
Optimal Minimax Polynomial Approximation of
Modular Reduction for Bootstrapping of
Approximate Homomorphic Encryption?

Joon-Woo Lee1, Eunsang Lee1, Yongwoo Lee1, Young-Sik Kim2, and
Jong-Seon No1

1 Seoul National University, Republic of Korea
2 Chosun University, Republic of Korea

Abstract. Approximate homomorphic encryption, called Cheon-Kim-
Kim-Song (CKKS) scheme [6], is a fully homomorphic encryption scheme
that supports arithmetic operations for real or complex number data
encrypted. Since the bootstrapping of the CKKS scheme is a big bot-
tleneck for practical use, this makes many cryptographers optimize its
bootstrapping, but they cannot obtain its optimal solution. One of the
core procedures in the bootstrapping is to approximate the modular re-
duction function, and several works have been done for the polynomial
approximation of this function in the minimax aspect [2, 4, 13].

In this paper, we obtain a fast algorithm to derive the optimal minimax
generalized approximate polynomial of any continuous functions over
any union of the finite number of intervals, which uses a variant of the
Remez algorithm, called modified Remez algorithm. Using that results,
we derive the optimal minimax approximate polynomial for the modular
reduction function rather than the sine or cosine function in the CKKS
scheme. From the numerical analysis, there is some gap of the approxi-
mation error by two in the logarithm scale between the cosine minimax
approximation and the proposed direct minimax approximation. There
is some inherent flat error region for the cosine minimax approximation
such that the minimax approximation error does not decrease as the de-
gree of the approximation polynomial increases, but the approximation
error for the proposed one is improved as the degree of approximation
polynomial increases. Further, we propose a composite function approxi-
mation using inverse sine function to obtain approximation error smaller
than the fundamental flat error with a small number of the non-scalar
multiplications. For the direct approximation, we reduce the number of
non-scalar multiplications by 30% by using odd function property of the
minimax approximate polynomial of modular reduction function. From
the numerical analysis, it is known that the composite function approxi-
mation is desirable when the running time of bootstrapping is important,
and the direct approximation with odd function optimization is desirable
when the depth is important.

? This work is supported by Samsung Advanced Institute of Technology.

2 J. Lee et al.

Keywords: Approximate homomorphic encryption · Bootstrapping ·
Cheon-Kim-Kim-Song (CKKS) scheme · Fully homomorphic encryption
(FHE) · Minimax approximate polynomial · Remez algorithm.

1 Introduction

Fully homomorphic encryption (FHE) is the encryption scheme enabling any
logical operations [1, 8, 9, 12, 21] or arithmetic operations [5, 6] with encrypted
data. The FHE scheme makes it possible to preserve security in data processing.
However, in the traditional encryption schemes, they are not encrypted to enable
the processing of encrypted data, which causes clients to be dissuaded from
receiving services and prevent companies from developing various related systems
because of the lack of clients’ privacy. FHE solves this problem clearly so that
clients can receive many services with ensuring their privacy.

First, Gentry constructed the FHE scheme by coming up with the idea of
bootstrapping [11]. After this idea was introduced, cryptographers constructed
many FHE schemes using bootstrapping. Approximate homomorphic encryp-
tion, which is also called a Cheon-Kim-Kim-Song (CKKS) scheme [6], is one of
the promising FHE schemes, which deals with any real and complex numbers.
The CKKS scheme is particularly in the spotlight for much potential power in
many applications such as machine learning, in that data is usually represented
by real numbers. Lots of researches for the optimization of the CKKS scheme
have been done actively for practical use.

However, the slow running time of this scheme prevents it to be used practi-
cally in many applications. Especially, the bootstrapping operation is the biggest
bottleneck in the slow running time of the CKKS scheme. Thus, the reduction
of the running time for the bootstrapping operation of the CKKS scheme has
actively been researched [2, 4, 13]. Especially, homomorphic modular reduction
operation is one of the crucial parts of the bootstrapping of the CKKS scheme.

Since modular reduction operation cannot be performed exactly by opera-
tions that the CKKS scheme can support, the modular reduction function is
approximated as some polynomials which can be performed by these operations.
Many researches suggested the sub-optimal approximation polynomials that are
close to the modular reduction function in the minimax aspect. Finding the ex-
act minimax approximate polynomial for the modular reduction function is an
important research topic that answers the exact trade-off between the degree of
the approximate polynomial and the minimax approximation error. Besides, the
algorithm to find the exact minimax approximate polynomial is directly appli-
cable to the CKKS scheme, which gives the best performance in terms of the
minimax approximation error.

There are some algorithms for obtaining the minimax approximate polyno-
mial of some functions. One of them is the Remez algorithm [19] that returns
the minimax generalized approximate polynomial for any continuous function
on a closed interval. Parks-McClellan algorithm [16] uses the Remez algorithm
for the optimal filter design in electrical engineering, which returns the minimax
cosine polynomial for any filter conditions for two or three separate bands.

Optimal Minimax Polynomial Approximation of Modular Reduction 3

1.1 Previous Works

The CKKS scheme was firstly proposed in [6] without bootstrapping, which was
a somewhat homomorphic encryption scheme supporting only the finite num-
ber of multiplications. Cheon et al. [4] firstly suggested bootstrapping operation
with the homomorphic linear transformation between enabling transformation
between slots and coefficients, and approximation of homomorphic modulus re-
duction function as the sine function. In homomorphic modular reduction, they
approximated the sine function by evaluating its Taylor approximation and ap-
plying the double-angle formula. Although the double-angle formula reduces the
number of operations compared to the direct Taylor approximation, it requires
large depths. Chen et al. [2] improved the running time of bootstrapping opera-
tion by making homomorphic linear transformation and homomorphic modular
reduction efficient. They applied a modified fast Fourier transform (FFT) algo-
rithm to evaluate homomorphic linear transformation and used Chebyshev inter-
polation and Paterson-Stockmeyer algorithm to approximate the sine function.
Chebyshev interpolation is known as a good sub-optimal approximate polyno-
mial in the minimax aspect, but this is not the optimal approximate polyno-
mial. Han et al. [13] proposed the residue number system (RNS) variant CKKS
scheme using the generalized key switching method and improved the homo-
morphic modular reduction. While Chen et al. approximated the sine function
in one interval, Han et al. approximated the cosine function only in the separated
approximation regions, which enables to reduce the degree of polynomials and
use simpler double-angle formula than that of the sine function. They obtained
the upper bound on their maximum approximation error, but their approximate
polynomial is not optimal. In the previous researches for the bootstrapping in
the CKKS scheme, the modular reduction function was approximated by sine
or cosine function, and then, the sine or cosine function was approximated by
the approximate polynomial again. Up to now, the optimal algorithm to directly
obtain the minimax approximate polynomial for the modular reduction function
in the multiple approximation regions has not been introduced yet.

However, there is an example of using the exact minimax approximate poly-
nomial of sign function for comparison operation in the CKKS scheme. That is,
Cheon et al. [7] used an algorithm to obtain the minimax approximate polyno-
mial only for sign function to accelerate their composition method for homo-
morphic comparison operations. They only used the well-known minimax ap-
proximation algorithm for sign function as a subroutine. There is no research to
use the exact minimax approximate polynomial for bootstrapping of the CKKS
scheme.

The Remez algorithm [19], also called the Remez exchange algorithm, is an
iterative algorithm which obtains the minimax generalized approximate polyno-
mial for a given continuous function on an interval [a, b]. There is its variant
that obtains the minimax generalized approximate polynomial for a given con-
tinuous function on the multiple sub-intervals of an interval [10,15,19], which is
less well-known than the original one. There is a crucial difference between the
two algorithms in determining the new set of reference points in each iteration,

4 J. Lee et al.

which is used to construct a generalized approximate polynomial in the next
iteration. While the new set of reference points can be chosen naturally in the
original one for an interval, there are many candidate points for the new set of
reference points in the variant for the multiple sub-intervals of an interval. The
variant algorithm chooses the new set of reference points which alternates in
the sign of error and includes the global extreme point. Although this selection
method ensures the convergence to the minimax generalized approximate poly-
nomial, there are yet many candidate points for the new set of reference points
satisfying these criteria. The Parks-McClellan filter design algorithm uses this
variant of the Remez algorithm to design the optimal filter for a given condition,
where its approximation domain is usually the union of two or three intervals.

1.2 Our Contribution

In this paper, we modify the Remez algorithm to directly obtain the optimal
minimax generalized approximate polynomial for the modular reduction func-
tion in bootstrapping of the CKKS scheme. The proposed algorithm, called a
modified Remez algorithm, enables us to find the minimax approximation er-
ror for the optimal minimax generalized approximate polynomial of any degree.
For accelerating the Remez algorithm on multiple approximation intervals, we
modify the criteria for the selection of new reference points for each iteration.
Instead of the new reference points including the global extreme point in the
new reference points, we choose the new reference points whose absolute sum is
maximum. Although this new reference points for each iteration may not include
the global maximum point, we prove that it is enough for the proposed approx-
imation algorithm to converge to the optimal minimax generalized approximate
polynomial, and this can reduce the number of iterations of the approximation
algorithm in the bootstrapping of the CKKS scheme.

We also derive the optimal minimax approximation error of the approximate
polynomial of the modular reduction function by the proposed modified Remez
algorithm. From the numerical results, it is shown that the modified Chebyshev
interpolation algorithm in [13] approximates to the optimal minimax approxima-
tion error pretty well until some degree of the approximate polynomial in terms of
the approximation error, and for the higher degree of polynomials, there is a gap
of two in the logarithmic scale with base two between the cosine function and the
modular reduction function. We also find that there is some flat region in which
the minimax approximation error does not decrease meaningfully as the degree
of approximate polynomial increases. Precisely, in this flat region, the minimax
approximate error seems to be saturated, and after reaching some value, it sud-
denly decreases linearly in the logarithm scale again. This phenomenon is related
to the fundamental property of the modular reduction function. With this obser-
vation, note that we have to find approximate polynomials with higher degrees
when we need somewhat higher precision for approximation.

The cosine approximation in [13] can use the double-angle formula to reduce
the number of operations, but there is a fundamental limitation on the approx-
imation error compared to the direct approximation for the modular reduction

Optimal Minimax Polynomial Approximation of Modular Reduction 5

function because they first approximate the modular reduction function by the
sine or cosine function, and then, the sine or cosine function is approximated by
the approximate polynomial again. Although Han et al. analyzed the minimax
approximate error of their approximate polynomials with degrees higher than
76 for the cosine function, these minimax approximate errors are all smaller
than the fundamental flat error between the modular reduction function and
the cosine function. Thus, it is necessary to devise a better method to overcome
the fundamental limitation. We propose a composite function approximation by
composing the cosine function and the inverse sine function. By this method, the
fundamental limitation of the error is removed, and thus we can obtain arbitrarily
small minimax approximation error by this composite function approximation.
We also show that this composite function approximation is effective in reducing
the number of non-scalar multiplications. As a special case, we propose the best
proportional constant of the original cosine approximation by using the compos-
ite function approximation, and this proportional constant gives the reduction
of the fundamental flat error by 1/4 at no cost.

There are also cases where the depth is more important than the number
of non-scalar multiplications. In this case, the direct approximation of modular
reduction function is more desirable, in that the composite function approxima-
tion usually consumes some additional depths. We propose the two methods to
reduce the number of non-scalar multiplications in the direct approximation. In
these two methods, we use the fact that the optimal minimax approximate poly-
nomials of the modular reduction function are odd functions. This ensures that
the coefficients of even degree terms are always zero in the minimax approximate
polynomial. The first method uses the Paterson-Stockmeyer algorithm, and the
number of non-scalar multiplications is reduced by at most 30%. This method
consumes one more depth compared to the original Paterson-Stockmeyer algo-
rithm. The second method uses the Baby-step Giant-step algorithm, and also the
number of non-scalar multiplications is reduced by at most 20%. This method
does not need additional depth, and it ensures the optimal depth. By these vari-
ous kinds of optimization of evaluation of the minimax approximate polynomials,
we offer many options for various situations.

1.3 Outline

The outline of the paper is given as follows. Section 2 deals with some prelimi-
naries for the CKKS scheme, approximation theory, and the Remez algorithm.
In Section 3, we propose a modified Remez algorithm for the CKKS scheme
with theoretical proof of its convergence to the minimax generalized approxi-
mate polynomial. Section 4 shows several simulation results including not only
performance improvement of the minimax approximation error but also funda-
mental properties of the optimal minimax approximation error. In Section 5,
we propose the composite function approximation which makes it possible to
have arbitrarily small minimax error, and also propose the best proportional
constant of the cosine approximation function. Section 6 shows improvements in
the number of operations for the approximate polynomial directly obtained for

6 J. Lee et al.

the modular reduction function using the odd function property of its optimal
minimax approximate polynomial. Section 7 concludes the paper and discusses
future works.

2 Preliminary

2.1 Notation

Let Z,Q,R, and C be sets of integers, rational numbers, real numbers, and
complex numbers, respectively. Let C[D] be a set of continuous functions on
the domain D. Let [d] be a set of positive integers less than or equal to d, i.e.,
{1, 2, · · · , d}. Let round(x) be the function that outputs the integer nearest to
x, and we do not have to consider the case of tie in this paper. For a power
of two, M , let ΦM (X) = XN + 1 be an M -th cyclotomic polynomial, where
M = 2N . Let R = Z[X]/ 〈ΦM (X)〉 and Rq = R/qR. Let Q[X]/ 〈ΦM (X)〉
be a M -th cyclotomic field. For positive real number α, DG(α) is defined as
the distribution in ZN whose entries are sampled independently from discrete
Gaussian distribution of variance α2. HWT (h) is a subset of {0,±1}N with
Hamming weight h. ZO(ρ) is the distribution in {0,±1}N whose entries are
sampled independently with probability ρ/2 for each of ±1 and probability being
zero, 1−ρ. The Chebyshev polynomials Tn(x) are defined by cosnθ = Tn(cos θ).
The base of logarithm in this paper is two.

