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ABSTRACT

Successful contact tracing effectively facilitates the fight against pandemics of highly contagious
diseases such as COVID-19. Existing efforts either rely on effective yet privacy-invasive surveil-
lance infrastructure, or focus on privacy-preserving decentralised solutions which may limit their
effectiveness. The former collects vast amounts of sensitive data such as identity, location and social
interactions of every user, which allows function creep. The latter relies on users’ willingness to share
their risk scores with authorities, which limits their ability to quickly identify people at-risk and to
run analytics. We propose a practical solution that aims to strike a balance between functionality and
privacy: one that does not collect sensitive information, such as, location data, while at the same time
allowing effective tracing and notifying the close contacts of infected users. To protect users’ privacy,
our solution uses local proximity tracing based on broadcasting and recording constantly changing
anonymous public keys via short-range communication, for example, Bluetooth. These public keys
are used to establish a shared secret key between two people in close contact. These three keys are
then used to generate two unique per-user-per-contact hashes: one for infection registration and one
for health status query. These hashes are never revealed to the public. To support functionality, risk
score computation is performed centrally, which provides the health authorities with minimal, yet
insightful and actionable data. Data minimization is achieved by the use of per-user-per-contact
hashes and by enforcing role separation. In our design, the health authorities and the GPs act as
proxies, while the matching between hashes is outsourced to a third-party, i.e. the matching service.
This separation ensures that out-of-scope information, such as social interaction within the population,
is hidden from the health authorities and, at the same time, the matching service does not learn
sensitive information about the users. Our solution requires a degree of trust in the entities involved
that is considerably lower w.r.t. centralised alternatives.

1 Introduction

The COVID-19 pandemic is currently (early 2020) holding the world hostage. As the SARS-CoV-2 virus is mainly
transmitted among people via close contact with infected persons and as there is no vaccine developed yet, the best
countermeasure to stop the spread of the disease is believed to be social distancing, which is mainly enforced through
lockdowns. Lockdowns assume that everyone is potentially infected and encourages people to stay indoors as much as
possible, effectively limiting social interaction to people’s own household bubbles. This countermeasure, however, has
an enormous cost, as normal social life is halted, the psychological and economical damages are immeasurable.
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Due to COVID-19’s long incubation time, i.e. between 3 and 13 days [1], infected people can spread the disease
unknowingly. This is in sharp contrast with the other recent highly infectious disease Ebola, where people were
bedridden shortly after infection. Thus, to reboot normal life while keeping the virus in check, there is a need to warn
(potential) asymptomatic people (i.e. infected people with no obvious symptoms) early so that they can take appropriate
measures, such as self-quarantine and testing. To this end, contact tracing has proven to be highly effective [2]. In
contact tracing, the chance of infection is calculated based on recent encounters. When the chance of infection exceeds
a certain threshold, the person in question is warned and urged to take appropriate measures.

Tracing populations’ contacts, however, has enormous privacy implications. Some regimes implemented contact tracing
on top of their already in place surveillance systems, thereby violating the privacy of all of their citizens or at least of the
infected population. In Europe, the importance of privacy is better understood, but even here, the fear of the common
enemy seems to empower the political elite to deploy such systems rapidly without fully addressing users’ concerns for
privacy. It is worth noting that the European Data Protection Board (EDPB) stands for a solution that ensures respect
for users’ fundamental rights [3]. This is independent of the trade-off between centralised and decentralised solutions,
as long as the processing and storage of data are in line with the purpose of the contact tracing solutions.

Fortunately, there are already existing efforts to design privacy-preserving contact tracing systems [4, 5, 6, 7]. Most of
these systems rely on a local protocol to broadcast frequently changing pseudonyms. Upon encountering a pseudonym,
it is registered locally. When someone is tested positive for the disease, the test lab or the GP (general practitioner)
sends the pseudonyms of the patient (or the seed of the pseudonyms) to a central server, which in turn broadcasts them
to all users. Each user then locally calculates their risk score by comparing the received pseudonyms of the infected
users with the pseudonyms of their close contacts stored on their phone. Although these systems protect users’ privacy
in many aspects, they still have some limitations: (1) the privacy of infected users is not guaranteed towards other users
as they can (with some effort) link these pseudonyms to real people and (2) by default do not support health authorities
with the necessary data to effectively study the disease, evaluate the impact of preventive measures and decide upon
resource allocation.

In this paper, we address the aforementioned limitations by proposing a privacy-centric architecture that allows to
combat the virus more effectively than the existing fully decentralised systems, while still protecting users’ privacy.
Contrary to existing efforts, our solution outsources the risk calculation in a secure and privacy-friendly way such that:

• Close contacts are registered with unique per-user-per-contact hashes that are hidden from the public as this
list is sensitive information.

• The information used during infection registration and health status query are decoupled: each contact is
registered with two different hashes, one used by the infected users for infection registration, while the other
one is used by the other users for querying their health status.

• Additional functionality can be achieved: more precise risk score calculation; analytic capabilities to study
transmission dynamics and to map the spread of the disease; and the ability for a central health authority to
learn about potentially dangerous new infections.

The rest of the paper is organised as follows: Section 2 provides a comprehensive study of the already in place contact
tracing systems as well as candidate systems for deployment. Section 3 specifies the key functional, security and
privacy requirements for contact tracing solutions. Section 4 proposes our privacy-centric architecture that allows to
combat epidemics effectively. Section 5 analyses our solution in terms of security and privacy. Section 6 discusses the
properties of our solution w.r.t. existing decentralised and centralised solutions. Section 7 concludes the paper.

2 Existing efforts

An overwhelmingly long list of solutions have been proposed in an effort to curb the spread of COVID-19. We sum up
the efforts of governments, private companies, and public institutes, focusing on best practices and privacy threats.

2.1 Solutions based on surveillance systems

Solutions relying on a central authority might be highly privacy-invasive for the end-user. Disclosing the identity of
the user allows for extensive tracking and, eventually, leads to mass surveillance. Such solutions, however, empower
central authorities to produce a fast response and limit waste of resources. Below we review the systems developed by
countries that paved the way to digital contact tracing in the early phases of the epidemic.

China. China (PRC) has been the first country to adopt technology to track infections and curb the spread of COVID-19.
Amongst many apps, Health Code by Alipay is the most widely adopted. It shows a QR colour code that describes the
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risk of having contracted the virus: green is for low-risk individuals, while yellow and red enforce a period of isolation
of 7 and 14 days, respectively [8]. By installing QR code readers at gathering spots, PRC enforced strict access control
policies, e.g. only green-labelled users are allowed to visit supermarkets and access transport hubs. This system is
highly effective but the lack of transparency raises questions. A recent report discovered how the app establishes a direct
connection between the client and the police department at check time, by-passing the government central node and
sharing GPS location and a unique identifier [8]. Additionally, the app allows to perform manual interviews by scanning
the ubiquitous QR codes. By reporting on daily movements, people integrate GPS data with manual recordings, an
instrumental measure to identify novel outbreaks [9].

Yet, it is not clear how the algorithm assigns the colour code behind the curtains. It is plausible that location data
alone did not drive the success of the operation. PRC is considered to run a highly-sophisticated surveillance system in
the north-west part of the country that is being used to repress ethnic minorities such as the Uighurs, a Turkic ethnic
group [9, 10, 11]. This framework integrates several sources of fine-grained data, including CCTV recordings equipped
with facial recognition AIs, biometric measurements, and travel history [9]. Ultimately, private companies can be asked
to share sensitive data about their customers, e.g. credit card transactions, to boost up the system accuracy [12].

The strict travel restrictions enforced by the government, in conjunction with the rapid spread of virus, has bolstered
anxiety among citizens. To avoid creating panic, a close contact detector has been developed by PRC [13]. It allows for
a user to check the current status of three people, by using their unique IDs, to discover potentially infectious encounters.
The implementation of the app as a plug-in of popular social network WeChat, and payment system Alipay, made it
widespread among the population, therefore increasing privacy concerns. Despite being considered as a successful
example of digital contact tracing platform [2], this solution would find an insurmountable hurdle in the European
privacy law framework.

South Korea. Similarly to China, South Korea’s contact tracing solution allows to track only infected people [14]. By
exposing data through a web interface, they enabled the proliferation of third-party apps that show the whereabouts of
confirmed cases in a given time window [15]. Users can then autonomously check whether they encountered infected
people and report themselves as potential carriers. Privacy implications can be devastating for the public [16]. Despite
being anonymised, a precise location history log leads to the easy re-identification of the patients, also revealing sensitive
information. GPS location was integrated by a more extensive digital footprint, including credit card transactions
and CCTV recordings, to objectively verify users’ claims [17]. In this way, the government can easily identify new
infections and their close contacts.

