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Abstract

Genome-Wide Association Studies (GWAS) seek to identify genetic variants associated with
a trait, and have been a powerful approach for understanding complex diseases. A critical
challenge for GWAS has been the dependence on individual-level data that typically have strict
privacy requirements, creating an urgent need for methods that preserve the individual-level
privacy of participants. Here, we present a privacy-preserving framework based on several
advances in homomorphic encryption and demonstrate that it can perform an accurate GWAS
analysis for a real dataset of more than 25,000 individuals, keeping all individual data encrypted
and requiring no user interactions. Our extrapolations show that it can evaluate GWAS of
100,000 individuals and 500,000 SNPs in 5.6 hours on a single server node (or in 11 minutes
on 31 server nodes running in parallel). Our performance results are more than one order
of magnitude faster than prior state-of-the-art results using secure multi-party computation,
which requires continuous user interactions, with the accuracy of both solutions being similar.
Our homomorphic encryption advances can also be applied to other domains where large-scale
statistical analyses over encrypted data are needed.

GWAS evaluates one SNP at a time for association to a phenotype or outcome. In the disease
case/control setting, this is typically performed through a goodness-of-fit test or logistic regression,
which report association odds ratios, standard errors, and p-values. The results from a GWAS have
two broad downstream uses: first, variants that pass a statistical threshold are reported as genome-
wide significant and evaluated for functional mechanisms; second, all variants can be integrated
into polygenic risk score analyses to predict phenotypes in held-out samples.

A critical challenge for GWAS is the dependence on individual-level data that typically have
strict privacy requirements, creating an urgent need for methods that preserve the individual-level
privacy of participants [24, 10]. There are two main approaches to privacy-preserving GWAS: secure
multi-party computation (MPC) and homomorphic encryption (HE). The MPC approach typically
uses a protocol invented by Yao in the 80’s called the garbled circuit solution [29, 37]. In this
protocol two clouds, each owned by a different hospital or corresponding to two non-collaborating
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servers within one hospital, hold part of the genomic data to be analyzed. The alternative approach
is based on fully homomorphic encryption, a novel secure encryption method developed in 2008
by Gentry [22], which is much less communication-intensive, and is secure even if the servers
collaborate. HE allows performing secure computations over encrypted sensitive data without ever
decrypting them.

Recent work has focused on secure MPC solutions to facilitate individual-level privacy-preserving
GWAS [29, 18]. The work of Jagadeesh, et al. addressed diagnosis of monogenic diseases while
preserving participant privacy using MPC [29]. Due to the communication and computationally
intensive nature of the garbled circuit solution, GWAS studies beyond monogenic diseases were
not addressed and the patient cohort was small. Jagadeesh et al. estimated that even for the
monogenic example, garbled circuits would be at least 5000 times faster than fully homomorphic
encryption. Cho et al. followed by successfully computing GWAS by dividing data among multiple
servers and computing the GWAS via multi-party secure protocol among the servers, subsets of
which are trusted not to collaborate against other servers, else privacy is lost [18]. Here, for the
first time we no longer need to resort to this trust assumption. We are successfully using HE to
encrypt the genomic sequences of study participants while enabling GWAS computations without
the ability to decrypt, and scaling to hundreds of thousands of samples (Fig. 1).

We implement two common GWAS techniques - the allelic chi-square test for case control dif-
ferences and a logistic regression approximation (LRA) with covariates - within our HE framework.
The LRA algorithm utilizes a previously proposed semi-parallel approach to efficiently iterate over
each genetic variant without requiring repeated likelihood maximizations [35]. Our HE LRA im-
plementation of this approach was independently tested in the iDASH 2018 secure genome analysis
competition [1] and received the first place1. We additionally present a novel and highly efficient
chi-square test that is faster than the LRA implementation by a factor of 40x and consumes 6x
less memory at the cost of excluding covariates from the model. Our HE framework provides post-
quantum security and is based on several advances. First, we reformulated the compute models
for both the chi-square and LRA algorithms to fully benefit from ciphertext packing, enabling the
parallel execution of thousands of multiplications/additions using a single homomorphic multipli-
cation/addition. Second, we introduced two types of data encoding to minimize the number of
computationally expensive key switching operations, and developed several methods for converting
between the encodings homomorphically (used in the LRA solution). Third, we applied multi-
ple plaintext approximations for the LRA model. Fourth, we developed a new efficient Residue-
Number-System (RNS) variant of the Cheon-Kim-Kim-Song homomorphic encryption scheme [16],
which naturally supports approximate number arithmetic. Finally, we applied more than a dozen
crypto-engineering optimizations.