2.2 The CKKS Scheme

We introduce an overview of the CKKS scheme [6] in this section. The CKKS
scheme supports several operations for encrypted data of real numbers or com-
plex numbers. Since it deals with usually real numbers, the noise that ensures the
security of the CKKS scheme can be embraced in the outside of the significant
figures of the data, which is the crucial concept of the CKKS scheme.

Several independent messages are encoded into one polynomial by the canon-
ical embedding before encryption. The canonical embedding σ embeds a ∈
Q[X]/ 〈ΦM (X)〉 into an element of CN whose elements are values of a evalu-
ated at the distinct roots of ΦM (X). It is a well-known fact that the roots of
ΦM (X) are exactly the power of odd integers of the M -th root of unity, and
Z∗M = 〈−1, 5〉. Let H = {(zj)j∈Z∗M : zj = z−j}, and π be a natural projection

from H to CN/2. Then, it is easily known that the range of σ is exactly H. When
N/2 messages of complex number constitute an element in CN/2, each coordinate
is called a slot. The encoding and decoding procedures are given as follows.

– Ecd(z;∆). For a vector z ∈ CN/2, return

m(X) = σ−1
(⌊
∆ · π−1(z)

⌉
σ(R)

)
∈ R,

where ∆ is the scaling factor and
⌊
π−1(z)

⌉
σ(R)

denotes the discretization

(rounding) of π−1(z) into an element of σ(R).

Optimal Minimax Polynomial Approximation of Modular Reduction 7

– Dcd(m;∆). For a polynomial m(X) ∈ R, return a vector z ∈ CN/2 whose

entry of index j is zj =
⌊
∆−1 ·m(ζ5

j

M)
⌉

for j ∈ {0, 1, · · · , N/2 − 1}, where

ζM is the M -th root of unity.

Then, each procedure of the CKKS scheme is given as follows.

– KeyGen(1λ):
• Given λ as the security parameter, chooseM as a power of two, an integer
h, an integer P , a real positive number α, the fresh ciphertext modu-
lus qL, and the big ciphertext modulus Q, which will be the maximum
ciphertext modulus.

• Set the public key and the secret key as

sk := (1, s), pk := (−as+ e, a) ∈ R2
qL ,

where s← HWT (h), a← RqL , e← DG(α2).
• Set the evaluation key as

evk := (−a′s+ e′ + Ps2, a′) ∈ R2
PqL ,

where a′ ← RPqL and e′ ← DG(α2).
– Encpk(m ∈ R): Sample v ← ZO(0.5), e0, e1 ← DG(α2), and return

c = v · pk + (m+ e0, e1) mod qL.

– Decsk(c ∈ R2
q`

): Return m̄ = 〈c, sk〉 mod q`.
– Add(c1, c2 ∈ R2

q`
): Return

cadd = c1 + c2 mod q`.

– Multevk(c1, c2 ∈ R2
q`

): For c1 = (b1, a1), c2 = (b2, a2), let

(d0, d1, d2) := (b1b2, a1b2 + a2b1, a1a2) mod q`.

Return
cmult = (d0, d1) +

⌊
P−1 · d2 · evk

⌉
mod q`.

– RSl→l′(c ∈ R2
q`

). Return

c′ =

⌊
q`′

q`
c

⌉
mod q`′ .

Each ciphertext has a level ` representing the maximum number of possible
multiplications without bootstrapping. The modulus q` for each ciphertext of
level ` is p`q0, where p is the scaling factor and q0 is the base modulus.

There are additional homomorphic operations, rotation, and complex conju-
gation, which are used for homomorphic linear transformation in the bootstrap-
ping of the CKKS scheme. Since these operations are not used in this paper, we
omit these operations in this section.

Note that the RNS-variant CKKS scheme is inherently identical to the orig-
inal CKKS scheme except the representation of each ciphertext or key. In this
paper, we do not have to deal with these variants separately.

8 J. Lee et al.

2.3 Bootstrapping for CKKS Scheme

The framework of the bootstrapping of the CKKS scheme was introduced in
[6]. The purpose of bootstrapping is to refresh the ciphertext of level 0, whose
multiplication cannot be performed anymore, to the fresh ciphertext of level L
having the same messages. The bootstrapping is composed of the following four
steps:

i) Modulus raising
ii) Homomorphic linear transformation; CoeffToSlot

iii) Homomorphic modular reduction
iv) Homomorphic linear transformation; SlotToCoeff

Modulus Raising: The starting point of bootstrapping is modulus raising,
where we simply consider the ciphertext of level 0 as an element of R2

Q, instead

of R2
q0 . Since the ciphertext of level 0 is supposed to be 〈ct, sk〉 ≈ m mod q0,

we have 〈ct, sk〉 ≈ m + q0I mod Q for some I ∈ R when we try to decrypt
it. We are assured that the absolute values of coefficients of I are rather small,
for example, usually smaller than 12, because coefficients of sk consist of small
numbers. The crucial part of the bootstrapping of the CKKS scheme is to make
ct′ such that 〈ct′, sk〉 ≈ m mod qL. This is divided into two parts: homomorphic
linear transform and homomorphic evaluation of modular reduction function.

Homomorphic Linear Transformation: The ciphertext ct after modulus
raising can be considered as the ciphertext encrypting m + q0I, and thus we
now have to perform modular reduction to coefficients of message polynomial
homomorphically. However, the operations we have are all for slots, not coeffi-
cients of the message polynomial. Thus, to perform some meaningful operations
on coefficients, we have to convert ct into a ciphertext that encrypts coefficients
of m+ q0I as its slots, and after evaluation of homomorphic modular reduction
function, we have to reversely convert this ciphertext into the other ciphertext
ct′ that encrypts the slots of the previous ciphertext as the coefficients of its
message. These two operations are called CoeffToSlot and SlotToCoeff
operations. These operations are regarded as homomorphic evaluation of encod-
ing and decoding of messages, which are a linear transformation by some variants
of Vandermonte matrix for roots of ΦM (x). This can be performed by general
homomorphic matrix multiplication [4], or FFT-like operation [2].

Homomorphic Modular Reduction Function: After CoeffToSlot is per-
formed, we now have to perform modular reduction homomorphically on each
slot in modulus q0. This procedure is called EvalMod. This modular reduc-
tion function is not an arithmetic function, and even not a continuous function.
Fortunately, by restricting the range of the messages such that m/q0 is small
enough, the approximation region can be given only near multiples of q0. This
allows us to approximate the modular reduction function more effectively. Since

Optimal Minimax Polynomial Approximation of Modular Reduction 9

the operations that the CKKS supports are arithmetic operations, most of the
researches [2,4,13] dealing with CKKS bootstrapping approximate the modular
reduction function with some polynomials, which is sub-optimal approximate
polynomials.

2.4 Approximation Theory

Approximation theory is needed to prove the convergence of the minimax poly-
nomial obtained by the proposed modified Remez algorithm. Assume that func-
tions are defined on a union of the finite number of closed and bounded intervals
in the real line. From the following well-known theorem [20] in real analysis, we
are convinced that this domain of functions is a compact set.

Theorem 2.1 ([20] Bolzano-Weierstrass Theorem). A subset of Rn is a
compact set if and only if it is closed and bounded.

A union of the finite number of closed and bounded intervals in the real line is
trivially closed and bounded, and thus this domain is a compact set by Bolzano-
Weierstrass theorem. This theorem will be used in the convergence proof of the
modified Remez algorithm in Section 3.

The next theorem [20] states that any continuous function on compact set in
the real line can be approximated with an arbitrarily small error by polynomial
approximation. In fact, the theorem includes the case of continuous functions on
more general domains, but we only use the special case on compact sets in the
real line in this paper.

Theorem 2.2 ([20] Stone-Weierstrass Theorem). Assume that f is a con-
tinuous function on the compact subset D of the real line. For every ε > 0, there
is a polynomial p such that ‖f − p‖∞ < ε.

There are many theorems for the minimax approximate polynomials of a
function defined on a compact set in approximation theory. Before the intro-
duction of these theorems, we refer to a definition of Haar condition of a set of
functions that deals with the generalized version of power bases used in polyno-
mial approximation and its equivalent statement. We also define a generalized
polynomial with regard to bases that satisfy Haar condition. It is a well-known
fact that the power basis {1, x, x2, · · · , xd} satisfies the Haar condition. Thus, if
an argument deals with the generalized polynomials with regard to a set of basis
functions satisfying Haar condition, it naturally includes the case of polynomials.

Definition 2.3 ([3] Haar’s Condition and Generalized Polynomial). A
set of functions {g1, g2, · · · , gn} satisfies the Haar condition if each gi is contin-
uous and if each determinant

D[x1, · · · , xn] =

∣∣∣∣∣∣∣
g1(x1) · · · gn(x1)

...
. . .

...
g1(xn) · · · gn(xn)

∣∣∣∣∣∣∣

10 J. Lee et al.

for any n distinct points x1, · · · , xn is not zero. Then, a linear combination of
{g1, g2, · · · , gn} is called a generalized polynomial.

Lemma 2.4 ([3]). A set of functions {g1, · · · , gn} satisfies the Haar condition
if and only if zero polynomial is the only generalized polynomial

∑
i cigi that has

more than n− 1 roots.

Firstly, we are convinced that there is the unique minimax generalized ap-
proximate polynomial in the union of the finite number of closed and bounded
intervals as in the following two theorems.

Theorem 2.5 ([3] Existence of Best Approximations). Let F be a normed
linear space, and f is any fixed element in F . If S is a linear subspace of F with
finite dimension, S contains at least one element of minimum distance from f .

Theorem 2.6 ([3] Haar’s Unicity Theorem). Let f be any continuous func-
tion on a compact set K. Then the minimax generalized polynomial

∑
i cigi of

f is unique if and only if {g1, g2, · · · , gn} satisfies the Haar condition.

In Theorem 2.5 for the existence of the best approximation, consider a set
F of continuous functions on a union D of the finite number of closed and
bounded intervals. We can easily know that F is a linear space with a max-norm
‖f‖∞ = maxx∈D |f(x)|. The set Pd of generalized polynomials with regard to
the finite number of basis functions on D is a finite-dimensional linear subspace.
Then, from Theorem 2.5, there is at least one minimax generalized approximate
polynomial for any f ∈ F .

We now introduce the core property of the minimax generalized approximate
polynomial for a function on D.

Theorem 2.7 ([3] Chebyshev Alternation Theorem). Let {g1, · · · , gn} be
a set of functions in C[a, b] satisfying the Haar condition, and let D be a closed
subset of [a, b]. A generalized polynomial p =

∑
i cigi is the minimax approxima-

tion on D to any given f ∈ C[D] if and only if there are n+ 1 distinct elements
x0 < · · · < xn in D such that for the error function r = f − p restricted on D,

r(xi) = −r(xi−1) = ±‖r‖∞.

This condition is also called equioscillation condition. This means that if we
find a generalized polynomial satisfying the equioscillation condition, then this
is the unique minimax generalized approximate polynomial, needless to compare
with the maximum approximation error of any polynomials.

The following three theorems are used to prove the convergence of the mod-
ified Remez algorithm in Section 3.

Theorem 2.8 ([3] de La Vallee Poussin Theorem). Let {g1, · · · , gn} is
a set of continuous functions on [a, b] satisfying the Haar condition. Let f be
a continuous on [a, b], and p be a generalized polynomial such that p − f has
alternately positive and negative values at n + 1 consecutive points xi in [a, b].

Optimal Minimax Polynomial Approximation of Modular Reduction 11

Let p∗ be a minimax generalized approximate polynomial for f , and e(f) be the
minimax approximation error of p∗. Then, we have

e(f) ≥ min
i
|p(xi)− f(xi)|.

Lemma 2.9 ([3]). Let {g1, · · · , gn} be a set of continuous functions satisfying
the Haar condition. Assume that x1 < · · · < xn and y1 < · · · < yn. Then the
determinants D[x1, · · · , xn] and D[y1, · · · , yn], defined by Definition 2.3, have
the same sign.

Theorem 2.10 ([3] Strong Unicity Theorem). Let {g1, · · · , gn} be a set of
functions satisfying the Haar condition, and let p∗ be the minimax generalized
polynomial of a given continuous function u. Then, there is a constant γ > 0
determined by f such that for any generalized polynomial p, we have

‖p− f‖∞ ≥ ‖p∗ − f‖∞ + γ‖p− p∗‖∞.

2.5 Algorithms for Minimax Approximation

Remez Algorithm Remez algorithm [3, 18, 19] is an iterative algorithm that
always returns the minimax approximate polynomial for any continuous function
on an interval of [a, b]. This algorithm strongly uses Chebyshev alternation the-
orem [3] in that its purpose is finding the polynomial satisfying equioscillation
condition. In fact, the Remez algorithm can be applied to obtain the minimax
approximate generalized polynomial, whose basis function {g1, · · · , gn} satisfies
the Haar condition. The following explanation includes the generalization of the
Remez algorithm, and if we want to obtain the minimax approximate polyno-
mial of degree d, we choose the basis function {g1, · · · , gn} by the power basis
{1, x, · · · , xd}, where n = d+ 1.

