
Exploiting Weak Diffusion of Gimli:
A Full-Round Distinguisher and Reduced-Round

Preimage Attacks

Fukang Liu1,3, Takanori Isobe2,3, Willi Meier4

1 Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China

liufukangs@163.com
2 National Institute of Information and Communications Technology, Japan

3 University of Hyogo, Hyogo, Japan
takanori.isobe@ai.u-hyogo.ac.jp

4 FHNW, Windisch, Switzerland
willimeier48@gmail.com

Abstract. The Gimli permutation was proposed in CHES 2017, which is
distinguished from other well-known permutation-based primitives for its
cross-platform performance. One main strategy to achieve such a goal is
to utilize a sparse linear layer (Small-Swap and Big-Swap), which occurs
every two rounds. In addition, the round constant addition occurs every
four rounds and only one 32-bit word is affected by it. By exploiting
the above two facts, we demonstrate that it is feasible to construct a
distinguisher for the full Gimli permutation with time complexity 2129.
The corresponding technique is named as hybrid zero internal differential
since the internal difference and XOR difference are simultaneously
traced. If the attacker is allowed to know the intermediate state words in
several consecutive rounds as in another recent full-round distinguisher,
we could reduce the time complexity of that distinguisher to 252 from 264

by exploiting a new property of the SP-box and considering a different
setting. Apart from the permutation itself, combined with some new
properties of the SP-box, the weak diffusion can also be utilized to
accelerate the preimage attacks on reduced Gimli-Hash and Gimli-XOF-
128 with a divide-and-conquer method. As a consequence, the preimage
attack on 2-round Gimli-Hash is practical and it can reach up to 5 rounds.
For Gimli-XOF-128, our preimage attack can reach up to 9 rounds. Since
Gimli is included in the second round candidates in NIST’s Lightweight
Cryptography Standardization process, we expect that our analysis can
advance the understanding of Gimli. It should be emphasized that this
work does not threaten the security of the hash scheme or authenticated
encryption scheme built on Gimli.

Keywords: hash function, Gimli, Gimli-Hash, Gimli-XOF, preimage
attack, distinguisher

1 Introduction

Background. The Gimli permutation was proposed by Bernstein et al. in CHES
2017 [3]. As the designers claimed, Gimli is distinguished from other well-
known permutation-based primitives for its cross-platform performance. The
main strategy to improve the performance of Gimli is to process the 384-bit
data in four 96-bit columns independently and make only a 32-bit word swapping
among the four columns every two rounds.

Like the AES and SHA-3 competition, NIST is currently holding a pub-
lic lightweight cryptography competition, aiming at lightweight cryptography
standardization [1]. Since Gimli has been included in the Round 2 candidates
in NIST’s Lightweight Cryptography Standardization process, it is of practical
importance to further investigate its security, especially for its authenticated
encryption (AE) scheme and hash scheme in the submitted Gimli document.

Existing Work. Soon after the publication of Gimli, the security of such a design
strategy received a doubt from Hamburg, who posted a paper [14] to explain how
dangerous such a strategy would be. It should be emphasized that the attack
described in [14] is for an ad-hoc mode and mainly exploits the fact that there
is only occasional 32-bit word communication among the 4 columns. Such an
attack [14] can not be directly applied to the submitted hash scheme or AE
scheme.

Recently, a comprehensive study for reduced Gimli has been made by
Liu-Isobe-Meier [16], covering the collision attack on Gimli-Hash and state-
recovery attack on the AE scheme. These attacks exploited the fact that there
is only occasional communication between the four columns of the Gimli state.
Moreover, several useful properties of the SP-box of Gimli have been revealed
and become the basis of all the attacks in [16]. Recently, powerful (semi-free-
start) collision attacks on reduced Gimli-Hash are published [13], covering a
large number of rounds, though starting from an intermediate round.

For the distinguishing attack on Gimli, several attack vectors have been
taken into account in the Gimli document. In addition, there is a zero-sum
distinguisher for 14-round Gimli permutation obtained by using the algebraic
degree evaluation based on bit-based division property [8], though with a rather
high time complexity of 2351. We will follow the work in [16] and describe the
distinguishing attack on the Gimli permutation and the preimage attacks on the
hash schemes built on Gimli.

Difficulty of Cryptanalysis. For Keccak, the algebraic degrees of the round
function and its inverse are 2 and 3, respectively. Benefiting from the low-
degree feature, the so-called zero-sum distinguisher [2] becomes the most
powerful distinguisher for Keccak, which is based on degree evaluation. However,
one disadvantage of this distinguisher is its high data and time complexity
since the algebraic degree is almost exponentially increasing as the number of
rounds increases. For Gimli, due to the recursive way to compute the inverse
of its SP-box, the algebraic degree increases much faster in the backward

2

direction, though the algebraic degree of the round function is 2 in the forward
direction. Such a way to construct the SP-box should prevent a similar zero-
sum distinguisher once successfully applied to Keccak, as shown in [8]. However,
the new features of Gimli are its weak diffusion and high symmetry. Therefore,
instead of evaluating the algebraic degree, whether there is another way to
construct a distinguisher for Gimli similar to the zero-sum distinguisher for
Keccak by exploiting the new features of Gimli is an interesting problem. There
is no existing research in this direction5 and we believe that this problem can
strengthen the understanding of the weak linear layer of Gimli, which is one
main strategy to achieve its cross-platform performance.

Gimli-Hash is based on the well-known sponge structure [5,4], with 128-bit
rate and 256-bit capacity. For such a small rate, it is challenging to devise a
faster preimage attack on Gimli-Hash than the generic one, which requires 2128

time and 2128 memory. This is because the attacker has to utilize at least two
message blocks to match a given 256-bit hash value. In other words, 2n rounds
of the Gimli permutation need to be taken into account to efficiently find a
preimage of n-round Gimli-Hash. Considering the progress in the cryptanalysis of
Keccak [6], even with a relatively large rate, the currently best preimage attacks
can only reach up to 4 rounds [12,17,15]. For Ascon [10], the preimage attack is
much more difficult due to the small rate. As a result, the designers could only
mount a preimage attack [11] on up to 5 rounds of Ascon-XOF-64 with a rather
high time complexity, which is almost close to exhaustive search. Especially, to
demonstrate the efficiency of the new technique called linear structures [12] for
the preimage attack on reduced Keccak, Guo et al. provided a practical preimage
attack on 3-round SHAKE-128 as an extreme example.

Following the research on Keccak and Ascon, we believe it meaningful to
apply our technique to both Gimli-XOF-128 and Gimli-Hash. On the one hand,
it can be used to demonstrate the limit of our technique. On the other hand, a
comparison can be made between Gimli and other primitives regarding preimage
resistance, especially for those selected in the second round in NIST’s Lightweight
Cryptography Standardization process.

Our Contributions. Leveraging the facts that there is little diffusion between
the four columns of the Gimli state in the Gimli permutation and that the
constant addition operation occurs only every four rounds, we can construct a
distinguisher for full 24 rounds of the Gimli permutation by utilizing a new tech-
nique called hybrid zero-internal-differential (ZID) distinguisher. Specifically,
not only the symmetry in each internal state but also the symmetry between
two different internal states generated by the two inputs will be simultaneously
traced. Consequently, we could construct a distinguisher for 18 rounds of Gimli
permutation with two different inputs and time complexity 2, which is further
extended to the full 24 rounds with time complexity 2129 by using 2128 different
input pairs. When constructing a distinguisher as in [13], we could mount a

5 There is an independent work in this direction [13].

3

distinguishing attack on the full-round Gimli permutation with time complexity
of 252.

In addition, the divide-and-conquer method seems to fit well with the
weak linear layer of Gimli. Consequently, we are motivated to develop a
divide-and-conquer method to accelerate the exhaustive search for preimages
of reduced Gimli-Hash and Gimli-XOF-128. For our preimage attack on 5-
round Gimli-Hash, 10 rounds of the Gimli permutation are investigated and
we have to exhaust a message space of size 2256 in less than 2128 time in order to
achieve advantages over the generic preimage attack. For our preimage attack on
9-round Gimli-XOF-128, 9 rounds of the Gimli permutation are investigated and
a message space of size 2128 have to be travsersed in less than 2128 time. Without
a dedicated analysis of the linear layer and SP-box, the above two attacks are
almost impossible. Our results are summarized in Table 1.

Table 1: The analytical results of Gimli, where the attacks in the quantum setting
are omitted.

Target Attack Type Rounds Memory Time Ref.

Permutation distinguisher

14 negligible 2351 [8]
18 negligible 2 Sec. 4.1
21 negligible 265 Sec. 4.2

24 (full round) negligible 2129 Sec. 4.3
24a(full round) negligible 264 [13]
24a(full round) negligible 252 Sec. 4.4

Gimli-Hash preimage
2 232 242.4 Sec. 6
5 265.6 296 Sec. 7

Gimli-XOF-128 preimage
8 270 2104 App. D
9 270 2104 Sec. 8.1

AE scheme state-recovery 9 2190 2192 [16]

Gimli-Hash collision
6 264 264 [16]

12b negligible 296 [13]

Gimli-Hash SFS collisionc 8b negligible 264 [16]

18b 264 296 [13]
a The attacker is allowed to know partial intermediate state words in

several consecutive intermediate rounds.
b An attack starting at an intermediate step, i.e. there is no swap

operation in the first round.
c semi-free-start collision.

Organization. This paper is organized as follows. In section 2, we introduce
the notations, the Gimli permutation, some useful properties of the SP-box , the
hash scheme Gimli-Hash and Gimli-XOF. In section 3, four new properties of
the SP-box will be presented. The distinguishing attack on full Gimli is shown
in section 4. The overview of our preimage attack on reduced Gimli-Hash is

4

described in section 5. Then, we show the preimage attacks on 2 and 5 rounds of
Gimli-Hash in section 6 and section 7, respectively. How to mount the preimage
attack on up to 9 rounds of Gimli-XOF-128 is explained in section 8. Finally,
the paper is concluded in section 9.

2 Preliminaries

In this section, we will present some notations, the description of the Gimli
permutation and its applications to hashing. Meanwhile, some useful properties
of the SP-box discussed in [16] will be introduced as well.

2.1 Notation

1. �, �, ≪, ≫, ⊕, ∨, ∧ represent the logic operations shift left, shift right,
rotate left, rotate right, exclusive or, or, and, respectively.

2. Z[i] represent the (i + 1)-th bit of the 32-bit word Z. where the least
significant bit is the 1st bit and the most significant bit is the 32nd bit.
For example, Z[0] represents the least significant bit of Z.

3. Z[i ∼ j](0 ≤ j < i ≤ 31) represents the (j + 1)-th bit to the (i+ 1)-th bit of
the 32-bit word Z. For example, Z[1 ∼ 0] represents the two bits Z[1] and
Z[0] of Z.

4. A||B represents the concatenation of A and B. For example, if A = 0012
and B = 10012, then A||B = 00110012.

5. 0n represent an all-zero string of length n.
6. SP represents the application of the 96-bit SP-box.
7. r represents the rate part of the Gimli state.
8. c represents the capacity part of the Gimli state.
9. f represents the Gimli permutation.

10. f−1 represents the inverse of Gimli permutation.

2.2 Description of Gimli

Gimli was proposed in CHES 2017 [3] and is a Round 2 candidate in NIST’s
Lightweight Cryptography Standardization process [1]. The Gimli state can be
viewed as a two-dimensional state S = (S[i][j]) (0 ≤ i ≤ 2, 0 ≤ j ≤ 3), where
S[i][j] ∈ F 32

2 , as illustrated in Figure 1.
The Gimli permutation is described in Algorithm 1. As specified in [3], the

permutation is composed of four operations: SP-box, Small-Swap, Big-Swap and
Constant Addition. For simplicity, we denote the SP-box, Small-Swap, Big-Swap
and Constant Addition by SP, S SW, B SW and AC, respectively. Therefore, the
24-round permutation can be viewed as 6 times of the application of the following
sequence of operations:

(SP→ S SW→ AC)→ (SP)→ (SP→ B SW)→ (SP).

5

S[0][0] S[0][1] S[0][2] S[0][3]

S[1][0] S[1][1] S[1][2] S[1][3]

S[2][0] S[2][1] S[2][2] S[2][3]

Fig. 1: The Gimli state

For convenience, denote the internal state after r-round permutation by Sr

and the input state by S0. In other words, we have

S4i SP−→ S4i+0.5 S SW−→ AC−→ S4i+1 SP−→ S4i+2 SP−→S BW−→ S4i+3 SP−→ S4i+4,

where 0 ≤ i ≤ 5. Moreover, the six 32-bit round constants are denoted by ci
(0 ≤ i ≤ 5), where ci = 0x9e377900⊕ (24− 4i).

2.3 SP-box

The SP-box can be viewed as a 96-bit S-Box. Denote the 96-bit input and output
by (IX, IY, IZ) ∈ F 32×3

2 and (OX,OY,OZ) ∈ F 32×3
2 , respectively. Formally, the

following relation holds:

(OX,OY,OZ) = SP (IX, IY, IZ).

(OX,OY,OZ) is computed as follows:

IX ← IX ≪ 24

IY ← IY ≪ 9

OZ ← IX ⊕ IZ � 1⊕ (IY ∧ IZ)� 2

OY ← IY ⊕ IX ⊕ (IX ∨ IZ)� 1

OX ← IZ ⊕ IY ⊕ (IX ∧ IY)� 3

2.4 Linear Layer

The linear layer consists of two swap operations, namely Small-Swap and
Big-Swap. Small-Swap occurs every 4 rounds starting from the 1st round.
Big-Swap occurs every 4 rounds starting from the 3rd round. The illustration of
Small-Swap and Big-Swap can be referred to Figure 2.

2.5 Gimli-Hash

How Gimli-Hash compresses a message is illustrated in Figure 3. Specifically,
Gimli-Hash initializes a 48-byte Gimli state to all-zero. It then reads sequentially

6

Fig. 2: The linear layer, where the left/right part represents S SW/B SW.

S0 S1

⊕

M0

r

f

c

M1

⊕

Mi

Si

c

Sh0 Sh1

f f f

Injection Hash value

Fig. 3: The process to compress the message

through a variable-length input as a series of 16-byte input blocks, denoted by
M0, M1, · · ·.

Each full 16-byte input block is handled as follows:

• XOR the block into the first 16 bytes of the state (i.e. the top row of 4
words).

• Apply the Gimli permutation.

