
High-Precision Bootstrapping of RNS-CKKS
Homomorphic Encryption Using Optimal

Minimax Polynomial Approxiamtion
and Inverse Sine Function

Joon-Woo Lee1, Eunsang Lee1, Yongwoo Lee1, Young-Sik Kim2, and
Jong-Seon No1

1 Seoul National University, Republic of Korea
2 Chosun University, Republic of Korea

Abstract. Approximate homomorphic encryption with the residue num-
ber system (RNS), called RNS-variant Cheon-Kim-Kim-Song (RNS-CKKS)
scheme [13,14], is a practical fully homomorphic encryption scheme that
supports arithmetic operations for real or complex number data en-
crypted. Although the RNS-CKKS scheme is a fully homomorphic en-
cryption scheme, most of the applications with RNS-CKKS scheme use it
as only leveled homomorphic encryption scheme because of the lack of the
practicality of the bootstrapping operation of the RNS-CKKS scheme.
One of the crucial problems of the bootstrapping operation is its poor
precision. While other basic homomorphic operations ensure sufficiently
high precision for practical use, the bootstrapping operation only sup-
ports about 20-bit fixed-point precision at best, which is lower than the
standard single-precision of the floating-point number system. Due to
this limitation of the current bootstrapping technology, the RNS-CKKS
scheme is difficult to be used for the reliable deep-depth homomorphic
computations until now.
In this paper, we improve the message precision in the bootstrapping
operation of the RNS-CKKS scheme. Since the homomorphic modular
reduction process is one of the most important steps in determining the
precision of the bootstrapping, we focus on the homomorphic modular
reduction process. Firstly, we propose a fast algorithm of obtaining the
optimal minimax approximate polynomial of modular reduction function
and the scaled sine/cosine function over the union of the approximation
regions, called the modified Remez algorithm. In fact, this algorithm
derives the optimal minimax approximate polynomial of any continu-
ous functions over any union of the finite number of intervals. Next, we
propose the composite function method using inverse sine function to
reduce the difference between the scaling factor used in the bootstrap-
ping and the default scaling factor. With these methods, we reduce the
approximation error in the bootstrapping of the RNS-CKKS scheme by
1/200∼1/53 (5.8∼7.6-bit precision improvement) for each parameter set-
ting. While the bootstrapping without the composite function method
has 16.5∼20.1-bit precision at maximum, the bootstrapping with the
composite function method has 22.4∼27.8-bit precision, most of which
are better precision than that of the single-precision number system.

2 J. Lee et al.

Keywords: Approximate homomorphic encryption · Bootstrapping ·
Composite function approximation · Fully homomorphic encryption (FHE)
· Inverse sine function · Minimax approximate polynomial · Modified Re-
mez algorithm · RNS-variant Cheon-Kim-Kim-Song (RNS-CKKS) scheme

1 Introduction

Fully homomorphic encryption (FHE) is the encryption scheme enabling any log-
ical operations [7, 16, 18, 21, 31] or arithmetic operations [13, 14] with encrypted
data. The FHE scheme makes it possible to preserve security in the data pro-
cessing. However, in the traditional encryption schemes, they are not encrypted
to enable the processing of encrypted data, which causes clients to be dissuaded
from receiving services and prevent companies from developing various related
systems because of the lack of clients’ privacy. FHE solves this problem clearly
so that clients can receive many services by ensuring their privacy.

First, Gentry constructed the FHE scheme by coming up with the idea of
bootstrapping [20]. After this idea was introduced, cryptographers constructed
many FHE schemes using bootstrapping. Approximate homomorphic encryp-
tion, which is also called a Cheon-Kim-Kim-Song (CKKS) scheme [14], is one of
the promising FHE schemes, which deals with any real and complex numbers.
The CKKS scheme is particularly in the spotlight for much potential power in
many applications such as machine learning [4–6, 8, 17, 25], in that data is usu-
ally represented by real numbers. Lots of researches for the optimization of the
CKKS scheme have been done actively for practical use. Cheon et al. proposed
the residue number system (RNS) variant CKKS scheme (RNS-CKKS) [13] so
that the necessity of the arbitrary precision library can be removed and only use
the word-size operations. The running time of the homomorphic operations in
the RNS-CKKS scheme is 10 times faster than that of the original CKKS scheme
with the single thread, and further, the RNS-CKKS scheme has an advantage in
parallel computation, which leads to much better running time performance with
the multi-core environment. Because of the fast homomorphic operations, most
homomorphic encryption libraries, including SEAL [30] and PALISADE [2], are
implemented using the RNS-CKKS scheme. Thus, we focus on the RNS-CKKS
scheme in this paper.

Due to the fact that the CKKS scheme includes errors used to ensure the
security as the approximate error in the message and the RNS-CKKS scheme
has to use approximate rescaling procedure, the use of the RNS-CKKS scheme
requires more sensitivity to the precision of the message than other homomor-
phic encryption schemes that support accurate decryption and homomorphic
evaluation. This can be more sensitive for deep-depth homomorphic operations
because errors are likely to be amplified by the operations and distort the data
significantly. Fortunately, the basic homomorphic operations in the RNS-CKKS
scheme can ensure sufficiently high precision for practical use, but its bootstrap-
ping operation is not the case. Ironically, while the bootstrapping operation
in other homomorphic encryption schemes reduces the effect of the errors on

High-Precision Bootstrapping of RNS-CKKS Homomorphic Encryption 3

messages so that they do not distort messages, the bootstrapping operation in
the CKKS scheme amplify the errors, which makes it the most major cause of
data distortion among any other homomorphic operations in the RNS-CKKS
scheme. Since advanced operations with large depth may require bootstrapping
operation many times, the message precision problem in the bootstrapping op-
eration is a crucial obstacle to applying the RNS-CKKS scheme to the advanced
applications.

Although the RNS-CKKS scheme is currently one of the most potential solu-
tions to implement privacy-preserving machine learning (PPML) system [4,5,17],
the methods for the PPML studied so far have mainly been applied to simple
models such as MNIST, which has so low depth that the bootstrapping is not
required. Thus, the message precision problem in the bootstrapping operation
in the RNS-CKKS scheme did not need to be considered in the PPML model
until now. However, the advanced machine learning model currently presented
requires a large depth, and thus we should introduce the bootstrapping operation
and cannot avoid the message precision problem in the bootstrapping operation.
Of course, the fact that the bootstrapping requires long running time and large
depth than other homomorphic operations are also pointed out as a major lim-
itation of the bootstrapping. While these points may be able to be improved
by simple parameter adjustments and using hardware optimization, the message
precision problem in the bootstrapping is difficult to solve with these simple
methods.

Most of the works about PPML with FHE focused on the inference process
rather than the training process because of the long running time. However,
training neural networks with encrypted data is actually more important from a
long-term perspective for solving the real security problem in machine learning,
in that the companies cannot gather sufficiently many important but sensitive
data, such as genetic or financial information, so that they cannot construct the
deep learning model for them because of the privacy of the data owners. While
the inference process does not need a high precision number system, the training
process is affected sensitively by the precision of the number system. Chen et
al. [10] showed that CNN network learning MNIST cannot converge when the
model is trained using a 16-bit fixed-point number system. When the 32-bit
fixed-point number system is used to train the CNN network with MNIST, the
training performance was slightly lower than the case of using the single-precision
floating-point number system, although all bits except one bit representing the
sign are used to represent the data in 32-bit fixed-point number system, that is,
it has 31-bit precision, which is much better precision than the single-precision
floating point number system, which is 23-bit precision. Although many works
proposed to use low-precision fixed-point numbers in the training procedure,
they used additional special techniques, such as the stochastic rounding [22] or
the dynamic fixed-point number system [23], which cannot be supported by the
RNS-CKKS scheme until now.

While most of the deep learning systems use the single-precision floating-
point numbers, the maximum precision achieved with the bootstrapping of the

4 J. Lee et al.

CKKS scheme in the previous papers was about only 20 bits. Considering that
the CKKS scheme only supports the fixed-point arithmetic, the 20-bit precision
is not large enough to be applied wholly to the deep learning system. Thus, in
order to apply the RNS-CKKS scheme to deep learning systems, it is necessary
to achieve a precision sufficiently better than the 23-bit precision guaranteed by
the single-precision floating-point number system, which requires a breakthrough
for the bootstrapping in the RNS-CKKS scheme with regard to its precision.

One of the most important steps where the bootstrapping affects message
precision is the homomorphic modular reduction process. The crucial point is
that the difference between the modular reduction function and the sine/cosine
function gives a significant precision loss. All previous works have used methods
that approximate the modular reduction function as a part of the sine/cosine
functions. This approximation has an inherent approximation error so that the
limitation of the precision occurs. In addition, to ensure that these two functions
are significantly close to each other, the approximate region has to be reduced a
lot. They set the half-width of one interval in the approximation region as 2−10,
which is equal to the ratio of default scaling factor to the scaling factor used in
the bootstrapping. The message has to be scaled by multiplying 2−10 to make
the message into the approximation region, and it is scaled by multiplying 210

at the end of the bootstrapping. Thus, the precision error in the computation
for bootstrapping is amplified by 210, and the 10-bit precision loss occurs. If
we try to reduce this precision loss by enlarging the approximation region, the
approximation error by the sine/cosine function becomes large, and thus the
overall precision becomes lower than before.

Another problem in the homomorphic modular reduction process is that the
polynomial approximation method so far does not guarantee theoretically opti-
mal minimax approximate polynomial. Since the modular reduction operation
is a non-arithmetic operation, it should be approximated in a polynomial to be
homomorphically computed with homomorphic arithmetic operations, that is,
the homomorphic addition and the homomorphic multiplication. Although pre-
vious works have suggested methods to obtain polynomials that approximate
the scaled sine/cosine function well from the minimax perspective, which is used
to approximate the modular reduction function, these methods cannot obtain
the optimal minimax approximate polynomial.

1.1 Previous Works

The CKKS scheme was firstly proposed in [14] without bootstrapping, which was
a somewhat homomorphic encryption scheme supporting only the finite number
of multiplications. Cheon et al. [12] firstly suggested bootstrapping operation
with the homomorphic linear transformation enabling transformation between
slots and coefficients, and approximation of homomorphic modulus reduction
function as the sine function. In homomorphic modular reduction, they approx-
imated the sine function by evaluating its Taylor approximation and applying
the double-angle formula. Although the double-angle formula reduces the num-
ber of operations compared to the direct Taylor approximation, it requires large

High-Precision Bootstrapping of RNS-CKKS Homomorphic Encryption 5

depths. Chen et al. [9] improved the running time of bootstrapping operation by
making homomorphic linear transformation and homomorphic modular reduc-
tion efficient. They applied a modified fast Fourier transform (FFT) algorithm to
evaluate homomorphic linear transformation and used Chebyshev interpolation
and Paterson-Stockmeyer algorithm to approximate the sine function. Cheby-
shev interpolation is known as a good sub-optimal approximate polynomial in
the minimax aspect, but this is not the optimal approximate polynomial. Han
et al. [24] improved the homomorphic modular reduction in the bootstrapping
operation. While Chen et al. approximated the sine function in one interval,
Han et al. approximated the cosine function only in the separated approxima-
tion regions, which enables to reduce the degree of polynomials and use simpler
double-angle formula than that of the sine function, but their approximate poly-
nomial is also not optimal in the minimax aspect.

There is an example of using the exact minimax approximate polynomial of
sign function for comparison operation in the CKKS scheme. That is, Cheon
et al. [15] used an algorithm to obtain the minimax approximate polynomial
only for sign function to accelerate their composition method for homomorphic
comparison operations. However, they only used the well-known minimax ap-
proximation algorithm for sign function as a subroutine. There is no research to
use the exact minimax approximate polynomial for bootstrapping of the CKKS
scheme.

On the other hand, the RNS-CKKS scheme was proposed. Since big integers
used to represent the ciphertexts in the CKKS scheme cannot be stored with
the basic data type, the original CKKS scheme had to resort to the arbitrary
precision data type libraries, such as the number theory library (NTL) library.
To remove the reliance on the external libraries for performance improvement,
Cheon et al. applied the RNS system in the CKKS scheme. Most practical ho-
momorphic encryption libraries, such as SEAL and PALISADE, implement the
RNS-CKKS scheme. The bootstrapping with the RNS-CKKS scheme is only
dealt in [24] yet.

The Remez algorithm [28], also called the Remez exchange algorithm, is
an iterative algorithm that obtains the minimax approximate polynomial for a
given continuous function on an interval [a, b]. There is its variant that obtains
the minimax approximate polynomial for a given continuous function on the
multiple sub-intervals of an interval [19, 26, 28], which is less well-known than
the original one. There is a crucial difference between the two algorithms in
determining the new set of reference points in each iteration, which is used to
construct an approximate polynomial in the next iteration. While the new set
of reference points can be chosen naturally in the original one for an interval,
there are many candidate points for the new set of reference points in the variant
for the multiple sub-intervals of an interval. The variant algorithm chooses the
new set of reference points which alternates in the sign of error and includes the
global extreme point. Although this selection method ensures the convergence
to the minimax approximate polynomial, there are yet many candidate points
for the new set of reference points satisfying these criteria. The Parks-McClellan

6 J. Lee et al.

filter design algorithm uses this variant of the Remez algorithm to design the
optimal filter for a given condition, where its approximation domain is usually
the union of two or three intervals.

1.2 Our Contribution

In this paper, we propose two methods to improve the message precision in the
bootstrapping operation of the RNS-CKKS scheme. Firstly, we devise a fast
algorithm of obtaining the optimal minimax approximate polynomial of modu-
lar reduction function and the scaled sine/cosine function over the union of the
approximation regions, called the modified Remez algorithm. In fact, this algo-
rithm derives the optimal minimax approximate polynomial of any continuous
functions over any union of the finite number of intervals. Although the original
variant of the Remez algorithm can obtain the optimal minimax approximate
polynomial, the running time to obtain the polynomial is quite long and unsta-
ble, that is, the running time varies from time to time. To make the variant of
the Remez algorithm practically, we modify the variant of the Remez algorithm,
called the modified Remez algorithm. Since it can obtain the optimal minimax
approximate polynomial in seconds, we can even adaptively obtain the polyno-
mial when we abruptly change some parameters on processing the ciphertexts so
that we have to update the approximate polynomial. All polynomial approxima-
tion method proposed in previous works for bootstrapping in the CKKS scheme
can be replaced with the modified Remez algorithm, which ensures the best
quality of the approximation.

