
ZeroJoin: Combining ZeroCoin and CoinJoin

Alexander Chepurnoy1,2, Amitabh Saxena1

1 Ergo Platform
{kushti}@protonmail.ch, {amitabh123}@gmail.com

2 IOHK Research
{alex.chepurnoy}@iohk.io

Abstract. We present ZeroJoin, a practical privacy-enhancing protocol
for blockchain transactions. ZeroJoin can be considered a combination
of ZeroCoin and CoinJoin. It borrows ideas from both but attempts
to overcome some of their drawbacks. Like ZeroCoin, our protocol uses
zero-knowledge proofs and a pool of participants. However, unlike Zero-
Coin, our proofs are very efficient, and our pool size is not monotonically
increasing. Thus, our protocol overcomes the two major drawbacks of Ze-
roCoin. Our approach can also be considered a non-interactive variant
of CoinJoin, where the interaction is replaced by a public transaction
on the blockchain. The security of ZeroJoin is based on the Decision
Diffie-Hellman (DDH) assumption. We also present ErgoMix, a practical
implementation of ZeroJoin on top of Ergo, a smart contract platform
based on Sigma protocols. While ZeroJoin contains the key ideas, it
leaves open the practical issue of handling fees. The key contribution of
ErgoMix is a novel approach to handle fee in ZeroJoin.

1 Introduction

Privacy enhancing techniques in blockchains generally fall into two categories.
The first is hiding the amounts being transferred, such as in Confidential Trans-
actions [1]. The second is obscuring the input-output relationships such as in Ze-
roCoin [2], CoinJoin [3]. Some solutions such as MimbleWimble [4] and Zcash [5,6]
combine both approaches.

In this work, we describe ZeroJoin, another privacy enhancing protocol based
on the latter approach of obscuring the input-output relationships, while keeping
the amounts public. This allows us to avoid expensive range proofs necessary
for the first approach. Our protocol is motivated from ZeroCoin and CoinJoin
in order to overcome some of their limitations, and can be thought of as a
combination of the two.

2 Background

Bitcoin [7], ZeroCoin [2], Zcash [5] and Ergo [8] are based on the idea of “coins”
which are short-lived immutable data structures, often called UTXOs (short for
unspent transaction outputs). ZeroJoin also uses UTXOs.

2 Alexander Chepurnoy, Amitabh Saxena

2.1 UTXO Blockchains

In UTXO-based blockchains, every node maintains an in-memory database of
all current UTXOs, called the UTXO-set. A transaction consumes (destroys)
some UTXOs and creates new ones. When a node receives a block, it updates
its UTXO-set based on the transactions in that block. A UTXO is a single-use
object, and its simplest form contains a public key (in which case, the UTXO
can be “spent” using the corresponding private key). Spending a UTXO essen-
tially involves executing any embedded code inside it and removing it from the
UTXO-set. UTXOs can be likened to physical coins, which get passed around
between people and one person may hold multiple coins at any time (one pri-
vate key can control multiple unspent UTXOs). The alternative to UTXOs is
the account-based model of Ethereum [9]. Unlike UTXOs, accounts are long-
lived and mutable. Each private key controls exactly one account, which can be
likened to real-world bank accounts. While a UTXO must be completely spent
(i.e., its balance cannot be changed), an account at the bare minimum allows
changing the balance. Most privacy techniques including CoinJoin and ZeroCoin
are designed for UTXOs and cannot be easily adapted for accounts. Our protocol
also works in the UTXO model only.

2.2 Guard Scripts

A UTXO is protected by a guard script, a computer program encoding a propo-
sition. The proposition defines the set of conditions that must be satisfied when
spending the UTXO. The spender supplies a proof of satisfying the proposition.
For example, the proposition may require that the entire transaction’s bytes
(sans the proof section) must be signed under some public key. The proof is
then the signature on the transaction’s bytes generated using the corresponding
private key. In fact, this is the most common scenario in all UTXO systems. The
guard script can encode arbitrarily complex conditions as long as they can be
encoded in the underlying language. Guard scripts are also called smart con-
tracts. A box is another name for a UTXO in Ergo [8] and we will use these two
terms interchangeably.

2.3 Execution Context

In UTXO blockchains, a block contains a compact section called the header,
which is enough to verify the block solution and check integrity of other sections
(such as block transactions). The execution context (or simply the context) is the
information available to a smart contract during execution. To encode ZeroJoin
in smart contracts (rather than within the protocol), the underlying scripting
language must support a sufficiently rich context.

We can classify the context based on what part of the block a smart contract
can access. At the bare minimum, the first level, the smart contract should have
access to the contents of the UTXO it guards (i.e., its monetary value and any
other data stored in it). At the second level, the smart contract may additionally

ZeroJoin: Combining ZeroCoin and CoinJoin 3

have access to the entire spending transaction, that is, all its inputs and outputs.
At the third level, the smart contract may have access to block header data in
addition to the data at the second level. For example, in ErgoScript (which
operates at this level), the last ten block headers and part of the next block
header that is known in advance are also available in the execution context.
Finally, at the fourth level, the execution context may contain the entire block
with all sibling transactions. Note that since the execution context must fit into
random-access memory of commodity hardware, accessing the full blockchain
is not a realistic scenario. The following table summarizes possible execution
context components.

Context level UTXO Transaction Header Block Example
C1 Yes No No No Bitcoin [7]
C2 Yes Yes No No –
C3 Yes Yes Yes No ErgoScript [8]
C4 Yes Yes Yes Yes –

2.4 CoinJoin

CoinJoin [3] is a privacy enhancing protocol where multiple parties provide in-
puts and create outputs in a single transaction computed interactively such that
the original inputs and outputs are unlinked. The optimal use of CoinJoin is
when two inputs of equal value are joined to generate two outputs of equal
value, and the process is repeated, as depicted in Figure 1.

