
Splitting Payments Locally While Routing Interdimensionally
Lisa Eckey

lisa.eckey@tu-darmstadt.de

TU Darmstadt

Sebastian Faust

sebastian.faust@tu-darmstadt.de

TU Darmstadt

Kristina Hostáková

kristina.hostakova@tu-darmstadt.de

TU Darmstadt

Stefanie Roos

s.roos@tudelft.nl

TU Delft

ABSTRACT
Payment Channel Networks (PCNs) enable fast, scalable, and cheap

payments by moving transactions off-chain, thereby overcoming

debilitating drawbacks of blockchains. However, current algorithms

exhibit frequent payment failures when a payment is routed via

multiple intermediaries. One of the key challenges for designing

PCNs is to drastically reduce this failure rate. In this paper, we

design a Bitcoin-compatible protocol that allows intermediaries to

split payments on the path. Intermediaries can thus easily adapt

the routing to the local conditions, which the sender is unaware

of. Our protocol provides both termination and atomicity of pay-

ments, and provably guarantees that no participant loses funds

even in the presence of malicious parties. An extended version of

our protocol further provides unlinkability between two partial

split payments belonging to the same transaction, which – as we

argue – is important to guarantee the success of split payments.

Besides formally modeling and proving the security of our con-

struction, we conducted an in-depth simulation-based evaluation of

various routing algorithms and splitting methods. Concretely, we

present Interdimensional SpeedyMurmurs, a modification of the

SpeedyMurmurs protocol that increases the flexibility of the route

choice combined with splitting. Even in the absence of splitting,

Interdimensional SpeedyMurmurs increases the success ratio of

transactions drastically in comparison to a Lightning-style protocol,

by up to 1/3. Splitting further increases the probability of success,

e.g., from about 84% to 97% in one scenario.

KEYWORDS
payment channels, payment networks, Bitcoin, routing

1 INTRODUCTION
The most pressing obstacle to mass adoption of cryptocurrencies

like Bitcoin [18] and Ethereum [33] is their limited scalability. The

limited transaction throughput of public blockchains lead to long

delays and high fees [5]. Payment channels [17, 24] are a powerful

tool to mitigate these scalability challenges of blockchains. They

allow two users to send funds to each other off-chain and only

require interaction with the blockchain during creation and closure

of the channels. Moreover, the underlying blockchain can be used

to resolve disputes, e.g., when parties disagree on the latest balance

of the channel. Multiple channels can be connected and form a

payment channel network (PCN), where payments can be routed

via (several) intermediaries to the receiver [1, 6, 7, 24]. The largest

and most widely adopted PCN is the Lightning network with more

than 12, 000 nodes and over 35, 000 open channels
1
.

In order to successfully route a payment of v coins through a

large PCN, it is crucial to find one or several routes with sufficient

capacities on every link between the sender and the receiver. While

there exists a multitude of proposed single or multi-path routing

protocols for PCNs [9, 13, 14, 27, 30, 31, 34], most of them rely on

source routing, where the sender selects the route of the payment.

The main technique for routing payments is to use conditional

payments for each involved channel. In Lightning, which uses only

one path, the atomicity of these payments follows from the use of

Hash-Time-Locked-Contracts (HTLC) [24]. On a high level, in an

HTLC, the receiver of a payment sends a hashhR := H(xR) of a ran-
dom value xR to the sender. The sender then creates a conditional

payment of v coins with the first intermediary I1 on the path. The

conditional payment can be redeemed by presenting a preimage of

hR . Once the conditional payment is setup between the sender and

I1, the intermediary I1 initiate a conditional payment with the next

intermediary on the path and so on, until the receiver is reached.

The receiver then reveals the preimage xR , which settles all con-

ditional payments on the path. The above construction has been

extended by the Atomic Multi-Path (AMP) payment protocol [19].

In AMP, the sender of a v coin payment can split the payment over

multiple paths, such that an amount of vi ≤ v coins is routed along

the i-th path. On a technical level, AMP also relies on HTLCs, but

the preimage is split by the sender into preimage shares. Only if all

shares arrive at the receiver, the payment is completed.

We argue that leaving it to the sender to determine the paths, or

at least the number of paths, is a key reason for the high failure rate

of PCNs. While the sender knows the channels in the network and

their initial funding, he has no knowledge about the current channel

capacities, except for the channels that he is involved in. Therefore,

a sender can only guess which routes will be successful. Especially

when the transaction value is high, it is likely that channel capacities

on the path are insufficient and hence the payment fails.

In this work, we follow a more flexible and adaptable approach

similar to SpeedyMurmurs [27], in which intermediaries on the path

can freely choose the next hop of the payment based on their local

view on channel capacities. In contrast to AMP, where the splitting

of the payment is done by the sender, we design a novel protocol

that allows splitting payments by intermediaries on the fly. This

option enables the intermediaries to route an incoming payment

of v coins, even if he does not have a single outgoing channel

with sufficient capacity, thus increasing the success probability.

1
https://1ml.com/statistics

1

If the routing of all parts of the payment succeeds, the receiver

recombines all partial payments and obtains the v coins.

We formally define suitable security properties and prove that

our protocol satisfies these properties. Concretely, our protocol

guarantees balance neutrality, which says that no honest intermedi-

ary or receiver can lose coins by executing the protocol and bounded
loss for the sender ensuring that a sender does not lose more coins

than what he wanted to pay. The atomicity property of our protocol

guarantees that if an honest sender loses v coins, then he obtains a

valid payment receipt over the correct transfer of v coins. At the

same time, an honest receiver will never issue a correct receipt un-

less he gets v coins in exchange. Finally, the protocol terminates in
finitely many rounds and achieves correctness, which ensures that

the payment will succeed if all parties in the protocol are honest

and all channels in the network have sufficient capacity.

Furthermore, we extend our basic protocol to provide unlink-
ability between split payments. This additional security property

guarantees that even if intermediaries collude, they cannot link

parts of the same split payment. Unlinkability prevents (rational)

intermediaries from censoring split payments, which – as we ar-

gue – they might do in order to optimize the amount of earned

fees from payment forwarding. Our extended construction uses a

preimage-resistant hash function that is additively homomorphic

and an additively homomorphic encryption scheme. It can be in-

stantiated using exponentiation in a group for which Dlog is hard

and Paillier’s encryption scheme. We emphasize that both the ba-

sic construction and the extended protocol can be integrated into

Bitcoin.

Our protocol description follows a modular approach that allows

to instantiate the protocol with a variety of routing algorithms. To

this end, the sender (and each intermediary) can choose between

multiple options for (i) determining a suitable set of candidates to

route a payment over, and (ii) for appropriately splitting the pay-

ment into multiple subpayments that are routed via some subset

of these candidates. The candidate set is selected via the Closer
algorithms, for which we design two options. The first is similar to

Lightning’s routing protocol, with candidates being selected such

that the routing takes a shortest path. As a second algorithm, we

design Interdimensional SpeedyMurmurs, a variant of the tree-based
routing protocol SpeedyMurmurs [27], that combines the infor-

mation from multiple spanning trees. Based on this information,

Interdimensional SpeedyMurmurs offers a high number of paths

towards the receiver and hence a high flexibility in choosing the

candidate set.

Given the candidate set, the splitting algorithm Split selects a
subset of candidates over which the splitting is carried out. We

compare three splitting variants: (a) no splitting, (b) splitting over

the candidates with the shortest paths to be the receiver, and (c)

splitting only if the payment would fail otherwise.

To compare all possible routing combinations, we measured the

success ratio and communication overhead of the algorithms in a

simulation based on data from a real-world Lightning snapshot. Our

simulation considers a wide range of scenarios with regard to chan-

nel capacities, transactions, network dynamics, and routing algo-

rithms. For all considered scenarios, we find that Interdimensional

SpeedyMurmur’s flexibility in routing choice drastically increases

the success ratio at an inconsequentially increased communication

overhead. Strategic splitting variants increase the success ratio, in

particular when we apply (b) splitting over the candidates with the

shortest paths to be the receiver. More precisely, Interdimensional
SpeedyMurmurs with splitting reaches a success ratio of over 95%

whereas Lightning-style algorithms only succeed in around 55% of

cases for larger payments.

In summary, we design a novelmodular payment channel routing

protocol that supports local splitting, prove its security, and confirm

its superior performance with an in-depth evaluation.

2 NOTATION AND SECURITY MODEL
2.1 Preliminaries

Notation. We denote by N, Z and R the set of all natural, integer

and real numbers, respectively. We denote by x ←
$
X the uniform

sampling of the variable x from the set X. Throughout this paper,

n denotes the security parameter and all our algorithms run in

polynomial time in n. A function negl : N → R is negligible in n
if for every k ∈ N, there exists n0 ∈ N s.t. for every n ≥ n0, it

holds that |ν (n)| ≤ 1/nk . We implicitly assume that functions are

negligible in the security parameter. By writing x ← A(y), we mean

that a probabilistic polynomial time algorithm A (or ppt for short)

on input y, outputs x . If A is a deterministic, we use the notation
x := A(y). In our protocol descriptions, we use the following arrow

notation. Instead of the instruction: “Send a messagem to party

P”, we write “m ↪−→ P”. Similarly, instead of the instruction “Upon

receiving a messagem from party P”, we write “ Uponm ←−↩ P”.

Graphs. A directed graph G is a tuple (V, E), whereV is a non-

empty finite set of nodes and E ⊆ {(U ,V) | U ,V ∈ V} is a set

of edges. If (U ,V) ∈ E, U and V are neighbors. A path between

two nodes V1,Vn+1 is a finite sequence of edges (e1, . . . , en) for
which there is a sequence of vertices (V1, . . . ,Vn+1) such that ei =
(Vi ,Vi+1), for i ∈ [1,n] and Vi , Vj , for i , j. The number of

edges in the path is called length of the path. In this paper, we

assume that all graphs are connected, i.e., there is a path between

all distinct V ,U ∈ V . We define a hop-distance function of G as

dG : V × V → N0 that on input two nodes V ,U ∈ V outputs

the length of a shortest path between V and U . If U = V , then
dG(U ,V) = 0.

A graphG′ = (V ′, E ′) is a subgraph ofG ifV ′ ⊆ V and E ′ ⊆ E.

A spanning tree ST of a connected graph G is a subgraph (V, E ′) of

G that is a tree, i.e., a graph such that there exists exactly one path

between every pair of nodes. We consider rooted trees, i.e., trees
with one designated root node root ∈ V . In a rooted spanning tree,

for each node V ∈ V \ {root}, the neighbor with a shorter path to

the root is V ’s parent. Neighbors that are not the parent of a node
V are V ’s children. We call a rooted spanning tree ST of a graph G

a Breadth-First Search (BFS) spanning tree if the path between the

root and each node in the tree is a shortest path in G.

Cryptographic primitives. Webriefly recall the basic cryptographic

primitives that are used in this work. The formal definitions can be

found in Appendix A.

A public key encryption scheme Ψ with a message space M
and ciphertext space C is a triple of ppt algorithms (Gen, Enc,Dec)
s.t. for every messagem ∈ M it holds that Pr[Decsk(Encpk(m)) =

2

m | (pk, sk) ← Gen(1n)] = 1. In this work, we use encryption

schemes that are indistinguishabile under chosen paintext attack
(IND-CPA secure for short), guaranteeing, on a high level, that a ppt

adversary is not able to distinguish the encryption of two messages

of his choice. We say that Ψ is additively homomorphic if for every
x ,y ∈ M and public key pk, Encpk(x)+CEncpk(y) ≡ Encpk(x +My),
where ≡ denotes equality of probability distributions.

A digital signature scheme Σ is a triple of ppt algorithms (Gen,
Sign,Vrfy), where Pr[Vrfypk(Signsk(m)) | (pk, sk) ← Gen(1n)] = 1

holds for every messagem. In this work, we use signature schemes

that are existentially unforgeable under chosen message attack (EUF-

CMA secure for short), guaranteeing, on a high level, that a ppt

adversary, learning polynomially many signatures of messages of

his choice, cannot produce a valid signature for a new message.

A functionH : P→ H is called a preimage-resistant hash function
if it is polynomial-time computable and for every ppt adversary A,

given y = H(x), for a randomly sampled x ∈ P, the probability that
the adversaryA outputs x ′ ∈ P s.t.H(x ′) = y is negligible. We say

thatH is additively homomorphic if for every x ,y ∈ P, it holds that
H(x +P y) = H(x) +H H(y).

In order to simplify the exposition, we often drop the subscript

in +M,+C,+P,+H, 0M, 0C, 0P, 0H when the set is clear.

2.2 Security model
Modeling payment channel networks. We model a payment chan-

nel network (PCN) as a connected directed graph G = (V, E)

together with a capacity function C : E → R+. The set of vertices
V represents the parties involved in the PCN, the set of edges E rep-

resents payment channels open between parties, and the capacity

function assigns coins to parties in a channel. To simplify the nota-

tion in our formalization, we represent a payment channel as two

uni-directional channels and require that (P ,Q) ∈ E ⇔ (Q, P) ∈ E.
Hence, the value C(P ,Q) represents the amount of coins that party

P has in the channel between P and Q and C(Q, P) represents
the amount of coins that Q has in that channel. Let us emphasize

that this is equivalent to modeling a PCN as an undirected graph

with a capacity function that on input an edge {P ,Q} and a party

R ∈ {P ,Q} outputs the amount of coins party R has in the channel.

We define EP := {e ∈ E | ∃Q ∈ V s.t. e = (P ,Q)} as the set of
all channels in which a party P ∈ V has locked coins and use

CP := C
��
EP

to denote the restriction of the capacity function C

to the set EP . We note that E = Û
⋃
P ∈VEP , where Û

⋃
denotes the

disjoint union of sets.

Recall that our goal is to design a protocol that allows parties to

securely route payments through a PCN. In order to design such a

protocol, we do not need to fix one concrete PCN implementation,

e.g., the Lightning Network. In fact, we aim for our protocol to

apply to any PCN in which parties can perform conditional pay-

ments and payment routing. To this end, we abstractly specify the

functionality and input/output behavior of a PCN and allow parties

in our protocol to interact with such PCN in a black-box way. Let

us stress that abstracting from payment channel mechanics does

not only generalize our work but also significantly simplifies the

protocol descriptions and game-based security definitions. Our ab-

straction is formally described below, possible instantiations are

discussed in Appendix B.

We model the functionality of payment channels using an ideal
functionality F (G,C0,∆), parameterized by a connected directed

graph G = (V, E), where (P ,Q) ∈ E ⇔ (Q, P) ∈ E, and the initial

capacity function C0 : E → R
+
. The set of verticesV defines the

parties from which the functionality can receive messages. Further-

more, the functionality has a timing parameter ∆ representing the

upper bound on the blockchain delay. Let us explain the function-

ality of PCN on a high level first and thereafter provide its formal

description. Every party P ∈ V can instruct the functionality to

perform a payment of v from P to Q by sending a message “pay”.

If P has a sufficiently funded channel with Q , the functionality

subtractsv coins from (P ,Q) and addsv coins to (Q, P). We assume

that all such payment takes 1 round.
2

In addition to standard payments, the functionality supports

conditional payments. Such a payment can be initiated by a party

P ∈ V via the message “cPay”. In addition to specifying the chan-

nel (P ,Q) and amount of coins v being conditionally transferred

to Q , party P needs to define the condition φ : {0, 1}∗ → {0, 1} and
the time-lock T ∈ N of the payment. Additionally, P has the op-

tion of attaching some auxiliary information info ∈ {0, 1}∗. If the
channel is sufficiently funded, the functionality subtracts v from

the channel (P ,Q) and informs Q about the conditional payment.

If party Q submits, via the message “cPay–unlock”, a witness w
s.t. φ(w) = 1, v coins are added to the channel (Q, P). After the
round specified by the time-lockT , party P can request a refund via

the message “cPay–refund” in which case the functionality adds

v coins back to the channel (P ,Q). In order to model the fact that

operations triggered by the unlock and refund instructions might

require blockchain interaction, the execution of those instruction

might be delayed by at most ∆ rounds.

The state of the functionality consists of a capacity function

C : E → R+ keeping track of balances in the network (initially

set to C0) and a function Θ : {0, 1}∗ → {0, 1}∗ keeping track of

conditional payments currently being executed in the network.

This means that on input a payment identifier pid ∈ {0, 1}∗, the
function returns either ⊥, signaling that no payment with this

identifier is currently open, or information about the conditional

payment in the form of the tuple (e,v,φ,T). Here e ∈ E is the edge

on which the payment takes place, v ∈ R+ denotes the amount of

coins being transferred, φ : {0, 1}∗ → {0, 1} is the condition of the

payment and T the time-lock. The function Θ is initialized such

that it outputs ⊥ for any input.

Payment channel functionality F(G, C0, ∆)

The initial state is set to C := C0 and Θ(pid) := ⊥ for all pid ∈ {0, 1}∗.
• Upon receiving (pay, e, v) ←−↩ P , where e = (P, Q) ∈ E and C(e) ≥
v , define e′ := (Q, P). In the next round, set C(e) := C(e) − v and

C(e′) := C(e′) + v and send (paid, e′, v) ↪−→ Q .

• Upon receiving (cPay, pid, e, v, φ, T , info) ←−↩ P , where e = (P, Q) ∈
E, C(e) ≥ v and Θ(pid) = ⊥, wait for one round to set C(e) :=

2
In many payment channel constructions, payments require more than 1 round of

off-chain communication between the two channel users. Hence, it would be more

accurate to replace the constant 1 by a parameter δ (we stress that the value of δ
would always be a constant w.r.t. the blockchain delay ∆). We choose to implicitly set

δ = 1 to simplify the exposition.

3

C(e) − v , store Θ(pid) := (e, v, φ, T) and send (cPaid, pid, e, v, φ,
T , info) ↪−→ Q .

• Upon receiving (cPay–unlock, pid, w) ←−↩ Q , wait for at most ∆ +
1 rounds. If ((P, Q), v, φ, T) := Θ(pid) , ⊥ and φ(w) = 1, then

set C(e′) := C(e′) + v , for e′ = (Q, P), set Θ(pid) = ⊥ and send

(cPay–unlocked, pid, w) ↪−→ P .
• Upon receiving (cPay–refund, pid) ←−↩ P , wait for at most ∆ + 1

rounds. If (e, v, φ, T) := Θ(pid) , ⊥ and the current round num-

ber is larger than T , then set C(e) := C(e) + v , Θ(pid) = ⊥ and send

(cPay–refunded, pid) ↪−→ P .