The input ends with exactly one final non-full (empty or partial) block,
having b bytes where 0 ≤ b ≤ 15. This final block is handled as follows:

• XOR the block into the first b bytes of the state.
• XOR 1 into the next byte of the state, position b.
• XOR 1 into the last byte of the state, position 47.
• Apply the Gimli permutation.

After the input is fully processed, a 32-byte hash output is obtained as follows:

• Output the first 16 bytes of the state (i.e. the top row of 4 words), denoted
by H0.

• Apply the Gimli permutation.
• Output the first 16 bytes of the state (i.e. the top row of 4 words), denoted

by H1.

As depicted in Figure 3, the state after Mi (i ≥ 0) is injected is denoted by Si

and the 256-bit hash value is the concatenation of (Sh0[0][0], Sh0[0][1], Sh0[0][2],
Sh0[0][3], Sh1[0][0], Sh1[0][1], Sh1[0][2], Sh1[0][3]). Formally, the following rela-
tions hold:

S0 = IV ⊕ (M0||0256),

Si+1 = f(Si)⊕ (Mi||0256) (i ≥ 0),

7

where IV is the initial state.
In our preimage attack on Gimli-Hash, two consecutive message blocks will be

utilized. To distinguish the states where different message blocks are processed,
we further introduce the following notations: When processing Mi, denote the
internal state after r-round permutation by Sr

i and the input state by S0
i . In

other words, we have

S4j
i

SP−→ S4j+0.5
i

S SW−→ AC−→ S4j+1
i

SP−→ S4j+2
i

SP−→S BW−→ S4j+3
i

SP−→ S4j+4
i ,

where 0 ≤ j ≤ 5 and i ≥ 0.

Gimli-XOF In addition to Gimli-Hash, another application of the Gimli
permutation called ”extendable one-way function” (Gimli-XOF) is specified
in the submitted Gimli document [3]. For completeness, we briefly introduce
the construction of Gimli-XOF recommended by the designers for lightweight
applications.

Construction. At the squeezing phase, different from Gimli-Hash which gener-
ates a fixed-length output of 32 bytes, Gimli-XOF works as follows to generate
t bytes of output:

1. Concatenate d t
16e blocks of 16 bytes, each of which is obtained by extracting

the first 16 bytes of the state and then applying the Gimli permutation.
2. Truncate the obtained 16d t

16e bytes to t bytes.

At the absorbing phase, the so-called two-way fork [3] is adopted, as specified
below:

1. Read the message byte by byte (imaging that there is a device). Xor the
byte at the current position and then increase the current position. If the
current position exceeds the end of the block (each block can absorb at most
16 bytes per time), apply the permutation and set the current position back
to the first byte.

2. When reaching the ”end of data”, xor 1 into the state at the current position
and apply the Gimli permutation.

Obviously, the difference between Gimli-Hash and Gimli-XOF at the absorbing
phase exists in the padding rule.

To apply our technique, the parameter t is set as 16. In other words, the Gimli
permutation is used to generate 128 bits of output. For simplicity, Gimli-XOF
with a 128-bit output is denoted by Gimli-XOF-128.

2.6 Properties of the SP-box

Suppose (OX,OY,OZ) = SP (IX, IY, IZ). Several properties have been dis-
cussed in [16] and we list some useful ones for our attacks.

8

Property 1 [16] If (IY ≪ 9)∧ 0x1fffffff = 0, OX will be independent of
IX.

Property 2 [16] A random triple (IY, IZ,OX) is potentially valid with prob-
ability 2−15.5 without knowing IX.

Property 3 [16] Given a random triple (IX,OY,OZ), it is valid with proba-
bility 2−1. Once it is valid, (OX[30 ∼ 0], IY, IZ[30 ∼ 0]) can be determined.

Property 4 [16] Given a random triple (IY, IZ,OZ), (IX,OX,OY) can be
uniquely determined. In addition, a random tuple (IY, IZ,OY,OZ) is valid with
probability 2−32.

Property 5 [16] Suppose the pair (IY, IZ) and q bits of OY are known. Then
t bits of information on IX can be recovered by solving a linear equation system
of size q.

3 New Properties of SP-box

In this section, some new properties of SP-box will be introduced to make our
attacks efficient and reliable.

Property 6 Let (OX ′, OY ′, OZ ′) = SP (IX ′, IY ′, IZ ′). If IY = IY ′ and IZ =
IZ ′, the following relations must hold:

OX[0] = OX ′[0], OX[1] = OX ′[1], OX[2] = OX ′[2].

OY [0]⊕OZ[0] = OY ′[0]⊕OZ ′[0].

Property 7 Let (OX ′, OY ′, OZ ′) = SP (IX ′, IY ′, IZ ′). If OY = OY ′ and
OZ = OZ ′, the following relations must hold:

IX[8] = IX ′[8], IY [23] = IY ′[23].

Property 8 Suppose (x1, y1, z1) = SP (x0, y0, z0) and (x′, y′, z′) = SP (x2, y1, z1).
Given a random value of (y0, z0, y

′, z′), all feasible solutions of (x0, x2) can be
recovered with time complexity of 210.4.

Property 9 Given a random constant value of OX and N random pairs of
(IY, IZ), when N is sufficiently large, the expectation of the number of the
solutions of IX is N .

Due to the length of the proof, the details can be referred to Appendix B.

9

4 Hybrid ZID Distinguisher for Full Gimli

A well-known powerful distinguisher for the Keccak permutation is the so-
called zero-sum distinguisher [2], where the attacker starts from a middle
round and choose a set of values for the intermediate state so that the sum
of the input and output are all zero when computing backward and forward.
In addition, the common differential distinguisher [7] tries to capture some
undesirable behaviour of the output difference for a certain input difference.
Benefiting from the internal differential [18], which has been applied to the
cryptanalysis of Keccak [17,9], we propose a new distinguisher called hybrid
zero-internal-differential (ZID) distinguisher for Gimli, which combines the ideas
from the zero-sum distinguisher [2], differential distinguisher [7] and internal
differential [18]. Specifically, we start from a middle round and choose two
different inputs of a specific format. Then, both the symmetry in each internal
state and the symmetry between two different internal states generated by the
two inputs will be carefully investigated.

input0

Undesirable

property

Underirable

property

⊕

input0

Undesirable

property

Undesirable

property

Undesirable
property

input1

inputi

inputj

⊕ · · ·

· · ·

⊕

input1

⊕
Undesirable

property

input0

input1

backwards forwards

forwards

forwardsbackwards

differential distinguisher

zero-sum distinguisher for Keccak

hybrid ZID distinguisher

input0 property
Underisable

internal differential distinguisher

forwards

Fig. 4: Illustration of the distinguishers

Since two different inputs are taken into account, similar to the conventional
differential attack, if a specific configuration between two different outputs holds
with a probability higher than that for a random permutation, a distinguisher
can be constructed to distinguish the target permutation from a random one.

10

4.1 Deterministic Hybrid ZID Distinguisher for 18-Round Gimli

We begin with the hybrid ZID distinguisher for 18 rounds of the Gimli
permutation, which will be basis of the distinguisher for full Gimli. Such a
distinguisher only requires 2 different inputs and 2 queries to the 18-round Gimli
permutation.

Consider two different values (S9, S′9), which satisfy the following conditions:

S9[0][0]⊕ S9[0][2] = c2,

S9[1][0] = S9[1][2],

S9[2][0] = S9[2][2],

S9[0][1] = S9[0][3],

S9[1][1] = S9[1][3],

S9[2][1] = S9[2][3],

S′9[0][0] = S9[0][2],

S′9[0][2] = S9[0][0],

S′9[1][0] = S′9[1][2] = S9[1][2],

S′9[2][0] = S′9[2][2] = S9[2][2],

S′9[0][1] = S′9[0][3] = S9[0][3],

S′9[1][1] = S′9[1][3] = S9[1][3],

S′9[2][1] = S′9[2][3] = S9[2][3],

(1)

where c2 is the round constant used to compute S9 and S′9 in the Gimli
permutation.

As illustrated in Figure 14 and Figure 15, we can trace the evolutions of the
internal difference in both directions for S9 and S′9, respectively. The following
XOR difference between S17 and S′17 can be derived:

S17[1][1]⊕ S′17[1][3] = 0,

S17[2][1]⊕ S′17[2][3] = 0,

S17[1][3]⊕ S′17[1][1] = 0,

S17[2][3]⊕ S′17[2][1] = 0.

In addition, we have the following relations inside (S0.5, S′0.5):

S0.5[1][0] = S0.5[1][2],

S0.5[2][0] = S0.5[2][2],

S′0.5[1][0] = S′0.5[1][2],

S′0.5[2][0] = S′0.5[2][2].

11

Consequently, according to Property 6, the following 8 relations always hold
for (S18,S′18).

S18[0][1][0] = S′18[0][3][0],

S18[0][1][1] = S′18[0][3][1],

S18[0][1][2] = S′18[0][3][2],

S18[1][1][0]⊕ S18[2][1][0] = S′18[1][3][0]⊕ S′18[2][3][0],

S′18[0][1][0] = S18[0][3][0],

S′18[0][1][1] = S18[0][3][1],

S′18[0][1][2] = S18[0][3][2],

S′18[1][1][0]⊕ S′18[2][1][0] = S18[1][3][0]⊕ S18[2][3][0].

In addition, according to Property 7, the following 4 relations always hold for
(S0,S′0):

S0[0][0][8] = S0[0][2][8],

S0[1][0][23] = S0[1][2][23],

S′0[0][0][8] = S′0[0][2][8],

S′0[1][0][23] = S′0[1][2][23].

(2)

As a result, one could construct a distinguisher for 18 rounds of the
Gimli permutation, whose data and time complexity are both 2. Such a 18-
round distinguisher has been experimentally verified. Note that for a random
permutation, the 12 bit relations in (S18,S′18) and (S0,S′0) hold with a
probability of 2−12.

4.2 Probabilistic Hybrid ZID Distinguisher for 21-Round Gimli

Observing the above distinguisher on 18-round Gimli, it can be found that
the unknown relation between (S17[0][1], S17[0][3]) and (S′17[0][1], S′17[0][3])
prevents a longer distinguisher. Thus, the attacker can impose conditions on their
relation to obtain a longer distinguisher. Consider the case when the following
conditions on (S17[0][1], S17[0][3]) and (S′17[0][1], S′17[0][3]) hold.{

S17[0][1] = S′17[0][3],

S17[0][3] = S′17[0][1].
(3)

In this way, under the framework of the 18-round distinguisher, the following
relation between S17 and S′17 holds:

S17[0][1] = S′17[0][3],

S17[1][1] = S′17[1][3],

S17[2][1] = S′17[2][3],

S17[0][3] = S′17[0][1],

12

S17[1][3] = S′17[1][1],

S17[2][3] = S′17[2][1].

S
17

S
18

S
19

S
20

S
20.5

S
21

A28

B28

C28

A29

B29

C29

SP SP

B SW

SP

SP

S SW

AC

A34

B34

C34

A35

B35

C35

A37

B36

C36

A36

B37

C37

A38

B38

C38

A39

B39

C39

A40

B40

C40

A41

B41

C41

A∗

40

B40

C40

A41

B41

C41

SP SP

B SW

SP

SP

S SW

AC

S
′17

S
′18

S
′19

S
′20

S
′20.5

S
′21

A29

B29

C29

A28

B28

C28

A35 A34

B35

C35

B34

C34

A37

B36

C36

A36

B37

C37

A39

B39

C39

A38

B38

C38

A40

B40

C40

A41

B41

C41

A∗

41

B41

C41

A40

B40

C40

Fig. 5: The ZID distinguisher for 21-Round Gimli

As shown in Figure 5, by tracing the evolution of the internal difference and
XOR difference for such a pair of (S17, S′17), one could obtain the following
relations between S21 and S′21.

S21[0][0] = S′21[0][3]⊕ c4,
S21[1][1] = S′21[1][3],

S21[2][1] = S′21[2][3],

S21[0][3] = S′21[0][0]⊕ c4,
S21[1][3] = S′21[1][1],

S21[2][3] = S′21[2][1].

(4)

For a random permutation, the above 32 × 6 = 192 bit relations hold with
probability 2−192. However, by choosing a pair of (S9,S′9) as in the 18-round
distinguisher, these 192 bit relations hold with probability 2−64. Specifically, for
the 64 bit relations in Equation 3, since (S17[0][1], S17[0][3]) and (S′17[0][1],

13

S′17[0][3]) only depend on (S13[1][0], S13[2][0], S13[3][0], S13[0][2], S13[1][2],
S13[3][2]) and (S′13[1][0], S′13[2][0], S′13[3][0], S′13[0][2], S′13[1][2], S′13[3][2]) and
there are four times of the application of the SP-box from S13 to S17, it can
be assumed that each of 64 bit relations is independent, i.e. they hold with
probability 2−64. Consequently, for a random pair (S9,S′9) chosen in the same
way as in the 18-round distinguisher, if the computed values of (S17, S′17) satisfy
the 64 bit relations displayed in Equation 3, the 192 bit relations in Equation 4
must hold, thus distinguishing the 21-round Gimli permutation from a random
permutation.

Complexity Evaluation. According to the construction of the pair of (S9, S′9),
there are in total 295+96 = 2191 possible pairs. Therefore, by testing 264

random pairs, one could expect to obtain an output pair of (S21, S′21) satisfying
Equation 4 in the forward direction. For the backward direction, any pair
of (S0, S′0) will satisfy Equation 2. Therefore, the data complexity and time
complexity of our distinguisher for 21 rounds of the Gimli permutation are both
265. It should be emphasized that the 192 bit relations in Equation 4 hold with
probability 2−192 for a random permutation.

4.3 Probabilistic Hybrid ZID Distinguisher for Full Gimli

In the same way as the extension from the 18-round distinguisher to the 21-round
one, we could extend the 21-round distinguisher to the full round. Similarly, one
could observe that the main obstacle to prevent a longer distinguisher exists
in the relations between (S21[0][1], S21[0][3]) and (S′21[0][1], S′21[0][3]). If the
64 conditions on (S21[0][1], S21[0][3]) and (S′21[0][1], S′21[0][3]) as shown in
Equation 5 hold, the 21-round distinguisher can then be extended to the full
Gimli permutation: {

S21[0][1] = S′21[0][3],

S21[0][3] = S′21[0][1].
(5)

Specifically, by choosing a pair of (S9, S′9) in a same way as in the 18-round
distinguisher, once the relations as shown in Equation 3 and Equation 5 hold,
the following relations on (S21, S′21) will hold:

S21[0][1] = S′21[0][3],

S21[1][1] = S′21[1][3],

S21[2][1] = S′21[2][3],

S21[0][3] = S′21[0][1],

S21[1][3] = S′21[1][1],

S21[2][3] = S′21[2][1].