Their solution is undoubtedly highly invasive for (potentially) infected people. However, they relied on the honest,
scientific reporting to build a motivated population [14]. South Korea adopted an extensive testing policy since the early
developments of the disease, which is considered one of the most important drivers for the success of digital contact
tracing [2]. Quarantined people are also being tracked by the government which enforces the installation of a dedicated
app that, periodically, shares the users’ absolute location [9]. As an additional mean of communication, SMSs are used
to notify people about high-risk venues and novel outbreaks [9].

Singapore. The government of Singapore integrated manual interviews and surveillance recordings with a contact
tracing app, Trace-Together [18]. Unlike previous solutions, the underlying protocol, i.e. BlueTrace [19], relies on
proximity instead of absolute location: by using Bluetooth signal strength as a distance metric, they capture the relative
location of a pair of users. The use of Bluetooth Low Energy (BLE) reduces the effect on power consumption, allowing
for a continuous advertisement to nearby devices. They define a close contact in terms of distance (≈ 2 meters)
and timespan (≈ 30 minutes). During the advertisement phase, a user broadcasts a packet containing the following
information: a randomised identifier, a timestamp, and device-related information. This package is collected with
its signal strength, and it is encrypted and stored locally for up to 21 days. For diagnosed users, the list of packets
originated by close contacts is decrypted and shared with the government. Unfortunately, randomising the identifier is
not enough to protect against linkage attacks. By linking the users to their pseudonyms, the government can build a
social interaction graph, eventually de-anonymising infected people and their close contacts. Increasing the frequency at
which identifiers are refreshed is essential to protect the end-users against eavesdroppers, who could re-identify infected
users among their close contacts by means of a timestamp [20]. It is worth to mention that their system provides
additional privacy guarantees for the non-infected users than the solutions deployed by China and South Korea. Using
Trace-Together, users who have not come in close contact with high-risk individuals do not disclose any information
with the government. However, they know the identity of the positive cases and their close contacts.

Contact tracing did not avoid a partial lockdown of the country, as the Singaporean Prime Minister pointed out in an
official statement: "[. . . ] despite our good contact tracing, for nearly half of these cases, we do not know where or from
whom the person caught the virus" [21]. Despite a general sense of trust in the government practices, only one out of
four Singaporean have downloaded the app (as of May 10, 2020), which is considered insufficient for digital contact
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tracing to become effective. The remaining privacy issues and OS compatibility issues leading to rapid battery drain
were considered to be the main factors that hindered the adoption of the app [22].

Additional means of tracking are being used for quarantined people, which are checked via random calls (twice a day)
and SMSs. They can be asked to issue a proof of isolation by taking a picture at home or following a link [9]. This
represents once more a major (and avoidable) privacy invasion.

2.2 Proposed privacy-preserving solutions

A number of approaches have emerged that steer clear from a centralised solution. They aim to empower citizens as
responsible contributors, instead of treating them like suspects. As the boundary between privacy and functionality is
often blurred, each of them comes with its flaws that are worth an in-depth analysis.

Boston University (BU) [4]. Each participating user’s mobile phone constantly broadcasts using its short-range
communication interface (e.g., Bluetooth) a random number (token) that changes every few minutes; simultaneously,
each phone records the random tokens received from neighboring phones. As soon as a user is proven to be infected
or potentially contagious during a certain time period, a medical personnel requests the tokens that the user’s phone
transmitted during that time period and uploads them to a public registry. Other users’ phones then at regular intervals
download the tokens from the public registry and check if they match the tokens they have collected. If a match is
found, the phone owner knows that they has been in close contact with an infected person, hence they can follow the
official guidelines. The scheme only notifies the user of the existence of close contact, not of the time or location of the
contact. The public registry only holds unnamed random tokens.

DP-3T [5]. It builds on the above-mentioned basic approach by introducing the following features. 1) A participating
user’s phone also records course time window (morning/afternoon/evening and date) along with each random tokens
(i.e., pseudonymous identities) received by the phones of users of close contact. 2) Once a user is proven to be infected,
with the assistance of a medical personnel, the user’s phone sends the seed used to generate the random tokens to the
backend. 3) To combat traffic analysis, the users’ phones periodically upload data at predefined times - the real seed
in case of a user proven infected and dummy messages otherwise. The backend stores the seeds of the infected users.
Again, several times a day, the backend broadcasts the newly registered seeds of infected users. Other users’ phones,
once received the seeds from the backend, generate the random tokens from the seeds and compare if they have any of
these random tokens stored on their phones. If matches are found, based on the parameters (course time window) of
these matches, the user’s phone calculates a risk score. If this risk is above a certain threshold, the user is notified and a
potential course of action is displayed on their phone. Moreover, due to the recorded course time window, the user also
knows the date as well as the approximate time of the close contact (e.g. morning).

Covid Watch (w/ Stanford) [6]. Akin to (1) the discrete number of Bluetooth contacts and signal strength are
instrumental to recognise close contacts and estimate their duration. Each device keeps a log of random identifiers, both
received and transmitted. On top of the previous solutions, they automate the upload of the list of random numbers: if a
person is proven to be infected, they receive a permission number by heath authorities to upload their log. The server
broadcasts the pseudonyms of infected users to be matched locally by each user. At the time of writing, the initial plan
of integrating anonymised GPS location to derive useful statistics, e.g. HeatMaps, has been dropped.

Private Kit: Safe Paths (MIT) [7]. The app downloads the encrypted trail of the infected patients derived from
three sources: Google location history, GPS recorded by the application itself, and manual interviews. This solution
guarantees that non-infected people cannot be eavesdropped by nearby devices, since data stay local. However, GPS
location discloses much more information than proximity traces. To prevent leakages, they allow the health authority
to blur and redact trajectories upon disclosure, an operation that can destroy the utility of data while allowing for
re-identification of the positive cases and their close contacts (individuals at risk). This solution does not involve a third
party other than the health authorities, therefore reducing risks given by centralised solutions.

ROBERT [23]. This is one of the proposals by the Pan-European Privacy-Preserving Proximity Tracing (PEPP-PT)
consortium. In ROBERT, users are first registered into the system at the backend server with their persistent unique
identifiers (PUID) of their devices. Then, the backend generates and distributes a list of ephemeral IDs for each user.
The users’ devices broadcast (e.g. via BLE beacon) their ephemeral IDs so that nearby users’ devices locally store the
observed ephemeral IDs. When a user tests positive, the user uploads their contacts’ ephemeral IDs to the backend and
their account is deactivated. Additional meta data – such as time of contact, BLE signal strength and transceiver power
– is uploaded by the infected user depending on what is required by the algorithm for risk score calculation. A user
performs an exposure request by sending their own ephemeral IDs along with their message authentication codes and
timestamps for integrity checks. The backend calculates the risk score for the requesting user and send them a binary
response: if the risk score is above a predefined threshold, the user is flagged notified and asked to follow a protocol.
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In summary, countries that implemented contact tracing have limited the rate of infection while minimising disruption
for the broad society. Quick quarantine enforcement of individuals at risk and gathering of essential information has
been instrumental to their approaches. However, the lack of transparency about their closed system led to criticisms
and dismay amongst privacy advocates. More open protocols have been proposed by researchers. The proposed
solutions can be separated into two categories: centralised and decentralised. The former generate ephemeral IDs and
performs risk score calculations centrally. Whereas the latter do both operations locally on the user device. Some
centralised approaches – such as ROBERT – may not achieve the needed anonymisation guarantees, thus becoming
highly vulnerable to linkage attacks. Decentralised solutions – such as DP-3T – target privacy as their basic goal. They
weaken the central health authority that plays a coordinating role in combating an epidemic and rely on the users to
behave responsibly. While this approach is better suited to the European regulatory framework, it might be insufficient
to tackle challenges originating from a world sanitary emergency.

3 Striking the balance between functionality and privacy

In this section, we attempt to determine a good balance between functionality and privacy which contact tracing
solutions should aim for. First, we define the high-level goals of a contact tracing solution, before translating these
goals to concrete functional, security, and privacy requirements.

3.1 Goals

The European Commission (EC) states that the goals of contact tracing are to avoid transmissions and learn transmis-
sion dynamics [24]. The latter goal can be further extended to a third goal - map the spread of the disease. Below
we elaborate more on these three goals.

• Avoid transmissions. The primary goal of contact tracing is the eradication of infectious diseases by avoiding
transmissions among people. More specifically, contact tracing aims to identify at-risk individuals based on
their recent physical contacts, i.e. people who have a high chance of having contracted the disease due to an
encounter with an infected person. Identification of at-risk individuals allows to take the appropriate preventive
and reactive measures, i.e. self-quarantine and directed testing.

