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Abstract. We present Zerojoin, a privacy-enhancing protocol for UTXO
blockchains. Like Zerocoin, our protocol uses zero-knowledge proofs and a
pool of participants. However, unlike Zerocoin, our pool size is not mono-
tonically increasing. Thus, our protocol overcomes the major drawback of
Zerocoin. Our approach can also be considered a non-interactive variant
of CoinJoin, where the interaction is replaced by a public transaction on
the blockchain. The security of Zerojoin relies on the Decisional-Diffie-
Hellman (DDH) assumption. We also present ErgoMix, a practical im-
plementation of Zerojoin on top of Ergo, a smart contract platform based
on Sigma protocols. While Zerojoin contains the key ideas, it leaves open
the practical issue of handling fees. The key contribution of ErgoMix is
a novel approach to handle fee in Zerojoin.

1 Introduction

Privacy enhancing techniques in blockchains generally fall into two categories.
The first is hiding the amounts being transferred, such as in Confidential Trans-
actions [1]. The second is obscuring the input-output relationships such as in
Zerocoin [2] and CoinJoin [3]. Some solutions such as Zcash [4,5] combine both.

In this work, we describe Zerojoin, yet another privacy enhancing protocol
based on the latter approach of obscuring input-output relationships. This allows
us to avoid expensive range proofs necessary for the first approach. Our protocol
is motivated from Zerocoin and CoinJoin to overcome some of their limitations.

In particular, the protocol is designed to address two key problems with
Zerocoin [2] and CoinJoin [3], namely the need for a monotonically increasing
pool in Zerocoin and the need for off-chain interaction in CoinJoin. A monoton-
ically increasing pool makes the protocol unusable in the long term because this
pool has to be kept in memory to verify transactions. Many privacy oriented
protocols including Zerocoin and Monero [6] suffer from this problem. On the
other hand, CoinJoin, which does not have this weakness, has the problem of off-
chain interaction, which again reduces its usability. Zerojoin aims to address this
by creating a combined protocol that solves both these problems. Quisquis [7]
is another protocol similar to Zerojoin. However, its proofs use generic NIZKs
that are much larger than Zerojoin’s proofs. The following table summarizes
the various protocols. Note that unlike the other protocols, CoinJoin supports a
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covert mode, where it is not possible to identify if the protocol is in use. Some
approaches, such as MW, CoinJoin and CS are vulnerable to eavesdropping at-
tacks where an attacker has connectivity to a large part of the network. Hence
they need additional off-chain mechanisms (such as “joiners” [8]) to counter such
attacks before broadcasting transactions to the network.

Monotonic Generic Interaction Eavesdropping Example
pool NIZKs needed attacks Implementation

CoinJoin [3] no no yes yes JoinMarket [9]
Zerocoin [2] yes yes no no Zcoin [10]
Monero yes yes no no Monero [6]
Quisquis [7] no yes no no –
Zerojoin no no no no ErgoMixer [11]

An interesting problem in CoinJoin-type protocols such as uis and Zerojoin
is that of fee. Since the protocol requires multiple rounds where a box’s value is
preserved across rounds. If the fee is paid from an external source then privacy
is broken. Thus, any fee must come from the boxes being mixed. However, then
the value cannot be preserved. Our solution to the fee problem is ErgoMix, an
implementation of Zerojoin on the Ergo blockchain. ErgoMix uses mixing tokens,
a Ergo-specific approach to handle fee.

2 Background

Blockchain platforms such as Bitcoin [12], Zerocoin [2], Zcash [4] and Ergo [13]
use short-lived immutable data structures called “coins” or UTXOs (short for
unspent transaction outputs). In such blockchains, every node maintains an in-
memory database of all current UTXOs, called the UTXO-set. A transaction
consumes (destroys) some UTXOs and creates new ones. When a node receives
a block, it updates its UTXO-set based on the transactions in that block. A
UTXO is a single-use object, and its simplest form contains a public key (in
which case, the UTXO can be “spent” using the corresponding private key).
Spending a UTXO essentially involves executing any embedded code inside it
and removing it from the UTXO-set. The alternative to UTXOs is the account-
based model of Ethereum [14] or NXT [15]. Unlike UTXOs, accounts are mutable.
While a UTXO must be completely spent (i.e., its balance cannot be changed),
an account at the bare minimum allows changing the balance. Most privacy
techniques including CoinJoin and Zerocoin are designed for UTXOs and cannot
be easily adapted for accounts. Our protocol also works in the UTXO model only.