As shown in Figure 6, by tracing the internal difference and XOR difference
for such a pair of (S21, S′21), the following 192 bit relations will exist in

14

S
21

S
22

S
23

S
24

A42

B40

C40

A43

B41

C41

SP SP

B SW

SPA44

B44

C44

A45

B45

C45

A47

B46

C46

A46

B47

C47

A48

B48

C48

A49

B49

C49

SP SP

B SW

SP

S
′21

S
′22

S
′23

S
′24

A43

B41

C41

A42

B40

C40

A45 A44

B45

C45

B44

C44

A47

B46

C46

A46

B47

C47

A49

B49

C49

A48

B48

C48

Fig. 6: The ZID distinguisher for full Gimli

(S24, S′24):

S24[0][1] = S′24[0][3],

S24[1][1] = S′24[1][3],

S24[2][1] = S′24[2][3],

S24[0][3] = S′24[0][1],

S24[1][3] = S′24[1][1],

S24[2][3] = S′24[2][1].

(6)

Similar to the 21-round distinguisher, for a random permutation, the 192 bit
relations shown in Equation 6 will hold with probability 2−192. However, by
choosing a pair of (S9, S′9) as in the 18-round distinguisher, based on a similar
assumption in the 21-round distinguisher for bit conditions, these relations will
hold with probability 2−64−64 = 2−128, i.e. the 128 bit relations in Equation 3
and Equation 5 hold, thus distinguishing the full Gimli permutation from a
random one.

Complexity Evaluation. Since there are in total 2191 pairs of (S9, S′9) in our
construction, one could expect an output pair of (S24, S′24) satisfying Equation 6
in the forward direction after testing 2128 random pairs of (S9, S′9), while
Equation 6 holds with probability 2−192 for a random permutation. In the
backward direction, any pair of (S0, S′0) will satisfy Equation 2. Therefore, the
data complexity and time complexity of our distinguisher for the full Gimli
permutation are both 2129.

Remark. Although such a distinguisher cannot be a threat for the AE or hash
scheme of Gimli, it is the first attack on full Gimli. In addition, the ratio of
the time complexity of our distinguisher to the whole value space of the Gimli
state is 2129−384 = 2−255, which is much smaller than that of the zero-sum
distinguisher for 24-round (full) Keccak [19] with 1600-bit state, i.e. 21575−1600 =

15

2−25. Moreover, it should be mentioned that our distinguisher mainly exploits the
features of the linear layer and the constant addition operation, where the linear
layer of Gimli is a main strategy to help it outperform other primitives. However,
as shown by our distinguisher, there are unexpected properties underlying such
a design, even if these properties do not lead to an attack on the encryption or
hash mode.

4.4 Discussions on Another Full-Round Distinguisher

There is another independent work [13] to construct a distinguisher for the full-
round Gimli permutation with a rather low time complexity of 264. It can be
found that both the distinguishers exploit a very similar structure underlying
the Gimli permutation. However, different techniques are utilized to preserve the
symmetry of the internal states.

The feature of our distinguisher is that there is no need to know extra
intermediate state words after the starting point is fixed, i.e. we start from S9

and therefore cannot know the actual values of Si where i ∈ {i|1 ≤ i ≤ 23, i 6= 9}.
Although such a constraint is not so reasonable, we believe that a distinguisher
under this constraint will give more insights into the permutation itself. Our
aim is to study the details of the permutation and to capture undesirable
properties that should not exist in an ideal permutation. Specifically, by only
constraining the format of (S9, S′9), we can directly derive that there will be
2 deterministic linear relations inside S0 and S′0, respectively. In addition, in
the forward direction, a special format will exist in (S24, S′24) probabilistically
with a significant bias. Obviously, for an ideal permutation, there should be no
such a long evolution for such a format, even probabilistically with a bias. For
example, as in [13], without the message modifications, the symmetry inside S24

will hold with probability 2−96 if propagating the format of S9 (Eq. 1) in the
forward direction, i.e. without bias. Therefore, the propagation of the format
identified in this paper can already distinguish the Gimli permutation from an
ideal one and it can be called as a distinguisher. Our distinguisher should not
be interpreted as finding a tuple (S0, S′0, S24, S′24) in an efficient way as there
are only 4 bit conditions on (S0, S′0) and one can finish it with a few queries.

As for the distinguisher in [13], the aim is to find a special pair of (S0, S24),
where the first column and the third column of S0 are the same while the
second column and the forth column of S24 are the same. To achieve this goal,
starting from S9 satisfying Eq. 1, 8 consecutive rounds are controlled and several
intermediate state words are pre-computed with a divide-and-conquer manner
in order to preserve the symmetries in S13 and S17, i.e. finding an assignment for
some internal state words to fulfill the conditions that can preserve the symmetry.
In this way, the format of S24 will hold with probability 2−32. Since the last
two rows of the first column and the third column of S0.5 are the same if S9

satisfies Eq. 1 (see Figure 14), the probability that the first column and the third
column of S0 are the same is 2−32, i.e. when S0.5[0][0] = S0.5[0][2]. Since there
are sufficient degrees of freedom, the attacker can find such a required pair of
(S0, S24) in 264 time.

16

Improving the distinguisher. By controlling the 8 consecutive rounds as in [13],
the 96 bit conditions on S24 will hold with probability 2−32. The underlying idea
of the distinguisher in [13] is that they could find the required pair of (S0, S24)
with only 264 queries, while the generic time complexity should be 296 for a
random permutation since there are 96 bit conditions on S0 and S24, respectively.
Therefore, this is called a distinguisher for the full-round Gimli permutation.
Obviously, this distinguisher for the full-round Gimli permutation is interpreted
in a different way from ours and it seems to be much more acceptable by the
community. However, to construct a distinguisher in this way, there is indeed
no need to constrain 96 bit conditions on S0. Specifically, we consider a slightly
different requirement for the pair of (S0, S24) where only partial bits in the first
column and the third column of S0 are the same while the 96 bit conditions on
S24 remain the same. Supposing there are g(< 96) bit conditions on S0 in the
new setting, the generic time complexity to find such a pair would be 2g. If we
could find such a pair in less than 2g time, we could construct a distinguisher as
well.

First, let us introduce a new property of the SP-box.

Property 10 Let (OX,OY,OZ) = SP (IX, IY, IZ) and (OX ′, OY ′, OZ ′) =
SP (IX ′, IY ′, IZ ′). If OY = OY ′ and OZ = OZ ′, supposing there are n(< 32)
consecutive bits starting from the least significant bit of OX and OX ′ satisfying
OX[i] = OX ′[i] (0 ≤ i ≤ n − 1), there will be 2 + 3n linear relations inside
(IX, IY, IZ) and (IX ′, IY ′, IZ ′), as specified below:

IX[8] = IX ′[8],

IY [23] = IY ′[23],

IZ[i] = IZ ′[i],

IX[9 + i] = IX ′[9 + i],

IY [24 + i] = IY ′[24 + i].

Proof. According to Property 7, we can know that IX[8] = IX ′[8] and IY [23] =
IY ′[23] always holds when OY = OY ′ and OZ = OZ ′. Consider the specification
of the SP-box as follows:

IX ← IX ≪ 24

IY ← IY ≪ 9

OZ ← IX ⊕ IZ � 1⊕ (IY ∧ IZ)� 2

OY ← IY ⊕ IX ⊕ (IX ∨ IZ)� 1

OX ← IZ ⊕ IY ⊕ (IX ∧ IY)� 3.

Therefore, we can derive that

OX[0] = OX ′[0]⇒ IZ[0]⊕ IY [23] = IZ ′[0]⊕ IY ′[23]⇒ IZ[0] = IZ ′[0].

⇓

17

OZ[1] = OZ ′[1]⇒ IX[9] = IX ′[9].

⇓
OY [1] = OY ′[1]⇒ IY [24] = IY ′[24].

⇓
OX[1] = OX ′[1]⇒ IZ[1]⊕ IY [24] = IZ ′[1]⊕ IY ′[24]⇒ IZ[1] = IZ ′[1].

⇓
OZ[2] = OZ ′[2]⇒ IX[10] = IX ′[10].

⇓
OY [2] = OY ′[2]⇒ IY [25] = IY ′[25].

⇓
· · ·

⇓
OX[n− 1] = OX ′[n− 1]⇒ IZ[n− 1] = IZ ′[n− 1].

⇓
OZ[n] = OZ ′[n]⇒ IX[9 + n− 1] = IX ′[9 + n− 1].

⇓
OY [n] = OY ′[n]⇒ IY [24 + n− 1] = IY ′[24 + n− 1],

where the indices are considered within modulo 32. When n = 32, it is obvious
that IX = IX ′, IY = IY ′ and IZ = IZ ′. For n < 32, we can therefore obtain n
new linear relations inside (IZ, IZ ′), (IX, IX ′) and (IY, IY ′), respectively. As a
result, there will be 3n+2 linear relations inside (IX, IY, IZ) and (IX ′, IY ′, IZ ′)
under the specified conditions for n < 32.

Since S0.5[1][0] = S0.5[1][2] and S0.5[2][0] = S0.5[2][2], when S0.5[0][0][i] =
S0.5[0][2][i] (0 ≤ i ≤ n − 1), according to Property 10, we can derive that
S0[0][0][8] = S0[0][2][8], S0[1][0][23] = S0[1][2][23], S0[2][0][i] = S0[2][2][i],
S0[0][0][9+i] = S0[0][2][9+i] and S0[1][0][24+i] = S0[1][2][24+i] (0 ≤ i ≤ n−1),
where the indices are considered within modulo 32. Therefore, by choosing
n = 20, there will be 62 linear relations inside S0, which only requires that
S0.5[1][0] = S0.5[1][2], S0.5[2][0] = S0.5[2][2] and S0.5[0][0][i] = S0.5[0][2][i]
(0 ≤ i ≤ 19), which holds with probability 2−20 when S9 satisfies Eq. 1. Thus,
by running the algorithm to fulfill the conditions on S13 and S17 as in [13], it
only costs 232+20 = 252 time to find such a newly required pair of (S0, S24),
while it requires 262 time for a random permutation, thus having a significant
bias. Therefore, we could construct a distinguisher with time complexity 252.

5 Overview of Preimage Attacks on Gimli-Hash

As can be observed from the hybrid ZID distinguisher for full Gimli, we take
many advantages of the weak diffusion to construct the full-round distinguisher.
Different from Keccak [6], in which the diffusion is strong, the diffusion of Gimli

18

is rather weak. As pointed out by the designers, the avalanche effect requires 10
rounds of Gimli permutation. Exploiting such a feature of the Gimli permutation,
the divide-and-conquer method may work well to accelerate the preimage finding
procedure. In this section, we describe how the generic preimage attack on
Gimli-Hash works and give an overview of our preimage attack on reduced
Gimli-Hash.

5.1 The Generic Preimage Attack on Gimli-Hash

The generic preimage attack on Gimli-Hash is based on a meet-in-the-middle
method, as depicted in Figure 7. Specifically, consider five message blocks (M0,
M1, M2, M3, M4) and utilize them to find a preimage for a given hash value. In
other words, consider the following sequence of state transitions:

S0
f−→ S1

f−→ S2
f−→ S3

f−→ S4
f−→ Sh0

f−→ Sh1. (7)

Given a hash value, (Sh0[0][0], Sh0[0][1], Sh0[0][2], Sh0[0][3], Sh1[0][0], Sh1[0][1],
Sh1[0][2], Sh1[0][3]) become known. As a result, the generic preimage attack can
be described as follows:

Phase 1: Randomly choose a value for the 256-bit capacity part of Sh0 and
compute the corresponding Sh1. Repeat it until the computed 128-bit
rate part of Sh1 is consistent with that in the given hash value.

Phase 2: At this phase, the full state of Sh0 becomes known. Thus, randomly
choosing 2128 values for (M3,M4) by taking the padding in S4 into
account, compute backward the corresponding 2128 values of the
capacity part of S2 and store them in a table denoted by T0.

Phase 3: Randomly choose a value for (M0,M1) and compute forward the
corresponding value of the capacity part of S2. Repeat it until the
computed value is in T0 and record the corresponding (Sh0, M0, M1,
M2, M3).

Phase 4: Compute S′2 = f(S1) and S2 = f−1(S3). Then, M2||0256 = S2 ⊕ S′2.

f f f−1 f−1 f−1 f

S0 S1 S2 S3 S4 Sh1

M0 M1 M2 M3 M4

Sh0

rate part

match

Phase 2 Phase 1Phase 3

Fig. 7: Framework of the generic preimage attack

19

Complexity Evaluation. Obviously, the time complexity at Phase 1 is 2128 since a
128-bit value needs to be matched. For Phase 2, the time and memory complexity
are both 2128. At Phase 3, the time complexity is 2128 since 2256 pairs need to
be generated in order to match the 256-bit capacity part of S2. Consequently,
the time and memory complexity of the generic attack on Gimli-Hash are both
2128.

5.2 The Preimage Attack with Divide-and-Conquer Methods

Our attack procedure is slightly different from the generic one. To gain
advantages, Phase 1 has to be finished in less than 2128 time. In addition, at
Phase 2, we only choose 1 random value for (M3,M4) by considering the padding
in S4. In this way, the capacity part of S2 is fixed and only takes one value.
Then, at Phase 3, instead of only choosing 2128 values for (M0,M1), our aim
is to exhaust all the 2256 possible values of (M0,M1) in less than 2128 time to
match the 256-bit capacity part of S2 obtained at Phase 2. Finally, compute M2

in the same way as in the generic attack.

Since (M0,M1) can take 2256 possible values, it is expected that Phase 2 is
only performed once or twice. Obviously, the main obstacle in our method is
how to achieve Phase 1 and Phase 3 efficiently, i.e. in less than 2128 time. In
the following description of our preimage attacks on 2 and 5 rounds of Gimli-
Hash, Phase 1 is called Finding a Valid Capacity Part and Phase 3 is called
Matching the Capacity Part. If the two phases can be finished in less than
2128 time, advantages over the generic attack are obtained.

Specifically, when the Gimli permutation is reduced to n rounds, Finding a
Valid Capacity Part is equivalent to the following problem:

Given the rate part of S0 and Sn (n ≤ 24), how to find a solution of the
capacity part of S0 to match the given rate part of Sn?