Remez algorithm firstly initializes the set of reference points {x1, · · · , xn+1},
which will be converged to the extreme points of the minimax generalized ap-
proximate polynomial. Then, it obtains the minimax generalized approximate
polynomial in regard to only the set of reference points. Since the set of refer-
ence points is the set of finite points in [a, b], it is a closed subset of [a, b], and
thus Chebyshev alternation theorem holds on the set of reference points. Let
f(x) be a continuous function on [a, b]. The minimax generalized approximate
polynomial on the set of reference points is exactly the generalized polynomial
p(x) with the basis {g1, · · · , gn} satisfying

p(xi)− f(xi) = (−1)iE i = 1, · · · , d+ 2

for some real number E. This forms a system of linear equations having n + 1
equations and n + 1 variables of n coefficients of p(x) and E, which is ensured
to be not singular by Haar’s condition, and thus we can obtain the generalized

12 J. Lee et al.

polynomial p(x). Then, we can find n zeros of p(x)−f(x), zi between xi and xi+1,
i = 1, 2, · · · , n, and we can find n+ 1 extreme points y1, · · · , yn+1 of p(x)− f(x)
in each [zi−1, zi], where z0 = a and zn+1 = b. That is, we choose the minimum
point of p(x)−f(x) in [zi−1, zi] if p(xi)−f(xi) < 0, and we choose the maximum
point of p(x)− f(x) in [zi−1, zi] if p(xi)− f(xi) > 0. Thus, we find a new set of
extreme points y1, · · · , yn+1. If this satisfies equioscillation condition, the Remez
algorithm returns p(x) as the minimax generalized approximate polynomial from
the Chebyshev alternation theorem. Otherwise, it replaces the set of reference
points with these extreme points y1, · · · , yn+1 and processes above steps again.
This is the Remez algorithm in Algorithm 1. The Remez algorithm is proved to
be always converged to the minimax generalized approximate polynomial by the
following theorem.

Algorithm 1: Remez

Input : An input domain [a, b], a continuous function f on [a, b], an
approximation parameter δ, and a basis {g1, · · · , gn}.

Output: The minimax generalized approximate polynomial p for f

1 Select x1, x2, · · · , xd+2 ∈ [a, b] in strictly increasing order.
2 Find the generalized polynomial p(x) in terms of {g1, · · · , gn} with

p(xi)− f(xi) = (−1)iE for some E.
3 Divide the interval into n+ 1 sections [zi−1, zi], i = 1, · · · , n+ 1, from zeros

z1, · · · , zn of p(x)− f(x), where xi < zi < xi+1, and boundary points
z0 = a, zn+1 = b.

4 Find the maximum (resp. minimum) points for each section when p(xi)− f(xi)
has positive (resp. nagative) value. Denote these extreme points y1, · · · , yn+1.

5 εmax ← maxi |p(yi)− f(yi)|
6 εmin ← mini |p(yi)− f(yi)|
7 if (εmax − εmin)/εmin < δ then
8 return p(x)
9 else

10 Replace xi’s with yi’s and go to line 2.
11 end

Theorem 2.11 ([3] Convergence of Remez Algorithm). Let {g1, · · · , gn}
be a set of functions satisfying the Haar condition, pk be a generalized polyno-
mial generated in the k-th iteration of Remez algorithm, and p∗ be the minimax
generalized polynomial of a given f . Then, pk converges uniformly to p∗ by the
following inequality,

‖pk − p∗‖∞ ≤ Aθk,
where A is a non-negative constant, and 0 < θ < 1.

A Variant of the Remez Algorithm The above Remez algorithm can be
extended to the multiple sub-intervals of an interval [10, 15, 19]. The variant of

Optimal Minimax Polynomial Approximation of Modular Reduction 13

the Remez algorithm is the same as Algorithm 1, except Step 3 and 4. For each
iteration, firstly, we find all of the local extreme points of the error function
p − f whose absolute error values are larger than the absolute error values at
the current reference points. Then, we choose n+ 1 new extreme points among
these points satisfying the following two criteria:

i) The error values alternate in sign.
ii) A new set of extreme points includes the global extreme point.

These two criteria are known to ensure the convergence to the minimax general-
ized polynomial, even though we could not find the exact proof of its convergence.
However, it is noted that there are many choices of sets of extreme points sat-
isfying these criteria. In the next section, we modify the variant of the Remez
algorithm, where one of the two criteria is changed.

3 Modified Remez Algorithm

In this section, we propose the modified Remez algorithm to efficiently obtain the
optimal minimax generalized approximate polynomial for continuous function
on the union of finitely many closed intervals. The function we are going to
approximate is the normalized modular reduction function defined in only near
finitely many integers given as

normod(x) = x− round(x), x ∈
K−1⋃

i=−(K−1)

[i− ε, i+ ε],

where K determines the number of intervals in the domain. normod function
corresponds to the modular reduction function scaled for both its domain and
range.

In addition, Han et al. [13] uses the cosine function to approximate normod(x)
to use double-angle formula for efficient homomorphic evaluation. If we use
double-angle formula ` times, we have to approximate the following cosine func-
tion

cos

(
2π

2`

(
x− 1

4

))
, x ∈

K−1⋃
i=−(K−1)

[i− ε, i+ ε].

To design an approximation algorithm that deals with the above two func-
tions, we assume the general continuous function defined on an union of finitely
many closed intervals, which is given as

D =

t⋃
i=1

[ai, bi] ⊂ [a, b] ⊂ R

where ai < bi < ai+1 < bi+1 for all i = 1, · · · , t− 1.
When we modify the variant of Remez algorithm to approximate a given

continuous function on D with a polynomial having a degree less than or equal

14 J. Lee et al.

to d, called the modified Remez algorithm, we have to consider two crucial
points. One is to establish an efficient criterion for choosing new d+ 2 reference
points among several extreme points, and the other is to make some steps in
the modified Remez algorithm efficient. We deal with these two issues for the
modified Remez algorithm in Sections 3.1 and 3.3, respectively.

3.1 Modified Remez Algorithm with Criteria for Choosing Extreme
Points

Assume that we apply the variant of Remez algorithm on D and use {g1, · · · , gn}
satisfying Haar condition on [a, b] as the basis of generalized polynomial. After
obtaining the minimax generalized approximate polynomial in regard to the set
of reference points for each iteration, we have to choose a new set of reference
points for the next iteration. However, there are many boundary points in D and
all these boundary points have to be considered as extreme points of the error
function. For this reason, there are many cases of selecting n+ 1 points among
these extreme points. For bootstrapping in the CKKS scheme, there are many
intervals to be considered, and thus there are lots of candidate extreme points.
Since the criterion of the variant of the Remez algorithm cannot determine the
unique new set of reference points for each iteration, it is necessary to make how
to choose n + 1 points for each iteration to reduce the number of iterations as
small as possible. Otherwise, it requires a large number of iteration numbers for
convergence to the minimax generalized approximate polynomial. In addition,
it is very important to ensure that this criterion always leads to convergence
to the minimax generalized approximate polynomial. If the criterion is not de-
signed properly, the modified Remez algorithm may not converge into a single
generalized polynomial in some cases.

In order to set the criterion for selecting n + 1 reference points, we need to
define a simple function for extreme points, µp,f : D → {−1, 0, 1} as follows,

µp,f (x) =

1 p(x)− f(x) is a local maximum value at x on D

−1 p(x)− f(x) is a local minimum value at x on D

0 otherwise,

where p(x) is a generalized polynomial obtained in that iteration and f(x) is a
continuous function on D to be approximated. We abuse the notation µp,f as µ.

If we gather all extreme points of p(x) − f(x) into a set B, we can assume
that B is a finite set, that is, B = {x1, x2, · · · , xm}. If there is an interval in B,
we can choose a point in that interval. Assume that B is ordered in increasing
order, x1 < x2 < · · · < xm, and then the values of µ at these points are always
1 or −1. We can ensure that m ≥ n + 1, which will be proved in Theorem 3.1.
Let S be a set of functions defined as

S = {σ : [n+ 1]→ [m] | σ(i) < σ(i+ 1) for all i = 1, · · · , n}.

Clearly, S has only the identity function if n+ 1 = m.
Then, we set three criteria for selecting n+ 1 extreme points as follows:

Optimal Minimax Polynomial Approximation of Modular Reduction 15

i) Local extreme value condition. If E is the absolute value of error at points
in the set of reference points, then we have

min
i
µ(xσ(i))(p(xσ(i))− f(xσ(i))) ≥ E.

ii) Alternating condition. µ(xσ(i)) · µ(xσ(i+1)) = −1 for i = 1, · · · , n.

iii) Maximum absolute sum condition. Among σ’s satisfying the above two con-
ditions, choose σ maximizing the following value

n+1∑
i=1

|p(xσ(i))− f(xσ(i))|.

It is noted that the local extreme value condition in i) means that the extreme
points are discarded if the local maximum value of p(x)−f(x) is negative or the
local minimum of p(x)− f(x) is positive.

As we will see in the convergence proof in Section 3.2, the absolute value of
error at current reference points x1, · · · , xn+1 should be less than the minimax
approximation error, and it increases and converges to the minimax approxima-
tion error as the number of iterations increases. Further, this value is weighted
average of the absolute values of errors of the generalized approximate polyno-
mial in previous iteration at the x1, · · · , xn+1. The maximum absolute condition
helps for the absolute value of error at current reference points to converge to
the minimax approximation error fast.

Note that the first two conditions are also included in the variant of the Re-
mez algorithm, and the third condition, the maximum absolute sum condition, is
the replacement of the condition that the new set of reference points includes the
global extreme point. The numerical analysis will show that the third condition
makes the proposed modified Remez algorithm to converge to the optimal min-
imax generalized approximate polynomial fast. Although there are some cases
in which the global maximum point is not included in the new set of reference
points chosen by the maximum absolute sum condition, we will prove that the
maximum absolute sum condition is enough for the modified Remez algorithm
to converge to the minimax generalized approximate polynomial. Further, it can
be found in the proof that the maximum absolute sum condition is the best and
natural strategy for choosing the new set of reference points.

We have to check that S always contains at least one element σ0 that satisfies
the local extreme value condition and the alternating condition, and has σ0(i0)
for some i0 such that |p(xσ0(i0)) − f(xσ0(i0))| = ‖p − f‖∞. This existence is in
fact the basic assumption of the variant of Remez algorithm, but we prove this
existence for mathematical clarification.

Theorem 3.1. Let B and S be the sets defined above. Then, there is at least one
element in S which satisfies the local extreme value condition and the alternating
condition and has σ0(i0) for some i0 such that |p(xσ0(i0))−f(xσ0(i0))| = ‖p−f‖∞.

16 J. Lee et al.

Proof. Let ai and bi be the boundary points in D defined above and let t1, t2, · · ·
, tn+1 ∈ D be the reference points used to construct pk(x) at the k-th iteration.
Without loss of generality, ti < ti+1 for all i = 1, · · · , n, and the following
equation for some proper positive value E is satisfied as

p(ti)− f(ti) = (−1)i−1E.

Let u2i−1 be the largest point among all aj and t2j ’s which are less than or
equal to t2i−1, and let v2i−1 be the smallest point among all bj and t2j ’s which
are larger than or equal to t2i−1. Then, firstly, we prove that there exists at least
one local maximum point c2i−1 of pk(x)−f(x) in [u2i−1, v2i−1], and c2i−1 < t2i <
c2i+1 for all possible i. From the extreme value theorem for continuous function
on interval [20], there exists at least one maximum point of pk(x) − f(x) in
[u2i−1, v2i−1], since pk(x)−f(x) is continuous on D. We denote this value at the
maximum point as c2i−1. Since t2i−1 is in [u2i−1, v2i−1], pk(c2i−1)− f(c2i−1) ≥
E > −E = pk(t2j) − f(t2j) for all possible j, and thus c2i−1 cannot be equal
to any t2i’s. Since elements appeared more than once in intervals [u2i−1, v2i−1],
i = 1, 2, · · · , bn+2

2 c, are only t2i’s and v2i−1 ≤ t2i ≤ u2i+1 for all possible i, we
now prove that c2i−1 < t2i and t2i < c2i+1.

Let u2i be the largest point among all aj and c2j−1’s which are less than or
equal to t2i, and let v2i be the smallest point among all bj and c2j−1’s which are
larger than or equal to t2i. Then, we prove that there exists at least one local
minimum point c2i of pk(x) − f(x) in [u2i, v2i], and ci’s are sorted in strictly
increasing order. Again, from the extreme value theorem for continuous function
on interval, there exists at least one minimum point of pk(x)− f(x) in [u2i, v2i].
We denote this value at the minimum point as c2i. Since t2i is in [u2i, v2i],
pk(c2i) − f(t2j) ≤ −E < E ≤ pk(c2j−1) − f(c2j−1) for all possible j, and thus
c2i cannot be equal to any c2j−1. Since elements appeared more than once in
intervals [u2i, v2i], i = 1, 2, · · · , bn+2

2 c, are only c2i−1’s and v2i ≤ c2i+1 ≤ u2i+2

for all possible i, we now prove that ci’s are sorted in strictly increasing order.
Since ci’s are all local extreme points, ci ∈ B for all i. Then, we can set σ′ ∈ S

such that xσ′(i) = ci. Since c2i−1’s are local maximum points and c2i’s are local
minimum points, σ′ satisfies alternating condition. Since µ(ci)(p(ci)−f(ci)) ≥ E,
σ′ also satisfies the local extreme value condition. If one of ci has the maximum
absolute value of p− f , we are done.

Assume that all of ci’s do not have the maximum absolute value of pk − f .
Let xm be the global extreme point of pk − f . If there is some k such that
ck < xm < ck+1, either ck or ck+1 has the same value of µ at xm. Then,
we replace it with xm and define this function as σ0. Since σ0 satisfies all of
conditions in Theorem 3.1, we are done.