Protocol execution. We consider a protocol π whose execution is

parameterized by a graph G = (V, E), whereV defines the set of

parties running the protocol and E defines the existing payment

channels that exist between parties from the setV; an initial ca-

pacity function C defines the amount of coins in each payment

channel; a party S ∈ V being the sender of a payment of v ∈ R+

coins to a receiver R ∈ V . The protocol is executed in presence of

a ppt adversary A that can corrupt an arbitrary number of parties

fromV at the beginning of the protocol (i.e., we consider so-called

static corruption). The adversary takes full control over the actions

of every corrupt party (i.e., the messages it sends to other parties

and to the functionality).

The protocol execution begins with a setup phase during which

(1) the ideal functionality F (G,C,∆), representing the PCN func-

tionality, is initialized by the graph G = (V, E) and the initial

capacity function C; (2) every party P ∈ V gets as input the graph

G and the capacity of its channels, i.e., the partial function CP ;

moreover, the sender S and the receiver R additionally get as input

the tuple (S,R,v); (3) the adversary A, learning G, decides which

parties from the setV it corrupts and sets the inputs of all those

parties. We denote by Honest ⊆ V the set of all parties that were

not corrupted by the adversary.

After the setup phase, parties can arbitrarily interact with each

other and the ideal functionality F (G,C,∆). The protocol termi-

nates once all honest parties produce an output m ∈ {0, 1}∗ ∪ {⊤}.
The special symbol ⊤ signals that a party wants to terminate the

protocol without producing any particular output. Looking ahead,

this is the case for all parties in our protocol except for the sender

S who outputs a receipt when the payment is successful. The set

of honest parties, the output of the sender and the final state of

the functionality F (G,C,∆) form the output of the protocol.
3
We

denote this output as EXECFπ ,A (G,C,∆, S,R,v).

Finally, let us briefly comment on fees in PCNs. Fees incentivize

intermediaries to forward payments and thus play an important

role for the PCN ecosystem. While we do not explicitly add fees

into our protocol description, it is easy to extend our construction

to integrate them. For instance, in the Lightning network fees for in-

termediaries are calculated as the difference between the incoming

and outgoing payment. Hence, they are easily realized by adjusting

the conditional payments accordingly.

We assume that parties are peer-to-peer connected with authenti-

cated communication channels with guaranteed delivery of 1 round.

This guarantee indicates that if a party P sends a message to party

3
If the sender is malicious and does not produce any output before the protocol

terminates, it is automatically set to ⊤.

Q in round t , thenQ receives this message in round t + 1 and is cer-
tain that this message was sent by P . Hence, the adversary cannot

drop or introduce any message in the channel between P and Q .
However, we assume that he can see the content of messages and

reorder messages that were sent in the same round. For simplicity,

we assume that any local computation takes zero rounds. The inter-

action between the parties/adversary and the functionality takes

zero rounds as well.

2.3 Security definitions
We now define the security properties that we require our protocol

to satisfy. Before we state the properties formally, let us give a high-

level explanation of each of them. Firstly, we want the protocol to

terminate, meaning that all honest parties produce an output in

finitely many rounds. Secondly, we want the protocol to guarantee

that no party loses money. The second requirement is formalized

by two properties: balance neutrality that says that no honest in-

termediary or honest receiver loses any coins, and bounded loss
for the sender that says the monetary loss of an honest sender is

never more than the v coins he wanted to send. Moreover, we want

the protocol to guarantee payment atomicity. Briefly, this property
guarantees to an honest sender that if he loses any coins, then he

holds a receipt signed by the receiver that he paid v coins; and it

grantees to an honest receiver that if a sender holds a valid receipt

for v coins, then the receiver earned at least v coins. Finally, in

order to exclude a trivial protocol in which payments always fail,

we require the protocol to satisfy correctness, meaning that if all

parties are honest and capacity of all channels is at least v , then
the payment completes successfully.

In order to formalize the properties above, we need to precisely

describe what valid receipt means. To this end, we define a val-

idation function Validate : V × V × R+ × {0, 1}∗ → {0, 1} that
takes as input a sender S , a receiver R, an amount v and a re-

ceipt rec ∈ {0, 1}∗ and outputs a 0/1 to signal the validity of

the receipt. Moreover, for every graph G, we define a family of

functions {netC,C′}C,C′ , where C and C′ are two capacity func-

tions of G and the function netc,c ′ : V → R is defined as fol-

lows: netC,C′(P) :=
∑
W ∈V:(P,W)∈E C

′(P ,W) − C(P ,W). In other

words, the value of netC,C′(P) represents the difference between
the amount of coins P owns according to the capacity function C

compared to the capacity function C′.

Definition 2.1 (Secure payment protocol). We say that a protocol

π run among a set of partiesV is a secure payment protocol with
respect to a validation function Validate if for every connected

directed graph G = (V, E), where (P ,Q) ∈ E ⇔ (Q, P) ∈ E, ev-
ery capacity function C : E → R+, every S,R ∈ V , s.t. S , R,
every v ∈ R+, every ∆ ∈ N and every ppt adversary A, the pro-

tocol terminates in finitely many rounds with (Honest, rec,C′) ←
EXECFπ ,A (G,C,∆, S,R,v) that satisfies the following propertieswith

overwhelming probability.

Balance neutrality:∀P ∈ V\{S}: P ∈ Honest⇒ netC,C′(P) ≥ 0.

Bounded loss for sender: S ∈ Honest⇒ netC,C′(S) ≥ −v,
Atomicity: It holds that

(i) S ∈ Honest ∧ netC,C′(S) < 0⇒ Validate(S,R,v, rec) = 1,

(ii) R ∈ Honest ∧ Validate(S,R,v, rec) = 1⇒ netC,C′(R) ≥ v .

4

Correctness: If Honest = V and for every e ∈ E C(e) ≥ v , then
netC,C′(S) = −v , netC,C′(R) = v and netC,C′(P) = 0 for all P ∈
V \ {S,R}.

We stress that our notion of a secure payment protocol captures

routing of one payment between sender S and receiver R only. In

other words, our security definition does not consider multiple

parallel executions of a payment protocol. We leave the extension

of our security model to the concurrent setting as an interesting

direction for future research. Note that while we do not consider

parallel executions of the protocol, corrupt parties might still per-

form arbitrary payments during the single protocol execution.

3 PAYMENT PROTOCOL
The idea of our protocol is fairly simple. A receiver first samples a

random preimage xR and sends its hash hR := H(xR) to the sender.
The sender uses this hash value to initiate a conditional transfer of

v coins to the receiver. In contrast to many other PCN protocols,

the sender does not specify the entire path from the sender to

the receiver, which the payment has to take. In fact, the sender

only chooses the first hop of the payment and attaches routing

information (such as the identity of the receiver) to the conditional

payment. Moreover, the sender can decide to split the payment of

v coins into multiple smaller payments and send each of them via a

different first hop. In our simple protocol, we assume that the same

hash value is used for all conditional payments.

Once an intermediary receives a conditional payment with at-

tached routing information, the intermediary can freely decide how

to split and route the payment based on his local view of the current

capacities of his channels. If the intermediary receives multiple con-

ditional payments with the same condition and the same routing

information, the partial payments can also be combined into one

(and then potentially split again).

A receiver waits until he receives sufficiently many conditional

payments locked by the hash value hR such that their values add

up to at least v . Then he uses the preimage xR to unlock all the

payments and receive the promised v coins.

Routing. Themain question that we study in this paper is how the

sender and the intermediaries decide on the local routing. Namely,

to which neighbors they should route the payment and how many

coins should they send through each link. We identify several sensi-

ble options in Section 4 and evaluate and compare their performance

in Section 5. For the purpose of the formal protocol description,

we assume an algorithm RouteG that takes as input the amount

of coins v to be routed, the identifier of the party P performing

the routing, P ’s local view on the capacity function CP , routing

information consisting of the identifier of the receiver R, and the

set excl containing all nodes that were already visited on the pay-

ment path between the sender and the party P . The algorithm

outputs either ⊥ (signaling that routing failed), or k edge/value

pairs {(ej ,vj)}j ∈[k] ⊆ (EP × R
+)k satisfying the following three

conditions: (i) CP (ej) ≥ vj for every j ∈ [k], (ii) ej = (P ,Q j) s.t.

Q j < excl for every j ∈ [k] and (iii)

∑
j ∈[k]vj = v . In other words,

the algorithm decides how to split the v coins among P ’s neighbors
and excludes all neighbors that are in the set excl.

Providing a receipt. In order to turn the above simple protocol

into a secure payment protocol satisfying atomicity (as defined in

Def. 2.1), we need to discuss when and how the receiver provides a

receipt to the sender. Obviously, the receiver does not want to give a

receipt before he is sure thatv coins are routed to him. On the other

hand, the sender does not want to start the conditional transfer

of v coins before he has a guarantee that the receiver provides

the receipt if the last part of the conditional transfer completes

successfully. Hence, we need a method that allows the receiver to

provide the receipt conditionally such that (a) the sender can verify

that the conditional receipt can be turned into a valid receipt if the

preimage for hR is known and (b) the receiver has the guarantee

that the sender cannot generate a valid receipt without knowing

the preimage of hR .

Validate(S,R,v, rec)

Parse (h, σ , x) := rec

return VrfypkR ((S, R, v, h), σ) ∧ (H(x) = h)

Figure 1: Receipt validation function.

To this end, the receiver signs a statement saying that he re-

ceived v coins from the sender if a preimage of the hash value hR
is attached. He sends this signature to the sender, together with

the hash value hR , at the beginning of the protocol. The sender

can verify the receiver’s signature and use the hash value hR for

the conditional payments. If at least one of them is unlocked, the

sender can attach the revealed preimage xR to the receiver’s signa-

ture and output a valid receipt. The formal definition of the receipt

validation function can be found in Figure 1.

Time-locks. An intermediary forwarding a conditional payment

must decrease the time-lock in order to be sure that he never loses

coins. More precisely, let T be the time-lock of the incoming pay-

ment andT ′ the time lock of the outgoing payment. The difference

|T − T ′ | must be such that if the outgoing payment completes,

i.e., the intermediary loses coins but learns the witness xR , he has
enough time to submit this witness to the functionality F and un-

lock the incoming payment. The latest point when the intermediary

can learn the witness xR is in roundT ′ + (∆ + 1) and submission of

the witness takes at most (∆ + 1) rounds. Hence, the time-lock for

the outgoing payment is set to T ′ := T − 2 · (∆ + 1).
Ideally, the sender sets the time-lock of its conditional payments

to now+ℓ · (1+2 · (∆+1)), where ℓ is the length of the payment path

and now is the round in which the sender initiates the conditional

payments. The factor (1+2 · (∆+1)) comes from the fact that it takes

1 round to set up a conditional payment and at most 2 · (∆+1) for an
intermediary to unlock a conditional payment as discussed above.

In contrast to source routing, computation of the ideal time-locks

might be impossible for the sender in our protocol since he does

not know the paths partial payments take. To this end, we instruct

an honest sender to set the time-out with ℓ = |V| since the longest

possible path between two nodes in a graph is upper bounded by

the number of nodes in the graph (recall that a path never visits

the same node twice). This guarantees that payments never fail due

to time-outs. Let us stress that once a concrete routing algorithm

5

is chosen and the graph topology is fixed, tighter upper bounds

can be used to increase the efficiency of the protocol. To keep our

formal protocol description generic and simple, we do not include

those optimizations.

Termination. In order to prove that our protocol satisfies Def. 2.1,

we need to define when honest parties terminate and what they

output. An honest sender terminates and outputs ⊤ in case the

receiver does not provide a valid signature σ on a tuple (S,R,v,hR)
in round t0 + 1, where t0 is first round of the protocol execution.

Furthermore, the sender terminates if all conditional payment ex-

pire and get successfully refunded. If at least one of the conditional

payments is unlocked, the honest sender learns the preimage xR
of the hash value hR and hence can output a valid receipt, i.e., the

hash value hR , signature of the receiver σ and the preimage xR .
Let us now discuss termination for the receiver. Since setting up

a conditional payment via the PCN functionality takes at most 1

round, the receiver should receive all partial payments latest in the

round t0+ |V|+1. Hence, if the receiver does not receive conditional
payments whose values add up to v by this round, he terminates,

i.e., outputs ⊤, and does not unlock any payment. If v coins are

promised by this round, the receiver unlocks all the payments and

once he receives all the coins, he terminates, i.e., outputs ⊤.

It remains to define the termination of honest intermediaries. If

a payment should be routed via an intermediary, it must happen

before round t0 + |V|. Therefore, we instruct an honest interme-

diary to stop forwarding payments after this round, wait until all

outgoing conditional payments are unlocked or refunded, unlock

all forwarded incoming payments and terminate, i.e., output ⊤.

3.1 Extended protocol with unlinkability
Recall that the main purpose of our work is to increase the success

ratio of large payments that are routed through a payment channel

network by allowing parties to split large payments into multiple

smaller payments on the fly. This argumentation quietly assumes

that intermediaries do not censor payments that have been split.

However, rational intermediaries might prefer to forward pay-

ments that have not been split. Consider the following situation.

An intermediary is asked to route two payments of the same value,

the same time-lock, the same receiver and both payments offer

the same fee for successful payment completion. One of the two

payments has previously been split, the other one has not. Then

the failure probability of the split payment is higher than for the

monolithic one. More precisely, the partial payment routed by the

intermediary has the same conditions as the monolithic payment

and hence the same probability of reaching the receiver. Yet, for

the split payment, the other partial payments also have to succeed,

meaning that the probability for the complete payment to be suc-

cessful is lower. A rational intermediary hence prefers to route the

payment that has not been split if they only have the capacity for

forwarding one of the two payments.

As intermediaries typically do not encounter the exact situation

above, with two payments of the same value arriving at the same

time, rational intermediaries might start dropping partial payments

by default in order to have free collateral for monolithic payments.

In doing so, they drop payments that might have been successful.

Such behavior can easily negate the advantages of our approach.

Hence, in order to make our splitting approach effective, we need

to make sure that intermediaries cannot distinguish between mono-

lithic payments and payments that have been split. Unfortunately,

in the simple protocol that we described earlier in this section, the

hash-locks on all partial payment paths are the same, which makes

it trivial for colluding intermediaries to see that they are routing

parts of the same large payment. Censorship of payments that have

been split is hence possible. Appendix C substantiates this claim by

simulating the attack and finding that it indeed severely reduces

the success ratio.

To overcome this issue, we present an extension to our protocol

that remains secure but addresses the linkability issue caused by the

identical hash-locks. Our approach is to design a splitting algorithm

that produces k partial payments with hash values (h1, . . . ,hk)
satisfying the following.

(1) The vector (h1, . . . ,hk) is computationally indistinguishable

from a vector (h′
1
, . . . ,h′k), where h

′
i := H(x

′
i) for a randomly

chosen preimage x ′i .
(2) In order to learn the preimage xR for the hash value hR , the

sender only needs to learn a preimage xi for one of the hash
values hi ; hence, the atomicity property is fulfilled.

(3) The receiver is able to compute a witness for all received partial

payments; hence, correctness of the protocol is preserved.

In order to achieve all these properties simultaneously, we make

use of a hash function that is additively homomorphic. For each

partial payment i ∈ [k], the sender first samples a random xi , sets
the hash-lock to hi := hR + H(xi) = H(xR + xi) and attaches

ci ← Enc(xi) to the payment. Property (1) follows from the fact

that the values xi are independent and uniformly distributed, hence

so are the values xR + xi . Moreover, the security of the encryption

scheme guarantees that attaching ci to the conditional payment

does not affect the unlinkability. Property (2) is satisfied as well

since upon learning a value x s.t.H(x) = hi , for some i ∈ [k], the
sender can compute a preimage of hR as x − xi (this follows from
the additive homomorphism ofH). Finally, correctness holds since

the receiver can decrypt ci , learn xi and compute a preimage of hi
as x := xi + xR .

