(g, h, gt, ht) = 1]− Pr[A(g, h, gt, gz) = 1]| = neg(κ).

holds, where h, gt, ht, gz ← G.

3 Technical Overview

In this section, we will provide a high-level overview of our main constructions. Full technical
details can be found in later sections.

3.1 Adaptively Secure OT in the Global Programmable RO Model

The “Simplest OT protocol” [CO15] is a three-round OT protocol in the programmable RO model.
S sends the first message as T = gr, using some secret randomness r ← Zq. R uses the sender’s
message to compute the second message as B = gαT b based on his input bit b using some secret
receiver randomness α ← Zq. Upon receiving B, the sender reuses the secret randomness r to
compute the OT third message as follows:

c0 = FGRO (Br)⊕m0

c1 = FGRO

((
B

T

)r)
⊕m1

(1)

The receiver decrypts mb = cb ⊕ FGRO(sid, Tα). A corrupt R∗ cannot obtain both messages as it
requires computing T r (as it involves querying Br and (BT)r) to the RO. Such a computation is
hard by CDH assumption as T = gr is randomly sampled by S and kept secret from R. On the
other hand, a corrupted S∗ cannot guess b as b is perfectly hidden in B (since α and α− r are valid
receiver randomness for bits 0 and 1). This also disrupts a corrupt receiver’s input extraction by
the simulator as b is not binded to B. The only way to extract the input of R∗ is when he invokes
FGRO on Bα to decrypt mb. However, such a weak extraction process is insufficient for UC-secure
protocols (GC-based protocols) where this OT protocol might be used and it has been pointed out
by the work of [LM18, BPRS17]. To tackle this issue, the protocol should bind the receiver’s input
bit b to the receiver’s message. Here our goals are: 1) fix this protocol to be fully UC-secure; 2)
reduce the round complexity of the protocol to two rounds.

10

Our solution

We reduce the round complexity by generating T as an OT parameter using a GRO. The receiver
generates T by invoking the GRO on a randomly sampled seed. He constructs B = gαT b based
on bit b. The sender samples a random r from Zq and encrypt his message as in Equation 1. The
sender also sends z = gr so that the receiver can decrypt mb = cb ⊕FGRO(sid, zα). Security follows
from the the security of Simplest OT. And sender’s messages are hidden due to CDH assumption.
However, the receiver’s bit cannot be extracted from the receiver’s message as it is perfectly hidden.

Now we will add a mechanism such that the receiver’s bit can be extracted from the receiver’s
message. Intuitively, the protocol is modified in such a way that the receiver runs two instances
(using two different OT parameters) of the modified Simplest OT using the same randomness α.
The sender encrypts his message by combining these two instances. Finally, the receiver uses α to
decrypt mb. Security ensures that a corrupt receiver cannot decrypt m0 or m1 if the two instances
are not computed using α. And a simulator can extract the corrupt receiver’s input bit from the
two instances if they are correctly constructed. This ensures input extraction of a corrupt receiver,
thus giving us a round optimal UC-secure OT with high concrete efficiency.

More formally, the receiver R generates (h, T1, T2) as receiver OT parameters using the GRO. He
constructs two instances as B = gαT b1 and H = hαT b2 using the same randomness α. He sends seed
and (B,H) to the sender S. Next, S samples r, s from Zq and computes the sender OT parameter
z = grhs. The sender combines the two OT instance by computing the ciphertexts:

c0 = FGRO (sid, BrHs)⊕m0,

c1 = FGRO

(
sid,

(
B

T1

)r
·
(
H

T2

)s)
⊕m1.

The receiver computes mb = cb ⊕FGRO(sid, zα). This new scheme supports extraction of a corrupt
receiver’s input bit if the simulator knows x s.t. h = gx. The simulator extracts b = 0 if H = Bx,
else if H

T2
= (BT1

)x then he sets b = 1. Otherwise, the receiver message is malformed and b is
set as ⊥. Extraction always succeeds unless (g, h, T1, T2) forms a DDH tuple. In such a case
(g, h, T1, T2) = (g, gx, gt, gxt) and both extraction cases will satisfy. However, such an event occurs
with negligible probability since (h, T1, T2) is generated using a random oracle. Sender’s messages
are hidden from a corrupt receiver due to CDH assumption. Simulation against a corrupt sender
proceeds by programming the GRO s.t (g, h, T1, T2) is a DDH tuple. The simulator (playing the
role of honest R) sets B = gα and H = hα as receiver message. Upon obtaining the second OT
message from the corrupt sender, the simulator extracts m0 and m1 by using randomness α and
α − t respectively. The corrupt sender cannot distinguish between the real and ideal world OT
parameters due to DDH assumption. Also, B and H perfectly hides b in the ideal world.

Our protocol is more efficient than the state-of-the-art two-round UC-secure OT [PVW08,
MR19]. Furthermore, if we are interested in random OTs, then S needs to communicate only the
OT parameter z for all the OTs. This would yield a non-interactive random OT at the cost of
5 exponentiations and 2 group elements (i.e. R communicates (B,H) for each random OT). The
same protocol is adaptively secure in the programmable random oracle model, and can be modified
to use an global observable RO but only provide static security. See Section 4 for full details.

3.2 Receiver Equivocal Oblivious Transfer in the CRS model

Our next goal is to obtain efficient UC-secure OT with only a common random string setup. We
replace the GRO by partially setting the receiver OT parameters as the CRS, consisting of three
random group elements (g, h, T1). The receiver is required to generate T2 as part of the protocol

11

and use it to compute B and H following the previous protocol (Section 3.1). T2 will be reused for
multiple OT instances in the same session. It is guaranteed that a corrupt receiver will compute T2

s.t. the tuple is non-DDH due to the CDH assumption. In such a case, the simulator for a corrupt
receiver can extract b from B and H given x, where h = gx. On the other hand, the simulator
(playing role of honest receiver) for a corrupt sender can compute T2 s.t. (g, h, T1, T2) is a DDH
tuple, given the trapdoor t s.t. T1 = gt. It would allow him to extract corrupt sender’s input
messages from (c0, c1) and equivocate (B,H) = (gα, hα) to open to bit b by opening the receiver’s
randomness as α− bt. This provides security against adaptive corruption of receiver. The sender’s
algorithm is similar to the one in Section. 3.1 where the ciphertexts are formed as follows:

c0 = BrHs ·m0

c1 =

(
B

T1

)r
·
(
H

T2

)s
·m1

However, the sender’s randomness (r, s) has to be unique for each OT instance, else the sender’s OT
messages - (c0, c1), will leak about the sender’s input messages - (m0,m1). Thus, we obtain a two-
round OT protocol which is secure against static corruption of the sender and adaptive corruption
of the receiver in the common random string model. Our protocol requires 9 exponentiations and
communication of 6 group elements, where one group element (i.e. T2) can be reused; reducing the
communication overhead to 5 group elements. We can further optimize our computation cost to 8
exponentiations if we sacrifice receiver equivocal property and instead settle for static security. In
contrast, the only other two-round protocol [PVW08] in this model requires 11 exponentiations and
communication of 6 group elements in the common reference string model. Note that the protocol
here is receiver-equivocal, which will be made fully adaptive in the following subsection.

3.3 Adaptively Secure Oblivious Transfer in the CRS model

Finally, we would like to add sender equivocation to the above protocol. It requires a simulator
to simulate OT second message without the knowledge of sender’s input. Upon post-execution
corruption of sender, the simulator should provide the randomness s.t. the OT second message
corresponds to sender’s original input (m0,m1). In our current protocol, the second OT message
is computed based on B and H using the randomness r and s. The simulator (playing the role
of an honest sender) sets cb̄ randomly and opening it to mb̄ requires the knowledge of receiver’s
randomness - α. Also, such an equivocation would be possible only if the tuple - CRS and T2, is a
non-DDH tuple as z and pb̄ =

cb̄
mb̄

are two separate equations in r and s. When the tuple is a DDH

one (which is required for receiver equivocation when the receiver is corrupted post-execution) then

we can write pb̄ = zα+(−1)bt. It is not possible to provide r and s s.t. a random cb̄ opens to pb̄ ·mb̄,
where pb̄ gets fixed by α and z, and mb̄ is chosen by the adaptive adversary in post-execution
corruption. Thus, it seems receiver and sender equivocation will not be possible simultaneously if
we follow this approach.

We address this challenge by modifying the sender protocol. We construct a semi-adaptive OT
protocol by slightly tweaking our receiver equivocal OT protocol. Then we apply the transformation
of [BLPV18] which uplifts a semi-adaptive OT into to an adaptively secure OT using augmented
NCE. A semi-adaptive OT is one which is secure against static corruption of one party and adaptive
corruption of another party. Our semi-adaptive OT construction is described as follows. The sender
encrypts only bit messages mi ∈ {0, 1} in ciphertext (zi, ci), for i ∈ {0, 1}, using independent

12

randomness (ri, si). If mi = 1 then sender encrypts it using the sender protocol as follows :

zi = grihsi

ci =

(
B

T ii

)ri (H
T i2

)si
·mi =

(
B

T ii

)ri (H
T i2

)si
· 1 =

(
B

T ii

)ri (H
T i2

)si
If mi = 0, then sender samples zi and ci as random group elements. Upon receiving (z0, c0, z1, c1),
the receiver computes y = cb · z−αb . If y = 1, then receiver outputs mb = 1, else he outputs
mb = 0. In this new construction, mb̄ remains hidden in cb̄ from the corrupt receiver due to DDH
assumption. Moreover, it solves our previous problem of equivocating sender’s OT message - cb̄.
Here, the simulator (playing the role of honest sender) can always compute (zb̄, cb̄) s.t. they encrypt
mb̄ = 1 using randomness (rb̄, sb̄). Later, when sender gets corrupted post-execution, the simulator
can claim (zb̄, cb̄) was randomly sampled if mb̄ = 0, else provide the randomness as (rb̄, sb̄) if mb̄ = 1.
Adversary cannot decrypt mb̄ from cb̄ since T

rb̄
1 makes cb̄ pseudorandom due to DDH assumption.

Thus, our new protocol is secure against semi-adaptive corruptions of parties. Next, we use
the transformation of [BLPV18] to make it adaptively secure using augmented NCE. The receiver
generates an NCE key pair (pkb, sk) corresponding to his input bit b. He samples another NCE
public key pkb̄ obliviously for bit b̄. He sends these two public keys to the sender. The sender
additively secret shares his inputs :

m0 = x0 ⊕ y0,m1 = x1 ⊕ y1.

He runs the semi-adaptive OT protocol with inputs (x0, x1) and encrypts y0 and y1 using pk0 and
pk1 respectively.

e0 = NCE.Enc(pk0, y0), e1 = NCE.Enc(pk1, y1).

The sender sends the semi-adaptive OT messages and (e0, e1) to the receiver. The honest receiver
obtains xb from the OT and yb. A corrupt receiver can obtain yb̄ in addition, if he sampled
(pkb̄, skb̄) using the NCE.Gen algorithm. Our final protocol is secure against adaptive corruption
of both parties. Consider the setting where both parties are honest initially and the simulator
has to construct their view. The adaptive simulator runs the semi-adaptive simulator for the
underlying semi-adaptive OT with static corruption of sender and adaptive corruption of receiver.
The honest sender algorithm is run with inputs (x0, x1), sampled as random bits. Suppose the
sender gets corrupted first in post-execution then e0 and e1 can be equivocated s.t. y0 = x0 ⊕m0

and y1 = x1⊕m1. Indistinguishability proceeds due to the NCE property. Next, when the receiver
gets corrupted the simulator obtains b. He uses the adaptive simulator for receiver in the semi-
adaptive OT. The simulator also uses the inverse samplability property of the NCE to claim that pkb
was generated honestly and pkb̄ obliviously. If the receiver gets corrupted first, then the receiver’s
simulation doesn’t change. For the sender side, the simulator sets yb = xb ⊕ mb. Later, when
sender gets corrupted and simulator obtains mb̄ the simulator equivocates eb̄ s.t. yb̄ = xb̄ ⊕ nb̄.
Indistinguishability proceeds since the adversary does not posses the secret key skb̄ as pkb̄ was
supposed to be obliviously sampled. As a result, the simulator successfully equivocates eb̄. More
details of our protocol can be found in Section. 6.

3.4 Non-Interactive Commitment with Adaptive Security

As an independent result, we prove that the first (i.e. receiver’s) message of any two-round 1-
out-of-M receiver equivocal OT can be considered as an UC-secure non-interactive commitment
to receiver’s input. It can also withstand adaptive corruption of the parties involved in the com-
mitment scheme. The committer C commits to his message b ∈ M (where M is the message

13

space for the commitment) as c by invoking the receiver algorithm on choice b with randomness α.
Decommitment follows by providing the randomness α for the receiver’s OT message.

We can show that the commitment scheme satisfies the properties of an UC commitment-
binding, hiding, extractable and equivocal, by relying on the security of the underlying receiver
equivocal OT protocol. Binding of the commitment follows from sender security as a corrupt
receiver cannot produce different randomness α′ s.t. c can be used to decrypt mb̄ (where mi

is S’s ith message for i ∈ M) where b̄ ∈ M and b̄ 6= b. Hiding of b is ensured from the OT
security guarantees for an honest receiver against a corrupt sender. A corrupter committer’s input
b is extracted by running the extraction algorithm of the OT simulator for a corrupt receiver.
Finally, the commitment can be opened correctly by running the simulator (who is playing the role
of honest OT receiver) and its equivocation algorithm (when receiver gets corrupted adaptively
in post-execution). The commitment scheme is also secure against adaptive corruption as the
simulator (for the honest committer in the commitment scheme) can always produce randomness
α′, which is consistent with message b, by running the adaptive simulator for the OT.

