
Practical MPC+FHE with Applications in Secure Multi-Party
Neural Network Evaluation

Ruiyu Zhu Changchang Ding Yan Huang
Indiana University, Bloomington.

ABSTRACT
The theoretical idea of using FHE to realize MPC has been there
for over a decade. Existing threshold (and multi-key) FHE schemes
were constructed by modifying and analyzing a traditional single-key
FHE in a case-by-case manner, thus technically highly-demanding.
This work explores a new approach to build threshold FHE (thereby
MPC schemes) through tailoring generic MPC protocols to the base
FHE scheme while requiring no effort in FHE redesign. We applied
our approach to two representative Ring-LWE-based FHE schemes:
CKKS [37, 38] and GHS [53, 54], producing GMPFHE-CKKS and
GMPFHE-GHS. We developed MPC protocols based on GMPFHE-
CKKS and GMPFHE-GHS which are secure against any number of
passive but colluding adversaries. The online cost of our MPC proto-
col is O(|C |), as opposed to O(|C | · n2) for existing MPC protocols,
and our offline cost is independent of |C |. We experimentally show
that the GMPFHE-CKKS-based MPC protocol offers unparalleled
amortized performance on multi-party neural network evaluation.

1 INTRODUCTION
Fully homomorphic encryption (FHE) is a promising technique
that can address important security concerns in the business of out-
sourcing computation. Numerous FHE constructions and optimiza-
tions have been proposed and implemented [27, 30, 38, 41, 52]. Re-
cent research prototypes showed that state-of-the-art FHE schemes
can securely evaluate a multiplication in about 0.3–500 millisec-
ond [37, 41] and de-noise a ciphertext through bootstrapping in
0.1–1 second [36, 41].1

Traditional FHE schemes only allow computation on data en-
crypted with a single key, hence are not suitable to support compu-
tations involving encrypted data from multiple mutually-distrustful
data owners each of whom hold its own key. To accommodate such
uses, researchers have proposed the seminal concept of multi-key
homomorphic encryption (MKHE), which allows homomorphic
computation over data encrypted under multiple different keys, each
generated by an individual data owner without interaction with oth-
ers [69]. Despite the conceptual attractiveness, MKHE protocols
also come with two main disadvantages:
(1) Time/Space complexity. The amount of work required to homo-

morphically evaluate an application circuit grows polynomially
in the number of participating parties. For example, the MK-
CKKS scheme by [35] and MK-TFHE scheme by [34] have a
quasi-quadratic homomorphic evaluation procedure, while that
of [66] costs even more (quasi-cubic). Even worse, the space
complexity of these MKHE schemes grow super-linearly with
the number of parties: Õ(k) for [35], Õ(k2) for [34], and Õ(k3)
for [66] where k is the number of parties and Õ indicates that

1The numbers vary substantively depending on the security parameters, the application
circuits being computed, and the exact FHE scheme being used.

comparisons are done ignoring differences that are no more than
poly-logarithmic factors. Obliviously, existing MKHE schemes
cannot scale up with the number of participants due to their high
time/space complexity.

(2) Design effort. Upgrading a traditional single-key FHE to sup-
port multi-key requires case-by-case examination, novel modi-
fication, and formal security proofs, of a base single-key FHE.
These expertise demanding jobs could only be reliably done by
a very limited number of cryptographers specializing FHE de-
sign. Still, the multi-key feature may sometimes come at the cost
of missing important optimizations such as packed ciphertext,
leaving it less competitive for practical use [34].

In this work, we explore a new methodology to add multi-key
feature to existing single-key FHE schemes without suffering from
those drawbacks. Our approach (Figure 1) uses a traditional single-
key FHE scheme E in a black-box manner. The high-level idea is
to let the data owners to jointly compute the E .KeyGen algorithm
using a generic MPC protocol. Note that this collaborative KeyGen
protocol only needs to run one-time to set it up, hence its cost can
easily be amortized over many instances of joint secure computation
instances. As a result of this setup, the secret decryption key sk is
secret-shared among all data owners while E’s single public key pk
(including both the part for encryption key and that for evaluation)
is revealed.

When the secret data xi is ready, each owner Pi can prepare
its input by computing E .Enc(pk,xi) where E .Enc is a traditional
single-key FHE encryption algorithm. We note that unlike traditional
MPC protocols, this input preparation work can also be amortized
over many instances of secure computation as long as the inputs
doesn’t change.

Next, all the encrypted inputs will be sent to an untrusted cloud
server, who will run the traditional E .Eval algorithm, and output an
encryption of f

(
{xi }

n
i=1

)
for a target function f . Finally, the data

owners will run an MPC protocol to securely compute E .Dec and
deliver f

(
{xi }

n
i=1

)
to the desired receivers. These two are frequently

executed steps that are run per-instance. We stress that since E is used
in an unmodified, black-box way, our approach requires zero design
effort on the FHE side, and is able to inherit the same efficiency and
optimization techniques applicable to E .Eval.

Although this idea was suggested by Gentry [51], making it effi-
cient enough for practical applications remains a challenging task.
For example, a generic binary MPC implementation of the KeyGen
algorithms of CKKS (or GHS, resp.) will require securely evaluating
more than 5 × 1011 (or resp. 5 × 1014) AND gates and 1.5 × 105
(or resp. 3 × 104) layers (Appendix A). This is clearly beyond the
reach of today’s hardware/network support, no matter which MPC
backend protocols are used. One may consider MPC protocols based
on arithmetic circuits which can be more efficient for such tasks rich
in algebraic operations. However, we note that secure comparisons

1

…

MPC-based
"#, %# ← ℰ. KeyGen(10)

c3

4
=
ℰ.
Ev
al(
"#
,:
,c 3
,…
,c ;

)

c<

c;

key	generation	
(one-time)

homomorphic	eval
(per-instance)

data	encryption
(amortizable)

output	revelation
(per-instance)

=>

=?

=@
cA = ℰ. Enc("#, BA)

c< = ℰ. Enc("#, B<)

c3 = ℰ. Enc("#, B3)

…

... MPC-based
C ≔ ℰ.Dec(%#, 4)

Figure 1: Approach overview

seem inevitable in parts of the KeyGen and Dec such as sampling
the secret keys and noises prescribed by the FHE scheme. For an
MPC protocol supporting arbitrary number of parties with dishonest
majority, although it is easy to realize comparison using binary cir-
cuits, it was unclear how to securely and efficiently convert between
arithmetic and their corresponding binary encodings.

Threat Model. We restrict our attention to passive attackers. I.e.,
corrupted parties will run the protocol as specified. However, we
don’t limit the number of parties that can be corrupted, and all cor-
rupted parties can collude, so they can form a more comprehensive
view of the protocol execution in order to compromise security.
A protocol secure in this threat model offers meaningful security
guarantees in scenarios when all-but-one parties are infected by the
same surreptitious virus which intends to steal information without
interfering with protocol execution in order to remain undetected.

1.1 Contributions
Methodology. In this paper, we revitalize an old idea by combining
state-of-the-art generic MPC and FHE schemes. While FHE offers
low communication and a secure and convenient way to use un-
trusted servers, it is easier for generic MPC protocols to scale with
the number of parties. Our result is GMPFHE, a practically useful
solution that provides the best of both worlds:
(1) GMPFHE can be regarded as one way of realizing multi-key

FHE when the participants are known before running KeyGen.
Comparing to existing MKHE protocols, our approach improves
the time and space complexity of (the more frequently-run) Eval
by factors of more than O(n2) and O(n), respectively. Moreover,
GMPFHE uses existing single-key FHE only as a black-box,
requiring no extra effort on redesigning FHE.

(2) GMPFHE offers a scalable solution to MPC in both the number
of parties and the size of target computation. Comparing to
best existing MPC protocols, whose protocol cost is O(n2 |C |s ′),
GMPFHE only costs O(n3ss ′ + |C |), where s (s ′, resp.) is the
computational security parameter of FHE (MPC, resp.) and
|C | for application circuit size. Further, GMPFHE is constant-
round and allows to delegate the expensive circuit-dependent
computation to untrusted cloud servers (hence the work of each
MPC participant can be independent of circuit size). This feature
would be highly desirable for running MPC among resource-
constrained IoT devices.

To realize GMPFHE, we propose novel methods for secure sam-
pling of several types of distributions frequently used in lattice-based
FHE (Section 4.1). We also propose a new secure method to convert
Zp -shares of secrets into their Zq -shares for any p < q (Section 4.2),
which are crucial in mixing binary and arithmetic circuits for op-
timized performance. These techniques can tolerate any number
of passive (but colluding) adversaries and may be of independent
interest.
Implementation and Evaluation. We applied our methodology to
two state-of-the-art FHE schemes, CKKS [37, 38] and HELib’s
GHS [53] and implemented their KeyGen and Eval algorithms using
a mixture of binary and arithmetic MPC protocols. They marks
the first software implementation and experimental evaluation of
a threshold FHE scheme. Experiments show that GMPFHE can
run arithmetic approximate computation as well as exact circuit
computation, and even bootstrappable HE.

We further demonstrated the potential advantages of GMPFHE-
based MPC using two representative end-to-end applications: secure
evaluations of a five-layer convolutional neural network and AES.
The threshold CKKS-based MPC is particularly competitive in com-
parison with existing secure CNN protocols.

1.2 Remarks
Faster Eval vs. Slower KeyGen. GMPFHE’s KeyGen is more ex-
pensive than some existing MKHE schemes. But we stress that in
most scenarios KeyGen is typically a one-time (or infrequent) proce-
dure whose costs can be amortized across many secure evaluations.
In contrast, the Eval procedure needs to run for every instance of
computation. Thus, it pays to trade the cost of KeyGen for a qua-
dratic saving in Eval. MPC evaluation of Dec is also needed per
instance. But the result is typically very short and independent of cir-
cuit size. For some FHE schemes such as CKKS, secure evaluation
of Dec actually turns out very efficient (see Table 5).

Compare Design Efforts. Although GMPFHE saves much effort
in redesigning and proving a new secure MKHE scheme, it does
require some effort on the MPC protocol design side. However,
we argue that designing such MPC protocols may be relatively
less demanding thanks to existing tools for building generic MPC
protocols, along with the new techniques developed as a result of
this work. We expect many of our ideas can be carried over to other
Ring Learning with Error (RLWE)-based FHE schemes.

Utility. Unlike existing MKHE schemes, GMPFHE can’t delay the
answer to the question of “With whom is the MPC to be run?” since
its KeyGen already requires interaction with those parties. However,

2

Table 1: Comparison with Representative Threshold FHE and MKHE Protocols

Protocol Threat model
Require CRS

or
trusted setup?