Assume now that an intermediary receives a conditional pay-

ment with a hash-lock h and attached ciphertext c , where h =
hR +H(x) and c = EncpkR (x) for some x . The intermediary can

split the payment in k parts by sampling (x1, . . . ,xk) and com-

puting (h1, . . . ,hk) exactly as the sender did; namely, for every

i ∈ [k] he chooses random xi and computes hi := h + H(xi) =
H(xR + x + xi). It remains to discuss how the intermediary reveals

the value xi to the receiver without breaking the unlinkability. To

this end, we make use of an additively homomorphic encryption

scheme which allows the intermediary to compute a ciphertext

ci ← c + EncpkR (xi) = EncpkR (x + xi).
We would like to argue that the value xR +DecskR (ci) = xR +x +

xi , computed by the receiver, is a preimage of hi , hence the correct-
ness holds. The problem with this argumentation is that it assumes

xR +Mx+Mxi = xR +Px+Pxi , whereM is the message space of the

encryption scheme and P is the domain ofH . Unfortunately, we do

not know how to instantiate the additively homomorphic encryp-

tion scheme and the additively homomorphic hash function such

that this holds. Hence, we design the preimage recovery slightly

6

Sender S(G,CS , S,R,v)

out := ∅, rec := ⊤

In round t0 + 1

if (init, hR, σ) ←−↩ R ∧ VrfypkR ((S, R, v, hR), σ) then

// Split and send payments

T := t0 + 1 + |V | · (1 + 2 · (∆ + 1))

excl := {S }

{(ej , vj)}j∈[k] ← RouteG (v, S, R, excl, CS)

{(hj , c j , x j)}j∈[k] ← HLocks(hR, EncpkR (0), k, pkR)

for j ∈ [k] do

pid j ←$
{0, 1}∗

(cPay, pid j , ej , vj , hj , T , (c j , R, excl)) ↪−→ F

out := out ∪ (pid j , x j)

else TerminateS()

(cPay–unlocked, pid, x) ←−↩ F

Let x ′ be s.t. (pid, x ′) ∈ out

rec := (hR, σ , Wit(x, x ′))// Complete receipt

out := out \ {(pid, x ′)}

if out = ∅ then TerminateS()

In round T

foreach pid ∈ out do// Refund remaining payments

(cPay–refund, pid) ↪−→ F

wait for ∆ + 1 rounds to TerminateS()

TerminateS()

return rec

HLocksb(h, c, k, pk)

for i ∈ [k] do
hi := h
ci := c

return {(hi , ci , 0)}i∈[k]

HLocksext (h, c, k, pk)

for i ∈ [k] do
xi ←$

P

hi := h +H H(xi)

ci := c +C Encpk(xi)

return {(hi , ci , xi)}i∈[k]

Intermediary I (G,CI)

fw := ∅

(cPaid, pid, e, v ′, h, T , (c, R, excl)) ←−↩ F

if now > t0 + |V | then
abort// too late to route

else // Split and forward payment

T ′ := T − 2(∆ + 1)

excl := excl ∪ {I }

{(ej , vj)}j∈[k] ← RouteG (v ′, I, R, excl, CI)

{(hj , c j , x j)}j∈[k] ← HLocks(h, c, k, pkR)

for j ∈ [k] do

pid j ←$
{0, 1}∗

(cPay, pid j , ej , vj , hj , T
′, (c j , R, excl)) ↪−→ F

fw[T ′] := fw[T ′] ∪ (pid j , pid, x j)

(cPay–unlocked, pid, x) ←−↩ F

// Unlock corresponding incoming payment

Let x ′, pid′, T be s.t. (pid, pid′, x ′) ∈ fw[T]

x ∗ :=Wit(x, x ′)

(cPay–unlock, pid′, x ∗) ↪−→ F

fw[T] := fw[T] \ {(pid, pid′, x ′)}

In every round

// Check for expired time locks

foreach (pid, pid′, x ′) ∈ fw[now] do
(cPay–refund, pid) ↪−→ F

fw[now] := fw[now] \ {(pid, pid′, x ′)}

if now > t0 + |V | ∧ fw = ∅ then
wait for 2(∆ + 1) rounds to return ⊤

Witb(x, xi)

return x

Witext (x, xi)

return x +P (−xi)

Receiver R(G,CR , S,R,v)

in := ∅, b := 0, µ := 0, T ′ := ⊥

In round t0

// Initialize payment

xR ←$
P, hR := H(xR)

σ := SignskR
(S, R, v, hR)

(init, hR, σ) ↪−→ S

(cPaid, pid, e, v ′, h, T , (c, R, excl)) ←−↩ F

x :=WitR(c, skR, xR, h, |excl |)

if x , ⊥ then// Witness reconstructed

in := in ∪ (pid, x)

µ := µ + v ′

T ′ := min{T ′, T }

if ((µ ≥ v) ∧ (T ′ ≥ now + ∆ + 1) then
// Unlock all payments

foreach (pid′, x ′) ∈ in do

(cPay–unlock, pid′, x ′) ↪−→ F

b := 1

wait for ∆ + 1 rounds to TerminateR()

In round t0 + |V | + 1

if b = 0 then TerminateR()

TerminateR()

return ⊤

WitRb(c, sk, x, h, ℓ)

x ∗ := ⊥

if H(x) = h then

x ∗ := x

return x ∗

WitRext (c, sk, x, h, ℓ)

x ∗ := ⊥

x ′ := x +M Decsk(c)

for i ∈ [0, ℓ] do

z := x ′ + iN mod p

if h = H(z) then

x ∗ := z

return x ∗

Figure 2: Generic description of the protocol initiated in round t0. For the extended protocol, we assume P = Zp andM = ZN .

differently. In our solution, we assume thatM = ZN and P = Zp
for p < N = q · q′ and q,q′,p coprime primes since this is the case

for the encryption scheme of Paillier and hash function defined as

exponentiation in a group where Dlog is hard (see Appendix B for

discussion about instantiations). Under this assumption, we know

that ((xR +M x +M xi) + j · N) mod p = xR +P x +P xi , where j is
upper bounded by the length ℓ of the payment path, i.e., the number

of times we added values in ZN . Hence, the receiver can simply try

to hash each of the ℓ ≤ |V| possible preimages and compare the

result to the hash-lock hi .
More details can be found in the next section where both our

protocols are described formally. The instantiation of cryptographic

primitives used in the protocols as well and their Bitcoin compati-

bility is discussed in Appendix B. We state and discuss the security

of our schemes in Section 6, where also the formal definition of

payment unlinkability can be found.

3.2 Formal protocol description
In Figure 2, we present the formal description of both protocols

presented in this section; namely, the basic protocol that we denote

Πb(Route) and the extended protocol with unlinkable payment that

we denote Πext (Route). Recall that protocols are parameterized by a

routing algorithm Route whose purpose is to decide how to locally

route a payment. Concrete instantiations of Route are discussed in

Section 4.

Since both protocols are very similar, we decided to follow a

modular approach and present the protocol description Π as a pro-

tocol calling multiple sub-routines. To this end, Π is, in addition

to Route, parameterized by three algorithms that define the dif-

ferences between the two protocol: HLocks, WitR, and Wit. The
algorithm HLocks, run by the sender and intermediaries during the

routing phase, takes as input a hash value h, ciphertext c , an integer

7

k ∈ [n] and a public key pk, and outputs k tuples (hi , ci ,xi) consist-
ing of hash values, ciphertext, and a preimage. The algorithm WitR,
run by the receiver, takes as input a ciphertext c , a secret key sk, a
preimage x , a hash value h and integer ℓ, and outputs a preimage x ′

such that h = H(x ′). Finally, the algorithm Wit, run by the interme-

diaries and the sender during the unlocking phase, takes as input

two preimages x and xi , and outputs another preimage x ′. We for-

mally define these algorithms for the basic and extended protocol

in Figure 2. Hence, Πb(Route) := Π(Route,HLocksb,WitRb,Witb)
and Πext (Route) := Π(Route,HLocksext ,WitRext ,Witext).

In the formal description presented in Figure 2, t0 denotes the
first round of the protocol execution. We assume that each party

maintains a set of unsettled payments. More precisely, the sender

stores all outgoing conditional payments in a set out, the receiver
stores all incoming payments in a set in, and every intermediary

I maintains a set of all forwarded payment fw. Recall that the
only functions that parties use for conditional payments are hash

preimage verifications, i.e., functions HashHh that take as input a

preimage x and output 1 ifH(x) = h and 0 otherwise. For brevity,

we replace the condition HashHh with the hash value h. Finally, for
the sake of simplicity, our formal description excludes the option

of partial payment recombination by the intermediaries. We stress

that the description could be easily adjusted to capture this feature

and further improve the communication complexity.

4 ROUTING ALGORITHMS
In this section, we consider several realizations of the routing algo-

rithm RouteG , as defined in Section 3.

Internally, Route always consists of two algorithms: Closer and
Split. In a nutshll, Closer determines a candidate set of potential

next hops and Split splits the payment value over these candidates.

There exist various realizations for both Closer and Split.
First, Closer takes the node P ∈ V , the receiver R ∈ V , and the

capacity function CP as input and outputs tuples consisting of an

edge e = (P ,U) ∈ EP to a potential next userU , the capacity c of e ,
and a value indicating an algorithm-dependent closeness measure

forU with regard to R. Afterwards, the algorithm removes potential

edges to avoid loops. More concretely, if a returned edge is with

a node that has previously been on the path, the edge is removed

from the set of candidates. In practice, the set excl can be realized

in an efficient and privacy-preserving manner through the use of a

Bloom filter [11].

The second algorithm Split takes the set of candidate channels,
their capacities, and closeness measures, and a payment value as in-

put. It then splits the payment value over a subset of these payment

channels.

The following subsections introduce two realizations of Closer
and three realizations of Split, which can be combined arbitrarily.

We describe the algorithms here, the formal protocol descriptions

can be found in the Appendix H. In addition to these realizations,

random splitting was considered and the results are in Appendix G.

4.1 Determining potential next hops (Closer)
Our first realization of Closer considers nodes that have a lower
shortest path length to the receiver than the node calling the algo-

rithm. The second realization considers a set of spanning trees, and

every neighbor that is closer to the receiver in terms of at least one

spanning tree distance is a potential next hop.

Hop Distance (HOP):
The hop distance gives the length of the shortest path between

two nodes, i.e., the value of the function dG . As the graph is avail-

able, each node can compute the distance locally by applying a

shortest path algorithm on the graph. Thus, CloserHOP determines

the payment channels to nodes that are closer to the receiver.

Without splitting, the hop distance results in similar paths as

Lightning routing [24] when all nodes charge the same fees. Nodes

select a shortest and hence cheapest path. However, instead of the

sender deciding the path in advance, nodes locally select the next

hop. As a consequence, the nodesmaking local routing decisions can

take the balances of neighboring nodes into consideration, which

are unknown to the sender. In this manner, they can avoid some

routing failures that lead to the need for rerouting in Lightning.

Rerouting in Lightning entails high latencies, as the sender has to

wait for timelocks to expire. Thus, in terms of the success ratio for

the first routing attempt, this algorithm is a version of Lightning

that enables local decisions and hence can act as a baseline for

splitting.

Interdimensional SpeedyMurmurs (INTSM): In this section,

a novel realization of Closer is introduced. The novel realization
is a modification of the atomic multi-path algorithm SpeedyMur-

murs [27] that is more suitable for splitting.

SpeedyMurmurs establishes BFS spanning trees ST1, . . . , STdim
using a standard distributed spanning tree protocol. In practice,

there are a number of distributed spanning tree algorithms that

can also efficiently repair the spanning tree if the graph topology

changes (e.g., [21]). In its original form, SpeedyMurmurs routes

each partial payment using a different spanning tree. More pre-

cisely, for the i-th partial payment, the hop distance function of

the i-th spanning tree, denoted by di , is used to determine the next

hop. In this manner, SpeedyMurmurs also considers channels that

are not part of the i-th spanning tree: If a neighbor is close to the

receiver according to di , SpeedyMurmurs chooses the correspond-

ing channel regardless of whether it is included in the spanning

tree. In contrast to routing using only spanning tree edges, routing

based on a spanning tree distance with the inclusion of other edges

is resilient to node failures and even attacks that remove nodes

strategically from the network [26].

In contrast, our variant does consider all spanning trees concur-

rently. Note that if a node U is closer to R than P with regard to

only one distance di , there is a loop-free path from P to R via U .

Thus,U makes a good candidate for a next hop. As a consequence,

CloserINT−SM determines the set of candidate channels as those

leading to nodes that are closer to the receiver according to at least

one of the dim distance functions.

More precisely, CloserINT−SM considers all spanning trees for

each edge (P ,U). Once it finds that if U has a lower distance to R
in one spanning tree, it determines the minimal distance of U to

R over all spanning trees. Indicating the minimal distance allows

Split to prefer short routes. After computing the minimal distance,

CloserINT−SM adds the tuple consisting of the channel (P ,U), its
capacity, and the minimal distance to the candidate set. Afterwards,

it proceeds with the next channel. In this manner, CloserINT−SM

8

selects a large set of neighbors that offer a loop-free but not neces-

sarily shortest path to the receiver. Thus, whereas the hop distance

only considers shortest paths, Interdimensional SpeedyMurmurs of-

fers a higher flexibility in choosing paths, thus increases the chance

of successfully completing a payment.

4.2 Splitting over potential next hops (Split)
Our realizations of Split use the following three approaches: i) not

splitting (baseline), ii) splitting according to the distance to R, and
iii) splitting only if necessary.

No Split (SplitNo): The first considered realization of Split is not
to split. For each node in the candidate set, the algorithm checks if

the capacity of the corresponding channel is sufficient. From the set

of channels with sufficient capacity, it selects a node with minimal

distance to R, breaking ties randomly. If none of the channels has

sufficient capacity, the payment fails.

Split By Distance (SplitDist): Our second realization of Split it-
erates over the candidate channels in order of decreasing closeness

to the receiver, breaking ties randomly. For each candidate channel,

it assigns a partial value that is either the channel capacity or the

part of the total payment value that has not been assigned previ-

ously, whichever is less. The algorithm terminates when the total

payment value has been split or all channels have been considered.

In the latter case, the total capacity of all channels is insufficient

for the payment value and hence the payment fails.

Split If Necessary (SplitIfN): Our third realization only splits if

necessary and hence aims to minimize the number of splits in one

particular forwarding decision. Note that such a greedy approach

does not necessarily minimize the total number of splits as it might

prefer longer paths. These longer paths then in turn might lead to

more splits. If it is possible to forward without splitting, the algo-

rithm corresponds to SplitNo . Otherwise, it proceeds analogously to
SplitDist but considers the candidate channels in decreasing order

of their capacity, breaking ties randomly.

5 PERFORMANCE EVALUATION
This section deals with the overarching question of quantifying the

extent to which splitting affects the performance in terms of the

success ratio and the overhead. For this purpose, a simulation study

evaluates the effect of the Closer and Split functions of the routing
algorithm, the topology, the transaction values, and the channels

capacities.

5.1 Performance Metrics
The success ratio is defined as the fraction of successful payments.

Note that we only consider one payment attempt per transaction.

As the algorithms are non-deterministic, further attempts are bound

to increase the success ratio. However, a second attempt requires

waiting for the expiration of the locks, which can be in the order of

hours or days. For instance, Bitcoin’s Lightning network proposes a

timeout of 9 blocks or approximately 1.5h
4
. As the goal for off-chain

transaction is completion within seconds, it seems reasonable to

consider any transaction that does not succeed in the first attempt

failed.

4
https://github.com/lightningnetwork/lightning-rfc/blob/master/

11-payment-encoding.md

Our second metric is the communication overhead of the rout-

ing. The key difference between the routing algorithms are the

number of cPay calls, which is the only operation during routing

that requires communication between nodes. As a consequence,

we quantify the overhead as the number of these calls. In order to

account for dependencies between overhead and success of routing,

the overhead is considered both as an average over all payments

and as an average only for successful payments.

5.2 Simulation Model
We extended the simulation framework for SpeedyMurmurs to

include our novel routing algorithms
5
.

The simulation framework allows for two options: static and

dynamic. In a static setting, the topology is fixed and channel ca-

pacities are reset to their initial values after each transaction. In

the dynamic setting, the topology can change and balances are

not reset. In our evaluation, we did not consider changes to the

topology, only to the balances.

When aiming to evaluate the differences between the algorithms,

it is sufficient to implement the routing process. Thus, the sim-

ulation excluded prior and subsequent communication between

sender and receiver. Furthermore, the cryptographic operations

are the same for all routing algorithms. Hence, the simulation did

not include the cryptographic operations in order to increase the

scalability to thousands of nodes.

First, the simulation generated the local information necessary

for the routing algorithms, such as the local topology snapshot and

spanning trees for Interdimensional SpeedyMurmurs. Afterwards,

the simulation proceeded in a round-based manner. Each cPay call

was modeled to require one round. In each round, nodes combined

any payment shares they received. Intermediaries then split the

combined payment value from these shares over neighboring nodes.

They did not combine shares received in different rounds.

Concurrency was not simulated. The main effect of concurrency

is deadlocks, i.e., multiple payments blocking each others. By adapt-

ing the order in which collateral is locked, payments can be serial-

ized and deadlocks are removed [32]. In this manner, a system with

concurrency can achieve the same success ratio as one without.

In practice, heterogeneous network latencies entail that the time

required for operations such as cPay varies between nodes. As a

consequence, the round-based model, in which all cPay calls require

one round, is not realistic. However, the main goal of this study

is to show that our algorithms improve the success ratio. In the

absence of concurrency, heterogeneous latencies can change the

order of messages and the way shares are combined but do not

affect success or failure of one payment.

5.3 Data Sets and Parameters
The considered factors influencing the performance of the routing

algorithms were topology, channel capacities, and transactions. In

general, all experiments were averaged over 20 runs. For each run,

the simulation framework first generated the data sets and then

run all routing algorithms on the exact same data set. For Interdi-

mensional SpeedyMurmurs, the number of trees was between 1

and 10 with randomly selected root nodes.

5
https://github.com/stef-roos/PaymentRouting

9

https://github.com/lightningnetwork/lightning-rfc/blob/master/11-payment-encoding.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/11-payment-encoding.md
https://github.com/stef-roos/PaymentRouting

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

S
u

c
c
e

s
s
 R

a
ti
o

Trees

HOP-No

HOP-Dist

HOP-IfN

INTSM-No

INTSM-Dist

INTSM-IfN

(a) 1/λ = 50

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

S
u

c
c
e

s
s
 R

a
ti
o

Trees

HOP-No

HOP-Dist

HOP-IfN

INTSM-No

INTSM-Dist

INTSM-IfN

(b) 1/λ = 200

Figure 3: Routing success for 6 routing algorithms when transaction value follows exponential distribution with 1/λ being a)
50 and b) 200 (exponential capacities with expected value 200, Lightning topology)

Topology: The topologies were a real-world Lightning snapshot.
The Lightning snapshot was from March 1, 2020, snapshot 04_00

6
.

It contains 6329 nodes with an average number of channels being

10.31. Appendix D presents results for synthetic scale-free and

random graphs.

Capacities and transactions: Our capacities and transactions

were synthetic, though motivated by real-world data or strategical

choices to highlight the impact of the respective parameters.

Initial channel capacities followed an exponential distribution.

In March 2020, 200 was close to the average channel capacity in

euro for Lightning and the capacity distribution was highly skewed

with most channels having a low capacity
7
. Hence, an exponential

distribution seemed a suitable fit with a normal distribution as an

alternative that highlights the impact of the distribution. Note that

the success ratio depends on the relation between capacities and

transaction values rather than the actual values, thus it was suffi-

cient to vary the expected transaction value and keep the expected

capacity constant. The capacities of the two directions of a channel

were chosen independently. Alternative distributions for channel

capacity, as well as transaction values, are evaluated in Appendix D.

For the static setting, each run consisted of 10,000 transactions.