When we compile our πreOT-CRS protocol with this result, we obtain a non-interactive com-
mitment c = (B,H) = (gαTm1 , hαTm2) for polylog(κ) bit messages using four exponentiations and
communication of two group elements. We can only commit to polylog(κ)-bit messages or messages
from poly(κ)-sized message space M since our PPT simulator runs in O(|M|) time to extract a
corrupt receiver’s input by matching the following condition for each i ∈M:

if
H

T i2

?
=

(
B

T i1

)x
output i.

Our detailed transformation from a receiver equivocal OT to an adaptive commitment can be found
in Section. 7.

4 Oblivious Transfer in the Global Random Oracle Model

In Section 4.1, we first show an efficient 2-round OT in the Global programmable RO model secure
against adaptive adversaries. Then, we present a set of optimizations that can bring the efficiency
at par with the Simplest OT by Chou and Orlandi [CO15] while requiring only one simultaneous
round. In Section 4.2, we will show how to adapt our protocol to work in the global observable RO
model but with only static security.

4.1 Adaptively Secure OT in the Global Programmable RO Model

As we have discussed in details the main intuition behind our protocol in Section 3.1, we will
proceed to the full description and the proof directly. Our protocol (πaOT-GPRO) in the PRO
model is presented in Fig. 4. Security of our protocol has been summarized in Thm. 1. The
simulator forwards messages between (FGRO1,FGRO2) and the adversary, except when it programs
(FGRO1,FGRO2) on a point s to h. In such a case, when adversary invokes the GRO on point s the
simulator returns h as the query result without invoking the GRO. In our proof we refer this event
as programming the GRO by simulator on s to return h. Our security proof is as follows.

Theorem 1. Assuming the Decisional Diffie-Hellman holds in group G, then πaOT-GPRO UC-
securely implements FOT functionality in presence of adaptive adversaries in the global programmable
random oracle model.

Proof. We will first argue static security and then discuss adaptive corruption of the parties.
The simulator for a statically corrupt sender S∗ will program FGRO1 on seed s.t. (g, h, T1, T2) is

14

Figure 4: Adaptively Secure Oblivious Transfer in the Global Programmable Random Oracle Model

πaOT-GPRO

– Public Inputs: Group G, field Zq and generator g of group G.
– Private Inputs: S has two κ-bit inputs (m0,m1) ∈ {0, 1}κ and R has a choice bit b.
– Functionalities: Global Random Oracles FGRO1 : {0, 1}κ → G3 and FGRO2 : G→ {0, 1}κ.

Choose:

– R samples seed← {0, 1}κ and computes (h, T1, T2)← FGRO1(sid, seed).
– R samples α← Zq and sets B = gαT b1 and H = hαT b2 .
– Receiver Parameters: R sends seed as OT parameters.
– R sends (B,H) to S.

Transfer:

– S invokes FGRO1 on (IsProgrammed, seed, sid) and aborts if it returns 1.
– S computes (h, T1, T2)← FGRO1(sid, seed).
– S samples r, s← Zq and computes z = grhs.

– S computes c0 = FGRO2 (sid, BrHs)⊕m0 and c1 = FGRO2

(
sid, (BT1

)r(HT2
)s
)
⊕m1.

– Sender Parameters: S sends z to R as OT parameters.
– S sends (c0, c1) to R.

Local Computation by R:

– R computes mb = cb ⊕FGRO2(sid, z
α).

a DDH tuple and (B,H) = (gα, hα) perfectly hides b. The simulator can extract both sender
messages using randomness α and α − bt. Indistinguishability follows from DDH assumption. If
S∗ tries to check whether FGRO1 has been programmed on seed or not by invoking FGRO1 with
(IsProgrammed, seed, sid) then the simulator simulates FGRO1 and returns the query response as
0. We present our simulator in Fig. 5. The formal hybrids and indistinguishability argument are
as follows:

– Hyb0: Real world.

– Hyb1: Same as Hyb0, except the reduction programs FGRO1 on seed s.t. (g, h, T1, T2) is a
DDH tuple. The reduction also returns 0 when S∗ invokes (IsProgrammed, seed, sid). The
reduction simulates the GROs in the ideal world and so it can manipulate the GRO response
to the dummy adversary. Indistinguishability between the hybrids follows from the DDH
assumption due to the distribution of the tuple.

– Hyb2: Same as Hyb1, except the simulator always sets B = gα and H = hα and extracts
m0 and m1 following the simulation strategy. Indistinguishability follows perfectly since for
b ∈ {0, 1} there is an unique randomness, i.e. α′ = α− bt which decrypts cb.

Next, we discuss security against a statically corrupt receiver R∗. In the ideal world, the simu-
lator programs the FGRO1 to return non-DDH tuple on different invocations by R∗. It is indistin-
guishable from the real world due to the RO assumption, where the RO result would have returned
a non-DDH tuple, except with negligible probability. The simulator also stores the trapdoor values
for each invocation, i.e. it stores x s.t. h = gx and h is obtained by invoking FGRO1 on seed. This
allows the simulator to extract b from (B,H) by running the extraction algorithm. Finally, the
simulator samples cb̄ randomly as mb remains hidden in cb due to the CDH and RO assumption. We

15

Figure 5: Simulation against a statically corrupt S∗

– Functionalities: Global Random Oracles FGRO1 : {0, 1}κ → G3 and FGRO2 : G → {0, 1}κ. The
simulator forwards messages between (FGRO1,FGRO2) and the adversary, except when it programs
(FGRO1,FGRO2) on a point s to h. When adversary invokes the GRO on point s the simulator
returns h as the query result without invoking the GRO.

Choose:

– S samples seed and sets the result of invoking FGRO1 on seed to (h, T1, T2) where h = gx, T1 = gt

and T2 = gxt for random values of x and t.
– S samples α← Zq and sets B = gα and H = hα.
– S sends seed and (B,H) to S∗.

Transfer:

– S∗ sends (z, c0, c1).
– If S∗ invokes FGRO1 on (IsProgrammed, seed, sid) then return 0.

Local Computation by R:

– S computes m0 = c0 ⊕FGRO2(sid, z
α) and m1 = c1 ⊕FGRO2(sid, z

(α−t)).
– S invokes FOT functionality with (m0,m1) and halts.

present the formal simulation in Fig. 6 and the formal indistinguishability argument is as follows:

– Hyb0: Real world.

– Hyb1: Same as Hyb0, except the reduction programs FGRO1 according to the simulation
strategy and the tuple is always set as a non-DDH tuple. The reduction aborts if R∗ has
programmed FGRO1 on seed. In the real world the honest sender can detect if a malicious
receiver programs FGRO1 on seed. Indistinguishability between the hybrids follow as the
tuple is always a non-DDH tuple in Hyb0, except with negligible probability, due to the RO
assumption and in Hyb1 it is always a non-DDDH tuple.

– Hyb2: Same as Hyb1, except the reduction sets b = ⊥ and c0 randomly when extraction fails.
Extraction can fail if B = gα and H = hα

′
for some α, α′ ∈ Zq and α 6= α′. Then c0

m0
and z

are uniformly distributed over the uniform choice of r, s as there are two different equations
in r, s since α 6= α′:

c0

m0
= grαhα

′s = grα+xα′s, z = grhs = gr+xs

Thus, the two hybrids are indistinguishable. Also, the RO assumption prevents a distinguisher
from inferring information about r, s from c0 and c1. Moreover, r, s are perfectly hidden in z.

– Hyb3: Same as Hyb2, except the reduction sets c1 randomly when b = ⊥. Indistinguishability
follows due to the previous argument.

– Hyb4: Same as Hyb3, except the reduction aborts if R∗ decrypts both c0 and c1 by querying zα

and zα

T r1 T
s
2

to FGRO2. Indistinguishability follows from CDH assumption where T r1 is the CDH

answer. The CDH adversary plays the role of the reduction and invokes the distinguisher
of the hybrids to break the CDH challenge. He samples s and sets c0 and c1 randomly. He
sets z = A · hs where (T1, A) = (gt, gr) is the CDH challenge. c0 and c1 are set randomly
and the CDH adversary randomly selects two queries q1 and q2 made to FGRO2 by the hybrid

16

Figure 6: Simulation against a statically corrupt R∗

– Functionalities: Global Random Oracles FGRO1 : {0, 1}κ → G3 and FGRO2 : G → {0, 1}κ. The
simulator forwards messages between (FGRO1,FGRO2) and the adversary, except when it programs
(FGRO1,FGRO2) on a point s to h. When adversary invokes the GRO on point s the simulator
returns h as the query result without invoking the GRO.

Choose:

– Whenever R∗ invokes FGRO1 on candidate seed values the S returns different tuples (h, T1, T2) as
FGRO1 result, where (g, h, T1, T2) forms a non-DDH tuple and simulator knows logg h.

– R∗ sends seed and (B,H).

Transfer:

– If R∗ has programmed FGRO1 on seed then abort.
– S sets b = 0 if H = Bx, else if H

T2
= (BT1

)x then set b = 1, else set b = ⊥.
– S invokes FOT functionality with b to obtain mb.
– S samples r, s← Zq and sets z honestly.
– If b = ⊥, then S sets (c0, c1) randomly else it sets cb honestly and cb̄ randomly.
– S sends z and (c0, c1) to R∗.

Local Computation by R∗:

– Perform its own adversarial algorithm.

distinguisher and computes At = q1
q2T s2

. If there are n queries made to FGRO2, then the CDH

adversary breaks the CDH challenge with probability 1
2(n2)

.

– Hyb5: Same as Hyb4, except the simulator extracts b ∈ {0, 1} and sets cb̄ randomly. Indis-
tinguishability follows from the RO assumption since pb̄ = FGRO2(sid,

zα

T r1 T
s
2

) looks random to

a distinguisher, who fails to query zα

T r1 T
s
2

(due to CDH assumption) to FGRO2.

This completes our static proof of security. Next, we will discuss our adaptive corruption cases. The
receiver can get adaptively corrupted after sending the first OT message or post-execution. In both
cases, we rely on the equivocal property of (B,H) when T2 = ht. The simulator can always construct
B = gα and H = hα in the first OT message. Upon obtaining b in post-execution corruption, the
simulator can open the randomness of receiver as α′ = α−bt s.t. the receiver’s message corresponds
to bit b. Next, we shift our focus to adaptive corruption of sender. The sender can get adaptively
corrupted after sending the second OT message or post-execution. These two cases are identical
since it is a two-round OT protocol. For security against adaptive corruption of sender when the
receiver is also honest, we rely on the programmability feature of FGRO2. The simulator (playing
the role of an honest sender) sets (c0, c1) randomly. Upon post-execution corruption of sender, the
simulator obtains (m0,m1) and he programs FGRO2 as follows:

FGRO2 (sid, BrHs) = c0 ⊕m0,

FGRO2

(
sid,

(
B

T1

)r (H
T2

)s)
= c1 ⊕m1.

Equivocation is successful since an adversary cannot query the corresponding preimages to the
random oracle.

For completeness, we present the full adaptive simulator in Fig. 8. At the end of the simulation
the simulator S forwards the view of the dummy adversary to the environment Z. The different

17

Figure 7: Simulation cases for Adaptive corruptions in πaOT-GPRO

πaOT-GPRO begins

R is honest

S is honest

R gets cor-
rupted first
(Case 1)

S gets cor-
rupted first
(Case 2)

S∗ is corrupt

R gets cor-
rupted
(Case 3)

R∗ is corrupt

S is honest

S gets cor-
rupted
(Case 4)

S∗ is corrupt (Case 5)

First OT message Sent

Second OT message Sent

Post-Execution

simulation cases can be found in Fig. 7. We provide the formal hybrids and indistinguishability
argument as follows:

– Hyb0 : Real world.

– Hyb1 : Same as Hyb0, except if R is honest before the first OT message is sent then the
reduction programs FGRO1 on seed s.t. the tuple (g, h, T1, T2) is always a DDH tuple. The
rest of the receiver’s and sender’s views are simulated honestly using the knowledge of their
respective inputs input b. Indistinguishability follows by reduction to the DDH assumption.
(This happens in Cases 1-3 of Figure 7).

– Hyb2 : Same as Hyb1, except that if R is honest at the time where the first OT message is to
be sent, then the reduction constructs receiver’s OT message with input bit 0 and randomness
α, i.e. he sets B = gα and H = hα. If receiver gets corrupted post-execution and his input
bit turns out to be b, then provide the randomness as α′ = α − bt. Here the environment’s
view is identical to its view in Hyb1, since the tuple (g, h, T1, T2) is DDH in both hybrids and
for b ∈ {0, 1} there is an unique randomness α′ = α− bt which decrypts cb. (This happens in
Cases 1-3.)

– Hyb3 : Same as Hyb2, except if the R and S were honest during protocol and R gets corrupted
first in post-execution then S obtains (b,mb) as receiver output and provides R’s randomness
as α′ = α − bt. S programs FGRO2 s.t. FGRO2(sid, B

rHs(T r1T
s
2)−b) = cb ⊕ mb. When S

gets corrupted, he obtains (m0,m1) and programs FGRO2 s.t. FGRO2(sid, B
rHs(T r1T

s
2)−b̄) =

cb̄ ⊕ mb̄. An external adversary cannot prevent equivocation of cb since it requires him to
query BrHs(T r1T

s
2)−b without corrupting any party and without knowing (r, s) or α. This is

equivalent to breaking the CDH assumption where B = gα and gr is the CDH challenge and
Br is the response which can be extracted from the preimage query - BrHs(T r1T

s
2)−b to FGRO2,

given the knowledge of s. After corrupting R, the adversary cannot prevent equivocation of
cb̄ since that requires him to again break the CDH assumption. Given his queries- BrHs and
(BT1

)r(HT2
)s, one can extract T r1 . This can be the response to a CDH game where and gr and

18

Figure 8: Adaptive Simulator for πaOT-GPRO

– Functionalities: Global Random Oracles FGRO1 : {0, 1}κ → G3 and FGRO2 : G→ {0, 1}κ.