Fig. 1: Canonical Multi-stage CoinJoin

In this model, each CoinJoin transaction has exactly two inputs (the boxes
at the tail of the arrows) and two outputs (the boxes at the head of the arrows).
Creating such a transaction requires a private off-chain interaction between the

4 Alexander Chepurnoy, Amitabh Saxena

two parties supplying the inputs, which is denoted by the dashed line. We will
ignore fee for now and revisit this issue in Section 4.

The key idea of CoinJoin is that the two output boxes are indistinguishable
in the following sense.

1. The owner of each input box controls exactly one output box.
2. An outsider cannot guess with probability better than 1/2, which output

corresponds to which input.

Thus, each CoinJoin transaction provides 50% unlinkability. The output box
can be used as input to further CoinJoin transactions and the process repeated
to increase the unlinkability to any desired level. We will use the same concept
in ZeroJoin. CoinJoin requires two parties to interactively sign a transaction
off-chain and this interactive nature is the primary drawback of CoinJoin, which
ZeroJoin aims to overcome.

2.5 ZeroCoin

ZeroCoin is a privacy enhancing protocol depicted in Figure 2.

Fig. 2: ZeroCoin protocol

The protocol uses a mixing pool (called the unspent-box pool, or simply the
U-pool), to which an ordinary coin is added as a commitment c to secrets (r, s).
The coin is later spent such that the link to c is not publicly visible. The value
c must be permanently stored in the U-pool, since the spending transaction

ZeroJoin: Combining ZeroCoin and CoinJoin 5

cannot reveal it. Instead, it reveals the secret s (the serial number) along with
a zero-knowledge proof that s was used in a commitment from the pool. To
prevent double spending, the serial number is also stored in another space called
the spent-box pool (the S-pool). A coin can be spent from the U-pool only if the
corresponding serial number does not exist in the S-pool.

One consequence of this is that both the U-pool (the set of commitments)
and the S-pool (the set of spent serial numbers) must be maintained in memory
for verifying every transaction. Another consequence is that the sizes of the these
two sets increase monotonically. This is the main drawback of ZeroCoin (also
Zcash [5]), which ZeroJoin tries to address. In ZeroJoin, once a box is spent,
no information about it is kept in memory, and in particular no data sets of
monotonically increasing sizes are maintained.

Considering the addition of a coin to the mix as a deposit and removal as a
withdraw, the in-memory storage in ZeroJoin is proportional to the number of
deposits minus the number of withdraws, while that in ZeroCash is proportional
to the number of deposits plus the number of withdraws.

2.6 Σ-Protocols

ZeroJoin uses two-party interactions called Σ-protocols defined over a cyclic mul-
tiplicative group G of prime order q such that the decision Diffie-Hellman (DDH)
problem in G is hard. Specifically, is uses two such protocols. The first, denoted
proveDlog(u), is a proof of knowledge of Discrete Logarithm of some group ele-
ment u with respect to a fixed generator g. That is, the prover proves knowledge
of x such that u = gx by using Schnorr signatures [10]. See Appendix A for an
overview of the protocol.

The second primitive, denoted proveDHTuple(g, h, u, v), is a proof of knowl-
edge of Diffie-Hellman Tuple, where the prover proves knowledge of x such that
u = gx and v = hx for a arbitrary generators g and h. This is essentially two
instances of the first protocol running in parallel as follows.

1. The prover picks r
R← Zq and computes (t0, t1) = (gr, hr). It sends (t0, t1) to

the verifier.

2. The verifier picks c
R← Zq and sends c to prover.

3. The prover sends z = r + cx to the verifier.

4. The verifier accepts iff gz = t0 · uc and hz = t1 · vc.

We use the non-interactive variant of the above protocol obtained via the
Fiat-Shamir transform, where c = H(t0‖t1‖m) for some message m to be signed.
Observe that proveDHTuple requires 4 exponentiations for verification, while
proveDlog requires 2.

ErgoScript supports both the protocols, and thus has all the primitives
needed to implement ZeroJoin.

6 Alexander Chepurnoy, Amitabh Saxena

3 ZeroJoin Protocol

ZeroJoin uses a pool of Half-Mix boxes, which are boxes ready for mixing. The
set of all unspent Half-Mix boxes is called the H-pool. To mix an arbitrary box
B, one of the following is done:

1. Pool: Add B to the H-pool (by converting it to a Half-mix box) and wait
for someone to mix it.

2. Mix: Pick any box A from the H-pool and a secret bit b. Spend A,B to
generate two Fully Mixed boxes O0, O1 such Ob and O1−b are spendable by
A’s and B’s owners respectively.

Privacy comes from the fact that boxes Ob and O1−b are indistinguishable so
an outsider cannot guess b with probability better than 1/2. Thus, the probability
of guessing the original box after n mixes is 1/2n. A box is mixed several times
for the desired privacy. The protocol is depicted in Figure 3.

Fig. 3: Multi-round ZeroJoin

3.1 One ZeroJoin Round

Each individual ZeroJoin round consists of two stages, the pool followed by the
mix stage. Without loss of generality, Alice will pool and Bob will mix. Let g be
some generator of G that is fixed beforehand. Each box is assumed to have two
optional registers α, β that can store elements of G.

1. Pool: To add a coin to the H-pool, Alice picks secret x ∈ Zq and computes
u = gx. She then creates an output box A protected by a script that requires
the spending transaction to contain two output boxes O0, O1 satisfying the
following conditions:

ZeroJoin: Combining ZeroCoin and CoinJoin 7

(a) Both contain the same value as A.
(b) Both are protected by the script:

proveDHTuple(g, α, u, β) ∨ proveDlog(β)

(c) The registers (α, β) of Ob and O1−b contain pairs (c, d) and (d, c) respec-
tively for some c, d ∈ G.