If xm < c1 or xm > cn+1, we separate it into two cases again. If µ(xm) = µ(c1)
(resp. µ(xm) = µ(cn+1)), we just replace c1 (resp. cn+1) with xm and define this
function as σ0, and σ0 satisfies all these conditions. If µ(xm) 6= µ(c1) (resp.
µ(xm) 6= µ(cn+1)), we replace cn+1 (resp. c1) with xm, and relabel the points
to define the new function σ0. This also satisfies all three conditions. Thus, we
prove it.

Optimal Minimax Polynomial Approximation of Modular Reduction 17

Remark. This theorem also ensures that m ≥ n + 1. If m < n + 1, S has to be
empty. This theorem ensures that there is at least one element in S, we can be
convinced that m ≥ n+ 1.

Now we propose the modified Remez algorithm for the continuous function on
the union of finitely many closed intervals as in Algorithm 2. The local extreme
value condition is reflected in Step 3, and the alternating condition and the
maximum absolute sum condition are reflected in Step 4. Theorem 3.1 ensures
the basic validity of Algorithm 2.

Algorithm 2: ModifiedRemez

Input : An input domain D =
⋃t

i=1[ai, bi] ⊂ R, a continuous function f on
D, an approximation parameter δ, and a basis {g1, · · · , gn}

Output: The minimax generalized approximate polynomial p for f

1 Select x1, x2, · · · , xn+1 ∈ D in strictly increasing order.

2 Find the generalized polynomial p(x) with p(xi)− f(xi) = (−1)iE for some E.
3 Gather all extreme and boundary points such that µp,f (x)(p(x)− f(x)) ≥ |E|

into a set B.
4 Find n+ 1 extreme points y1 < y2 < · · · < yn+1 with alternating condition

and maximum absolute sum condition in B.
5 εmax ← maxi |p(yi)− f(yi)|
6 εmin ← mini |p(yi)− f(yi)|
7 if (εmax − εmin)/εmin < δ then
8 return p(x)
9 else

10 Replace xi’s with yi’s and go to line 2.
11 end

3.2 Convergence of Modified Remez Algorithm

We now have to prove that the proposed algorithm always converges to the mini-
max generalized approximate polynomial for given piecewise continuous function
on D. This proof is similar to the convergence proof of the original Remez algo-
rithm on one closed interval [3,18], but there are a few more general arguments
than the original proof. This convergence proof includes the proof for both the
variant of the Remez algorithm and the modified Remez algorithm.

Before proving the convergence, we have to generalize the de La Vallee
Poussin theorem, which was used to prove the convergence of the original Remez
algorithm on an interval. Since original de La Vallee Poussin theorem [3] only
deals with a single interval, we generalize it in the following theorem that deals
with the closed subset of an interval, whose proof is almost the same as that of
the original theorem.

18 J. Lee et al.

Lemma 3.2 (Generalized de La Vallee Poussin Theorem). Let {g1, · · · , gn}
is a set of continuous functions on [a, b] satisfying the Haar condition, and let
D be a closed subset of [a, b]. Let f be a continuous on D, and p be a generalized
polynomial such that p− f has alternately positive and negative values at n+ 1
consecutive points xi in D. Let p∗ be a minimax generalized approximate poly-
nomial for f on D, and e(f) be the minimax approximation error of p∗. Then,
we have

eD(f) ≥ min
i
|p(xi)− f(xi)|.

Proof. Assume that the above statement is false. Then, there is a generalized
polynomial p0 such that p0 − f has alternately positive and negative values at
n+ 1 consecutive points in D, and

‖p∗ − f‖∞ < |p0(xi)− f(xi)| (1)

for all i. Then, p0−p∗ = (p0−f)− (p∗−f) has alternately positive and negative
values at the consecutive xi, which leads to the fact that there is n roots in [a, b].
From Lemma 2.4, p0 − p∗ has to be zero, which is contradiction.

We now prove the convergence of Algorithm 2.

Theorem 3.3. Let {g1, · · · , gn} be a set of functions satisfying the Haar con-
dition on [a, b], D be the multiple sub-intervals of [a, b], and f be a continuous
function on D. Let pk be a generalized approximate polynomial generated in the
k-th iteration of the modified Remez algorithm, and p∗ be the optimal minimax
generalized approximate polynomial of f . Then, as k increases, pk converges
uniformly to p∗ as in the following inequality

‖pk − p∗‖∞ ≤ Aθk,

where A is a non-negative constant and 0 < θ < 1.

Proof. Let {x(0)1 , · · · , x(0)n+1} be the initial set of reference points and {x(k)1 , · · · , x(k)n+1}
be the new set of reference points chosen at the end of iteration k. Let rk = pk−f
be the error function of pk and r∗ = p∗−f be the error function of p∗. Since pk is
generated such that the absolute values of the error function rk at the reference

points x
(k−1)
i , i = 1, 2, · · · , n+ 1 are the same. For k ≥ 1, we define

αk = min
i
|rk(x

(k−1)
i)| = max

i
|rk(x

(k−1)
i)|,

βk = ‖rk‖∞,

γk = min
i
|rk(x

(k)
i)|. (2)

Define β∗ = ‖r∗‖∞. We have β∗ ≥ γk from Lemma 3.2, βk ≥ β∗ by definition
of p∗, and γk ≥ αk by the local extreme value condition for new set of reference
points. Then, we have

αk ≤ γk ≤ β∗ ≤ βk.

Optimal Minimax Polynomial Approximation of Modular Reduction 19

Let c(k) = [c
(k)
1 , · · · , c(k)n]T be the coefficient vector of pk. Then, c(k) is the

solution vector of the following system of linear equations

(−1)i+1h(k) +

n∑
j=1

c
(k)
j gj(x

(k−1)
i) = f(x

(k−1)
i), i = 1, · · · , n+ 1 (3)

for the n+ 1 unknowns h(k) and c
(k)
j ’s, and |h(k)| = αk. From Theorem 2.6, we

assure that the system of linear equations in (3) is nonsingular, which can be
rewritten as in the matrix equation for k + 1, instead of k,

1 g1(x
(k)
1) · · · gn(x

(k)
1)

−1 g1(x
(k)
2) · · · gn(x

(k)
2)

...
...

. . .
...

(−1)n g1(x
(k)
n+1) · · · gn(x

(k)
n+1)

h(k+1)

c
(k+1)
1

...

c
(k+1)
n

 =

f(x

(k)
1)

f(x
(k)
2)
...

f(x
(k)
n+1)

 . (4)

From Cramer’s rule, we can find h(k+1) as

h(k+1) =

∣∣∣∣∣∣∣∣∣∣
f(x

(k)
1) g1(x

(k)
1) · · · gn(x

(k)
1)

f(x
(k)
2) g1(x

(k)
2) · · · gn(x

(k)
2)

...
...

. . .
...

f(x
(k)
n+1) g1(x

(k)
n+1) · · · gn(x

(k)
n+1)

∣∣∣∣∣∣∣∣∣∣
/

∣∣∣∣∣∣∣∣∣∣
1 g1(x

(k)
1) · · · gn(x

(k)
1)

−1 g1(x
(k)
2) · · · gn(x

(k)
2)

...
...

. . .
...

(−1)n g1(x
(k)
n+1) · · · gn(x

(k)
n+1)

∣∣∣∣∣∣∣∣∣∣
.

(5)

Let M
(k)
i be the minor of the matrix in (4) removing the first column and

the i-th row. Then, (5) can be written as

h(k+1) =

∑n+1
i=1 f(x

(k)
i)M

(k)
i (−1)i+1∑n+1

j=1 M
(k)
j

. (6)

If f is replaced by any generalized polynomial p =
∑n
j=1 c

′
jgj in (4), the minimax

approximation on {x(k)1 , · · · , x(k)n+1} is p itself. This leads to∑n+1
i=1 pk(x

(k)
i)M

(k)
i (−1)i+1∑n+1

j=1 M
(k)
j

= 0. (7)

By substracting (6) from (7), and rk = pk − f , we have

−h(k+1) =

∑n+1
i=1 rk(x

(k)
i)M

(k)
i (−1)i+1∑n+1

j=1 M
(k)
j

.

By the fact that rk(x
(k)
i)’s alternate in sign by the alternating condition for new

set of reference points, and all minors Mi have the same sign by Lemma 2.9, we
have ∣∣∣∣∣

n+1∑
i=1

rk(x
(k)
i)(−1)iM

(k)
i

∣∣∣∣∣ =

n+1∑
i=1

|rk(x
(k)
i)||M (k)

i |

20 J. Lee et al.

αk+1 = |h(k+1)| =
∑n+1
i=1 |M

(k)
i ||rk(x

(k)
i)|∑n+1

j=1 |M
(k)
j |

. (8)

Now let

θ
(k)
i =

|M (k)
i |∑n+1

j=1 |M
(k)
j |

.

Since αk+1 is weighted average of |rk(x
(k)
i)| by θ

(k)
i ’s as weights, we have αk+1 ≥

γk from (2). Note that αk ≤ γk ≤ αk+1, and thus αk is a non-decreasing se-
quence. This fact is used in the last part of the proof.

Note that there are some n + 1 alternating points, where the approximate
error values alternates, including the global extreme point by Theorem 3.1, and

the approximate error values at x
(k)
1 , · · · , x(k)n+1 have the maximum absolute sum

by the maximum absolute sum condition for new set of reference points. That is,∑n+1
i=1 |rk(x

(k)
i)| is larger than or equal to sum of any n+ 1 absolute error values

including βk and thus we have

n+1∑
i=1

|rk(x
(k)
i)| ≥ βk. (9)

First, we will prove that θ
(k)
i is larger than a constant 1− θ > 0 throughout

the iterations. It is known that Mi 6= 0 for all i from the Haar condition. We
firstly prove an inequality

x
(k)
i+1 − x

(k)
i ≥ ε > 0, i = 0, · · · , n, (10)

where ε does not depend on k. Assume that (10) is not true. Let x(k) = (x
(k)
1 , · · · , x(k)n+1)

be a sequence defined onDn+1. Then x(k) has its subsequence such that mini |x(k)i+1−
x
(k)
i | converges to zero. Since Dn+1 is a closed and bounded subset of Rn+1, it

is a compact set, and thus this subsequence also has its subsequence converging
to a point (x∗1, · · · , x∗n+1). Since mini |x∗i+1 − x∗i | = 0, there is some i such that
x∗i = x∗i+1. Let p be the minimax generalized polynomial of f on (x∗1, · · · , x∗n+1).
Since there is actually less than or equal to n points, p is the generalized ap-
proximate polynomial generated by the Lagrange interpolation, and thus

p(x∗i) = f(x∗i), i = 1, · · · , n+ 1.

It is known that α1 > 0 by the fact that αk is weighted average of absolute
approximation errors at the previous set of reference points. Then, there exists
a number δ > 0 such that whenever |y1 − y2| < ε and y1, y2 ∈ D, we have

|(p− f)(y1)− (p− f)(y2)| < α1

because p − f is a continuous function on the compact set, and thus it is also

uniformly continuous. Since there is a subsequence of (x
(k)
1 , · · · , x(k)n+1) converging

to x(k) = (x∗1, · · · , x∗n+1), there is some k0 such that

|x(k0)i − x∗i | < δ, i = 1, · · · , n+ 1.

Optimal Minimax Polynomial Approximation of Modular Reduction 21

Then,

|(p− f)(x
(k0)
i)− (p− f)(x∗i)| = |p(x

(k0)
i)− f(x

(k0)
i)| < α1

because (p− f)(x∗i) = 0. In fact, p is not the minimax generalized approximate

polynomial in regard to the k-th set of reference points {x(k0)1 , · · · , x(k0)n+1}. Since
αk+1 is the error value of the minimax generalized approximate polynomial on

{x(k0)1 , · · · , x(k0)n+1}, we have

αk+1 ≤ max
i
|p(x(k0)i)− f(x

(k0)
i)| < α1.

This contradicts the fact that αk is non-decreasing sequence, and thus we have
(10).

Now, we will prove that θ
(k)
i is larger than a constant 1 − θ. Consider the

subset D′ of Dn+1 such that for (y1, · · · , yn+1) ∈ D′, yi+1−yi ≥ ε. We easily see
that D′ is a closed and bounded subset in Rn+1, and thus D′ is a compact set.

Then, |Mi|, which is the same function as |M (k)
i | except that the inputs are yi’s

instead of x
(k)
i ’s, is a continuous function on Dn+1, so is on D′, and thus there is

an element at which |Mi| has the mininum value on D′ from the extreme value
theorem. From the Haar condition in Definition 2.3, |Mi| cannot be zero because
yi’s are distinct and the minimum value of |Mi| is not zero. Since we consider
the finite number of functions |Mi|’s, the lower bound of all |Mi|’s is bigger than

zero. In addition, since
∑n+1
j=1 |Mj | is also a continuous function on D′, there is

an upper bound of
∑n+1
j=1 |Mj | on D′ from the extreme value theorem. This leads

to the fact that θi’s are lower-bounded beyond zero.

From γk+1 ≥ αk+1, (8), and (9), we have

γk+1 − γk ≥ αk+1 − γk

=

n+1∑
i=1

θ
(k)
i (|rk(x

(k)
i)| − γk) (11)

≥ (1− θ)(βk − γk) (12)

≥ (1− θ)(β∗ − γk). (13)

From (13), we have

β∗ − γk+1 = (β∗ − γk)− (γk+1 − γk)

≤ (β∗ − γk)− (1− θ)(β∗ − γk)

= θ(β∗ − γk).

Then, we obtain the following inequality for some nonnegative B as

β∗ − γk ≤ Bθk. (14)

22 J. Lee et al.

From (12) and (14), we have

βk − β∗ ≤ βk − γk

≤ 1

1− θ
(γk+1 − γk)

≤ 1

1− θ
(β∗ − γk)

≤ 1

1− θ
Bθk

≤ Cθk. (15)

From Theorem 2.10, there is a constant γ > 0 such that

‖p∗ − f‖∞ + γ‖pk − p∗‖∞ ≤ ‖pk − f‖∞.