• Build transmission dynamics. The secondary goal of contact tracing is obtaining new insights on how the
disease is transferred. By aggregating data on the occurrence of infections, patterns can be found that aid
authorities to decide upon preventive measures at specific locations or nationwide.

• Map the spread of the disease. The analytics capabilities used for the secondary goal can be extended to
gain insights on the spread of the disease. Currently, governments are already actively developing tools that
allow to track the magnitude of the epidemic, and determine its geographic spread. The first allows them to
evaluate the impact of current measures, while the latter permits a better distribution of resources. Contact
tracing can easily facilitate these needs.

3.2 Functional requirements

The EC acknowledges [24] that to achieve the aforementioned goals contact tracing solutions should abide the following
functional requirements:

(F1) The system should support a realistic contact model that can be updated if the understanding of virus
transmission changes. As the European Center for Disease Control (ECDC) currently defines the riskiness of
close contact based on distance (≈ 2 meters), duration (≈ 15 minutes), and historical importance (incubation
period on average five to six days), this requirement translates to:

(a) Duration of contact should be measured at least in 15 minute chunks.
(b) Distance accuracy should be around 1 meter.
(c) Contacts should be stored for 14 days.

(F2) Each individual’s device should maintain a complete list of contacts, preferably in an irrefutable way.

(F3) At-risk individuals should be notified.

(F4) Health authorities should learn the risk scores of users.

(F5) The system should be scalable, work across borders, and be built using existing technology stacks.
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3.3 Security requirements

The functionality of contact tracing is threatened if fake contact information is provided on a large scale. This would
endanger all three goals. More specifically, to ensure that the contact tracing solution functions correctly, it should
satisfy the following security requirements:

(S1) Infection integrity. The system should be defended against people falsely claiming they are infected.
(S2) Contact integrity. Contact events that impact users’ risk score should correspond to real physical encounters.

Similarly, insights w.r.t. transmission dynamics or the spread of the disease cannot be based on false contacts.
(S3) Notification integrity. A user should receive a notification that they is at risk if and only if they had close

encounters with infected users.

3.4 Privacy requirements

Europe adheres to data minimisation and privacy-by-design principles and strives to be GDPR compliant. In the contact
tracing context, the three most important threats identified are false positives, behavioural profiling of infected users
by GPs and heath authorities, and de-anonymisation of users [25]. Therefore, contact tracing solutions should respect
individuals’ privacy by collecting and processing as little private data attributes as possible. From the guidelines of the
EC [24] the following private user attributes can be identified:

• Personally Identifiable Information (PII). This is any permanent or semi-permanent identifiers such as
names, phone numbers, addresses, e-mail addresses, social security numbers, credit card numbers, etc.

• Health status. This status consists of the ground truth of whether an individual is infected or not as well as
their risk score of being infected as a result of the individual’s close contacts with infected people.

• Social interactions. These constitute of information about each individual’s encounters with other individuals
as well as the timings of these encounters, i.e. population’s social interaction graphs.

• Personal trajectories. These are the trajectories individuals follow, i.e. any form of location data, which
could also be coupled with timing data.

If all of the above listed personal attributes are obtained by any authority on a large scale, the authority would obtain big
brother-like powers. Alternatively, obtaining this information on a small local scale can lead to adverse consequences
for specific individuals who can easily be de-anonymised.

In general, there are three type of entities who might be interested in accessing the aforementioned private attributes of
an individual: other users, health authorities and external entities observing the system. Other users and external entities
should not learn any of these private attributes. Health authorities, however, would benefit of knowing the health status
of their population (i.e. infected, at-risk, not-infected) to effectively achieve the goals of contact tracing. Additionally,
health authorities could benefit from knowledge on the user’s PII (e.g. a phone number) so that they can personally
notify the user and perform targeted testing. This would be more reliable than a notification generated locally on the
user’s devices as well as it would speed-up resource allocation for testing. We summarise the above in Table 1. Hence,
to protect users’ privacy, contact tracing solutions should satisfy the following privacy requirements:

(P1) Health status confidentiality. Only the health authorities (including the GPs) should be able to link the PII
and the health status of individuals.

(P2) Infected user privacy. At-risk users should not be able to identify which of their contacts affected their risk
score.

(P3) User location privacy. No one should be able to track individuals, i.e. to obtain their location/trajectories.
(P4) Interactions privacy. No one should be able to build social graphs of individuals’ contacts. These include

global graphs (i.e. interactions of all users of the system) and local proximity graphs (i.e. interactions of
subsets of users – for example infected users).

(P5) Voluntary participation. Participation to contact tracing should be voluntary.

4 Proposed solution

This section describes the architecture of the solution we put forth. Our solution comprises four phases: (1) bootstrapping,
(2) local proximity sensing, (3) infection registration, and (4) health status query. In the following we first give an
overview of the solution, thereafter the details about each phase are presented.
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Table 1: Overview of who should know what private attribute of an individual.

Private attribute / Entity Other
Users

Health
Authorities

External
Entities

Health status 7 3 7
Personally identifiable information 7 3/ 7 7
Trajectory 7 7 7
Social interactions 7 7 7

4.0 Overview

In our scheme, there are four main actors that interact in four phases. The four main actors are:

• Users are voluntary participants who get notified of being at risk based on their close contacts.
• General Practitioners (GPs) are verified medical professionals who perform a medical diagnosis based on a

medical test.
• Central Health Authority (CHA) is the entity coordinating the protocol. It also aims to gain new insights in

transmission dynamics and to accurately map the spread of the disease.
• Matching Service (MS) is an external party in charge of performing matching on behalf of the CHA, in order

to enforce separation of concerns.

Below we briefly describe the four phases.

1. Bootstrapping. The necessary communication channels are set up by downloading the contact tracing
application that contains all the required (crypto) parameters. GPs set up a privileged account that allows them
to register infections. Users create an account with the CHA, and optionally provide some PII. From then on,
they participate in contact tracing and get notified if they are at risk of having contracted the disease due to
their encounters.

2. Local proximity sensing. Users broadcast frequently changing anonymous public keys. Upon encounters
with other registered users, they calculate two identifiers for that specific contact: one for infection registration,
and one for querying. We name these identifiers, report hash and query hash, respectively. We use two separate
identifiers per contact to better defend private interactions, as now no two users will report the same contact
identifier during registration of infections. The same holds during health status query, i.e. no two users will
query with the same contact identifier.

3. Infection registration. If a user suspects infection, they visit a GP. The GP conducts a medical test. If the
user is diagnosed with the disease, the GP uploads (via the CHA) the user’s encrypted report hashes to be
included in the list of hashes of infected users. This list of hashes is build by the MS. The CHA and GP fill the
role of an aggregator such that the MS never learns which hashes belong to the same user. Furthermore, the
CHA and GP never learn the hashes.

4. Health status query. A user checks their health status by querying the CHA with their query hashes and some
metadata about the contacts. The CHA forwards this request to the MS, who checks for matches with the list
of hashes of infected users. The CHA is informed on what query hashes matched. The CHA then calculates
the risk score for the user based on the metadata it received. The user is notified about their health status.
Special care is taken such that the CHA never learns the exact hashes and the MS never learns what hashes
originate from the same users.

4.1 Bootstrapping

In the bootstrapping phase the necessary (crypto) parameters are exchanged, and medical personnel and users are
registered. Fig. 1 illustrates these three actions.

Our system relies on a Diffie-Helman (DH) protocol to locally exchange shared secrets between users upon close
physical encounters. The process allows to compute unique identifiers for every contact, the exact protocol is described
in Section 4.2. To calculate these contact identifiers some public parameters need to be agreed upon. The parameters
are chosen by the CHA and are put in the application by the developer in the form of a certificate kit. The certificate kit
can be verified as it is signed by a root of trust. Similarly, a certificate kit with the public key of the MS is embedded in
the app. The MS relies on asymmetric key cryptography to obtain contact identifiers during both infection registration

7



A PREPRINT - MAY 13, 2020

Central 
Health Authority

6

3

2a

Generate key pair

4a

Create 
vetted_account

8

9

Registration(username,
                    metadata)

Create user account

General Practitioner
Test Lab

App storeMatching
Service

Register 
certificate kit 

User

App developer

4b Register 
certificate kit 

7
App,
Signed
Certificates

5 Register app

Download
app

Private 
key

Public 
key

Registration(ID, 
Medical licenses)

1a

Figure 1: System bootstrap phase – necessary (crypto) parameters exchange, medical personnel and users registration.

and health status querying, without revealing them to the GP, CHA or any other external parties. The exact process is
explained in Section 4.3 and Section 4.4.