For the dynamic setting, each run considered 1 million transactions

to evaluate the changes in performance over time. In the absence of

real-world transaction data, choosing sender and receiver uniformly

at random was the most straight-forward option. The choice of

the transaction value proceeded in two steps: First, a preliminary

transaction value was chosen according to either an exponential

distribution. Exponential distributions indicate many transactions

of a small value with few expensive purchases. The expected value

of the distribution was 1/λ ∈ {1, 5, 10, 20, 50, 100, 200, 300}. Second,
for the static setting, the preliminary transaction value had to be

below the maximal flow of the sender and receiver. In this manner,

the computed success ratio was the success ratio for the set of

transaction that were possible to settle, thus making it possible

to quantify how close the routing algorithm was to an optimal

6
https://gitlab.tu-berlin.de/rohrer/discharged-pc-data

7
https://1ml.com/statistics

solution. If a preliminary transaction value was higher than the

maximum flow, the random selection process was repeated until

either a sufficiently low transaction value was found or a maximum

of 1000 attempts at choosing the transaction value. In the latter

case, the transaction value was chosen to be the maximum flow.

The details of the dynamic setup are in Appendix F.

Timeouts: The remainder of the section sets timeouts in accor-

dance with the generic protocol from Section 3, i.e., assuming that

the maximal path length is equal to the number of nodes. However,

we discuss and evaluate the impact of shorter timeouts in Appen-

dix E. Indeed, the routing is essential equally successful when the

applied timeout is about 500 times shorter than the one used in the

generic protocol.

5.4 Results
We use the abbreviations from Section 4 throughput the remainder

of this section. Generally, a combination of a realization C of Closer
and a realization S of Split is written as C-S. For readability, the

legends in the figures use No, Dist, and IfN rather than SplitNo ,
SplitDist , and SplitIfN , respectively.

Success ratio for static scenario: If the typical transaction

value was low, all routing algorithms achieved a success ratio of

nearly 100%. Differences only became apparent if the typical trans-

action value was more than 20% of the expected capacity. Then,

Interdimensional SpeedyMurmurs with any splitting method and

more than one spanning tree outperformed HopDistance as it of-

fered a higher flexibility in the path choice. More concretely, Inter-

dimensional SpeedyMurmurs does not require that a shortest path

is taken. Figure 3 portrays examples of this behavior for 1/λ = 50

and 1/λ = 200, i.e., for 1/λ being 25% and 100% of the expected

capacity. The success ratio is displayed in relation to the number of

spanning trees. As HopDistance does not utilize the spanning trees,

the corresponding results are horizontal lines in the figure. Increas-

ing the number of trees and hence the number of options for paths

increased the success ratio of Interdimensional SpeedyMurmurs.

However, more than 5 trees had little additional impact.

10

https://gitlab.tu-berlin.de/rohrer/discharged-pc-data
https://1ml.com/statistics

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

S
u
c
c
e
s
s
 R

a
ti
o

Expected Transaction Value

HOP-No
HOP-Dist
HOP-IfN

INTSM-No
INTSM-Dist
INTSM-IfN

(a) Success Ratio

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250 300

c
P

a
y
 o

p
e
ra

ti
o
n
s

Expected Transaction Value

HOP-No
HOP-Dist
HOP-IfN

INTSM-No
INTSM-Dist
INTSM-IfN

(b) Overhead: Successful

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250 300

c
P

a
y
 o

p
e
ra

ti
o
n
s

Expected Transaction Value

HOP-No
HOP-Dist
HOP-IfN

INTSM-No
INTSM-Dist
INTSM-IfN

(c) Overhead: All

Figure 4: a) success ratio and overhead for b) successful transactions and c) all transactions with exponentially distributed
transaction values varying 1/λ (exponential capacities with expected value 200, Lightning topology, dim = 5 for Interdimen-
sional SpeedyMurmurs)

The choice of the splitting algorithm only improved the suc-

cess ratio slightly when HopDistance was used as a realization of

Closer. The result stemmed from the low number of shortest paths,

especially disjoint shortest paths.

For Interdimensional SpeedyMurmurs, the impact of splitting

was considerable. Themost successful splitting approachwas SplitDist ,
i.e., splitting only over nodes with the least distance to the receiver.

In contrast, SplitIfN , which tried to greedily minimize the number

of splits, did improve the success ratio but not as much as SplitDist .
SplitIfN preferred nodes at a higher distance, hence leading to longer

paths than SplitDist , which for our data set were more likely to lead

to failures, even if they incurred less splits than SplitDist .
The results in terms of best-performing algorithms were consis-

tent for all considered capacity and transaction value distributions

as well as topologies, with the concrete results being resented in

Appendix D.

Overhead: Figure 4 displays the trade-off between success ratio

and number of cPay calls when varying 1/λ. As increasing the

success ratio comes with a higher flexibility in choosing longer

paths and more splitting, a higher success ratio indicates also a

higher overhead for successful transactions. When considering

all transactions, the overhead was typically lower and could even

decrease with the average transaction value, as clearly indicated

for the hop distance in Figure 4c. The decrease stemmed from

the early failure of many transactions, i.e., transactions failing in

the first hops due to a lack of available funds did require a low

number of cPay calls. As a consequence, a lower success ratio in

Figure 4a corresponds to a lower overhead in Figure 4c. However,

the overhead was generally inconsequential, at less than 15 calls per

routing on average, in comparison to disseminating a transaction

in the whole network.

Dynamic Setting: When transactions permanently change the

balances of channels, the success ratio tends to drop as some chan-

nels become depleted [27, 29]. Indeed, the success ratio for Interdi-

mensional SpeedyMurmurs drops initially in the dynamic setting.

However, the success ratio seemed to reach a steady state after

about 10,000 transactions and remained considerably higher than

the success ratio for the hop distance. Splitting still increased the

success ratio but less so for splitting algorithm SplitDist , which
tends to use the full capacity of channels and hence deplete them.

The details of the study are in Appendix F.

In summary, Interdimensional SpeedyMurmurs increases the

success ratio consistently and drastically over a distance function

that is merely based on the length of shortest paths. Furthermore,

splitting increases the success ratio if the transaction value is similar

or higher than the typical channel capacities.

6 SECURITY ANALYSIS
Let R be the set of all routing algorithms discussed in Section 4.

More precisely, we define the set R as{
Route(Closer, Split)

���� Closer ∈ {CloserHOP ,CloserINT−SM },
Split ∈ {SplitNo, SplitDist , SplitIfN }

}
.

Our goal is to show that for any routing algorithm Route ∈ R,
both protocols Πb(Route) and Πext (Route) that were discussed in

Section 3 satisfy Def. 2.1 with respect to the receipt validation

function Validate from Figure 1.

Theorem 6.1. Assume that Σ is an EUF–CMA-secure signature
scheme, Ψ is an encryption scheme with message spaceM, andH a
preimage-resistant hash function with domain P. For any Route ∈ R,
the protocol Πb(Route) is a secure payment protocol with respect to
the function ValidateΣ,H .

If, in addition,Ψ andH are additively homomorphic, andM = ZN ,
P = Zp for p,N coprime and p < N , then for any Route ∈ R, the
protocol Πext (Route) is a secure payment protocol with respect to the
function ValidateΣ,H .

The formal proof of the theorem can be found in Appendix I, here

we discuss its main ideas. The protocol termination follows directly

from the protocol description and was discussed in detail already

in Section 3. Since an honest sender makes conditional payments

of total value at mostv , the sender’s loss is bounded byv . Similarly,

an honest receiver never makes any payment and hence cannot

lose coins. For the balance neutrality of intermediaries, we observe

that an honest intermediary never forwards more coins than what

he can potentially receive. Moreover, if an outgoing conditional

payment is unlocked, the intermediary has a guarantee of unlocking

11

the corresponding incoming payment. This follows from correctly

set timeouts and hash-locks. In the extended protocol, the latter

follows from the homomorphic property ofH .

Atomicity for the sender S is guaranteed by the fact that S does

not initiate any payment without holding a valid signature of the

receiver R on (S,R,v,hR). Moreover, the sender sets the hash-locks

such that from the preimage of any of them, a preimage of hR can

be computed. In the extended protocol, the guarantee of preimage

recovery follows from the homomorphic property ofH . Atomicity

for R follows from EUF–CMA security of Σ and preimage resistance

of H — S cannot forge R’s signature and hence must present a

preimage ofhR , wherehR has been chosen byR. Moreover, S cannot
compute a preimage of hR without R revealing it, which happens

only if R gets v coins.

Finally, we need to argue correctness, i.e., if all parties are honest

and all channels have enough coins, the payment succeeds. We

prove that no matter which routing algorithm Route ∈ R we con-

sider, the routing never fails. Moreover, we show that the initial

time-lock set by the sender is sufficient to guarantee that all partial

payments reach the receiver. Due to the correctness and additive

homomorphism of Ψ andH , R can then compute all witnesses and

start unlocking payments. Since the total amount of coins in the

system cannot increase (parties cannot create coins), we complete

the proof by applying the security properties: balance neutrality

and bounded loss for the sender.

6.1 Payment unlinkability
Assume that an honest party (the sender or an intermediary) splits

a payment of v coins into k partial payments (v1, . . . ,vk) routed
over k different neighbors. We want to guarantee that even if all

of these neighbors collude, they cannot decide whether the condi-

tional payments are part of the same payment or if k independent

payments of values (v1, . . . ,vk) have been sent. Since the partial

payments are unlinkable right after the split takes place, further

forwarding does not influence their linkability. Hence, our defi-

nition also captures the case when the colluding parties happens

later in the partial payment paths (and not right after the splitting).

Formally, we define unlinkability as a property of the algorithm

HLocks in the following definition. In Appendix J, we discuss in

detail why our definition captures the intuition above.

Definition 6.1 (Unlinkability). Let Ψ be an encryption scheme

with plaintext spaceM and letH : P→ H be a hash function with

P ⊆ M. Algorithm HLocksH,Ψ produces unlinkable conditions if
for every ppt adversary A, every x ∈ P,y ∈ M and k ∈ N, we have
Pr[GameLink

A,HLocksH,Ψ (x ,y,k,n) = 1] ≤ 1

2
+ negl(n), where the

game GameLink is defined as follows:

GameLink
A,HLocksH,Ψ (x ,y,k,n)

b ←
$
{0, 1}

(pk, sk) ← Gen(1n), h := H(x), c ← Encpk(y)

if b = 1 then {(hj , c j , x j)}j∈[k] ← HLocksH,Ψ(h, c, k, pk)

else foreach j ∈ [k] do x j ←$
P, hj := H(x j), c j := Encpk(x j)

b′ ← A(x, y, {(hj , c j)}j∈[k], pk)

return b = b′

We note that our definition only talks about the unlinkability of

the hash values and attached ciphetexts. In particular, we do not

aim to hide the payment history (e.g., the sender) or the receiver

since this information is crucial for our local routing algorithms.

If there are only few concurrent payments, these metadata might

link the partial payments even if the hash values and ciphertexts

are unlinkable.

In Appendix J, we prove the following theorem stating that our

algorithm HLocksext satisfies the unlinkability definition.

Theorem 6.2. Let Ψ be an additively homomorphic IND–CPA-
secure encryption scheme with message space M = ZN , and H an
additively homomorphic preimage-resistant hash function with do-
main P = Zp such that p,N coprime and p < N . Then HLocksH,Ψext
produces unlinkable conditions.

7 RELATEDWORK
The vast majority of payment channel routing algorithms are either

single or multi-path [13, 14, 24, 27, 31, 34], without intermediaries

splitting or recombining payments. Atomicity for multi-path pay-

ments is possible [19]; however, the algorithm requires the sender

to split the payment and is not applicable for splitting on the path.

Spider [30] is a routing algorithm that splits the total payment

value into small units and routes every unit individually, an idea

previously proposed by Piatkivskyi and Nowostawski [22]. By mak-

ing the individual payments small, the likelihood of a channel not

having sufficient capacity is low and the routing is very flexible in

terms of the amounts routed per path. However, a large fraction of

the small payments take the same path, creating a large overhead

our splitting scheme avoids. Furthermore, while the authors state

that atomicity is possible, they leave open how atomicity relates to

their local queuing of transactions in term of timeouts.

Boomerang [3] enables redundancy in the sense that the sender

can route more than the transaction value using multiple paths.

Afterwards, the sender can reclaim any funds that exceed the trans-

action value. In this manner, partial payments can fail while still

transacting the requested value. Boomerang thus presents a com-

plementary approach to splitting on the path and the two protocols

can easily be combined. The disadvantage of Boomerang is that

routing higher payment values result in increased locked collateral,

which splitting does not.

The only work on splitting payments on the path is Ethna [8].

However, the authors do not evaluate the concrete impact of split-

ting and do not discuss possible routing algorithms. Moreover, the

overall goal of the cryptographic protocol is different from ours

since Ethna explicitly does not aim for atomicity and allows a par-

tial payment (with a partial receipt) to be a valid outcome of the

protocol.

A similar notion of payment unlinkability is informally discussed

in the atomic multi-path payment proposal [19]; however, no for-

mal definition or proof is provided. A different unlinkability no-

tion is considered by anonymous mulit-hop locks and its predeces-

sor [15, 16]. This line of work considers only monolithic payments,

source-routed by the sender. Their aims is to prevent colluding in-

termediaries on one payment path to see that they are forwarding

the same payment. The objective of this “on-path” unlinkability

definition is to hide the sender’s and receiver’s identities. Although

12

we could argue that hash-locks on one partial payment path in our

extended protocol are “on-path” unlinkable, the routing information

attached to the payment would trivially reveal the sender and the

receiver. Since our goal is to increase the success ratio of payments

by allowing intemediaries to locally decide on the route, hiding

routing information (e.g., identity of the receiver) is not desirable.

8 CONCLUSION
This paper presented a protocol for locally splitting payments in

a PCN that guarantees termination, atomicity, balance neurality,

bounded loss for the sender, correctness, and optionally unlinka-

bility. Our evaluation illustrated the advantages of splitting and

compared a variety of splitting methods.

A comparison between the static and the dynamic setting high-

lights that splitting approaches that utilize the full channel capacity

in order to get closer to the receiver have a negative effect on the

long-term success ratio. Restricting the capacity of channels that

a payment can use when another path is available is a promising

avenue for improving the success ratio further.

ACKNOWLEDGMENTS
This work was partly supported by the German Research Foun-

dation (DFG) Emmy Noether Program FA 1320/1-1, by the DFG
CRC 1119 CROSSING (project S7), by the German Federal Min-

istry of Education and Research (BMBF) iBlockchain project (grant
nr. 16KIS0902), by the German Federal Ministry of Education and

Research and the Hessen State Ministry for Higher Education, Re-

search and the Arts within their joint support of the National Re-
search Center for Applied Cybersecurity ATHENE, and by Ripple’s

University Blockchain Research Initiative.

REFERENCES
[1] 2020. Raiden Network. (2020). https://raiden.network/.

[2] Lukas Aumayr, Oguzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina

Hostakova, Matteo Maffei, Pedro Moreno-Sanchez, and Siavash Riahi. 2020.

Generalized Bitcoin-Compatible Channels. Cryptology ePrint Archive, Report

2020/476. (2020). https://eprint.iacr.org/2020/476.

[3] Vivek Bagaria, Joachim Neu, and David Tse. 2020. Boomerang: Redundancy Im-

proves Latency and Throughput in Payment Networks. In Financial Cryptography
and Data Security.

[4] Albert-László Barabási and Réka Albert. 1999. Emergence of scaling in random

networks. science 286, 5439 (1999).
[5] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed

Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, et al. 2016.

On scaling decentralized blockchains. In International conference on financial
cryptography and data security. Springer, 106–125.

[6] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. 2019.

Perun: Virtual Payment Hubs over Cryptocurrencies. In 2019 IEEE Symposium on
Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019. 106–123.

[7] Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková. 2018. General

State Channel Networks. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, Toronto, ON, Canada, October
15-19, 2018. 949–966.

[8] Stefan Dziembowski and Paweł Kędzior. 2020. Ethna: Channel Network with

Dynamic Internal Payment Splitting. https://eprint.iacr.org/2020/166.pdf. (2020).

[9] Christoph Egger, Pedro Moreno-Sanchez, and Matteo Maffei. 2019. Atomic

Multi-Channel Updates with Constant Collateral in Bitcoin-Compatible Payment-

Channel Networks. In Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS ’19). ACM, 801–815.

[10] Paul Erdős and Alfréd Rényi. 1960. On the evolution of random graphs. Publ.
Math. Inst. Hung. Acad. Sci 5, 1 (1960).

[11] Nathan S Evans and Christian Grothoff. 2011. R5n: Randomized recursive routing

for restricted-route networks. In 5th International Conference on Network and
System Security.

[12] Arpita Ghosh, Mohammad Mahdian, Daniel M Reeves, David M Pennock, and

Ryan Fugger. 2007. Mechanism design on trust networks. In International Work-
shop on Web and Internet Economics.

[13] Philipp Hoenisch and Ingo Weber. 2018. AODV–Based Routing for Payment

Channel Networks. In International Conference on Blockchain. Springer, 107–124.
[14] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei. 2017.

SilentWhispers: Enforcing Security and Privacy in Decentralized Credit Net-

works.. In NDSS.
[15] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Srivat-

san Ravi. 2017. Concurrency and Privacy with Payment-Channel Networks. In

ACM CCS 17, Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan

Xu (Eds.). ACM Press, 455–471.

[16] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate, and

Matteo Maffei. 2019. Anonymous Multi-Hop Locks for Blockchain Scalability

and Interoperability.. In NDSS.
[17] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and Patrick McCorry. 2017.

Sprites: Payment Channels that Go Faster than Lightning. CoRR abs/1702.05812

(2017). http://arxiv.org/abs/1702.05812

[18] Satoshi Nakamoto. 2009. Bitcoin: A Peer-to-Peer Electronic Cash System. (2009).

http://bitcoin.org/bitcoin.pdf.

[19] Olaoluwa Osuntokun. 2018. AMP: Atomic Multi-Path Payments over Light-

ning. https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-February/

000993.html. (2018).

[20] Pascal Paillier. 1999. Public-Key Cryptosystems Based on Composite Degree

Residuosity Classes. In EUROCRYPT’99 (LNCS), Jacques Stern (Ed.), Vol. 1592.

Springer, Heidelberg, 223–238.