Allow delayed
decision on

Per party complexity in n

Implemented?KeyGen Eval

Parties Function Time Time Space

[57] Passive dishonest
minority1 CRS No Yes O (n) O (1) O (1) No

[22] Monotone access
structure2

Trusted
Setup

No Yes Trusted
Setup

O (1) O (1) No

[35] Passive dishonest
majority3 CRS Yes Yes O (1) Õ (n2) Õ (n) Yes

GMPFHE-CKKS Passive dishonest
majority

No No Yes O (n2) O (1) O (1) Yes

1 They also provided a protocol that achieve active security assuming the parties have access to an authenticated broadcast channel.
2 Robust against malicious key share holders.

3 Running the KeyGen or Dec alone can be considered actively secure, but no discussion on active attacks related to homomorphic Eval.

GMPFHE does allow delayed answer to the question of “What
function will be jointly computed?”.

Security. Computing KeyGen and Dec through a semi-honest MPC
protocol may leak a secret key to malicious attackers. It is possible
to upgrade GMPFHE to thwart malicious attacks, though the more
challenging issue brought by active attacks would be to efficiently
ensure faithful execution of the Eval algorithm. Some solutions to
this issue were proposed in prior works on threshold FHE. But they
seemed not implemented yet and only of theoretical interest by far.

Comparison with Threshold FHE. Existing threshold FHE proto-
cols’ Eval algorithms typically have the same asymptotic complexity
as their base single-key FHEs. They are based on hard lattice prob-
lems and require more effort in FHE-specific redesign and proof
work. No threshold FHE schemes were known to work with the
two FHE schemes that we consider in this work. In addition, to our
knowledge, no existing threshold FHE schemes were implemented,
nor tested with an end-to-end application. In contrast, GMPFHE
uses generic MPC and demands no change to the base FHE. Al-
though GMPFHE has more rounds, the number of rounds doesn’t
depend on the target function and its input and output sizes. Most
notably, we experimentally demonstrate that for some schemes such
as CKKS, GMPFHE’s roundtrip overhead is far from the bottleneck
in practice.

Table 1 compares our work with three representative state-of-the-
art MKHE or threshold FHE protocols. Note that unlike GMPFHE,
prior works also require either trusted setup or the common reference
string (CRS) model, which is non-trivial to realize in a decentralized
way without changing the threat model in some way.

1.3 Related Work
1.3.1 Multi-Key FHE. López-Alt, Tromer, and Vaikuntanathan

introduced the seminal concept of MKHE and showed how to realize
it based on a somewhat nonstandard Decisoinal Small Polynomial
Ratio (DSPR) assumption [69]. They also gave a RLWE-based con-
struction that only works for a logarithmic number of keys and
circuit depth. Clear and McGoldrick [43] proposed the first multi-
key FHE under well-established hardness of LWE in the standard

model based on the FHE of Gentry, Sahai, and Waters [55]. This con-
struction was significantly simplified by Mukherjee and Wichs [75]
and extended to construct a two-round MPC that allows a one-round
distributed decryption of a multi-key ciphertext. Brakerski, Halevi,
and Polychroniadou [28] constructed an LWE-based MKHE with a
one-round distributed setup procedure, which allows them to build
the first 3-round semi-malicious MPC protocol without setup from
standard LWE, and a 4-round multi-party computation protocol
in the plain model against a malicious adversary. Recently, Chen,
Chillotti, and Song [34] generalized the efficiently bootstrappable
FHE scheme of Chillotti et al. [39] to a multi-key FHE and provided
experimental performance numbers of a homomorphic NAND gate
with bootstrapping. In the same year, Chen et al. [35] designed multi-
key variants of BFV [25, 49] and CKKS [38] that support ciphertext
packing. They demonstrated the first viable end-to-end application
of MKHE through experiments of jointly evaluating a pre-trained
convolutional neural network model by two parties.

As was first suggested and realized by López-Alt et al. [69],
MKHE can be used to build on-the-fly MPC, in which the set of
parties and the target function don’t need to be fixed at the time when
the inputs are being pre-processed/encrypted, but can be determined
adaptively when the computation results are to be decrypted through
a joint MPC protocol. The schemes of [43, 75] would require the
parties to be decided before the homomorphic computation, or per-
form expensive “bootstrapping” step when data from new parties
dynamically joins the computation, though the limitation was fixed
in a subsequent work by Peikert and Shiehian [77]. The number of
parties supported by the MKHE of [69] needs to be bounded a-priori
by its fast ciphertext expansion, while this issue is alleviated by
Brakerski and Perlman [29] through improving [75]. Their scheme
has linear ciphertext expansion in the number of parties and supports
multi-hop homomorphism.

1.3.2 Threshold FHE. In threshold FHE, the secret key is
secret-shared among n parties, so that only a threshold of parties
can use (without reconstructing) the key to jointly decrypt a cipher-
text encrypted under the corresponding public key. Typically, these
schemes may keep the Eval algorithms of their base FHE schemes

3

unchanged, thus the cost of Eval can be independent of the number
of parties.

Assuming approximate-GCD is hard, Myers, Sergi, and She-
lat [76] proposed a threshold FHE scheme that allows for construc-
tion of an MPC protocol tolerating a minority set of malicious parties.
Asharov et al. [14] provided a threshold version of the RLWE-based
FHE scheme of BGV [26, 27, 30] and used it to build an MPC
secure against any number of actively corrupted parties. Although
theoretically attractive, their protocol didn’t seem to offer practical
performance benefits and was never implemented. Gordon, Liu and
Shi [57] developed an LWE-based threshold FHE that allows to adapt
“flexible” ciphertexts to the public keys of the non-aborting parties
and used it to construct a 3-round MPC with guaranteed output de-
livery in the CRS model against a minority of semi-honest fail-stop
adversaries. Jain, Rasmussen, and Sahai [62] gave the first construc-
tion of leveled threshold FHE for any access structure induced by
a monotone boolean formula and applied it to build function secret
sharing and distributed PRFs for the considered access structures.
This threshold FHE design can also be combined with BHP [28]
to construct a round-optimal MPC offering guaranteed output de-
livrey [15]. Boneh et al. [22] proposed the concept of universal
thresholdizer and showed how to realize it using an LWE-based
threshold FHE they developed. Applying the universal thresholdizer
thus obtained to a lattice signature system, they obtained the first
single-round threshold signature scheme from LWE.

1.3.3 Other Related Works. Choudhury et al. [42] proposed
a (custom) distributed decryption protocol for a leveled HE vari-
ant of BGV to enable efficient multi-party bootstrapping. Mouchet,
Troncoso-Pastoriza, and Hubaux [74] developed a distributed ver-
sion of BFV [25, 49] by providing RLWE-based collaborative key
generation, key switching, and key-switching protocols. However,
the scheme was not proven secure without introducing some ad-hoc
assumptions.

2 PRELIMINARIES
2.1 Fully Homomorphic Encryption
A homomorphic encryption scheme E is a tuple of four efficient
algorithms (KeyGen, Enc,Dec, Eval) over a plaintext space P, where
• (sk, pk) ← KeyGen(1n) generates a pair of keys;
• c ← Enc(pk,p) encrypts plaintext p ∈ P using the public key pk;
• p ← Dec(sk, c) decrypts ciphertext c using the secret key sk;
• c ′ ← Eval(pk, f , c) produces ciphertext c ′ from the public key
pk, a function f , and a ciphertext c.

E is said to be correct with respect to function f if the following
probability is negligible in n for all x ∈ P:

Pr ©«Dec(sk, c ′) , f (x) :
(sk, pk) ← KeyGen(1n),
c ← Enc(pk,x),
c ′ ← Eval(pk, f , c)

ª®¬ .
To exclude some uninteresting trivial implementations, we require
E to be compact, i.e., that E .Dec run in time poly(n) of security
parameter n, but independent of the function f that was fed to Eval.
We restrict our attention to E that is CPA-secure, whose formal

definition is the same as that of an ordinary CPA-secure public-
key encryption (except that now the adversary could derive more
ciphertext using E .Eval).

Define E to be fully homomorphic if it is compact and correct with
respect to all function f . Define E to be d-leveled fully homomorphic
if it is compact and correct with respect to all f of depth at most d.

Gentry [51, 52] proposed the first FHE scheme based on hard
lattice problems. Since then, numerous FHE constructions, such
as [25, 27, 30, 38, 47, 49, 55, 82], optimizations [10, 37, 40, 53] and
implementations, including HELib [4], SEAL [5], PALISADE [6],
HEAAN [3], FHEW [2], TFHE [7] etc., have been proposed and
actively investigated in the past decade. Notable applications of
(leveled)-FHE include homomorphic AES [54] and secure outsourced
machine learning [56, 61, 64].

2.2 Secure Multiparty Computation
Let ®x = (x1, . . . ,xn) be a vector where xi denotes the secret in-
put from Pi . A generic secure multiparty computation protocol Πn

f
allows n mutually-distrusted parties to compute a publicly agreed
function f (®x) in a decentralized fashion without extra leak of xi
except what is already revealed by the desired computation result.
Following the composition-based paradigm of [31], security of Πn

f
is defined with respect to an ideal functionality Ff as below:
(1) Ff receives xi from Pi for each i ∈ [n].
(2) Ff computes z = f (®x).
(3) Ff reveals z (or send z to some parties as designated). Every Pi

outputs whatever obtained from Ff .
For an idea-model adversaryA ′, let IDEALf ,A′(®x) be the sequence
of n outputs from the ideal execution above, on input ®x under attack
ofA ′. In contrast, we call Πn

f the real model protocol and denote by
REALf ,A (®x) the sequence of outputs resulted from executing Πn

f
on input ®x with adversary A.

A real-model protocol Πn
f is said to securely execute f in the

presence of passive adversaries if for all ®x and every efficient passive
adversary A, there is an efficient passive adversary A ′ such that
REALf ,A (®x) and IDEALf ,A′(®x) are computationally indistinguish-
able.

Goldreich, Micali, and Wigderson [71] proposed an OT-based
linear-in-depth round MPC protocol. Using Shamir’s linear secret
sharing, polynomial Ben-Or, Goldreich, and Wigderson [21] pro-
posed a linear-round protocol that is information theoretically secure
against dishonest minority set of attackers. Beaver [18]’s random-
ization technique allows to push most of the expensive computation
into a preparation stage when constrained randomness is generated
and distributed among the parties. Maurer [70] described a general
paradigm to construct MPCs to support general adversary struc-
tures. Assuming honest majority, the idea can be applied to building
high-throughput MPC protocols using replicated-secret-sharing in
three-party settings [13, 50]. There are also a number of constant
round, linear space MPC protocols based on various constructions
of garbled circuits, ranging from the classic BMR [19] to some more
recent ones [59, 67, 83].

4

3 APPROACH OVERVIEW
In this section, we describe our methodology and reduce the com-
plexity of GMPFHE to several individual challenges.