For Matching the Capacity Part, since two message blocks need to be
considered, we distinguish the states by S0 and S1 as depicted in Figure 3 for
convenience. Then, it is equivalent to the following problem:

Given the capacity part of S0
0 and Sn

1 , how to find a solution of the rate part
of S0

0 and S0
1 to match the given capacity part of Sn

1 ?

6 The Preimage Attack on 2-Round Gimli-Hash

In this section, how to mount a preimage attack on 2-round Gimli-Hash with a
practical time complexity is given. As described above, we only focus on Phase
1 and Phase 3. It should be emphasized that like the generic preimage attack,
our preimage attack is over 5 message blocks.

20

6.1 Finding a Valid Capacity Part

For a better understanding of our attack, it is better to refer to Figure 8. The
corresponding attack procedure is described as follows.

SP

S SW

AC

SP

S0 S0.5 S1 S2

Known Guessed Known after guess

Fig. 8: Generate a valid capacity part for the preimage attack on 2-round Gimli-
Hash

Step 1: Choose a random value for (S0[1][0], S0[2][0]) and compute (S1[0][1],
S1[1][0], S1[2][0]). Check whether (S1[1][0], S1[2][0], S2[0][0]) is valid
based on Property 2. If it is, store (S0[1][0], S0[2][0]) in a table denoted
by T1. Otherwise, choose another value for (S0[1][0], S0[2][0]) and repeat
this step until about 232 random values are tried.

Step 2: Similarly, choose a random value for (S0[1][1], S0[2][1]) and compute
(S1[0][0], S1[1][1], S1[2][1]). Check whether (S1[1][1], S1[2][1], S2[0][1])
is valid based on Property 2. If it is, store (S0[1][1], S0[2][1]) in a table
denoted by T2. Otherwise, choose another value for (S0[1][1], S0[2][1])
and repeat this step until 232 random values are tried.

Step 3: Consider all possible combinations between T1 and T2. For each combina-
tion, (S0[1][0], S0[2][0], S0[1][1], S0[2][1]) are fully known. Therefore, it is
possible to compute (S2[0][0], S2[0][1]) and check whether it is consistent
with the given value. Once a solution of (S0[1][0], S0[2][0], S0[1][1],
S0[2][1]) is found to match (S2[0][0], S2[0][1]), output the solution and
move to Step 4.

Step 4: Similarly, we can first try 232 possible values for (S0[1][2], S0[2][2]) and
store the valid ones which can possibly match S2[0][2] in a table denoted
by T3. Then, try 232 possible values for (S0[1][3], S0[2][3]) and store
the valid ones which can possibly match S2[0][3] in a table denoted
by T4. Finally, exhaust all possible combinations between T3 and T4
and compute the corresponding (S2[0][2], S2[0][3]). Check whether the
computed one is consistent with the given value. If it is, output the
solution of (S0[1][2], S0[2][2], S0[1][3], S0[2][3]) and exit.

Complexity Evaluation. Obviously, the time complexity to compute the table
Ti (i ∈ {1, 2, 3, 4}) is 232 and the memory complexity is 232−15.5 ≈ 217 due to
the effect of Property 2. Since 264 random values of (S0[1][0], S0[2][0], S0[1][1],
S0[2][1]) are used to match the 64-bit (S2[0][0], S2[0][1]), it is expected there will

21

be one combination between T1 and T2 to match (S2[0][0], S2[0][1]). Similarly,
it is expected that there will be one combination between T3 and T4 to match
(S2[0][2], S2[0][3]). Based on Property 2, there will be 2(32−15.5)×2 = 233 possible
combinations between T1 and T2. Similarly, there are 233 combinations between
T3 and T4. Consequently, the time complexity and memory complexity to find a
valid capacity part are 233 and 217+1 = 218, respectively.

6.2 Matching the Capacity Part

S0

0
S0.5

0
S1

0
S2

0

S0

1
S0.5

1
S1

1
S2

1

SP

S SW

AC

SP

SP

S SW

AC

SP

0 0 0 0

0 0 0 0

?

?

?

??

?

?

?

Known Guessed Known after guess

=

0 0 0 0

Fig. 9: Illustration of the preimage attack on 2-round Gimli-Hash

As illustrated in Figure 9, the corresponding procedure to match a given
capacity part by utilizing two message blocks can be described as follows.

Step 1: Guess the value of S0
0 [0][0]. Based on Property 1, (S0

1 [1][0], S0
1 [2][0])

can be uniquely determined. According to Property 8, we can find
all the solutions of (S0

1 [0][0], S1
1 [0][0]) with the knowledge of (S0

1 [1][0],
S0
1 [2][0], S2

1 [1][0], S2
1 [2][0]). Once the solution is obtained, compute the

corresponding S1
1 [0][1] by using (S0

1 [0][0], S0
1 [1][0], S0

1 [2][0]) and store the
values of (S0

0 [0][0], S0
1 [0][0], S1

1 [0][0], S1
1 [0][1]) in a table denoted by T5.

Repeat this step until all 232 values of S0
0 [0][0] are traversed.

Step 2: Similarly, guess the value of S0
0 [0][1] and compute the corresponding

(S0
1 [1][1], S0

1 [2][1]). Based on Property 8, compute all the solutions of
(S0

1 [0][1], S1
1 [0][1]) which can match (S2

1 [1][1], S2
1 [2][1]). Then, compute

the corresponding S1
1 [0][0] by using (S0

1 [0][1], S0
1 [1][1], S0

1 [2][1]). Check
whether the computed (S1

1 [0][0], S1
1 [0][1]) exists in T5. If it does, record

the corresponding tuple (S0
0 [0][0], S0

0 [0][1], S0
1 [0][0], S0

1 [0][1]) and move to
Step 3. Otherwise, repeat guessing S0

0 [0][1] until all 232 values of S0
0 [0][1]

are traversed.
Step 3: Similarly, exhaust all 232 values of S0

0 [0][2] and store the corresponding
solutions of (S0

0 [0][2], S0
1 [0][2], S1

1 [0][2], S1
1 [0][3]) in a table denoted by T6.

Finally, exhaust all 232 values of S0
0 [0][3] and compute the corresponding

22

solutions of (S0
1 [0][3], S1

1 [0][2], S1
1 [0][3]). If the solution of (S1

1 [0][2],
S1
1 [0][3]) also exists in T6, record the corresponding (S0

0 [0][2], S0
0 [0][3],

S0
1 [0][2],)S0

1 [0][3]) and exit.

Complexity Evaluation. At Step 1, all 232 possible values of S0
0 [0][0] need to be

traversed. For each value, Property 8 is utilized to compute (S0
1 [0][0], S0

1 [0][0]).
Therefore, the time complexity at Step 1 is 232+10.4 = 242.4. Moreover, it is
expected that there will be 232 elements in T5 since each guess of S0

0 [0][0] can
correspond to 1 solution of (S0

1 [0][0], S1
1 [0][0]) on average based on Property 8.

Similarly, the time complexity at Step 2 is also 242.4. Since there are 232 solutions
of (S1

1 [0][0], S1
1 [0][1]) in T5 and there will be another 232 solutions of (S1

1 [0][0],
S1
1 [0][1]) at Step 2, it is expected there will be a match in (S1

1 [0][0], S1
1 [0][1]) after

traversing all 232 values of S0
0 [0][1]. Similarly, the time complexity and memory

complexity at Step 3 are 242.4 and 232, respectively. In a word, considering
the complexity to find a valid capacity part, the time complexity and memory
complexity of the preimage attack on 2-round Gimli-Hash are 242.4 and 232,
respectively. The corresponding verification of our method can be found in
Appendix C.

7 The Preimage Attack on 5-Round Gimli-Hash

In this section, how to mount the preimage attack on 5-round Gimli-Hash will
be introduced. Similarly, we only focus on Finding a Valid Capacity Part
and Matching the Capacity Part.

7.1 Finding a Valid Capacity Part

As illustrated in Figure 10, the corresponding procedure can be divided into 4
steps, as shown below.

S0 S0.5 S1 S2 S3

S4S4.5S5

SP

S SW

AC

SP SP

B SW

SP

SP

S SW

AC

?

?

?

Known

Known after guessing

Match

Known after guessing

Fig. 10: Generate a valid capacity part for the preimage attack on 5-round Gimli-
Hash

23

Step 1: Randomly choose a value for (S0[1][0], S0[2][0], S0[1][1], S0[2][1]) and
compute the corresponding (S3[0][2], S3[0][3], S3[1][0], S3[2][0], S3[1][1],
S3[2][1]). Store the values of (S0[1][0], S0[2][0], S0[1][1], S0[2][1], S3[0][2],
S3[0][3], S3[1][0], S3[2][0], S3[1][1], S3[2][1]) in a table denoted by T7.
Repeat this step for 264 random values of (S0[1][0], S0[2][0], S0[1][1],
S0[2][1]).

Step 2: Randomly choose a value for (S5[1][0], S5[2][0], S5[1][1], S5[2][1]) and
compute the corresponding (S3[0][0], S3[0][1], S3[1][0], S3[2][0], S3[1][1],
S3[2][1]). Check whether the computed (S3[1][0], S3[2][0], S3[1][1],
S3[2][1]) is in T7. If it is, record the corresponding value of (S5[1][0],
S5[2][0], S5[1][1], S5[2][1], S3[0][0], S3[0][1], S3[0][2], S3[0][3]) and move
to Step 3. Otherwise, repeat trying different random values for (S5[1][0],
S5[2][0], S5[1][1], S5[2][1]).

Step 3: It should be emphasized that (S0[1][0], S0[2][0], S0[1][1], S0[2][1],
S3[0][0], S3[0][1], S3[0][2], S3[0][3]) is a fixed value at this step. Randomly
choose a value for (S5[1][2], S5[2][2]) and compute the corresponding
(S3[0][2], S3[1][2], S3[2][2]). Check whether the computed S3[0][2] is
consistent with the one obtained at Step 2. If it is not, repeat choosing
a random value for (S5[1][2], S5[2][2]). If it is, continue computing the
corresponding (S0.5[0][3], S0.5[1][2], S0.5[2][2]) with the knowledge of
(S3[0][0], S3[1][2], S3[2][2]). According to Property 3, (S0[0][2], S0.5[1][2],
S0.5[2][2]) is valid with probability 2−1. Once it is valid, compute
(S0.5[0][2][30 ∼ 0], S0[1][2], S0[2][2][30 ∼ 0]) and store the value of
(S5[1][2], S5[2][2], S0.5[0][2][30 ∼ 0], S0.5[0][3]) in a table denoted by
T8. Repeat this step until all the 264 values of (S5[1][2], S5[2][2]) are
traversed.

Step 4: Similar to Step 3, guess (S5[1][3], S5[2][3]) and compute (S3[0][3],
S3[1][3], S3[2][3]). If the computed S3[0][3] is not consistent with the one
obtained at Step 2, guess another value. Otherwise, continue computing
(S0.5[0][2], S0.5[1][3], S0.5[2][3]). Based on Property 3, we can compute
(S0.5[0][3][30 ∼ 0], S0[1][3], S0[2][3][30 ∼ 0]) to match S0[0][3]. Then,
check whether the computed (S0.5[0][2][30 ∼ 0], S0.5[0][3][30 ∼ 0]) is
contained in T8. If it is, record (S5[1][2], S5[2][2], S5[1][3], S5[2][3])
and exit. Repeat this step until all 264 values of (S5[1][3], S5[2][3]) are
traversed.

Complexity Evaluation. At Step 1, the time and memory complexity are both
264. At Step 2, it is necessary to match a 256-bit value of (S3[1][0], S3[2][0],
S3[1][1], S3[2][1]) based on a meet-in-the-middle method. Therefore, it is required
to try 264 possible values of (S5[1][0], S5[2][0], S5[1][1], S5[2][1]). Thus, the time
complexity at Step 2 is also 264. At step 3, 264 values of (S5[1][2], S5[2][2])
are traversed and each of it will be first filtered by S3[0][2] and then filtered
according to Property 3. Thus, it is expected there will be 231 elements in T8.
Similarly, at Step 4, there will be 231 valid guesses of (S5[1][3], S5[2][3]) left after
filtering. For each valid guess, we need to manage a match in the 62-bit value of
(S0.5[0][2][30 ∼ 0], S0.5[0][3][30 ∼ 0]). Since there are in total 262 possible pairs,

24

one can expect one match. Consequently, the time and memory complexity to
find a valid capacity part are both 264.

7.2 Matching the Capacity Part

Before describing how to match a given capacity part by utilizing two message
blocks, we will pre-compute some tables in order to reduce the whole complexity.

Pre-computing Tables. As shown in Figure 13 in Appendix E, based on
Property 1, the following facts can be observed:

• (S0
1 [1][0], S0

1 [2][0], S0
1 [1][2], S0

1 [2][2]) only depend on (S0
0 [0][0], S0

0 [0][2]), thus
taking at most 264 possible values.

• (S0
1 [1][1], S0

1 [2][1], S0
1 [1][3], S0

1 [2][3]) only depend on (S0
0 [0][1], S0

0 [0][3]), thus
taking at most 264 possible values.

Consequently, it is feasible to construct some mapping tables via pre-
computation. Specifically, exhaust all 264 values of (S0

0 [0][0], S0
0 [0][2]) and

compute the corresponding (S0
1 [1][0], S0

1 [2][0], S0
1 [1][2], S0

1 [2][2]). Store the 264

values of (S0
0 [0][0], S0

0 [0][2], S0
1 [1][0], S0

1 [2][0], S0
1 [1][2], S0

1 [2][2]) in a table denoted
by T9, where the row number represents the value of (S0

1 [1][0] + S0
1 [2][0]× 232).

Similarly, by exhausting all 264 values of (S0
0 [0][1], S0

0 [0][3]), we can compute
all the 264 values of (S0

0 [0][1], S0
0 [0][3], S0

1 [1][1], S0
1 [2][1], S0

1 [1][3], S0
1 [2][3]) and

store them in a table denoted by T10, where the row number represents the value
of (S0

1 [1][1] + S0
1 [2][1]× 232).

Matching the Capacity Part. After preparing the tables, matching the capacity
part by utilizing two message blocks can be described as follows. The corre-
sponding illustration can be referred to Figure 13 in Appendix E.