[21] Radia Perlman. 1985. An algorithm for distributed computation of a spanningtree

in an extended lan. ACM SIGCOMMComputer Communication Review 15, 4 (1985),

44–53.

[22] Dmytro Piatkivskyi and Mariusz Nowostawski. 2018. Split payments in pay-

ment networks. In Data Privacy Management, Cryptocurrencies and Blockchain
Technology. Springer, 67–75.

[23] Andrew Poelstra. 2017. Scriptless scripts. (May 2017). https://download.

wpsoftware.net/bitcoin/wizardry/mw-slides/2017-05-milan-meetup/slides.

pdf.

[24] Joseph Poon and Thaddeus Dryja. 2016. The bitcoin lightning network: Scalable

off-chain instant payments. https://www.bitcoinlightning.com/wp-content/

uploads/2018/03/lightning-network-paper.pdf. (2016).

[25] Elias Rohrer, Julian Malliaris, and Florian Tschorsch. 2019. Discharged Payment

Channels: Quantifying the Lightning Network’s Resilience to Topology-Based

Attacks. arXiv preprint arXiv:1904.10253 (2019).
[26] Stefanie Roos, Martin Beck, and Thorsten Strufe. 2016. Anonymous addresses

for efficient and resilient routing in f2f overlays. In IEEE INFOCOM 2016-The 35th
Annual IEEE International Conference on Computer Communications. IEEE, 1–9.

[27] Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and Ian Goldberg. 2018.

Settling payments fast and private: Efficient decentralized routing for path-based

transactions. In NDSS.
[28] Claus-Peter Schnorr. 1991. Efficient Signature Generation by Smart Cards. Jour-

nal of Cryptology 4, 3 (1991), 161–174.

[29] Vibhaalakshmi Sivaraman, Shaileshh Bojja Venkatakrishnan, Mohammad Al-

izadeh, Giulia Fanti, and Pramod Viswanath. 2018. Routing cryptocurrency with

the spider network. In Proceedings of the 17th ACM Workshop on Hot Topics in
Networks. 29–35.

[30] Vibhaalakshmi Sivaraman, Shaileshh Bojja Venkatakrishnan, Kathleen Ruan,

Parimarjan Negi, Lei Yang, RadhikaMittal, Giulia Fanti, andMohammadAlizadeh.

2020. High Throughput Cryptocurrency Routing in Payment Channel Networks.

In 17th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 20). 777–796.

[31] Peng Wang, Hong Xu, Xin Jin, and Tao Wang. 2019. Flash: efficient dynamic

routing for offchain networks. In Proceedings of the 15th International Conference
on Emerging Networking Experiments And Technologies. 370–381.

[32] Shira Werman and Aviv Zohar. 2018. Avoiding deadlocks in payment chan-

nel networks. In Data Privacy Management, Cryptocurrencies and Blockchain
Technology.

[33] Gavin Wood. 2014. ETHEREUM: A SECURE DECENTRALISED GENERALISED

TRANSACTION LEDGER. (2014). http://gavwood.com/paper.pdf.

[34] Yuhui Zhang, Dejun Yang, and Guoliang Xue. 2019. Cheapay: An optimal

algorithm for fee minimization in blockchain-based payment channel networks.

In ICC 2019-2019 IEEE International Conference on Communications (ICC). IEEE,
1–6.

A CRYPTOGRAPHIC PRIMITIVES
Homomorphic encryption. A public key encryption scheme Ψ

with a message space M and ciphertext space C is a triple of ppt

13

https://raiden.network/
https://eprint.iacr.org/2020/476
https://eprint.iacr.org/2020/166.pdf
http://arxiv.org/abs/1702.05812
http://bitcoin.org/bitcoin.pdf
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-February/000993.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-February/000993.html
https://download.wpsoftware.net/bitcoin/wizardry/ mw-slides/2017-05-milan-meetup/slides.pdf
https://download.wpsoftware.net/bitcoin/wizardry/ mw-slides/2017-05-milan-meetup/slides.pdf
https://download.wpsoftware.net/bitcoin/wizardry/ mw-slides/2017-05-milan-meetup/slides.pdf
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
http://gavwood.com/paper.pdf

algorithms (Gen, Enc,Dec) with the following syntax: The algo-

rithm Gen on input the security parameter n, outputs a key pair

(pk, sk). The algorithm Enc on input a messagem ∈ M and a public

key pk, outputs a ciphertext c ∈ C. Finally, Dec is a deterministic

algorithm that on input a secret key sk and a ciphertext c ∈ C
outputs a messagem ∈ M. For every messagem ∈ M it holds that

Pr[Decsk(Encpk(m)) =m | (pk, sk) ← Gen(1n)] = 1,

where the probability is taken over the randomness of Gen and Enc.
In this work we use encryption schemes that satisfy the notion of

indistinguishability under chosen paintext attack (IND-CPA secure

for short) defined below.

Definition A.1 (IND-CPA security). An encryption scheme Ψ =
(Gen, Enc,Dec) is IND–CPA secure if for every ppt adversary A

there exists a negligible function negl such that:

Pr[PubKcpa
A,Ψ(n) = 1] ≤ negl(n),

where the experiment PubKcpa
A,Ψ is defined as follows:

PubKcpa
A,Ψ(n)

(sk, pk) ← Gen(1n)

(m0,m1) ← A(pk)

b ←
$
{0, 1}, cb ← Encpk(mb)

b∗ ← A(cb)

return |m0 | = |m1 | ∧ b = b∗

Definition A.2 (Additively homomorphic encryption). Let Ψ =
(Gen, Enc,Dec) be an encryption scheme, where the message space

(M,+M, 0M) forms an Abelian group and the ciphertext space C is

closed under the binary operation +C. We say that Ψ is additively
homomoprhic if for every x ,y ∈ M and every public key pk it holds

that

Encpk(x) +C Encpk(y) ≡ Encpk(x +M y),

where ≡ denotes equality of distributions.

Signature scheme. A digital signature scheme Σ is a triple of

ppt algorithms (Gen, Sign,Vrfy) with the following syntax: The

algorithm Gen on input the security parameter n, outputs a key pair
(pk, sk). The algorithm Sign on input a messagem and a signing key

sk, outputs a signature σ . Finally, Vrfy is a deterministic algorithm

that on input a verification key pk, a messagem and a signature σ
outputs a bit b. For every messagem it holds that

Pr[Vrfypk(Signsk(m)) | (pk, sk) ← Gen(1n)] = 1,

where the probability is taken over the randomness of Gen and

Sign. In this work, we use signature schemes that are existentially
unforgeable under chosen message attack (or EUF-CMA secure for

short) defined as follows.

Definition A.3 (EUF-CMA security). A signature scheme Σ is

EUF–CMA secure if for every ppt adversary A there exists a neg-

ligible function negl such that: Pr[SigForgeA,Σ(n) = 1] ≤ negl(n),
where the experiment SigForgeA,Σ is defined as follows:

SigForgeA,Σ(n)

(sk, pk) ← Gen(1n)

(m∗, σ ∗) ← ASignsk (·)(pk)

Let Q denote the set of queried messages of A to the signing oracle

return Vrfypk(m
∗, σ ∗) ∧m < Q

Homomorphic hash function. A hash function is a pair of ppt

algorithms (Gen,H) with the following syntax: the algorithm Gen
on input a security parameter n outputs a key s . The algorithmH
on input the key s and a value x ∈ Ps , outputs a value y ∈ Hs . In
this work, we consider preimage-resistant hash functions formally

defined as follows.

Definition A.4 (Preimage-resistant hash function). A hash func-

tion (Gen,H) is preimage resistant if for every ppt adversary A,

there exists a negligible function negl such that[
Pr[Hs (x

′) = y

���� s ← Gen,x ←
$
P,

y := Hs (x),x
′ ← A(s,y)

]
= negl.

Definition A.5 (Homomorphic function). Consider two Abelian

groups (P,+P, 0P) and (H,+H, 0H). We say that H : P → H is a

homomorphism if for every x ,y ∈ P it holds that H(x +P y) =
H(x) +H H(y).

B INSTANTIATION OF BUILDING BLOCKS
Let us now discuss how to instantiate the building blocks used by

our protocols. Our basic protocol requires the underlying PCN to

support conditional payments locked by a hash preimage verifica-

tion, i.e., HashHh , forH being a preimage-resistant hash function.

Such a PCN can be built over most common blockchains, including

Bitcoin and Ethereum, typically using SHA256. A concrete PCN

that is currently deployed on top of the Bitcoin blockchain is the

Lightning Network [24]. An example of a PCN over Ethereum is the

Raiden network [1]. Moreover, our protocol relies on a EUF–CMA-

secure digital signature that can be instantiated by, e.g., the signa-

ture scheme of Schnorr [28] or ECDSA.

The requirements of our extended protocol are higher as we need

a preimage-resistant hash function that is homomorphic. Such a

hash function can be instantiated as follows. Let G be a group of

prime order p and let д be a generator of G. Then the function

H : Zp → G defined as H(x) := дx is additively homomorphic

and under the assumption that dlog is hard in G, H is preimage

resistant.

While replacing SHA256 with a homomorphic hash function

is not a problem for PCNs built over blockchains whose scripting

languages are Turing complete, the situation is more complicated

for legacy cryptocurrencies such as Bitcoin where the evaluation

of such hash functions is not supported. In order to overcome

this difficulty, we can make use of Adaptor signatures – primitive

proposed by Poelstra [23], instantiated based on both Schnorr and

ECDSA signatures by [16] and recently formalized by [2]. On a high

level, adaptor signatures allow one party to pre-sign a message with

respect to some hash value h. Such pre-signature can be adapted

into a valid signature by any party if and only if this party knows a

preimage of a hash value h. And importantly, a signer observing

the adapted valid signature can extract the preimage of h. In the

14

context of payment channels, the role of a signer would be taken by

the payer (the party that wants to conditionally pay), the message

would be the unlocking transaction assigning coins to the payee

(the party conditionally receiving coins), and the hash value would

be the condition of the payment. We refer to [2, 16] for more details

about adaptor signatures.

Finally, our construction assumes an additively homomorphic

encryption scheme with message space ZN for p < N and p,N
coprime. The encryption scheme of Paillier [20] satisfies these prop-

erties.

C ATTACK EFFECTIVENESS
Using the simulation model from Section 5, this section evaluates

the attack of nodes dropping payments that have been split. In

order to detect such split payments, the attacker has to observe

the same hash multiple times. Note that it seems unlikely that

an attacker will drop the payment if they already committed to a

different partial payment with the same hash. Hence, the attacker

only drops if they have not yet committed, meaning that either i)

the adversary observes two partial payment in the same round or

ii) the adversary delays the payment until they are relatively sure

that they will not observe a second payment with the same hash.

In our model, a randomly selected fraction p of nodes applies the

attack. Attackers might be individual non-colluding rational nodes

or a group of colluding nodes.

Our simulation used the Lightning topology with exponentially

distributed capacities and transaction values. The evaluated routing

algorithm was Interdimensional SpeedyMurmurs, as introduced

in section 4, with the three well-performing splitting algorithms:

SplitNo , SplitDist , and SplitIfN . The fraction p varied between 0 and

1.0 in steps of 0.1. When using a delay, the delay was set to 12, the

length of the longest shortest path in the Lightning topology. For

more details on the data sets and parameters, please check Section 5.

Figure 5 displays the results regarding the attack effectiveness.

If splitting was only applied if necessary, the success ratio dropped

towards the scenario when there was no splitting as all split pay-

ments were dropped. SplitDist , which splits to minimize the number

of hops, splits more frequently and hence suffered more drastically

from the attack. Indeed, the success ratio dropped below the success

ratio of not splitting if 0.2 or more of the network apply the attack.

The drop was more pronounced for colluding attackers and if de-

lays were applied. Both colluding and delays allowed the attacker

to detect more splits. Yet, even without collusion and delays, the

success ratio was considerably reduced. Given that SplitDist is the
most effective splitting mechanism, the severity of the attack is

evident.

In summary, the discussed attack can indeed negate the positive

impact of splitting. Hence, introducing unlinkability is important

from a security perspective.

D IMPACT OF DISTRIBUTIONS AND
TOPOLOGY

In this section, we evaluate the impact of the capacity distribution,

the transaction value distribution, and the topology.

For the channel capacity, we consider a normal distribution

with average 200 and a standard deviation of 10 in comparison

to an exponential distribution with the same average. Similarly,

normally transaction values were evaluated. The expected value of

the distribution was µ = 100 with the standard deviation of 0.1 · µ.
As described in Section 5, we only considered transactions that

could succeed.

For the scale-free and random graphs, Barabasi-Albert [4] and

Erdos-Renyi [10] graphs, respectively, with the same number of

nodes and a similar average degree, were generated. More con-

cretely, each node added to the Barabasi-Albert graph established

5 channels to already-existing nodes. For the random graph, the

probability of an edge between nodes was chosen such that the

expected degree was 10.31. Nodes outside of the largest connected

component were removed.

Figure 6a displays the success ratio for different distributions.

Normal distributions in the capacity reduced the number of failures

as channel capacities were more uniform. Hence, it was less likely

to contain situations when a node had only channels of low capacity.

Indeed, the advantages of Interdimensional SpeedyMurmurs and

splittingweremore pronounced for scale-free and randomnetworks

as they offered a higher diversity of paths than Lightning’s hub-

and-spoke topology [25], as can seen in Figure 6b.

E IMPACT OF SHORTER TIMEOUTS
The generic protocol in Figure 2 assumes that the maximal length

of a (partial) routing path is equal to the number of nodes in the

network. However, in practice, such high timeouts are not desired

as they lock collateral for unnecessary long periods.

For the hop distance, an initial timeout corresponding to the

initial distance is always sufficient by construction of the distance

as the length of the shortest path. For Interdimensional SpeedyMur-

murs, termination can be guaranteed forT = |V| because loops are
not possible. However, in practice, such long timeouts are undesir-

able, especially if they do not increase the success ratio sufficiently.

Thus, our evaluation also considered the following four options for

timeouts:

(1) the minimum of the dim distances between sender S and

receiver R, i.e., mini ∈[dim]{di (S,R)} (denoted byMIN)

(2) the maximum of the dim distances between sender S and

receiver R, i.e., maxi ∈[dim]{di (S,R)} (denoted byMAX)

(3) the diameter of the network, i.e., the longest shortest path

in the network (denoted by DIAMETER)
(4) twice the diameter of the network, i.e., the longest shortest

path in the network (denoted by 2DIAMETER)

The minimum distance indicates that there is at least one path

of this length between S and R. However, the routing algorithm

might take longer paths, in which case the payment will fail even

if the routing could succeed with a higher timeout. The maximum

distance dmax indicates that there is a path in every tree whose

length is at mostdmax . However, Interdimensional SpeedyMurmurs

utilizes all spanning trees in parallel and hence the function giving

the distance after j hops might not be monotonously decreasing.

As a consequence, the routing algorithm might still take longer

paths. Similarly, there are no guarantees that Interdimensional

SpeedyMurmurs does not result in paths longer than the diameter

or even twice the diameter. However, it seems unlikely for paths to

15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
u
c
c
e
s
s
 R

a
ti
o

Attacker Fraction

No Split
Dist-NonCol
IfN-NonCol

Dist-Col
IfN-NonCol

(a) No Delay

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
u
c
c
e
s
s
 R

a
ti
o

Attacker Fraction

No Split
Dist-NonCol
IfN-NonCol

Dist-Col
IfN-NonCol

(b) Delay (12 rounds)

Figure 5: Impact of the attack on success ratio (exponential capacities with expected value 200, exponential transaction values
with 1/λ = 100, Lightning topology, dim = 5 for Interdimensional SpeedyMurmurs) for colluding (Col) and non-colluding
(NonCol) attackers

 0

 0.2

 0.4

 0.6

 0.8

 1

EXP-EXP EXP-NORMAL NORMAL-EXP NORMAL-NORMAL

S
u

c
c
e

s
s
 R

a
ti
o

Hop-No
Hop-Dist

Hop-IfN
INTSM-No

INTSM-Dist
INTSM-IfN

(a) Capacity/Transaction Distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

BA ER LN

S
u

c
c
e

s
s
 R

a
ti
o

Hop-No
Hop-Dist
Hop-IfN

INTSM-No
INTSM-Dist
INTSM-IfN

(b) Topology

Figure 6: Routing success for 6 routing algorithms for a) exponential and normal capacity (first part of x-axis label) and
transaction value (second part of x-axis label) distributions on Lightning and b) three topologies: Barabasi-Albert (BA), Erdos-
Renyi (ER), Lightning (LN) (expected capacity 200, transaction values for 1/λ = 100 or µ = 100, dim = 5 for Interdimensional
SpeedyMurmurs)

exceed such a length. Our evaluation substantiates this intuition

with concrete numbers.

Figure 7 depicts the impact of different maximal timeouts on the

success ratio for three different splitting algorithms. The results

were consistent for all three algorithms: UsingMIN andMAX did

reduce the success ratio considerable, so it is not advisable to use

them as timeouts. However, using the diameter of 12 or a multiple

of the diameter produced nearly the same success ratio as a timeout

of |V| = 6000. For the Lightning snapshot, we can hence use a

timeout that is approximately 6000/12 = 500 times shorter than the

theoretical bounds while essentially maintaining the same success

ratio.

F DYNAMIC SCENARIO
Setup: Note that our simulation setup differed with regard to the

generation of transactions. As channel capacities changed based on

the routing, different routing algorithms led to different capacities

over time, so that it was not easily possible to easily determine

whether a transaction is possible via computing the maximal flow.

Indeed, as indicated by previous work, a maximum flow algorithm

can have a lower success ratio in the dynamic setting than local

alternatives [27]. Furthermore, the problem of determining if a

sequence of transactions that changes balances is possible to fulfill

is NP-complete [12]. As a consequence, the second step was not

executed for the dynamic setting.