Next, we propose the composite function method to reduce the difference
between the scaling factor used in the bootstrapping and the default scaling fac-
tor. To reduce this difference, we have to enlarge the half-width of one interval
in the approximate region, but this can make the difference between the mod-
ular reduction function and the sine/cosine function quite large. We solve this
problem by composing the optimal approximate polynomial of the inverse sine
function, since composing the inverse sine function to the sine/cosine function
yields a part of the exact modular reduction function. Note that the inverse sine
function we use has only one interval in the approximate region, and thus we
can reach the small approximate error with low degree polynomials. We obtain
the minimax approximate polynomials for the scaled cosine function and the
inverse sine function with sufficiently small minimax error by the modified Re-
mez algorithm, and we apply these polynomials in the homomorphic modular
reduction process by homomorphically evaluating the approximate polynomial
for the scaled cosine function, several double-angle formula, and the approxi-
mate polynomial for the inverse sine function. This enables us to minimize the
inevitable precision loss by approximating the modular reduction function to the
sine/cosine function.

In fact, these techniques can be applied in both the original variant and
the RNS-variant of the CKKS scheme. Since the RNS-CKKS scheme is more
practical but more vulnerable to the approximation errors than the original ver-
sion, the additional analysis of the RNS-CKKS scheme should be dealt with

High-Precision Bootstrapping of RNS-CKKS Homomorphic Encryption 7

for high-precision bootstrapping in the RNS-CKKS scheme. We deal with the
relation between the scaling factor and the precision in the RNS-CKKS scheme.
The rescaling procedure in the RNS-CKKS scheme actually rescales the cipher-
text by the prime number used for one of the moduli in the RNS form instead
of the exact scaling factor, and thus this makes the inherent upper bound of
the precision of the RNS-CKKS scheme. This inherent precision bound is re-
lated to the scaling factor by the well-known prime number theorem, and it
suggests that we have to use large scaling factors for ensuring precise homo-
morphic operations. This analysis also supports the necessity of the composite
function method because it ensures the large default scaling factor by reduc-
ing the difference of the scaling factors, and thus the default precision for basic
homomorphic operations is ensured to be large enough. With the proposed meth-
ods, we reduce the approximation error in the bootstrapping of the RNS-CKKS
scheme by 1/200∼1/53 (5.8∼7.6-bit precision improvement) for each parame-
ter setting. While the bootstrapping without the composite function method
has 16.5∼20.1-bit precision at maximum, the bootstrapping with the composite
function method has 22.4∼27.8-bit precision, most of which are better precision
than that of the single-precision number system.

1.3 Outline

The outline of the paper is given as follows. Section 2 deals with some preliminar-
ies for the RNS-CKKS scheme, approximation theory, and the Remez algorithm.
In Section 3, we propose a modified Remez algorithm for obtaining the optimal
minimax approximate polynomial. The theoretical and numerical relation be-
tween the message precision and several parameters in the RNS-CKKS scheme
is dealt with in Section 4, and the upper bound of the message precision in
the bootstrapping of the RNS-CKKS scheme is also included. In Section 5, we
propose the composite function method which makes it possible to reduce the
difference of the two scaling factors in default operations and in bootstrapping
operations, and numerically shows the improvement of the message precision
in the proposed bootstrapping operation in the RNS-CKKS scheme. Section 6
concludes the paper and discusses future works.

2 Preliminary

2.1 Notation

Let Z,Q,R, and C be sets of integers, rational numbers, real numbers, and com-
plex numbers, respectively. Let C[D] be a set of continuous functions on the
domain D. Let [d] be a set of positive integers less than or equal to d, i.e.,
{1, 2, · · · , d}. Let round(x) be the function that outputs the integer nearest to x,
and we do not have to consider the case of tie in this paper. For a power of two,
M , let ΦM (X) = XN + 1 be an M -th cyclotomic polynomial, where M = 2N .
LetR = Z[X]/ 〈ΦM (X)〉 andRq = R/qR. Let Q[X]/ 〈ΦM (X)〉 be a M -th cyclo-
tomic field. For positive real number α, DG(α) is defined as the distribution in

8 J. Lee et al.

ZN whose entries are sampled independently from discrete Gaussian distribution
of variance α2. HWT (h) is a subset of {0,±1}N with Hamming weight h. ZO(ρ)
is the distribution in {0,±1}N whose entries are sampled independently with
probability ρ/2 for each of ±1 and probability being zero, 1− ρ. The Chebyshev
polynomials Tn(x) are defined by cosnθ = Tn(cos θ). The remainder of a divided
by q is denoted as [a]q. If C = {q0, q1, · · · , q`−1} is the set of positive integers

coprime each other and a ∈ ZQ where Q =
∏`−1
i=0 qi, the RNS representation of a

with regard to C is denoted by [a]C = (a(0), a(1), · · · , a(`−1)) ∈ Zq0 × · · · ×Zq`−1
.

The base of logarithm in this paper is two.

2.2 CKKS Scheme and RNS-CKKS Scheme

It is known that the CKKS scheme supports several operations for encrypted
data of real numbers or complex numbers. Since it deals with usually real num-
bers, the noise that ensures the security of the CKKS scheme can be embraced
in the outside of the significant figures of the data, which is the crucial concept
of the CKKS scheme.

The RNS-CKKS scheme [13] uses the RNS form to represent the ciphertexts
and to perform the homomorphic operations efficiently. While the power-of-two
modulus is used in the CKKS scheme, the product of large primes is used for
ciphertext modulus in the RNS-CKKS scheme so that the RNS system can be
applied. These large primes are chosen to be similar to the scaling factor, which
is some power-of-two integer. There is a crucial difference in the rescaling oper-
ation between the CKKS scheme and the RNS-CKKS scheme. While the CKKS
scheme can rescale the ciphertext by the exact scaling factor, the RNS-CKKS
scheme has to rescale the ciphertext by one of the RNS modulus, which is not
equal to the scaling factor. Thus, the RNS-CKKS scheme allows approximation
in the rescaling procedure. Detailed procedures in the RNS-CKKS scheme are
described as follows.

Several independent messages are encoded into one polynomial by the canon-
ical embedding before encryption. The canonical embedding σ embeds a ∈
Q[X]/ 〈ΦM (X)〉 into an element of CN whose elements are values of a evalu-
ated at the distinct roots of ΦM (X). It is a well-known fact that the roots of
ΦM (X) are exactly the power of odd integers of the M -th root of unity, and
Z∗M = 〈−1, 5〉. Let H = {(zj)j∈Z∗M : zj = z−j}, and π be a natural projection

from H to CN/2. Then, it is easily known that the range of σ is exactly H. When
N/2 messages of complex number constitute an element in CN/2, each coordinate
is called a slot. The encoding and decoding procedures are given as follows.

Ecd(z;∆): For a vector z ∈ CN/2, return

m(X) = σ−1
(⌊
∆ · π−1(z)

⌉
σ(R)

)
∈ R,

where ∆ is the scaling factor and
⌊
π−1(z)

⌉
σ(R)

denotes the discretization

(rounding) of π−1(z) into an element of σ(R).

High-Precision Bootstrapping of RNS-CKKS Homomorphic Encryption 9

Dcd(m;∆): For a polynomial m(X) ∈ R, return a vector z ∈ CN/2 whose entry

of index j is zj =
⌊
∆−1 ·m(ζ5

j

M)
⌉

for j ∈ {0, 1, · · · , N/2 − 1}, where ζM is

the M -th root of unity.

Before describing the RNS-CKKS scheme, several basic operations for RNS
system is defined: Conv, ModUp, and ModDown. Let B = {p0, p1, · · · , pk−1}, C =
{q0, q1, · · · , q`−1}, and D = {p0, p1, · · · , pk−1, q0, q1, · · · , q`−1}, where pi’s and
qj ’s are all distinct primes.

ConvC→B: It converts the RNS bases from C to B without the merge process of
Chinese remainder theorem, which is defined as

ConvC→B([a]C) =

`−1∑
j=0

[a(j) · q̂−1j]qj · q̂j mod pi

0≤i<k

,

where [a]C = (a(0), · · · , a(`−1)) ∈ Zq0 × · · · × Zq`−1
and q̂j =

∏
j′ 6=j qj′ ∈ Z.

ModUpC→D: It adds other moduli in B to the current RNS bases to expand the
modulus space without changing the value as

ModUpC→D(·) :

`−1∏
j=0

Rqj →
k−1∏
i=0

Rpi ×
`−1∏
j=0

Rqj

: [a]C → (ConvC→B([a]C), [a]C).

ModDownD→C: It removes the moduli in B from the current RNS bases with
dividing the value by P =

∏k−1
i=0 pi as

ModDownD→C(·) :

k−1∏
i=0

Rpi ×
`−1∏
j=0

Rqj →
`−1∏
j=0

Rqj

: ([a]B, [b]C)→ ([b]C − ConvB→C([a]B)) · [P−1]C .

Then, each procedure of the RNS-CKKS scheme is given as follows.

Setup(q, L; 1λ): Given a scaling factor ∆, the number of levels L, and a security
parameter λ, we choose several parameters as follows.
– A power-of-two degree N of the polynomial modulus of the ring is cho-

sen so that the number of level L can be supported with the security
parameter λ.

– A secret key distribution χkey, an encryption key distribution χenc, and
an error distribution χerr over R are chosen considering the security pa-
rameter λ.

– A basis with prime numbers B = {p0, p1, · · · , pk−1} and C = {q0, q1, · · · , qL}
is chosen so that pi ≡ 1 mod 2N , qj ≡ 1 mod 2N for 0 ≤ i ≤ k−1, 0 ≤
j ≤ L, and |qi−∆| is as small as possible. All prime numbers are distinct
and D = B ∪ C. Let C` = {q0, q1, · · · , q`} and D` = B ∪ C` for 0 ≤ ` ≤ L.

10 J. Lee et al.

Let P =
∏k−1
i=0 pi, Q =

∏L
j=0 qj , p̂i =

∏
0≤i′≤k−1,i′ 6=i pi′ for 0 ≤ i ≤ k−1, and

q̂`,j =
∏

0≤j′≤`,j′ 6=j qj′ for 0 ≤ j ≤ ` ≤ L. Then, we compute the following
numbers.
– [p̂i]qj and [p̂−1i]pi for 0 ≤ i ≤ k − 1, 0 ≤ j ≤ L
– [P−1]qj for 0 ≤ j ≤ L
– [q̂`,j]pi and [q̂−1`,j]qj for 0 ≤ i ≤ k − 1, 0 ≤ j ≤ ` ≤ L

KSGen(s1, s2): This procedure generates the switching key for switching the
secret key s1 to s2 without changing the message in a ciphertext. Given

s1, s2 ∈ R, sample (a′(0), · · · , a′(k+L)) ← U
(∏k−1

i=0 Rpi ×
∏L
j=0Rqj

)
and an

error e′ ← χerr, and generate the switching key swk as

(
swk(0) = (b′(0), a′(0)), · · · , swk(k+L) = (b′(k+L), a′(k+L))

)
∈
k−1∏
i=0

R2
pi×

L∏
j=0

R2
qj ,

where b′(i) ← −a′(i) · s2 + e′ mod pi for 0 ≤ i ≤ k − 1 and b′(k+j) ←
−a′(k+j) · s2 + [P]qj · s1 + e′ mod qj for 0 ≤ j ≤ L.

KeyGen: This procedure generates the secret key, the evaluation key, and the
public key. Sample s← χkey and set sk← (1, s) as the secret key. The evalu-
ation key is set by evk ← KSGen(s2, s). Also, sample (a(0), a(1), · · · , a(L)) ←
U
(∏L

j=0Rqj

)
and e← χerr and the public key is generated as

pk←
(

pk(j) = (bj , a(j)) ∈ R2
qj

)
0≤j≤L

,

where b(j) ← −a(j) · s+ e mod qj for 0 ≤ j ≤ L.
Encpk(m): For a message slot z ∈ CN/2, generate the message polynomial by

m = Ecd(z;∆). Then, sample v ← χenc and e0, e1 ← χerr and generate the

ciphertext ct = (ct(j))0≤j≤L ∈
∏L
j=0R

2
qj , where ct(j) ← v ·pk(j)+(m+e0, e1)

mod qj for 0 ≤ j ≤ L.

Decsk(ct): For a ciphertext ct = (ct(j))0≤j≤` ∈
∏`
j=0R

2
qj , compute m̃ = 〈ct(0), sk〉

mod q0 and output z = Dcd(m̃;∆).

Add(ct1, ct2): For two ciphertexts ctr =
(

ct
(j)
r

)
0≤j≤`

for r = 1, 2, output the

ciphertext ctadd =
(

ct
(j)
add

)
0≤j≤`

, where ct
(j)
add ← ct

(j)
1 + ct

(j)
2 mod qj for 0 ≤

j ≤ `.
Multevk(ct1, ct2): For two ciphertexts ctr =

(
ct

(j)
r = (c

(j)
r0 , c

(j)
r1)
)
0≤j≤`

, compute

the followings and output the ciphertext ctmult ∈
∏`
j=0R

2
qj .

– d
(j)
0 = c

(j)
00 c

(j)
10 mod qj , d

(j)
1 = c

(j)
00 c

(j)
11 + c

(j)
01 c

(j)
10 mod qj , and d

(j)
2 =

c
(j)
01 c

(j)
11 mod qj for 0 ≤ j ≤ `.

– ModUpC`→D`
(d

(0)
2 , d

(1)
2 , · · · , d(`)2) = (d̃

(0)
2 , d̃

(1)
2 , · · · , d̃(k−1)2 , d

(0)
2 , d

(1)
2 , · · · , d(`)2).