Choose:

• Cases 1-3: If R is honest then perform the following:

– S samples seed and programs FGRO1 s.t. (h, T1, T2)← FGRO1(sid, seed) where h = gx, T1 = gt

and T2 = gxt for random values of x and t.
– S samples α← Zq and sets B = gα and H = hα.
– S sends seed and (B,H) to S∗.

• Cases 4-5 : Else, S performs the following while interacting a corrupt receiver R∗:

– S programs FGRO1 on different invocations of FGRO1, by corrupt R∗, to return (h, T1, T2) s.t.
(g, h, T1, T2) forms a non-DDH tuple and simulator knows x = logg h.

– S receives seed, (B,H) from R∗.

Transfer:

• Cases 1, 2: If R and S are not corrupt then S computes z = grhs for random r, s ← Zq. He
samples random c0, c1 ← {0, 1}κ and sends (z, c0, c1) to R.

• Case 3: If R is honest and S∗ is corrupt then receive (z, c0, c1) from S∗.

• Cases 1-3: If R gets corrupted then S obtains receiver’s input bit b and opens (B,H) to b by
providing receiver’s randomness as α′ = α− bt.

• Case 4: If R∗ is corrupt and computed his OT message, and S is honest then S aborts if R∗

programmed FGRO1 on seed else it performs the following:

– S sets b = 0 if H = Bx, else if H
T2

= (BT1
)x then set b = 1, else set b = ⊥. S invokes FOT with

b and obtains mb.
– S samples r, s← Zq and sets z honestly. If b = ⊥, then S sets (c0, c1) randomly else it sets cb

honestly and cb̄ randomly.
– S sends z and (c0, c1) to R∗.

• Case 5: If both R∗ and S∗ are corrupt then end simulation.

Local Computation by R :

• Case 3: If R is honest and S∗ is corrupt then S extracts (m0,m1) using randomness α and α− t
respectively. S invokes FOT functionality with (m0,m1) and halts.

• Cases 1, 2, 4: Else, S performs nothing.

Post-Execution Corruption

• Cases 1,2: If R and S are honest then perform the following based on the sequence of corruption:

– Case 1: If R gets corrupted first, S obtains (b,mb) as receiver output and provides R’s random-
ness as α′ = α− bt. S programs FGRO2 s.t. FGRO2(sid, B

rHs(T r1 T
s
2)−b) = cb ⊕mb. When S

gets corrupted, he obtains (m0,m1) and programs FGRO2 s.t. FGRO2(sid, B
rHs(T r1 T

s
2)−b̄) =

cb̄ ⊕mb̄.
– Case 2: If S gets corrupted first, S obtains (m0,m1) and programs FGRO2 s.t.

FGRO2 (sid, BrHs) = c0 ⊕m0 and FGRO2

(
sid,
(
B
T1

)r (
H
T2

)s)
= c1 ⊕m1. When R gets cor-

rupted, S provides α′ = α− bt as receiver randomness.

• Case 3: If R gets corrupted and S∗ is corrupt then S provides α′ = α− bt as receiver randomness.

• Case 4: If R∗ is corrupt and S gets corrupted then program FGRO2

(
sid,
(
B

T −̄b
1

)r(H

T−b̄
2

)s)
= cb̄⊕mb̄.

19

T1 is the CDH challenge. Since, it is guaranteed that the adversary cannot query preimages
to FGRO2, the RO assumption guarantees that the output of FGRO2 appears random. Thus,
indistinguishability between Hyb2 and Hyb3 follows from CDH and RO assumption. This
completes Case 1 of Figure 7.

– Hyb4 : Same as Hyb3, except if the R and S were honest during protocol and S gets corrupted
first in post-execution and then R gets corrupted, then the reduction obtains (m0,m1) first
and equivocates (c0, c1) by programming FGRO2 on BrHs and (BT1

)r(HT2
)s. This is possible

due to CDH assumption and it has been explained in the previous argument. When receiver
gets corrupted provide α′ = α − bt as receiver randomness where b is receiver’s input bit.
Indistinguishability follows due to CDH and RO assumption. This completes Case 2 of
Figure 7.

– Hyb5 : Same as Hyb4, except if the R is honest and S∗ is corrupt before the second OT
message is sent and the OT protocol has completed then the reduction extracts the inputs
of S∗ using the randomness α and α − t and invokes FOT with it. During post-execution
corruption of receiver, the reduction opens α′ = α − bt as receiver’s randomness for R’s
input b. Indistinguishability follows due to correctness of the OT protocol since the tuple
(g, h, T1, T2) is a DDH tuple and α and α− t are valid decryption randomness for the receiver.
This completes Case 3 of Figure 7.

– Hyb6 : Same as Hyb5, except if R∗ is statically corrupted and S is honest and R∗ has sent the OT
first message then the reduction programs FGRO1 on candidate seed values s.t. (g, h, T1, T2)
is a DDH tuple where (h, T1, T2) ← FGRO1(sid, seed) and the reduction knows the trapdoors
x = logg h and t = logg T1. If R∗ has programmed FGRO1 on seed then abort. The sender’s
view is simulated honestly with the knowledge of sender’s inputs. Indistinguishability follows
due to the DDH assumption since (g, h, T1, T2) is a non-DDH tuple with high probability in
Hyb5. This is Case 4.

– Hyb7 : Same as Hyb6, except if R∗ is statically corrupted and S is honest, and R∗ has sent
the OT first message then the reduction extracts receiver’s input b. If H = Bx then b = 0,
else if H

T2
= (BT1

)x then set b = 1, else b = ⊥. Extraction follows due to correctness of the
OT protocol. The sender’s view is simulated honestly with the knowledge of sender’s inputs.
This is Case 4.

– Hyb8 : Same as Hyb7, except if R∗ is statically corrupted and S is honest, and R∗ has sent the
OT first message then invoke FOT with b to obtain mb. The reduction computes the second
OT message without the knowledge of the sender’s input. The reduction computes (z, cb) s.t.
they encrypt mb. He samples cb̄ randomly. When post-execution corruption of sender occurs,
the reduction programs FGRO2 s.t. cb̄ opens to mb̄.

FGRO2

(
sid,

(
B

T −̄b1

)r(H

T−b̄2

)s)
= cb̄ ⊕mb̄

A corrupt receiver cannot prevent equivocation by querying BrHs(T r1T
s
2)−b as that would

require him to compute T r1 . Indistinguishability follows due to the CDH assumption and
it has been explained in the indistinguishability argument between Hyb2 and Hyb3. This
completes Case 4 of Figure 7.

– Hyb9 : Same as Hyb8, except if R∗ gets corrupted before sending the first OT message and
S gets corrupted before sending the second OT message then the simulator halts. The dis-
tribution is identical in both hybrids since adversary controls the parties. This is our ideal

20

Figure 9: Fully Optimized Random Oblivious Transfer with One Simultaneous Round

πaROT-GPRO

– Public Inputs: Group G, field Zq, generator g of group G and global CRS = (g, h).
– Functionalities: Random Oracles FGRO1 : {0, 1}κ → G3 and FGRO2 : G→ {0, 1}κ.

Receiver’s Simultaneous Message:

– R samples seed← {0, 1}κ and computes (T1, T2)← FGRO1(sid, seed).
– R samples b← {0, 1} and α← Zq
– R sets B = gαT b1 and H = hαT b2 .
– Receiver Parameters: R sends seed as OT parameters.
– R sends (B,H) to S.

Sender’s Simultaneous Message:

– S samples r, s← Zq and computes z = grhs.
– Sender Parameters: S sends z to R as OT parameters.

Local Computation by R:

– R computes pb = FGRO2(sid, z
α) and outputs (b, pb).

Local Computation by S:

– S outputs p0 = FGRO2 (sid, BrHs) and p1 = FGRO2

(
sid,
(
B
T1

)r (
H
T2

)s)
.

execution of the protocol. It completes Case 5 of Figure 7, thus concluding our adaptive
proof of security.

4.1.1 Practical optimizations.

The above OT protocol requires computing 9 exponentiations and communication of 3 group el-
ements and 3 strings of length κ for one OT. However, the sender can reuse r, s for multiple
instances of the OT protocol. Let Bi and Hi be the receiver’s message for the i-th OT in-
stance. The sender will compute his OT message by reusing T r1 , T

s
2 and z. He can compute

ci,0 = FGRO2 (sid, i, BrHs)⊕mi,0 and ci,1 = FGRO2

(
sid, i,

(
B
T1

)r (
H
T2

)s)
⊕mi,1.

This reduces the overhead to 5 exponentiations and communication of 2 group elements and
2κ bit strings in the amortized setting. Our second observation is that many practical use of OT
depends on OT extension [IKNP03] which in turn needs a base OT protocol on random messages,
namely random OT. In the random OT variant of our OT protocol, the sender’s messages will be

random pads (p0, p1) where p0 = FGRO2 (sid, BrHs) and p1 = FGRO2

(
sid,
(
B
T1

)r (
H
T2

)s)
.

The receiver obtains pb = FGRO2(sid, z
α) as output. In such a case, the receiver needs to

send (B,H) for each OT and the sender only needs to send z = grhs, which can be reused for
multiple OT instances. One can observe that the sender’s and receiver’s messages are independent
of each other and depends only on (g, h). Thus, we can consider a setup consisting of a global
CRS = (g, h) and a global programmable RO. The receiver computes (B,H) and sends it to the
sender. Simultaneously, the sender can compute z and send it over to the receiver; thus resulting
in a non-interactive random OT which requires 5 exponentiations and communication of 2 group
elements per OT. This protocol is also secure against mauling attacks by a rushing adversary,
who can either corrupt the sender or the receiver. A corrupt receiver can break security only if
(g, h, T1, T2) is a DDH tuple where (g, h, T1) is the CRS; which occurs with negligible probability

21

Figure 10: Statically Secure Oblivious Transfer in the Observable Random Oracle Model

πsOT-GORO

– Functionalities : Random oracles FGRO1 : {0, 1}κ → G2, FGRO2 : G→ {0, 1}κ.
– Public Inputs : Group G, field Zq and generator g of group G.
– Private Inputs : S has κ-bit inputs (m0,m1) and R has input choice bit b.

Choose:

– R samples x← Zq and computes h = gx. He also computes an NIZKPoK πR = (∃x : h = gx). He
samples seed← {0, 1}κ and sets (T1, T2) = FGRO1(sid, sid, seed).

– R samples α← Zq and computes B = gαT b1 and H = hαT b2 .
– Receiver Parameters: R sends (h, πR, seed) as OT parameters to S.
– R sends (B,H) to S.

Transfer:

– S verifies πR using h and computes (T1, T2)← FGRO1(sid, seed).
– S samples r, s ← Zq and computes z = grhs. He also computes an NIZKPoK πS = (∃r, s : w =

grhs).
– S computes c0 = FGRO2(sid, B

rHs)⊕m0 and c1 = FGRO2(sid, (
B
T1

)r(HT2
)s)⊕m1.

– Sender Parameters: S sends (z, πS) as OT parameters to R.
– S sends (c0, c1) to R.

Local Computation by R :

– R verifies πS using z.
– R computes mb = cb ⊕FGRO2(sid, z

α).

due to CDH assumption. Security against a corrupt sender is ensured by programming the GRO
s.t. the tuple is a DDH tuple. In such a case R’s message, i.e. (B,H), perfectly hides R’s input.
Indistinguishability of the tuple follows from DDH.

Our protocol πaROT-GPRO is presented in Fig. 9. To compute n OTs, we only need 4 + 5n
exponentiations and communication of 2n+1 group elements and one κ-bit string. In contrast, the
state-of-the-art OT extension protocol (from PRO based OT) of [MR19] requires 6n exponentiations
and requires sending 4n group elements. The protocol of [DKLs18] requires lesser computation but
they need 5 rounds of interaction for their OT. Thus, our protocol will outperform them in WAN
setting where interaction is expensive.

4.2 Statically Secure OT in the Global Observable RO Model

The work of [Nie02] has shown a separation between programmable RO and non-programmable
RO. Therefore, we show how to change our protocol to work with an observable GRO. Our protocol
is statically secure and has the same computation and communication overhead as the GPRO-based
protocol, except now the parties need to compute one NIZKPoK each. We present the GORO-based
OT protocol πsOT-GORO in Fig. 10.

The only difference from the PRO-based scheme lies in the generation of the CRS and the OT
parameters. The (T1, T2) is generated by invoking FGRO1 on seed. The other group element h is
generated by R and he also produces an NIZKPoK of x s.t. h = gx. We perform this because
the simulator for a corrupt receiver needs the knowledge of x to extract the receiver’s input, which
would not be possible if all three elements were generated using the GORO. However, this limits
the possibility of extracting a corrupt sender’s input by programming the GRO to return a DDH
tuple. So, the sender is required to produce an NIZKPoK [DKLs18] of r and s. This allows the

22

Figure 11: Simulation against a statically corrupt S∗

– Functionalities: Global Random Oracles FGRO1 : {0, 1}κ → G2 and FGRO2 : G → {0, 1}κ. The
simulator forwards messages between (FGRO1,FGRO2) and the adversary.