Step 1: Guess (S5
1 [0][1], S5

1 [0][3]) and compute the corresponding (S0.5
1 [0][1],

S0.5
1 [0][3], S0.5

1 [1][0], S0.5
1 [2][0], S0.5

1 [1][2], S0.5
1 [2][2]). If all the 264 values

of (S5
1 [0][1], S5

1 [0][3]) are traversed, move to Step 3. Otherwise, move to
Step 2.

Step 2: Further guess S0.5
1 [0][0] and compute (S0

1 [1][0], S0
1 [2][0]). Retrieve the

corresponding values of (S0
0 [0][0], S0

0 [0][2], S0
1 [1][2], S0

1 [2][2]) from the
(S0

1 [1][0] + S0
1 [2][0]× 232)-th row of T9. Based on Property 4, verify the

correctness of the tuple (S0
1 [1][2], S0

1 [2][2], S0.5
1 [1][2], S0.5

1 [2][2]). If it is
valid, compute the corresponding S0.5[0][2] according to Property 4 and
store the corresponding values of (S0

0 [0][0], S0
0 [0][2], S5

1 [0][1], S5
1 [0][3],

S0.5
1 [0][0], S0.5

1 [0][1], S0.5
1 [0][2], S0.5

1 [0][3]) in a table denoted by T11.
Otherwise, try another value of S0.5

1 [0][0]. If all the 232 values of S0.5
1 [0][0]

are traversed, go back to Step 1.

25

Step 3: Similarly, exhaust all the 296 values of (S5
1 [0][0], S5

1 [0][2], S0.5
1 [0][1]).

For each of its value, compute the corresponding (S0.5
1 [0][0], S0.5

1 [0][2],
S0
1 [1][1], S0

1 [2][1], S0.5
1 [1][3], S0.5

1 [2][3]). Retrieve (S0
0 [0][1], S0

0 [0][3], S0
1 [1][3],

S0
1 [2][3]) from the (S0

1 [1][1] + S0
1 [2][1] × 232)-th row of T10 and check

the validity of the tuple (S0
1 [1][3], S0

1 [2][3], S0.5
1 [1][3], S0.5

1 [2][3]) based
on Property 4. If it is valid, compute S0.5[0][3] and check whether the
obtained value of (S0.5

1 [0][0], S0.5
1 [0][1], S0.5

1 [0][2], S0.5
1 [0][3]) at Step 3

also exists in T11. If it does, exit and a solution of the rate part of S0
0

and S5
1 is found to match the given capacity part of S5

1 .

Complexity Evaluation. The time complexity at Step 1 is 264 since all the 264

values of (S5
1 [0][1], S5

1 [0][3]) need to be traversed. At Step 2, for each guessed
value of (S5

1 [0][1], S5
1 [0][3]), all the 232 values of S0.5

1 [0][0] will be traversed. After
the 232 values of S0.5

1 [0][0] are traversed, one can expect one valid solution of
(S0.5

1 [0][0], S0.5
1 [0][1], S0.5

1 [0][2], S0.5
1 [0][3]) due to the influence of Property 4.

As a result, Step 2 is will be carried out for 296 times and there will be 264

elements in T11. As for Step 3, since all the 296 values of (S5
1 [0][0], S5

1 [0][2],
S0.5
1 [0][1]) will be traversed and each guessed value is valid with probability of

2−32 based on Property 4, one can expect 264 solutions of(S0.5
1 [0][0], S0.5

1 [0][1],
S0.5
1 [0][2], S0.5

1 [0][3]) in total. Thus, it is expected that there will be one match
between the values of (S0.5

1 [0][0], S0.5
1 [0][1], S0.5

1 [0][2], S0.5
1 [0][3]) obtained at Step

3 and those stored in T11. As for the pre-computation, the time complexity and
memory complexity are 264 and 264+1 = 265, respectively. Consequently, taking
the complexity to find a valid capacity part into account, the time complexity
and memory complexity of the preimage attack on 5-round Gimli-Hash are 296

and 264 × 3 = 265.6, respectively.

8 Preimage Attacks on Round-Reduced Gimli-XOF-128

When the above preimage attack on Gimli-Hash is extended to more rounds,
we are faced with an obstacle caused by the degrees of freedom, i.e. at least
two message blocks are needed and should be traversed in less than 2128 time to
match a given hash value. As can be observed in our method, benefiting from the
weak diffusion of the linear layer of Gimli, we can efficiently exploit the divide-
and-conquer technique to divide the space of two message blocks into several
smaller ones and find solutions in each smaller space via exhaustive search.
Finally, the solutions in each smaller space are combined and further verified
to match the given hash value. When it comes to more rounds, it is difficult
to divide the space of two message blocks into smaller ones. Thus, turning the
exhaustive search into a smaller scale cannot be applied anymore. In addition, to
control two consecutive message blocks when the number of rounds of the Gimli
permutation is reduced to n, the difficulty is almost equivalent to an attack on
2n rounds of the Gimli permutation, by allowing the attacker to control a 128-bit
value in the intermediate state.

To test how far our divide-and-conquer method can go for reduced Gimli,
we consider another application of the Gimli permutation to hashing, namely

26

the ”extendable one-way function”, which has been specified in the submitted
Gimli document. Considering the existing preimage attacks on SHAKE-128 [12]
and Ascon-XOF-64 [11], we believe it meaningful to investigate the preimage
resistance of Gimli-XOF-128. In addition, since the size of one message block is
128 bits when neglecting the padding rule, the attacker only needs to focus on
how to efficiently exhaust one message block rather than two message blocks in
less than 2128 time. In other words, the attack on n rounds of Gimli-XOF-128 is
equivalent to an attack on n rounds of the Gimli permutation.

Similar to the method to turn the 6-round semi-free-start collisions into
collisions in [16], to efficiently mount the preimage attack on reduced Gimli-XOF-
128, some conditions will be added. Specifically, when the target is n rounds of
Gimli, an equivalent problem to finding the preimage of Gimli-XOF-128 can be
described as below:

If
(S0[1][0] ≪ 9) ∧ 0x1fffffff = 0,

(S0[1][1] ≪ 9) ∧ 0x1fffffff = 0,

(S0[1][2] ≪ 9) ∧ 0x1fffffff = 0,

(S0[1][3] ≪ 9) ∧ 0x1fffffff = 0,

(8)

how to find a solution of (S0[0][0], S0[0][1], S0[0][2], S0[0][3]) to match a given
value of (Sn[0][0], Sn[0][1], Sn[0][2], Sn[0][3])?

It should be emphasized that the initial value of Gimli-XOF-128 satisfies
Equation 8. In addition, due to the padding rule, there are at most 2128−8 = 2120

possible values of (S0[0][0], S0[0][1], S0[0][2], S0[0][3]). Therefore, to mount the
preimage attack on n rounds of Gimli-XOF-128, it is expected that 28 different
values of the capacity part of S0 are tried. For each of them, check whether
there is a solution of (S0[0][0], S0[0][1], S0[0][2], S0[0][3]) to match the given
hash value under the conditions as specified in Equation 8.

Consequently, our attack is divided into two phases. The first phase called
Fulfilling Conditions is to collect 28 different values of the capacity part which
can satisfy Equation 8. The second phase called Matching the Rate Part is
to exhaust the 2120 possible values of (S0[0][0], S0[0][1], S0[0][2], S0[0][3]) in
less than 2120 time under the conditions as specified in Equation 8. As will be
shown, the main idea to finish the two tasks is almost the same. Therefore, in
our description, we will start from Matching the Rate Part and then move
to Fulfilling Conditions.

8.1 The Preimage Attack on 9-Round Gimli-XOF-128

Due to the page limit, the preimage attack on 8-round Gimli-XOF-128 can be
referred to Appendix D. The two phases of the preimage attack on 9-round Gimli-
XOF-128 will be described in this section. Different from the preimage attack
on 8-round Gimli-XOF-128, a pre-computed table will be utilized to reduce the

27

whole time complexity. An illustration of our preimage attack on 9-round Gimli-
XOF-128 is shown in Figure 11.

S SW

AC

SP SP

B SW

SP

SP

S SW

AC

SPSP

B SW

SPSP ?

S0 S1 S2 S3 S4

S5S6S7S8S8.5

Known Conditional Guessed Futher guessed Known after guess

SP

Fig. 11: Illustration of the preimage attack on 9-round Gimli-XOF-128

Matching the Rate Part For the given value of (S9[0][0], S9[0][1], S9[0][2],
S9[0][3]), compute the corresponding (S8.5[0][0], S8.5[0][1], S8.5[0][2], S8.5[0][3])
by reversing the AC and S SW operations. Then, pre-compute four mapping
tables as follows:

Constructing T18. Exhaust all 296 possible values of (S7[0][0], S7[1][0], S7[2][0])
and compute the corresponding S8.5[0][0]. Check whether it is consistent with
the given value. If it is, store the corresponding (S7[0][0], S7[1][0], S7[2][0]) in a
table denoted by T18.

Constructing T19. Exhaust all 296 possible values of (S7[0][1], S7[1][1], S7[2][1])
and compute the corresponding S8.5[0][1]. Check whether it is consistent with
the given value. If it is, store the corresponding (S7[0][1], S7[1][1], S7[2][1]) in a
table denoted by T19.

Constructing T20. Exhaust all 296 possible values of (S7[0][2], S7[1][2], S7[2][2])
and compute the corresponding S8.5[0][2]. Check whether it is consistent with
the given value. If it is, store the corresponding (S7[0][2], S7[1][2], S7[2][2]) in a
table denoted by T20.

Constructing T21. Exhaust all 296 possible values of (S7[0][3], S7[1][3], S7[2][3])
and compute the corresponding S8.5[0][3]. Check whether it is consistent with
the given value. If it is, store the corresponding (S7[0][3], S7[1][3], S7[2][3]) in a
table denoted by T21.

28

Obviously, the time and memory complexity to construct the four tables are
296 and 264+2 = 266, respectively. It should be emphasized that it is possible
to construct each table with less time complexity via some algebraic methods,
i.e. constructing an equation system and solving it with a guess-and-determine
method. However, as will be shown, the time complexity of our preimage attack is
not dominated by this pre-computation phase. Therefore, the simplest approach
is exploited.

Matching the Rate Part. After this pre-computation phase, how to find a solution
of the rate part of S0 under the condition that S0 satisfies Equation 8 will be
described, as specified below.

Step 1: Exhaust all the 264 values of (S0[0][0], S0[0][2]). Since S0 satisfies
Equation 8, based on Property 1, for each guess of (S0[0][0], S0[0][2]),
(S5[0][1], S5[0][3], S5[1][0], (S5[2][0], S5[1][2], S5[2][2]) can be determined
and we move to Step 2. If all possible values of (S0[0][0], S0[0][2]) are
traversed, move to Step 4.

Step 2: Exhaust all the 232 values of S5[0][0]. For each guess of S5[0][0], (S7[1][0],
S7[2][0], S7[0][2]) become known. Retrieve S7[0][0] from T18 according
to the value of (S7[1][0], S7[2][0]). It is expected to obtain 232 solutions
of (S7[0][0], S7[0][2]) after exhausting S5[0][0] for each guessed value of
(S0[0][0], S0[0][2]). Store all the solutions of (S5[0][0], S7[0][0], S7[0][2])
in a table denoted by T22. After exhausting S5[0][0], move to Step 3.

Step 3: Similarly, exhaust all the 232 values of S5[0][2]. For each guess of S5[0][2],
(S7[1][2], S7[2][2], S7[0][0]) become known. Retrieve S7[0][2] from T20
according to the value of (S7[1][2], S7[2][2]). For solution of (S5[0][2],
S7[0][0], S7[0][2]), check whether (S7[0][0], S7[0][2]) exists in T22. If
it does, a solution of (S5[0][0], S5[0][2]) which can match (S8.5[0][0],
S8.5[0][2]) for the guessed value of (S0[0][0], S0[0][2]) is found. It is
expected that there will be one solutions of (S5[0][0], S5[0][2]) for each
guessed value of (S0[0][0], S0[0][2]) since one 64-bit value needs to
be matched. Consequently, after exhausting (S0[0][0], S0[0][2]), it is
expected to collect 264 possible values of (S0[0][0], S0[0][2], S5[0][0],
S5[0][1], S5[0][2], S5[0][3]). Store these values in a table denoted by T23.

Step 4: Exhaust all the 256 values of (S0[0][1], S0[0][3]). For each such guess, we
first further exhaust S5[0][1] to collect 232 solutions of (S7[0][1], S7[0][3])
according to T19 which can match S8.5[0][1] and store them in a table
denoted by T24. Then, exhaust S5[0][3] to collect another 232 solutions
of (S7[0][1], S7[0][3]) according to T21 which can match S8.5[0][3] and
check whether the obtained (S7[0][1], S7[0][3]) is in T24. For each guessed
value of (S0[0][1], S0[0][3]), it should be noted that (S5[0][0], S5[0][2]) are
determined. In addition, after exhausting S5[0][1] and S5[0][3], one can
expect a match in (S7[0][1], S7[0][3]), which will correspond to solution
of (S5[0][1], S5[0][3]). For each solution of (S5[0][0], S5[0][1], S5[0][2],
S5[0][3]) obtained in Step 4, check whether it also exist in T23. If it does,
output the corresponding value of (S0[0][0], S0[0][1], (S0[0][2], S0[0][3]).
Otherwise, repeat until all values of (S0[0][1], S0[0][3]) are traversed.

29

Complexity Evaluation. One can easily observe that the above description is
almost the same with that in the preimage attack on 8-round Gimli-XOF-128.
The only difference is that we compute S7[0][i] (i ∈ {0, 1, 2, 3}) via tale look-ups
in the 9-round preimage attack while it is based on Property 9 in the 8-round
preimage attack. Thus, the time and memory complexity at this phase are 2104

and 264, respectively.

Fulfilling Conditions Similarly, we can start from S0 satisfying Equation 8
and compute the solutions of (S0[0][0], S0[0][1], (S0[0][2], S0[0][3]) which can
also make the capacity part of S8.5 satisfy Equation 43. For convenience, the 29
bits of S8.5[1][i] (i ∈ {0, 1, 2, 3}) required to be 0 are called conditional bits.

(S8.5[1][0] ≪ 9) ∧ 0x1fffffff = 0,

(S8.5[1][1] ≪ 9) ∧ 0x1fffffff = 0,

(S8.5[1][2] ≪ 9) ∧ 0x1fffffff = 0,

(S8.5[1][3] ≪ 9) ∧ 0x1fffffff = 0.