– c̃t = (c̃t
(k+`)

= (c̃
(j)
0 , c̃

(j)
1))0≤j≤k+`, where ˜ct(i) = d̃

(i)
2 · evk(i) mod pi and

˜ct(k+j) = d
(j)
2 · evk(k+j) mod qj for 0 ≤ i ≤ k − 1 and 0 ≤ j ≤ `.

High-Precision Bootstrapping of RNS-CKKS Homomorphic Encryption 11

–
(
ĉ
(0)
r , ĉ

(1)
r , · · · , ĉ(`)r

)
= ModDownD`→C`

(
c̃
(0)
r , c̃

(1)
r , · · · , c̃(k+`)r

)
for r = 0, 1.

– ctmult = (ct
(j)
mult)0≤j≤`, where ct

(j)
mult =

(
ĉ
(j)
0 + d

(j)
0 , ĉ

(j)
1 + d

(j)
1

)
mod qj

for 0 ≤ j ≤ `.
RS(ct): For a ciphertext ct =

(
ct(j) = (c

(j)
0 , c1(j))

)
0≤j≤`

, output the ciphertext

ct′ =
(

ct′(j) = (c
′(j)
0 , c

′(j)
1)

)
0≤j≤`−1

, where c
′(j)
r = q−1` ·

(
c
(j)
r − c(`)r

)
mod qj

for r = 0, 1 and 0 ≤ j ≤ `− 1.

There are additional homomorphic operations, rotation, and complex con-
jugation, which are used for homomorphic linear transformation in the boot-
strapping of the RNS-CKKS scheme. Since these operations are not used in this
paper, we omit these operations in this section.

2.3 Bootstrapping for CKKS Scheme

The framework of the bootstrapping of the CKKS scheme was introduced in
[14], which is the same as the case of the RNS-CKKS scheme. The purpose
of bootstrapping is to refresh the ciphertext of level 0, whose multiplication
cannot be performed anymore, to the fresh ciphertext of level L having the same
messages. The bootstrapping is composed of the following four steps:

i) Modulus raising
ii) Homomorphic linear transformation; CoeffToSlot

iii) Homomorphic modular reduction
iv) Homomorphic linear transformation; SlotToCoeff

Modulus Raising: The starting point of bootstrapping is modulus raising,
where we simply consider the ciphertext of level 0 as an element of R2

Q, instead

of R2
q0 . Since the ciphertext of level 0 is supposed to be 〈ct, sk〉 ≈ m mod q0, we

have 〈ct, sk〉 ≈ m+q0I mod Q for some I ∈ R when we try to decrypt it. We are
assured that the absolute values of coefficients of I are rather small, for example,
usually smaller than 12, because coefficients of sk consist of small numbers [12].
The crucial part of the bootstrapping of the CKKS scheme is to make ct′ such
that 〈ct′, sk〉 ≈ m mod qL. This is divided into two parts: homomorphic linear
transform and homomorphic evaluation of modular reduction function.

Homomorphic Linear Transformation: The ciphertext ct after modulus
raising can be considered as the ciphertext encrypting m + q0I, and thus we
now have to perform modular reduction to coefficients of message polynomial
homomorphically. However, the operations we have are all for slots, not coeffi-
cients of the message polynomial. Thus, to perform some meaningful operations
on coefficients, we have to convert ct into a ciphertext that encrypts coefficients
of m+ q0I as its slots, and after evaluation of homomorphic modular reduction
function, we have to reversely convert this ciphertext into the other ciphertext

12 J. Lee et al.

ct′ that encrypts the slots of the previous ciphertext as the coefficients of its
message. These two operations are called CoeffToSlot and SlotToCoeff
operations. These operations are regarded as homomorphic evaluation of encod-
ing and decoding of messages, which are a linear transformation by some variants
of Vandermonte matrix for roots of ΦM (x). This can be performed by general
homomorphic matrix multiplication [12], or FFT-like operation [9].

Homomorphic Modular Reduction Function: After CoeffToSlot is per-
formed, we now have to perform modular reduction homomorphically on each
slot in modulus q0. This procedure is called EvalMod. This modular reduc-
tion function is not an arithmetic function, and even not a continuous function.
Fortunately, by restricting the range of the messages such that m/q0 is small
enough, the approximation region can be given only near multiples of q0. This
allows us to approximate the modular reduction function more effectively. Since
the operations that the CKKS supports are arithmetic operations, most of the
research [9, 12, 24] dealing with CKKS bootstrapping approximate the modular
reduction function with some polynomials, which is sub-optimal approximate
polynomials.

The scaling factor is increased when the bootstrapping is performed because
m/q0 needs to be very small in the homomorphic modular reduction function.
In this paper, the default scaling factor means the scaling factor used in the
intended applications, and the bootstrapping scaling factor means the scaling
factor used in the bootstrapping. The bit-length difference between these two
scaling factors is usually 10.

2.4 Approximation Theory

Approximation theory is needed to prove the convergence of the minimax poly-
nomial obtained by the proposed modified Remez algorithm. Assume that func-
tions are defined on a union of the finite number of closed and bounded intervals
in the real line. From the following well-known theorem [29] in real analysis, we
are convinced that this domain of functions is a compact set.

Theorem 2.1 ([29] Bolzano-Weierstrass Theorem). A subset of Rn is a
compact set if and only if it is closed and bounded.

A union of the finite number of closed and bounded intervals in the real line is
trivially closed and bounded, and thus this domain is a compact set by Bolzano-
Weierstrass theorem. This theorem will be used in the convergence proof of the
modified Remez algorithm in Section 3.

The next theorem [29] states that any continuous function on compact set in
the real line can be approximated with an arbitrarily small error by polynomial
approximation. In fact, the theorem includes the case of continuous functions on
more general domains, but we only use the special case on compact sets in the
real line in this paper.

High-Precision Bootstrapping of RNS-CKKS Homomorphic Encryption 13

Theorem 2.2 ([29] Stone-Weierstrass Theorem). Assume that f is a con-
tinuous function on the compact subset D of the real line. For every ε > 0, there
is a polynomial p such that ‖f − p‖∞ < ε.

There are many theorems for the minimax approximate polynomials of a
function defined on a compact set in approximation theory. Before the intro-
duction of these theorems, we refer to a definition of Haar condition of a set of
functions that deals with the generalized version of power bases used in polyno-
mial approximation and its equivalent statement. It is a well-known fact that the
power basis {1, x, x2, · · · , xd} satisfies the Haar condition. Thus, if an argument
deals with the polynomials with regard to a set of basis functions satisfying Haar
condition, it naturally includes the case of polynomials.

Definition 2.3 ([11] Haar’s Condition). A set of functions {g1, g2, · · · , gn}
satisfies the Haar condition if each gi is continuous and if each determinant

D[x1, · · · , xn] =

∣∣∣∣∣∣∣
g1(x1) · · · gn(x1)

...
. . .

...
g1(xn) · · · gn(xn)

∣∣∣∣∣∣∣
for any n distinct points x1, · · · , xn is not zero.

Lemma 2.4 ([11]). A set of functions {g1, · · · , gn} satisfies the Haar condition
if and only if zero polynomial is the only polynomial

∑
i cigi that has more than

n− 1 roots.

Firstly, we are convinced that there is the unique minimax approximate poly-
nomial in the union of the finite number of closed and bounded intervals as in
the following two theorems.

Theorem 2.5 ([11] Existence of Best Approximations). Let F be a normed
linear space, and f is any fixed element in F . If S is a linear subspace of F with
finite dimension, S contains at least one element of minimum distance from f .

Theorem 2.6 ([11] Haar’s Unicity Theorem). Let f be any continuous
function on a compact set K. Then the minimax polynomial

∑
i cigi of f is

unique if and only if {g1, g2, · · · , gn} satisfies the Haar condition.

In Theorem 2.5 for the existence of the best approximation, consider a set
F of continuous functions on a union D of the finite number of closed and
bounded intervals. We can easily know that F is a linear space with a max-norm
‖f‖∞ = maxx∈D |f(x)|. The set Pd of polynomials with regard to the finite
number of basis functions on D is a finite-dimensional linear subspace. Then,
from Theorem 2.5, there is at least one minimax approximate polynomial for
any f ∈ F .

We now introduce the core property of the minimax approximate polynomial
for a function on D.

14 J. Lee et al.

Theorem 2.7 ([11] Chebyshev Alternation Theorem). Let {g1, · · · , gn} be
a set of functions in C[a, b] satisfying the Haar condition, and let D be a closed
subset of [a, b]. A polynomial p =

∑
i cigi is the minimax approximation on D to

any given f ∈ C[D] if and only if there are n+1 distinct elements x0 < · · · < xn
in D such that for the error function r = f − p restricted on D,

r(xi) = −r(xi−1) = ±‖r‖∞.

This condition is also called equioscillation condition. This means that if we
find a polynomial satisfying the equioscillation condition, then this is the unique
minimax approximate polynomial, needless to compare with the maximum ap-
proximation error of any polynomials.

The following three theorems are used to prove the convergence of the mod-
ified Remez algorithm in Section 3.

Theorem 2.8 ([11] de La Vallee Poussin Theorem). Let {g1, · · · , gn} is
a set of continuous functions on [a, b] satisfying the Haar condition. Let f be
a continuous on [a, b], and p be a polynomial such that p − f has alternately
positive and negative values at n + 1 consecutive points xi in [a, b]. Let p∗ be a
minimax approximate polynomial for f , and e(f) be the minimax approximation
error of p∗. Then, we have

e(f) ≥ min
i
|p(xi)− f(xi)|.

Lemma 2.9 ([11]). Let {g1, · · · , gn} be a set of continuous functions satisfying
the Haar condition. Assume that x1 < · · · < xn and y1 < · · · < yn. Then the
determinants D[x1, · · · , xn] and D[y1, · · · , yn], defined by Definition 2.3, have
the same sign.

Theorem 2.10 ([11] Strong Unicity Theorem). Let {g1, · · · , gn} be a set of
functions satisfying the Haar condition, and let p∗ be the minimax polynomial of
a given continuous function u. Then, there is a constant γ > 0 determined by f
such that for any polynomial p, we have

‖p− f‖∞ ≥ ‖p∗ − f‖∞ + γ‖p− p∗‖∞.

2.5 Algorithms for Minimax Approximation

Remez Algorithm Remez algorithm [11,27, 28] is an iterative algorithm that
always returns the minimax approximate polynomial for any continuous func-
tion on an interval of [a, b]. This algorithm strongly uses Chebyshev alternation
theorem [11] in that its purpose is finding the polynomial satisfying equioscil-
lation condition. In fact, the Remez algorithm can be applied to obtain the
minimax approximate polynomial, whose basis function {g1, · · · , gn} satisfies

High-Precision Bootstrapping of RNS-CKKS Homomorphic Encryption 15

the Haar condition. The following explanation includes the generalization of the
Remez algorithm, and if we want to obtain the minimax approximate polyno-
mial of degree d, we choose the basis function {g1, · · · , gn} by the power basis
{1, x, · · · , xd}, where n = d+ 1.

Remez algorithm firstly initializes the set of reference points {x1, · · · , xn+1},
which will be converged to the extreme points of the minimax approximate
polynomial. Then, it obtains the minimax approximate polynomial in regard
to only the set of reference points. Since the set of reference points is the set of
finite points in [a, b], it is a closed subset of [a, b], and thus Chebyshev alternation
theorem holds on the set of reference points. Let f(x) be a continuous function
on [a, b]. The minimax approximate polynomial on the set of reference points is
exactly the polynomial p(x) with the basis {g1, · · · , gn} satisfying

p(xi)− f(xi) = (−1)iE i = 1, · · · , d+ 2

for some real number E. This forms a system of linear equations having n + 1
equations and n + 1 variables of n coefficients of p(x) and E, which is ensured
to be not singular by Haar’s condition, and thus we can obtain the polynomial
p(x). Then, we can find n zeros of p(x) − f(x), zi between xi and xi+1, i =
1, 2, · · · , n, and we can find n + 1 extreme points y1, · · · , yn+1 of p(x) − f(x)
in each [zi−1, zi], where z0 = a and zn+1 = b. That is, we choose the minimum
point of p(x)−f(x) in [zi−1, zi] if p(xi)−f(xi) < 0, and we choose the maximum
point of p(x) − f(x) in [zi−1, zi] if p(xi) − f(xi) > 0. Thus, we find a new
set of extreme points y1, · · · , yn+1. If this satisfies equioscillation condition, the
Remez algorithm returns p(x) as the minimax approximate polynomial from
the Chebyshev alternation theorem. Otherwise, it replaces the set of reference
points with these extreme points y1, · · · , yn+1 and processes above steps again.
This is the Remez algorithm in Algorithm 1. The Remez algorithm is proved to
be always converged to the minimax approximate polynomial by the following
theorem.

Theorem 2.11 ([11] Convergence of Remez Algorithm). Let {g1, · · · , gn}
be a set of functions satisfying the Haar condition, pk be a polynomial generated
in the k-th iteration of Remez algorithm, and p∗ be the minimax polynomial of
a given f . Then, pk converges uniformly to p∗ by the following inequality,

‖pk − p∗‖∞ ≤ Aθk,

where A is a non-negative constant, and 0 < θ < 1.

A Variant of the Remez Algorithm Since the Remez algorithm works only
when the approximation region is one interval, we need another variant of the
Remez algorithm which works when the approximation region is the union of
several intervals. The above Remez algorithm can be extended to the multiple
sub-intervals of an interval [19,26,28]. The variant of the Remez algorithm is the
same as Algorithm 1, except Steps 3 and 4. For each iteration, firstly, we find
all of the local extreme points of the error function p − f whose absolute error

16 J. Lee et al.

Algorithm 1: Remez

Input : An input domain [a, b], a continuous function f on [a, b], an
approximation parameter δ, and a basis {g1, · · · , gn}.

Output: The minimax approximate polynomial p for f

1 Select x1, x2, · · · , xd+2 ∈ [a, b] in strictly increasing order.
2 Find the polynomial p(x) in terms of {g1, · · · , gn} with

p(xi)− f(xi) = (−1)iE for some E.
3 Divide the interval into n+ 1 sections [zi−1, zi], i = 1, · · · , n+ 1, from zeros

z1, · · · , zn of p(x)− f(x), where xi < zi < xi+1, and boundary points
z0 = a, zn+1 = b.