To satisfy (S1) Infection integrity, registration of infections can only be done by authorised medical personnel, thus, a
privileged account is needed. Medical experts enroll for such an account by registering themselves with the CHA. This
registration process requires proof of the necessary medical expertise. This process could piggyback on already in place
health systems where most of the authorised medical personnel is already registered.

Users who decide to participate in contact tracing download the app from the app store and register themselves. During
sign-up they have the option to provide additional information on their identity such as their phone number, address,
gender and age range (e.g. [20-30]). By voluntarily providing additional information to the CHA, and thus sacrificing
on privacy, a user can enhance the effectiveness of the CHA, i.e. enhancing its power to study transmission dynamics,
improving analytic capabilities and allowing for more effective preventive measures. For example, a phone number
allows the CHA to actively call at-risk users, and by consequence ask for permission to subject them to a medical
test. Acquiring data on the place of residence help the CHA to geographically map the spread of the disease. Thus,
as required in (P5) Voluntary participation, users decide themselves upon participation, and the amount of personal
attributes they share.

4.2 Local proximity sensing

Figure 2 illustrates how proximity (i.e. close contact) between two smartphone users is registered. Every user u
generates an ephemeral public/private key pair, Yu,t/Xu,t, for time period t, and locally broadcasts the public key Yu,t.
To avoid tracking, this public key is changed every N minutes. Upon physical encounters with other participating
users, the public information is picked up by their devices. For each observed public key, each user calculates a shared
ephemeral secret st according to a DH protocol. The user then computes a cryptographic hash from the concatenation of
its own public key, the observed public key and the shared secret: query_hash = H(Yown,t, Ypeer,t, st). The obtained
hash, query_hash, is used for query purposes only. A second hash for infection registration, report_hash, is obtained
by interchanging the own public key and observed public key: report_hash = H(Ypeer,t, Yown,t, st). By using two
separate hashes we limit the social graph building capabilities, as all query hashes are unique. The same holds for
infection registration hashes.
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Figure 2: Close contact registration – two personal devices register their encounter by locally broadcasting their
ephemeral public key and storing the resulting two locally-computed contact hashes. The public keys should be changed
frequently to avoid tracking. On the right, a detailed description of the broadcast protocol at time t.

The following small example illustrates the protocol: user A and user B have a physical encounter. User A and B obtain
each other’s ephemeral public key, Ya,t and Yb,t, respectively, and calculate the shared secret st as follows:

st = Y
Xa,t

b,t mod p = Y
Xb,t

a,t mod p (1)

where Xa,t and Xb,t are the ephemeral private key of user A and user B, respectively. p is a public modulo parameter
shared by all users. The public parameters are provided in certification kits which are obtained during app installation.
For efficiency, in practice elliptic curve DH should be used to calculate st. After obtaining st, user A constructs their
hashes:

query_hashA = H(Ya,t, Yb,t, st) (2)
report_hashA = H(Yb,t, Ya,t, st) (3)

where H is a cryptographic hash function. User B goes through the same procedure and constructs their hashes:

query_hashB = report_hashA = H(Yb,t, Ya,t, st) (4)

report_hashB = query_hashA = H(Ya,t, Yb,t, st) (5)
Note that the query hash of user A is the same as the report hash of user B and vice versa. Thus, it is possible to match
them during risk score calculation.

Users store locally the hashes they compute for each of their encounter, together with the duration of the encounter
and a distance estimate. The hashes are deleted after 14 days of registering, as this is the maximal incubation period,
this satisfies (F1c) Storage duration of 14 days. After this period the hashes have lost their relevance. In addition, as
mentioned above, users’ ephemeral public keys change every N minutes. N depends on the ideal trade-off between
functionality and privacy. Changing the public key more frequently prevents tracking, while changing the public
key less frequently allows to determine the duration of the contact more accurately. As discussed in the functional
requirements (F1a), the ECDC labels an encounter of 15 minutes with an infected person as high risk. Thus, for optimal
functionality N = 30 minutes. If a more frequently changing public key is required it is still possible to locally make
an educated guess on what hashes correspond to an uninterrupted encounter with the same person.

We envision this protocol to be implemented on the Bluetooth BLE stack, and more specifically by leveraging beacon
technology protocols [26]. BLE is local communication that allows for distance estimates thereby satisfying requirement
(F1b). BLE beacons normally do broadcast a UUID [27, 28], the protocol has to be adapted to not disclose this. We
leave an exact implementation of this protocol open, as this depends on the technologies available on current personal
devices, or even the efforts of a commercial partner designing a dedicated device.

In summary, our proximity sensing phase supports a realistic contact model (F1). BLE power gives an accurate estimate
on the distance between parties, while the rotation frequency of the public key ensures that contacts up to, let’s say, 30

9



A PREPRINT - MAY 13, 2020

batch(encrypted_hashes,
          expiry_date_list)

report_hash_1
report_hash_2
...

Decrypt(encrypted_hashes)

1

2

4 5

7

Central 
Health Authority

Private
key

Matching
Service

General Practitioner
Test Lab

Public
key

encrypted_hashes
expiry_date_list

3

GP_batch
batch(gp_batches)

6 CHA_batch

report_hash_1
report_hash_2
...

Encrypt(report_hash_list)

List of hashes 
of infected

Figure 3: A new infection registration phase – a licensed general practitioner or test lab obtains the encrypted hashes of
the person diagnosed with the disease and sends them in batches to the Central Health Authority (CHA). The CHA
locally stores metadata regarding the certainty of the diagnosis, batches hashes from different users in batches and sends
them to the matching service. The matching service stores the hashes. Alternatively, upon CHA request, a user can
provide their register hashes to be included in the infected list.

minutes are stored. By eliminating non-close contacts, like contact that are shorter than 5 minutes at an intermittent
estimated distance, our protocol ensures that the list of contact is complete (F2), while achieving purpose limitation and
data minimisation.

4.3 Infection registration

Infection registration can aid the study of transmission dynamics by sharing aggregated, anonymous information that
are gathered by GPs and offered to the CHA. The protocol for infection registration is shown in Fig. 3. The goal is to
build a database that contains all the hashes of the infected population. Special care is taken such that only the MS has
access to this database and the MS cannot link hashes to the same user. Thereby we aim to satisfy (P2) Infected user
privacy, as the hashes of infected users are never disclosed to the public; (P1) Health status confidentiality, as the MS
does not know what hashes belong to which user; and (P4) Interaction privacy, as no entity learns what hashes belong
to which user and with whose hashes they match.

Upon developing symptoms, a user goes to a GP or a test lab to get checked. If the user is tested positive, the medical
expert demands the user’s stored hashes for infection registration (report_hash), together with their coarse-grained
expiry date. The expiry date is based on the day the contact happened. This information is required to obtain new
insights w.r.t. transmission dynamics and to know when to remove the hash from the database. For privacy and security
reasons, hashes cannot be stored longer than strictly necessary, i.e. 14 days as per (F1c). The user encrypts their hashes
with the public key of the MS and provides them to the GP through a local data transfer protocol. The GP batches and
transmits the encrypted hashes of the infected users to the CHA. In a real system, this step could be integrated into
manual contact tracing – a GP (or health inspector [29]) poses several questions to the diagnosed in order to identify
close contacts that have been missed by the app and redact the reported hashes (e.g. based on specific time windows).
The CHA batches the encrypted hashes over multiple users and forwards the batched data to the MS. Thus, the CHA
and GP do not learn the hashes, and batching avoids that the MS learns what hashes belong to the same user. The MS
then decrypts and stores the hashes. During health status query, it matches the hashes obtained in the query with the
hashes in its database.

The CHA does not learn which of the registered users is infected. To enhance the information epidemiologists have to
study – transmission dynamics, users can optionally indicate that they are infected in the application. To avoid linking
user accounts with their report hashes, this notification is provided on a voluntary basis, and does not contain any link
with the test that proved they are infected. For this extra information, we rely on the goodwill and honesty of users.
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Figure 4: Health status query phase – the user sends their list of encrypted query hashes. The CHA forwards this list in
batches to the matching service which decrypts the list and searches for a match within its database of hashes of infected
people. The result is returned to the CHA which computes the risk score and informs the user of their infection status.

4.4 Health status query

Outsourcing matching to the MS (not the CHA) supports risk score computation that drives the mapping of the spread
of the disease at CHA (F4) and enables user notifications (F3) while protecting user privacy (P1) and (P4). Upon user
request or at a fixed time, the user’s health status is determined. The CHA computes the risk score according to the
actual transmission dynamics model and notifies the user. The user will not learn the exact risk score, but a colour
encoded result that translates their risk score into an advice, this satisfies (F3) Notifying at-risk individuals. Green
corresponds to very low chance of infection, and the user is free to travel. Orange implies suspicious of infection, so the
user is advised to only make strictly necessary translocations. Red means high chance of infection, self-quarantine is
mandatory and tested is encouraged. To compute the exact risk score, the CHA asks the MS to indicate what encrypted
query hashes match with hashes in the infected list. The CHA never learns the hashes, while the MS is not able to link
hashes from the same user, thus complying with (P4) Interaction privacy and (P1) Health status confidentiality. We
trust the CHA and the MS to act honestly when respectively notifying the user and performing the matching, therefore
our protocol supports (S3) Notification integrity and (S2) Contact integrity. The latter relies on the use of the unique
per-user-per-contact identifiers as explained in Section 4.2.