Since βk = ‖pk − f‖∞, β∗ = ‖p∗− f‖∞, and (15), we complete the proof by the
following inequality

‖pk − p∗‖∞ =
βk − β∗

γ

≤ Aθk

for nonnegative constant A.

Note that (11) and Theorem 3.3 can be satisfied if we include the global ex-
treme point to the new set of reference points in the variant of Remez algorithm,
instead of the maximum absolute sum condition. Thus, this proof naturally in-
cludes the convergence proof of the original variant of the Remez algorithm.
From (11), we can easily know that the maximum absolute sum condition is
better for the choice of the new set of reference points than the simple inclusion
of the global extreme point, in that the rate of the convergence is determined by
the value of the absolute sum of errors values, which is confirmed as in Table 1
for the power basis {1, x, x2, · · · , xd}.

Table 1 shows the number of iterations required to converge to the optimal
minimax approximate polynomial in the variant of the Remez algorithm and
the modified Remez algorithm. The initial set of reference points is selected
uniformly in each interval as soon as possible since we want to observe their per-
formances in the worst case. While the selection for new reference points is not
unique for each iteration in the variant of the Remez algorithm, the modified
Remez algorithm selects the new reference points uniquely for each iteration.
Thus, when we analyze the variant of the Remez algorithm, we select the new
reference points randomly for each iteration among the possible sets of reference
points that satisfy the local extreme value condition and the alternating condi-
tion and have the global extreme point. We set the approximation parameter δ
in Algorithm 2 as 2−40 and repeat this simulation with 100 times. It shows that

Optimal Minimax Polynomial Approximation of Modular Reduction 23

Degree
Modified

Remez algorithm

Variant of
Remez algorithm

Average
Standard
deviation

Max Min

79 28 60.0 9.38 82 41

99 8 17.1 3.34 28 11

119 26 53.4 8.10 79 37

139 39 60.3 4.71 79 48

159 39 72.1 9.71 98 42

179 48 72.3 9.72 105 53

199 56 80.4 7.28 94 60

Table 1: Comparison of iteration numbers between the modified Remez algo-
rithm and the variant of Remez algorithm for δ = 2−40.

the modified Remez algorithm is much better to reduce the iteration number of
the Remez algorithm.

Note that the number of iterations depends on the initial set of reference
points. In fact, the uniformly distributed reference points are not desirable as
an initial set of reference points because these reference points are far from the
converged reference points. In fact, the node selection method in the modified
Chebyshev algorithm in [13] is adequate for selection for the initial reference
points.

3.3 Efficient Implementation of Modified Remez Algorithm

In this section, we have to consider the issues in each step of Algorithm 2 and
suggest how to implement Steps 2, 3, and 4 of Algorithm 2 as follows.

Finding Approximate Polynomial A naive approach is finding coefficients
of the approximate polynomial with power basis at the current reference points
for the continuous function f(x), i.e., we can obtain cj ’s in the following equation

d∑
j=0

cjx
j
i − f(xi) = (−1)iE,

where E is also an unknown variable in this system of linear equations. However,
this method suffers from the precision problem for the coefficients. It is known
that as the degree of the basis of approximate polynomial increases, the coeffi-
cients usually decreases, and we have to set higher precision for the coefficients
of the higher degree basis. Han et al. [13] use the Chebyshev basis for this coeffi-
cient precision problem since the coefficients of a polynomial with the Chebyshev
basis usually have the almost same order. Thus, we also use the Chebyshev basis
instead of the power basis. From the perspective of approximation theory, we
point out the following lemma.

24 J. Lee et al.

Lemma 3.4. Chebyshev basis {T0(x), T1(x), · · · , Td(x)} satisfies Haar condition
on any closed and bounded interval.

Proof. Note that the degree of Tn(x) is exactly n, and thus
∑d
i=0 ciTi(x) has the

degree d. If
∑d
i=0 ciTi(x) has more than d roots, it has to be the zero polynomial.

This gives the theoretical basis for using the Chebyshev basis in Step 2 of
Algorithm 2. In short, using the d + 2 reference points, we solve the following
system of d+ 2 linear equations to obtain cj ’s and E as

d∑
j=0

cjTj(xi)− f(xi) = (−1)iE.

Obtaining Extreme Points Since we are dealing with a very small minimax
approximation error, we have to obtain the extreme points as precisely as possi-
ble. Otherwise, we cannot reach the extreme point for the minimax generalized
approximate polynomial precisely, and then the minimax approximation error
obtained with this algorithm becomes large. Basically, in order to obtain the
extreme points, we can scan p(x)− f(x) with a small scan step and obtain the
extreme points where the increase and decrease are exchanged. A small scan
step increases the accuracy of the extreme point but causes a long scan time
accordingly. To be more specific, it takes approximately 2` proportional time to
find the extreme points with the accuracy of `-bit. Therefore, it is necessary to
devise a method to obtain high accuracy extreme points more quickly.

In order to obtain the exact point of the extreme value, we use a method
of finding the points where the increase and decrease are exchanged and then
finding the exact extreme point using a kind of binary search. The specific fast
search algorithm is described as follows. Let r(x) = p(x)−f(x) and sc be the scan
step. If we can find x0 where µ(x0)r(x0) ≥ |E|, and (r(x0)− r(x0 − sc))(r(x0 +
sc) − r(x0)) ≤ 0, we obtain the i-th extreme points using the following process
successively ` times,

xi,k = arg max
x∈{xi,k−1−sc/2k,xi,k−1,xi,k−1+sc/2k}

|r(x)|, k = 1, 2, · · · , `.

Then, we obtain the extreme point with O(log(sc)+`)-bit precision. The reason is
as follows. If sc is small enough, |r(x)| behaves similarly to a(x−x∗)2+b for some
a > 0 and b near the point x∗. This behavior ensures that if |x1−x∗| < |x2−x∗|
near x∗, |r(x1)| > |r(x2)| holds, and the converse also holds. It is easy to check
that when sc is determined, it is sufficient if r(x) behaves similarly to a(x−x∗)2+b
in the interval [x∗− sc, x∗+ sc], but sc needs not to be too small value. Then, we
can find the extreme point with arbitrary precision with linear time to precision
`. In summary, we propose that the `-bit precision of the extreme points can be
obtained by the linear time of ` instead of 2`.

Optimal Minimax Polynomial Approximation of Modular Reduction 25

Obtaining New Reference Points When we find the new reference points
satisfying the local extreme value condition, the alternating condition, and max-
imum absolute sum condition, there is a naive approach: among local extreme
points which satisfy the local extreme value condition, find all n+ 1 points sat-
isfying the alternating condition and choose the n + 1 points which have the
maximum absolute sum value. If we have m local extreme points, we have to
investigate

(
m
n+1

)
points, and this value is too large, and thus it makes this algo-

rithm impractical. Thus, we have to find a more efficient method than this naive
approach.

We propose very efficient and provable algorithm for finding the new refer-
ence points. The proposed algorithm always gives the n + 1 points satisfying
the three criteria. It can be considered as an elimination method, in that we
eliminate some elements for each iteration in the proposed algorithm until we
obtain n + 1 points. It is clear that as long as m > n + 1, we can find at
least one element which may not be included in the new reference points. This
proposed algorithm is given in Algorithm 3. Algorithm 3 takes O(m logm) run-
ning time, which is a quasi-linear time algorithm. To understand the last part
of Algorithm 3, the example can be given that if the extreme point x2 is re-
moved, T = {|r(x1)|+ |r(x2)|, |r(x2)|+ |r(x3)|, |r(x3)|+ |r(x4)|, · · · } is changed
to T = {|r(x1)|+ |r(x3)|, |r(x3)|+ |r(x4)|, · · · }.

It is assumed that whenever we remove an element in the ordered set B in
Algorithm 3, the remaining points remain sorted and indices are relabeled in
increasing order. When we compare the values to remove some extreme points,
there are the cases that the compared values are equal or the smallest element
is more than one. In such cases, we randomly remove one of these elements.

Theorem 3.5. Algorithm 3 always returns the n+1 points satisfying alternating
condition and maximum absolute sum condition.

Proof. Let Binit = {t′1, t′2, · · · , t′m} be the initial elements in B , and let t′` be an
element removed in the first while statement. We first show that each element
removed in the first while statement in Algorithm 3 is not included in the new ref-
erence; that is, if the subset A of Binit having n+ 1 elements satisfies alternating
condition and contain this removed element, there is another subset A′ of B hav-
ing n+ 1 elements satisfying alternating condition, not containing the removed
element, and having absolute sum larger than or equal to A. Since it is removed
in the first while statement, there is an element t′`′ such that |r(t′`′)| ≥ |r(t′`)|,
µ(t′`′) = µ(t′`), and |`′− `| = 1. Clearly, A cannot contain t′`′ , because A satisfies
the alternating condition. Let A′ be the same set as A except that t′` is replaced
with t′`′ . Then A′ also satisfies alternating condition, does not contain t′`, and
has absolute sum larger than or equal to that of A.

We now observe that at the end of the first while statement, B itself satisfies
the alternating condition. Then we now have to prove that elements removed in
the second while statement in Algorithm 3 are not included in the new reference
points. In other words, if the subset A of Binit having n + 1 elements satisfies
the alternating condition and contains these removed elements, there is another

26 J. Lee et al.

Algorithm 3: NewReference

Input : An increasing ordered set of extreme points B = {t1, t2, · · · , tm}
with m ≥ n+ 1, and number of basis n.

Output: n+ 1 points in B satisfying alternating condition and maximum
absolute sum condition.

1 i← 1
2 while ti is not the last element of B do
3 if µ(ti)µ(ti+1) = 1 then
4 Remove from B one of two points ti, ti+1 having less value among

{|r(ti)|, |r(ti+1)|}.
5 else
6 i← i+ 1
7 end

8 end
9 if |B| > n+ 2 then

10 Calculate all |r(ti)|+ |r(ti+1)| for i = 1, · · · , |B| − 1 and sort and store this
values into the array T .

11 while |B| > n+ 1 do
12 if |B| = n+ 2 then
13 Remove from B one of two points t1, t|B| having less value among

{|r(t1)|, |r(t|B|)|}.
14 else if |B| = n+ 3 then
15 Insert |r(t1)|+ |r(t|B|)| into T and sort T . Remove from B the two

element having the smallest value in T .
16 else
17 if t1 or t|B| is included in the smallest element in T then
18 Remove from B only t1 or t|B|.
19 else
20 Remove from B the two elements having the smallest element in T .
21 end
22 Remove from T all elements related to the removed extreme points,

and insert into T the sum of absolute error values of the two newly
adjacent extreme points.

23 end

24 end

Optimal Minimax Polynomial Approximation of Modular Reduction 27

subset A′ of B having n + 1 elements satisfying alternating condition, not con-
taining these removed elements, and having absolute sum larger than or equal
to A. Let t′` be an element removed in the second while statement be.

Then, there are three cases: at the time of removal of t′`, the remaining set
B can have n + 2, n + 3, or larger than n + 3 elements as in Algorithm 3. We
consider each case separately. By the induction argument, we can assume that
the remaining set B in each iteration has n+1 points that satisfy the alternating
condition and have the maximum absolute sum among all possible n+ 1 points
in Binit. In other words, we can assume that if we have n+ 1 points in Binit that
satisfy the alternating condition and contain at least one of the removed elements
before that time, there are n+ 1 points in the remaining set B at that time such
that they satisfy the alternating condition and have absolute sum larger than or
equal to the previous ones. This inductive assumption makes us consider only
the remaining set B at that iteration instead of all Binit in the proof.

i) Case of n + 2: If the remaining set B has n + 2 elements at the time of
removal of t′`, elements in B at that time are labeled as t1, t2, · · · , tn+2, and
t′` is labeled as t1 or tn+2. Then, |r(t)| at one of the two points t1 and tn+2,
which is not t′` has the value of |r(x)| larger than or equal to the value at
t′`. We denote this element t′`′ . If we have a subset A of n+ 1 points in the
remaining set B that satisfy alternating condition and contain t′`, t

′
`′ must

not be in these n + 1 points due to alternating condition. Let A′ be the
same set as A except that t′` is replaced with t′`′ . Then, A′ also satisfies the
alternating condition, does not contain t′`, and has absolute sum larger than
or equal to that of A.

ii) Case of n+3: If the remaining set B has n+3 elements at the time of removal
of t′`, the elements in B at that time are labeled as t1, t2, · · · , tn+3, and we
have to remove two elements. Then, there must be a different element t′p
which is also removed at the time of removal of t′`. {t′`, t′p} can be {ti, ti+1}
for some i or {t1, tn+3} as in Algorithm 3. Since all of the subsets of B
having n+ 1 elements that satisfy the alternating condition are the cases of
B\{ti, ti+1} for some i or B\{t1, tn+3}, one subset of B with the alternating
condition that has the maximum absolute sum has to be B\t′`, t′p. Therefore,
we can obtain the resulting subset by removing these two elements.

iii) Case of larger than n + 3: If the remaining set B has elements larger than
n+ 3 elements at the time of removal of t′`, the elements in B at that time
are labeled as t1, t2, · · · , tj , where j > n+ 3. Then, there are two cases: One
is that t′` is labeled as t1 or tj , and the other is not the first case.