4 Find the maximum (resp. minimum) points for each section when p(xi)− f(xi)
has positive (resp. nagative) value. Denote these extreme points y1, · · · , yn+1.

5 εmax ← maxi |p(yi)− f(yi)|
6 εmin ← mini |p(yi)− f(yi)|
7 if (εmax − εmin)/εmin < δ then
8 return p(x)
9 else

10 Replace xi’s with yi’s and go to line 2.
11 end

values are larger than the absolute error values at the current reference points.
Then, we choose n + 1 new extreme points among these points satisfying the
following two criteria:

i) The error values alternate in sign.

ii) A new set of extreme points includes the global extreme point.

These two criteria are known to ensure the convergence to the minimax polyno-
mial, even though we could not find the exact proof of its convergence. However,
it is noted that there are many choices of sets of extreme points satisfying these
criteria. In the next section, we modify the variant of the Remez algorithm,
where one of the two criteria is changed.

3 Efficient Algorithm for Optimal Minimax Approximate
Polynomial

In this section, we propose an algorithm for obtaining the optimal minimax ap-
proximate polynomial, called the modified Remez algorithm. With this proposed
algorithm, we can obtain the optimal minimax approximate polynomial for con-
tinuous function on the union of finitely many closed intervals in order to apply
the Remez algorithm to the bootstrapping of the CKKS scheme. The function we
are going to approximate is the normalized modular reduction function defined
in only near finitely many integers given as

High-Precision Bootstrapping of RNS-CKKS Homomorphic Encryption 17

normod(x) = x− round(x), x ∈
K−1⋃

i=−(K−1)

[i− ε, i+ ε],

where K determines the number of intervals in the domain. normod function
corresponds to the modular reduction function scaled for both its domain and
range.

In addition, Han et al. [24] uses the cosine function to approximate normod(x)
to use double-angle formula for efficient homomorphic evaluation. If we use
double-angle formula ` times, we have to approximate the following cosine func-
tion

cos

(
2π

2`

(
x− 1

4

))
, x ∈

K−1⋃
i=−(K−1)

[i− ε, i+ ε].

To design an approximation algorithm that deals with the above two func-
tions, we assume the general continuous function defined on an union of finitely
many closed intervals, which is given as

D =

t⋃
i=1

[ai, bi] ⊂ [a, b] ⊂ R

where ai < bi < ai+1 < bi+1 for all i = 1, · · · , t− 1.
When we modify the variant of the Remez algorithm to approximate a given

continuous function on D with a polynomial having a degree less than or equal
to d, called the modified Remez algorithm, we have to consider two crucial
points. One is to establish an efficient criterion for choosing new d+ 2 reference
points among several extreme points, and the other is to make some steps in
the modified Remez algorithm efficient. We deal with these two issues for the
modified Remez algorithm in Sections 3.1 and 3.3, respectively.

3.1 Modified Remez Algorithm with Criteria for Choosing Extreme
Points

Assume that we apply the variant of the Remez algorithm onD and use {g1, · · · , gn}
satisfying Haar condition on [a, b] as the basis of polynomials. After obtaining the
minimax approximate polynomial in regard to the set of reference points for each
iteration, we have to choose a new set of reference points for the next iteration.
However, there are many boundary points in D and all these boundary points
have to be considered as extreme points of the error function. For this reason,
there are many cases of selecting n+ 1 points among these extreme points. For
bootstrapping in the CKKS scheme, there are many intervals to be considered,
and thus there are lots of candidate extreme points. Since the criterion of the
variant of the Remez algorithm cannot determine the unique new set of refer-
ence points for each iteration, it is necessary to make how to choose n+ 1 points
for each iteration to reduce the number of iterations as small as possible. Oth-
erwise, it requires a large number of iteration for convergence to the minimax

18 J. Lee et al.

approximate polynomial. In addition, it is very important to ensure that this
criterion always leads to convergence to the minimax approximate polynomial.
If the criterion is not designed properly, the modified Remez algorithm may not
converge into a single polynomial in some cases.

In order to set the criterion for selecting n + 1 reference points, we need to
define a simple function for extreme points, µp,f : D → {−1, 0, 1} as follows,

µp,f (x) =

1 p(x)− f(x) is a local maximum value at x on D

−1 p(x)− f(x) is a local minimum value at x on D

0 otherwise,

where p(x) is a polynomial obtained in that iteration and f(x) is a continuous
function on D to be approximated. We abuse the notation µp,f as µ.

If we gather all extreme points of p(x) − f(x) into a set B, we can assume
that B is a finite set, that is, B = {x1, x2, · · · , xm}. If there is an interval in B,
we can choose a point in that interval. Assume that B is ordered in increasing
order, x1 < x2 < · · · < xm, and then the values of µ at these points are always
1 or −1. Let S be a set of functions defined as

S = {σ : [n+ 1]→ [m] | σ(i) < σ(i+ 1) for all i = 1, · · · , n}.

Clearly, S has only the identity function if n+ 1 = m.
Then, we set three criteria for selecting n+ 1 extreme points as follows:

i) Local extreme value condition. If E is the absolute value of error at points
in the set of reference points, then we have

min
i
µ(xσ(i))(p(xσ(i))− f(xσ(i))) ≥ E.

ii) Alternating condition. µ(xσ(i)) · µ(xσ(i+1)) = −1 for i = 1, · · · , n.
iii) Maximum absolute sum condition. Among σ’s satisfying the above two con-

ditions, choose σ maximizing the following value

n+1∑
i=1

|p(xσ(i))− f(xσ(i))|.

It is noted that the local extreme value condition in i) means that the extreme
points are discarded if the local maximum value of p(x)−f(x) is negative or the
local minimum of p(x)− f(x) is positive.

Note that the first two conditions are also included in the variant of the Re-
mez algorithm, and the third condition, the maximum absolute sum condition,
is the replacement of the condition that the new set of reference points includes
the global extreme point. The numerical analysis will show that the third condi-
tion makes the proposed modified Remez algorithm to converge to the optimal
minimax approximate polynomial fast. Although there are some cases in which
the global maximum point is not included in the new set of reference points

High-Precision Bootstrapping of RNS-CKKS Homomorphic Encryption 19

chosen by the maximum absolute sum condition, we prove that the maximum
absolute sum condition is enough for the modified Remez algorithm to converge
to the minimax approximate polynomial in Subsection 3.2.

Now we propose the modified Remez algorithm for the continuous function on
the union of finitely many closed intervals as in Algorithm 2. The local extreme
value condition is reflected in Step 3, and the alternating condition and the
maximum absolute sum condition are reflected in Step 4.

Algorithm 2: Modified Remez Algorithm

Input : An input domain D =
⋃t

i=1[ai, bi] ⊂ R, a continuous function f on
D, an approximation parameter δ, and a basis {g1, · · · , gn}

Output: The minimax approximate polynomial p for f

1 Select x1, x2, · · · , xn+1 ∈ D in strictly increasing order.

2 Find the polynomial p(x) with p(xi)− f(xi) = (−1)iE for some E.
3 Gather all extreme and boundary points such that µp,f (x)(p(x)− f(x)) ≥ |E|

into a set B.
4 Find n+ 1 extreme points y1 < y2 < · · · < yn+1 with alternating condition

and maximum absolute sum condition in B.
5 εmax ← maxi |p(yi)− f(yi)|
6 εmin ← mini |p(yi)− f(yi)|
7 if (εmax − εmin)/εmin < δ then
8 return p(x)
9 else

10 Replace xi’s with yi’s and go to line 2.
11 end

3.2 Correctness of Modified Remez Algorithm

We now have to prove that the proposed algorithm always converges to the
minimax approximate polynomial for given piecewise continuous function on D.
This proof is similar to the convergence proof of the original Remez algorithm
on one closed interval [11,27], but there are a few more general arguments than
the original proof. This convergence proof includes the proof for both the variant
of the Remez algorithm and the modified Remez algorithm.

We have to check that S always contains at least one element σ0 that satisfies
the local extreme value condition and the alternating condition, and has σ0(i0)
for some i0 such that |p(xσ0(i0)) − f(xσ0(i0))| = ‖p − f‖∞. This existence is in
fact the basic assumption of the variant of Remez algorithm, but we prove this
existence for mathematical clarification.

Theorem 3.1. Let B and S be the sets defined above. Then, there is at least one
element in S which satisfies the local extreme value condition and the alternating
condition and has σ0(i0) for some i0 such that |p(xσ0(i0))−f(xσ0(i0))| = ‖p−f‖∞.

20 J. Lee et al.

Proof. Let ai and bi be the boundary points in D defined above and let t1, t2, · · ·
, tn+1 ∈ D be the reference points used to construct pk(x) at the k-th iteration.
Without loss of generality, ti < ti+1 for all i = 1, · · · , n, and the following
equation for some proper positive value E is satisfied as

p(ti)− f(ti) = (−1)i−1E.

Let u2i−1 be the largest point among all aj and t2j ’s which are less than or
equal to t2i−1, and let v2i−1 be the smallest point among all bj and t2j ’s which
are larger than or equal to t2i−1. Then, firstly, we prove that there exists at least
one local maximum point c2i−1 of pk(x)−f(x) in [u2i−1, v2i−1], and c2i−1 < t2i <
c2i+1 for all possible i. From the extreme value theorem for continuous function
on interval [29], there exists at least one maximum point of pk(x) − f(x) in
[u2i−1, v2i−1], since pk(x)−f(x) is continuous on D. We denote this value at the
maximum point as c2i−1. Since t2i−1 is in [u2i−1, v2i−1], pk(c2i−1)− f(c2i−1) ≥
E > −E = pk(t2j) − f(t2j) for all possible j, and thus c2i−1 cannot be equal
to any t2i’s. Since elements appeared more than once in intervals [u2i−1, v2i−1],
i = 1, 2, · · · , bn+2

2 c, are only t2i’s and v2i−1 ≤ t2i ≤ u2i+1 for all possible i, we
now prove that c2i−1 < t2i and t2i < c2i+1.

Let u2i be the largest point among all aj and c2j−1’s which are less than or
equal to t2i, and let v2i be the smallest point among all bj and c2j−1’s which are
larger than or equal to t2i. Then, we prove that there exists at least one local
minimum point c2i of pk(x) − f(x) in [u2i, v2i], and ci’s are sorted in strictly
increasing order. Again, from the extreme value theorem for continuous function
on interval, there exists at least one minimum point of pk(x)− f(x) in [u2i, v2i].
We denote this value at the minimum point as c2i. Since t2i is in [u2i, v2i],
pk(c2i) − f(t2j) ≤ −E < E ≤ pk(c2j−1) − f(c2j−1) for all possible j, and thus
c2i cannot be equal to any c2j−1. Since elements appeared more than once in
intervals [u2i, v2i], i = 1, 2, · · · , bn+2

2 c, are only c2i−1’s and v2i ≤ c2i+1 ≤ u2i+2

for all possible i, we now prove that ci’s are sorted in strictly increasing order.
Since ci’s are all local extreme points, ci ∈ B for all i. Then, we can set σ′ ∈ S

such that xσ′(i) = ci. Since c2i−1’s are local maximum points and c2i’s are local
minimum points, σ′ satisfies alternating condition. Since µ(ci)(p(ci)−f(ci)) ≥ E,
σ′ also satisfies the local extreme value condition. If one of ci has the maximum
absolute value of p− f , we are done.

Assume that all of ci’s do not have the maximum absolute value of pk − f .
Let xm be the global extreme point of pk − f . If there is some k such that
ck < xm < ck+1, either ck or ck+1 has the same value of µ at xm. Then,
we replace it with xm and define this function as σ0. Since σ0 satisfies all of
conditions in Theorem 3.1, we are done.

If xm < c1 or xm > cn+1, we separate it into two cases again. If µ(xm) = µ(c1)
(resp. µ(xm) = µ(cn+1)), we just replace c1 (resp. cn+1) with xm and define this
function as σ0, and σ0 satisfies all these conditions. If µ(xm) 6= µ(c1) (resp.
µ(xm) 6= µ(cn+1)), we replace cn+1 (resp. c1) with xm, and relabel the points
to define the new function σ0. This also satisfies all three conditions. Thus, we
prove it.

High-Precision Bootstrapping of RNS-CKKS Homomorphic Encryption 21

Remark. This theorem also ensures that m ≥ n + 1. If m < n + 1, S has to be
empty. This theorem ensures that there is at least one element in S, we can be
convinced that m ≥ n+ 1.

Before proving the convergence, we have to generalize the de La Vallee
Poussin theorem, which was used to prove the convergence of the original Remez
algorithm on an interval. Since original de La Vallee Poussin theorem [11] only
deals with a single interval, we generalize it in the following theorem that deals
with the closed subset of an interval, whose proof is almost the same as that of
the original theorem.

Lemma 3.2 (Generalized de La Vallee Poussin Theorem). Let {g1, · · · , gn}
is a set of continuous functions on [a, b] satisfying the Haar condition, and let
D be a closed subset of [a, b]. Let f be a continuous on D, and p be a polynomial
such that p− f has alternately positive and negative values at n+ 1 consecutive
points xi in D. Let p∗ be a minimax approximate polynomial for f on D, and
e(f) be the minimax approximation error of p∗. Then, we have

eD(f) ≥ min
i
|p(xi)− f(xi)|.

Proof. Assume that the above statement is false. Then, there is a polynomial p0
such that p0−f has alternately positive and negative values at n+1 consecutive
points in D, and

‖p∗ − f‖∞ < |p0(xi)− f(xi)| (1)

for all i. Then, p0−p∗ = (p0−f)− (p∗−f) has alternately positive and negative
values at the consecutive xi, which leads to the fact that there is n roots in [a, b].
From Lemma 2.4, p0 − p∗ has to be zero, which is contradiction.

We now prove the convergence of Algorithm 2.