(d) One of (g, u, c, d) or (g, u, d, c) must be a valid Diffie-Hellman tuple, that
is, of the form (g, gx, gy, gxy). This is encoded as:

proveDHTuple(g, u, c, d) ∨ proveDHTuple(g, u, d, c)

She waits for Bob to join the protocol, who will do so by spending A.
2. Mix: Bob picks secrets (b, y) ∈ Z2 × Zq and obtains u from the script. He

then computes h = gy and v = uy. He spends A with one or more of his
own boxes to create two output boxes O0, O1 of equal value such that Ob is
spendable by Alice alone and O1−b by Bob alone:
(a) Registers (α, β) of Ob and O1−b store (h, v) and (v, h) respectively.
(b) Ob, O1−b are protected by the script:

proveDHTuple(g, α, u, β) ∨ proveDlog(β)

such that the box must be spent using a Σ-OR proof (see Appendix A.2).

After the mix, Alice and Bob can spent their respective boxes using their secrets.
Alice can identify her box as the one with β = αx.

3.2 Analysis

For correctness, Alice requires that she is always able to spend the coin. That
is, Bob should not be able to spend A in a manner that makes the resulting
output(s) unspendable by Alice.

Let x be the Alice’s secret corresponding to her box A. First note that due
to the clause proveDHTuple(g, u, c, d) || proveDHTuple(g, u, d, c), Bob has no
choice but to create two outputs O0, O1 such that the registers (α, β) of Ob and
O1−b contain (gy, gxy) and (gxy, gy) respectively for some integer y and bit b.
This implies that that Ob’s spending condition reduces to:

proveDHTuple(g, gy, gx, gxy) ∨ proveDlog(gxy).

The above statement can be proved by anyone who knows at least one of x or
xy. Thus, Alice can spend this because only she knows x.

For soundness, Alice requires that no one else should be able to spend Ob,
her Full-Mix box. Observe that the only way someone else could spend this box
is by knowing xy, because they don’t know x. Assume there is an algorithm that
takes as input gx and somehow outputs (gy, gxy, xy) for some y 6= 0. Then Alice
can use this to immediately compute y, contradicting the fact that the discrete

8 Alexander Chepurnoy, Amitabh Saxena

log problem in G is hard. Thus, no one must know xy and thereby, only Alice
has the ability to spend Ob.

From Bob’s point of view, the spending condition of O1−b reduces to

proveDHTuple(g, gxy, gx, gy) ∨ proveDlog(gy).

Since Bob knows y, he can spend the box using the right part of the statement.
Finally, if someone apart from Bob spends O1−b then they must have used the
left part of the statement because using the right part would required knowledge
of y. However, using the left part is not possible because (g, gxy, gx, gy) is not
a valid DH Tuple. Hence, assuming that the original Schnorr proof is sound, no
one else apart from Bob can spend O1−b.

For privacy, the only difference between Ob and O1−b is that (g, α, u, β) is a
valid Diffie-Hellman tuple for Ob, while for O1−b, the tuple is (g, β, u, α). Assum-
ing that the Decision Diffie-Hellman (DDH) problem in G is hard, no one apart
from Alice or Bob has the ability to distinguish the boxes. Thus, the boxes are
indistinguishable before they are spent. To see that they remain so after being
spent, observe that the protocol provides spender indistinguishability because
each box is spent using a Σ-OR-proof that is zero-knowledge [11].

Comparing with CoinJoin: Referring to Section 2.4, both CoinJoin and ZeroJoin
use the technique of spending two boxes to create two indistinguishable boxes
that provide the privacy. However, CoinJoin requires the owners of the two input
boxes to perform an off-chain interaction over a private channel. In ZeroJoin, this
interaction is replaced by a public transaction on the blockchain. While this adds
one more transaction, it does not require interaction between the parties over
a private channel. This makes ZeroJoin far more usable compared to CoinJoin.
Note that ZeroJoin transactions are detectable, while CoinJoin transactions are
indistinguishable from ordinary transactions.

Comparing with ZeroCoin: Referring to Section 2.5, both ZeroCoin and ZeroJoin
use a pool (the H-pool in ZeroJoin and the U-pool in ZeroCoin). Additionally,
both use zero-knowledge proofs to spend boxes from the pool in a way that hides
the links between the outputs and the inputs, thereby providing the privacy. The
difference is that the privacy in ZeroJoin is achieved in stages, two boxes at a
time, while in ZeroCoin it is achieved in one stage. Secondly, the degree of privacy
in ZeroCoin depends on the size of the U-pool, while that in ZeroJoin depends on
the number of stages. Thirdly, the U-pool in ZeroCoin increases monotonically
in size, since boxes are only added to it and never removed. The size of H-pool
in ZeroJoin varies according to how many unspent Half-Mix boxes are present
at any given time. Finally, the proof in ZeroCoin are quite large compared to
those in ZeroJoin. The last two capture the main drawbacks of ZeroCoin that
ZeroJoin addresses. In particular, using ZeroJoin, we can obtain an equivalent (or
sufficiently close) degree of privacy as from ZeroCoin without having to maintain
the ever-increasing pools and with much shorter proofs.

ZeroJoin: Combining ZeroCoin and CoinJoin 9

Offchain Pool: The H-Pool can be kept entirely offchain, so that Alice’s Half-Mix
box need not be present on the blockchain till the time Bob decides to spend it.
Alice sends her unbroadcasted transaction directly to Bob who will broadcast
both transactions at some later time.

Future enhancements: Compared to CoinJoin, ZeroJoin requires an additional
box – the Half-Mix box – as can be seen by by comparing Figures 1 and 3.
One way to eliminate the extra box would be to have the mix step output two
indistinguishable Half-Mix boxes that can be used again in the mix step (or
spent elsewhere). We could do this inefficiently by accumulating the statements
and making the proof size proportional to the number of mixes. It is an open
question if this can be done with a sublinear proof size.