Results: The relation between the evaluated splitting mecha-

nism differed between the static and the dynamic setting. Figure 8

16

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

S
u

c
c
e

s
s
 R

a
ti
o

Trees

None

Min

Max

Diameter

2 Diameter

(a) No Split

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

S
u

c
c
e

s
s
 R

a
ti
o

Trees

None

Min

Max

Diameter

2 Diameter

(b) Split by Dist

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

S
u

c
c
e

s
s
 R

a
ti
o

Trees

None

Min

Max

Diameter

2 Diameter

(c) Split If Necessary

Figure 7: Success ratio of Interdimensional SpeedyMurmurs for different initial timelock values (exponential capacities with
expected value 200, exponential transaction values with 1/λ = 100, Lightning topology): a) no splitting, b) splitting over nodes
closest to receiver, c) splitting only if necessary

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

S
u
c
c
e
s
s
 R

a
ti
o

Transactions in 1000s

HOP-No

HOP-Dist

HOP-IfN

INTSM-No

INTSM-Dist

INTSM-IfN

Figure 8: Dynamic setting: Success ratio for Interdimesional
SpeedyMurmurs with dim = 5 and HopDistance over time,
averaged over 1000 transactions each (exponential capaci-
ties with expected value 200, exponential transaction values
with 1/λ = 100, Lightning topology)

displays the average success ratio over time, with time being rep-

resented by the transaction number. In particular, SplitDist , which
selects the nodes closest to the receiver even if they have hardly any

available funds, frequently utilized all available funds of a channel,

resulting in a depleted channel. Thus, over time, the success ratio

of SplitDist dropped below that of the other splitting algorithms de-

spite initially having the highest success ratio. In contrast, SplitIfN ,
which only splits if necessary, offered the highest success ratio.

G RANDOM SPLITTING
We also evaluated the impact of random splitting in contrast to

more sophisticated splitting mechanisms. Due to space constraints,

we excluded the description and results from the main body.

G.1 Algorithm Description
The key component of the algorithm is the function randomSplit(v,k)
that splits a value v at random such that the random variables Xi
of the i-th partial value are identically distributed in [0,v]. Fur-

thermore, we have

∑k
i=1 Xi = v , i.e., the total transaction value is

split.

In the first step, the splitting algorithm applies randomSplit with
v being the total transaction value and k being the number of

potential channels. However, such a random assignment of partial

values can potential lead to partial values exceeding the capacities

of some channels. As a consequence, the partial value assigned to

each channel is reduced to the channel’s capacity if it is too high.

The respective channels is marked as being fully collateralized and

the remaining value is recorded for being reassigned to another

channel.

In each subsequent step, randomSplit re-distributes the remain-

ing value ṽ that has not been assigned to a channel over the number

of channels that still have capacity left. The process continues until

either the total transaction value has been assigned or none of the

channels has capacity left. In the latter case, the payment fails.

G.2 Evaluation
Our implementation of random splitting Splitrand included a thresh-

old for a value to be split, i.e., values below the threshold were not

split to reduce the computation time of the algorithm. The threshold

for splitting was set to 1. As random splitting introduced a high

computation overhead, so that we only simulated it for up to three

trees.

Figure 9 is a version of Figure 3 that includes the results for ran-

dom splitting with up to three trees. Random splitting decreased the

success ratio drastically because if only one of the many shares did

not reach the receiver, the payment failed. Hence, splitting toomuch

and in a non-strategic manner did not improve the performance.

H ROUTING ALGORITHM: PSEUDOCODE
Figure 10 describes the generic routing algorithm.

Figures 11 and 12 display the two choices for Closer: Hop Dis-

tance and Interdimensional SpeedyMurmurs. Moreover, Figures 13–

16 show the four splitting methods: No Split, Split by Distance, Split

If Necessary, and Random Splitting.

17

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

S
u

c
c
e

s
s
 R

a
ti
o

Trees

HOP-No

HOP-Dist

HOP-IfN

HOP-Rand

INTSM-No

INTSM-Dist

INTSM-IfN

INTSM-Rand

(a) 1/λ = 50

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

S
u

c
c
e

s
s
 R

a
ti
o

Trees

HOP-No

HOP-Dist

HOP-IfN

HOP-Rand

INTSM-No

INTSM-Dist

INTSM-IfN

INTSM-Rand

(b) 1/λ = 200

Figure 9: Routing success for 8 routing algorithms when transaction value follows exponential distribution with 1/λ being a)
50 and b) 200 (exponential capacities with expected value 200, Lightning topology)

RouteG(v, P ,R, excl,CP)
// Get candidate set

{((P, Uj), c j , dj)}j∈[k′] ← Closer(P, R, CP)

// Remove visited nodes

M← ∅

for j ∈ [k ′] do

if ((Uj < excl) then

M := M ∪ {((P, Uj), c j , dj)}

// Split

{(ẽj , ṽj)}j∈[k] ← Split(M, v)

return {(ẽj , ṽj)}j∈[k]

Figure 10: Generic routing algorithm

CloserHOP (P ,R,CP)

Cand := ∅// candidate set

dI ← dG(P, R)

foreach (P, U) ∈ E do

d ← dG(U , R)

if d < dI then// Closer to R

Cand := Cand ∪ ((P, U), CP ((P, U)), d)

return Cand

Figure 11: HopDistance for determining candidate channels
for routing

CloserI NT SM (P ,R,CP)

Cand := ∅// candidate set

foreach (P, U) ∈ E do

for i ∈ [dim] do// Iterate over trees

d ← di (U , R)

dI ← di (P, R)

if d < dI then// lower distance

dmin := d

foreach j ∈ [dim] do

d j ← dj (U , R)

if d j < dmin then

dmin := d j

Cand := Cand ∪ ((P, U), CP ((P, U)), dmin)

break// Stop loop as lower distance found

return Cand

Figure 12: Interdimensional SpeedyMurmurs for determin-
ing candidate channels for routing

18

SplitNo ({(ej , c j ,dj)}j ∈[k],v)

B := ∅// Edges with nodes closest to R

d := ∞

for j ∈ [k] do

if v ≤ c j then// enough capacity

if dj < d then// new lowest distance

B := ∅

d := dj
if d = dj then// lowest distance

B := B ∪ {ej }

if B = ∅ then

return ⊥// No channel has sufficient capacity without splitting

else

e ←
$
B// Choose a random channel if multiple channels with lowest distance

return {(e, v)}

Figure 13: Routing without Splitting

SplitDist ({(ej , c j ,dj)}j ∈[k],v)

sor tByIncDistance({(ej , c j , dj)}j∈[k])// Sort by increasing dj

sum := 0// capacity already assigned

j := 0// index

Res := ∅// edges and partial payment values

while (sum < v) ∧ (j < k) do

vj ← min{v − sum, c j }

Res := Res ∪ {ej , vj }

sum := sum + vj
j := j + 1

if sum < v then

return ⊥// value could not be split as total capacity insufficient

else return Res

Figure 14: Routing with splitting over channels at least dis-
tance to receiver

SplitI f N ({(ej , c j ,dj)}j ∈[k],v)

Res ← SplitNo ({(ej , c j , dj)}j∈[k], v)

if Res¬⊥ then

return Res

sor tByDecCapacity({(ej , c j , dj)}j∈[k])// Sort by decreasing cj

sum := 0// capacity already assigned

j := 0// index

Res := ∅// edges and partial payment values

while (sum < v) ∧ (j < k) do

vj ← min{v − sum, c j }

Res := Res ∪ {ej , vj }

sum := sum + vj
j := j + 1

if sum < v then

return ⊥// value could not be split as total capacity insufficient

else

return Res

Figure 15: Routing with splitting only when necessary and
then with a minimal number of splits

SplitRand ({(ej , c j ,dj)}j ∈[k],v)

sum := 0

done := ∅// channels with capacity used

for j ∈ [k] do

vj := 0// init partial payment as 0

while (|done | < k) ∧ (sum < v) do

count := k − |done |

{ṽi }i∈[count] ← randomSplit (v − sum, count)

sum := 0

i := 0

for j ∈ [k] do// increase partial values

if i < done do

vj ← min{vj + ṽi , c j }

sum := sum + vj
if vj = c j then

done := done ∪ {j }// channel has no capacity left

i := i + 1

if sum < v then

return ⊥// value could not be split as total capacity insufficient

else

return {(ej , vj)}j∈[k]

Figure 16: Routing with random splits

19

I SECURITY ANALYSIS
Recall from Section 6 that our goal is to prove the security of our

payment protocol for any routing algorithm from the set R which

was defined as{
Route(Closer, Split)

���� Closer ∈ {CloserHOP ,CloserINT−SM },
Split ∈ {SplitNo, SplitDist , SplitIfN }

}
.

It is convenient for our proofs to also define two subsets of R: the

subset RHOP ⊂ R containing all routing algorithms with Closer =
CloserHOP and the RINT–SM ⊂ R containing all routing algorithms

with Closer = CloserINT−SM .

Note that the routing algorithm that uses random splitting (as

described in Appendix G) is excluded from the set R. The reason

is that protocol using this routing algorithm does not satisfy the

correctness property. In a nutshell, due to the loop-detection mech-

anism, it might happen that routing fails even is all parties behave

honestly and all channels have enough coins.

Before we present the proof of Theorem 6.1, let us restate the

theorem here for completeness.

Theorem 6.1. Assume that Σ is an EUF–CMA-secure signature
scheme, Ψ is an encryption scheme with message spaceM, andH a
preimage-resistant hash function with domain P. For any Route ∈ R,
the protocol Πb(Route) is a secure payment protocol with respect to
the function ValidateΣ,H .

If, in addition,Ψ andH are additively homomorphic, andM = ZN ,
P = Zp for p,N coprime and p < N , then for any Route ∈ R, the
protocol Πext (Route) is a secure payment protocol with respect to the
function ValidateΣ,H .

Since large parts of the proof are the same for both protocols,

we present the proof for Π ∈ {Πb,Πext } and distinguish between

the two protocols only when the proof steps differ. The structure

of our proof is the following. Firstly, we prove that the protocol

always terminates in Appendix I.1. Thereafter, in Appendix I.2, we

prove that the monetary loss of an honest sender is bounded and no

other honest party can ever lose coins, i.e., the security properties

bounded loss for the sender and balance neutrality. Next, we prove
that our protocol satisfies atomicity. This is done in Appendix I.3.

Before we complete the proof by showing the correctness of our
protocol in Appendix I.5, we prove two technical statements about

our routing algorithms in Appendix I.4.

I.1 Termination
Fix a connected directed graph G = (V, E) for which (P ,Q) ∈ E ⇔
(Q, P) ∈ E, a capacity function C, parties S,R ∈ V s.t. S , R, a
valuev ∈ R+, a blockchain delay ∆ ∈ N and a ppt adversaryA. Let

t0 denote the first round of the protocol execution. As a first step,

we show that the protocol Π terminates. In other words, it cannot

happen that an honest party waits for infinitely many rounds to

produce an output.

Claim 1. The protocol Π terminates in finitely many rounds.

Proof. The protocol description instructs an honest sender to

terminate latest in roundT+∆+1, wereT = t0+1+ |V|·(1+2·(∆+1)).
An honest receiver terminates in round t0 + |V| + 1 if b = 0. If

b , 0, then the receiver is in the process of unlocking all incoming

payments and terminates within ∆+1 rounds. Thus, latest in round

t0 + |V| + ∆ + 2, the receiver terminates.

It remains to discuss the termination for honest intermediaries

(i.e., any other party P ∈ V \ {S,R}). The protocol description

instruct an intermediary I to stop forwarding payments after round

t0 + |V|. Let T be the maximal time-lock on all outgoing payments

in round t0 + |V| (set to 0 if there is no such payment). Then latest

in round t0+ |V|+T , it holds that fw = ∅ since for each conditional

payment, it holds that either it was unlocked until this round or the

intermediary has requested a refund. In both cases, the intermediary

removes the conditional payment from the set fw. This implies that

latest in round t0 + |V| +T + 2(∆ + 1) the intermediary terminates.

Since the protocol terminates once all honest parties terminate,

this concludes the proof. □

Since the protocol terminates, after finitely many rounds the

protocol execution returns as output

(Honest, rec,C′) ← EXECFΠ,A (G,C,∆, S,R,v).

Let us now prove that this output satisfies the remaining security

properties.

I.2 Balance neutrality
Our next step is to show that the monetary loss of an honest sender

is bounded by the amount of coins that he wants to send, and none

of the other honest parties can ever lose coins. To this end, we make

the following simple but important observation about the payment

channel ideal functionality F := F (G,C,∆) that parties call in the

protocol execution.

Observation 1. The ideal functionality F never reduces coins
of any party unless it receives the instruction cPay or pay from this
party.

Claim 2 (Bounded loss for the sender). It holds that

S ∈ Honest⇒ netC,C′(S) ≥ −v .

Proof. An honest sender S never sends any pay-message to

F . By our protocol description, the sender either does not send

any cPay-messages (this happens if the receiver does not send a

valid signature in the first protocol round, or if execution of Route
outputs ⊥), or sends k cPay-messages of values (v1, . . . ,vk). Since
the values (v1, . . . ,vk) are returned by the routing algorithm Route,
we know that

∑
i vi = v (recall the routing property (iii) on page 5).

Hence, the total value of all the cPay-messages sent by S to F is at

most v which by Observation 1 implies that netC,C′(S) ≥ −v . □

As a next step, we show that balance neutrality for the inter-

mediaries and the receiver. The balance neutrality for the receiver

follows directly from Observation 1 since honest receiver never

makes any payments. The balance neutrality for intermediaries

is slightly more evolved. Firstly, we observe that no honest in-

termediary ever conditionally pays more coins than what he can

potentionally receive. As a second step, we show that if an outgoing

conditional payment is unlocked, the intermediary has a guarantee

that the corresponding incoming payment is unlocked as well. This

follows from the fact that (i) the difference between time-lock is

sufficiently large and (ii) the intermediary can compute a witness

20

for the incoming payment from the revealed witness of the out-

going payment. The part (ii) is trivial form the basic protocol and

for the extended protocol follows from the homomorphic property

of H . To this end, we state the following auxiliary lemma about

additively homomorphic functions.

Lemma I.1. LetH : P→ H be an additively homomorphic func-
tion. Let h ∈ H, xi ∈ P and let us define hi := h +H(xi). Then for
every x ′ ∈ P s.t.H(x ′) = hi , it holds thatH(x ′ − xi) = h.

Proof. By definition of hi , we know that h = hi −H(xi), hence

h = hi −H(xi) = H(x
′) − H(xi)

hom.

= H(x ′ − xi).

□

Claim 3 (Balance neutrality). It holds that

P ∈ Honest \ {S} ⇒ netC,C′(P) ≥ 0.

Proof. Let us first consider the case P = R. Since an honest

receiver R never sends any pay-message or cPay-message to F , by

Observation 1, netC,C′(R) ≥ 0.

Let us fix an arbitrary intermediary I ∈ Honest \ {S,R}. An
honest I never sends any pay-message to F and never sends a cPay-

message to F without receiving a cPaid-messages from F before.

In other words, every outgoing conditional payment is triggered

by an incoming conditional payment.

Assume now that I receives a conditional payment of value v ,
condition h and time-lockT . Then I executes the routing algorithm
Route on input value v and obtains k values (v1, . . . ,vk) such that∑
j vj = v . Thereafter, the intermediary executes the algorithm

HLocks on input h and k and obtains k hash values (h1, . . .hk). For
every i ∈ [k], the intermediary sends a cPay-message of value vi ,
condition hi and time-lock T ′ := T − 2 · (∆ + 1). This implies that

an honest I never conditionally pays more coins than what he can

conditionally receive. As a next step, we prove that if one of the

outgoing payments is completed, i.e., I pays vi coins, then I has the
guarantee of unlocking the corresponding incoming payments, i.e.

receive v coins.

First we show that if I learns a preimage of at least one of the

hash values h1, . . . ,hk , then he can compute a preimage for h.
Π = Πb: Since for every i ∈ [k] we have hi = h, the statement

trivially holds.

Π = Πext : For every i ∈ [k], the value hi is computed as h +H(xi).

Upon learning x ′ such that hi = H(x
′), I computes x ′ − xi which

by Lemma I.1 is a preimage of h.
The latest point at which the intermediary can learn x ′ from an

outgoing payment is in roundT ′ + (∆+ 1). Submission of a witness

for the corresponding incoming payments takes at most (∆ + 1)

rounds. Hence, I has the guarantee that the unlocking request is

executed by F latest in round T ′′ := T ′ + 2 · (∆ + 1). Since honest
intermediary setsT ′ during the routing phase asT ′ := T − 2(∆+ 1),
we have T ′′ = T . Since a conditional payment can be refunded by

the payer earliest in round T + 1, the intermediary has a guarantee

of successful unlocking.

The intermediary makes no outgoing conditional payments after

round t0 + |V|. Hence, the size of the set of all outgoing payments

fw can only decrease from this point on. An outgoing conditional

payment is removed from fw when (i) the payment was unlocked

or (ii) I requests a refund. If an outgoing payment is unlocked, then

within the next (∆+1) rounds the corresponding incoming payment

is unlocked as we showed above. By our protocol description, I
requests a refund for a conditional payment in the round when its

time-lock expires. F processes the refund request within (∆ + 1)
rounds and accepts it unless the conditional payment was already

unlocked in which case we fall into case (i). This means that I has
to unlock the corresponding incoming payments, which takes at

most (∆ + 1) rounds. Hence, it takes at most 2(∆ + 1) rounds before
I settles a payment that was removed from fw.

Recall that by the protocol description, an honest intermediary

does not terminate before round t0 + |V|. After this round, I waits
for the first round when the set of outgoing payments fw is empty.

Once this happens, I waits 2(∆ + 1) rounds and only then produces

an output and terminates. Hence, in the round when I terminates,

all forwarded payments were settled.

□

I.3 Atomicity
We now show that if an honest sender loses coins, then he holds

a valid receipt, i.e., a triple (hR ,σ ,xR), where hR = H(xR) and
VrfypkR (S,R,v,hR ,σ) = 1. Our argumentation in the proof is es-

sentially the following. Since we assume that the sender lost coins,

he had to make at least one conditional payment which was un-

locked. In the basic protocol, all time-locks are set to hR , hence one
unlocked payment implies knowledge of the desired preimage xR .
In the extended protocol, condition of an outgoing payment is set to

hi = hR +H(xi). By the homomorphic property ofH (Lemma I.1),

we know that if hi = H(x
′), then x ′ − xi is a preimage of hR . Let

us now state and proof the atomicity for the sender formally.