Theorem 3.3. Let {g1, · · · , gn} be a set of functions satisfying the Haar con-
dition on [a, b], D be the multiple sub-intervals of [a, b], and f be a continuous
function on D. Let pk be an approximate polynomial generated in the k-th iter-
ation of the modified Remez algorithm, and p∗ be the optimal minimax approxi-
mate polynomial of f . Then, as k increases, pk converges uniformly to p∗ as in
the following inequality

‖pk − p∗‖∞ ≤ Aθk,

where A is a non-negative constant and 0 < θ < 1.

Proof. Let {x(0)1 , · · · , x(0)n+1} be the initial set of reference points and {x(k)1 , · · · , x(k)n+1}
be the new set of reference points chosen at the end of iteration k. Let rk = pk−f
be the error function of pk and r∗ = p∗−f be the error function of p∗. Since pk is

22 J. Lee et al.

generated such that the absolute values of the error function rk at the reference

points x
(k−1)
i , i = 1, 2, · · · , n+ 1 are the same. For k ≥ 1, we define

αk = min
i
|rk(x

(k−1)
i)| = max

i
|rk(x

(k−1)
i)|,

βk = ‖rk‖∞,

γk = min
i
|rk(x

(k)
i)|. (2)

Define β∗ = ‖r∗‖∞. We have β∗ ≥ γk from Lemma 3.2, βk ≥ β∗ by definition
of p∗, and γk ≥ αk by the local extreme value condition for new set of reference
points. Then, we have

αk ≤ γk ≤ β∗ ≤ βk.

Let c(k) = [c
(k)
1 , · · · , c(k)n]T be the coefficient vector of pk. Then, c(k) is the

solution vector of the following system of linear equations

(−1)i+1h(k) +

n∑
j=1

c
(k)
j gj(x

(k−1)
i) = f(x

(k−1)
i), i = 1, · · · , n+ 1 (3)

for the n+ 1 unknowns h(k) and c
(k)
j ’s, and |h(k)| = αk. From Theorem 2.6, we

assure that the system of linear equations in (3) is nonsingular, which can be
rewritten as in the matrix equation for k + 1, instead of k,

1 g1(x
(k)
1) · · · gn(x

(k)
1)

−1 g1(x
(k)
2) · · · gn(x

(k)
2)

...
...

. . .
...

(−1)n g1(x
(k)
n+1) · · · gn(x

(k)
n+1)

h(k+1)

c
(k+1)
1

...

c
(k+1)
n

 =

f(x

(k)
1)

f(x
(k)
2)
...

f(x
(k)
n+1)

 . (4)

From Cramer’s rule, we can find h(k+1) as

h(k+1) =

∣∣∣∣∣∣∣∣∣∣
f(x

(k)
1) g1(x

(k)
1) · · · gn(x

(k)
1)

f(x
(k)
2) g1(x

(k)
2) · · · gn(x

(k)
2)

...
...

. . .
...

f(x
(k)
n+1) g1(x

(k)
n+1) · · · gn(x

(k)
n+1)

∣∣∣∣∣∣∣∣∣∣
/

∣∣∣∣∣∣∣∣∣∣
1 g1(x

(k)
1) · · · gn(x

(k)
1)

−1 g1(x
(k)
2) · · · gn(x

(k)
2)

...
...

. . .
...

(−1)n g1(x
(k)
n+1) · · · gn(x

(k)
n+1)

∣∣∣∣∣∣∣∣∣∣
.

(5)

Let M
(k)
i be the minor of the matrix in (4) removing the first column and

the i-th row. Then, (5) can be written as

h(k+1) =

∑n+1
i=1 f(x

(k)
i)M

(k)
i (−1)i+1∑n+1

j=1 M
(k)
j

. (6)

High-Precision Bootstrapping of RNS-CKKS Homomorphic Encryption 23

If f is replaced by any polynomial p =
∑n
j=1 c

′
jgj in (4), the minimax approxi-

mation on {x(k)1 , · · · , x(k)n+1} is p itself. This leads to∑n+1
i=1 pk(x

(k)
i)M

(k)
i (−1)i+1∑n+1

j=1 M
(k)
j

= 0. (7)

By substracting (6) from (7), and rk = pk − f , we have

−h(k+1) =

∑n+1
i=1 rk(x

(k)
i)M

(k)
i (−1)i+1∑n+1

j=1 M
(k)
j

.

By the fact that rk(x
(k)
i)’s alternate in sign by the alternating condition for new

set of reference points, and all minors Mi have the same sign by Lemma 2.9, we
have ∣∣∣∣∣

n+1∑
i=1

rk(x
(k)
i)(−1)iM

(k)
i

∣∣∣∣∣ =

n+1∑
i=1

|rk(x
(k)
i)||M (k)

i |

αk+1 = |h(k+1)| =
∑n+1
i=1 |M

(k)
i ||rk(x

(k)
i)|∑n+1

j=1 |M
(k)
j |

. (8)

Now let

θ
(k)
i =

|M (k)
i |∑n+1

j=1 |M
(k)
j |

.

Since αk+1 is weighted average of |rk(x
(k)
i)| by θ

(k)
i ’s as weights, we have αk+1 ≥

γk from (2). Note that αk ≤ γk ≤ αk+1, and thus αk is a non-decreasing se-
quence. This fact is used in the last part of the proof.

Note that there are some n + 1 alternating points, where the approximate
error values alternates, including the global extreme point by Theorem 3.1, and

the approximate error values at x
(k)
1 , · · · , x(k)n+1 have the maximum absolute sum

by the maximum absolute sum condition for new set of reference points. That is,∑n+1
i=1 |rk(x

(k)
i)| is larger than or equal to sum of any n+ 1 absolute error values

including βk and thus we have

n+1∑
i=1

|rk(x
(k)
i)| ≥ βk. (9)

First, we will prove that θ
(k)
i is larger than a constant 1− θ > 0 throughout

the iterations. It is known that Mi 6= 0 for all i from the Haar condition. We
firstly prove an inequality

x
(k)
i+1 − x

(k)
i ≥ ε > 0, i = 0, · · · , n, (10)

24 J. Lee et al.

where ε does not depend on k. Assume that (10) is not true. Let x(k) = (x
(k)
1 , · · · , x(k)n+1)

be a sequence defined onDn+1. Then x(k) has its subsequence such that mini |x(k)i+1−
x
(k)
i | converges to zero. Since Dn+1 is a closed and bounded subset of Rn+1, it

is a compact set, and thus this subsequence also has its subsequence converg-
ing to a point (x∗1, · · · , x∗n+1). Since mini |x∗i+1 − x∗i | = 0, there is some i such
that x∗i = x∗i+1. Let p be the minimax polynomial of f on (x∗1, · · · , x∗n+1). Since
there is actually less than or equal to n points, p is the approximate polynomial
generated by the Lagrange interpolation, and thus

p(x∗i) = f(x∗i), i = 1, · · · , n+ 1.

It is known that α1 > 0 by the fact that αk is weighted average of absolute
approximation errors at the previous set of reference points. Then, there exists
a number δ > 0 such that whenever |y1 − y2| < ε and y1, y2 ∈ D, we have

|(p− f)(y1)− (p− f)(y2)| < α1

because p − f is a continuous function on the compact set, and thus it is also

uniformly continuous. Since there is a subsequence of (x
(k)
1 , · · · , x(k)n+1) converging

to x(k) = (x∗1, · · · , x∗n+1), there is some k0 such that

|x(k0)i − x∗i | < δ, i = 1, · · · , n+ 1.

Then,

|(p− f)(x
(k0)
i)− (p− f)(x∗i)| = |p(x

(k0)
i)− f(x

(k0)
i)| < α1

because (p− f)(x∗i) = 0. In fact, p is not the minimax approximate polynomial

in regard to the k-th set of reference points {x(k0)1 , · · · , x(k0)n+1}. Since αk+1 is the

error value of the minimax approximate polynomial on {x(k0)1 , · · · , x(k0)n+1}, we
have

αk+1 ≤ max
i
|p(x(k0)i)− f(x

(k0)
i)| < α1.

This contradicts the fact that αk is non-decreasing sequence, and thus we have
(10).

Now, we will prove that θ
(k)
i is larger than a constant 1 − θ. Consider the

subset D′ of Dn+1 such that for (y1, · · · , yn+1) ∈ D′, yi+1−yi ≥ ε. We easily see
that D′ is a closed and bounded subset in Rn+1, and thus D′ is a compact set.

Then, |Mi|, which is the same function as |M (k)
i | except that the inputs are yi’s

instead of x
(k)
i ’s, is a continuous function on Dn+1, so is on D′, and thus there is

an element at which |Mi| has the mininum value on D′ from the extreme value
theorem. From the Haar condition in Definition 2.3, |Mi| cannot be zero because
yi’s are distinct and the minimum value of |Mi| is not zero. Since we consider
the finite number of functions |Mi|’s, the lower bound of all |Mi|’s is bigger than

zero. In addition, since
∑n+1
j=1 |Mj | is also a continuous function on D′, there is

High-Precision Bootstrapping of RNS-CKKS Homomorphic Encryption 25

an upper bound of
∑n+1
j=1 |Mj | on D′ from the extreme value theorem. This leads

to the fact that θi’s are lower-bounded beyond zero.

From γk+1 ≥ αk+1, (8), and (9), we have

γk+1 − γk ≥ αk+1 − γk

=

n+1∑
i=1

θ
(k)
i (|rk(x

(k)
i)| − γk) (11)

≥ (1− θ)(βk − γk) (12)

≥ (1− θ)(β∗ − γk). (13)

From (13), we have

β∗ − γk+1 = (β∗ − γk)− (γk+1 − γk)

≤ (β∗ − γk)− (1− θ)(β∗ − γk)

= θ(β∗ − γk).

Then, we obtain the following inequality for some nonnegative B as

β∗ − γk ≤ Bθk. (14)

From (12) and (14), we have

βk − β∗ ≤ βk − γk

≤ 1

1− θ
(γk+1 − γk)

≤ 1

1− θ
(β∗ − γk)

≤ 1

1− θ
Bθk

≤ Cθk. (15)

From Theorem 2.10, there is a constant γ > 0 such that

‖p∗ − f‖∞ + γ‖pk − p∗‖∞ ≤ ‖pk − f‖∞.

Since βk = ‖pk − f‖∞, β∗ = ‖p∗− f‖∞, and (15), we complete the proof by the
following inequality

‖pk − p∗‖∞ =
βk − β∗

γ

≤ Aθk

for nonnegative constant A.

26 J. Lee et al.

Note that (11) and Theorem 3.3 can be satisfied if we include the global ex-
treme point to the new set of reference points in the variant of Remez algorithm,
instead of the maximum absolute sum condition. Thus, this proof naturally in-
cludes the convergence proof of the original variant of the Remez algorithm.
From (11), we can easily know that the maximum absolute sum condition is
better for the choice of the new set of reference points than the simple inclusion
of the global extreme point, in that the rate of the convergence is determined by
the value of the absolute sum of errors values, which is confirmed as in Table 1
for the power basis {1, x, x2, · · · , xd}.

3.3 Efficient Implementation of Modified Remez Algorithm

In this section, we have to consider the issues in each step of Algorithm 2 and
suggest how to implement Steps 1, 2, 3, and 4 of Algorithm 2 as follows.

Initialization: The modified Remez algorithm has proven to converge on the
optimal minimax approximate polynomial regardless of how initialization is per-
formed in the previous section. However, depending on the initialization method,
there can be a large difference in the number of iterations required. Therefore,
the closer the polynomial produced by initializing the initial reference points to
the optimal minimax approximation polynomial, the less number of iterations
is required. We use the node setting method of Han et al. to effectively set the
initial reference points in the modified Remez algorithm. Since Han et al’s node
setting method was for polynomial interpolation, it chooses the d + 1 number
of nodes when we need the approximate polynomial of degree d. Instead, if we
need to obtain the optimal minimax approximate polynomial of degree d, we
choose the d + 2 number of nodes with Han et al’s method as if we need the
approximate polynomial of degree d+ 1, and uses them for the initial reference
points.

Finding Approximate Polynomial: A naive approach is finding coefficients
of the approximate polynomial with power basis at the current reference points
for the continuous function f(x), i.e., we can obtain cj ’s in the following equation

d∑
j=0

cjx
j
i − f(xi) = (−1)iE,

where E is also an unknown variable in this system of linear equations. However,
this method suffers from the precision problem for the coefficients. It is known
that as the degree of the basis of approximate polynomial increases, the coeffi-
cients usually decreases, and we have to set higher precision for the coefficients
of the higher degree basis. Han et al. [24] use the Chebyshev basis for this coeffi-
cient precision problem since the coefficients of a polynomial with the Chebyshev
basis usually have the almost same order. Thus, we also use the Chebyshev basis
instead of the power basis.

High-Precision Bootstrapping of RNS-CKKS Homomorphic Encryption 27

Obtaining Extreme Points: Since we are dealing with a very small minimax
approximation error, we have to obtain the extreme points as precisely as possi-
ble. Otherwise, we cannot reach the extreme point for the minimax approximate
polynomial precisely, and then the minimax approximation error obtained with
this algorithm becomes large. Basically, in order to obtain the extreme points,
we can scan p(x) − f(x) with a small scan step and obtain the extreme points
where the increase and decrease are exchanged. A small scan step increases the
accuracy of the extreme point but causes a long scan time accordingly. To be
more specific, it takes approximately 2` proportional time to find the extreme
points with the accuracy of `-bit. Therefore, it is necessary to devise a method
to obtain high accuracy extreme points more quickly.

In order to obtain the exact point of the extreme value, we use a method
of finding the points where the increase and decrease are exchanged and then
finding the exact extreme point using a kind of binary search. Let r(x) = p(x)−
f(x) and sc be the scan step. If we can find x0 where µ(x0)r(x0) ≥ |E|, and
(r(x0) − r(x0 − sc))(r(x0 + sc) − r(x0)) ≤ 0, we obtain the i-th extreme points
using the following process successively ` times,

xi,k = arg max
x∈{xi,k−1−sc/2k,xi,k−1,xi,k−1+sc/2k}

|r(x)|, k = 1, 2, · · · , `.