3.3 Implementing ZeroJoin In ErgoScript

Each round of ZeroJoin is a two-stage protocol (pool followed by mix). One
way to implement ZeroJoin would be to create a specialized blockchain just
for this purpose that has the protocol hardwired (as was done in, for example,
ZeroCash [5]). However, this limits the use of the blockchain.

A more pragmatic approach would be to encode the protocol as a smart
contract on top of a general-purpose blockchain. One such blockchain is Ergo [8],
whose scripting language ErgoScript supports level C3 context (see Section 2.3).
Our example is implemented on top of Ergo [12]. The implementation uses the
concepts from [13] by encoding ZeroJoin as a two-stage protocol such that a
‘fingerprint’ of the second stage is embedded within a smart contract from the
first stage. In other words, Alice’s box A encodes the protocol by enforcing the
structure of Bob’s spending transaction. This is done as follows. For brevity, we
will assume that alpha, beta, gamma are aliases for the first, second and third
registers of a box that contain elements of G. The keywords script and value

refer to the guard script (in binary format) and the quantity of primary tokens
stored in the box.

Let x be Alice’s secret and let u = gx. To create the Half-Mix box with u,
first define the script of the second stage, fullMixScript as:

// Contract #1: contract for Full-Mix box (fullMixScript)

proveDHTuple(g, beta, alpha, gamma) || proveDlog(gamma)

Then compile the script and compute the hash of the result:

fullMixScriptHash = hash(compile(fullMixScript))

Next create a script, halfMixScript, with the following code:

// Contract #2: contract for Half-Mix box (halfMixScript)

INPUTS(0).id == id &&

OUTPUTS(0).beta == OUTPUTS(1).gamma &&

OUTPUTS(0).gamma == OUTPUTS(0).beta &&

10 Alexander Chepurnoy, Amitabh Saxena

OUTPUTS(0).alpha == alpha && OUTPUTS(1).alpha == alpha &&

OUTPUTS(0).value == value && OUTPUTS(1).value == value &&

hash(OUTPUTS(0).script) == fullMixScriptHash &&

hash(OUTPUTS(1).script) == fullMixScriptHash &&

beta != gamma &&

(proveDHTuple(g, alpha, OUTPUTS(0).beta, OUTPUTS(0).gamma) ||

proveDHTuple(g, alpha, OUTPUTS(0).gamma, OUTPUTS(0).beta))

Note that in ErgoScript, OUTPUTS(0) is the first output of the spending
transaction, OUTPUTS(1) is the second output, and so on. The keyword id refers
to the globally unique identifier of the box.

Alice’s Half-Mix box A is protected by halfMixScript given above. Alice
must store u in register alpha of that box.

4 ErgoMix: ZeroJoin with Fee

Similar to ZeroCoin and CoinJoin (Figure 1), each Half-Mix and Full-Mix box in
ZeroJoin must hold the same fixed value, which is carried over to the next stage.
This implies zero-fee transactions because any fee must either be paid from the
Full/Half-mix boxes (which breaks the fixed value requirement) or from a non-
ZeroJoin box (which breaks privacy). Zero-fee transactions are fine in theory but
not in practice.

Here we describe how to handle fee on the Ergo blockchain. To differentiate
the generic protocol (ZeroJoin) from the underlying implementation using Ergo,
we give the name ErgoMix to any of the various extensions in this section that
are largely specific to Ergo.

We can classify ZeroJoin transactions into the following types:

1. Alice entry: When someone plays the role of Alice to create a Half-Mix
box (i.e., add a coin to the H-pool). The inputs to the transaction are one
or more non-ErgoMix boxes (external boxes) and the output is one Half-Mix
box.

2. Bob entry: When someone plays the role of Bob to spend a Half-Mix box
(i.e., remove a coin from the H-pool). The other inputs of the transaction
are one or more non-ErgoMix boxes and the outputs are two Full-Mix boxes.

3. Alice or Bob exit: When someone plays the role of Alice or Bob to spend
a Full-Mix box and send the funds to a non-ErgoMix box (i.e., withdraw
from the system).

4. Alice or Bob reentry as Alice: When someone plays the role of Alice
or Bob to spend a Full-Mix box and create a Half-Mix box (i.e., send the
coin back to the H-pool). The input is a Full-Mix box and the output is a
Half-Mix box of the same amount.

5. Alice or Bob reentry as Bob: When someone plays the role of Alice or
Bob to spend a Full-Mix box along with another Half-Mix box and create
two new Full-Mix boxes. The input is a Half-Mix box and a Full-Mix box
and the outputs are two new Full-Mix boxes.

ZeroJoin: Combining ZeroCoin and CoinJoin 11

Fig. 4: ZeroJoin Flow

These are depicted in Figure 4.
Clearly, for both Alice and Bob entries, fee is not an issue because both

parties can fund the fee component of the transaction from a known source,
since these transactions are not meant to hide any information. Similarly for
case 3, when exiting the system, part of the amount in the Full-Mix box can
be used to pay fee. The only time we need to hide the source of fee is when we
spend a Full-Mix box and want to reenter as either Alice or Bob.

4.1 An Altruistic Approach

In this approach, fee is paid by a sponsor when spending a Full-Mix box for
reentry. We use a variation of Fee-Emission boxes presented in [14].

Fee-Emission Box A sponsor creates several Fee-Emission boxes to pay fee
for spending full-mix boxes in the two reentry cases above. A Fee-Emission box
can be spent under the following conditions:

1. There is exactly one Fee-Emission box as input.
2. There is exactly one Full-Mix box as input.
3. Either exactly one input or exactly one output is a Half-Mix box.
4. The updated balance is stored in a new Fee-Emission box.