3.1 Abstract Specification of GMPFHE
Let E = (KeyGen, Enc, Eval,Dec) be a single-key FHE scheme and
Πn be a generic n-party computation protocol that is composably
secure. The parties first run an instance of Πn to execute a circuit
implementing E .KeyGen so that every party obtains the public key
pk, but only a secret-share of the secret key sk. Then each party Pi
encrypts its own secret data xi using pk and sends the ciphertext
to an untrusted server, who will run E .Eval (pk, f , ®x) to produce a
ciphertext c = Enc (pk, f (®x)). Finally, in order to obtain f (®x), all
parties start another instance of Πn to jointly compute E .Dec(sk, c).
Note that any party can serve as the untrusted server if no extra server
is available. Since Πn is generic, we call this paradigm GMPFHE.
It is not hard to show that GMPFHE is a passively secure MPC
protocol (Appendix B.1).

THEOREM 3.1. If E is a single-key FHE scheme and Πn is a
composably secure multi-party computation protocol in presence of
any number of semi-honest corruptions, then the GMPFHE scheme
specified above securely computes f in the presence of semi-honest
attacks.

Efficiency Benefits. First, the round complexity of GMPFHE is
independent of the application f , because the KeyGen and Dec
which would be accomplished by a multi-round MPC has nothing to
do with f while the application-specific Eval part will be carried out
through the single-key FHE scheme E. Plus, GMPFHE allows to
directly use an unmodified single-key FHE scheme’s homomorphic
evaluation algorithm, hence inheriting its efficiency advantage over
existing MKHE schemes.

Second, GMPFHE allows the parties to easily and securely out-
source the circuit evaluation—in many cases the most expensive part
of MPC—to an untrusted server. This allows the MPC participants to
relieve themselves of the burdensome circuit-dependent computation
by shifting the load to potentially cheaper, large-scale commercial
servers. This fits squarely to today’s cloud computing infrastructure.

Design Benefits. Since no change is needed on the underlying FHE
scheme, GMPFHE can generally be realized without expert expe-
rience in FHE scheme design. The kind of case-by-case security
analysis and proofs required by designing new MKHE schemes can
be saved too.

However, although in theory one could use existing compilers
to produce MPC protocols for the FHE’s KeyGen and Dec, proto-
cols produced this way will not be practically useful. For example,
ABY3 [72], ObliVM [68], ABY [46], TASTY [60] cannot work for
more than three parties. Emp-Toolkit [1], Wysteria [78], BMS+ [16],
FairplayMP [20] only support binary circuits, which cannot effi-
ciently realize a FHE’s KeyGen and Dec. The SPDZ compiler [63]
and its extension [12], and BHK+ [17] worked for multiple parties
and supported MPC protocols over both binary and arithmetic cir-
cuits, however, [17, 63] didn’t provide efficient conversion between
arithmetic and binary encodings while the conversion technique
of [12] relied on replicated secret sharing thus doesn’t work for a dis-
honest majority setting and doesn’t efficiently scale with the number

of parties. Finally, efficient ways to sample probability distributions
remain an art so far and cannot been satisfactorily handled by an
MPC compiler yet.

Therefore, we customize generic MPC protocols for some RLWE-
based FHE scheme’s KeyGen and Dec, particularly focusing on
efficient sampling techniques and efficient signal conversion tech-
niques in a dishonest majority setting. Our optimization ideas can
be easily carried over to other RLWE-based FHE schemes. Hence,
we believe that efforts required for tailoring generic MPC to the
KeyGen and Dec circuits would be somewhat easier than redesign-
ing FHE schemes. We will sketch our custom MPC for KeyGen and
Dec in Section 3.2, and elaborate our solution to the main challenges
in Section 4.

3.2 Generic-MPC for E.KeyGen and E.Dec

MPC for KeyGen. The KeyGen algorithms of representative RLWE-
based FHE schemes could generally be divided into three related
parts: one that produces the secret decryption key sk, one for the
public encryption key pk, and one generating a set of public ci-
phertext switching key swk. For example, the RLWE-based CKKS
scheme [37, 38] has the following KeyGen: for public parame-
ters N ,p0, QL , residue rings RQL = ZQL [x]/(x

N + 1),Rp0QL =

Zp0 ·QL [x]/(x
N + 1), public distributions χkey , χerr , define

CKKS.KeyGen():

s ← χkey ; a ← RQL ; e ← χerr ;
sk B (1, s);
pk B (−a · s + e, a);

swk ← CKKS.KSGen(s2, s);
Return (sk, pk, swk).

CKKS.KSGen(s1, s2):

∀0 ≤ i ≤ L, ai ← Rp0QL ; ei ← χerr ;
∀0 ≤ i ≤ L, swki B (−ai · s2 + ei +Ci · s1,ai);

Return {swki }Li=0.

Note that we intend the secret key sk (or essentially s) to remain
secret-shared among the parties. Also, the noise e needs to be hidden
to all parties since it can be used to recover sk from pk. But the public
encryption keys pk and public switch key swk will be revealed
eventually. We further remark that operations highlighted in red
involve non-linear operations on the secrets, while those highlighted
in plum only require linear operations such as adding two secret
values or multiplying a secret value by a constant.

To see the challenges in the secure computation of KeyGen, let’s
begin with the task of secure sampling from χkey and χerr . Under
RLWE assumptions, both χkey and χerr are supposed to produce ring
elements, each comprising N values from ZQL , where N and QL
are public parameters. For example, homomorphically computing a
19-layer logistic regression for GWAS while offering 128-bit com-
putational security would set N = 215,L = 19, logQL = 885 [64]. A
particular FHE protocol will choose specifications for χkey and χerr
from several common candidates, such as a vector of small fixed
hamming weight, a vector of uniform-random tertiary entries, or a
vector of Gaussian values with a fixed small variance. Because the

5

samples are bulky and may need to be repeatedly sampled many
times to produce the switching key, it is challenging but also im-
portant to allow the parties to efficiently obtain the secret shares of
these samples.

Second, note that the “+” and “·” are actually the ring addition
and multiplication, resp. If the secret values s and e are encoded
based on their binary representation, the “+” and “·” will be very
expensive because the ring addition and multiplication needs to be
computed using binary circuits. That is, each secure ring addition
will costO(N · logQL) (or 87 million assuming the parameters given
above) ANDs. Also due to binary circuit’s inefficiency in realizing
modulo divisions, the cost of ring multiplication will be increased
by a factor of several orders of magnitude! Finally, RLWE-based
FHE algorithms rely heavily on NTT2, which essentially involves a
large number of ring additions and multiplications. Therefore, binary
circuit cannot work well for our purpose.

Third, one may prefer arithmetic circuit when it comes to effi-
ciently adding and multiplying secret ring elements, but would find
it helpless to support secure sampling using arithmetic circuits since
lots of comparisons would be needed. If secure sampling is done
over binary representation while ring operations are done over arith-
metic representation, then secure protocols are needed to convert
secrets between these two representations. Several papers studied
secure conversion of secrets across different secure computation pro-
tocols [12, 45, 46, 72]. However, for reasons we will discuss soon,
those results are not applicable to our scenarios (see Section 4.2).

By far we have examined the main operations and challenges
in securely computing CKKS.KeyGen. We note that the KeyGen
algorithms of other RLWE-based FHE protocols share very similar
characteristics but may differ in some details such as the choice
of rings, sampling distributions, and ways of generating switching
keys. We will zoom into several representative RLWE-based FHE
protocols in Section 5.

MPC for Dec. The decryption algorithms of RLWE-based FHE
schemes usually consist of relatively simpler, deterministic opera-
tions. Again, we use CKKS’s Dec as an example.

CKKS.Dec(sk, c): “Let c be a level-0 ciphertext.”

Return [⟨c, sk⟩]q0 .

Here sk and c must be length-2 vectors of ring elements. And “⟨a,b⟩”
denotes the vector dot-product between vectors a and b with respect
to the ring multiplication and addition. Notation “[a]q” (where a
is ring element represented by a vector of coefficients) refers to a
vector computed by reducing every entry of a modulo q. Typically,
securely computing an FHE’s Dec would involve a number of linear
operations on sk and public ciphertext c, followed by some non-
linear operations, such as [·]q0 , over a secret intermediate value.
(Though for CKKS.Dec, the [·]q0 operation can actually be carried
out inexpensively thanks to the RNS3 representation of the secret
values (see Section 5.1).)

2Number Theoretic Transform generalizes the discrete Fourier transform, using an N -th

primitive root of unity of a finite cyclic group in place of e−
2π
N i .

3Residue Number System represents integers by their values modulo several pairwise
coprime integers called the moduli. RNS representation is backed by the Chinese
Remainder Theorem (CRT).

NTT and CRT of Secrets. For best performance, state-of-the-art
implementations of RLWE-based FHE schemes rely heavily on
point-value representation of the ring elements for fast ring arith-
metic and the RNS representation for faster big integer arithmetic.
In our MPC realization of the KeyGen and Dec functions, it is equiv-
alently important to leverage these optimizations. This suggests that
we need to provide efficient secure NTT, CRT transforms as well as
their inverses to process secret values. Since NTT and CRT are in
essence linear transformations, some kind of arithmetic encoding of
the secrets would be preferred to make secure NTT and CRT fast.

Intuitions and Key Ideas. First, we use additive shares over the
same polynomial rings used by the plaintext computation to encode
plaintext ring elements. Recall that each ring element can be repre-
sented by a vector of values from a finite field Zq which defines the
domain, range, and coefficients of the polynomial. So an additive
share of a ring element boils down to a vector of additive shares
in Zq . This makes it inexpensive to compute secure NTT and CRT
transforms. To multiply two secret ring elements in their point-value
representation, the parties just securely multiply the two vectors
entry-wise, using pre-computed generalized multiplicative triples
over Zq . This idea is a direct generalization of Beaver’s circuit ran-
domization technique to Zp [18]. Like Beaver’s original protocol,
the extended protocol is secure in the presence of any number of
passively corrupted parties. (Section 4.3)

To securely sample a discrete Gaussian distribution with small
variance, we noticed that given a sampling error ϵ , it suffices to
consider a limited number of discrete points as long as the probability
sum on all other points are less than ϵ . So we can pre-compute the
values of the cumulative distribution function (CDF) for the Gaussian
distribution over these points. Then by securely sampling a uniform
fixed-point (log ϵ−1 bits) value between 0 and 1 and comparing it
with every one of the pre-computed CDF values (also encoded in
binary fixed-point format), the parties can securely sample a point.
(Section 4.1.2)

Our approach to sampling a vector of a (relatively small) fixed
Hamming weight w is inspired by the Knuth shuffle of a binary
string “1 · · · 10 · · · 0” with a prefix of w consecutive “1”s followed
by all “0”s. Because in our scenarios, w is significantly smaller than
N (e.g., 64 ≪ 214), an oblivious Knuth shuffle can be efficiently
realized by scanning the string w times, each of which obliviously
swaps one leading “1” to a uniform random location in the string.
(Section 4.1.3)

Finally, to securely sample a uniform tertiary value is easy since
our protocol efficiently supports Zq for any q: Each party just locally
picks a uniform random value from Z3. (Section 4.1.1)

Since the secure samples produced as above are vectors of ele-
ments in Z2 (or Z3), we need to convert them to secret shares in Zq
(the ciphertext field, so q is large) for fast ring arithmetic operations.
To this end, the parties simply treat their Z2 (or Z3) shares as Zq
shares and add them together using “+q”. Then they will securely
evaluate a polynomial that maps all values in {2k |0 ≤ k ≤ q/2} to 0
and all values in {2k + 1|0 ≤ k ≤ q/2} to 1. Similarly, to securely
convert Z3 shares into Zq shares, a polynomial will be securely
evaluated which maps values in {3k |0 ≤ k ≤ q/3} to 0, values in
{3k + 1|0 ≤ k ≤ q/3} to 1, and values in {3k + 2|0 ≤ k ≤ q/3} to 2.
(Section 4.2.1)

6

Sometimes we also need to convert shares of x ∈ Zq to shares of
the binary representation of x , e.g., in the Dec of GHS [53, 54]. We
realize this by securely evaluating a binary circuit that sums up all
the parties’ Zq shares of x . (Section 4.2.2)

4 MAIN CHALLENGES AND OUR
SOLUTIONS

4.1 Secure Sampling
RLWE-based FHE schemes use three kinds of distributions that need
to be secretly sampled. Below we assume a ring element is denoted
by a vector, which, depending on context, could denote either the
list of coefficients or the list of point-values of the polynomial.