Choose:

– S runs the honest receiver algorithm with input choice bit b = 0.

Transfer:

– S∗ sends (z, πS, c0, c1).
– If S∗ invokes FGRO1 or FGRO2 with (Observe, sid) then return Qsid = ⊥ to S∗.

Local Computation by R:

– S extracts the list of illegitimate queries Qsid made by S∗ by invoking (Observe, sid).
– S extracts (r, s) from πS by running the extractor algorithm for πS.
– S computes m0 = FGRO2(B

rHs)⊕ c0 and m1 = FGRO2((
B
T1

)r(HT2
)s)⊕ c1.

– S invokes FOT functionality with (m0,m1) and halts.

simulator for a corrupt sender to extract r and s; thus extracting the input messages of the corrupt
sender. The rest of the proof follows from the static security proof of our GPRO-based scheme.

4.2.1 Security proof.

We formally prove static security of πsOT-GORO by proving Thm. 2.

Theorem 2. Assuming the Decisional Diffie-Hellman holds in group G, then πsOT-GORO UC-
securely implements FOT functionality in presence of static adversaries in the global observable
random oracle model.

Proof. We prove security against a corrupt sender and then we proceed towards the corrupt receiver
case. The simulator will play the role of a receiver and it runs the honest receiver algorithm with
choice bit 0. It extracts the sender’s randomness (r, s) from πS by running the NIZK extractor
algorithm. The work of [DKLs18] constructed a NIZKpok in the GORO model. The extractor
algorithm works by using the observable property of the GORO. After extracting (r, s) the simulator
decrypts (m0,m1) from (c0, c1). Our simulator algorithm is presented in Fig. 11. The formal
hybrids and indistinguishability argument are as follows:

– Hyb0: Real world.

– Hyb1: Same as Hyb0, except if S∗ invokes the GROs with (Observe, sid) then returnQsid = ⊥.
The reduction simulates the GRO query results for S∗. Thus, it sets the list of illegitimate
queries as empty.

– Hyb2: Same as Hyb1, except the reduction runs the ZK simulator for constructing πR. If S∗

invokes the GROs with Indistinguishability follows from the ZK property of πR.

– Hyb3: Same as Hyb2, except the reduction programs FGRO1 on seed s.t. (g, h, T1, T2) is a
DDH tuple. Indistinguishability between the hybrids follows from the DDH assumption.

– Hyb4: Same as Hyb3, except the reduction runs the honest receiver algorithm with input bit
0. The receiver’s message - (B,H) perfectly hides b, since the tuple is DDH.

23

Figure 12: Simulation against a statically corrupt R∗

– Functionalities: Global Random Oracles FGRO1 : {0, 1}κ → G2 and FGRO2 : G → {0, 1}κ. The
simulator forwards messages between (FGRO1,FGRO2) and the adversary.

Choose:

– R∗ sends (h, πR, seed) and (B,H).
– S extracts the list of illegitimate queries Qsid made by R∗ by invoking (Observe, sid).

Transfer:

– S constructs the sender parameters honestly.
– S extracts x by running the extractor algorithm of πR s.t. h = gx. He aborts if T x1 = T2, i.e.

(g, h, T1, T2) is a DDH tuple.
– S sets b = 0 if H = Bx, else if H

T2
= (BT1

)x then set b = 1, else set b = ⊥.
– S invokes FOT functionality with b to obtain mb. He computes cb honestly and samples cb randomly.

Local Computation by R∗:

– If R∗ invokes FGRO1 or FGRO2 with (Observe, sid) then return Qsid = ⊥ to R∗.
– Perform its own adversarial algorithm.
– S aborts if R invokes FGRO2 on both BrHs and (BT1

)r(HT2
)s.

– Hyb5: Same as Hyb4, except the reduction does not program FGRO1 on seed and (T1, T2) is
generated honestly. In Hyb4, the tuple is always a non-DDH tuple due to RO assumption,
except with negligible probability when the tuple turns out to be a DDH tuple. Whereas
in Hyb3, the tuple is always a DDH one. Thus, indistinguishability follows from the DDH
assumption.

– Hyb6: Same as Hyb5, except the reduction computes πR honestly. Indistinguishability follows
from the ZK property of πR.

– Hyb7: Same as Hyb6, except the simulator invokes extracts (r, s) from πS and computes
(m0,m1) correctly. Indistinguishability follows due to correctness of the NIZK extractor
algorithm.

Next, we discuss security against a statically corrupt receiver R∗. The simulator extracts x from
πR. It extracts b from (B,H) using the knowledge of x. It invokes FOT on b and obtains mb. It sets
cb honestly and samples cb randomly. The message mb remains hidden in cb since R∗ cannot query
both BrHs and (BT1

)r(HT2
)s) due to the CDH assumption. We present our simulator algorithm in

Fig. 12 and the formal indistinguishability argument is as follows:

– Hyb0: Real world.

– Hyb1: Same as Hyb0, except if R∗ invokes the GROs with (Observe, sid) then return Qsid =
⊥. The reduction simulates the GRO query results for R∗. Thus, it sets the list of illegitimate
queries as empty.

– Hyb2: Same as Hyb1, except the reduction extracts x from πR by running the NIZK extractor
algorithm. Indistinguishability follows from the correctness of the extractor algorithm.

– Hyb3: Same as Hyb2, except the reduction aborts if (g, h, T1, T2) is a DDH tuple. Indis-
tinguishability follows from the CDH assumption. The reduction plays the role of the CDH
adversary where it programs FGRO1 on seed to return the CDH challenge. The value h is the
response to the CDH challenge.

24

– Hyb4: Same as Hyb3, except the reduction extracts b by following the simulation algorithm.
It invokes FOT with b to obtain mb. Extraction succeeds due to the correctness of the OT
protocol.

– Hyb5: Same as Hyb4, except the reduction constructs πS by invoking the ZK simulator.
Indistinguishability follows from the ZK property.

– Hyb6: Same as Hyb5, except the reduction aborts if R∗ invokes FGRO2 on both BrHs and
(BT1

)r(HT2
)s). Indistinguishability follows from CDH assumption as it requires R∗ to compute

T r1 and T s2 without knowing the (r, s) and discrete log values of (T1, T2).

– Hyb7: Same as Hyb6, except the reduction sets cb randomly. Indistinguishability follows from
the RO assumption since R∗ has to predict the output of FGRO2, corresponding to cb without
querying the respective preimage.

– Hyb8: Same as Hyb7, except the reduction constructs πS honestly. Indistinguishability follows
the ZK property of πS.

We would like to point out that NIZK is known to be impossible in the ORO model [Pas03]
even though proof of knowledge can be obtained. However, we only need a relaxed NIZK and
allow programming the GRO in the security reduction while the simulator is restricted only to the
observability feature. Such a relaxation is also utilized to circumvent the impossibility of NIZKs in
GORO domain in prior related work [DKLs18]. This completes our proof of security.

Our protocol needs 5 exponentiations and communication of 2 group elements and two κ-bit
strings. In addition, we require a one-time computation of 2 NIZKPoKs and 5 exponentiations and
one-time communication of 2 group elements and κ bits. The only other 2 round GORO-based OT
protocol is a feasibility result by [CJS14].

5 Receiver Adaptively Secure OT in the CRS Model

In this section, we replace our use of GRO in πaOT-GPRO by a common random string (CRS).
Such a relaxation in the setup assumption results in degradation of the security and efficiency
of the protocol. We lose security against adaptive corruption of sender, resulting in a receiver-
equivocal OT which is secure against adaptive corruption of receiver. The computation overhead
also increases to 9 exponentiations and 5 group elements as the sender’s randomness cannot be
reused for multiple instances of the OT protocol as it will leak the individual sender messages from
the OT messages. The intuition of our protocol has been discussed in Section 3.2 and Fig. 13 gives
a detailed description of our protocol. The CRS consists of 3 group elements CRS = (g, h, T1) and
it requires to satisfy two properties for the security to hold. We describe the properties and later
we use them in our hybrid reductions.

5.1 Properties of CRS

The CRS for the subprotocols should satisfy the following two properties:

• Property 1: Given (g, h, T1) it should be computationally infeasible to obtain a T2 s.t.
(g, h, T1, T2) is a DDH tuple. This is ensured in our protocol since an adversary compute
such a T2 (i.e. the tuple is DDH) can be used to break the CDH assumption in a blackbox
manner by invoking it in a OT session. The CDH adversary will set the CRS s.t. (h, T1) is
the CDH challenge and it will return T2 as the CDH response.

25

Figure 13: Oblivious Transfer Secure against Adaptive Receiver Corruption

πreOT-CRS

– Public Inputs: Group G with a generator g, field Zq, and CRS = (g, h, T1).
– Private Inputs: S has inputs (m0,m1) where m0,m1 ∈ G; R has input choice bit b.

Choose:

– R samples T2 ← G.
– R samples α← Zq and sets B = gαT b1 and H = hαT b2 .
– R sends T2 and (B,H) to S.

Transfer:

– S samples r, s← Zq and computes z = grhs.
– S computes c0 = BrHs ·m0 and c1 = (BT1

)r(HT2
)s ·m1.

– S sends z and (c0, c1) to R.

Local Computation by R:

– R computes mb = cb.z
−α.

• Property 2: Given a simulated tuple (g, h, T1, T2), where T2 = ht and T1 = gt, it should be
indistinguishable from a random tuple. An adversary who can distinguish the tuples can be
used to break the DDH assumption. The DDH adversary forwards the DDH challenge tuple
as the tuple to this adversary and forwards the answer of this adversary as the DDH answer.
In addition, or simulation purposes we provide the simulator with the trapdoors- (x, t) for
the CRS = (g, h, T1) s.t. h = gx and T1 = gt.

5.2 Security Proof

We prove security of our protocol by proving Theorem 3.

Theorem 3. Assuming the Decisional Diffie-Hellman holds in group G, then πreOT-CRS UC-securely
implements FOT functionality in presence of a statically corrupted sender and an adaptively cor-
rupted receiver in the common random string model.

Proof. We will first argue static security and then discuss adaptive corruption of the receiver.
The simulator for a corrupt sender will compute T2 s.t. (g, h, T1, T2) is a DDH tuple and (B,H) =
(gα, hα) perfectly hides b. The simulator can extract both sender messages using randomness α
and α − bt. Indistinguishability follows from DDH assumption. We present our simulator in Fig.
14. The formal hybrids and indistinguishability argument are as follows:

– Hyb0: Real world.

– Hyb1: Same as Hyb0, except the reduction sets T2 = ht where T1 = gt was randomly sampled
as part of the CRS. In Hyb0, the tuple (g, h, T1, T2) is a DDH tuple whereas in Hyb1 it is
non-DDH. Indistinguishability follows from the DDH assumption. This indistinguishability
is captured as property 2 of the CRS.

– Hyb2: Same as Hyb1, except the simulator always sets B = gα and H = hα and extracts
m0 and m1 following the simulation strategy. Indistinguishability follows perfectly since for
b ∈ {0, 1} there is an unique randomness, i.e. α′ = α− bt which decrypts cb.

26

Figure 14: Simulation against a corrupt S∗

– Public Inputs: Group G, field Zq and generator g of group G, CRS = (g, h, T1).
– Input of S: The simulator knows t s.t. T1 = gt.

Choose:

– S sets T2 = ht.
– S samples α← Zq and sets B = gα and H = hα.
– S sends (B,H) to S∗.

Transfer:

– S∗ sends (z, c0, c1).

Local Computation by R:

– S computes m0 = c0 · z−α and m1 = c1 · z−(α−t).
– S invokes FOT functionality with (m0,m1) and halts.

Figure 15: Simulation against a corrupt R∗

– Public Inputs: Group G, field Zq and generator g of group G, CRS = (g, h, T1).
– Input of S: The simulator knows x s.t. h = gx.

Choose:

– R∗ sends T2 and (B,H).

Transfer:

– S aborts if T2 = T x1 .
– S sets b = 0 if H = Bx else if H

T2
= (BT1

)x then set b = 1, else set b = ⊥.
– S samples r, s← Zq and sets z honestly.
– If b = ⊥, then S sets (c0, c1) randomly else it sets cb honestly and cb̄ randomly.
– S sends z and (c0, c1) to R∗.

Local Computation by R∗:

– Perform its own adversarial algorithm.

Next, we discuss security against a corrupt receiver R∗. The simulator knows x and he can
extract b from (B,H) by checking whether H = Bx or H

T2
= (BT1

)x. Extraction succeeds as the
tuple - (g, h, T1, T2), will be a non-DDH tuple unless he breaks CDH assumption. Finally, the
simulator samples cb̄ randomly as it is statistically indistinguishable from a random group element.
We present the formal simulation in Fig. 15 and the formal indistinguishability argument is as
follows:

– Hyb0: Real world.

– Hyb1: Same as Hyb0, except the reduction aborts if T2 = T x1 . Indistinguishability follows from
CDH assumption where (g, h, T1) is set as the CDH challenge and T2 is the CDH response.
This indistinguishability is captured as property 1 of the CRS.