Then, we obtain the extreme point with O(log(sc) + `)-bit precision. Since sc
needs not to be a too small value, we can find the extreme point with arbitrary
precision with linear time to precision `. In summary, we propose that the `-bit
precision of the extreme points can be obtained by the linear time of ` instead
of 2`.

This procedure for each interval in the approximation region can be per-
formed independently with each other, and thus it can be performed effectively
with several threads. Since this step is the slowest step among any other steps
in the modified Remez algorithm, the parallel processing for this procedure is
desirable to make the whole algorithm much fast.

Obtaining New Reference Points: When we find the new reference points
satisfying the local extreme value condition, the alternating condition, and max-
imum absolute sum condition, there is a naive approach: among local extreme
points which satisfy the local extreme value condition, find all n+ 1 points sat-
isfying the alternating condition and choose the n + 1 points which have the
maximum absolute sum value. If we have m local extreme points, we have to
investigate

(
m
n+1

)
points, and this value is too large, and thus it makes this algo-

rithm impractical. Thus, we have to find a more efficient method than this naive
approach.

We propose a very efficient and provable algorithm for finding the new ref-
erence points. The proposed algorithm always gives the n + 1 points satisfying
the three criteria. It can be considered as an elimination method, in that we
eliminate some elements for each iteration in the proposed algorithm until we
obtain n+1 points. It is clear that as long as m > n+1, we can find at least one

28 J. Lee et al.

element which may not be included in the new reference points. This proposed
algorithm is given in Algorithm 3. Algorithm 3 takes O(m logm) running time,
which is a quasi-linear time algorithm.

To understand the last part of Algorithm 3, the example can be given that if
the extreme point x2 is removed, T = {|r(x1)|+ |r(x2)|, |r(x2)|+ |r(x3)|, |r(x3)|+
|r(x4)|, · · · } is changed to T = {|r(x1)| + |r(x3)|, |r(x3)| + |r(x4)|, · · · }. It is
assumed that whenever we remove an element in the ordered set B in Algorithm
3, the remaining points remain sorted and indices are relabeled in increasing
order. When we compare the values to remove some extreme points, there are
the cases that the compared values are equal or the smallest element is more than
one. In such cases, we randomly remove one of these elements. The correctness
of Algorithm 3 is proven in the following theorem.

Theorem 3.4. Algorithm 3 always returns the n+1 points satisfying alternating
condition and maximum absolute sum condition.

Proof. Let Binit = {t′1, t′2, · · · , t′m} be the initial elements in B , and let t′` be an
element removed in the first while statement. We first show that each element
removed in the first while statement in Algorithm 3 is not included in the new ref-
erence; that is, if the subset A of Binit having n+ 1 elements satisfies alternating
condition and contain this removed element, there is another subset A′ of B hav-
ing n+ 1 elements satisfying alternating condition, not containing the removed
element, and having absolute sum larger than or equal to A. Since it is removed
in the first while statement, there is an element t′`′ such that |r(t′`′)| ≥ |r(t′`)|,
µ(t′`′) = µ(t′`), and |`′− `| = 1. Clearly, A cannot contain t′`′ , because A satisfies
the alternating condition. Let A′ be the same set as A except that t′` is replaced
with t′`′ . Then A′ also satisfies alternating condition, does not contain t′`, and
has absolute sum larger than or equal to that of A.

We now observe that at the end of the first while statement, B itself satisfies
the alternating condition. Then we now have to prove that elements removed in
the second while statement in Algorithm 3 are not included in the new reference
points. In other words, if the subset A of Binit having n + 1 elements satisfies
the alternating condition and contains these removed elements, there is another
subset A′ of B having n + 1 elements satisfying alternating condition, not con-
taining these removed elements, and having absolute sum larger than or equal
to A. Let t′` be an element removed in the second while statement be.

Then, there are three cases: at the time of removal of t′`, the remaining set
B can have n + 2, n + 3, or larger than n + 3 elements as in Algorithm 3. We
consider each case separately. By the induction argument, we can assume that
the remaining set B in each iteration has n+1 points that satisfy the alternating
condition and have the maximum absolute sum among all possible n+ 1 points
in Binit. In other words, we can assume that if we have n+ 1 points in Binit that
satisfy the alternating condition and contain at least one of the removed elements
before that time, there are n+ 1 points in the remaining set B at that time such
that they satisfy the alternating condition and have absolute sum larger than or
equal to the previous ones. This inductive assumption makes us consider only
the remaining set B at that iteration instead of all Binit in the proof.

High-Precision Bootstrapping of RNS-CKKS Homomorphic Encryption 29

Algorithm 3: New Reference

Input : An increasing ordered set of extreme points B = {t1, t2, · · · , tm}
with m ≥ n+ 1, and number of basis n.

Output: n+ 1 points in B satisfying alternating condition and maximum
absolute sum condition.

1 i← 1
2 while ti is not the last element of B do
3 if µ(ti)µ(ti+1) = 1 then
4 Remove from B one of two points ti, ti+1 having less value among

{|r(ti)|, |r(ti+1)|}.
5 else
6 i← i+ 1
7 end

8 end
9 if |B| > n+ 2 then

10 Calculate all |r(ti)|+ |r(ti+1)| for i = 1, · · · , |B| − 1 and sort and store this
values into the array T .

11 while |B| > n+ 1 do
12 if |B| = n+ 2 then
13 Remove from B one of two points t1, t|B| having less value among

{|r(t1)|, |r(t|B|)|}.
14 else if |B| = n+ 3 then
15 Insert |r(t1)|+ |r(t|B|)| into T and sort T . Remove from B the two

element having the smallest value in T .
16 else
17 if t1 or t|B| is included in the smallest element in T then
18 Remove from B only t1 or t|B|.
19 else
20 Remove from B the two elements having the smallest element in T .
21 end
22 Remove from T all elements related to the removed extreme points,

and insert into T the sum of absolute error values of the two newly
adjacent extreme points.

23 end

24 end

30 J. Lee et al.

i) Case of n + 2: If the remaining set B has n + 2 elements at the time of
removal of t′`, elements in B at that time are labeled as t1, t2, · · · , tn+2, and
t′` is labeled as t1 or tn+2. Then, |r(t)| at one of the two points t1 and tn+2,
which is not t′` has the value of |r(x)| larger than or equal to the value at
t′`. We denote this element t′`′ . If we have a subset A of n+ 1 points in the
remaining set B that satisfy alternating condition and contain t′`, t

′
`′ must

not be in these n + 1 points due to alternating condition. Let A′ be the
same set as A except that t′` is replaced with t′`′ . Then, A′ also satisfies the
alternating condition, does not contain t′`, and has absolute sum larger than
or equal to that of A.

ii) Case of n+3: If the remaining set B has n+3 elements at the time of removal
of t′`, the elements in B at that time are labeled as t1, t2, · · · , tn+3, and we
have to remove two elements. Then, there must be a different element t′p
which is also removed at the time of removal of t′`. {t′`, t′p} can be {ti, ti+1}
for some i or {t1, tn+3} as in Algorithm 3. Since all of the subsets of B
having n+ 1 elements that satisfy the alternating condition are the cases of
B\{ti, ti+1} for some i or B\{t1, tn+3}, one subset of B with the alternating
condition that has the maximum absolute sum has to be B\t′`, t′p. Therefore,
we can obtain the resulting subset by removing these two elements.

iii) Case of larger than n + 3: If the remaining set B has elements larger than
n+ 3 elements at the time of removal of t′`, the elements in B at that time
are labeled as t1, t2, · · · , tj , where j > n+ 3. Then, there are two cases: One
is that t′` is labeled as t1 or tj , and the other is not the first case.

iii)-1 If t′` is labeled as t1 or tj , let t′p be the adjacent element in B. If the
subset A in B that satisfies the alternating condition and contains t′`
also contains t′p, there is at least one pair of adjacent elements t′`′ and
t′p′ in B that is not contained in A, since A satisfies the alternating
condition and more than three elements are removed from B. Note
that |r(t′`′)| + |r(t′p′)| ≥ |r(t′`)| + |r(t′p)|. Let A′ be the same set as A
except that t′` and t′p are replaced with t′`′ and t′p′ . A

′ also satisfies
alternating condition, does not contain t′`, and has absolute sum larger
than or equal to that of A.

If A does not contain t′p, the adjacent element of t′p which is not t′`
cannot be contained in A, since A satisfies the alternating condition.
Let t′`′ be the adjacent element of t′p. Note that |r(t′`′)| + |r(t′p)| ≥
|r(t′`)|+|r(t′p)|. Let A′ be the same set with A except that t′` is replaced
with t′`′ . A

′ also satisfies the alternating condition, does not contain
t′`, and has absolute sum larger than or equal to that of A.

iii)-2 If t′` is not labeled as t1 or tj , the adjacent element t′p of t′` in B which
|r(t′`)|+ |r(t′p)| is the smallest value in T cannot be t1 or tj . If this is
the case, t′` cannot be removed but t′p is removed in that iteration. If
the alternated subset A in B that contains t′` also contain t′p, there
is at least one pair of adjacent elements t′`′ and t′p′ in B that is not
contained in A. Note also that |r(t′`′)|+ |r(t′p′)| ≥ |r(t′`)|+ |r(t′p)|. Let
A′ be the same set as A except that t′` and t′p are replaced with t′`′

High-Precision Bootstrapping of RNS-CKKS Homomorphic Encryption 31

and t′p′ . A
′ also satisfies the alternating condition, does not contain

t′`, and has absolute sum larger than or equal to that of A.
If A does not contain t′p, there is the adjacent element of t′p which is not
t′`, since t′p is not t1 or tj . Let t′`′ be adjacent element of t′p. Then, t′`′
cannot be contained in A, since A satisfies the alternating condition.
Note that |r(t′`′)| + |r(t′p)| ≥ |r(t′`)| + |r(t′p)|. Let A′ be the same set
as A except that t′` is replaced with t′`′ . A

′ also satisfies alternating
condition, does not contain t′`, and has absolute sum larger than or
equal to that of A.

Thus, we prove the theorem.

3.4 Numerical Analysis with Modified Remez Algorithm

In this subsection, we show the result of the numerical analysis of the modified
Remez algorithm for its efficiency and the optimal minimax approximation error.

Maximum Sum Condition: Table 1 shows the number of iterations required
to converge to the optimal minimax approximate polynomial in the variant of
the Remez algorithm and the modified Remez algorithm. The initial set of ref-
erence points is selected uniformly in each interval as soon as possible since we
want to observe their performances in the worst case. While the selection for
new reference points is not unique for each iteration in the variant of the Re-
mez algorithm, the modified Remez algorithm selects the new reference points
uniquely for each iteration. Thus, when we analyze the variant of the Remez
algorithm, we select the new reference points randomly for each iteration among
the possible sets of reference points that satisfy the local extreme value condi-
tion and the alternating condition and have the global extreme point. We set the
approximation parameter δ in Algorithm 2 as 2−40 and repeat this simulation
with 100 times. It shows that the modified Remez algorithm is much better to
reduce the iteration number of the Remez algorithm.

Note that the number of iterations depends on the initial set of reference
points. In fact, the uniformly distributed reference points are not desirable as an
initial set of reference points because these reference points are far from the con-
verged reference points. In fact, the modified Remez algorithm with the initial-
ization method explained in the previous subsection only needs 4∼14 iterations.
The overall running time of the modified Remez algorithm with the method in
the previous subsection is 1∼3 seconds by PC with AMD Ryzen Threadripper
1950X 16-core CPU @ 3.40GHz.

Minimax Error: We obtain the optimal minimax approximate polynomials for
the modular reduction function and the scaled cosine function with the scaling
number two. Fig. 1(a) shows the minimax approximation error of the approx-
imate polynomial of the modular reduction function derived by the modified

32 J. Lee et al.

Table 1: Comparison of iteration numbers between the modified Remez algo-
rithm and the variant of the Remez algorithm for δ = 2−40

degree
of approx.

poly.

modified
Remez algorithm

variant of
Remez algorithm

average
standard
deviation

max min

79 28 60.0 9.38 82 41

99 8 17.1 3.34 28 11

119 26 53.4 8.10 79 37

139 39 60.3 4.71 79 48

159 39 72.1 9.71 98 42

179 48 72.3 9.72 105 53

199 56 80.4 7.28 94 60

-40

-35

-30

-25

-20

-15

-10

-5

0

40 60 80 100 120

lo
g
(e

rr
o
r)

degree

Han et al.

optimal

(a) Modular reduction function

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

25 30 35 40 45

lo
g
(e

rr
o
r)

degree

Han et al.

optimal

(b) Cosine function with scaling number
two

Fig. 1: Comparison of minimax approximatio error between the previous approx-
imation method and the modified Remez algorithm.

Remez algorithm and the minimax approximation error of the previous homo-
morphic modular reduction method with scaling number zero in [24], compared
to the modular reduction function. That is, let p1(x) be the optimal minimax ap-
proximate polynomial of the normod function and let q1(x) be the approximate
polynomial obtained by Han et al.’s method with scaling number zero when the
half-width of approximation region is 2−10. Then, maxx∈D |p1(x) − normod(x)|
and maxx∈D |q1(x)− normod(x)| are compared in Fig. 1(a). Note that while the
minimax approximation error of the approximate polynomial of the modular re-
duction function decreases steadily as the degree of the approximate polynomial
increases, the minimax approximation error of the previous method does not
decrease when the degree is larger than 76 because of the approximation error
between the modular reduction function and the sine/cosine function.

Fig. 1(b) shows the minimax approximation error of the composition of the
approximate polynomial of the scaled cosine function with scaling number two
derived by the modified Remez algorithm and two double angle formulas, and
the minimax approximation error of method in [24], compared to the cosine

High-Precision Bootstrapping of RNS-CKKS Homomorphic Encryption 33

function. That is, let p2(x) be the optimal minimax approximate polynomial
of cos

(
π
2 (x− 1/4)

)
and let q2(x) be the approximate polynomial obtained by

Han et al.’s method with scaling number two when the half-width of approxima-
tion region is 2−3. If r(x) = 2x2 − 1, then maxx∈D |r ◦ r ◦ p2(x)− sin(2πx)| and
maxx∈D |r◦r◦q2(x)−sin(2πx)| are compared in Fig. 1(b). The proposed method
improves the minimax approximation error by 2.3 bits on average, and by 5 bits
at maximum for the same degree of the approximate polynomial. This improve-
ment leads to a reduction of 1∼2 degrees for the given minimax approximation
error.