The problem of secure sampling was recently studied by Cham-
pion et al. [32]. They provided an asymptotically more efficient
algorithm to sample unbiased coins (or Bernoulli distribution) using
oblivious queue, aiming at differentially private secure computation.
However, their techniques are not applicable to realizing the secure
sampling algorithms required by the FHE schemes.

4.1.1 Sample Vectors of Uniform Tertiary Values. One way
to sample a secret key for FHE (e.g., [35, 37]) is to pick every
entry of the vector from a small finite set such as {−1, 0, 1} with
uniform probability. When the set size p is not a perfect power of
2, it is preferred to represent the secret sample as an arithmetic
signal modulo p (than a binary signal) to guarantee uniformity of
the samples. Therefore, every party Pi just picks a uniform [vi]p as
its own share. So v =

∑
i [vi]p is uniform modulo p.

We stress that typically, right after this straightforward sampling,
the vector of Zp entries need to be converted into an equivalent vector
of Zq entries with q being the ciphertext modulus and q ≫ p. To
this end, we will apply a novel secure conversion protocol described
in Section 4.2.1.

4.1.2 Sample Vectors of Discrete Gaussian Values. RLWE-
based KeyGens use integers of some discrete Gaussian distribution
as coefficients of noise vectors. The recommended Gaussian dis-
tribution has µ = 0 and σ = 3.2 [33]. Dwork et al. [48] studied
oblivious sampling of Gaussian distribution for differential privacy
purpose. Their protocol simulated Gaussian noise by summing up
exponentially many unbiased coins so that the statistical error can
be bounded by an exponentially small constant, hence will not be
practical for our use. It is possible to obtain discrete Gaussian sam-
ples obliviously from (constrained) random linear combination of
lattice vectors [8, 9]. However, this approach will not be suitable for
our use because both the coefficients and the vectors are secret thus
many secret multiplications would be needed.

Instead, we tailored an MPC protocol to sample the Gaussian
distribution used by RLWE. First, we note that it suffices to sample
integers in [−23, 23] if a statistic sampling error of 2−40 is acceptable,
because it is easy to verify that the probability of getting any integer
outside [−23, 23] is already < 2−40.46. Second, the probability pi
for each candidate integer i ∈ [−23, 23] are publicly known, and a
public cumulative probability table {p̂i =

∑i
j=−23 pi }i ∈[−23,23] with

respect to these 47 points can be calculated beforehand in plaintext.
Given this cumulative probability table, we can sample one of the
47 integers according to the prescribed distribution by picking a

Input: Public standard deviation σ and statistical parameter s.
Output: A secret Z2-shares of integer i∗ conforming to discrete

Gaussian(0,σ).

(1) Calculate probabilities {pi }i ∈I from σ where I is a known set
of integers, such that pi < 1 with s-bit mantissa specifies the
probability of taking i under the distribution Gaussian(0,σ),
and

∑
i ∈I pi ≥ 1 − 2−s . For i ∈ I+, compute p̂i B 2pi and set

p̂0 B p0. (This step is done on plaintext.)
(2) Uniformly sample x with s-bit mantissa and computes j B∑

i ∈I+∪{0}(x − p̂i). Uniformly sample a bit b and computes
i∗ B mux(b, i,−i). (This step is done on Z2 ciphertext.)

(3) Output i∗.

Figure 2: Securely sample a discrete Gaussian integer

uniform value x between 0 and 1, then output the integer i which
satisfies p̂i ≤ x < p̂i+1.

To keep the samples private, we denote x as a 40-bit fixed-point
number in its binary representation, allowing to bound the statistic
error by 2−40. So sampling a uniform x is equivalent to generating
40 uniform binary bits. With this uniform x , our protocol securely
computes and outputs i∗ B

∑23
i=−23 x > p̂i . Note that the secure

comparisons between x and p̂i yield 0 or 1, so it is not hard to verify
that i∗ conforms to the desired discrete Gaussian distribution. As
another optimization, we can cut the number of secure comparisons
(almost) by half: because a Gaussian distribution is symmetric, it
suffices to first securely sample an integer i between 0 and 23 (inclu-
sive) according to probabilities {(0,p0), (i, 2pi)} for 1 ≤ i ≤ 23; then
securely sample a sign-bit b and securely compute i∗ B mux(b, i,−i),
i.e., i∗ B i if b = 0 and i∗ B −i if b = 1. Fixing the size of the
sample set, this method will cost O(s) to produce a Gaussian integer
with statistic error ≤ 2−s .

Finally, the entries in the vector will be converted from encoding
of Z2 to that of Zq using algorithm to be described in Section 4.2.1,
since the ciphertext operations are defined with respect to rings over
Zq . We summarized the protocol for securely sampling discrete
Gaussian in Figure 2.

4.1.3 Sample Vectors of Fixed Hamming-Weight. It is also
common that FHE schemes use uniform vectors of fixed low Hamming-
weights as private keys of many RLWE-based FHE schemes [27,
38, 53, 54]. The requirement that the Hamming-weight of the vector
be an exact public number, say w , makes it challenging to securely
sample such vectors. One could use a permutation network (e.g.,
Waksman or Beneš) to securely shuffle a vector with a prefix of exact
w non-zero entries. However, such permutation networks are costly,
especially for our scenarios where each vector is tens of thousands
of entries long. What’s worse, there is no theoretical guarantee that
the permutation generated as such is uniform random as required
by the underlying FHE protocol. One could address this concern by
replacing secure shuffling with a secure sorting network to reorder
the entries based on uniform random values attached to the entries.
However, this will introduce significant extra cost over the already
costly shuffling.

We addressed this challenge efficiently with an MPC protocol
based on Knuth shuffle. First, a vector V of length N is generated

7

Input: Public weight w and vector length N .
Output: Secret Z2-shares of a vector V .

(1) Set V B 1w ∥0N−w . (This is plaintext computation.)
(2) For i from 0 to w − 1,

(a) Securely sample j ∈ {i, . . . ,N − 1}. (computed on Zq ci-
phertext with q = N − i)

(b) Convert Zq -shares of j into Z2-shares of j using the pro-
tocol described in Section 4.2.2.

(c) Obliviously swapV [i] andV [j]. (computed on Z2 ciphertext)
(3) For every 0 ≤ i < N , securely sample a bit bi and compute

V [i] B mux(V [i], 0,x) where x B mux(bi ,−1, 1). (computed on
Z2 ciphertext)

(4) Output V .

Figure 3: Securely sample vectors of fixed hamming-weight

obliviously so that its first w entries are 1 but all other entries are 0.
Next, we apply Knuth shuffle to permute the vector usingw oblivious
swaps. That is, the i-th swap will swap V [i] and V [j] where j is an
uniform index in [i,N]. Although Knuth shuffle doesn’t fit well with
the need of oblivious shuffling since some concretely-expensive
ORAM techniques are needed to realize the oblivious swaps, we
exploit the fact thatw is small, so a simple linear-scan-based ORAM
can offer good performance in practice.

We stress that it is important to sample every j uniformly from
[i,N] to ensure the whole vector being sampled is indeed uniformly
picked from all vectors of Hamming-weight w . To this end, we
sampled j using arithmetic shares, which would be the easier way to
guarantee uniformity over a range of arbitrary size. Later in order to
swap obliviously, j needs to be secretly compared with each index in
the range, a task for which a binary representation suits better. We
will describe how to securely convert Zq shares of secret x into Z2
shares of the binary representation of x in Section 4.2.

Finally, an FHE scheme will typically posit additional require-
ments on the exact values of non-zero entries of the vector, e.g.,
they should take uniform values from {−1, 1}. This is easy to realize
through an final oblivious transforming scan of the whole vector.

4.2 Secure Conversion
The problem of securely converting an encoding of one secure com-
putation protocol to one of another was studied in ABY [46] in
the two-party setting, in ABY3 [72] in three-party setting, and also
in the extended SPDZ compiler [12] in the general n-party setting.
Unfortunately, those ideas for secure conversion don’t apply to our
threat model where up to n− 1 parties can be corrupted. Thus, we de-
signed special protocols to obliviously convert Z+, ·2 (binary) shares
to Z+, ·q (arithmetic modulo an arbitrary q) shares that work for our
application scenario and threat model.

4.2.1 From Z2-shares of x to Zq -shares of x . Z2-shares
are convenient for sampling Gaussian vectors and fixed Hamming-
weight vectors since secure comparisons are needed there. However,
the Zq operations heavily used in FHE’s KeyGen and Dec are more
efficient with Zp shares, the parties would want to convert their Z2
shares of a Z2 secret into Zq -shares (q > 2) of the same secret.

Input: Secret Zp -shares of x where p is small and q > p.
Output: Secret Zq -shares of x .

(1) Compute the polynomial conv(p−1)nq,p (of degree (p−1)n) which
maps every x ∈ [(p − 1) · n] to (x mod p). (This step is done on
plaintext.)

(2) Every party treats its input Zp -shares of x as a mod-q value

and use it as input to securely evaluate conv(p−1)nq,p , and output
the result. (This step is done on Zq ciphertext.)

Figure 4: Securely convert Zp -shares to Zq -shares (q > p)

First, we define convnq,2 to be the degree-n polynomial over
Zq that will map an n-party Zq -sum of the Z2 values to its cor-
responding Z2 value represented as a Zq element. As a toy ex-
ample, if n = 3,q = 11, conv311,2 will be the degree-3 polyno-
mial over Z11 defined by Lagrange interpolation of the following
four points (0, 0), (1, 1), (2, 0), (3, 1) with all numbers in Zq . That is,
conv311,2(x) = 8 · x3 − 3 · x2 − 4 · x . In essence, convnq,2(x) simulates
the computation “x mod 2”.