2.1 CoinJoin

CoinJoin [3] is a privacy enhancing protocol where multiple parties provide in-
puts and create outputs in a single transaction computed interactively such that
the original inputs and outputs are unlinked. The optimal use of CoinJoin is
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Fig. 1: Canonical Multi-stage CoinJoin

when two inputs of equal value are joined to generate two outputs of equal
value, and the process is repeated, as depicted in Figure 1.

In this model, each CoinJoin transaction has exactly two inputs (the boxes
at the tail of the arrows) and two outputs (the boxes at the head of the arrows).
Creating such a transaction requires a private off-chain interaction between the
two parties supplying the inputs, which is denoted by the dashed line. We will
ignore fee for now and revisit this issue in Section 4. The key idea of CoinJoin
is that the two output boxes are indistinguishable in the following sense.

1. The owner of each input box controls exactly one output box.
2. An outsider has no idea which output corresponds to which input.

Thus, each CoinJoin transaction provides 50% unlinkability. The output box
can be used as input to further CoinJoin transactions and the process repeated
to increase the unlinkability to any desired level. We will use the same concept
in Zerojoin. CoinJoin requires off-chain interaction and this interactive nature
is the primary drawback of CoinJoin, which Zerojoin aims to overcome.

2.2 Zerocoin

Zerocoin is a privacy enhancing protocol depicted in Figure 2. The protocol uses
a pool of coins called the unspent pool (U-pool). A coin is added to the U-pool as a
public commitment c = Comm(s, r) of secrets s, r and later removed in a way that
does not reveal c of the coin being removed. Instead, the removing transaction
only reveals secret s, the “serial number”, along with a zero-knowledge proof
that one of the c’s in the U-pool is of the form Comm(s, r) for some r that is
never revealed. Note that c is stored in the U-pool permanently. Additionally, to
prevent double spending, the value s is also stored permanently in another pool
called the spent pool (S-pool). A coin can be spent from the U-pool only if the
corresponding serial number does not exist in the S-pool.
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Fig. 2: Zerocoin protocol

One consequence of this is that both the U-pool (the set of commitments) and
the S-pool (the set of spent serial numbers) must be maintained in memory for
verifying every transaction. Another consequence is that the sizes of the these
two sets increase monotonically. This is the main drawback of Zerocoin (also
Zcash [4]), which Zerojoin tries to address. In Zerojoin, once a box is spent,
no information about it is kept in memory, and in particular no data sets of
monotonically increasing sizes are maintained.

Considering the addition of a coin to the mix as a deposit and removal as a
withdraw, the in-memory storage in Zerojoin is proportional to the number of
deposits minus the number of withdraws, while that in Zerocoin is proportional
to the number of deposits plus the number of withdraws.

Main idea behind Zerojoin: Suppose at some point it turns out that both the
S and U-pools of Zerocoin contain an equal number, say n, of elements. In this
special situation, we can reset both pools to zero without any loss of security/pri-
vacy. Additionally the total privacy of this run is quantifiable by n. We denote
this variant by n-Zerocoin. We can repeat this protocol sequentially to obtain
any desired level of privacy. This is the main idea behind Zerojoin. In particular,
we can think of Zerojoin as an optimized variant of 2-Zerocoin repeated many
times similar to the canonical CoinJoin of Section 2.1.

2.3 Quisquis

One of the protocols closest in design to Zerojoin is Quisquis [7], since they
both aim to prevent monotonic UTXO sets. At a conceptual level, both have
the same fundamental CoinJoin-type primitive: a mix transaction consumes two
1-Erg boxes and creates two indistinguishable 1-Erg boxes. Similar to Zerojoin,
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Quisquis does this in a non-interactive manner, thereby overcoming the main
drawback of CoinJoin. Both Zerojoin and Quisquis have the following structure:

1. Alice adds a box A to the pool and waits for someone (say Bob) to use it.
2. Bob selects a secret bit b and spends A along with some of his own boxes to

create two identical looking boxes O0, O1 such that Ob is spendable by Alice
and O1−b by Bob. The boxes are indistinguishable to outsiders.