– Hyb2: Same as Hyb1, except the reduction sets b = ⊥ and c0 randomly when extraction fails.
Extraction can fail if B = gα and H = hα

′
for some α, α′ ∈ Zq and α 6= α′. Then c0

m0
and z

are uniformly distributed over the uniform choice of r, s as there are two different equations
in r, s since α 6= α′:

c0

m0
= grαhα

′s = grα+xα′s, z = grhs = gr+xs

27

Figure 16: Static Oblivious Transfer in the CRS model

πsOT-CRS

– Public Inputs: Group G, field Zq and generator g of group G, CRS = (g, h, T).
– Private Inputs: S has κ-bit inputs (m0,m1) and R has input choice bit b.

Choose:

– R samples α← Zq and sets B = gαT b and H = hα.
– R sends (B,H) to S.

Transfer:

– S samples r, s← Zq and computes z = grhs.
– S computes c0 = BrHs ·m0 and c1 = (BT)rHs ·m1.
– S sends z and (c0, c1) to R.

Local Computation by R:

– R computes mb = cb.z
−α.

Thus, the two hybrids are statistically indistinguishable.

– Hyb3: Same as Hyb2, except the reduction sets c1 randomly when b = ⊥. Indistinguishability
follows since a distinguisher cannot distinguish T r1 (in Hyb2) from a random group element
(in Hyb3) in c1

m1
due to the DDH assumption.

– Hyb4: Same as Hyb3, except the simulator extracts b ∈ {0, 1} and sets cb̄ randomly. Indis-
tinguishability follows since a distinguisher cannot distinguish T r1 (in Hyb3) from a random
group element (in Hyb4) in

cb̄
mb̄

due to the DDH assumption.

This completes our static proof of security. For security against adaptive corruption of receiver we
rely on the equivocal property of (B,H) when T2 = ht. In that case, the simulator can always
construct B = gα and H = hα. Upon obtaining b in post-execution corruption, the simulator can
open the randomness of receiver as α′ = α− bt s.t. the receiver’s message corresponds to bit b.

5.3 Efficient Static OT

We can further optimize our protocol πreOT-CRS for static corruption by removing T2 from the pro-
tocol and henceforth renaming T1 to T . In πreOT-CRS, the element T2 was required solely for the
purpose of equivocating receiver’s view. Our modified protocol πsOT-CRS is presented in Fig. 16.
This gives us a two-round static OT in the common random string model which computes 8 expo-
nentiations and communicates 5 group elements. This outperforms the state-of-the-art [PVW08]
protocol which requires 11 exponentiations and communication of 6 group elements to obtain a
two-round static OT in the common reference string model.

6 Adaptively Secure Oblivious Transfer in the CRS Model

Our protocol πreOT-CRS presented in the previous section is only secure against adaptive corruption of
receiver. In this section, we make it secure against full adaptive corruption. In the overview section
we constructed a semi-adaptive protocol first and then applied the [BLPV18] transformation using
an augmented NCE to obtain our final protocol. See Section. 3.3 for a high-level introduction. We
first present our semi-adaptive OT protocol in Figure 17 and then we present our complete protocol
in Figure 20.

28

Figure 17: Semi-Adaptively Secure Oblivious Transfer

πsaOT-CRS

– Public Inputs : Group G, field Zq and generator g of group G, CRS = (g, h, T1).
– Private Inputs : S has bit inputs (m0,m1) and R has input choice bit b.

Choose:

– R samples T2 ← G.
– R samples α← Zq and sets B = gαT b1 and H = hαT b2 .
– R sends T2 and (B,H) to S.

Transfer:

– If m0 = 1, S samples r0, s0 ← Zq and computes z0 = gr0hs0 and c0 = Br0Hs0 . Else, he samples
c0, z0 ← G

– If m1 = 1, S samples r1, s1 ← Zq and computes z1 = gr1hs1 and c1 = (BT1
)r1(HT2

)s1 . Else, he
samples c1, z1 ← G.

– S sends (z0, c0) and (z1, c1) to R.

Local Computation by R :

– R computes yb = NCE.Dec(sk, eb).
– R sets xb = 1 if cb = zαb else he sets xb = 0.
– R outputs mb = yb ⊕ xb.

6.1 Semi-adaptively secure OT

We first present our semi-adaptive OT πsaOT-CRS protocol in Figure 17.

6.1.1 Security Proof

We prove security of our protocol by proving Theorem 4.

Theorem 4. Assuming the Decisional Diffie-Hellman holds in group G, then πsaOT-CRS UC-securely
implements FOT functionality in presence of semi-adaptively corrupted malicious parties in the
common random string model.

Proof. We will first argue static corruption of sender and adaptive corruption of receiver. Then,
we will argue static corruption of receiver and adaptive corruption of sender. The simulator for a
statically corrupt sender is presented in identical to the simulator for a corrupt sender in πreOT-CRS.
We present it in Fig. 18. The formal hybrids and indistinguishability argument are as follows :

– Hyb0 : Real world.

– Hyb1 : Same as Hyb0, except the reduction sets T2 = ht. In Hyb0, the tuple (g, h, T1, T2)
is a DDH tuple whereas in Hyb1 it is non-DDH. Indistinguishability follows from the DDH
assumption.

– Hyb2 : Same as Hyb1, except the simulator always sets B = gα and H = hα and extracts
x0 and x1 following the simulation strategy. Indistinguishability follows perfectly since for
b ∈ {0, 1} there is an unique randomness α′ = α− bt which decrypts cb.

Post-execution corruption of receiver can be simulated by Ss upon obtaining b by producing
α′ = α − bt as randomness. Next, we discuss security against a statically corrupt receiver R∗ and
adaptive corruption of sender by simulator Sr. Sr extracts b using the trapdoor of the CRS. He

29

Figure 18: Simulation against a statically corrupt S∗ by simulator Ss

– Public Inputs: The parties possess the common random string CRS = (g, h, T1) where g, h, T1 ∈
G.

– Input of S : The simulator knows t s.t. T1 = gt.

Choose:

– S sets T2 = ht.
– S samples α← Zq and sets B = gα and H = hα.
– S sends (B,H) to S∗.

Transfer:

– S∗ sends (z0, c0, z1, c1).

Local Computation by R :

– S computes m0 and m1 using randomness α and α− t from (z0, c0) and (z1, c1) respectively.
– S invokes FOT functionality with (m0,m1) and halts.

Figure 19: Simulation against a statically corrupt R∗ by simulator Sr

– Public Inputs : Group G, field Zq and generator g of group G, CRS = (g, h, T1).
– Input of S : The simulator knows x s.t. h = gx.

Choose:

– R∗ sends T2, (B,H) and (pk0, pk1).

Transfer:

– S aborts if T2 = T x1 .
– S sets b = 0 if H = Bx else if H

T1
= (BT1

)x then set b = 1, else set b = ⊥.
– S invokes FOT with b and obtains mb.
– If b = ⊥, then S runs the sender algorithm for random values of m0 and m1.
– If b 6= ⊥, then S constructs (zb, cb) honestly using mb.
– S constructs (zb̄, cb̄) s.t. it encrypts mb̄ = 1.
– S sends (z0, c0, z1, c1) to R∗.

Local Computation by R∗ :

– Performs its own adversarial algorithm.

simulates the sender message for mb̄ = 1. When sender is corrupted post-execution he can either
provide the actual randomness if mb̄ = 1 or he can claim (zb̄, cb̄) was randomly sampled if mb̄ = 0.
We present the simulator in Fig. 19 and the formal indistinguishability argument is as follows:

– Hyb0 : Real world.

– Hyb1 : Same as Hyb0, except the reduction aborts if T2 = T x1 . Indistinguishability fol-
lows from CDH assumption where (g, h, T1) is set as the CDH challenge and T2 is the CDH
response.

– Hyb2 : Same as Hyb1, except the reduction sets b = ⊥ and sender algorithm is run where
m0 is random, when extraction fails. Extraction can fail if B = gα and H = hα

′
for some

α, α′ ∈ Zq and α 6= α′. c0 and z0 are uniformly distributed over the uniform choice of r0, s0

as there are two different equations in r0, s0 since α 6= α′:

c0 = gr0αhα
′s0 = gr0α+xα′s0 , z = gr0hs0 = gr0+xs0

30

Figure 20: Adaptively Secure Oblivious Transfer from Semi-adaptively secure OT protocol using
augmented NCE by [BLPV18]

πaOT-CRS

– Cryptographic Primitive : Semi-adaptive OT πsaOT-CRS = (R1,S,R2), Augmented Non
Committing-Encryption NCE = (NCE.Gen,NCE.Enc,NCE.Dec,NCE.GenObl,NCE.GenInv).

– Public Inputs : CRS of πsaOT-CRS.
– Private Inputs : S has bit inputs (m0,m1) and R has input choice bit b.

Choose:

– R invokes (OTR, stR)← πsaOT-CRS.R1(CRS, b).
– R generates {pkb, sk} ← NCE.Gen(1κ) and pkb̄ ← NCE.Gen(1κ).
– R sends (OTR, pk0, pk1) to S.

Transfer:

– S randomly samples y0, y1 ← {0, 1} and computes x0 = y0 ⊕m0 and x1 = y1 ⊕m1.
– S invokes (OTS, stS)← πsaOT-CRS.S(CRS, (x0, x1),OTR) and sends OTS to R.
– S sends e0 = NCE.Enc(pk, y0) and e1 = NCE.Enc(pk, y1) to R.

Local Computation by R :

– R decrypts yb = NCE.Dec(sk, eb) and computes xb = πsaOT-CRS.R2(CRS, stR, b,OTS).
– R outputs mb = yb ⊕ xb.

Thus, the two hybrids are statistically indistinguishable.

– Hyb3 : Same as Hyb2, except the reduction sets c1 randomly when b = ⊥. Indistinguishability
follows similar to the previous argument.

– Hyb4 : Same as Hyb3, except the simulator extracts b ∈ {0, 1}, invokes FOT with b, obtains
mb, sets cb honestly and sets (zb̄, cb̄) s.t. it encrypts mb̄ = 1. Indistinguishability follows since
a distinguisher cannot distinguish between mb̄ = 0 and mb̄ = 1 as it requires distinguishing T

rb̄
1

(in Hyb4) from a random group element (in Hyb3) in cb̄; thus contradicting DDH assumption.

Post-execution corruption of sender can be simulated upon obtaining mb̄. If mb̄ = 1, then Sr
provides (rb̄, sb̄) as randomness else he claims that (zb̄, cb̄) was randomly sampled. When mb̄ = 0,
the real and ideal world distributions are identical. When mb̄ = 0, (zb̄, cb̄) was randomly sampled
whereas in the ideal world it was constructed based on mb̄ = 1. However, the ideal world (zb̄, cb̄)
is indistinguishable from random due to DDH as T

rb̄
1 makes cb̄ look pseudorandom. Thus, the

environment cannot distinguish between the real and ideal world after post-execution corruption.
This completes our proof of security for semi-adaptive setting.

6.2 Obtaining Full Adaptive Security

Next, we apply the transformation of [BLPV18] to obtain our adaptively secure OT protocol
πaOT-CRS from our semi-adaptively secure OT protocol πsaOT-CRS in the augmented NCE model.
For completeness we have presented the [BLPV18] transformation in Fig. 20 and it is summarized
in Theorem 5.

Theorem 5. [BLPV18] Assuming πsaOT-CRS is a two-round semi-adaptively secure OT protocol and
NCE is an augmented non-committing encryption scheme then πaOT-CRS UC-securely implements
FOT functionality in presence of adaptively corrupted malicious parties in the common random
string model.

31

Figure 21: Adaptively secure non-interactive commitment from πreOT-CRS = (OT1,OT2)

πaCOM-CRS

– Private Inputs: C has private input b ∈M.
– Public Inputs: Both parties have a common random string CRSOT in πreOT-CRS.

Commit Phase: C samples some randomness α, computes c = OT1(b;α), and sends c as commitment
to V.

Decommit Phase: C sends (b, α) as the decommitment.

Verification Phase: Upon receiving c and (b, α), V checks if c
?
= OT1(b;α).

Assuming DDH, πsaOT-CRS (Fig. 17) is a semi-adaptively secure OT from 4. Upon instantiating
the NCE by the DDH-based augmented NCE scheme of [CDMW09] we obtain an adaptively secure
bit-OT scheme from DDH. Thus, we can solely construct our adaptively secure OT from DDH.

Theorem 6. Assuming DDH assumption holds, our protocol πaOT-CRS (Fig. 20) UC-securely im-
plements FOT functionality in presence of adaptively corrupted malicious parties in the common
random string model.

6.2.1 Efficiency

Our final protocol requires 11 exponentiations and communication of 7 group elements. One of the
group element, i.e. T2 can be reused. In addition, it requires communicating 2 augmented NCE
public keys and computing augmented NCE encryptions of 2 bits. We can instantiate our NCE
scheme using the DDH-based protocol of [CDMW09] which computes O(1) exponentiations and
communicates O(κ) bits for encrypting each bit. This yields the first two round adaptively secure
bit-OT which has constant communication and computation overhead.

In contrast, the only other two round adaptive OT protocol of [BLPV18] uses communication-
intensive tools like equivocal garbled circuits communicating poly(κ) bits. They also incur a com-
putation overhead of O(κ2) exponentiations.

7 Adaptively Secure Non-Interactive Commitment in the CRS
Model

In this section, we present a transformation from any two-round receiver equivocal OT to a non-
interactive adaptive commitment scheme. The high-level description can be found in Section 3.4.
Let πreOT-CRS = (OT1,OT2) denote a two-round receiver equivocal OT, where both OT1 and OT2

are PPT algorithms: OT1 outputs the receiver’s OT message c and internal state st. Then our
commitment to message b ∈ M with randomness α will be c where {c, st} = OT1(b;α). The
decommitment for c will be (b, α). The verifier V runs OT1 algorithm on (b, α) to check the validity
of the decommitment. Our protocol is presented in Fig. 21.