Claim 4 (Atomicity for the sender). It holds that

S ∈ Honest ∧ netC,C′(S) < 0⇒ ValidateΣ,H(S,R,v, rec) = 1.

Proof. The assumption that the sender is honest and lost some

coins implies that in the initialization phase, the sender received

a statement from the receiver of the form (hR ,σ) for some hash

value hR and σ being a valid signature of R on (S,R,v,hR). This
implication follows from the fact that if the sender does not receive

such a valid statement, he immediately terminates the protocol

without ever making any payment. By Observation 1 we know that

in such a case, the sender never loses any coins contradiction the

assumption of this lemma.

After receiving a valid statement from the receiver, the sender

makes (multiple) conditional payments via the functionality F , all

of which have the same time-lock T . The sender does not send any

further cPay-message or pay-message to F and does not produce

an output until all conditional payments are either unlocked or

refunded. This follows from the fact that in roundT , i.e., in a round

when all time-locks expire, the sender instructs the ideal functional-

ity to refund all conditional payments that were not unlocked. This

process takes at most ∆ + 1 rounds and hence in round T + ∆ + 1
when the sender terminates, all conditional payments are indeed

settled. Since we assume that the sender lost coin, at least one of the

conditional payments must have been unlocked (and not refunded).

Π = Πb: In the base protocol, all conditional payments had the

same hash-lock hR . The fact that at least one of the conditional

21

payments was unlocked implies that the sender must have learned

a value x ′R such thatH(x ′R) = hR . In this case, the sender outputs a

receipt rec = (hR ,σ ,x ′R). Since σ is a valid signature of the receiver

R andH(x ′R) = hR , it holds that ValidateΣ,H(S,R,v, rec) = 1.

Π = Πext : In the extended protocol, each conditional payment

has a different hash-lock produced by the algorithm HLocksext .
Recall that each hash-lock hi is computed as hR + H(xi) for a
randomly chosen xi . The fact that at least one of the conditional
payments was unlocked implies that the sender must have learned

a preimage of at least one hi . In other words, the sender learns x ′

s.t.H(x ′) = hi . According to our protocol description, the sender

executes Wit(x ′,xi), returning x ′ − xi , which by Lemma I.1 is a

preimage of hR . In this case, the sender outputs a receipt rec =
(hR ,σ ,x

′ − xi). Since σ is a valid signature of the receiver R and

H(x ′ − xi) = hR , it holds that ValidateΣ,H(S,R,v, rec) = 1. □

Next, we argue about the atomicity for the receiver, saying that

if the sender holds a valid receipt, then the receiver earned at least

v . The intuition about this proof is the following. Unforgeability of

the signature scheme guarantees that the only valid signature of

receiver that the sender could output is the signature on (S,R,v,hR)
produced by the receiver. Hence, the valid receipt must contain a

preimage of hR . By preimage resistance ofH , the sender is not able

to output such value without R revealing xR . We finalize the proof

by showing that the receiver does not reveal xR unless he has a

guarantee of unlocking v coins and does not terminate before all

the payments are unlocked.

Claim 5 (Atomicity for the receiver). It holds that

R ∈ Honest ∧ ValidateΣ,H(S,R,v, rec) = 1⇒ netC,C′(R) ≥ v

with overwhelming probability.

Proof. Assume thatR ∈ Honest andValidateΣ,H(S,R,v, rec) =
1. Let us parse rec as (h′,σ ′,x ′). Since rec is a valid receipt, by the

definition of the validation function ValidateΣ,H we know that

σ ′ is a valid signature of the receiver on the tuple (S,R,v,h′) and
h′ = H(x ′). The EUF–CMA-security of the signature scheme Σ
guarantees that (with overwhelming probability) the signature σ ′

had to be produce by the receiver. By our protocol, the receiver

computes only one signature. Namely, in the first round of the

protocol, where he randomly samples xR , computes hR := H(xR)
and produces a signature σ ← SignskR (S,R,v,hR). Hence, with
overwhelming probability h′ = hR .

The preimage resistance of the hash function H guarantees

that the probability of sender outputting x ′ without the receiver
revealing his secret preimage xR is negligible. Hence, it remains

to show that if the receiver R reveals the secret preimage xR , then
netC,C′(R) ≥ v .

By our protocol description, the receiver reveals xR only once

the following conditions are satisfied: (i) the receiver received condi-

tional payments of total value v , (ii) the receiver knows the witness
for all conditional payments, and (iii) in the round when the last

conditional payment is received, let us denote it t , the time-lock of

all conditional payments is at least t + ∆ + 1. Since unlocking of

a conditional payment takes at most ∆ + 1 rounds, the aforemen-

tioned properties guarantee that if the receiver starts unlocking

the payments in round t , all conditional payments will be success-

fully unlocked latest in round t + ∆ + 1. Since the receiver waits
for ∆ + 1 before producing an output and terminating, we have

netC,C′(R) ≥ v as we wanted to prove. □

I.4 Correctness of routing algorithms
In this section we prove two technical lemmas about our routing

algorithms from the set R. Recall that this set contains all routing

algorithms defined in Section 4.

We first consider the routing algorithms using CloserHOP to de-

termine candidate nodes for routing, i.e., algorithms from the set

RHOP . On a high level, the lemma says that if a party P executes

such a routing algorithm given a set excl that contains only nodes

that are strictly further away from the receiver than P , then the

routing algorithm never outputs ⊥. This statement holds under the

assumption that all channels in the graph are sufficiently funded.

Moreover, we prove that all nodes that the routing algorithm out-

puts are strictly closer to the receiver than P . Hence, if nodes output
by the routing algorithm add P to the set excl, this set again satisfies

the assumptions of our lemma.

For convenience, we define a set S
P,R
HOP for every P ,R ∈ V as

S
P,R
HOP := {Q ∈ V | dG(Q,R) > dG(P ,R)}.

Lemma I.2 (Hop-distance routing). Let G = (V, E) be a con-
nected directed graph, P ,R ∈ V be two nodes such that P , R and C
be a capacity function of G such that C(e) ≥ v for every e ∈ EP . For
every set excl ⊆ SP,RHOP , and every routing algorithm Route ∈ RHOP ,
the output of RouteG(v, P ,R, excl,CP) is never equal to ⊥. Moreover
for every returned edge (P , I) it holds that excl ∪ {P} ⊆ SI,RHOP .

Proof. Let Cand be the set returned by CloserHOP . By the de-

scription of CloserHOP , we have

Cand :=
{
((P , I),v,dG(I ,R)) | (P , I) ∈ E ∧ dG(P ,R) > dG(I ,R)

}
In other words, the set Cand contains all neighbors of P who are

closer to the receiver. As a first step, we prove that Cand , ∅.
Since G is connected, there exists at least one path between

P and R in G. Let us consider one shortest such path and let

(P , I1, . . . , Iℓ ,R) be the nodes associatedwith this path. Then (P , I1) ∈
E and dG(P ,R) = dG(I1,R) + 1 hence ((P , I1),v,dG(I1,R)) ∈ Cand.

As a next step, the routing algorithm applies the loop-detection

filter. Formally, a setM is defined as

M := {((P , I),v,dG(I ,R)) ∈ Cand | I < excl}.

Since dG(P ,R) > dG(I1,R), we know that I1 < excl and hence

((P , I1),v,dG(P , I1)) ∈ M. This in particular means thatM , ∅.
The routing algorithm now executes Split on input M and v .

By the specification of the algorithms Split ∈ {SplitNo, SplitIfN ,
SplitDist }, it is easy to see that since the capacity of all edges is at

least v , no matter which of the splitting algorithms was used, the

output is exactly one pair ((P , I),v). This completes the proof of

the first part of the lemma.

It remains to argue that dG(I ,R) < dG(P ,R). This follows from
the fact that ((P , I),v) is such that ((P , I),v,dG(P , I)) ∈ M ⊆ Cand.

□

22

Let us now prove an analogous lemma for routing algorithms that

use CloserINT−SM to determine candidate nodes for routing, i.e., al-

gorithms from the setRINT–SM . Recall that in contrast toCloserHOP ,
the algorithm CloserINT−SM does not use hop-distance dG for mea-

suring the distance of nodes from the receiver. Instead, it considers

the distance of nodes in several spanning trees ST1, . . . , STdim of

G. The restriction we put on the input set excl is hence slightly
different.

The lemma requires that the set excl contains only nodes whose

minimal distance from the receiver (minimum is taken over all

spanning trees) is strictly larger that the minimal distance of the

party P from the receiver (again, minimum is taken over all span-

ning trees). Under this condition and assuming that all channels

are sufficiently funded, the routing algorithm executed by P never

outputs ⊥. Moreover, we prove that all nodes that the routing algo-

rithm outputs have a minimal distance from the receiver strictly

lower than P . For convenience, we define a set SP,RINT–SM for every

P ,R ∈ V as

S
P,R
INT–SM :=

{
Q ∈ V

���� min

i ∈[dim]
di (Q,R) > min

i ∈[dim]
di (P ,R)

}
,

where di := dSTi is the distance function in the spanning tree STi .

Lemma I.3 (Routing using spanning trees). Let G = (V, E)
be a connected directed graph, P ,R ∈ V be two nodes such that P , R
andC be a capacity function ofG such thatC(e) ≥ v for every e ∈ EP .
For every set of spanning trees ST := {ST1, . . . , STdim} of G, every
set excl ⊆ SP,RINT–SM , and every routing algorithm Route ∈ RINT–SM ,
the output of RouteG(v, P ,R, excl,CP) is never equal to ⊥. Moreover
for every returned edge (P , I) it holds that excl ∪ {P} ⊆ SI,RINT–SM .

Proof. Let Cand be the set returned by CloserINT−SM . By the

description of CloserINT−SM , we have

Cand :=

((P , I),v,d I)
������ (P , I) ∈ E ∧ d

I
:= mini ∈[dim] di (I ,R)
∧

∃i ∈ [dim] di (P ,R) > di (I ,R)


In other words, the set Cand contains all neighbors of P who are

closer to the receiver in at least one spanning tree. As a first step,

we prove that Cand , ∅.
SinceG is connected, there exists at least one path between P and

R in G, which implies that there exists exactly one path between P
and R in every spanning tree. Hence, for every spanning tree STi
there exists I ∈ V such that di (P ,R) = di (I ,R) + 1 implying that

∀i ∈ [dim] ∃((P , I),v,d I) ∈ Cand s.t. di (P ,R) > di (I ,R). (1)

From eq. (1) we have that Cand , ∅.
As a next step, the routing algorithm applies the loop-detection

filter. Formally, a setM is defined as

M := {((P , I),v,d I) ∈ Cand | I < excl}.

We show that M , ∅. Let j denote the index of the spanning tree

in which P is closest to R; formally, j := argmini ∈dim di (P ,R).

By eq. (1), we know that there exists ((P , J),v,d J) ∈ Cand s.t.

dj (P ,R) > dj (J ,R) and hence

min

i ∈[dim]
di (P ,R) > min

i ∈[dim]
(J ,R). (2)

By the definition of the set excl, this implies that J < excl and hence
((P , J),v,d J) ∈ M.

The routing algorithm now executes the splitting algorithm

Split on input M and v . From the specification of the algorithm

Split ∈ {SplitNo, SplitIfN , SplitDist }, it is easy to see that since all

channels have capacity at least v , exactly one pair ((P , I),v) is
output no matter which of the splitting algorithms we consider.

This in particular implies that the routing algorithm never outputs

⊥.

It remains to prove thatmini ∈[dim] di (I ,R) < mini ∈[dim] di (P ,R).
For each Split ∈ {SplitNo, SplitIfN , SplitDist }, it holds that the output

((P , I),v) satisfies the following two conditions: (i) ((P , I),v,d I) ∈

M and (ii) d I is such that for every ((P , I ′),v,d I
′

) ∈ M it holds that

d I ≤ d I
′

. We already proved that ((P , J),v,d J) ∈ M. Hence

min

i ∈[dim]
di (I ,R) = d

I ≤ d J = min

i ∈[dim]
di (J ,R)

(2)

< min

i ∈[dim]
di (P ,R)

which concludes the proof. □

A simple corollary of the above two lemmas is that if any of the

routing algorithms is executed on the set excl = ∅, which is exactly

what the sender does it our protocol, then the routing algorithm

never fails.

Corollary I.4 (Routing for the sender). Let G = (V, E)
be a connected directed graph, S,R ∈ V be two nodes such that
S , R and C be a capacity function of G such that C(e) ≥ v for
every e ∈ ES . For every routing algorithm Route ∈ R, the output of
RouteG(v, S,R, ∅,CS) is never equal to ⊥.

Proof. If Route ∈ RHOP , then the corollary follows directly

from Lemma I.2 since for every S,R it holds that ∅ ⊆ S
S,R
HOP . Anal-

ogously, if Route ∈ RINT–SM , then the corollary follows directly

from Lemma I.3 since for every S,R it holds that ∅ ⊆ S
S,R
INT–SM . □

Another simple corollary of the two lemmas is that if the nodes

output by the routing algorithm Route(v, P ,R, excl,CP) add the

node P to the set excl and execute the routing algorithm themselves,

then the routing algorithm never fails. In other words, the lemma

can be use inductively. Let us stress that this is exactly what happens

at intermediary nodes in our protocol.

Corollary I.5 (Routing for intermediaries). Let G = (V, E)
be a connected directed graph, P ,R ∈ V be two nodes such that P , R
and C be a capacity function of G such that C(e) ≥ v for every e ∈
EP . Let (Route,S) ∈ RHOP × {S

P,R
HOP } or (Route,S) ∈ RINT–SM ×

{S
P,R
INT–SM } and excl ⊆ S. For every pair ((P , I),v ′) returned by

Route(v, P ,R, excl,CP) and ever capacity function C′ of G such that
C(e) ≥ v ′ for e ∈ EI , it holds that Route(v ′, I ,R, excl∪{P},C′I) , ⊥.

Proof. If (Route,S) ∈ RHOP × {S
P,R
HOP }, then the corollary fol-

lows directly from Lemma I.2 since for every edge (P , I) returned

by Route(v, P ,R, excl,CP), it holds that excl ∪ {P} ⊆ S
I,R
HOP . Anal-

ogously, if (Route,S) ∈ RINT–SM × {S
P,R
INT–SM }, then the corollary

follows directly from Lemma I.3 since for every edge (P , I) returned

by Route(v, P ,R, excl,CP), it holds that excl ∪ {P} ⊆ S
I,R
INT–SM . □

23

I.5 Correctness
Finally, we need to prove that our protocol satisfies correctness

meaning that if all parties are honest and all channels in the network

have enough coins, then the payment succeeds. The main steps

of our proof are the following. Since both sender and receiver are

honest, the sender initiates conditional payments of total value

v . Using the statements from the previous section, we argue that

no matter which routing algorithm Route ∈ R we consider, the

routing never fails. Moreover, we show that the initial time-out set

by the sender is sufficient to guarantee that all partial payments

reach the receiver in time and hence the receiver starts unlocking

payments. Since the total amount of coins in the system cannot

increase (parties cannot create coins), we complete the proof by

applying the balance neutrality and bounded loss for the sender.

We now state and proof the correctness of our protocol formally.

Claim 6 (Correctness). IfV = Honest and for every e ∈ E it holds
that C(e) ≥ v , then it holds that netC,C′(S) = −v , netC,C′(R) = v
and netC,C′(P) = 0 for every P ∈ V \ {S,R}.

Proof. Since the receiver R is honest, the sender S receives a

valid signature σ on the statement (S,R,v,hR) from the receiver R
in the round t0+1. This means that the sender execute the algorithm

Route on input excl = ∅. By Corollary I.4, we know that the routing

algorithm returns {(Ii ,vi)}i ∈[k] and hence the sender initiates k
conditional payments – each of them with set excl := {S}.

Assume for now that at least one of the conditional payments

is completed and hence netC,C′(S) < 0. By Claim 4, this implies

that the sender outputs a valid receipt. Since the receiver is honest

and the sender outputs a valid receipt, by Claim 5 we know that

netC,C′(R) ≥ v . Moreover, by Claim 3, we know that none of

the intermediaries can lose coins, i.e., netC,C′(I) ≥ 0 for every

I ∈ V \ {S,R}. Since the PCN functionality F does not allow any

party to create coins, it must hold that

∑
P netC,C′(P) ≤ 0. Hence,

we have

netC,C′(S) ≤ −
©­«netC,C′(R) +

∑
I ∈V\{S,R }

netC,C′(P)
ª®¬ ≤ −v .

The bounded loss for the sender, Claim 2, guarantees that netC,C′(S) ≥
−v , hence it must holds that netC,C′(S) = −v . This in turn im-

plies that netC,C′(R) = v and netC,C′(I) = 0 for any other party

I ∈ V \ {S,R}.
What remains to prove is that at least one of the conditional

payments made by the sender is unlocked before the protocol ter-

minates. Since the sender terminates only once all outgoing pay-

ments are settled, it suffices to prove that at least once conditional

payment is unlocked and not refunded.

Since the sender is honest, the conditional payments are made

in the round t0 + 1 and the time-lock of all of them are set to T =
t0+1+n(1+2(∆+1)), where n = |V|. It takes one round before the
neighbors of S are informed about the conditional payment. Each

intermediary, upon being informed about the conditional payment,

executes the routing algorithm Route which by Corollary I.5 never

fails. Hence, the intermediary decreases the time-lock by 2(∆ + 1)
and forwards the payment immediately to parties outputs by the

algorithm Route. Since the length of the longest path between the

sender and receiver is upper bounded by n, the receiver is informed

about all conditional payments latest in round t1 := t0 + 1+n. Since
the number of intermediaries on each path is upper bounded by

n−1, the minimal time-lockTmin of incoming conditional payments

of the receiver can be lower bounded as

Tmin ≥ T − (n − 1) · 2(∆ + 1) = t0 + 1 + n + 2(∆ + 1))

SinceTmin− t1 > (∆+1), the receiver starts unlocking all payments

if he knows a witness for all of them.