3. The protocol enforces Bob to create two identical looking boxes. However, it
cannot be publicly verified if the boxes are created correctly. Thus, while the
protocol works if Bob is honest, a cheating Bob may create identical looking
boxes containing invalid values, thereby rendering both unspendable.

4. The remaining part of the protocol enforces Bob’s correct behavior using
zero-knowledge proofs that the boxes were indeed created correctly. The
difference is that Quisquis uses generic NIZKs, while Zerojoin uses sigma
protocols: it only takes 8 exponentiations to verify a Zerojoin mix transaction
and the proof size is around 200 bytes compared to several kilobytes.

2.4 Sigma Protocols

Let G be a cyclic multiplicative group where decisional Diffie-Hellman (DDH)
problem is hard. Zerojoin uses two interactive proofs in this setting.

The first, a variation of Schnorr signatures [16], is a proof of knowledge of
discrete logarithm of some u to base g, where the prover proves knowledge of x
such that u = gx. This is called proveDlog(g, u) and implemented as follows:

1. The prover, P, picks r
R← Zq and sends t = gr to the verifier, V.

2. V picks c
R← Zq and sends c to P.

3. P sends z = r + cx to V, who accepts iff gz = t · uc.

A protocol with this structure (P t→ V,P c← V,P z→ V) is called a sigma
protocol if it satisfies special soundness and honest-verifier zero-knowledge [17].

The statement to be proved (example “I know the discrete logarithm of u to
base g”) is denoted by τ . Any sigma protocol can be made non-interactive via
the Fiat-Shamir transform [18] by setting c = H(t) where H is a hash function.

As shown in [19], any two sigma protocols for arbitrary statements τ0, τ1
can be efficiently composed to a single sigma protocol that proves knowledge
of one of the witnesses without revealing which. Let b ∈ {0, 1} be such that P
knows the witness of τb but not τ1−b. P simulates the proof of τ1−b to get an
accepting transcript (t1−b, c1−b, z1−b) and generates tb properly. P sends (t0, t1)
to V. On receiving c, P computes cb = c⊕ c1−b and then uses tb, cb to compute
the response zb properly. Finally P sends (z0, z1, c0, c1) to V, who accepts iff
both (t0, c0, z0) and (t1, c1, z1) are accepting transcripts and c = c0⊕ c1. We call
such a construction the OR operator.

The second primitive we need is a proof of knowledge of a Diffie-Hellman
tuple, where the prover proves knowledge of x such that u = gx and v = hx for
generators g, h. This is called proveDHTuple(g, h, u, v) and implemented using
two parallel runs of the first protocol:
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1. P picks r
R← Zq and sends t = (gr, hr) to V.

2. V picks c
R← Zq and sends c to P.

3. P sends z = r + cx to V who accepts iff gz = t0 · uc and hz = t1 · vc.

Swapping h and u, we obtain proveDHTuple(g, u, h, v), where P proves knowl-
edge of y such that h = gy and v = uy. This is the dual of the original protocol.

3 Zerojoin Protocol

Zerojoin uses a pool of Half-Mix boxes. The set of all unspent Half-Mix boxes is
called the H-pool. To mix an arbitrary box B, one of the following is done:

1. Pool: Add B to the H-pool and wait for someone to mix it.
2. Mix: Pick any box A from the H-pool and a secret bit b. Spend A,B to

output two boxes Ob and O1−b spendable by A’s and B’s owners respectively.

Privacy comes from the fact that boxes Ob and O1−b are indistinguishable
so any outsider can only guess b with probability 1

2 . Thus, the probability of
guessing the original box after n mixes is 1

2n . The protocol is depicted in Figure 3.

Fig. 3: Multi-round Zerojoin

3.1 One Zerojoin Round

Each individual Zerojoin round consists of two stages, the pool followed by the
mix stage. Let g be some generator of G that is fixed beforehand. Each box has
optional registers α, β that can store elements of G. Without loss of generality,
Alice will pool and Bob will mix.
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1. Pool: To add a coin to the H-pool, Alice picks a secret x ∈ Z and creates a
box A containing u = gx. The box is now considered added to the pool.