iii)-1 If t′` is labeled as t1 or tj , let t′p be the adjacent element in B. If the
subset A in B that satisfies the alternating condition and contains t′`
also contains t′p, there is at least one pair of adjacent elements t′`′ and
t′p′ in B that is not contained in A, since A satisfies the alternating
condition and more than three elements are removed from B. Note
that |r(t′`′)| + |r(t′p′)| ≥ |r(t′`)| + |r(t′p)|. Let A′ be the same set as A
except that t′` and t′p are replaced with t′`′ and t′p′ . A

′ also satisfies

28 J. Lee et al.

alternating condition, does not contain t′`, and has absolute sum larger
than or equal to that of A.
If A does not contain t′p, the adjacent element of t′p which is not t′`
cannot be contained in A, since A satisfies the alternating condition.
Let t′`′ be the adjacent element of t′p. Note that |r(t′`′)| + |r(t′p)| ≥
|r(t′`)|+|r(t′p)|. Let A′ be the same set with A except that t′` is replaced
with t′`′ . A

′ also satisfies the alternating condition, does not contain
t′`, and has absolute sum larger than or equal to that of A.

iii)-2 If t′` is not labeled as t1 or tj , the adjacent element t′p of t′` in B which
|r(t′`)|+ |r(t′p)| is the smallest value in T cannot be t1 or tj . If this is
the case, t′` cannot be removed but t′p is removed in that iteration. If
the alternated subset A in B that contains t′` also contain t′p, there
is at least one pair of adjacent elements t′`′ and t′p′ in B that is not
contained in A. Note also that |r(t′`′)|+ |r(t′p′)| ≥ |r(t′`)|+ |r(t′p)|. Let
A′ be the same set as A except that t′` and t′p are replaced with t′`′
and t′p′ . A

′ also satisfies the alternating condition, does not contain
t′`, and has absolute sum larger than or equal to that of A.
If A does not contain t′p, there is the adjacent element of t′p which is not
t′`, since t′p is not t1 or tj . Let t′`′ be adjacent element of t′p. Then, t′`′
cannot be contained in A, since A satisfies the alternating condition.
Note that |r(t′`′)| + |r(t′p)| ≥ |r(t′`)| + |r(t′p)|. Let A′ be the same set
as A except that t′` is replaced with t′`′ . A

′ also satisfies alternating
condition, does not contain t′`, and has absolute sum larger than or
equal to that of A.

Thus, we prove the theorem.

4 Numerical Analysis of Approximation Error

In this section, we will use the Chebyshev basis {T0(x), T1(x), · · · , Td(x)} and the
minimax approximate polynomial. We show and discuss the simulation results
for the minimax approximation errors of the normalized modular reduction func-
tion and the scaled cosine function. The simulation results are all theoretically
optimal minimax approximation error of the corresponding function.

We now compare the simulation results in [13], which is the state-of-the-art
method in the CKKS homomorphic bootstrapping. Han et al. mostly deal with
the minimax approximation error of their approximate polynomial for the cosine
function. Even if the cosine function is very close to the normalized modular
reduction function near the integers, there exists a fundamental error between
the cosine function and the normalized modular reduction function. Since our
purpose is to approximate the normalized modular reduction function by the
polynomial, we convert their result to the minimax approximation error between
their polynomials and the normalized modular reduction function, instead of
the cosine function. However, they used the approximation of normod(x) by
1
2π cos

(
2π
(
x− 1

4

))
.

Optimal Minimax Polynomial Approximation of Modular Reduction 29

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

-16-14-12-10-8-6-4-20

lo
g
(e

rr
o
r)

Han et al.

optimal

✌ �✁✂ ✞

(a) For various half-width of approximate
interval and the degree of approxima-
tion polynomial 76

-40

-35

-30

-25

-20

-15

-10

-5

0

40 60 80 100 120

lo
g
(e

rr
o
r)

degree

Han et al.

optimal

(b) For various degree of approximation
polynomials and the half-width of ap-
proximation interval 2−10

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

40 90 140 190 240

lo
g
(e

rr
o
r)

degree

(c) Several flat error regions in modular reduction function

Fig. 1: Minimax approximation errors of normalized modular reduction function.

Fig. 1(a) shows the optimal minimax approximation error derived by the
proposed modified Remez algorithm and the approximation error of the approx-
imate polynomials in [13] as the half-width of intervals varies for the minimax
approximate polynomial of degree 76. Figs. 1(b) and 1(c) also show the optimal
minimax approximation error as the degree of the minimax approximate poly-
nomial varies for half-width 2−10. Fig. 1(a) shows that the proposed optimal
minimax approximation algorithm is better than that in [13] and the log-scale
difference is almost the same as the half-width varies. Note that the degrees of
the proposed minimax approximate polynomial in [13] are almost all even, but
the degrees of the optimal minimax approximate polynomial are all odd, which
will be dealt in Section 5. For this reason, we compare the optimal minimax ap-
proximate polynomial of degree 75 with the minimax approximate polynomial
in [13] of degree 76 in Fig. 1(a).

30 J. Lee et al.

In Fig. 1(c), if the degree of the minimax approximate polynomial is less than
or equal to 74, the optimal minimax approximation error derived by the pro-
posed modified Remez algorithm is very close to that in [13]. It also shows that if
the degree of minimax approximate polynomial is larger than 74, it reaches the
fundamental flat error between the cosine function and the normalized modu-
lar reduction function. Although they insisted that the minimax approximation
error continuously decreases even after the degree of 74, the meaningful mini-
max approximation error does not decrease after degree 74. If we need precision
higher than this fundamental flat error, we cannot use the cosine function. In
this case, this precision can be interpreted as significant figures of about five in
the decimal number, which is not that high precision.

On the other hand, we observe that the minimax approximation error does
not decrease after the degree of 73 until the degree of 113. Note that this flat
error phenomenon is not caused by the limitation of the proposed algorithm, but
it is the fundamental property of the normalized modular reduction function.
However, if we evaluate the minimax approximate polynomials with degrees
higher than 117, it is possible for the proposed optimal minimax approximation
algorithm to obtain the higher precision of the minimax approximation errors.
Thus, we cannot use the cosine function as an approximation of the normalized
modular reduction function. Note that there are several flat regions in Fig. 1(c).
We find that these flat regions are closely related to the minimax approximation
error of inverse sine function by the numerical analysis as in the next section.

Fig. 2 shows the minimax approximation error of scaled cosine function with
the scaling factor 1. While the optimal minimax approximation error of the pro-
posed modified Remez algorithm continuously decreases as the degree of optimal
minimax approximate polynomial increases, the minimax approximation error of
the modified Chebyshev algorithm in [13] gives step-wise shape. This is because
the modified Chebyshev algorithm cannot obtain the approximate polynomials
of all degrees. The minimax approximation errors of the proposed algorithm for
the scaled cosine function is slightly better than that of the modified Chebyshev
algorithm. Note that there is no flat region in the minimax approximation er-
ror of the scaled cosine function, and the degree of the minimax approximate
polynomial of the scaled cosine function is significantly smaller than that of the
normalized modular reduction function of Fig. 1(c).

5 Composite Function Approximation of Modular
Reduction Function

It is shown that the cosine approximation in [13] has the fundamental error from
the modular reduction function as in Fig. 1(b). Thus, we cannot use the cosine
approximation if some applications require approximation error smaller than this
fundamental flat error. The necessity of the approximation error smaller than the
fundamental flat error is shown in [14]. Since the fundamental flat error occurs
from approximating the modular reduction function by the cosine function, we

Optimal Minimax Polynomial Approximation of Modular Reduction 31

-80

-70

-60

-50

-40

-30

-20

-10

0

25 30 35 40 45 50 55 60 65 70

lo
g

(e
rr

o
r)

degree

Han et al.

optimal

Fig. 2: Minimax approximation errors of scaled cosine function with scaling fac-
tor 1.

know that the fundamental flat error is the order of O(ε3) with some constant

when
∣∣∣mq ∣∣∣ ≤ ε by the following equation

ε− 1

2π
sin (2πε) =

1

2π
· 1

3!
(2πε)

3
+O(ε5).

Then, we can use roughly 2 log(1/ε) bits of significant figures if we reach the
fundamental flat error by some approximate polynomial. In other words, if we
want to use ` bits of significant figures, we have to use at least roughly `

2 +logm

bit length of modulus in level 0. This additional `2 bits of modulus does not have
any information, and it causes some inefficiency for the running time and the
memory uses. Furthermore, the size of the scaling factor in the bootstrapping of
the CKKS scheme should be similar to the modulus in level 0 [4], and thus the
number of possible multiplications after the bootstrapping becomes somewhat
small. Thus, it is desirable to reduce the size of the additional bits of modulus
while the size of the significant figures of the message remains unchanged. It
can be accomplished by approximating the modular reduction function with
approximation error smaller than the fundamental flat error.

Since the cosine approximation can reduce the number of non-scalar multipli-
cations by using the double-angle formula of the cosine function, it is preferable
to use the cosine approximation with double-angle formula even in the cases that
the smaller approximation error is required. In this section, we propose the com-
posite function approximation to approximate the modular reduction function
with arbitrarily small approximation errors.

32 J. Lee et al.

In [7], they use the composition method to perform the homomorphic com-
parison operation. Instead of evaluating the minimax approximate polynomial
of the sign function, they use the composition method of several polynomials of
small degree. Although the degree of the resulting approximate polynomials in
the composition method is usually higher than the minimax approximate poly-
nomial having the same maximum error, the required number of operations in
evaluating the approximate polynomial of the composite method is smaller than
that in evaluating the minimax approximate polynomial. Note that the cosine
approximation with double-angle formula can also be considered as a composi-
tion. It can be a natural question if we can find some approximate polynomials
for the modular reduction function by the general composition method so that
we reduce the number of non-scalar multiplications for the bootstrapping of the
CKKS scheme.

It is easy to check that if we have two functions f ad g for 0 < ε < 1
4 as

f :

∞⋃
k=−∞

[2π(k − ε), 2π(k + ε)]→ [− sin 2πε, sin 2πε], f(x) = sinx

g : [− sin 2πε, sin 2πε]→ [−2πε, 2πε], g(x) = arcsinx

then the following equation holds as

x− 2π · round
(x

2π

)
= (g ◦ f)(x), x ∈

∞⋃
k=−∞

[2π(k − ε), 2π(k + ε)].

If we substitute t = x
2π , then we have

normod(t) =
1

2π
(g ◦ f)(2πt), t ∈

∞⋃
k=−∞

[k − ε, k + ε]. (16)

We will show that if we approximate both f and g more tightly by some ap-
proximate polynomials, we can approximate the modular reduction function with
any small approximate error by the composition of f and g. Note that g(x) can
be approximated very well with some approximate polynomials of small degree,
even with the linear polynomial for small ε. Indeed, the cosine approximation
with double-angle formula in [13] can be regarded as the special case of the pro-
posed composite function approximation, in that they approximate g(x) with x,
that is, the identity function. Note that the cosine function in [13] is merely a
parallel shift of the sine function. Thus, it is said that they approximate the sine
function instead of the cosine function.

Since the inverse sine function is odd, we will use the property of the minimax
approximate polynomials of an odd function. From the following lemma, we are
convinced that the minimax approximate polynomials of an odd (resp. even)
function are odd (resp. even) functions.

Lemma 5.1. Let D be a union of finite numbers of intervals that has symmetry
to origin, and let f : D → R be an odd (resp. even) function. If p is the minimax

Optimal Minimax Polynomial Approximation of Modular Reduction 33

approximate polynomial of degree d for f , the coefficients of even (resp. odd)
degree terms of p is always zero.

Proof. For an odd function f , let q(x) = −p(−x). Then, clearly, q(x) is also a
polynomial of degree less than or equal to d, and q(x) has the same minimax
approximation error as p(x), since f is an odd function. Thus, q(x) is also the
minimax approximate polynomial of f . From Theorem 2.6, we have p(x) = q(x),
and thus p(x) = −p(−x), which shows that p(x) is an odd function. In other
words, coefficients of even degree in p(x) are all zero.

For an even function f , let q(x) = p(−x). Similarly, p(x) = q(x) = p(−x),
which shows that p(x) is an even function. Thus, the coefficients of odd degree
in p(x) are all zero.

It is noted that the identity function x is not the minimax approximate
linear polynomial for the inverse sine function. Since the minimax approximate
polynomial of the inverse sine function among the polynomials of degree less than
or equal to two is a linear polynomial by Lemma 5.1, there are four global extreme
points of error function which alternates in sign by the Chebyshev alternating
theorem. However, x has only two global extreme points of error function at both
ends of the interval. Of course, we can obtain the minimax approximate linear
polynomial by the Remez algorithm. We can obtain the simple closed-form of the
minimax approximate linear polynomial with very small approximation error as
in the following theorem. The proof of Theorem 5.2 is included in Appendix A.

Theorem 5.2. The minimax approximate linear polynomial of arcsinx in [− sin ε, sin ε]
is cminx such that

cmin = 1 +
ε2

8
+O(ε4).

Further, we have

‖(1 + ε2/8)x− arcsinx‖∞
‖x− arcsinx‖∞

=
‖cminx− arcsinx‖∞
‖x− arcsinx‖∞

+O(ε2) =
1

4
+O(ε2),

where the domain of all functions is [− sin ε, sin ε].

Let f(x) = sinx and g(x) ≈
(

1 + π2

2 ε
2
)
x. From Theorem 5.2 and some scal-

ing factor, the normalized modular reduction function in (16) can be rewritten
as

normod(t) ≈ 1

2π

(
1 +

π2

2
ε2
)

sin(2πt) =
1

2π
g0(sin 2πt),

where g0(x) =
(

1 + π2

2 ε
2
)
x, which is the minimax linear polynomial of g(x).