7.1 Security Proof

The security of this commitment scheme relies on the security of the underlying πreOT-CRS scheme.
Let SOT = (SR,SS) = (SR, {SS1,SS2}) denote the OT simulation algorithms. SR denotes the simula-
tion algorithm for a statically corrupt OT receiver and an honest sender. SS1 denotes the simulator

32

Figure 22: Simulation against a corrupted C∗

– Public Inputs: The parties possess the common random string CRSOT.
– Input of S: The simulator knows the trapdoor td of CRSOT.

Commit Phase: C∗ sends c as commitment to V.

Input Extraction by S: Upon receiving c, the simulator extracts {b′, st} ← SR(c, td). If S has not
aborted then it invokes FCOM with b′ as input of committer.

Decommit Phase: C∗ sends (b, α) as the decommitment.

Verification Phase: S aborts if b 6= b′ else it performs the honest verifier algorithm for verification.

Figure 23: Simulation against a corrupted V∗

– Public Inputs: The parties possess the common random string CRSOT.
– Input of S: The simulator knows the trapdoor td of CRSOT.

Commit Phase: S computes {c, st} = SS1(td) and sends c as commitment to V.

Decommit Phase: Upon receiving b, S computes α← SS2(c, b, st) provides (b, α) as the decommitment.

algorithm for an honest OT receiver and a corrupt sender that returns the receiver’s message for
the OT. SS2 denotes the simulator for adaptive corruption of OT receiver that equivocates the re-
ceiver’s OT message to open to choice b. We will use the OT simulator algorithms to simulate the
commitment scheme in different corruption cases and prove that our protocol is secure by proving
Thm. 7.

Theorem 7. Assuming that πreOT-CRS = (OT1,OT2) is a secure receiver equivocal OT, in the CRS
model, then our protocol πaCOM-CRS (Fig. 21) UC-securely implements FCOM functionality against
adaptive adversaries in the CRS model.

We start off with static corruption of C∗. The corresponding simulation algorithm has been
presented in Fig. 22. The OT simulator SR involves an extractor algorithm which extracts the
corrupt receiver’s choice b from the OT message. This is used by our simulator to extract C’s input
b. Indistinguishability between real and ideal world follows due to correct extraction by SR.

Next, we will discuss the corruption case where the verifier is statically corrupted whereas C gets
corrupted post-execution. The simulation algorithm for this corruption case has been presented
in Fig. 23. The simulator (playing the role of C) should compute a junk commitment c which
should open to any message b ∈ M . He invokes the OT simulator SS1 to obtain c. Later, when
the simulator needs to open c to some message b ∈ M, provided by the adversary, it invokes the
adaptive OT simulator SS2 of πreOT-CRS with input b. SS2 returns randomness α s.t. c can be opened
to b. The commitment simulator outputs α as the decommitment. Security against a statically
corrupt V is ensured from the OT receiver security against statically corrupt OT sender. And
adaptivity for the commitment is ensured from OT receiver security against adaptive corruption.
This completes the proof of our adaptive commitment.

7.2 Concrete Instantiation and Efficiency

We apply our DDH-based receiver equivocal OT in Fig. 13 to the above compiler and get a con-
cretely efficient adaptive commitment as shown in Fig. 24. It requires four exponentiations and

33

Figure 24: Adaptively secure non-interactive commitment in the CRS model

πCOM-DDH

– Private Inputs: C has private input b ∈M.
– Public Inputs: Both parties have a CRS = (g, h, T1) where g, h, T1 ∈ G.

Commit Phase: C samples T2 ← G. He sends T2 as the commitment scheme parameter. C samples
α← Zq and computes B = gαT b1 and H = hαT b2 . He sends c = (B,H) as commitment to V.

Decommit Phase: C sends (b, α) as the decommitment.

Verification Phase: Upon receiving {T2, (c, α, b)}, V interprets c = (B,H) and verifies B
?
= gαT b1 and

H
?
= hαT b2 . R aborts if verification fails; otherwise R accepts the decommitment.

communicating two group elements for committing to a polylog(κ) bit message in the common ran-
dom string model. Decommitment incurs similar computation overhead and communicating the
message and a field element. This gives us the first adaptive string commitment with a constant
number of exponentiations and O(κ) communication. The current state of the art non-interactive
protocols with adaptive security [CF01, CLOS02, ABB+13, ABP17] are all bit commitments. More-
over, our protocol also supports additive homomorphism as follows:

Commit(m1 +m2) = Commit(m1).Commit(m2)

{gαTm1+m2
1 , hαTm1+m2

2 } = {gα1Tm1
1 , hα1Tm1

2 } · {g
α2Tm2

1 , hα2Tm2
2 }

{gαTm1+m2
1 , hαTm1+m2

2 } = {gα1Tm1
1 · gα2Tm2

1 , hα1Tm1
2 · hα2Tm2

2 }
{gαTm1+m2

1 , hαTm1+m2
2 } = {gα1+α2Tm1+m2

1 , hα1+α2Tm1+m2
2 }

where α1 and α2 are decommitments for Commit(m1) and Commit(m2) respectively, and α =
α1 + α2 is the decommitment for Commit(m1 +m2).

8 Results in the Single CRS Model

In this section, we replace the per-session local CRS with a single “master” random string sCRS
that can be reused by multiple pairs of parties for multiple sessions. Specifically, the parties will
use the master random string sCRS to generate a per-session CRS − (g, h, T1) and will then use
the protocol from the previous section with that CRS. We present our multi-session OT and
multi-session commitment functionalities FmOT and FCOM in Fig. 25 and 26 respectively. For
simplicity, we will describe FmOT and the same holds true for FmCOM. The parties participate
in one session, with id sid, which implements FmOT. One of the parties intializes the session by
invoking Initialization with the list L of all the subsession ids. Then each subsession consists of
multiple instances of FOT between a specific pair of parties with unique roles. This is ensured by
considering a counter j alongwith subsession id ssid in the functionality.

While implementing the functionalities, each subsession is associated with a unique `-bit iden-
tifier, which we call the sub-session id ssid. The ssid may contain the identities of the two parties,
as well as additional information that makes the session unique. Each participant will locally com-
pute the session-specific reference string from the master reference string and the ssid. We assume
that the ssid strings are generated by the environment Z before seeing the sCRS by invoking the
Initialization phase with a list L of subsession ids through a party. The reason behind this as-
sumption has been explained later at the end of subsection 8.1. The master random string sCRS

34

Figure 25: The ideal functionality FmOT for multi-session Oblivious Transfer

FmOT

FmOT interacts with a sender S, having party id (ssid, sen) and a receiver R, having party id (ssid, rec, in
a session with id sid as follows:

– On input (Initialization, sid, L) from a party, where L is the list of subsession ids; store s = sid
and L, and send (Initialized, sid) to the party. Ignore future initialization messages with same
sid.

– On input (Choose, (sid, ssid, j, rec), b) from R, where b ∈ {0, 1}, j > 0; abort if sid 6= s or ssid /∈ L,
if no message of the form (ssid, j, rec, b) has been recorded in the memory, store (ssid, j, rec, b) and
send (ssid, j, rec) to S.

– On input (Transfer, (sid, ssid, j, sen), (a0, a1)) from S with a0, a1 ∈ {0, 1}n, j > 0, abort if sid 6= s
or ssid /∈ L, if no message of the form (ssid, j, sen, (a0, a1)) is recorded and a message of the form
(ssid, j, rec, b) is stored, send (sent, ssid, j, sen, ab) to R and (sent, ssid, j, rec) to S. Ignore future
messages with the ids - (ssid, j, sen) and (ssid, j, rec).

Figure 26: The ideal functionality FCOM for multi-session Commitment Scheme

FmCOM

FCOM interacts with committer C, having party id (ssid,C), and verifier V, having party id (ssid,V) in a
session with id sid as follows:

– On input (Initialization, sid, L) from a party, where L is the list of subsession ids; store s = sid
and L, and send (Initialized, sid) to the party. Ignore future initialization messages with same
sid.

– On receiving input ((Commit,V), (sid, ssid, j,C),m) from C for j > 0, abort if sid 6= s or ssid /∈ L,
if (ssid, j,C,V,m′) has been recorded, ignore the input. Else record the tuple (ssid, j,C,V,m) and
send (Receipt, ssid, j,C,V) to V.

– On receiving input (Decommit, (sid, ssid, j,C)) for j > 0 from C, abort if sid 6= s or ssid /∈ L, if
there is a record of the form (ssid, j,C,V,m) return (Decommit, ssid, j,C,V,m) to V. Otherwise,
ignore the input.

35

will contain (g, h) and 2` random group elements- (ui,0, ui,1) for i ∈ [`]:

sCRS =

[
(g, h), {ui,0, ui,1}i∈[`]

]

The random string CRSssid for some ssid will consist of (g, h, T1), where ssidi denotes the ith bit
of ssid and T1 is constructed as follows:

T1 = Πi∈[`]ui,ssidi .

Once the CRSssid for the session is computed, the parties run protocol πaOT-CRS from Sections
6 (for OT), or protocol πCOM-DDH from Section 7 (for Commitment), using CRSssid as the reference

string for the session. For security reasons, we need ` = 2κ as the security degrades by a factor |L|
2

2`

which we will see in the next subsection.

8.1 Security requirements from CRSssid

Before discussing the OT and commitment protocol, we would like to demonstrate that the CRS
for a subsession ssid, i.e. CRSssid satisfies the properties (Section 5.1) that are required from the
local CRS of the single session OT or commitment scheme. This would enable us to argue security
of the protocol in the subsession ssid based on the security of the single-session protocol in the local
CRS model.

• Property 1: Given CRSssid = (g, h, T1), it should be computationally infeasible to obtain a
T2 s.t. (g, h, T1, T2) is a DDH tuple. If an adversary A can compute a T2 s.t. (g, h, T1, T2)
is a DDH tuple then one can build an adversary for the CDH assumption Ac using A for a
subsession with id ssid. The CDH adversary Ac obtains a CDH challenge - (X, Y). He knows
the list of subsession ids and selects one ssid at random. For sake of clarity assume the last
bit of ssid is 0, i.e. ssid` = 0. Ac plugs in the CDH instance in sCRS. He sets h = X and
u`,0 = Y and for the rest ui,b (for i ∈ [`−1], b ∈ {0, 1}), Ac sets random group elements whose
trapdoors are known to him. T1 is computed as follows:

T1 = Πi∈[`](ui,ssidi) = Πi∈[`−1](ui,ssidi) · u`,ssid` = Z · u`,0 = Z · Y,

where Z = Πi∈[`−1](ui,ssidi) and the trapdoor to Z, i.e. w = logg Z is known to Ac. If A
successfully returns a T2, s.t. (g, h, T1, T2) is a DDH tuple then the structure of T2 is as
follows:

T2 = T x1 = (Z · Y)x = Zx · Y x = gwx · Y x = (gx)w · Y x = Xw · Y x.

Ac can compute the CDH answer Y x = T2
Xw = T2

hw given trapdoor w. If there are s = poly(κ)
subsessions and A computes an adversarial tuple with probability p(κ), then Ac wins the

CDH game with probability p(κ)
s .

• Property 2: Given CRSssid = (g, h, T1) and a simulated tuple (g, h, T1, T2), where T2 = ht and
T1 = gt, it should be indistinguishable from a random tuple. If an adversary A can distinguish
between the tuples then he can used to construct an adversary AD for DDH assumption. The
DDH adversary AD obtains a DDH challenge - (X, Y, V). He knows the list of subsession
ids and selects one ssid at random. For sake of clarity assume the last bit of ssid is 0, i.e.
ssid` = 0. AD plugs in the DDH instance in sCRS. He sets h = X and u`,0 = Y and for

36

the rest ui,b (for i ∈ [`− 1], b ∈ {0, 1}), AD sets random group elements whose trapdoors are
known to him. T1 is computed as follows:

T1 = Πi∈[`](ui,ssidi) = Πi∈[`−1](ui,ssidi) · u`,ssid` = Z · u`,0 = Z · Y,

where Z = Πi∈[`−1](ui,ssidi) and the trapdoor to Z, i.e. w = logg Z is known to AD. AD
computes the challenge tuple for AD as (g, h, T1, T2) = (g, h, T1, h

w · V) for subsession ssid
and forwards it to A. AD forwards the answer of A as the answer to the DDH game. If
V = hy for Y = gy, then T2 = hw · hy = hw+y where T1 = Z · Y = gw · gy = gw+y. Thus,
the tuple (g, h, T1, T2) = (g, h, gw+y, hw+y) is a DDH tuple if the DDH challenge instance is a
DDH tuple, i.e. V = hy. If A distinguishes the tuple (g, h, T1, T2) from a non-DDH one with

probability p(κ) then AD successfully wins the DDH game, with probability p(κ)
s where there

are s subsessions.

Using these two properties, the security of the subprotocols can be proven if CRSssid is used as the
local CRS for subsession with id ssid. Each subsession can be treated concurrently in the CRSssid

model and their security can be proven for each subsession independently. If s subsessions are run
concurrently, then the ideal world adversary in the sCRS model obtains the ideal world adversary
view from each subsession and forwards it to the Z.