(9)

The basic procedure is almost the same with that to find the rate part. Firstly,
constructing 4 tables as follows:

Constructing T25. Exhaust all 296 possible values of (S7[0][0], S7[1][0], S7[2][0])
and compute the corresponding S8.5[1][0]. Check whether the 29 bit conditions
on S8.5[1][0] hold. If it is, store the corresponding (S7[0][0], S7[1][0], S7[2][0]) in
a table denoted by T25.

Constructing T26. Exhaust all 296 possible values of (S7[0][1], S7[1][1], S7[2][1])
and compute the corresponding S8.5[1][1]. Check whether the 29 bit conditions
on S8.5[1][1] hold. If it is, store the corresponding (S7[0][1], S7[1][1], S7[2][1]) in
a table denoted by T26.

Constructing T27. Exhaust all 296 possible values of (S7[0][2], S7[1][2], S7[2][2])
and compute the corresponding S8.5[1][2]. Check whether the 29 bit conditions
on S8.5[1][2] hold. If it is, store the corresponding (S7[0][2], S7[1][2], S7[2][2]) in
a table denoted by T27.

Constructing T28. Exhaust all 296 possible values of (S7[0][3], S7[1][3], S7[2][3])
and compute the corresponding S8.5[1][3]. Check whether the 29 bit conditions
on S8.5[1][3] hold. If it is, store the corresponding (S7[0][3], S7[1][3], S7[2][3]) in
a table denoted by T28.

Obviously, it is expected that there will be 264+3 = 267 elements in Ti (25 ≤
i ≤ 28).

Fulfilling Conditions. The corresponding procedure can be simply summarized
as follows:

30

Step 1: Exhaust 264 values of (S0[0][0], S0[0][2]). For each guess, first exhaust
S5[0][0] and then exhaust S5[0][2]. When exhausting S5[0][0], by re-
trieving T25, collect all the solutions of (S7[0][0], S7[0][2]) and store the
values of (S7[0][0], S7[0][2], S5[0][0]) in a table denoted by T29, which is
expected to contain 235 values. When exhausting S5[0][2], by retrieving
T27, compute the solution of (S7[0][0], S7[0][2]) and check whether it is
in T29. Once it is, record the corresponding value of (S0[0][0], S0[0][2],
S5[0][0], S5[0][1], S5[0][2], S5[0][3]) in a table denoted by T30. After
exhausting (S0[0][0], S0[0][2]), one can expect 264+6 = 270 elements
stored in T30.

Step 2: Exhaust 264 values of (S0[0][1], S0[0][3]). For each guess, first exhaust
S5[0][1] and then exhaust S5[0][3]. When exhausting S5[0][1], by re-
trieving T26, collect all the solutions of (S7[0][1], S7[0][3]) and store
the values of (S7[0][1], S7[0][3], S5[0][1]) in a table denoted by T31,
which is expected to contain 235 values. When exhausting S5[0][3], by
retrieving T28, compute the solution of (S7[0][1], S7[0][3]) and check
whether it is in T31. Once it is, record the corresponding value of
(S0[0][0], S0[0][2], S5[0][0], S5[0][1], S5[0][2], S5[0][3]) and check whether
(S5[0][0], S5[0][1], S5[0][2], S5[0][3]) exists in T30. If it does, output
the corresponding solution of (S0[0][0], S0[0][1], S0[0][2], S0[0][3]). After
exhausting (S0[0][1], S0[0][3]), one can expect 2140−128 = 212 solutions
of (S0[0][0], S0[0][1], S0[0][2], S0[0][3]).

Complexity Evaluation. The time complexity and memory complexity to con-
struct Ti (25 ≤ i ≤ 28) are 296 and 267+2 = 269, respectively. Regarding the
time complexity to find a solution of (S0[0][0], S0[0][1], S0[0][2], S0[0][3]), it
can be evaluated as 296+3 = 299. For the memory complexity, it is dominated by
constructing T30 and therefore is 270. In a word, the time and memory complexity
to mount the preimage attack on 9-round Gimli-XOF-128 are 2104 and 270,
respectively.

9 Conclusion

Due to Gimli’s weak diffusion, a novel hybrid zero-internal-differential dis-
tinguisher is constructed for the full Gimli permutation. Although such a
distinguisher can not threaten the security of the hash scheme or authenticated
encryption scheme based on Gimli, it implies that there exist undesirable
properties inside the design. Compared with the zero-sum distinguisher for full
Keccak, our distinguisher has a much smaller ratio of the time complexity to the
value space of the state, i.e. 2−255 V.S. 2−25. In addition, it does not rely on the
algebraic degree evaluation but much depends on the weak diffusion among the
four columns of the Gimli state, i.e. the feature of the design. To further exploit
the weak diffusion, we propose a divide-and-conquer method to accelerate the
preimage finding procedure for both Gimli-Hash and Gimli-XOF-128. Benefiting
from some new properties of the SP-box, we are able to mount a practical

31

preimage attack on 2-round Gimli-Hash and the theoretical attack can reach
up to 5 rounds of Gimli-Hash. As an extreme example, the preimage attack
on Gimli-XOF-128 can reach up to 9 rounds. To the best of knowledge, this is
the first distinguishing attack on the full Gimli permutation and our preimage
attacks on reduced Gimli-Hash and Gimli-XOF-128 are the best thus far.

Acknowledgement We thank Maŕıa Naya-Plasencia and Gaëtan Leurent for
many discussions on the definition of a distinguisher for a public permutation.

References

1. https://csrc.nist.gov/projects/lightweight-cryptography/
round-2-candidates.

2. J.-P. Aumasson and W. Meier. Zero-sum distinguishers for reduced Keccak-f
and for the core functions of Luffa and Hamsi. https://131002.net/data/
papers/AM09.pdf.

3. D. J. Bernstein, S. Kölbl, S. Lucks, P. M. C. Massolino, F. Mendel, K. Nawaz,
T. Schneider, P. Schwabe, F. Standaert, Y. Todo, and B. Viguier. Gimli : A
cross-platform permutation. In Cryptographic Hardware and Embedded Systems
- CHES 2017 - 19th International Conference, Taipei, Taiwan, September 25-28,
2017, Proceedings, pages 299–320, 2017.

4. G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. On the indifferentiability
of the sponge construction. In N. P. Smart, editor, Advances in Cryptology -
EUROCRYPT 2008, 27th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008.
Proceedings, volume 4965 of Lecture Notes in Computer Science, pages 181–197.
Springer, 2008.

5. G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Cryptographic sponge
functions, 2011. http://sponge.noekeon.org/CSF-0.1.pdf.

6. G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. The Keccak reference, 2011.
http://keccak.noekeon.org.

7. E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosystems.
In Advances in Cryptology - CRYPTO ’90, 10th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 11-15, 1990, Proceedings,
pages 2–21, 1990.

8. J. Cai, Z. Wei, Y. Zhang, S. Sun, and L. Hu. Zero-sum distinguishers for round-
reduced GIMLI permutation. In Proceedings of the 5th International Conference on
Information Systems Security and Privacy, ICISSP 2019, Prague, Czech Republic,
February 23-25, 2019, pages 38–43, 2019.

9. I. Dinur, O. Dunkelman, and A. Shamir. Collision attacks on up to 5 rounds
of SHA-3 using generalized internal differentials. In Fast Software Encryption -
20th International Workshop, FSE 2013, Singapore, March 11-13, 2013. Revised
Selected Papers, pages 219–240, 2013.

10. C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer. Ascon v1.2, 2018.
https://ascon.iaik.tugraz.at/files/asconv12-nist.pdf.

11. C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer. Preliminary
analysis of Ascon-Xof and Ascon-Hash (version 0.1), 2019. https:
//ascon.iaik.tugraz.at/files/Preliminary_Analysis_of_
Ascon-Xof_and_Ascon-Hash_v01.pdf.

32

https://csrc.nist.gov/projects/lightweight-cryptography/round-2-candidates
https://csrc.nist.gov/projects/lightweight-cryptography/round-2-candidates
https://131002.net/data/papers/AM09.pdf
https://131002.net/data/papers/AM09.pdf
http://sponge.noekeon.org/CSF-0.1.pdf
http://keccak.noekeon.org
https://ascon.iaik.tugraz.at/files/asconv12-nist.pdf
https://ascon.iaik.tugraz.at/files/Preliminary_Analysis_of_Ascon-Xof_and_Ascon-Hash_v01.pdf
https://ascon.iaik.tugraz.at/files/Preliminary_Analysis_of_Ascon-Xof_and_Ascon-Hash_v01.pdf
https://ascon.iaik.tugraz.at/files/Preliminary_Analysis_of_Ascon-Xof_and_Ascon-Hash_v01.pdf

12. J. Guo, M. Liu, and L. Song. Linear structures: Applications to cryptanalysis
of round-reduced keccak. In Advances in Cryptology - ASIACRYPT 2016 -
22nd International Conference on the Theory and Application of Cryptology and
Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I,
pages 249–274, 2016.

13. A. F. Gutiérrez, G. Leurent, M. Naya-Plasencia, L. Perrin, A. Schrottenloher, and
F. Sibleyras. New results on gimli: full-permutation distinguishers and improved
collisions. Cryptology ePrint Archive, Report 2020/744, 2020. https://eprint.
iacr.org/2020/744.

14. M. Hamburg. Cryptanalysis of 22 1/2 rounds of gimli. Cryptology ePrint Archive,
Report 2017/743, 2017. https://eprint.iacr.org/2017/743.

15. T. Li and Y. Sun. Preimage attacks on round-reduced keccak-224/256 via an
allocating approach. In Y. Ishai and V. Rijmen, editors, Advances in Cryptology
- EUROCRYPT 2019 - 38th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019,
Proceedings, Part III, volume 11478 of Lecture Notes in Computer Science, pages
556–584. Springer, 2019.

16. F. Liu, T. Isobe, and W. Meier. Automatic verification of differential
characteristics: Application to reduced Gimli. To appear at eprint.

17. P. Morawiecki, J. Pieprzyk, and M. Srebrny. Rotational cryptanalysis of round-
reduced keccak. In Fast Software Encryption - 20th International Workshop, FSE
2013, Singapore, March 11-13, 2013. Revised Selected Papers, pages 241–262, 2013.

18. T. Peyrin. Improved differential attacks for ECHO and grøstl. In Advances in
Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 15-19, 2010. Proceedings, pages 370–392, 2010.

19. H. Yan, X. Lai, L. Wang, Y. Yu, and Y. Xing. New zero-sum distinguishers
on full 24-round keccak-f using the division property. IET Information Security,
13(5):469–478, 2019.

33

https://eprint.iacr.org/2020/744
https://eprint.iacr.org/2020/744
https://eprint.iacr.org/2017/743

Supplemental Material

A Algorithm of Gimli

Algorithm 1 Description of Gimli permutation

Input: S = (S[i][j])
1: for R from 24 down to 1 inclusive do
2: for j from 0 to 3 inclusive do
3: IX ← S[0][j] ≪ 24 . SP-box
4: IY ← S[1][j] ≪ 9
5: IZ ← S[2][j]
6:
7: S[2][j]← IX ⊕ IZ � 1⊕ (IY ∧ IZ)� 2
8: S[1][j]← IY ⊕ IX ⊕ (IX ∨ IZ)� 1
9: S[0][j]← IZ ⊕ IY ⊕ (IX ∧ IY)� 3

10: end for
11:
12: if R mod 4 =0 then
13: S[0][0], S[0][1], S[0][2], S[0][3]← S[0][1], S[0][0], S[0][3], S[0][2] . Small-Swap
14: else if r mod 2 =0 then
15: S[0][0], S[0][1], S[0][2], S[0][3]← S[0][2], S[0][3], S[0][0], S[0][1] . Big-Swap
16: end if
17:
18: if R mod 4 =0 then
19: S[0][0]← S[0][0]⊕ 0x9e377900⊕ r . Constant Addition
20: end if
21: end for
22: return (S[i][j])

B Proof of the Properties of SP-box

Property 6. Let (OX ′, OY ′, OZ ′) = SP (IX ′, IY ′, IZ ′). If IY = IY ′ and IZ =
IZ ′, the following relations must hold:

OX[0] = OX ′[0], OX[1] = OX ′[1], OX[2] = OX ′[2].

OY [0]⊕OZ[0] = OY ′[0]⊕OZ ′[0].

Proof. This can be easily observed from the expressions to calculate OX[i] (0 ≤
i ≤ 2) and OY [0]⊕OZ[0], as specified below:

OX[i] = IZ[i]⊕ IY [i− 9] (0 ≤ i ≤ 2),

OY [0]⊕OZ[0] = IY [23]⊕ IX[8]⊕ IX[8] = IY [23].

34

Since IY ⊕ IY ′ = 0 and IZ ⊕ IZ ′ = 0, the following four relations must hold:

OX[0] = OX ′[0], OX[1] = OX ′[1], OX[2] = OX ′[2].

OY [0]⊕OZ[0] = OY ′[0]⊕OZ ′[0].

Property 7. Let (OX ′, OY ′, OZ ′) = SP (IX ′, IY ′, IZ ′). If OY = OY ′ and OZ =
OZ ′, the following relations must hold:

IX[8] = IX ′[8], IY [23] = IY ′[23].

Proof. This can be easily observed from the expressions to calculate OY [0] and
OZ[0], as specified below:

OY [0] = IY [23]⊕ IX[8], OZ[0] = IX[8].

Therefore, we have IX[8] = OZ[0] and IY [23] = IX[8]⊕OY [0] = OZ[0]⊕OY [0].
Since OY ⊕OY ′ = 0 and OZ ⊕OZ ′ = 0, the following two relations must hold:

IX[8] = IX ′[8], IY [23] = IY ′[23].

Property 8. Suppose (x1, y1, z1) = SP (x0, y0, z0) and (x′, y′, z′) = SP (x2, y1, z1).
Given a random value of (y0, z0, y

′, z′), all feasible solutions of (x0, x2) can be
recovered with time complexity of 210.4.

Proof. First of all, consider the generic time complexity to recover the pair
(x0, x2). For each guessed value of x0, (x1, y1, z1) can be determined. Since (y′, z′)
are known, based on Property 4, the correctness of the computed (y1, z1) can be
immediately checked without knowing x2. According to Property 4, the tuple
(y1, z1, y

′, z′) is valid with probability 2−32. Since there are at most 232 values
of x0, after all the possible values of x0 are traversed, one can expect only one
solution of x0 which can make the tuple (y1, z1, y

′, z′) valid. Once the tuple is
valid, x2 can be uniquely determined based on Property 4. Consequently, the
generic method is a simple exhaustive search for x0, which requires 232 time.
In our following method, x0 can be efficiently exhausted with the guess-and-
determine technique.