This is just multiplication of constant 1 + π2

2 ε
2 at the original approximation

formula. Thus, this allows a reduction of the fundamental limitation of the ap-
proximation error for the cosine approximation in [13] by 1/4 at no cost. This
means that we can obtain two more bit precision by only adjusting the mul-
tiplicative factor. We denote this minimax approximation flat error as δ0. The

34 J. Lee et al.

approximation error by the modification of the proportional constant is shown in
Fig. 3. While the fundamental flat error of the cosine approximation in Fig. 3 is
higher than the first flat error of the normod function by two in logarithm scale,
the fundamental flat error of the composite function approximation with linear
polynomial is almost the same as the first flat error of the normod function.

-40

-35

-30

-25

-20

-15

-10

-5

0

40 50 60 70 80 90 100 110 120 130

lo
g

(e
rr

o
r)

degree

cosine approximation

composite function method with

optimal

✞☛

� ✌ ✄

Fig. 3: Approximation errors by the cosine approximation and the approximation
errors by the composite function approximation with n = 0.

Next, the smaller minimax approximation error can be obtained by approx-
imating inverse sine function as the minimax approximate polynomial of degree
more than one. The minimax approximate polynomial for the inverse sine func-
tion can be obtained by the original Remez algorithm because the approximation
domain is one interval. From Theorem 5.1, we know that there are no terms of
even degree for the optimal minimax approximate polynomial for the inverse
sine function. Thus, we approximate g(x) with the following formula to obtain
the minimax approximation error smaller than the fundamental flat error as

g(x) ≈ c1x+ c3x
3 = g1(x),

where c1 and c3 are obtained by the original Remez algorithm. We denote the
minimax approximate error of this approximation for g(x) as δ1. Then, we ap-
proximate normod(t) as

normod(t) ≈ 1

2π

(
c1 sin 2πt+ c3 sin3 2πt

)
.

Optimal Minimax Polynomial Approximation of Modular Reduction 35

To be more specific, we firstly approximate the sine or cosine function with some
minimax approximate polynomial having the corresponding minimax approxi-
mate error, and then evaluate g1(x) successively. The double-angle formula can
be used in the approximation of sine or cosine function. This requires two more
non-scalar multiplications and two more depth after the sine or cosine function is
approximated, and this approximation makes it possible to obtain the minimax
approximation error for normod function between δ0 and δ1.

Let gn(x) be the optimal minimax approximate polynomial of degree 2n+ 1
for g(x), which has only odd degree terms, and δn be the minimax approxima-
tion error of gn(x). Then, if we want to obtain the minimax approximate error
between δn and δn+1, we have to use the following approximation formula

normod(t) ≈ 1

2π
gn(sin 2πt).

From Theorem 2.2, δn goes to zero as n increases. Thus, we can obtain arbitrarily
small minimax approximation error by this composite function approximation.
In the next section, we will deal with the evaluation method of polynomials with
odd degree terms such as gn(x).

With the numerical analysis, it can be checked that the minimax approxima-
tion errors of inverse sine function by its minimax approximate polynomials of
degree three and five are almost exactly 9

4 and 25
4 times of the minimax approxi-

mation error of the second and third flat regions of normod function, respectively,
as in Fig. 4. We conjecture that the minimax approximation error of inverse sine
function is closely related to the flat regions of Fig. 4. We put the mathematical
relation between the minimax approximation error of inverse sine function and
that of the normalized modular reduction function as the future work. Since we
will propose the method which can reduce the number of operations in the direct
approximation in the next section, the number of operations of the composite
function approximation and the direct approximation will be compared in the
next section.

6 Optimization of Evaluation of Approximate Polynomial
with Odd Function Property

The composite function approximation can reduce the number of multiplications
in the evaluation of approximate polynomial, but this method usually consumes
additional depths. However, low depth is more important than the number of
operations in many situations. In these cases, it is desirable to evaluate the
optimal minimax approximate polynomial directly.

We obtain the tightest trade-off between the degree of the approximate poly-
nomial and the minimax approximation error. However, the degree of the ap-
proximate polynomial is not a unique consideration in determining the running
time of modular reduction function. The algorithm evaluating an approximate
polynomial can also be taken into consideration and finding a special form of
the approximate polynomial with the minimax approximation error which can

36 J. Lee et al.

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

40 90 140 190 240

lo
g

(e
rr

o
r)

degree

✞☛

�✁

�✂

Fig. 4: Approximation errors of optimal minimax approximate polynomial and
approximate errors of inverse sine function.

be evaluated faster than other polynomials is a desirable approach of reducing
the running time. There are two fast evaluation algorithms for the minimax ap-
proximate polynomials, that is, the Paterson-Stockmeyer algorithm [2, 17] and
Baby-step Giant-step algorithm [13]. The number of non-scalar multiplications
in the Paterson-Stockmeyer algorithm is usually smaller than that in the Baby-
step Giant-step algorithm.

The second consideration for the fast evaluation is to find a special form
of polynomials of odd function. We prove that the minimax approximate poly-
nomial of an odd function has to be an odd function in Lemma 5.1. The odd
function property will be used to optimize the running time of evaluation.

In the bootstrapping of the CKKS scheme, we have to approximate the nor-
malized modular reduction function on near integers. This function and the
domain satisfy the conditions in Lemma 5.1. This fact can be used in terms of
two aspects. First, when we obtain the coefficients of minimax approximate poly-
nomial, we just consider the coefficients of odd degree terms. This can reduce
the running time of obtaining the minimax approximate polynomial. In fact,
the running time of the Remez algorithm to obtain the minimax approximate
polynomial is not sensitive in the homomorphic scheme, because the minimax
approximate polynomial is obtained not on ciphertext region, but plaintext re-
gion, and the minimax approximate polynomial may be obtained just once before
performing homomorphic operations.

Second, the running time of evaluation of the minimax approximate poly-
nomial can be reduced from the odd function property. This reduction of the

Optimal Minimax Polynomial Approximation of Modular Reduction 37

0

5

10

15

20

25

30

35

0 50 100 150 200 250

N
u

m
b

er
 o

f
n

o
n
-s

ca
la

r
m

u
lt

ip
li

ca
ti

o
n

s

Degree

Baby-step Giant-step

Paterson-Stockmeyer

Odd Baby-step Giant-step

Odd Paterson-Stockmeyer

(a) The number of non-scalar multiplica-
tions of various evaluation algorithms

0

2

4

6

8

10

12

0 50 100 150 200 250

D
ep

th

Degree

Paterson-Stockmeyer

Baby-step Giant-step

Odd Paterson-Stockmeyer

(b) The depth of various evaluation algo-
rithms

Fig. 5: The performance of evaluation algorithms for the odd degree versions of
approximate polynomials.

running time is far more important than the first aspect, because the evaluation
is performed in the ciphertext region, and has to be performed whenever the
bootstrapping operation is performed. Now, we propose two methods of reduc-
ing the number of non-scalar multiplications for the evaluation of approximate
polynomials in case of odd function. The first method consumes one more depth
compared to the original Paterson-Stockmeyer algorithm, and the second method
does not consume additional depth, ensuring the optimal depth.

The first method uses either the Paterson-Stockmeyer algorithm to reduce
the number of non-scalar multiplications. We propose to reduce the number of
non-scalar multiplications by 30% with the odd function property of the minimax
approximate polynomial of the modular reduction function.

Using odd function property, we can transform the approximate polynomial
f(x) of degree (2n+ 1) as

f(x) = xg(x2),

where g(x) is a polynomial of degree n whose coefficient of ith term is equal
to that of (2i + 1)th term of f(x). This allows evaluating only n-th degree
polynomial g(x) with two additional operations: squaring x for the first time and
multiplication with x at the last time. The number of non-scalar multiplications
is reduced from

√
2n + O(log n) to

√
n + O(log n), which means that we can

reduce it by 30%. The concrete comparison is shown in Fig. 5. Note that the
proposed method consumes one more depth compared to the original Paterson-
Stockmeyer algorithm. We prefer to use the proposed method for polynomials
with high degrees because we can reduce many non-scalar multiplications at the
cost of one depth.

The second method uses the Baby-step Giant-step algorithm. Note that this
method does not consume any additional depth, where we may prefer the Baby-
step Giant-step algorithm instead of the Paterson-Stockmeyer algorithm. Before
modifying the Baby-step Giant-step method, we introduce the following theorem.

38 J. Lee et al.

0

5

10

15

20

25

10 15 20 25 30 35 40 45 50 55 60 65 70 75

N
u

m
b

er
 o

f
n

o
n

-s
ca

la
r

m
u

lt
ip

li
ca

ti
o

n
s

direct

cos scale 1

cos scale 2

cos scale 3

(a) The number of non-scalar multiplica-
tions

0

2

4

6

8

10

12

14

10 15 20 25 30 35 40 45 50 55 60 65 70 75

D
ep

th

direct

cos scale 1

cos scale 2

cos scale 3

(b) The depth

Fig. 6: The performance of the composite function approximation and the direct
approximation when minimizing the non-scalar multiplications.

Theorem 6.1. Let f be an polynomial with odd degree terms, and let g be an
polynomial with even degree terms. If f = gq + r, where deg r < deg g, then q
and r are both polynomials of odd degree terms.

Proof. Since 0 = f(x) + f(−x) = (g(x)q(x) + r(x)) + (g(−x)q(−x) + r(−x)) =
g(x)(q(x)+q(−x))+(r(x)+r(−x)), we have r(x)+r(−x) = −g(x)(q(x)+q(−x)).
Then, g(x)|(r(x) + r(−x)). Since the degree of g(x) is larger than that of r(x) +
r(−x), r(x) + r(−x) = 0 and thus, we have r(−x) = −r(x) and q(−x) = −q(x),
which proves the theorem.

The Baby-step Giant-step method recursively uses the quotient and remain-
der polynomial when we divide the approximate polynomial by the even-degree
Chebyshev polynomials. Since the approximate polynomial is an odd function
and the even-degree Chebyshev polynomials are even functions, we know that
the quotient and remainder polynomials are both odd functions. After a cer-
tain number of successive divisions, all polynomials which are evaluated with
baby-step Chebyshev polynomial are odd functions. Then, we do not use the
even-degree Chebyshev polynomials in Babysteps, and thus we do not have to
evaluate the even degree Chebyshev polynomials. This directly leads to the re-
duction of non-scalar multiplications. Algorithm 4 describes the modification
of the Baby-step Giant-step algorithm in case of the approximate polynomials
with odd degree terms. Note that this modification does not consume additional
depth.

We also note that in the original Baby-step Giant-step algorithm in [13],
the length of baby steps is restricted to only the power of two. However, this
restriction can be removed with the remaining correctness of the algorithm, and
thus the length of baby steps can be any positive integers. This allows optimizing
the number of non-scalar multiplications more finely without consuming the
additional depths. In the odd function case, the length of baby steps is restricted

Optimal Minimax Polynomial Approximation of Modular Reduction 39

0

5

10

15

20

25

30

10 15 20 25 30 35 40 45 50 55 60 65 70 75

N
u
m

b
er

 o
f

n
o
n

-s
ca

la
r

m
u
lt

ip
li

ca
ti

o
n
s direct

cos scale 1

cos scale 2

cos scale 3

(a) The number of non-scalar multiplica-
tions

0

2

4

6

8

10

12

14

10 15 20 25 30 35 40 45 50 55 60 65 70 75

D
ep

th

direct

cos scale 1

cos scale 2

cos scale 3

(b) The depth

Fig. 7: The performance of the composite function approximation and the di-
rect approximation when minimizing the non-scalar multiplications with
minimal depth.

to be positive even integers, in that the giant step Chebyshev polynomials have
to be even functions. This fact is also reflected in the Algorithm 4.

Furthermore, we do not need to evaluate the highest giant-step polynomial
in some cases. Let d be the degree of the input polynomial p(x), k be the length
of baby steps, and m be an integer such that 2m · k > d ≥ 2m−1 · k. If m > 1
and d ≤ 3 · 2m−2 · k, the degree of the quotient polynomial q(x) of p(x) divided
by T2m−1k(x) is less than or equal to 2m−2k. Then, we do not need the non-
scalar multiplication with T2m−2k(x) for evaluating the quotient polynomial. The
non-scalar multiplication with T2m−2k(x) is used only in the evaluation of the
remainder polynomial r(x) of p(x) divided by T2m−1k(x). Instead, if we divide
p(x) by T2m−2k(x), the degree of the quotient polynomial q(x) is less than or
equal to 2m−1k and the degree of the remainder polynomial r(x) is less than or
equal to 2m−2k. That is, for m > 1 and d ≤ 3 · 2m−2 · k,

p(x) = T2m−1k(x)q(x) + r(x)

is changed to
p(x) = T2m−2k(x)q(x) + r(x).

Then, we divide q(x) by T2m−2k(x) again. With this change, we remove the
necessity of T2m−1k(x) and leave the depth unchanged, and thus we can reduce
one non-scalar multiplication. Actually, this optimization can also be applied to
the original Baby-Step Giant-Step algorithm for the general polynomial.

If the degree of input polynomial is d and the length of baby steps is k,
the number of non-scalar multiplications is k + m + d dk e − 4 when m > 1 and

d ≤ 3 · 2m−2 · k, and k + m + d dk e − 3 otherwise, and the depth is dlog ke + m
in the original Baby-step Giant-step algorithm [13,14]. In the odd function case,
the number of non-scalar multiplications is dlog ke+ k

2 +m+d dk e−4 when m > 1

and d ≤ 3 · 2m−2 · k, and dlog ke+ k
2 +m+ d dk e − 3 otherwise, and the depth is

also dlog ke+m.

40 J. Lee et al.

The result of these two optimization methods for an odd function is shown in
Fig. 5. The odd variant of the Paterson-Stockmeyer algorithm reduces the num-
ber of the non-scalar multiplications by 30% compared to the original Paterson-
Stockmeyer algorithm but consumes an additional one depth. The odd degree
variant of Baby-step Giant-step reduces the number of the non-scalar multiplica-
tions by 22% compared to the original Baby-step Giant-step algorithm, without
consuming any additional depth.