On Statically chosen list L of ssids. We require that the subsession ids be chosen by the
environment Z before seeing sCRS. This has been ensured since Z has to invoke the Initialization
phase (in Fig. 25 and 26) with a list L of subsession ids through a party. This allows us to
construct an adversary for CDH (or DDH) from an adversary who breaks the security of property
1 (or 2) of CRSssid. The reduction works by modifying the sCRS and planting an instance of
CDH/DDH in one of the subsessions based on the coresponding ssid. Instead, if we allowed Z to
adaptively choose the subsession ids after accessing sCRS, then the reduction fails. It would require
guessing the subsession id since the adversary chooses the subsession id adaptively. There are 2`

possible subsession ids, where |ssid| = ` = O(κ). Thus, the reduction succeeds only with negligible
probability. We leave it as an interesting open question to obtain such protocols where we allow
the environment to adaptively choose the subsession ids after seeing sCRS.

8.2 Adaptively Secure OT in the sCRS model

In Figure 27 we present our two round adaptive OT protocol for multiple sessions in the sCRS
model. Its security is summarized in Theorem 8.

Theorem 8. Assuming that πaOT-CRS implements FOT in the local CRS model, then the protocol
in Figure 27 UC-securely implements FmOT functionality against adaptive adversaries in the sCRS
model.

Proof. The environment Z distinguishes between the view of a real world adversary and the
simulator if he obtains two subsessions ssid′ and ssid s.t. CRSssid = CRSssid′ . In such a case, the
simulated tuple (where (g, h, T1, T2) is a DDH tuple) in one subsession can be used to break the
security of the OT protocol in the second subsession. We show that such an event occurs with
negligible probability if the subsession ids are chosen by Z before accessing sCRS. Once it is
ensured that there are no conflicting local CRS, we can safely use CRSssid as the local CRS since t
satisfies the required properties (Section 5.1). Then we rely on the security of πaOT-CRS in the local
CRS model where CRSssid behaves as the local CRS. We provide our simulation algorithm in Fig.

37

Figure 27: Adaptively Secure Oblivious Transfer Protocol implementing FmOT in the sCRS model

– Public Inputs : Group G, field Zq and generator g of group G and single common random string
sCRS = [(g, h), {ui,0, ui,1}i∈[`]]. The sender S and receiver R possess session id sid (after invoking
Initialization phase) and party ids (ssid, j, sen) and (ssid, j, rec) respectively where |ssid| = `.

– Private Inputs : S has bit inputs (m0,m1) and R has input choice bit b.

– Functionalities : The parties have access to the adaptive OT protocol πaOT-CRS, implementing
functionality FOT in CRS model.

Session Initialization:

– On input (Initialization, sid) from a party, store s = sid and send (Initialized, sid) to the party.
– Ignore future initialization messages with same sid.

OT protocol for subsession (ssid, j):

Choose:

– If CRSssid = ⊥, then R computes T1 = Πi∈[`]ui,ssidi . R sets CRSssid = (g, h, T1) for πaOT-CRS.
– R runs the receiver algorithm of πaOT-CRS to obtain the following:

(T2, (B,H), {pk, sk}, α)← πaOT-CRS.R(b; CRSssid).

– R stores (α, sk) as internal randomness.
– R sends (T2, pk) as the receiver parameters and (B,H) as the receiver message.

Transfer:

– If CRSssid = ⊥, then S computes T1 = Πi∈[`]ui,ssidi and sets CRSssid = (g, h, T1).
– S receives (T2, pk) and (B,H) from R.
– S computes his message as follows:

(e0, e1)← πaOT-CRS.S((m0,m1), (T2, (B,H), pk); CRSssid).

– S sends (e0, e1) as sender’s message.

Local Computation by R :

– Upon obtaining (e0, e1), R computes mb as follows:

mb ← πaOT-CRS.R((b, α, sk), T2, (e0, e1); CRSssid).

– R outputs (b,mb) and halts.

38

Figure 28: Simulator for multiple Adaptively-Secure OT protocols in the sCRS model

– Public Inputs : Group G, field Zq and generator g of group G and single common random
string sCRS = [(g, h), {ui,0, ui,1}i∈[`]]. Let countssid be the number of Commitment-instances in
subsession ssid. The sender S and receiver R possess session id sid and party ids (ssid, j, sen) and
(ssid, j, rec) respectively where |ssid| = `, j ∈ [countssid].

– Input of S : The simulator knows the trapdoors x and wi,b for i ∈ [`], b ∈ {0, 1} s.t. h = gx and
ui,b = gwi,b .

The simulator S simulates multiple OT subsessions concurrently using the trapdoors of sCRS. Upon
obtaining a request for ideal world adversary view in subsession ssid from the environment Z, S simulates
as follows:

– S computes T1 = Πi∈[`]ui,ssidi and sets CRSssid = (g, h, T1). He stores (ssid,CRSssid) in a list L. If
there exists (ssid′,CRSssid′) ∈ L, s.t. CRSssid = CRS = ssid′ and ssid 6= ssid′ then simulator aborts.
Else, he stores (ssid,CRSssid) in L and computes the trapdoor for T1 as t = Σi∈[`]wi,ssidi .

– S invokes the adaptive simulator Sssid for πaOT-CRS with CRSssid and the trapdoors (x, t). It forwards
messages sent by the environment Z (to the ideal-world adversary for subsession ssid) to Sssid. It
also forwards messages sent by Sssid to Z

– For j ∈ [countssid], when Sssid invokes FOT functionality with input (Choose, rec, ssid, j, b)
or (Transfer, sen, ssid, j, (a0, a1)) respectively, then simulate FOT by invoking FmOT with
(Choose, (sid, ssid, j, rec), b) or (Transfer, (sid, ssid, j, sen), (a0, a1)) respectively. Upon receiv-
ing (ssid, j, rec) from FmOT forward (rec, ssid, j) to Sssid. Upon receiving (sent, ssid, j, S,m′) or
(sent, ssid, j, rec) from FmOT forward it to Sssid.

– At the end, Sssid forwards the ideal-world adversary view to S for OT subsession ssid. S forwards
this view to Z as the ideal world adversary view.

28. In our hybrid argument we assume there are s subsessions running concurrently. We consider
2s hybrids for our proof. In Hyb2i the first i subsessions are simulated executions and the rest s− i
subsessions are real executions of the OT protocol. We argue indistinguishability between Hyb2i

and Hyb2(i+ 1) as follows:

– Hyb2i : The simulator S runs the first i subsessions with the honest parties’ inputs by inter-
acting with the dummy adversary. The rest s − i subsessions are simulated by invoking the
simulator of πaOT-CRS.

– Hyb2i+ 1 : Same as Hyb2i, except the simulator aborts if ∃ssid′ ∈ L s.t. CRSssid′ = CRSssid and
ssid′ 6= ssid where ssid is the i+ 1th subsession.

The environment (controlling the adversary) can distinguish between the two hybrids if he
participates in two subsessions with ids ssid and ssid′ s.t. CRSssid = CRSssid′ = (g, h, T1) =
(g, h, T ′1). In such a case, the environment will either corrupt the second party (sender in the
OT protocol and receiver in the commitment scheme) or corrupt the parties post-execution in
the first session and obtain a simulated T2 s.t. (g, h, T1, T2) is a DDH tuple. This is because the
simulator needs to set the tuple as a DDH tuple for extraction (in the OT protocol against a
corrupt sender) and equivocation (for adaptive security in the OT and commitment scheme).
Upon obtaining a simulated T2 in the first subsession, the environment will participate in
the second subsession which has the same local crs, i.e. CRSssid′ = CRSssid. In this the
environment will instruct the adversary to corrupt the party, which computes T ′2. It will
set T ′2 = T2 and prevent extraction of its input by the simulator of the second subsession.
This would help the environment in distinguishing the view of an ideal adversary from a real

39

adversary for the second subsession. Such an attack succeeds only if CRSssid = CRSssid′ , i.e.
T1 = T ′1. However, we can apply the birthday bounds to show that this event occurs with
negligible probability since sCRS is uniformly distributed and independent of the subsession
ids. There are s different subsession ids. The probability p that he obtains two subsession ids
ssid and ssid′ s.t. T1 = T ′1 is:

p ≈ s2

2`
≤ 2−κ, for ` = 2κ.

– Hyb2i+ 2 : Same as Hyb2i+ 1, except the simulator S simulates the i + 1th subsession by
invoking the simulator for πaOT-CRS.

Previously, we have shown that CRSssid satisfies the two properties (Section 5.1) that are
required from the local CRS of the single session protocol πaOT-CRS. Under this condition,
the real execution of i+ 1th subsession can be replaced by a simulated execution of πaOT-CRS.
Security can be argued by relying on the adaptive security of πaOT-CRS. An adversary A can
be built for πaOT-CRS by using the following distinguisher D between hybrids Hyb2i+ 1 and
Hyb2i+ 2. Upon obtaining a challenge session in CRS model, A creates a challenge instance for
D. It obtains the set of subsession ids from D. It samples sCRS s.t. there are no conflicts in
the local CRS for different subsessions and CRSssid = CRS, where ssid is the subsession id for
i+1th session. The first i subsessions are simulated subsessions and the last s−(i+1) are real
executions of πaOT-CRS. This view is forwarded to D. If A had obtained a real execution of
πaOT-CRS then the view corresponds to Hyb2i+ 1, whereas if A had obtained an ideal execution
of πaOT-CRS then the view corresponds to Hyb2i+ 2. If D succesfully distinguishes between the
two views then A also breaks the security of πaOT-CRS.

Hyb0 represents the real world execution of the protocol whereas Hyb2s is the ideal world exe-
cution of the protocol.

8.3 Adaptively Secure Non-interactive Commitment in the sCRS model

In Figure 29 we present our non-interactive adaptive commitment scheme protocol for multiple
sessions in the sCRS model. Its security is summarized in Theorem 9.

Theorem 9. Assuming that πCOM-DDH implements FCOM in the local CRS model, then the protocol
in Figure 29 UC-securely implements FmCOM against adaptive adversaries in the sCRS model.

Proof. The simulation algorithm for multiple commitment schemes in the sCRS model can be
found in Figure 30. The proof is similar to the proof of the OT protocol in the sCRS model. If there
are s subsessions for FmCOM then there will be 2s hybrids. In Hyb2i, the first i subsessions are real
executions of the protocol and the rest s − i subsessions are simulated. Hyb2i+ 1 is same as Hyb2i

except the simulator aborts if there is a conflict in the subsession ids for subsession i, i.e. CRSssid =
CRS′ssid for ssid 6= ssid′. Indistinguishability between Hyb2i and Hyb2i+ 1 follows statistically as
shown in Section 8.2. It is ensured in Hyb2i+ 1 that the local CRS for ith session Indistinguishability
between Hyb2i+ 1 and Hyb2i+ 2 follows from the correct simulation of πCOM-DDH.

8.4 Adaptively Secure MPC in the sCRS model

In this section we construct our two round adaptively-secure MPC protocol π for in the sCRS model.
Given a two-round adaptively secure MPC protocol π′ in the (FOT,FCOM) model we instantiate
FOT and FCOM using our OT (Figure 27) and commitment (Figure 29) scheme protocols in the
sCRS model to obtain π.

40

Figure 29: Adaptively secure non-interactive commitment implementing FmCOM in the sCRS model

– Public Inputs : Group G, field Zq and generator g of group G and single common random string
sCRS = [(g, h), {ui,0, ui,1}i∈[`]]. The sender S and receiver R possess session id sid and party ids
(ssid, j, sen) and (ssid, j, rec) respectively where |ssid| = `.

– Private Inputs: C has private input b ∈M.

Session Initialization:

– On input (Initialization, sid) from a party, store s = sid and send (Initialized, sid) to the party.
– Ignore future initialization messages with same sid.

Commitment Scheme for subsession (ssid, j):

Commit Phase:

– If CRSssid = ⊥, C computes T1 = Πi∈[`]ui,ssidi and sets CRSssid = (g, h, T1).
– C constructs commitment c as follows:

(c, T2, α)← πCOM-DDH(b; CRSssid).

– C stores (b, α) as decommitment information.
– C sends c as commitment and T2 as committer parameters to b.

Decommit Phase: C sends (b, α) as decommitment information to V.

Verification Phase: Upon receiving {T2, c, (α, b)}, V performs the following:

– If CRSssid = ⊥, C computes T1 = Πi∈[`]ui,ssidi and sets CRSssid = (g, h, T1).
– V outputs πCOM-DDH.V(T2, c, (α, b); CRSssid).

Theorem 10. Let π′ be a two round adaptively secure MPC protocol in the (FOT,FCOM) model.
Then π is a two round adaptively secure MPC protocol in the sCRS model.

Proof. The proof follows since our OT (Figure 27) and commitment (Figure 29) implements FmOT

and FmCOM functionality in sCRS model. Multiple sessions of FOT is simulated given access to a
session of FmOT. Each session of FOT with session id s is simulated as a subsession with id s in
FmOT. Similarly, each session of FCOM with session id s′ is simulated as a subsession with id s′ in
FmOT.

Next, we discuss a two round adaptively secure MPC protocol π′ in the (FOT,FCOM) model from
the work of [BLPV18]. They compiled a N -party malicious constant-round adaptively secure MPC
protocol π′′ into a 2 round N -party malicious constant-round adaptively secure MPC protocol π′,
in the presence of FOT. The work of [CPV17b] obtained π′′ in the FCOM and FZK by applying the
adaptive malicious transformation of [CLOS02] on the semi-honest constant round MPC protocol
obtained from equivocal garbled circuits. Finally, FZK is implemented by [CF01] in the presence of
adaptive corruptions in the FCOM-model.

References

[ABB+13] Michel Abdalla, Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, and David
Pointcheval. SPHF-friendly non-interactive commitments. In Kazue Sako and Palash
Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages 214–234,
Bengalore, India, December 1–5, 2013. Springer, Heidelberg, Germany.