For simplicity, let v = x0 ≪ 24. First of all, consider the relations between
(x0, y0, z0) and (y1, z1):

z1 = v ⊕ z0 � 1⊕ ((y0 ≪ 9) ∧ z0)� 2,

y1 = (y0 ≪ 9)⊕ v ⊕ (v ∨ z0)� 1.

It can be easily observed that when (y0, z0) are constants, each bit of (z1, y1)
can be expressed as follows:

z1[i] = v[i]⊕ γi,
y1[i] = v[i]⊕ µiv[i− 1]⊕ λi,

35

where γi, µi and λi (0 ≤ i ≤ 31) are constants over GF (2), which can be
calculated according to (y0, z0).

For convenience, let y = y1 ≪ 9, z = z1, x = x2 ≪ 24. Then, each bit of
(z, y) can be expressed as follows:

z[i] = v[i]⊕ γi,
y[i] = v[i− 9]⊕ αiv[i− 10]⊕ βi,

where γi, αi and βi (0 ≤ i ≤ 31) are constants over GF (2), which can be
calculated according to (y0, z0).

Consider the relations between (x, y, z) and (y′, z′), as specified below:

z′ = x⊕ z � 1⊕ (yz)� 2,

y′ = y ⊕ x⊕ (x ∨ z)� 1 = y ⊕ x⊕ (xz ⊕ x⊕ z)� 1.

We rewrite the expression of y′ as follows:

y′ = y ⊕ x⊕ (xz ⊕ x⊕ z)� 1 = y ⊕ (x⊕ z � 1)⊕ (xz ⊕ x)� 1.

By involving z′ into the expression of y′, we can obtain that

y′ = y ⊕ (x⊕ z � 1)⊕ (xz ⊕ x)� 1

= y ⊕ z′ ⊕ (yz)� 2⊕ (xz)� 1.

⇓
y′ ⊕ z′ = y ⊕ (yz)� 2⊕ (xz)� 1.

Note that

x = z′ ⊕ z � 1⊕ (yz)� 2.

Thus, it can be derived that

y′ ⊕ z′ = y ⊕ (yz)� 2⊕ (z(z′ ⊕ z � 1⊕ (yz)� 2))� 1.

For simplicity, let Y = y′ ⊕ z′. Considering the expression from the bit level,
we can derive the following 32 equations:

Y [0] = y[0], (10)

Y [1] = y[1]⊕ z′[0]z[0], (11)

Y [2] = y[2]⊕ y[0]z[0]⊕ z[1](z′[1]⊕ z[0]), (12)

Y [3] = y[3]⊕ y[1]z[1]⊕ z[2](z′[2]⊕ z[1]⊕ y[0]z[0]), (13)

Y [4] = y[4]⊕ y[2]z[2]⊕ z[3](z′[3]⊕ z[2]⊕ y[1]z[1]), (14)

Y [5] = y[5]⊕ y[3]z[3]⊕ z[4](z′[4]⊕ z[3]⊕ y[2]z[2]), (15)

Y [6] = y[6]⊕ y[4]z[4]⊕ z[5](z′[5]⊕ z[4]⊕ y[3]z[3]), (16)

Y [7] = y[7]⊕ y[5]z[5]⊕ z[6](z′[6]⊕ z[5]⊕ y[4]z[4]), (17)

36

Y [8] = y[8]⊕ y[6]z[6]⊕ z[7](z′[7]⊕ z[6]⊕ y[5]z[5]), (18)

Y [9] = y[9]⊕ y[7]z[7]⊕ z[8](z′[8]⊕ z[7]⊕ y[6]z[6]), (19)

Y [10] = y[10]⊕ y[8]z[8]⊕ z[9](z′[9]⊕ z[8]⊕ y[7]z[7]), (20)

Y [11] = y[11]⊕ y[9]z[9]⊕ z[10](z′[10]⊕ z[9]⊕ y[8]z[8]), (21)

Y [12] = y[12]⊕ y[10]z[10]⊕ z[11](z′[11]⊕ z[10]⊕ y[9]z[9]), (22)

Y [13] = y[13]⊕ y[11]z[11]⊕ z[12](z′[12]⊕ z[11]⊕ y[10]z[10]), (23)

Y [14] = y[14]⊕ y[12]z[12]⊕ z[13](z′[13]⊕ z[12]⊕ y[11]z[11]), (24)

Y [15] = y[15]⊕ y[13]z[13]⊕ z[14](z′[14]⊕ z[13]⊕ y[12]z[12]), (25)

Y [16] = y[16]⊕ y[14]z[14]⊕ z[15](z′[15]⊕ z[14]⊕ y[13]z[13]), (26)

Y [17] = y[17]⊕ y[15]z[15]⊕ z[16](z′[16]⊕ z[15]⊕ y[14]z[14]), (27)

Y [18] = y[18]⊕ y[16]z[16]⊕ z[17](z′[17]⊕ z[16]⊕ y[15]z[15]), (28)

Y [19] = y[19]⊕ y[17]z[17]⊕ z[18](z′[18]⊕ z[17]⊕ y[16]z[16]), (29)

Y [20] = y[20]⊕ y[18]z[18]⊕ z[19](z′[19]⊕ z[18]⊕ y[17]z[17]), (30)

Y [21] = y[21]⊕ y[19]z[19]⊕ z[20](z′[20]⊕ z[19]⊕ y[18]z[18]), (31)

Y [22] = y[22]⊕ y[20]z[20]⊕ z[21](z′[21]⊕ z[20]⊕ y[19]z[19]), (32)

Y [23] = y[23]⊕ y[21]z[21]⊕ z[22](z′[22]⊕ z[21]⊕ y[20]z[20]), (33)

Y [24] = y[24]⊕ y[22]z[22]⊕ z[23](z′[23]⊕ z[22]⊕ y[21]z[21]), (34)

Y [25] = y[25]⊕ y[23]z[23]⊕ z[24](z′[24]⊕ z[23]⊕ y[22]z[22]), (35)

Y [26] = y[26]⊕ y[24]z[24]⊕ z[25](z′[25]⊕ z[24]⊕ y[23]z[23]), (36)

Y [27] = y[27]⊕ y[25]z[25]⊕ z[26](z′[26]⊕ z[25]⊕ y[24]z[24]), (37)

Y [28] = y[28]⊕ y[26]z[26]⊕ z[27](z′[27]⊕ z[26]⊕ y[25]z[25]), (38)

Y [29] = y[29]⊕ y[27]z[27]⊕ z[28](z′[28]⊕ z[27]⊕ y[26]z[26]), (39)

Y [30] = y[30]⊕ y[28]z[28]⊕ z[29](z′[29]⊕ z[28]⊕ y[27]z[27]), (40)

Y [31] = y[31]⊕ y[29]z[29]⊕ z[30](z′[30]⊕ z[29]⊕ y[28]z[28]). (41)

In the above equation system (Eq. 1∼32), (z′, Y) are known and (y, z) are linear
in the unknown x0. Our aim is to recover (y, z) in order to recover the unknown
(x0, x2).

The procedure to solve the above equation system is described as follows:

Step 1: Guess (z[0], z[1], z[2], z[3], z[4]). For each such guess, v[i] (0 ≤ i ≤ 4)
becomes known. Based on Eq. 1∼6, we can also uniquely compute

(y[0], y[1], y[2], y[3], y[4], y[5]).

Note that we need to compute y[i] before computing y[i+1] (0 ≤ i ≤ 4).
Step 2: Note that the expression of y[i] is as follows:

y[i] = v[i− 9]⊕ αiv[i− 10]⊕ βi.

Since (y[0], y[1], y[2], y[3], y[4], y[5]) are known, we can uniquely deter-
mine v[i] (22 ≤ i ≤ 28) by guessing v[22].

37

Step 3: Guess (y[22], y[23], y[24]). Since v[i] (22 ≤ i ≤ 28) have been determined
at Step 2, we can compute the corresponding z[i] (22 ≤ i ≤ 28). Then,
based on Eq. 26∼30, we can uniquely compute

(y[25], y[26], y[27], y[28], y[29]).

Then

(y[22], y[23], y[24], y[25], y[26], y[27], y[28], y[29])

become determined. Therefore, we can uniquely determine v[i] (12 ≤
i ≤ 20) by guessing v[12].

Step 4: At this step, only v[i] (i ∈ {5, 6, 7, 8, 8, 10, 11, 21, 29, 30, 31}) are un-
known. We can compute (y[11], y[12], y[13]) according to the knowledge
of (v[1], v[2], v[3], v[4]). Observing Eq. 15, when z[13] = 1 or y[11] = 0,
we can uniquely compute y[14] since the unknown z[11] will not influence
the calculation of y[14] anymore. After y[14] is obtained, based on Eq.
16∼21, we can uniquely compute

(y[15], y[16], y[17], y[18], y[19], y[20]).

Then, the values of v[i] (i ∈ {5, 6, 7, 8, 8, 10, 11}) are determined.
If z[13] = 0 and y[11] = 1, which occurs with probability 2−2, similarly,
we simply guess z[11] and then obtain the value of

(y[14], y[15], y[16], y[17], y[18], y[19], y[20]),

which will correspond to a solution of v[i] (i ∈ {5, 6, 7, 8, 8, 10, 11}).
Compare the value of v[11] with its guessed value (we can obtain v[11]
from z[11]). If they are consistent, we find a correct solution of v[i]
(i ∈ {5, 6, 7, 8, 8, 10, 11}). Otherwise, it is wrong.
In conclusion, whatever the case is, we could only get one solution of
v[11] (i ∈ {5, 6, 7, 8, 8, 10, 11}). The average cost at this step can be
estimated as 3

4 + 1
4 × 2 ≈ 20.4.

Step 5: Since (v[5], v[6], v[7]) are determined, we can compute (z[5], z[6], z[7]).
Then, based on Eq. 7∼9, we can uniquely compute (y[6], y[7], [8]), thus
determining (v[29], v[30], v[31]) and (z[29], z[30], z[31]). Then, we can
compute y[30] based on Eq. 31 because z[29] becomes known. After y[30]
is computed, we can uniquely determine v[21]. Until this phase, (v, y, z)
are fully determined and we can check the correctness by checking the
validity of the tuple (y, z, y′, z′) according to Property 4.

The time complexity of our guess-and-determine method to solve the above
equation system can be evaluated in this way. At Step 1, (z[0], z[1], z[2], z[3], z[4])
are guessed. At Step 2, v[22] is guessed. At Step 3, (y[22], y[23], y[24], v[12])
are guessed. At Step 4, the cost of guessing can be evaluated as 20.4. As
a result, the time complexity to traverse all solutions of the above equation
system is 25+1+4+0.4 = 210.4. On the other hand, we do not construct any

38

coefficient matrix nor use Gauss elimination when solving the above equation
system. The unknown variables can be calculated step by step by considering
the corresponding expressions, which is very efficient.

As explained at the beginning of the proof, since x0 can be exhausted in
210.4 time, (x0, x2) can be recovered in 210.4 time and the expected number of
solutions is 1.

Property 9. Given a random constant value of OX and N random pairs of
(IY, IZ), when N is sufficiently large, the expectation of the number of the
solutions of IX is N .

Proof. Consider the expressions to compute OX as shown in Equation 42.

OX[i] =

{
IZ[i]⊕ IY [i− 9] (0 ≤ i ≤ 2)

IZ[i]⊕ IY [i− 9]⊕ (IX[i− 27] ∧ IY [i− 12]) (3 ≤ i ≤ 31)
(42)

Denote the probability that there are 2s solutions of IX for a given random
triple (IY, IZ,OX) by Pr(s). Therefore,

Pr(s+ 3) = 2−3 × 2−s ×
(
29
s

)
229

, (0 ≤ s ≤ 29).

As a result, the expectation of the number of solutions of IX denoted by E can
be formulated as follows:

E =

29∑
s=0

(2s+3 × Pr(s+ 3)) =

29∑
s=0

(2s+3 × 2−3 × 2−s ×
(
29
s

)
229

) =

29∑
s=0

(
29
s

)
229

= 1.

In addition, according to Property 2, a random triple (IY, IZ,OX) is valid with
probability 2−15.5. Thus, we can expect N solutions of OX when N is sufficiently
large, e.g. N = 232. According to experiments, when N = 232, about 232 (slightly
greater than 232) solutions of (IX, IY, IZ) can be obtained to match a given OX.

C Verifying the 2-Round Preimage Attack.

To verify the correctness of our attack, we provide a solution of (M0,M1,M2,M3,M4)
which can lead to an all-zero state in Table 2. Note that with such a message,
we can construct arbitrary second preimage and colliding message pairs for 2-
round Gimli-Hash with time complexity 1. Specifically, given a message Mx,
(Mx,M0||M1||M2||M3||M4||Mx) is a colliding message pair. Moreover, given
a message Mx and its hash value Hx, M0||M1||M2||M3||M4||Mx is a second
preimage of Hx.

D The Preimage Attack on 8-Round Gimli-XOF-128

The corresponding two phases of the preimage attack on 8-round Gimli-XOF-128
will be specified below.

39

Table 2: A message leading to an all-zero state for 2-round Gimli-Hash
M0 0x1c5c59da 0x41b61bb7 0 0
M1 0x9cf49a4e 0x9a80d115 0 0
M2 0xa31c3903 0x41e6e73c 0 0
M3 0x456723c6 0xdc515cff 0 0
M4 0x98694873 0x944a58ec 0 0

Full-state Value
0 0 0 0
0 0 0 0
0 0 0 0

Matching the Rate Part The attack procedure to exhaust all the 2120 possible
values of (S0[0][0], S0[0][1], S0[0][2], S0[0][3]) to match a given 128-bit (S8[0][0],
S8[0][1], S8[0][2], S8[0][3]) is described as follows. The corresponding illustration
can be referred to Figure 12.

S0 S1 S2 S3 S4

S5S6S7S8

SP

S SW

AC

SP SP

B SW

SP

SP

S SW

AC

SPSP

B SW

SP

Known

Conditional

Guessed

Futher guessed

Known after guess

?