Algorithm 4: OddBabystepGiantstep

Input : A polynomial of degree d, p =
∑d

i=0 ciTi, and a real number t.
Output: The value of p(t).

1 k,m← the integer such that 2m · k > d ≥ 2m−1 · k and k ≈
√
d which is even.

2 Evaluate T2(t), T4(t), · · · , T2blog kc(t) using T2i(t) = 2Ti(t)
2 − 1.

3 Evaluate T3(t), T5(t), · · · , Tk−1(t) inductively.
4 Evaluate Tk(t) inductively and evaluate T2k(t), T4k(t), · · · , T2m−2k(t) using

T2i(t) = 2Ti(t)
2 − 1.

5 if m > 1 or d ≤ 3 · 2m−2 · k then
6 Find quotient q(t) and remainder r(t) of p(t) divided by T2m−2k.
7 else
8 Evaluate T2m−1k(t).
9 Find quotient q(t) and remainder r(t) of p(t) divided by T2m−1k.

10 end
11 if deg q < k then
12 Evaluate q(t) with T1(t), T3(t), T5(t), · · · , Tk−1(t).
13 else
14 Evaluate q(t) recursively.
15 end
16 if deg r < k then
17 Evaluate r(t) with T1(t), T3(t), T5(t), · · · , Tk−1(t).
18 else
19 Evaluate r(t) recursively.
20 end
21 Evaluate p(t) with q(t), r(t).

We now compare the number of the non-scalar multiplications of compos-
ite function approximation and the direct approximation. We compare these
approximations in two aspects. One is the case of minimizing the number of
non-scalar multiplications without any consideration of depth, and the other is
the case of minimizing the number of non-scalar multiplications with minimal
depth. We use the Paterson-Stockmeyer algorithm and its odd function variant
in the first aspect, and use the Baby-step Giant-step algorithm and its odd func-
tion variant in the second aspect. For the composite function approximation, we
separate the three cases where the scaling factor of the cosine function is 1, 2,
or 3, respectively.

Optimal Minimax Polynomial Approximation of Modular Reduction 41

Fig. 6 shows the number of non-scalar multiplications and the depth for the
various required minimax approximation error in the first aspect and Fig. 7
shows the number of non-scalar multiplications and the depth for the various
required minimax approximation error in the second aspect. We observe that
the composite function approximation reduces effectively the number of the non-
scalar multiplications compared to the direct approximation. On the other hand,
the direct approximation usually consumes the smallest depth.

7 Conclusion and Future Works

We obtained the fast algorithm to derive the generalized minimax approximate
polynomial of any piecewise continuous functions over any union of the finite
number of intervals, which generalizes the Remez algorithm, called modified
Remez algorithm. Using that results, we directly derived the optimal minimax
approximate polynomial for the modular reduction function rather than the sine
or cosine function in the CKKS scheme. From the numerical analysis, there is
some gap of the approximation error by two in the logarithm scale between the
cosine minimax approximation and the proposed direct minimax approximation.
Further, there is some inherent flat error region for the cosine minimax approx-
imation such that the minimax approximation error does not decrease as the
degree of the approximate polynomial increases, but the approximation error for
the proposed one is improved as the degree of approximate polynomial increases.

Then, we proposed the composite function approximation to obtain approx-
imation error smaller than the fundamental flat error with a small number of
the non-scalar multiplications by using the inverse sine function. For the direct
approximation, we reduced the number of non-scalar multiplications by 30% by
using odd function property of the minimax approximate polynomial of modular
reduction function. By the numerical analysis, it was known that the compos-
ite function approximation is desirable when the running time of bootstrapping
is important, and the direct approximation with odd function optimization is
desirable when the depth is important.

The theoretical relation between the composite function approximation and
the minimax approximate polynomials of the normalized modular reduction
function is an important open problem to understand the minimax approxi-
mation error in the CKKS encryption scheme. We put this relation as future
work.

References

1. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic en-
cryption without bootstrapping. ACM Transactions on Computation Theory 6(3),
13 (2014)

2. Chen, H., Chillotti, I., Song, Y.: Improved bootstrapping for approximate homo-
morphic encryption. In: Advances in Cryptology-EUROCRYPT 2019. pp. 34–54.
Springer (2019)

42 J. Lee et al.

3. Cheney, E.: Introduction to approximation theory. McGraw-Hill (1966)

4. Cheon, J., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate ho-
momorphic encryption. In: Advances in Cryptology-EUROCRYPT 2018. pp. 360–
384. Springer (2018)

5. Cheon, J., Han, K., Kim, A., Kim, M., Song, Y.: A full rns variant of approxi-
mate homomorphic encryption. In: International Conference on Selected Areas in
Cryptography-SAC 2018. pp. 347–368. Springer (2018)

6. Cheon, J., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. In: Advances in Cryptology-ASIACRYPT 2017. pp. 409–
437. Springer (2017)

7. Cheon, J., Kim, D., Kim, D.: Efficient homomorphic comparison methods with
optimal complexity. Cryptology ePrint Archive, Report 2019/1234 (2019)

8. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomor-
phic encryption over the torus. Journal of Cryptology 33(1), 34–91 (2020)

9. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive p. Report 2012/144 (2012)

10. Filip, S.: A robust and scalable implementation of the Parks-McClellan algorithm
for designing FIR filters. ACM Transactions on Mathematical Software 43(1), 1–24
(2016)

11. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the Forty-First Annual ACM Symposium on Theory of Computing. pp. 169–178
(2009)

12. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Advances
in Cryptology-CRYPTO 2013. pp. 75–92. Springer (2013)

13. Han, K., Ki, D.: Better bootstrapping for approximate homomorphic encryption.
In: Cryptographers’ Track at the RSA Conference. pp. 364–390. Springer (2020)

14. Lee, Y., Lee, J., Kim, Y., No, J.: Near-optimal polynomial for modulus reduc-
tion using L2-norm for approximate homomorphic encryption. Cryptology ePrint
Archive p. Report 2020/488 (2020)

15. McClellan, J., Parks, T.: A personal history of the Parks-McClellan algorithm.
IEEE Signal Processing Magazine 22(2), 82–86 (2005)

16. Parks, T., M.J.: Chebyshev approximation for nonrecursive digital filters with lin-
ear phase. IEEE Transactions on Circuit Theory 19(2), 189–194 (1972)

17. Paterson, M., Stockmeyer, L.: On the number of nonscalar multiplications neces-
sary to evaluate polynomials. SIAM Journal on Computing 2(1), 60–66 (1973)

18. Powell, M.: Approximation theory and methods. Cambridge University Press (1981)

19. Remez, E.: Sur la détermination des polynômes d’approximation de degré donnée.
Communications of the Kharkov Mathematical Society 10(196), 41–63 (1934)

20. Rudin, W.: Principles of mathematical analysis, vol. 3. McGraw-Hill New York
(1964)

21. Van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Advances in Cryptology-EUROCRYPT 2010. pp.
24–43. Springer (2010)

Optimal Minimax Polynomial Approximation of Modular Reduction 43

A Proof of Theorem 5.2

Theorem A.1 (Restatement of Theorem 5.2). The minimax approximate linear
polynomial of arcsinx in [− sin ε, sin ε] is cminx such that

cmin = 1 +
ε2

8
+O(ε4).

Further, we have

‖(1 + ε2/8)x− arcsinx‖∞
‖x− arcsinx‖∞

=
‖cminx− arcsinx‖∞
‖x− arcsinx‖∞

+O(ε2) =
1

4
+O(ε2),

where the domain of all functions is [− sin ε, sin ε].

Proof. Since arcsinx is an odd function, the minimax approximate linear poly-
nomial is an odd function. Thus, the constant term of the minimax approximate
linear polynomial is zero, and we can write the minimax approximate linear
polynomial of arcsinx as cminx. Let y = arcsinx. Then cmin sin y is the minimax
approximate function for the identity function y among functions of the form
c sin y with some c. Then we have to prove the following equation

‖(1 + ε2/8) sin y − y‖∞
‖ sin y − y‖∞

=
‖cmin sin y − y‖∞
‖ sin y − y‖∞

+O(ε2) =
1

4
+O(ε2), (17)

where the domain of these function of y is [−ε, ε].
It is sufficient to consider only the non-negative values in the domain, that

is, [0, ε], due to the symmetry of functions. We can have cmin ≥ 1, because if
cmin < 1, we have cmin sin y < sin y < y in (0, ε] and then the approximation error
by cmin sin y is larger than that of sin y. Thus, we can represent cmin = 1 + δmin

for some non-negative value δmin. For making the following proof more simple,
we set δmin = µminε

2 for some non-negative µmin.
Let (1 + δu) sin y be a function such that (1 + δu) sin ε = ε. Note that (1 +

δu) sin y ≥ y in [0, ε]. If δmin > δu, we have (1 + δmin) sin y > (1 + δu) sin y ≥ y in
[0, ε] and thus we have δmin ≤ δu. Thus, we have 0 ≤ δmin ≤ δu. Note that e+(δ) =
maxy∈[0,ε]((1 + δ) sin y− y) is increasing function of δ in [0, δu] with having 0 at
δ = 0, and e−(δ) = maxy∈[0,ε](y − (1 + δ) sin y) is a decreasing function of δ in
[0, δu] with having 0 at δ = δu. Since ‖(1 + δ) sin y − y‖∞ = max{e+(δ), e−(δ)},
δmin is the point where e+(δ) = e−(δ), that is, the minimax approximation error
occurs.

We will now obtain a non-zero lower bound for µmin using the following
inequality

sin y ≤ y − y3

12
≤ y

for small enough y. We can assume that this inequality holds in [0, ε]. Let r̃δ(y) =
(1 + δ)(y − 1

12y
3) − y = δy − 1

12 (1 + δ)y3 for small enough δ. Then, the local

maximum point of r̃δ(y) is located at y = 2
√
δ/(1 + δ) by obtaining the zero of

44 J. Lee et al.

the first derivative of r̃δ(y). Thus, the maximum value of r̃δ(y) is 4
3

√
δ3/(1 + δ).

Since the minimum value of r̃δ(y) is at y = ε, the minimum value of r̃δ(y) is
δε − 1

12 (1 + δ)ε3. It is easy to check that e+(δ) ≤ 4
3

√
δ3/(1 + δ), and e−(δ) ≥

−δε+ 1
12 (1 + δ)ε3. If we set δ = 1

16ε
2, we can obtain

e+(δ) ≤ 4

3

√
δ3

1 + δ
<

4

3
δ

3
2 =

1

48
ε3

= −δε+
1

12
ε3 < −δε+

1

12
(1 + δ)ε3 ≤ e−(δ).

Thus, we have e+(δ) < e−(δ) for δ = ε2

16 . This means that δmin >
1
16ε

2, and thus
µmin >

1
16 .

We will now obtain the exact formula for µmin. Let rδ(y) = (1 + δ) sin y − y.
The maximum point of rδ(y) is located at the zero of the first derivative of rδ(y),
and the zero is arccos(1/(1+δ)) = arcsin(

√
δ2 + 2δ/(1+δ)). Since the minimum

point of rδ(y) is located at y = ε, and e+(δmin) = e−(δmin), µmin can be obtained
from the following equation

√
µ2ε4 + 2µε2 − arcsin

√
µ2ε4 + 2µε2

1 + µε2
+ (1 + µε2) sin ε− ε = 0,

which is not easy to solve.
Let h(µ, ε) be the left-hand side of the above equation as a function of µ

and ε. Note that h(µ, ε) is the differentiable function for µ, ε > 0. By the mean
value theorem, there is a constant µc between µmin and 1

8 such that the following
equation holds as

h

(
1

8
, ε

)
=
∂h

∂µ
(µc, ε)

(
1

8
− µmin

)
. (18)

By applying L’Hôpital’s rule 5 times at the following formula, we have

lim
ε→0+

1

ε5
h

(
1

8
, ε

)
= − 19

1280
(19)

and thus we have h(1/8, ε) = O(ε5). On the other hand, since µmin >
1
16 , we

have µc >
1
16 > 0 and then the following equation holds as

∂h

∂µ
(µc, ε) =

ε√
µc(µcε2 + 2)

(
µcε

2 + 1− 1

µcε2 + 1

)
+ ε2 sin ε (20)

> ε2 sin ε > ε3 − 1

6
ε5. (21)

From (18), (19), and (21), we have 1/8− µmin = −19/1280ε2 + o(ε2) and

µmin =
1

8
+O(ε2)

Optimal Minimax Polynomial Approximation of Modular Reduction 45

cmin = 1 +
1

8
ε2 +O(ε4).

In fact, we already have µmin >
1
8 and thus rc(y) = (1 + ε2/8) sin y − y has the

maximum absolute error at y = ε. Since ε − sin ε = O(ε3), the left-hand side of
(17) can be rewritten as

‖cmin sin y − y‖∞
‖ sin y − y‖∞

=

(
1 + ε2/8

)
sin ε− ε

sin ε− ε
+

O(ε5)

sin ε− ε
=

(
1 + ε2/8

)
sin ε− ε

sin ε− ε
+O(ε2).

Using the Taylor series of sinx, we have

sin ε− ε = −1

6
ε3 +O(ε5)(

1 +
1

8
ε2
)

sin ε− ε = − 1

24
ε3 +O(ε5).

Then, we have

‖(1 + ε2/8) sin y − y‖∞
‖ sin y − y‖∞

=

(
1 + 1

8ε
2
)

sin ε− ε
sin ε− ε

=
1

4
+O(ε2).