Figure 4 shows the interactions during health status query phase. The user encrypts their stored contact hashes for
querying (query_hash) with the public key of the MS and sends them with some metadata to the CHA. The CHA
batches the encrypted hashes over different users and queries them to the MS, while keeping the metadata for itself.
The metadata contains at least the duration and proximity of the contact, and how long ago the contact happened. No
location information is stored or processed, thereby satisfying (P3) User location privacy. The MS decrypts the received
hashes and compares them to its database of reported hashes of infected people, report_hash. The MS indicates to the
CHA what encrypted hashes matched with the infected list. From the metadata, the CHA estimates the probability that
this user is infected according to the latest transmission dynamics model – thereby supporting changing transmission
models as per (F1). The resulting risk score is translated in a colour which is send to the user. The CHA keeps track of
the risk scores of the population – fulfilling (F4) – to comply with its goals, i.e. study transmission dynamics and map
the spread of the disease.

Communication cost optimisation. In our current scheme, we encrypt every hash separately with the public key of
the MS. If we set our protocol to use SHA256 as a hash function (hashes with a length of 256 bits), RSAES-OAEP as an
encryption/decryption algorithm with a key size equal to 2048 bits, and assume that on average each user will query 200
contacts (i.e. 200 hashes) per day, then the communication cost as a result of the encrypted hashes would be ≈ 51KB
(200 x 2048). To reduce the computational and communication burden on the user’s device due to public key encryption,
we apply the same optimisation as during infection registration: a batch of n query hashes (e.g. n = 50) is encrypted
with a symmetric encryption scheme, such as AES. Thus, in the case of a batch of 50 hashes and use of symmetric
encryption key with a length of 256 bits, then the communication cost as a result of the encrypted hashes would be
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≈ 2.63KB (4 x (50 x 256 + 2048)), which means an approximate of a 20-fold reduction in communication cost. This
implies that the public key of MS will only be used for transporting symmetric keys from the users (both querying and
infected) to MS. However, in practice, one can instead use a key encapsulation scheme, which is more suitable for
transporting keys than a public key encryption scheme. This scheme is also used during infection registration. As this
batching allows the MS to link n hashes, i.e. n = 50, the amount of hashes batched together is effectively a trade-off
between privacy and communication (and computation) overhead.

Scalability and interoperability. Our architecture is practical, in the sense that it is easy to implement, as it can
be built with simple existing crypto building blocks and builds on already existing technology stacks. Furthermore,
the system can be rolled out in the whole of Europe as the account created with the CHA can rely on the European
eIDAS [30] technology which allows for remote identity verification of all European identity documents. Thus, when a
user travels to a foreign European country the user application could simply create an account and maintain contact
with the CHA of the foreign country. This and the above ensure that our protocol fulfills (F5) Work across borders,
scalable and realisable the with current technology stack.

5 Security and privacy analysis

Due to the sensitive nature of COVID-19 and contact tracing, flaws in the design of such a solution could have disastrous
consequences. In this section, we describe the different threat actors by describing the adversary’s goals, capabilities
and knowledge. This is followed by our security and privacy analysis.

5.1 Threat actors

We enumerate the potential threat actors used in our security and privacy analysis. Every attacker is described by their
knowledge, capabilities and goals.

User. An honest-but-curious user aims to de-anonymize their encounters and obtain sensitive information about them.
As summarised in Table 1, they can target their encounters’ health status, PII, trajectory or encounters of other contacts.
This type of users is capable of querying the system to learn the health status of their contacts. Furthermore, they can
collect a manifold of encounters by strolling through the city. They can collect additional meta-data on their contacts by
storing the exact time and location of encounters (e.g. installing another app that leverages the same communication
infrastructure).

Malicious user. A malicious user has a double aim: first, they try to obtain sensitive information on their encounters;
second, they seek personal benefit by tinkering with risk scores. For example, they could force the authorities to test
them by raising their risk score; or they could raise a target user’s risk score in the hope that they would self-isolate.
Malicious adversaries are also technically more skilled then the honest-but-curious users. They can inject arbitrary
contacts by directly modifying the app, and register multiple accounts. They can also use antennas (e.g. owned) to
eavesdrop local communications, inferring public material broadcasted by other devices. Additionally, as they are not
honest they can falsely claim that they are infected.

GPs. GPs are an honest-but-curious threat actor. They follow the protocol specification, but might want to know
additional sensitive information about their patients. GPs already know their patients’ identity and health status,
however, they might also want to learn their patients’ trajectories and encounters. We trust GPs to act with integrity and
thus diagnose patients truthfully. With other words, they will not knowingly register fake contact hashes as infected
when they are actually not. GPs who do not adhere to the aforementioned break their professional integrity and will be
held accountable.

Central health authority. The CHA is an honest-but-curious party that coordinates the protocol. Apart from learning
the outcome of the protocol (the health status of the population), they might also aim to gain out of scope knowledge on
the population – a social interaction graph and trajectories of individuals. They might try to obtain this new knowledge
by aggregating information from other data sources it normally has access to. We assume that this threat actor will not
turn malicious and undermine the functioning of the underlying system, e.g. send fake notifications or enforce policies
on arbitrary users. This will clash with its goal of curbing the spread of the disease.

Matching service. The MS acts in an honest-but-curious manner and aims to gain out-of-scope knowledge. It is
regarded as an external entity in Table 1 and thus tries to de-anonymise users, learn about their health status, construct
their trajectories or build social interaction graphs. To this end, the MS can use its knowledge on hashes used for health
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status queries and the hashes in the infected list. Thus, it tries to link hashes to users on a large scale. We trust the MS
to perform the matching operation honestly. Moreover, the MS will not claim false matches or withhold real matches. If
the MS does attempt such feat the company hosting this service will be held accountable.

Malicious third-party. A malicious third-party extends the malicious user. Compared to the malicious user, they
additionally have the goal to disrupt the service (e.g. DDoS) and cause panic. Furthermore, its capabilities are scaled up.
Thus, they can obtain a manifold of accounts and can roll out a network of antennas and Bluetooth transmitters at scale.

Malicious matching service. A malicious MS has the same goal and knowledge as the honest-but-curious MS but
has the capabilities of the malicious third party. Thus, they know the list of infected hashes, query hashes and can install
antennas at scale.

Colluding MS and CHA (and GP). A colluding MS and CHA can link query hashes to users. If GPs also participate,
registration hashes can be linked together as well. The likelihood of GPs colluding depends on what legal entity plays
the role of CHA, and what the GPs legal obligations towards a health authority is. If these entities collude we should
also assume they installed a large scale eavesdropping infrastructure. Thus, this threat actor extends the malicious
matching service with the ability to link users to hashes and de-anonymise the user. The aim of this threat actor is to
build a social interaction graph and to track users.

5.2 Security analysis

(S1) Infection integrity. Our protocol defends against malicious users falsely claiming infection (aiming to cause
panic) by limiting who and when can report such infections. In our solution, only authorised medical experts (including
GPs) are allowed to report infections; users cannot report such infections directly to the system, instead, they will have
to contact their GPs first. In addition, GPs report infections only after suspected users (with symptoms or at high risk)
have been proven to be infected by means of testing. Hence, our solution supports (almost) zero false positive rate.

(S2) Contact integrity. Our protocol ensures that only real physical encounters impact users’ risk score and analytics
about transmission dynamics and the spread of the disease. In other words, attackers cannot inject false encounters to
users’ lists of close contacts which would affect users’ risk score as well as analytics on the disease. This is achieved by
combining several defence mechanisms. First, publicly broadcasted information (users’ ephemeral public keys) are not
used directly for reporting infections nor querying for health status, instead locally computed hashes are used. Second,
each encounter is registered as hashes that, apart from users’ broadcasted ephemeral public keys, take as input also a
shared secret known only to the two users in close contact. Third, each encounter is registered by both users using two
different hashes in reverse order – one for registering infections and one for querying health status. These measures
ensure that our system supports unique per-user-per-contact identifiers – hashes – which are not broadcasted to the
public and which can be computed only by the two users in close contact (due to the use of a shared secret key as an
input for the computation). This makes injecting false contacts with any impact extremely unlikely.