We apply our HE framework to a real GWAS of age-related macular degeneration (AMD) [21]
of 12,461 cases and 14,276 controls (restricted to self-reported Europeans) genotyped on 263,941
total markers with minor allele frequency > 1%. For our gold standard, we computed association
statistics in the clear using full logistic regression on each variant with sex, age, and age squared
as covariates. We first compared the distributions of GWAS statistics on a subset of 16,384 SNPs
and 5,000 individuals evaluated by the same statistical test with/without HE, where we expect
essentially perfect concordance (Fig. 2A,B). Both the chi-square and LRA tests produced HE
statistics with an R2 of 1.00 to the statistics in the clear, and a replication slope of 1.00 and

1Our HE LRA solution shared the first place with the solution by the team from the University of California, San
Diego
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Figure 1: Schematic of the HE GWAS. First, Study Participants obtain a public key from the GWAS
Coordinator (this step is not shown in the figure for simplicity). Then, each of them encrypts their
data using the public key, and sends the encrypted data to the Encrypted Data Bank, storing all
encrypted individual-level data from many Study Participants. When a specific study is initiated
by the GWAS Coordinator, the encrypted data for the individuals in the study get transmitted to
the HE Compute Cloud for a non-interactive secure computation. Next, the HE Compute Cloud
computes the results and sends them in encrypted form to the GWAS Coordinator. Finally, the
GWAS Coordinator decrypts the results and routes them to one of the Viewers.
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Figure 2: Highly accurate HE GWAS test statistics and polygenic scores. Each plot shows a signed
test statistic computed in the clear (x-axis) and the corresponding statistic computed using an HE
test (y-axis). (A,B) report the same test performed in the clear versus through HE. (C,D) report
logistic regression (glm) performed in the clear versus the HE tests. (E,F) report polygenic risk
scores computed from logistic regression odds ratios (glm) in the clear versus from the HE tests
(restricted to SNPs with association P¡0.01). R2: coefficient of determination of the regression; a0:
intercept of the regression; a1: slope of the regression; ρ: correlation of statistics.
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Table 1: Association statistics from clear and HE tests at known AMD SNPs. Reported AMD
SNPs were tested for association in a subset of N=5,000 samples from the AMD study using gold
standard logistic regression (GLM), the HE logistic regression approximation (LRA), and the HE
chi-square test. ”OR” reports the odds ratio; for GLM and LRA ”stat” reports the test statistic;
for comparison the chi-square test “stat” reports the square-root of the statistic polarized on the
direction of the OR.

SNP GLM GLM HE LRA HE LRA HE Chisq HE Chisq
OR stat OR stat OR stat

rs10033900 T 1.09 1.97 1.08 1.91 1.06 1.44
rs943080 C 0.88 -2.94 0.89 -2.88 0.91 -2.26
rs79037040 G 0.88 -2.98 0.88 -2.91 0.89 -2.82
rs2043085 T 0.91 -2.01 0.92 -1.95 0.92 -2.13
rs2230199 C 1.41 6.83 1.38 6.67 1.40 7.10
rs8135665 T 1.12 2.04 1.12 2.03 1.12 2.29
rs114203272 T 0.62 -3.55 0.63 -3.50 0.67 -3.08
rs114212178 T 0.87 -0.70 0.87 -0.69 0.86 -0.77

0.98, respectively, indicating negligible bias (see Materials and Methods). We next compared the
HE GWAS statistics to the gold standard logistic regression statistics, with any differences now
arising from both the statistical assumptions and the HE (Fig. 2C,D). The LRA again produced
highly accurate HE statistics, with an R2 of 1.00 and a replication slope of 0.98. The HE Chi-square
statistics exhibited some loss of signal relative to the gold standard but remained highly robust with
an R2 of 0.96 (replication slope 0.99) primarily due to noise at non-significant variants. Importantly,
the Chi-square test odds ratios remained highly accurate and nearly unbiased (R2=0.95, Fig. S1).
We confirmed that accuracy was high across all variants by computing polygenic risk scores, wherein
genetic risk values are predicted for each individual as the sum of risk alleles they carry weighted
by the allelic effect size (see Materials and Methods; Figure 2E,F; Fig. S2). Both risk scores
were highly correlated with scores from the gold standard logistic test (R2 > 0.99) with a slight
downward bias in the absolute score for the LRA (replication slope 0.95) (Fig. 2E,F). Finally, we
examined individual genome-wide significant associations reported by the original GWAS, where
we again observed highly concordant results with the gold standard using both statistical tests
(Table 2).