Fig. 12: Illustration of the preimage attack on 8-round Gimli-XOF-128

Step 1: Exhaust all the 264 values of (S0[0][0], S0[0][2]). Since S0 satisfies
Equation 8, based on Property 1, for each guess of (S0[0][0], S0[0][2]),
(S5[0][1], S5[0][3], S5[1][0], S5[2][0], S5[1][2], S5[2][2]) can be determined
and we move to Step 2. If all possible values of (S0[0][0], S0[0][2]) are
traversed, move to Step 4.

Step 2: Exhaust all the 232 values of S5[0][0]. For each guess of S5[0][0], (S7[1][0],
S7[2][0], S7[0][2]) become known. According to Property 9, it is expected
to obtain 232 solutions of (S7[0][0], S7[1][0], S7[2][0]) to match S8[0][0]
after traversing all values of S5[0][0]. Store all the solutions of (S5[0][0],
S7[0][0], S7[0][2]) in a table denoted by T12. After exhausting S5[0][0],
move to Step 3.

40

Step 3: Similarly, exhaust all the 232 values of S5[0][2]. For each guess of S5[0][2],
(S7[1][2], S7[2][2], S7[0][0]) become known. According to Property 9,
it is expected to obtain 232 solutions of (S7[0][2], S7[1][2], S7[2][2]) to
match S8[0][2] after traversing all values of S5[0][2]. For each feasible
value of (S5[0][2], S7[0][0], S7[0][2]) which can match S8[0][2], check
whether (S7[0][0], S7[0][2]) exists in T12. If it does, a solution of
(S5[0][0], S5[0][2]) which can match (S8[0][0], S8[0][2]) for the guessed
value of (S0[0][0], S0[0][2]) is found. It is expected that there will be
one solution of (S5[0][0], S5[0][2]) for each guessed value of (S0[0][0],
S0[0][2]) since one 64-bit value needs to be matched. Consequently,
after exhausting (S0[0][0], S0[0][2]), it is expected to collect 264 possible
values of (S0[0][0], S0[0][2], S5[0][0], S5[0][1], S5[0][2], S5[0][3]). Store
these values in a table denoted by T13.

Step 4: Exhaust all the 256 values of (S0[0][1], S0[0][3]). For each such guess, we
first further exhaust S5[0][1] to collect 232 solutions of (S7[0][1], S7[0][3])
which can match S8[0][1] and store them in a table denoted by T14. Then,
exhaust S5[0][3] to collect another 232 solutions of (S7[0][1], S7[0][3])
which can match S8[0][3] and check whether the obtained (S7[0][1],
S7[0][3]) is in T14. For each guessed value of (S0[0][1], S0[0][3]), it should
be noted that (S5[0][0], S5[0][2]) are determined. In addition, after
exhausting S5[0][1] and S5[0][3], one can expect a match in (S7[0][1],
S7[0][3]), which will correspond to solution of (S5[0][1], S5[0][3]). For
each solution of (S5[0][0], S5[0][1], S5[0][2], S5[0][3]) obtained in Step 4,
check whether it also exist in T13. If it does, output the corresponding
value of (S0[0][0], S0[0][1], (S0[0][2], S0[0][3]). Otherwise, repeat until
all values of (S0[0][1], S0[0][3]) are traversed.

Complexity Evaluation. At step 1, the time complexity is 264. For each guess of
(S0[0][0], S0[0][2]), S5[0][0] and S5[0][2] need to be exhausted at Step 2 and Step
3, respectively. As a result, the time complexity at Step 2 and Step 3 are both
296. As for Step 4, we need to exhaust 256 values of (S0[0][1], S0[0][3]). For each
of it, S5[0][1] and S5[0][3] needs to be exhausted, respectively. Thus, the time
complexity at Step 4 is 256+32 = 288.

Moreover, there will be 232 elements stored in T12, 264 elements stored in T13
and 232 elements stored in T14. Therefore, the memory complexity at this phase
is 264.

In addition, since there are only 264+56 = 2120 pairs of (S5[0][0], S5[0][1],
S5[0][2], S5[0][3]), a correct solution of (S0[0][0], S0[0][1], (S0[0][2], S0[0][3]) is
found with probability of 2−8, indicating that the whole time complexity to
match the given hash value is 296+8 = 2104 and the memory complexity is 264 if
there are 28 different values of the capacity part of S0 satisfying Equation 8.

Fulfilling Conditions As shown in the above time complexity evaluation, it is
expected that there are 28 different values of the capacity part of S0 satisfying
Equation 8 in order to match a given 128-bit hash value. In this part, how to
finish this task will be introduced.

41

First of all, it should be emphasized that the initial value of Gimli-XOF-
128 satisfies Equation 8. However, one such value is insufficient. Consequently,
it is necessary to overcome the obstacle of how to efficiently generate many
preferred capacity parts. By exploiting the fact that the initial value satisfies the
conditions, we can start from S0 satisfying Equation 8 and compute the solutions
of (S0[0][0], S0[0][1], (S0[0][2], S0[0][3]) which can also make the capacity part of
S8 satisfy Equation 43. For convenience, the 29 bits of S8[1][i] (i ∈ {0, 1, 2, 3})
required to be 0 are called conditional bits.

(S8[1][0] ≪ 9) ∧ 0x1fffffff = 0,

(S8[1][1] ≪ 9) ∧ 0x1fffffff = 0,

(S8[1][2] ≪ 9) ∧ 0x1fffffff = 0,

(S8[1][3] ≪ 9) ∧ 0x1fffffff = 0.

(43)

The corresponding attack procedure is almost the same with that to match
the rate part. Specifically, it can be summarized as follows:

Step 1: Exhaust all the 264 values of (S0[0][0], S0[0][2]). Since S0 satisfies
Equation 8, based on Property 1, for each guess of (S0[0][0], S0[0][2]),
(S5[0][1], S5[0][3], S5[1][0], S5[2][0], S5[1][2], S5[2][2]) can be determined
and we move to Step 2. If all possible values of (S0[0][0], S0[0][2]) are
traversed, move to Step 4.

Step 2: Exhaust all the 232 values of S5[0][0]. For each guess of S5[0][0], (S7[1][0],
S7[2][0], S7[0][2]) become known. According to Property 5, it is expected
to obtain 232+3 = 235 solutions of (S7[0][0], S7[1][0], S7[2][0]) to match
the 29 conditions bits of S8[1][0] after traversing all values of S5[0][0].
Store all the solutions of (S5[0][0], S7[0][0], S7[0][2]) in a table denoted
by T15. After exhausting S5[0][0], move to Step 3.

Step 3: Similarly, exhaust all the 232 values of S5[0][2]. For each guess of S5[0][2],
(S7[1][2], S7[2][2], S7[0][0]) become known. According to Property 5, it is
expected to obtain 232+3 = 235 solutions of (S7[0][2], S7[1][2], S7[2][2])
to match the 29 conditional bits of S8[0][2] after traversing all values
of S5[0][2]. For each feasible value of (S5[0][2], S7[0][0], S7[0][2]) which
can match the conditional 29 bits of S8[0][2], check whether (S7[0][0],
S7[0][2]) exists in T15. If it does, a solution of (S5[0][0], S5[0][2]) which
can match (S8[0][0], S8[0][2]) for the guessed value of (S0[0][0], S0[0][2])
is found. It is expected that there will be 26 solutions of (S5[0][0],
S5[0][2]) for each guessed value of (S0[0][0], S0[0][2]) since one 58-bit
value needs to be matched. Consequently, after exhausting (S0[0][0],
S0[0][2]), it is expected to collect 264+6 = 270 possible values of (S0[0][0],
S0[0][2], S5[0][0], S5[0][1], S5[0][2], S5[0][3]). Store these values in a table
denoted by T16.

Step 4: Exhaust all the 264 values of (S0[0][1], S0[0][3]). For each such guess,
we first further exhaust S5[0][1] to collect 235 solutions of (S7[0][1],
S7[0][3]) which can match the 29 conditional bits of S8[0][1] and store
them in a table denoted by T17. Then, exhaust S5[0][3] to collect another

42

235 solutions of (S7[0][1], S7[0][3]) which can match the 29 conditional
bits of S8[0][3] and check whether the obtained (S7[0][1], S7[0][3]) is in
T17. For each guessed value of (S0[0][1], S0[0][3]), (S5[0][0], S5[0][2]) are
determined. In addition, after exhausting S5[0][1] and S5[0][3], one can
expect 26 matches in (S7[0][1], S7[0][3]), which will correspond to 26

solutions of (S5[0][1], S5[0][3]). For each solution of (S5[0][0], S5[0][1],
S5[0][2], S5[0][3]) obtained in Step 4, check whether it also exist in T16.
If it does, output the corresponding value of (S0[0][0], S0[0][1], (S0[0][2],
S0[0][3]). Otherwise, repeat until all values of (S0[0][1], S0[0][3]) are
traversed.

Complexity Evaluation. As can be observed, the attack procedure is almost the
same with that to match the rate part. The only difference is that Property 5 is
utilized in Fulfilling Conditions while Property 9 is utilized in Matching the
Rate Part. It should be noted that there are in total 29×4 = 116 bit conditions
on S8 and there are 2128 possible values of the rate part of S0. Therefore,
after exhausting all the 2128 values, one can expect 2128−116 = 212 solutions
of (S0[0][0], S0[0][1], (S0[0][2], S0[0][3]) which can make the capacity part of
S8 satisfy Equation 43. The method to evaluate the time complexity is almost
the same with that to match the rate part. Obviously, the memory complexity
to exhaust all the 2128 values is 270 consumed by T16. The time complexity is
296+3 = 299 since only 29 bits of S8[1][i] (i ∈ {0, 1, 2, 3}) are conditional. In
conclusion, the time and memory complexity to mount the preimage attack on
8-round Gimli-XOF-128 are 2104 and 270, respectively.

E Illustration of the Preimage Attack on 5-Round
Gimli-Hash

The illustration of the phase to match a give capacity part in the preimage attack
on 5-round Gimli-Hash is displayed in Figure 13.

F Illustrations of the Hybrid ZID Distinguisher for
18-Round Gimli

43

0 0 0 0

0 0 0 0

SP

S SW

AC

SP

SP

B SW

SPSP

S SW

AC

S0

0
S0.5

0
S1

0
S2

0

S3

0
S4

0
S4.5

0
S5

0

0 0 0 0

S0

1
S0.5

1
S1

1
S2

1

S3

1
S4

1
S4.5

1
S5

1

SP

S SW

AC

SP

SP

B SW

SPSP

S SW

AC

? ???

=

Known

Known after guessing

Known after guessing

Fig. 13: Illustration of the preimage attack on 5-round Gimli-Hash

44

S
0

S
0.5

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
10

S
11

S
12

S
13

S
14

S
15

S
16

S
17

A0

B0

C0

A1

B1

C1

A0

B0

C0

A1

B1

C1

A2

B2

C2

A2

B2

C2

A3

B3

C3

A3

B3

C3

A4

B4

C4

A4

SP

S SW

AC

SP

SP

B SW

SPSP

S SW

AC

SP

SP

B SW

SP SP

S SW

AC

SP

SP

B SW

SPSP

S SW

AC

SP

SP

B SW

SP SP

S SW

AC

B4

C4

A5

B5

C5

A5

B5

C5

A6

B6

C6

A6

B6

C6

A7

B7

C7

A7

B7

C7

A∗

9
A8 A9 A8

B8

C8

B9

C9

B8

C8

B9

C9

A10

B10

C10

A11

B11

C11

A12

B12

C12

A12

B12

C12

A14

B13

C13

A13

B14

C14

A15

B15

C15

A15

B15

C15

A16

B16

C16

A17

B17

C17

A18

B18

C18

A18

B18

C18

A∗

21

B19

C19

A21

B20

C20

A19

B21

C21

A20

B21

C21

A22

B22

C22

A23

B23

C23

A25

B24

C24

A24

B25

C25

A26

B26

C26

A27

B27

C27

B28

C28

B29

C29

S
18

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

? ? ?

?

?

?

?

?

?

?

?

?

?

?

A30

B30

C30

B30

C30

A30 A31

B31

C31

A31

B31

C31

A32

B32

C32

A32

B32

C32

A33

B33

C33

A33

B33

C33

B33

C33

B33

C33

? ? ? ?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

SP

starting point

Fig. 14: Evolution of the internal difference for one input

45

S
′0

S
′0.5

S
′1

S
′2

S
′3

S
′4

S
′5

S
′6

S
′7

S
′8

S
′9

S
′10

S
′11

S
′12

S
′13

S
′14

S
′15

S
′16

S
′17

A0

B0

C0

A′

1

B′

1

C ′

1

A0

B0

C0

A′

1

B′

1

C ′

1

A2

B2

C2

A2

B2

C2

A′

3

B′

3

C ′

3

A′

3

B′

3

C ′

3

A4

B4

C4

A4

SP

S SW

AC

SP

SP

B SW

SPSP

S SW

AC

SP

SP

B SW

SP SP

S SW

AC

SP

SP

B SW

SPSP

S SW

AC

SP

SP

B SW

SP SP

S SW

AC

B4

C4

A′

5

B′

5

C ′

5

A′

5

B′

5

C ′

5

B6

C6

A6A′

7

B′

7

C7

A′

7

B′

7

C ′

7

A9 A8 A∗

9
A8

B8

C8

B9

C9

B8

C8

B9

C9

A11

B11

C11

A10

B10

C10

A12

B12

C12

A12

B12

C12

A13

B14

C14

A14

B13

C13

A15

B15

C15

A15

B15

C15

A17

B17

C17

A16

B16

C16

A18

B18

C18

A18

B18

C18

A∗

21

B20

C20

A21

B19

C19

A20

B21

C21

A19

B21

C21

A23

B23

C23

A22

B22

C22

A24

B25

C25

A25

B24

C24

A27

B27

C27

A26

B26

C26

B29

C29

B28

C28

S
′18

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

? ? ?

?

?

?

?

?

?

?

?

?

?

?

A′

30

B′

30

C ′

30

B′

30

C ′

30

A′

30
A′

31

B′

31

C ′

31

A′

31

B′

31

C ′

31

A′

32

B′

32

C ′

32

A′

32

B′

32

A′

33

B′

33

C ′

33

A′

33

B′

33

C ′

33

B′

33

C ′

33

B′

33

C ′

33

? ? ? ?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

SP

A6

B6

C6

C ′

32

starting point

Fig. 15: Evolution of the internal difference for another input

46

	Exploiting Weak Diffusion of Gimli: A Full-Round Distinguisher and Reduced-Round Preimage Attacks
	Fukang Liu, Takanori Isobe, Willi Meier