This is encoded in ErgoScript as follows:

// Contract #3: contract for Fee-Emission box

def isFull(b:Box) = hash(b.script) == fullMixScriptHash

def isHalf(b:Box) = hash(b.script) == halfMixScriptHash

12 Alexander Chepurnoy, Amitabh Saxena

def isFee(b:Box) = hash(b.script) == feeScriptHash

def isCopy(b:Box) = b.script == script &&

b.value == value - fee

val asAlice = INPUTS.size == 2 && OUTPUTS.size == 3 &&

isFull(INPUTS(0)) && isHalf(OUTPUTS(0)) &&

isCopy(OUTPUTS(1)) && isFee(OUTPUTS(2)

val asBob = INPUTS.size == 3 && OUTPUTS.size == 4 &&

isHalf(INPUTS(0)) && isFull(INPUTS(1)) &&

isCopy(OUTPUTS(2)) && isFee(OUTPUTS(3))

asAlice || asBob

The condition asAlice encodes the rules of spending a Full-Mix box to em-
ulate Alice for the next mix and create a Half-Mix box. Similarly, the condition
asBob has the rules for spending a Full-Mix box as Bob’s contribution in a mix
transaction.

This approach is intended to encourage mixing because the sponsor pays the
fee when a Full-Mix box is remixed. However, note that there is no guarantee
that some given Full-Mix box was actually created in a mix transaction since
one can create a box with the same structure that was not created in a mix
transaction. The only way to distinguish such a box from a real one is to examine
the transaction that created the box. However, this information is not available
in ErgoScript. Thus, the above approach is susceptible to freeloaders who store
their funds in a Full-Mix box. However, such freeloaders cannot utilize the fee
to send to anyone. They must either create a Half-Mix box or spend another
Half-Mix box, thereby forcing them participate in the protocol. Consequently,
there is no advantage to the freeloader because he still has to pay fee to create
the fake full-mix box, which he could have used to participate in the mixing.
Hence, we can safely ignore the freeloading attack. Note that there are ways, as
shown later, to determine within ErgoScript if the a Full-Mix box was created
in a mix transaction.

The above approach requires someone to sponsor the mix transaction, which
we call the free system. In practice we need ErgoMix to be self-sustaining that
does not depend on sponsors, which we call the paid system. The following section
will extend the free system to a paid system.

4.2 Mixing Tokens

Ergo’s primary token is known as Erg, which is necessary to pay for transaction
fees and storage rent [15]. An Ergo transaction conserves primary tokens (they
can neither be created nor destroyed) and any box must have a positive quantity
of primary tokens. Each box can optionally have secondary tokens which are
uniquely identified by an id. Unlike primary tokens, an Ergo transaction can
destroy secondary tokens. Additionally, each transaction can also create (i.e.,
issue) at most one new token in arbitrary quantity, whose id is the globally
unique id of the first input box box of that transaction.

In this approach, we will still use a Fee-Emission box (as in Section 4.1)
to pay the fee in Ergs. However, we will also use secondary tokens issued by

ZeroJoin: Combining ZeroCoin and CoinJoin 13

the creator of the Fee-Emission box, which we call mixing tokens (identified by
tokenId). The Fee-Emission box can only be used by destroying a mixing token.

Approximate Fairness We use the approximate fairness strategy described
in [16]. At a high level the idea is as follows. Each mix transaction consumes
one mixing token, which must be supplied by the inputs. Thus, there must be
at least one mixing token among the inputs. Additionally, to keep the outputs
indistinguishable, each must have the same number of tokens. The approximate
fairness strategy says that Bob must supply half the token, and is allowed to
supply less tokens than Alice as long as both started with the same amount of
tokens and Bob lost tokens in sequential mixes.

The approximate-fairness strategy works only if two conditions are satisfied.
The first is that mixing tokens are confined within the system by restricting
their transfer to only those boxes that participate in a remix. The second is to
ensure that tokens always enter the system in a fixed quantity, and that too in
one of the two ErgoMix boxes.

4.3 Token Confinement

In this section we enforce the first requirement of approximate fairness, that of
confining the tokens within the system. Recall that the Half-Mix box’s script
refers to the Full-Mix box’s script via the constant fullMixScriptHash. Our
approach additionally requires the Full-Mix box’s script to refer back to the
Half-Mix box’s script. We do this by storing the hash of the Half-Mix script in
one of the registers of the Full-Mix box. Let delta be an alias for this register
that stores an array of bytes. The scripts are also modified.

Fee-Emission Box We modify isFull method of the Fee-Emission box con-
tract of Section 4.1 as:

// Contract #4: contract for Fee-Emission box

def isFull(b:Box) = hash(b.script) == fullMixScriptHash &&

b.delta == halfMixScriptHash

(... remaining code same as Contract #3)

Recall that the rule for spending the Fee-Emission box is to destroy one mix-
ing token. While the above contract does not directly enforce this requirement,
it does so indirectly via the Full-Mix and Half-Mix scripts discussed below.

Full-Mix Box Modify fullMixScript, the contract of the Full-Mix box as
follows:

// Contract #5: contract for Full-Mix box

def isHalf(b:Box) = hash(b.script) == delta &&

b.value == value

14 Alexander Chepurnoy, Amitabh Saxena

def isFull(b:Box) = b.script == script &&

b.delta == delta && b.value == value

def noToken(b:Box) = b.tokens(tokenId) == 0

val nextAlice = isHalf(OUTPUTS(0)) && INPUTS(0).id == id

val nextBob = isHalf(INPUTS(0)) && INPUTS(1).id == id

val destroyToken = OUTPUTS.forall(noToken)

val nextAliceLogic = OUTPUTS(0).tokens(tokenId) ==

INPUTS(0).tokens(tokenId) - 1 &&

OUTPUTS(0).tokens(tokenId) > 0

((nextAlice && nextAliceLogic) || nextBob || destroyToken)

&& (... earlier condition from Contract #1)

The script enforces the transfer of mixing tokens when spending the Full-Mix
box to create a Half-Mix box. In particular, the tokens can only be transferred
if the transaction either outputs a Half-Mix box (i.e., the spender takes the role
of Alice in the next mix step, in which case one mixing token is destroyed) or
participates in a mix transaction as Bob and spends a Half-Mix box along with
this Full-Mix box (in which case, the transfer of mixing tokens is governed by
the contract in the Half-Mix box).