In addition, our solution protects against replay attacks of observed public keys resulting in a cloned contact due to
the shared secret between close contacts that is used as a salt for computing hashes. An attacker - the malicious user,
malicious MS or malicious third party - approaching their victim will now observe a public key that is insufficient to
impersonate them during future broadcasting sessions.

Furthermore, an adversary - the malicious user, malicious MS or malicious third party - might attempt to register
clone contacts by launching relay attacks – relaying communication between two regular users at different locations.
Assuming one of the two is at high risk of being infected, this attack can trigger false positives for a targeted subset
of the users. However, as pointed out by [31], this attack could be prevented by incorporating information about
the absolute location of the user or using side-channel measurements – such as the vibrations from the surrounding
environment [32]. Given the low impact and high-cost of performing this kind of attack on our solution – it has to be
performed in real time for the involved parties to share a secret – the discussion on mitigations is beyond the scope of
this paper.

(S3) Notification integrity. As our solution ensures infection integrity and contact integrity (using the same reasoning
as above), and assuming that the MS and the CHA honestly perform the matching and calculate the risk score,
respectively, a user will receive a notification that they is at risk only if they had close encounters with infected users.
Note that such assumptions – central entities calculating risk scores correctly and/or broadcasting the correct information
regarding infected users for local risk score calculation – are inevitable for all centralised and decentralised solutions.
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5.3 Privacy analysis

(P1) Health status confidentiality. In our solution, the health status of users is known only by the health authorities
(including the GPs), as they compute the risk score of the individuals, and by the users who are notified of their own risk
score by the health authorities. As the MS receives only the hashes of infected users, and these hashes do not contain
any PII of users, there is no way for an honest-but-curious MS to identify the infected users. Moreover, as these hashes
are provided to the MS in batches (batched first by GPs and then by the CHA), the MS does not even know which
hashes belong to the same user. Similarly, when users query the CHA for their health status, these hashes are again
batched at the CHA before being sent to the MS to perform the matching. Hence, although it learns the number of
matches per each CHA query, the MS does not know to whom these hashes (and matches) belong to, nor the number of
the users (and their contacts) whose health status was queried. Note that, if users deploy an optimisation technique –
instead of encrypting every single hash with the public key of the MS, they encrypt batches of n hashes (e.g. n = 50)
with a symmetric key and then use the public key to transport this symmetric key – the MS would be able to link n
hashes to the same user.

However, if the MS turns malicious and it is able to get in close contact with possibly infected users, it will be able to
de-anonymise them once it sees their hashes reported. This threat holds true, although it is slightly harder to carry out,
for every user who is able to be in close contacts with their target, i.e. honest-but-curious users, malicious users and
malicious third-parties. They can query the CHA multiple times with only a single contact in their list. Eventually, the
coarse-grained score returned by the system will reveal some information about the victim. It is worth to notice that no
contact tracing solution protects against the accidental disclosure of health information. If a regular user encounters only,
let’s say, three people in the past two weeks and gets notified to be at-risk, they will probably be able to de-anonymise
the infected user by remembering a small group of individuals. This is inherent to every contact tracing solution.

To limit the impact of these possible attacks, the system could deploy the following mitigation strategies. Honest-but-
curious users can be prevented from learning the status of their close contacts by simply enforcing a limit on the number
of queries associated to each account. To protect against the stronger actors, that can register multiple accounts, the
CHA can require the authentication of the users by means of a permanent or semi-permanent ID (see Section 3.4). This
exposes users’ privacy since the CHA will be able to associate risk scores to identities instead of anonymous accounts.
However, this is instrumental to rate limit the amount of queries performed by an entity capable of registering multiple
accounts. Therefore, this enormously reduces the possibility to disclose the health status of infected and at-risk users to
third-parties.

(P2) Infected user privacy. As the risk score is calculated by CHA based on the matching results provided by the
MS, users never get to know which of their close contacts affected their risk score being high. Moreover, as the CHA
never gets to see the hashes of contacts, the CHA also does not know this information. As already mentioned above,
the MS is the only party that has access to the hashes of users and does the matching, it will know exactly which two
hashes matched. However, as the MS does not know to whom these hashes belong nor the metadata such as proximity
and duration of the contact, it cannot compute risk scores of users who query nor link them to the real identity of users.

(P3) User location privacy. Our solution never collects, stores or processes any location data. By frequently changing
the advertised public key, we limit the possibility to track the same user within a very strict time window (max. 30
minutes). In addition, our solution also protects against malicious and powerful MS who runs network of beacons
and registers close encounters with all users. Such a powerful adversary will have access to query hashes for all users
(including the location and time when it registered them) as well as it would have managed to insert the corresponding
report hashes in the users’ lists. As they also receive all the register hashes of infected users as well as query hashes of
the users who query as part of our protocol, the MS could potentially link every hash it receives to a location and timing.
However, as our solution always provides the hashes to the MS in a shuffled and batched form, the MS does not learn
which hashes link to the same user, hence it cannot construct users’ trajectory.

Of course, if the GPs, CHA and the MS (who runs a network of beacons) collude, then they can track users’ past
movements by linking the known hashes. To mitigate against this (unlikely and unrealistic) threat, our system could
be enhanced with the solution proposed by [5], i.e. sharing the public key in several pieces ensuring that at least N
contacts have been made before a user can determine the public key. While being computationally inexpensive, this
further reduces the tracking capabilities to a very short time window of less than 1 minute. Additionally, a colluding
CHA would have to install a capillary network of transmitters to obtain enough packets.

(P4) Interactions privacy. Our solution protects users’ interactions privacy by not allowing social graphs (both
global and local proximity interaction graphs) to be built by the individual threat actors. In terms of attempts by external
adversaries to build a global interaction graph, in our solution, none of the hashes are ever broadcasted in the public,
which prevents adversaries from discovering contacts between users, i.e. build a global interaction graph. This is due to
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the decoupling between the query hash and the report hash. Even by knowing the public keys of target users, it is not
possible for the adversary to derive their private keys and computationally hard to build a rainbow table that contains all
the possible salted hashes (assuming that the DH parameters are selected properly), as explained in Section 4.2.

In addition, none of the GPs and the CHA have access to any of the user hashes as they are encrypted at the users’
devices and decrypted only when they reach the MS. This prevents the GPs and the CHA of building any local proximity
graphs of the users who upload their report hashes or query their health status. Even though the GPs know the identity
of the infected users and the CHA might know the identity of the users who query, they both do not have access to the
users’ hashes, hence cannot build any kind of local proximity graph. As the MS is the only entity that has access to
users’ hashes, our solution provides additional protection measures against local proximity interaction graphs building:
shuffling and batching the encrypted hashes by the GPs and the CHA, so that the MS cannot link the decrypted hashes
belonging to the same user. More specifically, for infected people, a double step of batching is performed: first, the GPs
batch encrypted hashes before sending them to the CHA; second, the CHA concatenates the encrypted hashes before
providing them to the MS. In this way, apart from the CHA not learning which account is associated to a specific set of
encrypted hashes, the MS cannot link infected hashes together. For people who query the CHA, the contact hashes
are encrypted locally and batched at the CHA before being sent to the MS. The CHA is precluded from learning the
interactions between an at-risk user and their close contacts, while the MS cannot link multiple hashes to one specific
user, therefore learning no useful information from matching hashes. However, as mentioned earlier, if users deploy an
optimisation technique – encrypt batches of n hashes (e.g. n = 50) with a symmetric key – the MS would be able to
link n hashes to the same user.

Due to the use of unique per-user-per-contact hashes, the MS can link queries of the same user if the user sends in each
query the full list of their past encounters. Therefore, to mitigate against such fingerprinting, the user can only send an
update of their contact hashes, i.e. the contact hashes they acquired since their last query. When the list of infected users
is expanded, the MS needs to match them against past contact hashes as well. Therefore, the MS remembers the contact
lists of each query for 14 days and rechecks for matches when new hashes are added to the infected list. It sends the
updates to the CHA together with a unique identifier for each contact list, e.g. the hash of the list. The CHA remembers
who the contact list belonged to, recalculates and fuses the risk scores of every query of that user.

However, if the MS, GPs and the CHA collude, they can construct a proximity interaction graph of the infected and
at-risk users. Thus, the MS and the CHA must be two different legal entities, with competing interests. Recent work
has proposed a charter for the selection of trusted intermediaries among existing governmental institutions [33]: the
MS could be provided by private actors, while the role of CHA is filled in by the government. One way to prevent this
privacy nightmare is by leveraging trusted execution on the MS. By doing so, all the computations happen in a trusted
enclave, the MS never learns the infected list nor the contact list. We leave such an extension to TEE experts. A possible
extension, computationally expensive but feasible in a centralised scenario, leverages private set intersection [34]. We
can reduce the degree of trust we put on the authorities by only granting them access to the intersection between the
infected list and the query list instead of sharing the entire list of query hashes.