2. Mix: Bob picks secrets (b, y) ∈ Z2×Z and a box, say A, uniformly from the
pool ensuring that u /∈ {g, g−1, g0}. He spends A with some of his own boxes
to create two output boxes O0, O1 having the same value as A such that:
(a) Registers (α, β) of Ob and O1−b store (gy, uy) and (uy, gy) respectively.
(b) Ob, O1−b are protected by the sigma statement given below:

proveDHTuple(g, α, u, β) OR proveDlog(g, β) (1)

Ob and Ob−1 can be spent by Alice and Bob respectively using their secrets.
Alice can identify her box as the one with β = αx. Assuming that the DDH
problem is hard, no outsider can guess b with probability better than 1

2 .
The above protocol works assuming Bob behaves correctly. The protocol can

enforce Bob to create two outputs with the same value as A and registers α, β
swapped. However, since the DDH problem is hard, we cannot test whether the
values in the registers are of the correct form (i.e., one is gy and other is uy).
This is where the dual of proveDHTuple for secret y will come to our rescue.
Concretely, Bob must adhere to the below rules when spending A:

1. Bob must create two outputs O0, O1 with the same value as A.
2. Both O0, O1 must be protected by the sigma statement of Eq. 1.
3. Let ij be register i of Oj . Then the following must hold:

(α0, β0) = (β1, α1) (2)

4. Bob must prove (via the dual) that one of {(g, u, α0, β0), (g, u, β0, α0)} is of
the form (g, gx, gy, gxy). In other words, Bob must prove the sigma statement:

proveDHTuple(g, u, α0, β0) OR proveDHTuple(g, u, β0, α0) (3)

3.2 Analysis

For correctness, Alice requires that no one should be able to spend A in a manner
that makes the resulting output(s) unspendable by her.

First note that due to Eqs. 2 and 3, Bob has no choice but to create two
outputs O0, O1 such that the registers (α, β) of Ob and O1−b contain (gy, gxy) and
(gxy, gy) respectively for some integer y and bit b. Then the spending condition
of Alice’s Full-Mix box, Ob, reduces via Eq. 1 to:

proveDHTuple(g, gy, gx, gxy) OR proveDlog(g, gxy).

The above statement can be proven by anyone who knows at least one of x
or xy. Thus, Alice can spend this because she knows x.

For Alice’s soundness, no one else apart from her should have the ability to
spend Ob. Assume that there exists such a spender. Since only Alice knows x
and the only other way to spend the box is via proveDlog(g, gxy), that other
spender must know xy. Such a spender cannot know y and so cannot spend
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O1−b. We can model this spender as a black-box taking as input (g, gx) and
outputting (gy, xy) for some y 6= 0. Since such a black-box can be used to solve
the Computational Diffie-Hellman (CDH) problem in G, we can rule this out.

From Bob’s point of view, the spending condition of O1−b reduces to

proveDHTuple(g, gxy, gx, gy) OR proveDlog(g, gy).

Since Bob knows y, he can spend the box using the right part of the statement.
Finally, if someone apart from Bob spends O1−b then they must have used the
left part of the statement because using the right part would require knowledge
of y. However, using the left part is not possible because (g, gxy, gx, gy) is not a
valid Diffie-Hellman tuple. Hence, no one else apart from Bob can spend O1−b.
Note that despite the left being an invalid tuple, the simulator must generate a
valid proof for it, otherwise we could use the simulator to solve DDH.

For privacy, the only difference between Ob and O1−b is that registers (α, β)
are of the form (gy, gxy) and (gxy, gy) respectively. Assuming that the Decision
Diffie-Hellman (DDH) problem in G is hard, no outsider has the ability to dis-
tinguish the boxes before they are spent. Since each box is spent using a sigma
OR proof that is zero-knowledge [17], this applies even after they are spent.

Comparing with CoinJoin and Zerocoin: Both CoinJoin and Zerojoin use two in-
distinguishable outputs that provide the privacy (see Section 2.1). However, each
CoinJoin transaction requires an off-chain interaction over a private channel. In
Zerojoin, this interaction is replaced by a public transaction on the blockchain.

Both Zerocoin and Zerojoin add boxes to a pool and later spend them via
zero-knowledge proofs (see Section 2.2). The difference is that the privacy in
Zerocoin depends on the size of the pool, while that in Zerojoin depends on the
number of rounds. Thirdly, Zerocoin’s pool increases monotonically in size, while
that of Zerojoin does not. Finally, the NIZK proofs in Zerocoin are much larger
compared to the non-interactive sigma proofs of Zerojoin.