Half-Mix Box Next, the Half-Mix box (halfMixScript) contract is also mod-
ified:

// Contract #6: contract for Half-Mix box

val alice = INPUTS(0).tokens(tokenId)

val bob = INPUTS(1).tokens(tokenId)

val out0 = OUTPUTS(0).tokens(tokenId)

val out1 = OUTPUTS(1).tokens(tokenId)

val tLogic = alice + bob == out0 + out1 + 1 && bob > 0 && alice > 0

OUTPUTS(0).delta == hash(script) &&

OUTPUTS(1).delta == hash(script) && out0 == out1 && tLogic &&

&& (... earlier condition from Contract #2)

The above contract assumes that the boxes already have some quantity of
mixing tokens and enforces how these must be used. Each mix transaction is
assumed to consume one such token, and to maintain privacy, the token balance
must be equally distributed between the two outputs. The contract follows the
approximate-fairness strategy where Alice requires Bob to contribute at least one
mixing token [16]. It is possible to use perfect fairness by adding the condition
alice == bob.

Taken together, the contracts of the three boxes (Fee-Emission, Full-Mix and
Half-Mix) confine the mixing tokens to the system, which comprises of sequential
rounds of ErgoMix. In other words, once the mixing tokens have entered the
system, they must remain within it.

ZeroJoin: Combining ZeroCoin and CoinJoin 15

4.4 Token Entry

While the earlier section restricted how the mixing tokens are transferred after
they are already in the system, this section will focus on defining how the tokens
enter the system. This is done using a Token-Emission box.

Token-Emission Box A Token-Emission box is used for obtaining mixing
tokens and gain entry into the system as either Alice or Bob. It contains the
following contract.

// Contract #7: contract for Token-Emission box

def isCopy(b:Box) = b.script == script && b.value == value &&

b.tokens(tokenId) == tokens(tokenId) - amt

def isFull(b:Box) = hash(b.script) == fullMixScriptHash &&

b.delta == halfMixScriptHash

def isHalf(b:Box) = hash(b.script) == halfMixScriptHash

def isFee(b:Box) = hash(b.script) == feeScriptHash &&

b.value == fee

def isEntry(b:Box) = (isFull(b) || isHalf(b)) &&

b.tokens(tokenId) == amt

def isZero(b:Box) = b.tokens(tokenId) == 0

INPUTS(0).id == id && isZero(INPUTS(1)) && INPUTS.size == 2 &&

isEntry(OUTPUTS(0)) && isCopy(OUTPUTS(1)) && isFee(OUTPUTS(2))

Anyone can spend the Token-Emission box to send a fixed amount amt of
mixing tokens to either a Half-Mix box or a (fake) Full-Mix box, which should
be the first output of the transaction. The other outputs are a copy of the token-
emission box with the balance tokens and the fee paying output. The transaction
must have exactly two inputs, with the token-emission box being the first and
the second containing zero mixing tokens.

We can use mixing tokens to verify that a given Full-Mix box was indeed
created in a mix transaction, and a given Half-Mix box was indeed created by
spending a Full-Mix box. In particular, this is true if and only if the box contains
less than amt and more than 0 mixing tokens.

While the above Token-Emission box gives the mixing tokens for free, it is
trivial to modify the contract to sell the tokens at some given rate. The only
change required is in the isCopy method:

// Contract #8: contract for Token-Emission box

def isCopy(b:Box) = b.script == script &&

b.value == value + amt * rate &&

b.tokens(tokenId) == tokens(tokenId) - amt

(... remaining code same as Contract #7)

We also want the token issuer to be able to withdraw any Ergs deposited by
token buyers. To achieve this, the token-emission box is again modified:

16 Alexander Chepurnoy, Amitabh Saxena

// Contract #9: contract for Token-Emission box

(... earlier condition from Contract #8) ||

(issuerPubKey && INPUTS.size == 1 &&

OUTPUTS(0).script == script && OUTPUTS(0).value > minErgs &&

OUTPUTS(0).tokens(tokenId) == tokens(tokenId))

It is necessary to keep a certain amount of Ergs, minErgs inside each Token-
Emission box, otherwise the box may be destroyed when miners collect storage
rent. This value should be large enough to ensure sustenance for several years.
In order to allow several people to buy tokens in the same block and to avoid
collisions when multiple people try to spend the same token-emission box, there
must be several token-emission boxes.

Analysis Because of the condition bob > 0 in tLogic of the Half-Mix box, a
mix transaction requires Bob to supply at least one token, and since these tokens
can only be stored in either Full or Half-Mix boxes, the second input of a mix
transaction must be a Full-Mix box (as opposed to any box). That Full-Mix box
can either be the output of a mix transaction (a real Full-Mix box) or the output
of a token purchase transaction (a fake Full-Mix box).

Another consequence of bob > 0 is that at least one token must exist in
order to spend Alice’s box. In the case that mixing tokens become unavailable,
Alice’s box is rendered unspendable. In order to handle this, we need to ensure
that mixing tokens are always available. One way would be to have each token-
emission box store a large number of tokens, much more than what can be
purchased with all the available Ergs. Before storing any funds in a Half-Mix
box, it must be ascertained that there are a large number of mixing tokens stored
in at least one token-emission box.

An alternate way to ensure that Alice’s Half-Mix box does not get stuck due
to non-availability of tokens would be to allow Alice to spend the box using her
secret. This requires modifying the Half-Mix box as follows:

// Contract #10: contract for Half-Mix box

def noToken(b:Box) = b.tokens(tokenId) == 0

(proveDlog(alpha) && INPUTS.size == 1 && OUTPUTS.forall(noToken)) ||

(... earlier condition from Contract #6)

The above modification allows Alice to spend the Half-Mix box using her
secret but she must destroy all mixing tokens in doing so.