Given a secret x = x1 +Z2 · · · +Z2 xn where party Pi holds secret
share xi ∈ Z2, the parties first compute x ′ = x1 +Zq · · · +Zq xn
(note +Zq represents addition over Zq). Then the parties securely
compute convnq,2(x

′) using a Zq circuit. As a result, party Pi learns
its Zq -share of “a′ mod 2”.

Generalization. The idea can also be applied to directly convert Z3
shares (or Zp shares for small p) of a Z3 (or Zp) secret to its Zq
shares: just replacing the use of polynomial convnq,2 by conv2nq,3 (or

conv(p−1)nq,p , resp.).

Optimization. By far the degree of convq,p can grow linearly with
the number of parties, so does the cost of evaluating convq,p . We
note that if the parties apply the idea to only combine two shares, they
only need the degree of convq,p to be 2(p−1). Then by repeating the
process n−1 times, preferably in a binary-tree like structure to reduce
rounds to logn, we can accomplish the conversion by evaluating
logn layers of conv2(p−1)q,p (for a total of n − 1 polynomials).

Cost Analysis. Because q > p, the shares of a can be regarded as
shares of a′. So, with the optimization above, cost of this conversion
equals to that of n − 1 secure evaluations of polynomial conv2(p−1)q,p .

In this work, we only used conv2(p−1)q,p for p = 2 or 3. Therefore,
using Horner’s method, it will cost only O(n) multiplications to
evaluate conv2q,2 or conv4q,3. We refer readers to Section 4.3 for our
techniques used for secure polynomial evaluation.

4.2.2 From Zq -shares of x to Z2-shares of the binary repre-
sentation of x . This type of conversion is needed when a ciphertext
needs to be jointly decrypted, since most FHE systems rely on some
final non-linear operations over the secret arithmetic signals that are
easier to be carried out on Z2, such as the final “mod” operation in
BGV [27] and GHS [53], or the “rounding” in BFV [25, 49] and
FHEW [47].

8

Input: Secret Zq -shares of x .
Output: Secret Z2-shares of x .

(1) Let vi be party Pi ’s Zq -share of x , and Bi the binary represen-
tation of vi . Party Pi locally computes Bi . (This step is done on
plaintext.)

(2) Compute B B addq (B1, . . . ,Bn) where addq is the binary
circuit for mod-q addition of two logq-bit numbers. (This step
is done on Z2 ciphertext.)

(3) Output B.

Figure 5: Securely convert Zq -shares to Z2-shares

The idea to converting Zq shares of a secret x to Z2 shares of
binary representation of x is straightforward and spiritually similar
to that used by [12, 46, 72] but in other settings: the parties lo-
cally decompose their Zp -share of x into their binary representation,
whose bits are then used to securely evaluate n − 1 binary circuits,
each realizing a mod-q addition of two logq-bit numbers. Finally,
Z2-shares of the last logx-bit of the sum is returned.

Cost Analysis. This conversion costs O(n logq), because of the
binary circuit for addition modulo q.

4.3 Optimized Circuit Randomization
We use Beaver’s circuit randomization technique [18] generalized to
finite rings. Like SecureML [73], we used efficient oblivious transfer
(for generating multiplication triples) to allow arbitrary number of
parties to securely compute circuits over various finite rings.

Generalizing Beaver’s circuit randomization technique to arith-
metic rings allows all CRT and NTT transforms to be executed
locally without interaction! Should the secrets be represented in
binary, even each adding or multiplying public constants modulo q
will require O(logq) or O(log2 q) binary AND gates since q , 2.

We also optimized secure integer exponentiation, e.g., x2. Given
an x securely shared by n parties, securely computing x2 using a
generic multiplication triple will require 2(n − 1) OTs per party
to generate the multiplication triple, as well as broadcasting two
elements of ring Zp . Instead, we observe that x2 = ((x − a) + a)2 =
(x − a)2 + 2a(x − a) + a2. Hence, given additive shares of (a,a2),
x2 can be securely computed by broadcasting a single Zp element.
Also because only (n − 1) OTs per party is needed to obtain secret-
shares of a2, the offline computation and online bandwidth of secure
exponentiation can be cut by halve. A similar observation was used
to realize a two-party computation of MiMC [58]. Here we carried
the benefits of this observation over to securely raising a secret to any
power >2. E.g., to securely evaluate a degree-4 polynomial (heavily
used in signal conversion), we generated quartic tuples (a,a2,a3,a4),
which saved 83% (50%) in online (offline) cost.

We also used the short-secrets OT extension protocol of [65]
when preparing Beaver triples over Z2. This allows to save roughly
1/2 of the bandwidth when generating Z2 triples.

5 CASE STUDIES
We will describe in more detail how we customize MPC protocols
for efficient KeyGen and Dec for two RLWE-based FHE schemes.

5.1 For CKKS
Cheon et al. proposed the seminal concept of Homomorphic Encryp-
tion for Arithmetic of Approximate Numbers (HEAAN). We have
presented the original KeyGen and Dec algorithms of an updated
variant of single-key CKKS in Section 3.2. Here we elaborate the
steps that translate the KeyGen and Dec into their efficient MPC
implementations.

In CKKS.KeyGen, there are four costly operations that require
MPC: sampling a vector s of N uniform tertiary values using the
method of Section 4.1.1, sampling a noise vector e using the method
of Section 4.1.2, converting shares of s and e into their Zq shares
using the technique of Section 4.2.1, and computing s2 using opti-
mized circuit randomization technique of Section 4.3. Note that a
doesn’t need to be sampled using MPC because a will be released
anyway as a part of pk. In order to compute −a · s + e and s2 in
linear time, NTT is then applied, which is local computation, to put
vectors a, s, e in their point-value representation. Also, since q is the
product of L + 1 large (e.g., 43-bit) primes , we transform entries
of a, s, e into their RNS representations. Since a is public and linear
operations in our MPC can be done locally, calculating −a · s + e is
less expensive.

Next, as a part of CKKS.KeyGen, CKKS.KSGen is invoked,
which consists of L iterations each producing a switch key for one
layer of circuit. Like in KeyGen, ãi is sampled in cleartext but ẽi is
sampled with MPC. Different from KeyGen, vectors here are over
a larger number ring Zp0QL . The term −ãis2 + ẽi + p0Bis1 can be
computed locally on encrypted ẽi , s1 and public ãi ,p0,Bi .

For CKKS.Dec, since ciphertext c is public, ⟨c, sk⟩ is a local
linear operation over secret key sk = (1, s). Recall that both c and s
are stored in RNS representation whose first component is exactly
“ mod q0”, so does the product ⟨c, sk⟩. Thus function [·]q0 can be
computed for free: every party simply extract the first component of
the RNS representation of the input. Therefore, CKKS.Dec is cheap:
only local computation and a relatively small message to recover the
final result.

5.2 For GHS
Gentry, Halevi, and Smart [53] proposed an RLWE variant of BGV
that offered good support to homomorphically evaluating circuits
over finite ring operations (e.g., AES). Here we outline the leveled
version of its KeyGen suited for AES circuit. Let Z[x]/Φm (x) be the
ring of integers of themth cyclotomic number field, and Z[x]/Φm (x)
is the set of polynomials of degree up to ϕ(m) − 1 over Zq . Given
public parameters m,p,p′,ν ,Q, {Q j }j ∈[ν], a public list RT of tuples,
public distributions χkey (a uniform vector with Hamming-weight
64) and χerr (discrete Gaussian, µ = 0,σ = 3.2). Its KeyGen algo-
rithm is:

Lvld-GHS.KeyGen():

s0 ← χkey ; a ← ZQ [x]/Φm (x); e ← χerr ;
pk B (p e − a · s0, a);

∀(r , t) ∈ RT , swk(r,t) ← GHS.KSGen(s0, s0, r , t);

Return (s0, pk, {swk(r,t)}(r,t)∈RT).

9

GHS.KSGen(s, s ′, r , t):

∀j ∈ [ν], s ′′j B sr (xt); aj ←ZQ [x]/Φm (x); ej ← χerr ;

∀j ∈ [ν], swk(r,t)j B(p ej − aj · s
′ +Q j s

′′
j , aj);

Return {swk(r,t)j }j ∈[ν].

where for constants r , t , “sr (xt)” in KSGen stands for an auto-
morphism that, given s(x), multiplies s(xt) to itself r − 1 times
modulo Φm (x), namely, sr (xt) def

= Πr
i=1s(x

t) mod Φm (x). While
“s(xt) mod Φm (x)” can be realized by a public permutation on the
point representation of s(x), “sr ” will require secure computation
over secret ring element s if r > 1.

To allow bootstrapping, a bootstrappable variant of KeyGen is
defined as

Btstr-GHS.KeyGen():

(s0, pk′, swk′) ← Lvld-GHS.KeyGen();
swk′′ ← GHS.KSGen(s0, sr , 1, 1);

sr ← χkey ; a ← ZQ [x]/Φm (x); e ← χerr ;
pk′′ B (p′ e − a · s0 + sr , a);

Return (sk, (pk′, pk′′), (swk′, swk′′)).

To decrypt, GHS.Dec is defined as

GHS.Dec(s, (c0, c1)):

m B [c0 + c1 · s0]p
Returnm.

Note the similarity between high-level structure of GHS’s KeyGen
and Dec algorithms and those of CKKS examined earlier, as both are
based on RLWE. The biggest difference would be in the choice of
rings. To support homomorphic computation of the addition and mul-
tiplication in GF(p)’s extension fields, special cyclotomic number
field Z[x]/Φm (x) is used, with carefully chosen public parametersm,
Q , and {Q j }j ∈[ν] to balance security and efficiency (via ciphertext
packing). We refer the readers to [54] for an example selection of
parameters for homommorphically evaluating AES. The choice of
rings affects the MPC implementation of these algorithms in fun-
damental ways. The multiplicative triples, as well as the NTT and
CRT transforms, need to be adapted to work with the new ring. We
highlighted the operations that may involve MPC circuits in red and
those less expensive local computation over encoded data in purple.
However, we would remind that, like in CKKS, it is implicit that
all secure samples are derived from binary circuits but need to go
through CRT and NTT transforms and get the binary shares of their
entry values securely converted into ZQ shares (of course in its RNS
form). Finally, in GHS.Dec, the secret intermediate ring element
c0 + c1 · s0 needs to go through inverse NTT back to its coefficient
representation, and its entries transformed using inverse CRT, before
the final secure computation of “[·]p”.