6 Centralisation vs. decentralisation

It is not always clear whether the advantages of a centralised solution outweigh its disadvantages. In this section, we
outline the main differences between computing the risk score in a central location and deriving the score on the user’s
device. Next we compare our design to two solutions: (1) a centralised solution, i.e. ROBERT-alike [23], in which the
diagnosed patient uploads a list of the observed identifiers and the user contacts the server to obtain their health status;
(2) a decentralised solution, i.e. DP-3T-alike [5], in which the diagnosed user uploads a list of their own broadcasted
identifiers that is made available to the public by a back-end server. We delve into each solution by analyzing their
functionalities, and their security and privacy requirements. Table 2 presents a summary of our comparison.

Risk score function update. Decentralised solutions do not allow health authorities to compute a risk score for the
users. Users can come up with their own risk score function based on the local information and the information they
receive from a central server. This does not allow to tailor the response of the system, unless a user directly contacts
the health authorities or provides a digital clinical diary to the central server (analyzed by epidemiologists). Some
of these information can be deemed instrumental to combat the disease, but we must consider (1) the large adoption
needed for the app, i.e. around 56% of the population or 80% of the smartphone owners in the UK [2], and (2) the
number of people willing to integrate new information on a voluntary basis, which is only a fraction of the userbase.
This might lead to insufficient data to perform a meaningful statistical analysis. A centralised approach allows to tailor
the score function to several factors that are voluntarily provided by the users. Based on these variables – such as
coarse demographics or recent symptoms – the server can compute a more accurate risk score for the user, based on
professional consultation while achieving a better characterisation of the disease, which in turn leads to an improved
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Table 2: Summary of decentralised vs. centralised solutions. We use four colours that identify the severity and feasibility
of each threat in each scenario: green (low impact), yellow (medium-to-low impact), orange (medium-to-high impact),
and red (high impact). For functionalities, the colours only represent to which extent a specific functionality is present.

Requirements Decentralised Ours Centralised

Functionality

Risk score function update Yes (partial) Yes Yes
Risk score root of trust No (possible) Yes Yes
Transmission dynamics Voluntary Yes Yes
Further analytics No Yes Yes

Security

Infection integrity Yes Yes Yes
Contact integrity Own-injection, replay

& relay attacks
Only relay attacks* Own-injection, replay

& relay attacks
Notification integrity Public DB Targeted attacks Targeted attacks

Privacy

Health status confidentiality Rightful user CHA (anonymised) CHA (linkable)
Infected user privacy Close contacts & GP Close contacts (lim-

ited) & GP†
Close contacts (very
limited) & GP

User location privacy Malicious users &
third-parties (infected
users)

CHA (very limited)‡ CHA (central IDs)

Interactions privacy Preserved CHA (proximity)¶ CHA (proximity)

* Our solution requires physical proximity, hence a user cannot fake a contact with another user just by knowing their public key. However,
if a malicious user comes in contact with a rightful user, the unique contact can be uploaded by a third user soon-to-be diagnosed positive
and colluding with the malicious one. This attack is highly unlikely and difficult to scale in practice since it requires.

† The user learns their health status while being limited in the amount of queries they can perform (more powerful attackers are countered
via authentication). This makes de-anonymisation very hard for close contacts. If all GPs collude, CHA could de-anonymise the infected
users.

‡ If CHA and MS collude, this might lead to location tracking and de-anonymisation of the users. The colluding parties would need the
decrypted unique hashes uploaded by the users at query time and a network of Bluetooth enabled-devices to fake close contacts with the
victims (e.g. less than 2m for more than 15min).

¶ In case of collusion with all GPs and MS, CHA can build a proximity graph of the infected users and their close contacts. This is easier for
the centralised solution, in which the pseudonyms are generated centrally and a timestamp is associated to each contact.

risk score function. This is especially useful since we lack a thorough understating of some major factors, like the viral
load and the infectious dose [35]. Hence, a central approach allows a central server to proactively inform the user of a
change in the policies that results in a different health code. This additionally helps to study the transmission dynamics
model. By consenting the central authority to know their risk score, the user will not need to perform a query or update
the app to be notified. In our solution, meaningful statistics are derived without the need for identifying the user, by
only exploiting the risk score and non-identifiable, coarse-grained metadata. This is in line with data minimisation,
since mapping the risk score of the users might be instrumental to fighting the disease. In our protocol, the user can
voluntarily provide contact information for specific needs – such as establishing a direct communication channel for
testing or requesting a consultation.

Risk score root of trust. As the authors of ROBERT [23] point out, to maximise the impact of contact tracing, at-risk
individuals that did not develop symptoms yet should be tested. This allows to break the transmission chain earlier
compared to solely encouraging at-risk individuals to self-quarantine. The chain is broken early by testing asymptomatic
at-risk individuals because these users could have infected others before learning about their at-risk status. If they would
only self-isolate, the chain is broken in a less effective manner as their past encounters will not be warned they are
at-risk until they develop symptoms themselves, which could be several days later. Therefore, a trustworthy source
that can attest the risk score is required. In decentralised systems, this is harder to obtain as risk score calculation is
performed locally. Only by the use of trusted execution this could be reached. In a centralised system, proof of the
score can be issued by the central party. A GP can use this proof to determine upon testing. Such an extension is not
described in detail, but is very similar to the proof issued by the GP for infection registration in ROBERT [23].

Transmission dynamics: data available to epidemiologists. Epidemiologists that study the transmission conditions
of the disease require to know about the nature of contacts within the population. The nature of the contact is determined
by information on the interaction itself, and the health status of the interacting parties. All solutions use similar
information to characterise the type of the contact, i.e. duration, proximity, date, etc. The information on the health
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status of the interacting parties is different. In the decentralised solution the contact meta-data of contacts with infected
individuals is shared, in aggregated form, by at-risk users only. Thus, epidemiologists can study the contacts of healthy
at-risk and sick at-risk individuals. The users can indicate voluntarily whether a medical test was performed and what
the result was. In the centralised solution, the meta-data on the contacts is shared with the system infection registration
or health status query. In our referenced centralised solution, the meta-data is shared during infection registration,
this implies that contact information between infected and healthy individuals is known to epidemiologists. As the
system learns what users are infected and knows their ephemeral IDs, the reference centralised solution can also provide
insights on the contacts between infected people. However, they have no way to provide information on the contacts
between healthy users. Our system provides meta-data on the contacts during health status query, therefore the system
knows about the meta-data of contacts between healthy individuals – i.e. the query hashes without a match. The contact
between healthy and infected people can be studied when a match with the infected list occurs. To characterise the
contacts between infected individuals, the system can rely on users indicating that they have been infected, like they
do in decentralised systems. Voluntary systems, however, rely on the cooperation of the population, as discussed
earlier. Thus, our system can provide the most complete information w.r.t. the nature of infections, however, we rely on
voluntary participation. The reference centralised solution on the other hand only misses the meta-data on contacts
between healthy people which, at first sight, is the least important.

Further analytics: mapping the spread of the disease. In centralised systems, the central server learns the risk
score of the population. This allows it to track the spread of the disease. A more precise geographical map can be
computed based on the voluntary information provided by the users. In the decentralised systems, the users optionally
share their risk scores and only when their score is high. This does not allow to get any in-depth insights on the degree
of transmission among the population.

(S1) Infection integrity. All the solutions support infection integrity by only allowing medical personnel (e.g. GPs)
to grant the upload of the ephemeral IDs.

(S2) Contact integrity. There is no solution ensuring the integrity of every contact. Decentralised and centralised
solutions offer no protection against the injection of a publicly known pseudonym in a user’s own list. This might
become problematic for two reasons: (1) the government wants to scale testing but there are no guarantees about a
self-declaration of close contact, (2) the private companies – especially during a less strict phase of lockdown – have
to agree on letting one employee to work from home and self-isolate. For example, in a decentralised solution, a
malicious user who wants to be tested to be reassured about their health status might inject a publicly available infected
pseudonym in their mobile device. They can later ask to be tested by reporting them to the authorities and showing
the app notification. Alternatively, in centralised solutions where infected users claim who they have been in contact
with and with what intensity, there is the threat of that user manipulating someone else’s risk score. The user who
the infected user interacted with has no way to refute that the interaction happened or to claim that the nature of the
interaction was different. In our solution, a directed attack like this is impossible as both parties need to acknowledge
the contact and the meta-data is provided by the user querying.