3.3 Implementing Zerojoin In ErgoScript

One way to implement Zerojoin would be to create a specialized privacy oriented
blockchain with the protocol hardwired (such as Zcash [4]). A more pragmatic
approach is to encode the protocol at the smart contract layer using a language
that allows us to specify predicates on the entire transaction (i.e., one operating
at context level C2 or higher using the terminology of [20]). We can then use
the approach of [21] to encode the protocol into the smart contract of A, that
is, by encoding Zerojoin as a two-stage protocol with the ‘fingerprint’ of the
second stage embedded within a the first stage. One platform that supports
such features is Ergo [13] and the following sections describe how to implement
Zerojoin in ErgoScript, the programming language of Ergo. Note that ErgoScript
is a strict subset of the Scala programming language [22,23].

For brevity, assume that alpha, beta, gamma are aliases for the registers
α, β, γ of a box that contain elements of G. We already saw the first two used
earlier. The third is to store u. We give some more notation below.
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1. script refers to the guard script (in binary format) of the box.
2. value refers to the quantity of Ergo’s primary token stored in the box.
3. id refers to the globally unique identifier of the box.
4. SELF is omitted, so id on its own, for example, must be read as SELF.id.

Let x be Alice’s secret and let u = gx. To create the Half-Mix box with u,
first compile the following script of the second stage to get fullMixScript:

1 proveDHTuple(g, alpha , gamma , beta) || proveDlog(g, beta)

Contract 1: Full mix script

Next create a script, halfMixScript, with the following code:

1 val alpha0 = OUTPUTS (0).alpha
2 val alpha1 = OUTPUTS (1).alpha
3 val beta0 = OUTPUTS (0).beta
4 val beta1 = OUTPUTS (1).beta
5 val gamma0 = OUTPUTS (0).gamma
6 val gamma1 = OUTPUTS (1).gamma
7 val value0 = OUTPUTS (0).value
8 val value1 = OUTPUTS (1).value
9 val script0 = OUTPUTS (0).script

10 val script1 = OUTPUTS (1).script
11

12 INPUTS (0).id == id && // ensure this is the first box in transaction
13 alpha0 == beta1 && beta0 == alpha1 && gamma0 = gamma && gamma1 == gamma &&
14 value0 == value && value1 == value &&
15 script0 == fullMixScript && script1 == fullMixScript &&
16 alpha0 != beta0 && // to prevent Bob from setting y = 0
17 (proveDHTuple(g, gamma , alpha0 , beta0) ||
18 proveDHTuple(g, gamma , beta0 , alpha0))

Contract 2: Half mix script

Note that OUTPUTS(0) is the first output of the transaction, OUTPUTS(1) is
the second output, and so on. Alice’s box A is protected by halfMixScript.
Alice must store u in register gamma of that box.

4 ErgoMix: Zerojoin with Fee

Similar to Zerocoin and CoinJoin (Figure 1), each Half-Mix and Full-Mix box
in Zerojoin must hold the same fixed value, which is carried over to the next
stage. This implies zero-fee transactions because any fee must either be paid from
the Full/Half-mix boxes (which breaks the fixed value requirement) or from a
non-Zerojoin box (which breaks privacy). Zero-fee transactions are not practical.

Here we describe how to handle fee on the Ergo blockchain. To differentiate
the generic protocol (Zerojoin) from the underlying implementation using Ergo,
we give the name ErgoMix to any of the various extensions in this section that
are largely specific to Ergo. We classify Zerojoin transactions into the following:

1. Alice entry: When someone plays the role of Alice to create a Half-Mix
box and add to the H-pool. The inputs to the transaction are one or more
non-ErgoMix boxes (external boxes) and the output is one Half-Mix box.
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2. Bob entry: When someone plays the role of Bob to spend a Half-Mix box
and remove from the H-pool. The other inputs of the transaction are one or
more non-ErgoMix boxes and the outputs are two Full-Mix boxes.

3. Alice or Bob exit: When someone plays the role of Alice or Bob to spend
a Full-Mix box and send the funds to a non-ErgoMix box.

4. Alice or Bob reentry as Alice: When someone plays the role of Alice
or Bob to spend a Full-Mix box and create a Half-Mix box (i.e., send the
coin back to the H-pool). The input is a Full-Mix box and the output is a
Half-Mix box of the same amount.