6 IMPLEMENTATION AND EXPERIMENTS
Implementation. We implemented a prototype of GMPFHE in
C++. The protocols can be divided into a tuple generation phase
that realizes the OT-based correlated randomness generation, and a
circuit evaluation phase. For tuple generation, every party will run

both the OT sender and receiver. Since we expect the parties to run
on homogeneous hardware, this arrangement makes the workload
symmetric on all parties and helps to boost the performance even
in a 1 core/party setup. For circuit evaluation, shallower circuits are
used where possible. For the applications considered in this work, all
the multiplicative triples needed in the online phase could be cached
in memory. Our implementation did not exploit parallelism, which
would be an interesting future work.

Experiment Environment. We ran all experiments using Jetstream
[80, 81] m1.small instances (2 vCPU, 2.7 GHz, 4 GB memory),
installed with Ubuntu 18.04. In LAN setting, the network bandwidth
is 2 Gbps and roundtrip latency is 0.5 ms; while in the WAN setting,
the bandwidth is 500 Mbps with roundtrip latency 20 ms. Timing
values less than 1 second are averaged over 200 runs; timing values
less than 100 seconds are averaged over 10 runs, timing values over
100 seconds are averaged over 3 runs.

6.1 Oblivious Sampling, Conversion, and NTT
Note that sampling vectors of uniform tertiary values only requires
local sampling of uniform element in Z3 (hence less interesting).
Below we focus on experimenting with other more interesting mi-
crobenchmarks.

6.1.1 Sample Discrete Gaussian Integers. Table 2 shows
the costs of our method to sample a discrete Gaussian integer. The
bandwidth numbers match well with the theoretic expectation that
the cost of our n-party MPC protocol should be (n − 1)× that of a
two-party version. We believe that the timings didn’t increase as
much with the number of parties, mainly because there were room to
pack more gates in same rounds. Based on these numbers, one can
estimate the cost of noise vectors sampling. Take CKKS configured
with vector length N = 16384 as an example, in two-party case we
would expect the cost for sampling an error vector in LAN setting to
be 1.62ms × 16384 ≈ 26.5s.

6.1.2 Sample Vectors of Fixed Hamming-Weight. We mea-
sured the cost of sampling fixed Hamming-weight vectors of two
different lengths suggested by GHS [54] for homomorphic evalua-
tion of AES. Fixing the number of parties, the cost grows slightly
more than linear in the length of the vector because larger secret
indices are needed for securely shuffling longer vectors and securely
converting them into binary form is thus slightly more expensive.
However, the costs grow roughly linearly in the number of parties.

6.1.3 Secure Conversions. The costs of three types of con-
versions are listed in Table 4. Note the timing unit in this table is
micro-second. These numbers were measured with respect to 64-bit
q values, which accommodate all the primes actually used for run-
ning our end-to-end applications where big numbers are represented
in their RNS form. The cost for converting a full ring element will
be roughly a number in Table 4 multiplied by the number of RNS
components (e.g., 8 or 9 for the CKKS-based CNN evaluation) and
then by the vector length (e.g., 16384 for CNN evaluation).

6.1.4 Secure NTT. In our MPC design, NTT transforms only
require local computation. However, the vectors actually used are
so long that sometimes the intensive local computation due to NTT
may even be comparable to that of interactive secure computation.

10

Table 2: Securely Sample a discrete Gaussian Integer (µ = 0,σ = 3.2) with statistic error < 2−40.

2-Party 4-Party 8-Party 16-Party

Time (ms) Comm.
(KB)

Time (ms) Comm.
(KB)

Time (ms) Comm.
(KB)

Time (ms) Comm.
(KB)LAN WAN LAN WAN LAN WAN LAN WAN

1.62 2.11 10.97 2.45 2.83 32.92 5.19 5.48 76.82 11.00 11.27 164.60

Table 3: Securely Sample Vectors of Hamming-Weight 64.

2-Party 4-Party 8-Party 16-Party

Time (s) Comm.
(MB)

Time (s) Comm.
(MB)

Time (s) Comm.
(MB)

Time (s) Comm.
(MB)LAN WAN LAN WAN LAN WAN LAN WAN

ϕ(m) = 23040 42 52 263 634 71 788 212 232 1839 473 489 3939

ϕ(m) = 46080 90 115 562 132 156 1688 515 904 3938 1008 1029 8438

Table 4: Secure Conversion of a Single Value

2-Party 4-Party 8-Party 16-Party

Time (µs) Comm.
(KB)

Time (µs) Comm.
(KB)

Time (µs) Comm.
(KB)

Time (µs) Comm.
(KB)LAN WAN LAN WAN LAN WAN LAN WAN

x ∈ Z2 to x ∈ Zq 222 430 5.2 574 1046 20.6 1316 2247 56.6 2834 4675 134

x ∈ Zq to binary
representation of x

549 990 11.26 1067 1948 45 2258 4016 1124 7600 9545 292.8

x ∈ Z3 to x ∈ Zq 123 234 3.18 351 631 12.7 863 1429 35.0 1947 3043 82.7

We measured the costs of our NTT transform over Zq [x]/(x16384 +
1) (used in secure CNN), Zq [x]/Φ28679(x) (used in secure AES
with bootstrapping), Zq [x]/Φ53261(x) (used in secure AES without
bootstrapping) to be 5.81 ms, 430 ms, and 849 ms, respectively.
Inverse NTT over the ring Zq [x]/(x16384 + 1) would cost the same
as NTT but it was not needed in the CKKS-based CNN evaluation.

6.2 End-to-end Applications
We experimentally studied the potential of using GMPFHE to solve
MPC problems. To the best of our knowledge, this is the first time
that the advantages of a threshold FHE based MPC protocol are
demonstrated with concrete performance numbers.

6.2.1 Secure Multiparty CNN Evaluation. We tested our ap-
proach using the same five-layer Convolutional Neural Network
(CNN) inference application used by [35]. The model consists of
a convolutional layer, 1st square layer, a FC-1 layer, 2nd square
layer, and a FC-2 layer, in sequence. Like [35], Eval is configured
to provide 32-bit precision after the decimal point, which allowed
to achieve about 98.4% accuracy, the same as that from evaluation
in plaintext. In our experiments, the statistic error in sampling dis-
crete Gaussian is set to 2−40, and the single-key FHE is configured
with N = 214, ⌈logQ⌉ = 438, ⌈logp0⌉ = 60, and {⌈logpi ⌉ = 53}8i=1,

2 4 8 16
0

5

10

15

20

25

1.01 1.01 1.01 1.011.8

5.67

20.09

Number of Parties

Ti
m

e
(s

)

GMPFHE-CKKS
[35]
[35] Estimation

Figure 6: CNN homomorphic Eval time
We note that [35] only provided performance of 2-party CNN. The 4-party and 8-party
data points above are estimated from the micro-benchmark performance numbers of

multi-key “Mult+Relinearization” provided by [35, Table 3, Set-II].

which matches that of Set-II configuration in [35]. However, un-
like [35]’s MKHE, our protocol makes black-box use of the single-
key CKKS variant [37].

Although the generic multiparty KeyGen is expensive, we would
argue that this relatively high costs are acceptable because KeyGen

11

Table 5: Secure Evaluation of an Eight-layer Convolutional Neural Network based on CKKS

2-party 4-party 8-party 16-party

Time (s)
Comm.

Time (s)
Comm.

Time (s)
Comm.

Time (s)
Comm.

LAN WAN LAN WAN LAN WAN LAN WAN

Offline KeyGen 525 901 8.7 GB 1207 1876 33 GB 2545 4054 88 GB 5410 8340 206 GB

Online

Enc 209 ms

Eval 1007 ms

Dec 0.04 0.17 128 KB 0.04 0.28 384 KB 0.48 0.42 896 KB 0.87 0.63 1920 KB

The Dec times for 4-party and 8-party, LAN setting, would be somewhat outliers, perhaps affected by performance variance of the cluster servers.

Table 6: Compare total key sizes for CNN

2-Party 4-Party 8-Party 16-Party

pk
[35] 14 MB 28 MB 56 MB 112 MB

Ours 2 MB

swk
[35] 42 MB 84 MB 168 MB 336 MB

Ours 18 MB

is only needed Enc in very rare occasions and can be executed
completely offline. In return, comparing to [35]’s MK-CKKS, we
gain significant benefits in frequently-executed part of computation:

KeyGen The sizes of public encryption key and evaluation key
in our scheme is smaller and doesn’t grow with the number of
parties. This significantly reduces the resource demand on the
computation server (Table 6).

Enc Let xi be Pi ’s private input. Using [35] for multiparty computa-
tion, each of the n parties needs to encrypt a share of xi ; whereas
in our protocol, each party only needs to encrypt its own input. In
a n-party computation where each party contributes an equal-size
segment of input, our Enc can run n times faster.

Eval Thanks to the simplicity of single-key Eval, our Eval is already
1.8x faster than [35] (which took 1797 ms Eval on a more powerful
machine) in two-party setting. For an n-party computation, the
cost of homomorphic evaluation in our approach remains the
same, whereas [35]’s Eval costs Õ(n2) time and Õ(n) space.

Dec Our Dec doesn’t need any multiplication triples but only uses
extremely fast local computation, while [35]’s Dec requires extra
roundtrip and more sophisticated re-randomization and noise
removal steps.

6.2.2 Secure Multiparty AES. Our experiments on AES show
that GMPFHE can actually support secure multiparty exact compu-
tations, as well as running a bootstrappable FHE like GHS. But the
performance numbers are not yet competitive to best existing MPC
protocols. Due to page limit, the details are moved to Appendix C.1.

7 CONCLUSION AND FUTURE WORK
We set forth a new paradigm to build threshold FHE through tailoring
generic MPC to existing single-key FHE schemes without modify-
ing them. Applying this strategy to CKKS gives a secure multiparty

CNN inference protocol with highly competitive amortized perfor-
mance. It is also possible to actually run a bootstrappable threshold
FHE to allow asymptotically faster secure multi-party evaluation of
AES, though more research is needed to improve the performance
of bootstrappable protocols.

We believe there are ample opportunities to improve the perfor-
mance of our current proof-of-concept implementation. We haven’t
tried to explore many kinds of software parallelism, nor hardware
acceleration through SIMD or advanced ISA features [11, 44]. The
recent silent, non-interactive MPC techniques may also help to sig-
nificantly reduce roundtrips required by the KeyGen and Dec cir-
cuits [23, 24]. With some combination of above ideas, it wouldn’t be
surprising to see 1–2 orders-of-magnitude performance improvement
in the expensive KeyGen, especially in the WAN setting.

We speculate that more practical threshold FHE protocols can be
obtained from an FHE/MPC co-design. If the FHE designers can
keep the cost of the basic MPC circuit operations in mind and avoid
using MPC-expensive primitives, the resulting KeyGen and Dec
would run more efficiently when upgrading them with our approach.
The big cost gap between CKKS.Dec and GHS.Dec indicates the
importance of this direction. The reported findings of this paper may
also provide some valuable initial ideas.