4 Message Precision in Bootstrapping with Modified
Remez Algorithm of RNS-CKKS Scheme

4.1 Analysis in Rescaling Operation

The rescaling operation, which is required after the homomorphic scalar multi-
plication or the homomorphic non-scalar multiplication, causes approximation
error in the RNS-CKKS scheme because the message is divided by the prime
number used as one of the RNS modulus rather than by the exact scaling factor
during the rescaling operation. Let ∆ be the scaling factor and qi be the prime
number divided during the rescaling operation. Then, the rescaled message be-
comes ∆/qi times the intended message. To the best of our knowledge, there is
no paper analyzing how much this message precision is related to the scaling
factor, and thus we address the relation between them in this section.

The conditions for choosing moduli in the RNS-CKKS scheme are as fol-
lows. First, they should satisfy qi ≡ 1 mod 2N to enable the number-theoretic
transform. Second, they have to be as close as possible to the scaling factor to
minimize the rescaling errors. To satisfy these conditions, we start with ∆ + 1
and then add or subtract 2N with determining whether each number is a prime
number and choose the prime numbers nearest to ∆ as moduli.

In this process, there are two parameters that affect the rescaling error ∆/qi:
the degree of the polynomial modulus N and the scaling factor ∆. ∆ affects
the density of the prime number. The prime number theorem [3], a well-known
theorem in the analytic number theory, states that the density of the prime
numbers is roughly proportional to 1/ log∆ near ∆. In other words, if the in-
teger we want to determine whether it is a prime number is `-bit number, the
probability that a number is a prime number is proportional to 1

` . N determines
the density of the number meeting the first condition above. Assuming that the
probability of a prime number meeting the first condition depends purely on
the prime density in that area near the number, the value of |qi −∆| is roughly
proportional to N log∆. Then, the distance from ∆/qi to 1 will be proportional
to N log∆

∆ . Therefore, the smaller N and the larger the scaling factor, the smaller
the rescaling error.

To check that this analysis is practically meaningful, we perform the scalar
multiplication by 1.0 and then rescale the ciphertext to examine the rescaling

34 J. Lee et al.

error. The left table in Table 2 shows the average approximation error for various
scaling factors when the polynomial modulus degree N is set to be 217, and
the right table shows the average approximation error for various polynomial
modulus degree N when the scaling factor is set to be 60. The number of slots
is set to be 214 and we compute the average of the approximation error of each
slot. We can see that the rescaling error is inversely proportional to the scaling
factor and proportional to N . Since the numerical rescaling error follows the
theoretical relation above, we can see that the rescaling error is predominant
compared to other errors.

Table 2: Approximation error for various scaling factors and various polynomial
modulus degree when the homomorphic scalar multiplication with 1.0
is performed

scaling
factor
∆

approximation
error

message
precision

(bits)

polynomial
modulus
degree N

approximation
error

message
precision

(bits)
40 9.93× 10−8 23.3 15 4.49× 10−14 44.3
45 4.10× 10−9 27.9 16 6.46× 10−14 43.8
50 1.31× 10−10 32.8 17 1.27× 10−13 42.8
55 3.73× 10−12 38.0 18 3.20× 10−13 41.5
60 1.27× 10−13 42.8 19 5.33× 10−13 40.7

We can observe two trade-offs with respect to the precision in the RNS-
CKKS scheme. The first trade-off is between the number of levels available and
the message precision. With a fixed security parameter, the upper bound of the
product of all RNS moduli is given according to the polynomial modulus degree
N of the ring and this bound increases as N increases. If the maximum number
of levels is not sufficient, we have to increase the value of N , which reduces the
message precision. Therefore, when increasing the value of N to increase the
number of levels available, the resulting decrease in message precision should be
taken into account.

The second trade-off is between the scaling factor and the message preci-
sion. This trade-off has a greater effect than the previous trade-off. Because the
rescaling error is proportional to log∆

∆ , the message precision is improved al-
most proportionally to the scaling factor. Therefore, in order to ensure sufficient
message precision, the large scaling factor should be used.

4.2 Bit Length Difference between Default Scaling Factor and
Bootstrapping Scaling Factor

The bit length difference between the default scaling factor ∆ and the boot-
strapping scaling factor ∆boot, which will be denoted as δdiff = log∆boot− log∆,
is closely related to the message precision. The value of δdiff is usually chosen as

High-Precision Bootstrapping of RNS-CKKS Homomorphic Encryption 35

10 bits to lower the difference between the modular reduction function and the
sine/cosine function since the half-width of each interval in the approximation
region is 2−δdiff . Two factors affect the message precision due to the value of δdiff .

The first factor is that δdiff determines the maximum value of the default
scaling factor ∆. If we use the 64-bit integer data type, log∆boot has to be less
than 61, and thus the maximum value of log∆ is 61− δdiff . As mentioned in the
previous subsection, the scaling factor has a direct effect on rescaling precision.
If we use large δdiff , the maximum message precision for the intended operations
may not be sufficiently high.

The second factor is that it also causes loss to the message precision of the
bootstrapping itself. In the bootstrapping procedure, we need to divide the mes-
sage by 2δdiff so that it can be included in the approximation region, and multiply
2δdiff at the end of the bootstrapping. If the precision error until multiplying 2δdiff

is e, the final error becomes 2δdiffe. e cannot be reduced below a certain error value
because of the rescaling error dealt in the previous subsection. If we denote this
lower bound as eb = 2−δb , the message precision will be δb − δdiff .

Because δdiff has a significant effect on both the message precision of the
bootstrapping and the message precision of the intended operation in the appli-
cation, it is desirable to reduce the δdiff to prevent this precision loss. However,
the difference between the sine/cosine function and the modular reduction func-
tion is somewhat dominant, and this difference becomes more dominant as δdiff

increases. This effect is numerically shown in the next subsection.

4.3 Numerical Analysis of Message Precision in Bootstrapping with
Modified Remez Algorithm in FullRNS-HEAAN Library

Since the previous researches for the bootstrapping of the RNS-CKKS scheme
did not deal deeply with its message precision, we numerically analyze the mes-
sage precision for the bootstrapping with modified Remez algorithm of the RNS-
CKKS scheme by changing several parameters: the degree d of the approximate
polynomial of the scaled cosine function, the bit-length difference δdiff between
the default scaling factor and the bootstrapping scaling factor, the bootstrapping
scaling factor ∆boot, and the number of the slots.

Numerical analysis in this section is conducted in PC with AMD Ryzen
Threadripper 1950X 16-core CPU @ 3.40GHz, and the FullRNS-HEAAN library
[1] is used. The double angle formula for the cosine function is assumed to be used
twice. The modified Remez algorithm is used to obtain the optimal minimax ap-
proximate polynomial in all simulations, rather than polynomial approximation
methods in the previous papers [9,12,24]. The polynomial modulus degree is set
to be 217, and the maximum modulus for the ciphertext is set to be 22250, which
satisfies the 128-bit security as in [15]. When the 61-bit scaling factor is used, the
maximum level available is 36. The CoeffToSlot and SlotToCoeff proce-
dures in [9] are used in all simulations, and the consumed level of depth in each
procedure is fixed to be two.

36 J. Lee et al.

Degree of Approximate Polynomial: Table 3 shows the message precision
of the bootstrapping with the modified Remez algorithm when the degree of the
approximate polynomial for the scaled cosine function is changed. The value of
log δdiff is 10, log∆boot is 61, and the number of the slots is 210 in this simu-
lation. The approximation error means the minimax error of the approximate
polynomial for the scaled cosine function, and the bootstrapping error means the
average error for each slot when the bootstrapping is performed with the library.
When the scaling factor is changed from the bootstrapping scaling factor to the
default scaling factor, the message and its error are multiplied by δdiff . We show
both the bootstrapping error before changing the scaling factor and that after
changing the scaling factor. Although the approximation error continues to de-
crease as the degree of the approximate polynomial increases, the bootstrapping
error does not decrease below a certain value. This bound is caused by either
the difference between the modular reduction function and the cosine function
or the approximate rescaling error depending on the situation. Thus, we cannot
raise the message precision infinitely by using high degree approximate polyno-
mial. The actual lower bound of the bootstrapping error before changing the
scaling factor is denoted by emin in this section, and then the lower bound of the
bootstrapping error after changing the scaling factor is eminδdiff .

Table 3: Message precision of the bootstrapping with the modified Remez algo-
rithm for various degrees of the approximate polynomials

degree
of approx.

poly.

approximation error
by the optimal minimax

polynomial

bootstrapping error message
precision

(bits)
before changing
scaling factor

emin

after changing
scaling factor

eminδdiff

27 2.16× 10−6 5.52× 10−5 5.66× 10−2 4.14

30 4.51× 10−9 1.05× 10−7 1.08× 10−4 13.2

33 1.41× 10−10 1.85× 10−8 1.89× 10−5 15.7

36 4.19× 10−13 1.69× 10−8 1.73× 10−5 15.8

39 5.24× 10−15 6.25× 10−9 6.40× 10−6 17.3

42 1.785× 10−17 6.25× 10−9 6.40× 10−6 17.3

Value of δdiff : Table 4 shows the maximum message precision of the boot-
strapping with modified Remez algorithm for various δdiff . The degree of the
approximate polynomials for each case is set to be large enough to reach the
minimum approximate error emin, and the scaling factor and the number of slots
are fixed to be 61 and 210, respectively.

The bootstrapping error after changing the scaling factor is eminδdiff . As δdiff

decreases, emin increases rapidly so that the eminδdiff grows. This is because the
difference between the modular reduction function and the cosine function be-
comes larger when the approximation region is enlarged. We can naively expect

High-Precision Bootstrapping of RNS-CKKS Homomorphic Encryption 37

that the bootstrapping error can be decreased infinitely when log δdiff is increased,
because |ε−sin ε| = O(ε3). However, if the δdiff is larger than 10, the value of emin

does not decrease, and thus eminδdiff increases. This lower bound of emin is caused
by the approximate rescaling error and the homomorphic linear transform in
the bootstrapping. This bound of emin is related to the bootstrapping scaling
factor ∆boot and the number of slots, which will be dealt with in the following
paragraphs.

Table 4: Message precision of the bootstrapping with the modified Remez algo-
rithm for various values of log δdiff

log δdiff
bootstrapping error message

precision
(bits)

before changing
scaling factor

emin

after changing
scaling factor

eminδdiff

3 1.13× 10−3 9.02× 10−3 6.79

4 1.42× 10−4 2.27× 10−3 8.78

6 2.22× 10−6 1.42× 10−4 12.8

8 3.51× 10−8 8.99× 10−6 16.8

9 7.37× 10−9 3.77× 10−6 18.0

10 6.25× 10−9 6.40× 10−6 17.2

11 6.24× 10−9 1.28× 10−5 16.3

Bootstrapping Scaling Factor: Table 5 shows the maximum message preci-
sion for various bootstrapping scaling factors when the number of slots is 210.
The degree of the approximate polynomial and the value of δdiff are set to reach
the lower bound of emin for each bootstrapping scaling factor and to minimize
the value of eminδdiff , which determines the actual message precision of the boot-
strapping. The second column in Table 5 shows the lower bound of emin, the
third column shows the value of δdiff which minimizes eminδdiff , and the last col-
umn shows the maximum message precision with corresponding bootstrapping
scaling factor.

Since the scaling factor affects the approximate rescaling error as we stated in
Subsection 4.1, the maximum message precision of the bootstrapping in the RNS-
CKKS scheme decreases as the bootstrapping scaling factor decreases. There are
many homomorphic multiplications with approximate rescaling in the process of
the bootstrapping, and thus the minimum emin is much larger than the approx-
imate rescaling error. This means that we have to use as large a bootstrapping
scaling factor as possible when we need precise bootstrapping. Since the boot-
strapping scaling factor is related to the multiplicative depth, this gives the
trade-off between the depth and the precision.

Number of Slots: Table 6 shows the maximum message precision for various
numbers of slots when the bootstrapping scaling factor is 61, the maximum

38 J. Lee et al.

Table 5: Maximum message precision of the bootstrapping with the modified
Remez algorithm for various bootstrapping scaling factors

log∆boot log δdiff
bootstrapping error message

precision
(bits)

before changing
scaling factor

emin

after changing
scaling factor

eminδdiff

50 5 2.16× 10−5 6.90× 10−4 10.5

53 6 2.76× 10−6 1.77× 10−4 12.5

57 7 3.21× 10−7 4.11× 10−5 14.6

61 9 7.37× 10−9 3.77× 10−6 18.0

Table 6: Maximum message precision of the bootstrapping with modified Remez
algorithm for various numbers of slots

logn
degree

of approx.
poly.

log δdiff
bootstrapping error message

precision
(bits)

remaining
depth
level

running
time (s)before changing

scaling factor
emin

after changing
scaling factor

eminδdiff

3 37 10 8.42× 10−10 8.62× 10−7 20.1 18 55.4

5 37 10 1.09× 10−9 1.12× 10−6 19.8 18 67.8

8 37 9 5.19× 10−9 2.66× 10−6 18.5 18 100.0

10 37 9 7.37× 10−9 3.77× 10−6 18.0 18 120.0

12 37 9 1.28× 10−8 6.53× 10−6 17.2 18 192.2

14 36 8 4.08× 10−8 1.04× 10−5 16.5 18 293.2

scaling factor. The degree of the approximate polynomials and δdiff are set to
the same as Table 5. The remaining level is computed with the bootstrapping
scaling factor, but the actual level can be more than them because the default
scaling factor is less than the bootstrapping scaling factor. The error analysis in
[12] shows that the bootstrapping error is proportional to

√
n by SlotToCoeff

step, where n is the number of slots. The result of Table 6 corresponds to this
error analysis. This gives the trade-off between the number of slots and the
message precision. Note that all precision is less than 23-bit precision, which
is the precision of the single-precision floating point number system. Thus, the
message precision of the bootstrapping with the modified Remez algorithm is
not that big enough to be used in reliable homomorphic computations. We will
solve this problem in the next section by using the composite function method
with the inverse sine function.