Figure 5 gives an example flow with the above contracts in place. To avoid
clutter, we skipped the fee output in the above flow. However, each transaction
is implicitly assumed to have an additional box for paying fee.

Comparing this with Figure 4, a mix transaction is always a reentry as Bob
and both Alice and Bob’s entry is through a token purchase transaction.

ZeroJoin: Combining ZeroCoin and CoinJoin 17

Fig. 5: Multi-round ErgoMix with Mixing Tokens to handle fee

The predicate alice > 0 also requires that the Half-Mix box have at least
one token, implying that the only way to create the Half-Mix box would be in a
token purchase transaction or transaction for reentry as Alice. In particular, it
is impossible to create a Half-Mix box in an other manner.

Further Enhancements The approximate fairness approach requires each
party to contribute half a mixing token in a mix transaction and the balance
tokens are equally distributed among the parties, even if one supplied more.

In the First-Spender-Pays-Fee approach, the idea is to benefit the party will-
ing to wait longer and the party that spends their Full-Mix box first (retroac-
tively) pays the fee for the mix transaction. This can be achieved as follows. Each
mix transaction consumes two tokens. One is destroyed and the other is stored
in a refund box that can be claimed by the second spender. We can identify the
second spender as follows.

Identifying the second-spender: Identifying if a given transaction is by
the second spender is equivalent to determining if the other box is already spent.
In a stateless language such as ErgoScript, there is no direct way to determine
if some other box is already spent. However, there are indirect ways and we
describe one of them below. For brevity, we skip the ErgoScript code and only
give the high level approach.

The protocol is modified to require each mix transaction to generate exactly
4 quantities of a new secondary token (with id x, determined as the id of the
first input – the Half-Mix box) distributed equally among 4 outputs. Two of

18 Alexander Chepurnoy, Amitabh Saxena

these outputs are the standard Full-Mix output boxes O0, O1 with the additional
spending condition that at least one output in the spending transaction must
contain some non-zero quantity of token x. The other two outputs, O2, O3, have
the following identical spending conditions:

1. The sum of quantities of token x in the inputs and outputs is 3 and 2
respectively.

2. One output contains 2 quantities of token x protected by the same script as
this box.

It can be checked that the current spender is the second spender if and only
if there is an input with two quantities of token x. The script also ensures that
the first spender must create a new box with two tokens that can only be used
by the second spender.

Acknowledgements

We would like to thank anonymous developer anon92048 for developing an im-
plementation of the mixer, and also Jason Davies for finding and reporting a
vulnerability in both the paper and initial implementation. Vulnerability de-
scription made by Jason Davies can be found in [17].

References

1. Gregory Maxwell. Confidential transactions. https://people.xiph.org/~greg/

confidential_values.txt, 2015.
2. Ian Miers, Christina Garman, Matthew Green, and A.D. Rubin. Zerocoin: Anony-

mous distributed e-cash from bitcoin. In Proceedings - IEEE Symposium on Secu-
rity and Privacy, pages 397–411, 05 2013.

3. Coinjoin: Bitcoin privacy for the real world. https://bitcointalk.org/?topic=

279249, 08 2013.
4. T.E. Jedusor. Mimblewimble. https://download.wpsoftware.net/bitcoin/

wizardry/mimblewimble.txt, 2016.
5. Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,

Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments
from bitcoin. In Proceedings of the 2014 IEEE Symposium on Security and Privacy,
SP ’14, pages 459–474, Washington, DC, USA, 2014. IEEE Computer Society.

6. Zcash. https://z.cash, 2016.
7. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https:

//bitcoin.org/bitcoin.pdf, 2008.
8. Ergo Developers. Ergo: A resilient platform for contractual money. https://

ergoplatform.org/docs/whitepaper.pdf, 2019.
9. Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger.

Ethereum project yellow paper, 151:1–32, 2014.
10. Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of

Cryptology, 4(3):161–174, 1991.
11. Ivan Damg̊ard. On Σ-Protocols, 2010. http://www.cs.au.dk/~ivan/Sigma.pdf.

https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
https://bitcointalk.org/?topic=279249
https://bitcointalk.org/?topic=279249
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt
https://z.cash
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://ergoplatform.org/docs/whitepaper.pdf
https://ergoplatform.org/docs/whitepaper.pdf
http://www.cs.au.dk/~ivan/Sigma.pdf

ZeroJoin: Combining ZeroCoin and CoinJoin 19

12. Lets play with ergomix. https://www.ergoforum.org/t/

lets-play-with-ergomix/108, 10 2019.
13. Alexander Chepurnoy and Amitabh Saxena. Multi-stage contracts in the utxo

model. In Cristina Pérez-Solà, Guillermo Navarro-Arribas, Alex Biryukov, and
Joaquin Garcia-Alfaro, editors, Data Privacy Management, Cryptocurrencies and
Blockchain Technology, pages 244–254, Cham, 2019. Springer International Pub-
lishing.

14. Paying fee in ergomix in primary tokens. https://www.ergoforum.org/t/

paying-fee-in-ergomix-in-primary-tokens/73, 09 2019.
15. Alexander Chepurnoy, Vasily Kharin, and Dmitry Meshkov. A systematic approach

to cryptocurrency fees. In International Conference on Financial Cryptography and
Data Security, pages 19–30. Springer, 2018.

16. Advanced ergoscript tutorial. https://docs.ergoplatform.com/sigmastate_

protocols.pdf, 03 2019.
17. Jason Davies. Ergomix vulnerability. https://blog.plutomonkey.com/2020/04/

ergomix-vulnerability/, 2020.
18. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-

tification and signature problems. In Andrew M. Odlyzko, editor, Advances in
Cryptology — CRYPTO’ 86, pages 186–194, Berlin, Heidelberg, 1987. Springer
Berlin Heidelberg.