REFERENCES
[1] 2020. emp-toolkit. (2020). https://github.com/emp-toolkit
[2] 2020. FHEW: A Fully Homomorphic Encryption library. (2020). https://github.

com/lducas/FHEW
[3] 2020. HEAAN software library. (2020). https://github.com/snucrypto/HEAAN
[4] 2020. HElib. (2020). https://github.com/homenc/HElib
[5] 2020. Microsoft SEAL. (2020). https://github.com/microsoft/SEAL
[6] 2020. PALISADE homomorphic encryption software library. (2020). https:

//palisade-crypto.org/
[7] 2020. TFHE: A fast open-source library for fully homomorphic encryption.

(2020). https://tfhe.github.io/tfhe/
[8] Divesh Aggarwal and Oded Regev. 2013. A note on discrete gaussian combina-

tions of lattice vectors. arXiv preprint arXiv:1308.2405 (2013).
[9] Shweta Agrawal, Craig Gentry, Shai Halevi, and Amit Sahai. 2013. Discrete

gaussian leftover hash lemma over infinite domains. In ASIACRYPT.
[10] Jacob Alperin-Sheriff and Chris Peikert. 2014. Faster bootstrapping with polyno-

mial error. In CRYPTO.
[11] Cristina S Anderson, Jingwei Zhang, and Marius Cornea. 2018. Enhanced Vector

Math Support on the Intel® AVX-512 Architecture. In IEEE 25th Symposium on
Computer Arithmetic (ARITH). IEEE.

[12] Toshinori Araki, Assi Barak, Jun Furukawa, Marcel Keller, Yehuda Lindell,
Kazuma Ohara, and Hikaru Tsuchida. 2018. Generalizing the SPDZ compiler for
other protocols. In CCS.

[13] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara.
2016. High-throughput semi-honest secure three-party computation with an
honest majority. In CCS.

12

https://github.com/emp-toolkit
https://github.com/lducas/FHEW
https://github.com/lducas/FHEW
https://github.com/snucrypto/HEAAN
https://github.com/homenc/HElib
https://github.com/microsoft/SEAL
https://palisade-crypto.org/
https://palisade-crypto.org/
https://tfhe.github.io/tfhe/

[14] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. 2012. Multiparty computation with low communica-
tion, computation and interaction via threshold FHE. In EUROCRYPT.

[15] Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar, and Amit Sahai. 2018.
Secure MPC: Laziness Leads to GOD. IACR Cryptology ePrint Archive (2018).

[16] Alex Bain, John Mitchell, Rahul Sharma, Deian Stefan, and Joe Zimmerman.
2011. A domain-specific language for computing on encrypted data (invited
talk). In IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS).

[17] Assi Barak, Martin Hirt, Lior Koskas, and Yehuda Lindell. 2018. An end-to-end
system for large scale p2p mpc-as-a-service and low-bandwidth mpc for weak
participants. In CCS.

[18] Donald Beaver. 1991. Efficient multiparty protocols using circuit randomization.
In CRYPTO.

[19] Donald Beaver, Silvio Micali, and Phillip Rogaway. 1990. The round complexity
of secure protocols. In STOC.

[20] Assaf Ben-David, Noam Nisan, and Benny Pinkas. 2008. FairplayMP: a system
for secure multi-party computation. In CCS.

[21] M Ben-Or, S Goldwasser, and A Wigderson. 1988. Completeness theorems for
non-cryptographic fault-tolerant distributed computing. In STOC.

[22] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Pe-
ter MR Rasmussen, and Amit Sahai. 2018. Threshold cryptosystems from thresh-
old fully homomorphic encryption. In CRYPTO.

[23] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal,
and Peter Scholl. 2019. Efficient Two-Round OT Extension and Silent Non-
Interactive Secure Computation. In CCS.

[24] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter
Scholl. 2019. Efficient pseudorandom correlation generators: Silent OT extension
and more. In CRYPTO.

[25] Zvika Brakerski. 2012. Fully homomorphic encryption without modulus switching
from classical GapSVP. In CRYPTO.

[26] Z Brakerski, C Gentry, and V Vaikuntanathan. 2012. Fully Homomorphic En-
cryption without Bootstrapping. In ITCS.

[27] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2014. (Leveled)
fully homomorphic encryption without bootstrapping. ACM Transactions on
Computation Theory (TOCT) 6, 3 (2014).

[28] Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. 2017. Four round se-
cure computation without setup. In Theory of Cryptography Conference. Springer,
645–677.

[29] Zvika Brakerski and Renen Perlman. 2016. Lattice-based fully dynamic multi-key
FHE with short ciphertexts. In CRYPTO.

[30] Zvika Brakerski and Vinod Vaikuntanathan. 2014. Efficient fully homomorphic
encryption from (standard) LWE. SIAM J. Comput. 43, 2 (2014).

[31] Ran Canetti. 2000. Security and composition of multiparty cryptographic proto-
cols. Journal of Cryptology 13, 1 (2000), 143–202.

[32] Jeffrey Champion, abhi shelat, and Jonathan Ullman. 2019. Securely sampling
biased coins with applications to differential privacy. In CCS.

[33] Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey Gorbunov,
Jeffrey Hoffstein, Kristin Lauter, Satya Lokam, Dustin Moody, Travis Morrison,
et al. 2017. Security of homomorphic encryption. HomomorphicEncryption.org,
Redmond WA, Tech. Rep (2017).

[34] Hao Chen, Ilaria Chillotti, and Yongsoo Song. 2019. Multi-Key Homomorphic
Encryption from TFHE. In ASIACRYPT.

[35] Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song. 2019. Efficient Multi-Key
Homomorphic Encryption with Packed Ciphertexts with Application to Oblivious
Neural Network Inference. In CCS.

[36] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.
2018. Bootstrapping for approximate homomorphic encryption. In EUROCRYPT.

[37] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.
2018. A full RNS variant of approximate homomorphic encryption. In Interna-
tional Conference on Selected Areas in Cryptography.

[38] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homomor-
phic encryption for arithmetic of approximate numbers. In ASIACRYPT.

[39] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene. 2016.
Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds. In
ASIACRYPT.

[40] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2017.
Faster Packed Homomorphic Operations and Efficient Circuit Bootstrapping for
TFHE. In ASIACRYPT.

[41] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2020.
TFHE: Fast Fully Homomorphic Encryption over the Torus. Jrnl. of Cryptology
(2020).

[42] Ashish Choudhury, Jake Loftus, Emmanuela Orsini, Arpita Patra, and Nigel P
Smart. 2013. Between a Rock and a Hard Place: Interpolating between MPC and
FHE. In ASIACRYPT.

[43] Michael Clear and Ciaran McGoldrick. 2015. Multi-Identity and Multi-Key
Leveled FHE from Learning With Errors. In CRYPTO.

[44] Marius Cornea. 2015. Intel AVX-512 instructions and their use in the implemen-
tation of math functions. Intel Corporation (2015).

[45] Daniel Demmler, Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza Sadeghi,
Thomas Schneider, and Shaza Zeitouni. 2015. Automated synthesis of optimized
circuits for secure computation. In CCS.

[46] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY-A frame-
work for efficient mixed-protocol secure two-party computation.. In NDSS.

[47] Léo Ducas and Daniele Micciancio. 2015. FHEW: bootstrapping homomorphic
encryption in less than a second. In EUROCRYPT.

[48] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and
Moni Naor. 2006. Our data, ourselves: Privacy via distributed noise generation.
In EUROCRYPT.

[49] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Homo-
morphic Encryption. IACR Cryptology ePrint Archive 2012 (2012), 144.

[50] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. 2017. High-
throughput secure three-party computation for malicious adversaries and an honest
majority. In EUROCRYPT.

[51] C Gentry. 2009. A fully homomorphic encryption scheme. Ph.D. Dissertation.
Stanford University.

[52] Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In STOC.
[53] Craig Gentry, Shai Halevi, and Nigel P Smart. 2012. Fully homomorphic encryp-

tion with polylog overhead. In EUROCRYPT.
[54] Craig Gentry, Shai Halevi, and Nigel P Smart. 2012. Homomorphic evaluation of

the AES circuit. In CRYPTO.
[55] Craig Gentry, Amit Sahai, and Brent Waters. 2013. Homomorphic encryption from

learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based.
In CRYPTO.

[56] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. 2016. Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy. In ICML.

[57] S Dov Gordon, Feng-Hao Liu, and Elaine Shi. 2015. Constant-round MPC
with fairness and guarantee of output delivery. In Annual Cryptology Conference.
Springer, 63–82.

[58] Lorenzo Grassi, Christian Rechberger, Dragos Rotaru, Peter Scholl, and Nigel P
Smart. 2016. MPC-friendly symmetric key primitives. In CCS.

[59] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. 2017. Low cost constant
round MPC combining BMR and oblivious transfer. In ASIACRYPT.

[60] Wilko Henecka, Stefan K ögl, Ahmad-Reza Sadeghi, Thomas Schneider, and
Immo Wehrenberg. 2010. TASTY: tool for automating secure two-party computa-
tions. In CCS.

[61] Ehsan Hesamifard, Hassan Takabi, Mehdi Ghasemi, and Rebecca N Wright. 2018.
Privacy-preserving machine learning as a service. PETS (2018).

[62] Aayush Jain, Peter MR Rasmussen, and Amit Sahai. 2017. Threshold Fully
Homomorphic Encryption. IACR Cryptology ePrint Archive (2017).

[63] Marcel Keller, Peter Scholl, and Nigel P Smart. 2013. An architecture for practical
actively secure MPC with dishonest majority. In CCS.

[64] Miran Kim, Yongsoo Song, Baiyu Li, and Daniele Micciancio. 2019. Semi-
parallel Logistic Regression for GWAS on Encrypted Data. IACR Cryptology
ePrint Archive (2019).

[65] Vladimir Kolesnikov and Ranjit Kumaresan. 2013. Improved OT extension for
transferring short secrets. In CRYPTO.

[66] Ningbo Li, Tanping Zhou, Xiaoyuan Yang, Yiliang Han, Wenchao Liu, and
Guangsheng Tu. 2019. Efficient multi-key fhe with short extended ciphertexts
and directed decryption protocol. IEEE Access 7 (2019).

[67] Yehuda Lindell, Benny Pinkas, Nigel P Smart, and Avishay Yanai. 2015. Efficient
constant round multi-party computation combining BMR and SPDZ. In Annual
Cryptology Conference. Springer, 319–338.

[68] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. 2015.
Oblivm: A programming framework for secure computation. In IEEE Symposium
on S&P.

[69] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. 2012. On-the-fly
multiparty computation on the cloud via multikey fully homomorphic encryption.
In STOC.

[70] Ueli Maurer. 2006. Secure multi-party computation made simple. Discrete
Applied Mathematics 154, 2 (2006).

[71] S Micali, O Goldreich, and A Wigderson. 1987. How to play any mental game.
In STOC.

[72] Payman Mohassel and Peter Rindal. 2018. ABY3: A mixed protocol framework
for machine learning. In CCS.