5 Improvement of Message Precision by Composite
Function Approximation of Modular Reduction
Function

At first glance, it seems to be the best method to use the optimal minimax
approximate polynomials for the modular reduction function. However, we can

High-Precision Bootstrapping of RNS-CKKS Homomorphic Encryption 39

see that some of the coefficients of the optimal minimax approximate polynomials
with regard to the Chebyshev basis are so large that the amplified approximate
errors by these coefficients totally distort the messages in the ciphertext. On
the other hand, the coefficients of the optimal minimax approximate polynomial
of the scaled sine/cosine functions with more than one scale number are small
enough not to distort the messages. Thus, the approximation of the modular
reduction function by the sine/cosine function is essential for the correctness in
the RNS-CKKS scheme.

When we adhere to the approximation by the scaled sine/cosine function,
the difference of the modular reduction function and the sine/cosine function is
a crucial obstacle, which is mentioned as an important open problem in Han et
al.’s paper [24]. This difference is sharply increased as the approximation region
of the modular reduction function becomes longer, and this prevents us from
reducing δdiff .

5.1 Composite Function Approximation of Modular Reduction
Function by Inverse Sine Function

We propose a simple and novel method for solving this problem, which is called
the composite function approximation method. In short, we compose the optimal
minimax approximate polynomial of the sine/cosine function and the approxi-
mate polynomial of the inverse sine function. It is easy to check that if we have
two functions f ad g for 0 < ε < 1

4 as

f :

∞⋃
k=−∞

[2π(k − ε), 2π(k + ε)]→ [− sin 2πε, sin 2πε], f(x) = sinx

g : [− sin 2πε, sin 2πε]→ [−2πε, 2πε], g(x) = arcsinx,

then the following equation holds as

x− 2π · round
(x

2π

)
= (g ◦ f)(x), x ∈

∞⋃
k=−∞

[2π(k − ε), 2π(k + ε)].

If we substitute t = x
2π , then we have

normod(t) =
1

2π
(g ◦ f)(2πt), t ∈

∞⋃
k=−∞

[k − ε, k + ε]. (16)

If we approximate both f and g with the optimal minimax approximate
polynomials derived by the modified Remez algorithm, we can approximate the
modular reduction function with any small approximate error by the composition
of f and g. Note that g(x) can be approximated very well with some approximate
polynomials of small degree since the domain of g(x) is only one interval. Indeed,
the cosine approximation with double-angle formula in [24] can be regarded as
the special case of the proposed composite function approximation, in that they

40 J. Lee et al.

approximate g(x) with x, that is, the identity function. Note that the cosine
function in [24] is merely a parallel shift of the sine function. Thus, it is said
that they approximate the sine function instead of the cosine function.

The sine function f was evaluated by composing the scaled cosine function
and several double-angle formulas in [24]. If the number of the used double-angle
formula is `, then the functions h1, h2, and h3 are defined as

h1(x) = cos

(
2π

2`

(
x− 1

4

))
, h2(x) = 2x2 − 1, h3(x) =

1

2π
arcsin(x).

Then, the normod function, which is equivalent to the modular reduction func-
tion, can be represented as

normod(x) = h3 ◦ h`2 ◦ h1(x).

Thus, if h̃1 is the optimal minimax approximate polynomial of h1 and h̃3 is
that of h3, we can approximate normod function by the composition of several
polynoimals as

normod(x) ≈ h̃3 ◦ h`2 ◦ h̃1(x).

With this method, we can approximate the modular reduction function by
the composition of several polynomials at arbitrary precision. This enables us to
reduce δdiff to 3 and reach the message precision of δb − δdiff , which is the best
precision mentioned in the previous section. The next section shows that we can
indeed reach this high precision in the FullRNS-HEAAN library.

5.2 Simulation Result

In this subsection, we demonstrate that the composite function method can
improve the message precision in the RNS-CKKS scheme. The simulation envi-
ronment is the same as the simulation in Section 4. Up to now, bootstrapping
simulation has been performed with a single thread in previous works, but we
perform the simulations with a multi-thread environment. Most of the current
CPU’s support multi-core and the homomorphic operations are likely to be per-
formed on the high-performance servers with many cores used by the enterprise
rather than on light devices for individuals. Thus, the performance of running
time in a multi-core environment represents the actual running time perfor-
mance well. Since the computations in each modulus in the RNS-CKKS scheme
can be processed in parallel, we evaluate each running time by modifying the
FullRNS-HEAAN library, which was designed to use only a single thread, to gen-
erate and use as many threads as the number of levels for all homomorphic
operations.

Table 7 shows that the value of emin with the composite function method does
not change. The degrees of approximate polynomials of scaled cosine function
and inverse sine function are set to minimize emin, and these degrees are shown
in Table 7. In contrast to the result in Table 4, all of the values of emin in Table
7 are almost the same as the minimum value of emin in Table 4 regardless of

High-Precision Bootstrapping of RNS-CKKS Homomorphic Encryption 41

δdiff . Since emin is fixed with the minimum value, the bootstrapping precision,
which is determined by eminδdiff , is increased as δdiff decreases. Thus, the max-
imum message precision is increased by 5.8-7.6 bits, and becomes 22.4-27.8 bit
precision, most of which are larger than 23-bit precision, the precision of the
single-precision floating-point number.

Table 7: Maximum message precision of the bootstrapping with modified Remez
algorithm and composite function method for various δdiff

log δdiff
bootstrapping error message

precision
(bits)

before changing
scaling factor

emin

after changing
scaling factor

eminδdiff

3 6.25× 10−9 5.00× 10−8 24.3

4 6.24× 10−9 9.99× 10−8 23.3

6 6.24× 10−9 3.99× 10−7 21.3

8 6.24× 10−9 1.60× 10−6 19.3

9 6.24× 10−9 3.19× 10−6 18.3

Table 8 shows the maximum precision of the bootstrapping with the modified
Remez algorithm and composite function method for various slots. The δdiff value
and log∆diff value are set to be 3 and 61, respectively. Even when we use 212

slots, the message precision is larger than the 23-bit precision. Even the worst-
case message precision in the bootstrapping with the modified Remez algorithm
and the composite function method with many slots is larger than the best-case
message precision in the bootstrapping without the composite function method
with small slots. Thus, we make the bootstrapping of the RNS-CKKS scheme
more reliable enough to be used in practical applications.

Table 8: Maximum message precision of the bootstrapping with composite func-
tion method for various number of slots

logn
deg. of

app. poly.
of cos.

deg. of
app. poly.

of inv.
sine

bootstrapping error message
preci-
sion

(bits)

rema-
ining
depth
level

run-
ning
time
(s)

incr-
easing
ratio
(%)

before changing
scaling factor

emin

after changing
scaling factor

eminδdiff

3 38 21 5.38× 10−10 4.30× 10−9 27.8 14 65.8 18.8

5 38 19 9.94× 10−10 7.95× 10−9 26.9 14 80.6 18.9

8 37 17 3.10× 10−9 2.48× 10−8 25.3 14 111.0 10.9

10 37 17 5.91× 10−9 4.72× 10−8 24.3 14 128.7 7.3

12 37 17 1.21× 10−8 9.71× 10−8 23.3 14 201.4 4.8

14 37 17 2.29× 10−8 1.83× 10−7 22.4 14 300.3 2.4

42 J. Lee et al.

Since we have to evaluate the approximate polynomial for the inverse sine
function, the running time is increased compared to the previous bootstrapping.
This gives the trade-off between the running time and the message precision of
the bootstrapping, but this trade-off can be considered as a practically mean-
ingful trade-off. Since the CoeffToSlot and SlotToCoeff steps take more
time when the number of slots is large, the increasing ratio of computation
time is somewhat small in this case. These simulation results suggest that the
RNS-CKKS scheme with the improved message precision bootstrapping can be
practically used in applications with deep-depth operations.

6 Conclusion and Future Works

We first proposed the algorithm for obtaining the optimal minimax approx-
imate polynomial for any continuous function on the union of the finite set,
including the scaled cosine function on separate approximate regions. Then we
analyzed the message precision of the bootstrapping with the modified Remez
algorithm in RNS-CKKS and its maximum message precision is measured in
the FullRNS-HEAAN library. We also proposed the composite function method
with inverse sine function to improve the message precision of the bootstrapping
significantly, and thus the improved message precision bootstrapping has the
precision higher than the precision of the single-precision floating-point number
system, even when lots of slots are used. Thus, the deep-depth operations in
advanced applications, such as training a convolutional neural network for en-
crypted data, is needed to be implemented by the RNS-CKKS scheme with the
improved message precision bootstrapping.

Since the FullRNS-HEAAN library is just for the proof-of-concept of the RNS-
CKKS scheme, the bootstrapping for the practical homomorphic encryption li-
brary supporting the RNS-CKKS scheme, such as SEAL and PALISADE, will have
better running time performance with similar message precision, which is im-
portant future work.

References

1. FullRNS-HEAAN. https://github.com/KyoohyungHan/FullRNS-HEAAN (Oct
2018)

2. PALISADE Lattice Cryptography Library (release 1.10.4).
https://palisade-crypto.org/ (Sep 2020)

3. Apostol, T.M.: Introduction to analytic number theory. Springer Science & Business
Media (2013)

4. Boemer, F., Costache, A., Cammarota, R., Wierzynski, C.: nGraph-HE2: A high-
throughput framework for neural network inference on encrypted data. In: Proceed-
ings of the 7th ACM Workshop on Encrypted Computing & Applied Homomorphic
Cryptography. pp. 45–56 (2019)

5. Boemer, F., Lao, Y., Cammarota, R., Wierzynski, C.: nGraph-HE: a graph com-
piler for deep learning on homomorphically encrypted data. In: Proceedings of the
16th ACM International Conference on Computing Frontiers. pp. 3–13 (2019)

High-Precision Bootstrapping of RNS-CKKS Homomorphic Encryption 43

6. Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast homomorphic evaluation of
deep discretized neural networks. In: Advances in Cryptology-CRYPTO 2018. pp.
483–512. Springer (2018)

7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic en-
cryption without bootstrapping. ACM Transactions on Computation Theory 6(3),
13 (2014)

8. Brutzkus, A., Gilad-Bachrach, R., Elisha, O.: Low latency privacy preserving in-
ference. In: International Conference on Machine Learning. pp. 812–821. PMLR
(2019)

9. Chen, H., Chillotti, I., Song, Y.: Improved bootstrapping for approximate homo-
morphic encryption. In: Advances in Cryptology-EUROCRYPT 2019. pp. 34–54.
Springer (2019)

10. Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., Li, L., Chen, T., Xu,
Z., Sun, N., et al.: Dadiannao: A machine-learning supercomputer. In: 2014 47th
Annual IEEE/ACM International Symposium on Microarchitecture. pp. 609–622.
IEEE (2014)

11. Cheney, E.: Introduction to approximation theory. McGraw-Hill (1966)
12. Cheon, J., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate ho-

momorphic encryption. In: Advances in Cryptology-EUROCRYPT 2018. pp. 360–
384. Springer (2018)

13. Cheon, J., Han, K., Kim, A., Kim, M., Song, Y.: A full rns variant of approxi-
mate homomorphic encryption. In: International Conference on Selected Areas in
Cryptography-SAC 2018. pp. 347–368. Springer (2018)

14. Cheon, J., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. In: Advances in Cryptology-ASIACRYPT 2017. pp. 409–
437. Springer (2017)

15. Cheon, J., Kim, D., Kim, D.: Efficient homomorphic comparison methods with
optimal complexity. Cryptology ePrint Archive, Report 2019/1234 (2019)

16. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomor-
phic encryption over the torus. Journal of Cryptology 33(1), 34–91 (2020)

17. Dathathri, R., Saarikivi, O., Chen, H., Laine, K., Lauter, K., Maleki, S., Musuvathi,
M., Mytkowicz, T.: Chet: an optimizing compiler for fully-homomorphic neural-
network inferencing. In: Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation. pp. 142–156 (2019)

18. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive p. Report 2012/144 (2012)

19. Filip, S.: A robust and scalable implementation of the Parks-McClellan algorithm
for designing FIR filters. ACM Transactions on Mathematical Software 43(1), 1–24
(2016)

20. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the Forty-First Annual ACM Symposium on Theory of Computing. pp. 169–178
(2009)

21. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Advances
in Cryptology-CRYPTO 2013. pp. 75–92. Springer (2013)

22. Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep learning with
limited numerical precision. In: International Conference on Machine Learning.
pp. 1737–1746 (2015)

23. Gysel, P., Motamedi, M., Ghiasi, S.: Hardware-oriented approximation of convo-
lutional neural networks. In: International Conference on Learning Representation
(2016)

44 J. Lee et al.

24. Han, K., Ki, D.: Better bootstrapping for approximate homomorphic encryption.
In: Cryptographers’ Track at the RSA Conference. pp. 364–390. Springer (2020)

25. Jiang, X., Kim, M., Lauter, K., Song, Y.: Secure outsourced matrix computation
and application to neural networks. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. pp. 1209–1222 (2018)

26. McClellan, J., Parks, T.: A personal history of the Parks-McClellan algorithm.
IEEE Signal Processing Magazine 22(2), 82–86 (2005)

27. Powell, M.: Approximation theory and methods. Cambridge University Press (1981)
28. Remez, E.: Sur la détermination des polynômes d’approximation de degré donnée.

Communications of the Kharkov Mathematical Society 10(196), 41–63 (1934)
29. Rudin, W.: Principles of mathematical analysis, vol. 3. McGraw-Hill New York

(1964)
30. Microsoft SEAL (release 3.5). https://github.com/Microsoft/SEAL (Apr 2020),

microsoft Research, Redmond, WA.
31. Van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic

encryption over the integers. In: Advances in Cryptology-EUROCRYPT 2010. pp.
24–43. Springer (2010)