19. Ronald Cramer. Modular Design of Secure, yet Practical Cryptographic Protocols.
PhD thesis, University of Amsterdam, 1996.

20. Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In Cynthia
Dwork, editor, Advances in Cryptology - CRYPTO 2006, 26th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 20-24, 2006, Pro-
ceedings, volume 4117 of Lecture Notes in Computer Science, pages 78–96. Springer,
2006.

21. Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowl-
edge and simplified design of witness hiding protocols. In Yvo Desmedt, editor,
Advances in Cryptology - CRYPTO ’94, 14th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 21-25, 1994, Proceedings,
volume 839 of Lecture Notes in Computer Science, pages 174–187. Springer, 1994.
http://www.win.tue.nl/~berry/papers/crypto94.pdf.

A Σ-Protocols

ZeroJoin uses Sigma protocols (written Σ-protocols), which are a generalization
of the Schnorr identification scheme [10].

A.1 Schnorr Identification

Let G be a cyclic multiplicative group of prime order q and g a generator of
G. Alice wants to prove knowledge of some secret x ∈ Zq to Bob who knows
u = gx. Assume that computing discrete logarithms in G is hard. They perform
the following protocol, also known as Schnorr identification:

1. Commit: Alice selects random r ∈ Zq and send t = gr ∈ G to Bob.
2. Challenge: Bob selects random c ∈ Zq and sends it to Alice.

https://www.ergoforum.org/t/lets-play-with-ergomix/108
https://www.ergoforum.org/t/lets-play-with-ergomix/108
https://www.ergoforum.org/t/paying-fee-in-ergomix-in-primary-tokens/73
https://www.ergoforum.org/t/paying-fee-in-ergomix-in-primary-tokens/73
https://docs.ergoplatform.com/sigmastate_protocols.pdf
https://docs.ergoplatform.com/sigmastate_protocols.pdf
https://blog.plutomonkey.com/2020/04/ergomix-vulnerability/
https://blog.plutomonkey.com/2020/04/ergomix-vulnerability/
http://www.win.tue.nl/~berry/papers/crypto94.pdf

20 Alexander Chepurnoy, Amitabh Saxena

3. Response: Alice sends z = r + cx to Bob, who accepts iff gz = t · uc.

The above protocol is a proof of knowledge because Bob can extract x if he
can get Alice to respond twice for the same r and different c. As an example, for
c = 1, 2, Bob can obtain r+x and r+ 2x, the difference of which gives x. This is
also called (special) soundness. The above protocol is also (honest verifier) zero-
knowledge because anyone can impersonate Alice if the challenge c of Step 2 is
known in advance, simply by picking random z ∈ Zq and computing t = gz/uc.
The statement “I know the discrete log of u to base g” is called the proposition,
which we denote by τ .

Any protocol that has the above 3-move structure (Alice
t→ Bob, Bob

c→
Alice, Alice

z→ Bob), along with zero-knowledge and soundness property is called
a Σ-protocol.

For any Σ-protocol with messages (t, c, z), we can apply the Fiat-Shamir
transform [18] to convert it into a non-interactive one by replacing the role of
Bob in Step 2 by any hash function H and computing c = H(t). The resulting
protocol with messages (t,H(t), z) can be performed by Alice alone. Intuitively,
since t fixes c, Bob cannot “rewind” Alice and get two different responses for
the same r. Additionally, Alice cannot know c in advance before deciding t if H
behaves like a random oracle. We call such a non-interactive proof a Σ-proof [19].
Conceptually, Σ-proofs are generalizations of digital signatures [20].

A.2 Composing Σ-Protocols

Any two Σ-protocols of propositions τ0, τ1 with messages (t0, c0, z0), (t1, c1, z1)
respectively can be combined into a Σ-protocol of τ0∧τ1 with messages (t, c, z) =
(t0‖t1, c0‖c1, c0‖c1). We call such a construction an AND operator on the proto-
cols. More interestingly, as shown in [21],the two protocols can also be used to
construct a Σ-protocol for τ0 ∨ τ1, where Alice proves knowledge of the witness
of one proposition, without revealing which. Let b ∈ {0, 1} be the bit such that
Alice knows the witness for τb but not for τ1−b. Alice will run the correct pro-
tocol for τb and a simulation for τ1−b. First she generates a random challenge
c1−b. She then generates (t1−b, z1−b) by using the simulator on c1−b. She also
generates tb by following the protocol correctly. The pair (t0, t1) is sent to Bob,
who responds with a challenge c. Alice then computes cb = c ⊕ c1−b. She com-
putes zb using (tb, cb). Her response to Bob is ((z0, c0), (z1, c1)), who accepts if:
(1) c = c0 ⊕ c1 and (2) (t0, c0, z0), (t1, c1, z1) are both accepting conversations
for τ0, τ1 respectively. We call such a construction a OR operator.

Clearly, both the AND and OR operators also result in Σ-protocols that can
be further combined or made non-interactive via the Fiat-Shamir transform.
Crucially, the proof for OR does not reveal which of the relevant values the
prover knows. For example, in ErgoScript a ring signature by public keys u1, u2
can be specified as an OR of Σ-protocols for proving knowledge of discrete loga-
rithms of u1 or un. The proof can be constructed with the knowledge of just one
such discrete logarithm, and does not reveal which one was used in its construc-
tion. This is a crucial property used in ZeroJoin. ErgoScript, the programming

ZeroJoin: Combining ZeroCoin and CoinJoin 21

language of Ergo gives the ability to build sophisticated Σ-protocols using the
connectives AND, OR. This allows us to implement ZeroJoin on top of Ergo using
smart contracts.

	ZeroJoin: Combining ZeroCoin and CoinJoin