Π = Πb: In the base protocol, all conditional payments have the

same hash-lock hR . Since hR was computed by the receive in the

first round asH(xR) = hR , R trivially knows the witness xR .
Π = Πext : In the extended protocol, a conditional payment has a

hash-lock hi and an attached ciphertext ci . By our protocol de-

scription, the receiver executes WitRext (ci , sk,xR ,hi , excl) in order

to find the preimage of hi . The algorithm WitRext instructs the

receiver to compute x ′ := xR +M DecskR (ci) and loop over all

j ≤ |excl | to check if hi = H(x ′+Z j ·N mod p).We need to argue

that if all parties behaved honestly, the receiver will find such j and
hence the preimage of hi . Since all parties in the system are honest,

by the additive homomorphism ofH we know that

hi = H(xR) +H H(x
(1)

i) +H . . . +H H(x
(ℓ)
i) (3)

= H
(
xR +P x

(1)

i +P . . . +P x
(ℓ)
i

)
, (4)

for ℓ = |excl |. Moreover, by the additive homomorphism of the

encryption scheme we know that

ci = EncpkR (0) +C EncpkR (x
(1)

i) +C · · · + EncpkR (x
(ℓ)
i) (5)

= EncpkR

(
x
(1)

i +M . . . +M x
(ℓ)
i

)
. (6)

SinceM = ZN we have

xR +Z x
(1)

i +Z · · · +Z x
(ℓ)
i ≤ (ℓ + 1) · N . (7)

Recall that x ′ := xR +M DecskR (ci). From (6) and (7), we know that

there exists j ≤ ℓ such that

xR +Z x
(1)

i +Z · · · +Z x
(ℓ)
i = x ′ +Z j · N .

Since P = Zp , this implies that

x ′ +Z j · N mod p = xR +P x
(1)

i +P . . . +P x
(ℓ)
i .

and hence x ′ +Z j · N mod p is a preimage of hi which we wanted

to prove.

We showed that all partial payments arrive to the receiver. Since

the receiver can compute all witnesses and he has enough time to

unlock all of them, he initiate the unlocking phase. This implies

that the intermediaries that conditionally paid to R lose coins. By

balance neutrality, Claim 3, we know that each intermediary has

the guarantee of unlocking the corresponding incoming payment.

Hence, the conditional payments of the sender are unlocked which

completes the proof.

□

J UNLINKABILITY OF PARTIAL PAYMENTS
On a high level, our unlinkability definition guarantees the follow-

ing. Assume that an honest party (sender or an intermediary) splits

a payment of v coins into k partial payments (v1, . . . ,vk) which
he routes over k different neighbors P1, . . . , Pk . Even if all of these

24

neighbors collude, they cannot decide whether the conditional pay-

ments are parts of the same payment or if k independent payments

of values (v1, . . . ,vk) were sent. Since the partial payments are un-

linkable right after the split takes place, further forwarding of the

payments does not influence their linkability. Hence, our definition

also captures the case when the colluding parties appear later in

the partial payment paths (and not right after the splitting). Let us

recall the formal definition as stated in Section 6.

Definition 6.1 (Unlinkability). Let Ψ be an encryption scheme

with plaintext spaceM and letH : P→ H be a hash function with

P ⊆ M. Algorithm HLocksH,Ψ produces unlinkable conditions if
for every ppt adversary A, every x ∈ P,y ∈ M and k ∈ N, we have
Pr[GameLink

A,HLocksH,Ψ (x ,y,k,n) = 1] ≤ 1

2
+ negl(n), where the

game GameLink is defined as follows:

GameLink
A,HLocksH,Ψ (x ,y,k,n)

b ←
$
{0, 1}

(pk, sk) ← Gen(1n), h := H(x), c ← Encpk(y)

if b = 1 then {(hj , c j , x j)}j∈[k] ← HLocksH,Ψ(h, c, k, pk)

else foreach j ∈ [k] do x j ←$
P, hj := H(x j), c j := Encpk(x j)

b′ ← A(x, y, {(hj , c j)}j∈[k], pk)

return b = b′

Let us briefly discuss why the formal definition captures the

unlinkability property discussed above on high level. In case b = 0,

the game GameLink generates {(hj , c j)}j ∈[k] exactly as a sender

would do when sending k independent payments. Namely, for each

of the k payments, the sender would sample a random preimage

xi and use the hash value hi := H(xi) as the hash-lock. Moreover,

the sender would attach the ciphertext ci := Encpk(xi) to the condi-
tional payment, where pk is the public key of the receiver, to ensure
that the receiver can unlock the conditional payment. In case b = 1,

the game GameLink generates {(hj , c j)}j ∈[k] exactly as a sender,

who sends a single payment splitted into k partial payments using

the procedure HLocks.
We emphasize that by quantifying in our definition over all x

and y we model that malicious neighbours of a party splitting a

payment (sender or intermediary) may learn these values in our

protocol. For the value y this is, e.g., the case when the sender (i.e.,

the first party splitting), executes HLocks on c = EncpkR (0). For
x this happens in our protocol when the neighbors of the party

splitting the payment might collude with the party generating h
and hence know x . For instance, this can occur during a potential

collusion between the receiver and intermediaries.

Earlier in this work, we presented two different HLocks algo-
rithms; namely the algorithmHLocksb and the algorithmHLocksext
(see Figure 2). The simple algorithm HLocksb outputs k copies of

the pair (h, c). Such algorithm clearly does not satisfy the unlinka-

bility definition. We now prove Theorem 6.2 stating that HLocksext
does satisfy the unlikability definition. Before we present the proof,

let us restate the theorem here.

Theorem 6.2. Let Ψ be an additively homomorphic IND–CPA-
secure encryption scheme with message space M = ZN , and H an
additively homomorphic preimage-resistant hash function with do-
main P = Zp such that p,N coprime and p < N . Then HLocksH,Ψext
produces unlinkable conditions.

Proof. Let us fix arbitrary x ∈ P, y ∈ M and k ∈ N. Let us
define the three distributions D(pk), Dx (pk), Dx,y (pk) as follows:

D(pk)
a ←

$
P

c := Encpk(a)

return (a, c)

Dx (pk)
a ←

$
P

c := Encpk(a)

return (a + x, c)

Dx,y (pk)
a ←

$
P

c := Encpk(a + y)

return (a + x, c)

Base on these distributions, we define three games G0(x ,y,k,n),
G1(x ,y,k,n) and G2(x ,y,k,n). All three games first generate a key

pair (pk, sk) and then sample k pairs {(hj , c j)}j ∈[k]. How these pairs

are generated differs for each game. In the gameG0, every (hj , c j)
is sampled from D(pk), in the game G1, every (hj , c j) is sampled

from Dx (pk) and in G2, every (hj , c j) is sampled from Dx,y (pk).
Finally, all of the games output the tuple (x ,y, {(hj , c j)}j ∈[k], pk)
(see Figure 17 for formal description).

G0(x ,y,k,n)

(pk, sk) ← Gen(1n)

foreach j ∈ [k] do

(hj , c j) ← D(pk)

endfor

X := {(hj , c j)}j∈[k]
return (x, y, X , pk)

G1(x ,y,k,n)

(pk, sk) ← Gen(1n)

foreach j ∈ [k] do

(hj , c j) ← Dx (pk)

endfor

X := {(hj , c j)}j∈[k]
return (x, y, X , pk)

G2(x ,y,k,n)

(pk, sk) ← Gen(1n)

foreach j ∈ [k] do

(hj , c j) ← Dx,y (pk)

endfor

X := {(hj , c j)}j∈[k]
return (x, y, X , pk)

Figure 17: Game hops

Let us note that the gameG0 almost corresponds to the caseb = 0

in our unlinkability game expect for the fact that hi is not a random
element from P but the hash valueH(hi). Similarly, the gameG2

is almost as the case b = 1 in our unlinkability game expect for the

fact that in the unlinkability game hi is the hash valueH(x + xi).
However, since for every polynomial-time commutable function f
it holds that G0 ∼c G2 ⇒ f (G0) ∼c f (G2), it suffices to prove that

G0 ∼c G2. Here ∼c denotes computational indistinguishability.

We prove the indistinguishability of G0 and G2 in two steps. We

first prove that G0 and G1 are computationally indistinguishable

in Claim 7 and then we show that G1 and G2 are computationally

indistinguishable in Claim 8.

Claim 7. Games G0 and G1 are computationally indistinguishable.

Proof. The proof is by a simple hybrid argument. For every

i ∈ [0,k], we define a gameG0,i as follows. The game generates the

pair (hj , c j) as in gameG0 for every j ≤ k−i , and for every j > k−i ,
the game generates the pair (hj , c j) as in game G1. Formally,

25

G0,i (x ,y,k,n)

(pk, sk) ← Gen(1n)

foreach j ∈ [k] do

if j ≤ k − i then

(hj , c j) ← D(pk)

else

(hj , c j) ← Dx (pk)

endif

endfor

X := {(hj , c j)}j∈[k]
return (x, y, X , pk)

Note thatG0 = G0,0 andG1 = G0,k . As a first step we prove that

for every i ∈ [0,k − 1], the gamesG0,i andG0,i+1 are computation-

ally indistinguishable, i.e.,

G0 = G0,0 ∼c G0,1 ∼c · · · ∼c G0,k = G1.

Let us fix an arbitrary i ∈ [k − 1] and assume that there exists a ppt

adversary Ai that distinguishes two consecutive gamesG0,i and

G0,i+1 with non-negligible probability. We show that then there

exists an adversary Acpa that wins the PubKcpa
game with the

same non-negligible probability which is a contradiction to our

assumption that Ψ is a IND-CPA secure encryption scheme.

The games G0,i and G0,i+1 differ only in the way how the pair

(hk−i , ck−i) is generated. In the gameG0,i , this pair is sampled from

the distribution D(pk) while in the game G0,i+1 it is sampled from

Dx (pk). We use this fact to design an adversary Acpa as follows

(see also Figure 18). The adversary Acpa samples m1 uniformly

at random and definesm0 :=m1 + x . Upon receiving a challenge

ciphertext cb , the adversary generates the pairs (hj , c j), for j , k−i ,
as in the games G0,i and G0,i+1 and sets (hk−i , ck−i) := (m0, cb).
The adversary Acpa now sends (x ,y, {(hj , c j)}j ∈[k], pk) to the ad-

versary Ai and outputs whatever Ai outputs.

We now show that if b = 0, Acpa perfectly simulates the game

G0,i to Ai and if b = 1, Acpa perfectly simulates the gameG0,i+1
toAi . Consider first that b = 0. This means that cb is an encryption

ofm0 and hence

(hk−i , ck−i) = (m0, Enc(m0)),

implying that (hk−i , ck−i) is distributed according toD(pk). Hence
the tuple (x ,y, {(hj , c j)}j ∈[k], pk) is equally distributed as the out-

put produced by G0,i . Now if b = 1, then cb is an encryption ofm1

and hence

(hk−i , ck−i) = (m0, Encpk(m1)) = (m1 + x , Encpk(m1)),

implying that (hk−i , ck−i) is distributed according toDx (pk). Hence,
the tuple (x ,y, {(hj , c j)}j ∈[k], pk) is identically distributed with

G0,i+1. This implies that the success probability of Acpa is the

same as the success probability of Ai which we assume to be non-

negligible. This is a contradiction to the IND-CPA security of the

encryption scheme Ψ.
We are now prepared to complete the proof that the games

G0,0 andG0,k are computationally indistinguishable. By using the

standard hybrid argument, we know that for any ppt adversary

A, the probability of distinguishing G0,0 and G0,k is bounded by∑
i ∈[k−1] νi where νi (n) is the probability thatA distinguishesG0,i

Acpa Chcpa

(pk, sk) ← Gen(1n)
pk
←−

m1 ←$
P

m0 :=m1 + x
m0,m1

−−−−−−→
b ←

$
{0, 1}

cb ← Encpk(mb)

cb
←−

For j < k − i :
(hj , c j) ← D(pk)

For j > k − i :
(hj , c j) ← Dx (pk)

For j = k − i :
(hj , c j) := (m0, cb)

Ai
(x, y, {(hj , c j)}j∈[k], pk)
−−−−−−−−−−−−−−−−−−−−−−−→

b′
←−

b′
−→

output b = b′

Figure 18: Construction of Acpa using an adversary Ai that
distinguishes the games G0,i and G0,i+1.

and G0,i+1. Since we already proved that G0,i andG0,i+1 are com-

putationally indistinguishable, we know that νi is negligible in

the security parameter. Since k is a polynomial in the security pa-

rameter and sum of polynomially many negligible functions is a

negligible function, we completed the proof. □

Claim 8. Games G1 and G2 are computationally indistinguishable.

Proof. For every i ∈ [0,k], we define a game G1,i as follows.

The game generates the pair (hj , c j) as in gameG1 for every j ≤ k−i ,
and for every j > k − i , the game generates the pair (hj , c j) as in
game G2. Formally,

G1,i (x ,y,k,n)

(pk, sk) ← Gen(1n)

foreach j ∈ [k] do

if j ≤ k − i then

(hj , c j) ← Dx (pk)

else

(hj , c j) ← Dx,y (pk)

X := {(hj , c j)}j∈[k]
return x, y, X , pk

Note thatG1 = G1,0 andG2 = G1,k . As a first step we prove that for

every i ∈ [0,k − 1], the games G1,i and G1,i+1 are computationally

indistinguishable, i.e.,

G1 = G1,0 ∼c G1,1 ∼c · · · ∼c G1,k = G2.

26

Let us fix an arbitrary i ∈ [k − 1] and assume that there exists a

ppt adversaryAi that distinguishes the two gamesG1,i andG1,i+1
with non-negligible probability. We show that then there exists an

adversary Acpa that wins the PubKcpa
game with the same non-

negligible probability which is a contradiction with our assumption

that Ψ is a IND-CPA secure encryption scheme.

The games G1,i and G1,i+1 differ only in the way how the pair

(hk−i , ck−i) is generated. In the gameG1,i , this pair is sampled from

the distributionDx (pk)while in the gameG1,i+1 it is sampled from

Dx,y (pk). We use this fact to design an adversary Acpa as follows

(see also Figure 19). The adversary Acpa samples m0 uniformly

at random message and definesm1 := m0 + y. Upon receiving a

challenge ciphertext cb , the adversary generates the pairs (hj , c j),
for j , k−i , as in the gamesG1,i andG1,i+1 and sets (hk−i , ck−i) :=
(m0+x , cb). The adversaryAcpa now sends (x ,y, {(hj , c j)}j ∈[k], pk)
to the adversary Ai . The adversary Acpa outputs whatever Ai
outputs.

We now show that if b = 0, Acpa perfectly simulates the game

G1,i to Ai and if b = 1, Acpa perfectly simulates the gameG1,i+1
toAi . Consider first that b = 0. This means that cb is an encryption

ofm0 and hence

(hk−i , ck−i) = (m0 + x , Enc(m0)),

implying that (hk−i , ck−i) is distributed according toDx (pk). Hence
the tuple (x ,y, {(hj , c j)}j ∈[k], pk) is equally distributed as the out-

put produced by G1,i . Now if b = 1, then cb is an encryption ofm1

and hence

(hk−i , ck−i) = (m0 + x , Encpk(m1)) = (m0 + x , Encpk(m0 + y)),

implying that (hk−i , ck−i) is distributed according to Dx,y (pk).
Hence the tuple (x ,y, {(hj , c j)}j ∈[k], pk) is equally distributed as

the output produced byG1,i+1. This implies that the success proba-

bility ofAcpa is the same as the success probability ofAi which we

assume to be non-negligible. This is a contradiction to the IND-CPA

security of the encryption scheme Ψ.
We are now prepared to complete the proof that the games

G1,0 andG1,k are computationally indistinguishable. By using the

standard hybrid argument, we know that for any ppt adversary

A, the probability of distinguishing G1,0 and G1,k is bounded by∑
i ∈[k−1] νi where νi (n) is the probability thatA distinguishesG1,i

and G1,i+1. Since we already proved that G1,i andG1,i+1 are com-

putationally indistinguishable, we know that νi is negligible in the

security parameter. Since k is a polynomial in the security param-

eter and the sum of polynomially many negligible functions is a

negligible function, we completed the proof. □

To conclude, since G0 ∼c G1 ∼c G2, we have G0 ∼c G2 by the

hybrid argument. □

Remark 1. Let us stress thatH does not need to be a hash func-

tion. In fact, any additively homomorphic function would work for

the purposes of the unlikability equally well.

Acpa Chcpa

(pk, sk) ← Gen(1n)
pk
←−

m0 ←$
P

m1 :=m0 + y
m0,m1

−−−−−−→
b ←

$
{0, 1}

cb ← Encpk(mb)

cb
←−

For j < k − i :
(hj , c j) ← Dx (pk)

For j > k − i :
(hj , c j) ← Dx,y (pk)

For j = k − i :
(hj , c j) := (x +m0, cb)

Ai
x, y, {(hj , c j)}j∈[k], pk
−−−−−−−−−−−−−−−−−−−−−−→

b′
←−

b′
−→

output b = b′

Figure 19: Construction of Acpa using an adversary Ai that
distinguishes the games G1,i and G1,i+1.

27

	Abstract
	1 Introduction
	2 Notation and Security Model
	2.1 Preliminaries
	2.2 Security model
	2.3 Security definitions

	3 Payment protocol
	3.1 Extended protocol with unlinkability
	3.2 Formal protocol description

	4 Routing Algorithms
	4.1 Determining potential next hops (Closer)
	4.2 Splitting over potential next hops (Split)

	5 Performance Evaluation
	5.1 Performance Metrics
	5.2 Simulation Model
	5.3 Data Sets and Parameters
	5.4 Results

	6 Security analysis
	6.1 Payment unlinkability

	7 Related Work
	8 Conclusion
	References
	A Cryptographic primitives
	B Instantiation of building blocks
	C Attack Effectiveness
	D Impact of Distributions and Topology
	E Impact of Shorter Timeouts
	F Dynamic Scenario
	G Random Splitting
	G.1 Algorithm Description
	G.2 Evaluation

	H Routing Algorithm: Pseudocode
	I Security analysis
	I.1 Termination
	I.2 Balance neutrality
	I.3 Atomicity
	I.4 Correctness of routing algorithms
	I.5 Correctness

	J Unlinkability of partial payments