Both decentralised and centralised solutions suffer from replay and relay attacks. This is due to the impossibility to
verify whether an attacker has re-broadcasted a pseudonym they has previously observed from a rightful user. In a
replay attack scenario, this leads to many false positives in case the target user becomes sick, therefore threatening
the integrity of the system. A recent work proposes a mitigation for our reference decentralised solution based on a
radically different protocol [31]: by allowing two users to interact, they can compute a message authentication code
(MAC) based on a challenge and a timestamp. While working within a limited time window, this mitigation does not fit
in current schemes that assume no communication between two users. The centralised solution proposes the use of a
timestamp and a MAC to minimise the window of opportunity for a replay attack to a few seconds. We argue that short
time windows only do not prevent replay attacks, while the use of timestamps opens new attack surfaces to infer users’
interactions. In a relay attack scenario, there are no guarantees about the relayed ephemeral ID. This means that relying,
in real-time, the ephemeral ID that will be reported by the diagnosed patient is enough to generate a fake notification.

Our solution relies on unique per-user-per-contact hashes and obfuscates these hashes to the public, thereby reducing
the possibility to cheat and increasing the probability that testing close contacts will not result in a waste of resources. It
offers a protection based on the generation of a shared secret that is unique for a contact. This ensure stronger protection
than, for example, including a timestamp. As discussed in Sec. 5.2, given the bi-directional nature of our protocol,
the success of replay and relay attacks is severely impaired. In particular, a third-party cannot relay public identifiers
indiscriminately and must target one pair of users within the refresh window of their public keys. If only one of the two
public keys is transmitted and the owner of the public key is tested positive, the receiving party would not be notified of
being at risk.
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(S3) Notification integrity. All the solutions rely on an honest back-end server that manages pseudonyms. However,
in decentralised schemes, the database is publicly available, therefore auditable by third-parties. Assuming that the
system decides to tweak its records, this would result in an indiscriminate attack that would undermine the functionality
of the system itself with little to no effect on end-users. Centralised solutions, on the other hand, can target specific
users by assigning them a risk score that is based on out-of-scope information. This can have severe consequences
– such as discrimination against minorities and the poorest. In our base solution, we do not link the identity of the
user to their account and distribute the information based on the role of each entity. This prevents function creep by a
malicious third-party in charge of coordinating the protocol. However, we still rely on a (trustworthy) CHA to behave
correctly. An honest-but-curious CHA might still target users for the sake of achieving its goal of halting the disease
from spreading, ending up causing harm.

(P1) Health status confidentiality. Due to the local broadcasting of pseudonyms, de-anonymisation is possible in
decentralised schemes, specially for malicious users and malicious third-parties. They can use a separate app that sniffs
the pseudonyms and stores them with the exact location and time of the encounter. Centralised solutions provide the
health status to the coordinator of the protocol but hide it from the public. This protects against malicious users and
third-parties but requires a substantial degree of trust in the health authority. In our solution, the list of (unlinkable)
hashes of infected users is only learned by the MS, never by the general public. The risk score is never revealed to
the users while only a three level colour encoded feedback is provided. By enabling strong authentication, we can
additionally defend against reconnaissance attacks by rate limiting the amount of queries users can make. The risk of
data breaches remains like in centralised solutions, but we minimise its output. As described above, a collusion between
CHA and MS makes infected users and their close contacts potentially de-anonymisable.

(P2) Infected user privacy. Follows from (P1). It is easier for regular users of a decentralised scheme to obtain
information about their close encounters. In our reference centralised solution [23], the user does not share their contacts
pseudonyms, hence it is harder for a malicious user to obtain information about their encounters but still feasible
by means of multiple accounts. Our solution protects against regular users by rate limiting queries. Only powerful
adversaries can obtain a coarse-information (colour encoded) about the health status of their close encounters (the
ephemeral public key is not enough). This threat is mitigated by adding strong authentication, as discussed above.

(P3) User location privacy. Decentralised solutions can be susceptible to location tracking of infected people if
the pseudonyms of the infected people are uploaded or leaked. Solutions that register observed identifiers, instead
of the ephemeral IDs generated by the infected, preserve the location of people who tested positive while revealing
meaningful connection between users, i.e. co-location. This is due to the use of the same ephemeral ID in the phases
of broadcasting and uploading, which remains valid within a specific time window. The centralised solution is prone
to mass surveillance by means of de-anonymisation and location tracking. In this solution, the observed pseudonyms
are generated centrally, therefore they can trace back movements by assigning carefully crafted semi-permanent IDs
to the users of the system. This only requires a network of Bluetooth enabled devices and observing the shared IDs.
Additionally, timestamps are used that make linkage attacks easier to carry out. Despite being susceptible to location
tracking, our design is inherently safer: a user queries by uploading only hashes generated from close contacts, i.e. the
colluding CHA will need to generate several close contacts (e.g. less than 2 meters for more than 15 minutes) to build a
meaningful history of the locations of a specific user. Moreover, the hashes are never broadcasted nor linkable to the
public key of the user, and unknown to CHA.

(P4) Interactions privacy. In decentralised solutions, a capable third-party can only build a limited interaction graph
within the pseudonym refresh time window. However, this is only possible if the observed identifiers are shared rather
than infected ones (different from our reference centralised solution). By generating the ephemeral IDs centrally,
CHA can build a proximity interaction graph by simply observing the pairs (ID, timestamp) uploaded at the time of
registration of a new infection. Even by generating the IDs on the user’s device, it is easy for CHA to learn co-location:
if two diagnosed users, A and B, have been in close contact with a third (diagnosed) user, C, within a certain time
window, A and B will report the same ID shared by C. Our solution ensures similar protection to the decentralised
solution by computing a unique hash per contact and by using different hashes for querying and reporting. CHA does
not learn that a contact happened between two non-infected users and cannot link multiple hashes based on timestamps.
This prevents CHA from learning co-locations, i.e. whether two users have been in close contact with a third user,
due to the use of different hashes. The link between the user who performs the upload and its contacts hashes can be
further weakened by using proxies, as outlined in our reference centralised solution [23]. In their solution, however, the
contacts remain linkable via timestamps.

Summary. Decentralised and centralised solutions have several strengths and shortcomings. On the one hand,
decentralised solutions that rely on the integrity of medical reporting do not allow to proactively refine policies
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(e.g. allocate more resources to specific areas) or to directly contact potentially infected users. These solutions expose
the privacy of infected people by allowing users to check for infections within their close contacts list and trust the users
to behave correctly, hoping for them to disclose key data to characterize the transmission of the virus. On the other
hand, centralised solutions expose users’ privacy to several threats: data repurposing during and after the epidemic,
linkage attacks and de-anonymisation, state-enabled surveillance, and data loss in case of breaches. Hence, a high
degree of trust in the central authority is instrumental to a successful tracing. We envision a central authority that only
knows one important attribute about users – i.e. their risk score. Other variables – such as the precise absolute location
and the list of close contacts – are not essential to halt the spreading of the virus and enable function creep by the
authorities in charge of coordinating the protocol. In centralised solutions, the risk score computation can be aided by
epidemiologists, which can decide to modify this function based on novel discoveries. This can be problematic in more
decentralised ones (e.g. requires updating the app). By spreading trust amongst entities, our solution strives to achieve
the best of both worlds, minimising the privacy risks for the users while allowing the central authority to fight the
disease by leveraging the appropriate tools. We trust the CHA to behave honestly and the MS to carry out the matching
on behalf of the CHA while limiting the consequences of collusion between the two. A privacy-preserving solution
reduces the amount of trust a user has to put in the coordinator of the protocol. This might enable wide adoption, which
is a fundamental factor in a successful digital contact tracing campaign.

To conclude, we stress that contact tracing needs a strategy encompassing several factors. Proximity-based exposure
alert is prone to false positives, hindered by a low adoption rate, and a harbinger of discrimination and false sense
of security [36]. Nonetheless, technology can be of great help. We advocate for the development of an app to go in
conjunction with a wide-testing policy. Digital contact tracing helps to scale up the job currently undertaken by human
interviewers but does not replace a holistic approach involving public institutions across different sectors.

7 Conclusion

In this paper, we have proposed a privacy-friendly yet practical and effective contract tracing solution. To strike the
balance between functionality and privacy, our solution combines local proximity tracing via unique per-user-per-contact
hashes for user privacy protection and centralised risk score calculation for increased functionality in terms of data
analytics support for health authorities. Furthermore, for additional protection against de-anonymisation attacks,
infected users’ hashes are never revealed to health authorities nor the general public. In addition, our solution is
extremely simple and practical as it only relies on public key infrastructure. We believe that its advanced functionality,
sufficient privacy protection and simplicity make it as effective as fully centralised solutions while respecting users’
privacy. We hope that the solution will be quickly adopted and used in practice to combat highly-contagious diseases.
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