5. Alice or Bob reentry as Bob: When someone plays the role of Alice or
Bob to spend a Full-Mix box along with another Half-Mix box and create
two new Full-Mix boxes. The input is a Half-Mix box and a Full-Mix box
and the outputs are two new Full-Mix boxes.

Clearly, for both Alice and Bob entries, fee is not an issue because both
parties can fund the fee component of the transaction from a known source.
Similarly for case 3, when exiting the system, part of the amount in the Full-
Mix box can be used to pay fee. The only time we need to hide the source of fee
is when we spend a Full-Mix box and want to reenter as either Alice or Bob.

4.1 An Altruistic Approach

In this approach, fee is paid by a sponsor when spending a Full-Mix box for
reentry. We use a variation of Fee-Emission boxes presented in [24].

Fee-Emission Box: A sponsor creates several Fee-Emission boxes to pay reentry
fee. Such a box can be spent under the following conditions:

1. There is exactly one Fee-Emission box as input.
2. There is exactly one Full-Mix box as input.
3. Either exactly one input or exactly one output is a Half-Mix box.
4. The updated balance is stored in a new Fee-Emission box.

This is encoded in ErgoScript as follows:

1 def isFull(b:Box) = hash(b.script) == fullMixScriptHash
2 def isHalf(b:Box) = hash(b.script) == halfMixScriptHash
3 def isFee(b:Box) = hash(b.script) == feeScriptHash
4 def isCopy(b:Box) = b.script == script &&
5 b.value == value - fee
6 val asAlice = INPUTS.size == 2 && OUTPUTS.size == 3 &&
7 isFull(INPUTS (0)) && isHalf(OUTPUTS (0)) &&
8 isCopy(OUTPUTS (1)) && isFee(OUTPUTS (2)
9 val asBob = INPUTS.size == 3 && OUTPUTS.size == 4 &&

10 isHalf(INPUTS (0)) && isFull(INPUTS (1)) &&
11 isCopy(OUTPUTS (2)) && isFee(OUTPUTS (3))
12 asAlice || asBob

Contract 3: Fee emission script
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The condition asAlice encodes the rules of spending a Full-Mix box to em-
ulate Alice for the next mix and create a Half-Mix box. Similarly, the condition
asBob has the rules for spending a Full-Mix box as Bob’s contribution in a mix.

The sponsor pays the fee whenever a Full-Mix box is remixed. However, there
is no guarantee that some given Full-Mix box was actually created in a mix
transaction. The only way to determine this is to examine the transaction that
created the box. However, this is not yet possible in ErgoScript. Thus, the above
approach is susceptible to freeloaders who store their funds in a Full-Mix box.
However, such freeloaders must either create a Half-Mix box or spend another
Half-Mix box, thereby forcing them participate in the protocol. This gives no
advantage to freeloaders who still need to pay fee to create a fake full-mix box.

4.2 Mixing Tokens

Ergo’s primary token is known as Erg, which is necessary to pay for transaction
fees and storage rent [25]. An Ergo transaction conserves primary tokens (they
can neither be created nor destroyed) and any box must have a positive quantity
of primary tokens. Each box can optionally have secondary tokens which are
uniquely identified by an id. Unlike primary tokens, an Ergo transaction can
destroy secondary tokens. Additionally, each transaction can also create (i.e.,
issue) at most one new token in arbitrary quantity, whose id is the globally
unique id of the first input box box of that transaction.

In this approach, we will still use a Fee-Emission box (as in Section 4.1)
to pay the fee in Ergs. However, we will also use secondary tokens issued by
the creator of the Fee-Emission box, which we call mixing tokens (identified by
tokenId). The Fee-Emission box can only be used by destroying a mixing token.

Approximate Fairness: We use the approximate fairness strategy described in [26].
At a high level the idea is as follows. Each mix transaction consumes one mixing
token, which must be supplied by the inputs. Thus, there must be at least one
mixing token among the inputs. Additionally, to keep the outputs indistinguish-
able, each must have the same number of tokens.

The approximate fairness strategy says that Bob must supply half the token,
and is allowed to supply less tokens than Alice as long as both started with the
same amount and Bob lost them in sequential mixes. The approximate-fairness
strategy works only if two conditions are satisfied. The first is that mixing tokens
are confined within the system by restricting their transfer to only those boxes
that participate in a remix. The second is to ensure that tokens always enter the
system in a fixed quantity, and that too in one of the two ErgoMix boxes.