[73] Payman Mohassel and Yupeng Zhang. 2017. Secureml: A system for scalable
privacy-preserving machine learning. In IEEE Symposium on S&P.

[74] Christian Mouchet, Juan Troncoso-Pastoriza, and Jean-Pierre Hubaux. 2019.
Computing across trust boundaries using distributed homomorphic cryptography.
Technical Report. IACR Cryptology ePrint Archive 2019, 961.

[75] Pratyay Mukherjee and Daniel Wichs. 2016. Two round multiparty computation
via multi-key FHE. In EUROCRYPT.

13

[76] Steven Myers, Mona Sergi, and Abhi Shelat. 2011. Threshold Fully Homomorphic
Encryption and Secure Computation. IACR Cryptology ePrint Archive (2011).

[77] Chris Peikert and Sina Shiehian. 2016. Multi-Key FHE from LWE, Revisited. In
TCC.

[78] Aseem Rastogi, Matthew A Hammer, and Michael Hicks. 2014. Wysteria: A
programming language for generic, mixed-mode multiparty computations. In
IEEE Symposium on S&P.

[79] Ron Rothblum. 2011. Homomorphic encryption: From private-key to public-key.
In TCC.

[80] Craig A Stewart, Timothy M Cockerill, Ian Foster, David Hancock, Nirav Mer-
chant, Edwin Skidmore, Daniel Stanzione, James Taylor, Steven Tuecke, George
Turner, et al. 2015. Jetstream: a self-provisioned, scalable science and engineering
cloud environment. In Proceedings of the 2015 XSEDE Conference: Scientific
Advancements Enabled by Enhanced Cyberinfrastructure. 1–8.

[81] John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly Gaither, Andrew
Grimshaw, Victor Hazlewood, Scott Lathrop, Dave Lifka, Gregory D Peterson,
et al. 2014. XSEDE: accelerating scientific discovery. Computing in science &
engineering 16, 5 (2014), 62–74.

[82] Marten Van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. 2010.
Fully homomorphic encryption over the integers. In EUROCRYPT.

[83] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. 2017. Global-scale secure
multiparty computation. In CCS.

A COSTS OF REALIZING KEYGEN USING
BINARY CIRCUITS

A.1 Gate Count
Below we estimate a lower-bound on the size of a binary circuit
implementation of the KeyGen algorithms of CKKS (an RLWE
variant of CKKS) and GHS (an RLWE variant of BGV), in the
number of binary AND gates and layers.

A.1.1 Basic Components. A mod-qi addition is realized with
a logqi -bit addition, a logqi -bit comparison and a logqi -bit subtrac-
tion. Hence

#(+qi) ≥ logqi + logqi + logqi = 3 logqi (1)

A mod-qi multiplication is done through a logqi -bit multiplica-
tion and a 2 logqi -bit-to-logqi -bit long division, thus,

#(×qi) ≥ 2 log2 qi + 2 log2 q=4 log2 qi (2)

A.1.2 Gate Count for CKKS. When N = 2k for some integer
k , NTT on Zqi [X]/(x

N +1) will need to repeat +qi and ×qi N times
at the i th layer of the transform for 1 ≤ i ≤ k .

In CKKS, NTT is done either on ZQ /(xN + 1) or Zp0 ·Q /(x
N + 1)

where Q = q1q2 · · ·qL and logqi ≥ 53. So the gate count for each
NTT is at least

#(NTT) = N × logN × L × (#(+qi) + #(×qi)) (3)

There are 1 + 1 + L NTT transforms in CKKS.KeyGen. For the
logistical regression experiment we targeted, L = 8, N = 32768,
hence the total gate count for NTT #(Total NTT) will be at least
#(NTT) × 10 = 5.04 × 1011.

A.1.3 Gate Count for Leveled GHS. Let m = p1p2 · · ·pk .
The NTT on Zqi [X]/Φm (x) will need to repeat +qi and ×qi for
m(pi − 1) times at the i th layer of the transform. In total, +qi and
×qi will be executedm (

∑
pi − 1) times.

In the version of leveled GHS for AES,m = 53261 = 13×17×241
and log(qi) ≥ 50. The NTT is done at least over Zq1q2 · · ·q21/Φm (x).

So the gate count for NTT is

#(NTT) = 53261 × (13 − 1 + 17 − 1 + 241 − 1) (4)

× 21 × (#(+qi) + #(×qi)) (5)

≥ 5.22 × 1012 (6)

In this KeyGen, NTT will be invoked (1 + 1 + 40 × 3) times. So the
total gate count for NTT is at least #(Total NTT) = #(NTT) × 122 =
6.37 × 1014.

A.1.4 Gate Count for Bootstrappable GHS. Bootstrappable
GHS uses a similar ring to that of leveled GHS except m = 28679 =
7 × 17 × 241. The gate count for NTT on such ring is

#(NTT) = 28679 × (7 − 1 + 17 − 1 + 241 − 1) (7)

× 21 × (#(+qi) + #(×qi)) (8)

≥ 2.55 × 1012 (9)

Since there will be (1 + 1 + 64 × 3) calls to NTT, so the total gate
count is at least #(Total NTT) = #(NTT) × 194 > 4.94 × 1014.

A.2 Circuit depth
To estimate the circuit depth, we count that of a single NTT. Note
that there are many other operations in KeyGen, this is a well un-
derestimation. Without adapting look-ahead technique (which will
incur more gates), the depth of addition and comparison of logqi -bit
integers is logqi , which means one +qi has a depth of 3 logq. Simi-
larly, logqi -bit multiplication and 2 logqi -bit-to-logqi -bit division
have 2 log2 qi layer. Therefore each ×qi has a depth of 4 log2 qi .

In CKKS, NTT is done on Zqi /(x
N + 1) where N = 16384 and

logqi ≥ 53. Such NTT contains 14 layers of transforms, each of
which contains one addition and one multiplication. Therefore the
depth of each layer of transform is 3 logqi + 4 log2 qi . The total
depth of one NTT is 14 × (3 × 53 + 4 × 532) = 159530 layers.

In GHS, NTT is done on Zqi [X]/Φm (x). Let m = p1p2 · · ·pk .
NTT on i th layer needs to adds pi −1 numbers up after a layer of ×qi .
The depth for i th layer would be ⌈log(pi − 1)⌉ · 3 logqi + 4 log2 qi .
That for the whole NTT is (

∑
i ⌈log(pi − 1)⌉) · 3 logqi + k · 4 log2 qi .

In the leveled version of GHS, m = 53261 = 13 × 17 × 241 and
log(qi) ≥ 50. The depth of NTT is (4+ 5+ 8)× 3× 50+ 3× 4× 502 =
32550.

In the bootstrappable version of GHS,m = 28679 = 7 × 17 × 241
and log(qi) ≥ 50. The depth of NTT is (3+5+8)×3×50+3×4×502 =
32400.

B PROOFS
B.1 Proof of Theorem 3.1

THEOREM 3.1. If E is a single-key FHE scheme and Πn is a
composably secure multi-party computation protocol in presence of
any number of semi-honest corruptions, then the GMPFHE scheme
specified above securely computes f in the presence of semi-honest
attacks.

PROOF. (Intuition) Since Πn is composably secure, it suffices
to consider the security of GMPFHE in a hybrid model where the
two calls to Πn are replaced by ideal functionalities FKeyGen and
FDec. In this hybrid model, a passive adversary’s view includes

14

Table 7: Two-Party 180-Block AES using Bootstrappable GHS

Time (s) Comm.
(GB)LAN WAN

Offline
(amortizable)

KeyGen 38663 61681 697

Offline
(per instance)

Dec
(TupleGen) 213 245 1.30

Online

Enc 4.7 s

Eval 1754 s

Dec
(CircuitEval)

8 253 0.11

Table 8: Two-Party 120-Block AES using Leveled GHS

Time (s) Comm.
(GB)LAN WAN

Offline
(amortizable)

KeyGen 45573 78879 909

Offline
(per instance)

Dec (TupleGen) 462 530 2.59

Online

Enc 13.7 s

Eval 224 s

Dec
(CircuitEval)

11 258 0.23

nothing more than the vector of ciphertexts ®c = (c1, . . . , cn) where
ci ← E .Enc(pk,xi), and the computation of E .Eval(pk, f , ®c). For
any semi-honest adversaryA attacking GMPFHE, we can construct
an efficient ideal-model adversary (aka. simulator) A ′ as follows:
(1) A ′ learns E .sk via the ideal KeyGen that it simulated for A.
(2) Upon receiving Enc(pk, ®xA) fromA,A ′ decrypts it using E .sk.
(3) A ′ sends ®x = (®xA , ®xA′) to the ideal functionality f , and re-

ceives f (®x) in return.
(4) A ′ programs the FDec that it simulates so A learns f (®x) as a

result of querying FDec.
The security of E ensures that the ciphertexts ®c and E .Eval(pk, f , ®c)
thus computed is computationally indistinguishable from what A
would observe in a real-model execution. Thus, A cannot adapt its
behavior to the messages received from A ′. Hence, IDEALf ,A (®x)
and REALf ,A′(®x) are computationally indistinguishable. □

C MORE EXPERIMENTS
C.1 Secure Multiparty AES
Homomorphic AES evaluation would be a representative application
to test exact (as opposed to approximate) computation of a sophis-
ticated circuit, with either a bootstrappable or leveled FHE. Our
implementation is based on [54], with experiments configured with
the same parameters as used in [54].

Table 7 shows the performance numbers of 180 blocks of se-
cure AES computation with ciphertext packing and 123-bit security.
Table 8 is about using leveled GHS over encryptions packing 120
blocks of plaintext achieving 150-bit security. We have only got
enough resource to test the two-party case, but expect an n-party
version to cost approximately n − 1 times of this two-party one.

Our results indicate that a threshold GHS based multiparty com-
putation of AES is not yet as practical as the CNN application. The
KeyGen time is 10+ hours. The per-instance online decryption time
are also longer because many roundtrips are needed to compute the
circuits that convert Zq secrets into their binary representations.

15

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Remarks
	1.3 Related Work

	2 Preliminaries
	2.1 Fully Homomorphic Encryption
	2.2 Secure Multiparty Computation

	3 Approach Overview
	3.1 Abstract Specification of GMPFHE
	3.2 Generic-MPC for E.KeyGen and E.Dec

	4 Main Challenges and Our Solutions
	4.1 Secure Sampling
	4.2 Secure Conversion
	4.3 Optimized Circuit Randomization

	5 Case Studies
	5.1 For CKKS
	5.2 For GHS

	6 Implementation and Experiments
	6.1 Oblivious Sampling, Conversion, and NTT
	6.2 End-to-end Applications

	7 Conclusion and Future Work
	References
	A Costs of realizing KeyGen using binary circuits
	A.1 Gate Count
	A.2 Circuit depth

	B Proofs
	B.1 Proof of thm:main

	C More Experiments
	C.1 Secure Multiparty AES