41

Figure 30: Simulator for multiple commitment schemes in the sCRS model

– Public Inputs : Group G, field Zq and generator g of group G and single common random
string sCRS = [(g, h), {ui,0, ui,1}i∈[`]]. Let countssid be the number of Commitment-instances in
subsession ssid. The sender S and receiver R possess session id sid and party ids (ssid, j, sen) and
(ssid, j, rec) respectively where |ssid| = `, j ∈ [countssid].

– Input of S : The simulator knows the trapdoors x and wi,b for i ∈ [`], b ∈ {0, 1} s.t. h = gx and
ui,b = gwi,b .

The simulator S simulates multiple commitment scheme subsessions concurrently using the trapdoors of
sCRS. Upon obtaining a request for ideal world adversary view in subsession ssid from the environment
Z, S simulates as follows:

– S computes T1 = Πi∈[`]ui,ssidi and sets CRSssid = (g, h, T1). He stores (ssid,CRSssid) in a list L. If
there exists (ssid′,CRSssid′) ∈ L, s.t. CRSssid = CRS = ssid′ and ssid 6= ssid′ then simulator aborts.
Else, he stores (ssid,CRSssid) in L and computes the trapdoor for T1 as t = Σi∈[`]wi,ssidi .

– S invokes the adaptive simulator Sssid for πCOM-DDH with CRSssid and the trapdoors (x, t). It
forwards messages sent by the environment Z (to the ideal-world adversary for subsession ssid)
to Sssid. It also forwards messages sent by Sssid to Z

– For j ∈ [countssid], when Sssid invokes FCOM functionality with input ((Commit,V),C, ssid, j,m)
invoke FmCOM with input ((Commit,V), (sid, ssid, j,C),m) and send (Receipt, ssid, j,C,V) to V
of the simulated FCOM functionality in ssid.

– For j ∈ [count], when Sssid invokes FCOM with input (Decommit, (sid, ssid, j,C)), invoke FmCOM

with input (Decommit, (sid, ssid, j,C)). If FmCOM responds with (Decommit, ssid, j,C,V,m) then
send (Decommit, ssid, j,C,V,m) to Sssid.

– At the end, Sssid forwards the ideal-world adversary view to S for commitment scheme subsession
ssid. S forwards this view to Z as the ideal world adversary view.

42

[ABP17] Michel Abdalla, Fabrice Benhamouda, and David Pointcheval. Removing erasures with
explainable hash proof systems. In Serge Fehr, editor, PKC 2017, Part I, volume 10174
of LNCS, pages 151–174, Amsterdam, The Netherlands, March 28–31, 2017. Springer,
Heidelberg, Germany.

[AMPR14] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-interactive secure
computation based on cut-and-choose. In Phong Q. Nguyen and Elisabeth Oswald,
editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 387–404, Copenhagen, Den-
mark, May 11–15, 2014. Springer, Heidelberg, Germany.

[BL18] Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from k-round
oblivious transfer via garbled interactive circuits. In Jesper Buus Nielsen and Vincent
Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 500–532,
Tel Aviv, Israel, April 29 – May 3, 2018. Springer, Heidelberg, Germany.

[BLPV18] Fabrice Benhamouda, Huijia Lin, Antigoni Polychroniadou, and Muthuramakrish-
nan Venkitasubramaniam. Two-round adaptively secure multiparty computation from
standard assumptions. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018,
Part I, volume 11239 of LNCS, pages 175–205, Panaji, India, November 11–14, 2018.
Springer, Heidelberg, Germany.

[BPRS17] Megha Byali, Arpita Patra, Divya Ravi, and Pratik Sarkar. Fast and universally-
composable oblivious transfer and commitment scheme with adaptive security. Cryp-
tology ePrint Archive, Report 2017/1165, 2017. https://eprint.iacr.org/2017/

1165.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145, Las Vegas, NV, USA, October 14–17, 2001.
IEEE Computer Society Press.

[CDG+18] Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gregory
Neven. The wonderful world of global random oracles. In Jesper Buus Nielsen and
Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages
280–312, Tel Aviv, Israel, April 29 – May 3, 2018. Springer, Heidelberg, Germany.

[CDMW09] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Improved non-
committing encryption with applications to adaptively secure protocols. In Mitsuru
Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 287–302, Tokyo,
Japan, December 6–10, 2009. Springer, Heidelberg, Germany.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 19–40, Santa Barbara, CA, USA,
August 19–23, 2001. Springer, Heidelberg, Germany.

[CJS14] Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC security with a
global random oracle. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM
CCS 2014, pages 597–608, Scottsdale, AZ, USA, November 3–7, 2014. ACM Press.

[CKWZ13] Seung Geol Choi, Jonathan Katz, Hoeteck Wee, and Hong-Sheng Zhou. Efficient, adap-
tively secure, and composable oblivious transfer with a single, global CRS. In Kaoru
Kurosawa and Goichiro Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages
73–88, Nara, Japan, February 26 – March 1, 2013. Springer, Heidelberg, Germany.

43

https://eprint.iacr.org/2017/1165
https://eprint.iacr.org/2017/1165

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally com-
posable two-party and multi-party secure computation. In 34th ACM STOC, pages
494–503, Montréal, Québec, Canada, May 19–21, 2002. ACM Press.

[CO15] Tung Chou and Claudio Orlandi. The simplest protocol for oblivious transfer. In
Kristin E. Lauter and Francisco Rodŕıguez-Henŕıquez, editors, LATINCRYPT 2015,
volume 9230 of LNCS, pages 40–58, Guadalajara, Mexico, August 23–26, 2015.
Springer, Heidelberg, Germany.

[CPV17a] Ran Canetti, Oxana Poburinnaya, and Muthuramakrishnan Venkitasubramaniam.
Better two-round adaptive multi-party computation. In Serge Fehr, editor, PKC 2017,
Part II, volume 10175 of LNCS, pages 396–427, Amsterdam, The Netherlands,
March 28–31, 2017. Springer, Heidelberg, Germany.

[CPV17b] Ran Canetti, Oxana Poburinnaya, and Muthuramakrishnan Venkitasubramaniam.
Equivocating yao: constant-round adaptively secure multiparty computation in the
plain model. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, 49th
ACM STOC, pages 497–509, Montreal, QC, Canada, June 19–23, 2017. ACM Press.

[DG03] Ivan Damg̊ard and Jens Groth. Non-interactive and reusable non-malleable commit-
ment schemes. In 35th ACM STOC, pages 426–437, San Diego, CA, USA, June 9–11,
2003. ACM Press.

[DGH+19] Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, Daniel Masny, and Daniel Wichs.
Two-Round Oblivious Transfer from CDH or LPN. Cryptology ePrint Archive, Report
2019/414, 2019. https://eprint.iacr.org/2019/414.

[DKLs18] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Secure two-party threshold
ECDSA from ECDSA assumptions. In 2018 IEEE Symposium on Security and Privacy,
pages 980–997, San Francisco, CA, USA, May 21–23, 2018. IEEE Computer Society
Press.

[DN02] Ivan Damg̊ard and Jesper Buus Nielsen. Perfect hiding and perfect binding universally
composable commitment schemes with constant expansion factor. In Moti Yung, edi-
tor, CRYPTO 2002, volume 2442 of LNCS, pages 581–596, Santa Barbara, CA, USA,
August 18–22, 2002. Springer, Heidelberg, Germany.

[EGL82] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for
signing contracts. In David Chaum, Ronald L. Rivest, and Alan T. Sherman, editors,
CRYPTO’82, pages 205–210, Santa Barbara, CA, USA, 1982. Plenum Press, New
York, USA.

[GKPS18] Chaya Ganesh, Yashvanth Kondi, Arpita Patra, and Pratik Sarkar. Efficient adaptively
secure zero-knowledge from garbled circuits. In Michel Abdalla and Ricardo Dahab,
editors, PKC 2018, Part II, volume 10770 of LNCS, pages 499–529, Rio de Janeiro,
Brazil, March 25–29, 2018. Springer, Heidelberg, Germany.

[GMS18] Sanjam Garg, Peihan Miao, and Akshayaram Srinivasan. Two-round multiparty secure
computation minimizing public key operations. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 273–301,
Santa Barbara, CA, USA, August 19–23, 2018. Springer, Heidelberg, Germany.

44

https://eprint.iacr.org/2019/414

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th
ACM STOC, pages 218–229, New York City, NY, USA, May 25–27, 1987. ACM Press.

[GP15] Sanjam Garg and Antigoni Polychroniadou. Two-round adaptively secure MPC from
indistinguishability obfuscation. In Yevgeniy Dodis and Jesper Buus Nielsen, editors,
TCC 2015, Part II, volume 9015 of LNCS, pages 614–637, Warsaw, Poland, March 23–
25, 2015. Springer, Heidelberg, Germany.

[GS18] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation
from minimal assumptions. In Jesper Buus Nielsen and Vincent Rijmen, editors, EU-
ROCRYPT 2018, Part II, volume 10821 of LNCS, pages 468–499, Tel Aviv, Israel,
April 29 – May 3, 2018. Springer, Heidelberg, Germany.

[HPV17] Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan Venkitasubrama-
niam. Constant round adaptively secure protocols in the tamper-proof hardware model.
In Serge Fehr, editor, PKC 2017, Part II, volume 10175 of LNCS, pages 428–460, Am-
sterdam, The Netherlands, March 28–31, 2017. Springer, Heidelberg, Germany.

[HV15] Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. On black-box complex-
ity of universally composable security in the CRS model. In Tetsu Iwata and Jung Hee
Cheon, editors, ASIACRYPT 2015, Part II, volume 9453 of LNCS, pages 183–209,
Auckland, New Zealand, November 30 – December 3, 2015. Springer, Heidelberg, Ger-
many.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 145–
161, Santa Barbara, CA, USA, August 17–21, 2003. Springer, Heidelberg, Germany.

[Kil88] Joe Kilian. Zero-knowledge with log-space verifiers. In 29th FOCS, pages 25–35, White
Plains, NY, USA, October 24–26, 1988. IEEE Computer Society Press.

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension
with optimal overhead. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 724–741, Santa Barbara, CA,
USA, August 16–20, 2015. Springer, Heidelberg, Germany.

[Lin15] Yehuda Lindell. An efficient transform from sigma protocols to NIZK with a CRS
and non-programmable random oracle. In Yevgeniy Dodis and Jesper Buus Nielsen,
editors, TCC 2015, Part I, volume 9014 of LNCS, pages 93–109, Warsaw, Poland,
March 23–25, 2015. Springer, Heidelberg, Germany.

[LM18] Baiyu Li and Daniele Micciancio. Equational security proofs of oblivious transfer
protocols. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018, Part I, volume
10769 of LNCS, pages 527–553, Rio de Janeiro, Brazil, March 25–29, 2018. Springer,
Heidelberg, Germany.

[MR19] Daniel Masny and Peter Rindal. Endemic oblivious transfer. In Lorenzo Cavallaro,
Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages
309–326. ACM Press, November 11–15, 2019.

45

[Nie02] Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic
proofs: The non-committing encryption case. In Moti Yung, editor, CRYPTO 2002,
volume 2442 of LNCS, pages 111–126, Santa Barbara, CA, USA, August 18–22, 2002.
Springer, Heidelberg, Germany.

[Pas03] Rafael Pass. On deniability in the common reference string and random oracle model.
In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 316–337, Santa
Barbara, CA, USA, August 17–21, 2003. Springer, Heidelberg, Germany.

[PSS17] Arpita Patra, Pratik Sarkar, and Ajith Suresh. Fast actively secure OT extension for
short secrets. In NDSS 2017, San Diego, CA, USA, February 26 – March 1, 2017. The
Internet Society.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In David Wagner, editor, CRYPTO 2008, volume
5157 of LNCS, pages 554–571, Santa Barbara, CA, USA, August 17–21, 2008. Springer,
Heidelberg, Germany.

[Rab05] Michael O. Rabin. How to exchange secrets with oblivious transfer. Cryptology ePrint
Archive, Report 2005/187, 2005. http://eprint.iacr.org/2005/187.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd
FOCS, pages 160–164, Chicago, Illinois, November 3–5, 1982. IEEE Computer Society
Press.

46

http://eprint.iacr.org/2005/187

	Introduction
	Our Contributions
	Global Random Oracle Model.
	Common Random String Model.
	Single Common Random String model

	Key Insights

	Preliminaries
	Technical Overview
	Adaptively Secure OT in the Global Programmable RO Model
	Receiver Equivocal Oblivious Transfer in the CRS model
	Adaptively Secure Oblivious Transfer in the CRS model
	Non-Interactive Commitment with Adaptive Security

	Oblivious Transfer in the Global Random Oracle Model
	Adaptively Secure OT in the Global Programmable RO Model
	Practical optimizations.

	Statically Secure OT in the Global Observable RO Model
	Security proof.

	Receiver Adaptively Secure OT in the CRS Model
	Properties of CRS
	Security Proof
	Efficient Static OT

	Adaptively Secure Oblivious Transfer in the CRS Model
	Semi-adaptively secure OT
	Security Proof

	Obtaining Full Adaptive Security
	Efficiency

	Adaptively Secure Non-Interactive Commitment in the CRS Model
	Security Proof
	Concrete Instantiation and Efficiency

	Results in the Single CRS Model
	Security requirements from CRSssid
	Adaptively Secure OT in the sCRS model
	Adaptively Secure Non-interactive Commitment in the sCRS model
	Adaptively Secure MPC in the sCRS model