4.3 Token Confinement

In this section we enforce the first requirement of approximate fairness, that of
confining the tokens within the system. Recall that the Half-Mix box’s script
refers to the Full-Mix box’s script via the constant fullMixScriptHash. Our
approach additionally requires the Full-Mix box’s script to refer back to the
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Half-Mix box’s script. We do this by storing the hash of the Half-Mix script in
one of the registers of the Full-Mix box. Let delta be an alias for this register
that stores an array of bytes. The scripts are also modified.

Fee-Emission Box: We modify isFull method of the Fee-Emission box contract:

1 def isFull(b:Box) = hash(b.script) == fullMixScriptHash &&
2 b.delta == halfMixScriptHash
3 (... remaining code same as Contract #3)

Contract 4: Fee emission script with confinement

Recall that the rule for spending the Fee-Emission box is to destroy one mix-
ing token. While the above contract does not directly enforce this requirement,
it does so indirectly via the Full-Mix and Half-Mix scripts discussed below.

Full-Mix Box: Modify fullMixScript, the contract of a Full-Mix box as well:

1 def isHalf(b:Box) = hash(b.script) == delta &&
2 b.value == value
3 def isFull(b:Box) = b.script == script &&
4 b.delta == delta && b.value == value
5 def noToken(b:Box) = b.tokens(tokenId) == 0
6 val nextAlice = isHalf(OUTPUTS (0)) && INPUTS (0).id == id
7 val nextBob = isHalf(INPUTS (0)) && INPUTS (1).id == id
8 val destroyToken = OUTPUTS.forall(noToken)
9 val nextAliceLogic = OUTPUTS (0).tokens(tokenId) ==

10 INPUTS (0).tokens(tokenId) - 1 &&
11 OUTPUTS (0).tokens(tokenId) > 0
12

13 (( nextAlice && nextAliceLogic) || nextBob || destroyToken)
14 && (... earlier condition from Contract #1)

Contract 5: Full mix script with confinement

The script enforces the transfer of mixing tokens when spending the Full-Mix
box to create a Half-Mix box. In particular, the tokens can only be transferred
if the transaction either outputs a Half-Mix box (i.e., the spender takes the role
of Alice in the next mix step, in which case one mixing token is destroyed) or
participates in a mix transaction as Bob and spends a Half-Mix box along with
this Full-Mix box (in which case, the transfer of mixing tokens is governed by
the contract in the Half-Mix box).

Half-Mix Box: Next, the Half-Mix contract (halfMixScript) is also modified:

1 val alice = INPUTS (0).tokens(tokenId)
2 val bob = INPUTS (1).tokens(tokenId)
3 val out0 = OUTPUTS (0).tokens(tokenId)
4 val out1 = OUTPUTS (1).tokens(tokenId)
5 val tLogic = alice + bob == out0 + out1 + 1 && bob > 0 && alice > 0
6

7 OUTPUTS (0).delta == hash(script) &&
8 OUTPUTS (1).delta == hash(script) && out0 == out1 && tLogic &&
9 && (... earlier condition from Contract #2)

Contract 6: Half mix script with confinement
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The above contract assumes that the boxes already have some quantity of
mixing tokens and enforces how these must be used. Each mix transaction is
assumed to consume one such token, and to maintain privacy, the token balance
must be equally distributed between the two outputs. The contract follows the
approximate-fairness strategy where Alice requires Bob to contribute at least
one mixing token [26]. For perfect fairness add the condition alice == bob.

4.4 Token Entry

Token-Emission Box: A Token-Emission box is used to get mixing tokens for
entry into the system as either Alice or Bob. It contains the following contract.

1 def isCopy(b:Box) = b.script == script && b.value == value &&
2 b.tokens(tokenId) == tokens(tokenId) - amt
3 def isFull(b:Box) = hash(b.script) == fullMixScriptHash &&
4 b.delta == halfMixScriptHash
5 def isHalf(b:Box) = hash(b.script) == halfMixScriptHash
6 def isFee(b:Box) = hash(b.script) == feeScriptHash &&
7 b.value == fee
8 def isEntry(b:Box) = (isFull(b) || isHalf(b)) &&
9 b.tokens(tokenId) == amt

10 def isZero(b:Box) = b.tokens(tokenId) == 0
11

12 INPUTS (0).id == id && isZero(INPUTS (1)) && INPUTS.size == 2 &&
13 isEntry(OUTPUTS (0)) && isCopy(OUTPUTS (1)) && isFee(OUTPUTS (2))

Contract 7: Token emission script

Anyone can spend the Token-Emission box to send a fixed amount amt of
mixing tokens to either a Half-Mix box or a (fake) Full-Mix box, which should
be the first output of the transaction. The other outputs are a copy of the token-
emission box with the balance tokens and the fee paying output. The transaction
must have exactly two inputs, with the token-emission box being the first and
the second containing zero mixing tokens.

We can use mixing tokens to verify that a given Full-Mix box was indeed
created in a mix transaction, and a given Half-Mix box was indeed created by
spending a Full-Mix box. In particular, this is true if and only if the box contains
less than amt and more than 0 mixing tokens.

While the above Token-Emission box gives the mixing tokens for free, it is
trivial to modify the contract to sell the tokens at some given rate. The only
change required is in the isCopy method:

1 def isCopy(b:Box) = b.script == script &&
2 b.value == value + amt * rate &&
3 b.tokens(tokenId) == tokens(tokenId) - amt
4 (... remaining code same as Contract #7)

Contract 8: Token emission script with sell capability

We also want the token issuer to be able to withdraw any Ergs deposited by
token buyers. To achieve this, the token-emission box is again modified:
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1 (... earlier condition from Contract #8) ||
2 (issuerPubKey && INPUTS.size == 1 &&
3 OUTPUTS (0).script == script && OUTPUTS (0).value > minErgs &&
4 OUTPUTS (0).tokens(tokenId) == tokens(tokenId))

Contract 9: Token emission script with withdraw capability

It is necessary to keep a certain amount of Ergs, minErgs inside each Token-
Emission box, otherwise the box may be destroyed when miners collect storage
rent. This value should be large enough to ensure sustenance for several years.
In order to allow several people to buy tokens in the same block and to avoid
collisions when multiple people try to spend the same token-emission box, there
must be several token-emission boxes.

Analysis: Because of the condition bob > 0 in tLogic of the Half-Mix box, a
mix transaction requires Bob to supply at least one token, and since these tokens
can only be stored in either Full or Half-Mix boxes, the second input of a mix
transaction must be a Full-Mix box (as opposed to any box). That Full-Mix box
can either be the output of a mix transaction (a real Full-Mix box) or the output
of a token purchase transaction (a fake Full-Mix box).

Another consequence of bob > 0 is that at least one token must exist in
order to spend Alice’s box. In the case that mixing tokens become unavailable,
Alice’s box is rendered unspendable. In order to handle this, we need to ensure
that mixing tokens are always available. One way would be to have each token-
emission box store a large number of tokens, much more than what can be
purchased with all the available Ergs. Before storing any funds in a Half-Mix
box, it must be ascertained that there are a large number of mixing tokens stored
in at least one token-emission box.

An alternate way to ensure that Alice’s Half-Mix box does not get stuck due
to non-availability of tokens would be to allow Alice to spend the box using her
secret. This requires modifying the Half-Mix box as follows:

1 def noToken(b:Box) = b.tokens(tokenId) == 0
2

3 (proveDlog(g, alpha) && INPUTS.size == 1 && OUTPUTS.forall(noToken)) ||
4 (... earlier condition from Contract #6)

Contract 10: Half script with withdraw capability

The above modification allows Alice to spend the Half-Mix box using her
secret but she must destroy all mixing tokens in doing so.

Figure 4 gives an example flow with the above contracts in place. To avoid
clutter, we skipped the fee output in the above flow. However, each transaction
is implicitly assumed to have an additional box for paying fee.

A mix transaction is always a reentry as Bob and both Alice and Bob’s entry
is through a token purchase transaction.

The predicate alice > 0 also requires that the Half-Mix box have at least
one token, implying that the only way to create the Half-Mix box would be in a
token purchase transaction or transaction for reentry as Alice. In particular, it
is impossible to create a Half-Mix box in an other manner.
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Fig. 4: Multi-round ErgoMix with Mixing Tokens to handle fee
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