We next downsampled the data to investigate the runtime and scalability characteristics as
a function of SNPs and sample size (Fig. 3, Tables S1-S6). We found the LRA computation to
scale linearly in the number of markers and the number of individuals. At the largest evaluated
sample size of N=15,000 and M=16,384 computation took 1.1 hours; extrapolated to 7.7 hours for
a GWAS of N=100,000 (M=16,384); and extrapolated to 234 hours for a GWAS of N=100,000 and
M=500,000 run as a single job. By comparison, the chi-squared test (which requires only simple
mathematical operations) was more than an order of magnitude faster than the LRA, completing
the same analysis of N=15,000 and M=16,384 in 98 seconds (41x faster than the LRA). This was
extrapolated to 11 minutes for N=100,000 (M=16,384) or 5.6 hours for a GWAS of N=100,000 and
M=500,000. The chi-squared solution also required approximately 6x less peak RAM and thus could
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Figure 3: Linear runtime scaling and extrapolation to 100,000 individuals. Runtime measured from
down-sampling individuals in an analysis of 16,384 SNPs, extrapolated to M=500,000 SNPs and the
given sample size (x-axis) using a linear fit. Measured results are shown with points, extrapolated
fit with dashed line. (A) HE chi-square test; (B) HE LRA test.

be run on a full-scale cohort of N=25,000 (M=49,152) in 8 minutes within the memory constraints
available to us (Table S4). Detailed runtime characteristics including encryption/decryption are
available in Tables S1, S2, S4, and S5. As both the LRA algorithm and chi-square test are natively
parallel over the number of SNPs, the computations can be trivially distributed to multiple nodes,
with each node working with 16,384 SNPs at a time (See Materials and Methods). This implies a
GWAS of N=100,000 and M=500,000 could be run in 11 minutes on 31 nodes running in parallel.

Our HE solution for the chi-square test is faster than the state-of-the-art MPC approach of Cho
et al. [18] extrapolated to 100,000 individuals and 500,000 SNPs: 5.6 hrs (for HE) vs. 37 hours (for
MPC association tests only, without quality control or population stratification analysis; Phase 3 in
Figure 2a of [18]) or 193 hours (for full MPC). The accuracy of both solutions is similar. Our LRA
solution has a runtime of 234 hours for this scenario while the previously published MPC approach
“did not yield a practical runtime for a genome-wide application of logistic regression”. Both of
our solutions are fully non-interactive, produce valid odds ratios in the analyses of real data, and
natively parallelize over the number of SNPs, enabling their execution in distributed computing
cloud environments. Though we did not implement it here, a hybrid approach where all SNPs are
evaluated with the chi-squared test and then the 5% most significant SNPs are re-tested by the
LRA could also be used to achieve the same accuracy as LRA for significant associations, requiring
only 17 hours (excluding ciphertext re-packing overhead, which would be relatively small).

Our approach has several limitations and areas of future work. First, unlike previous work [18]
our model assumes that encrypted data has been fully processed and does not perform addi-
tional quality control or genetic ancestry inference, though such methods can be easily applied
pre-encryption. In particular, Chen et al. [11] showed that fine-scale genetic ancestry is much
more accurately inferred by projection from external population reference data than by principal
component analysis directly on the target samples and leads to more effective correction for pop-
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ulation stratification. High-quality population reference data is available for all major populations
and the pre-encryption data can be easily projected using these references to compute ancestry
covariates (requiring a simple matrix-vector product, as, for example, implemented in the PLINK
score function). Second, while the chi-squared test requires no parameter tuning, the LRA relies
on a learning rate parameter (see Materials and Methods) that may differ by study depending on
size and relationship of covariates. This can be circumvented by tuning the parameter on subsets
of the data in the clear, or by comparing to parameter-free solutions such as the chi-squared or
linear regression results; at the cost of some additional computation. Third, our approach does not
prevent the HE Compute Cloud from colluding with the GWAS Coordinator to decrypt the original
data, which is also true for existing MPC solutions. This problem can be addressed by adding a
secret sharing protocol or using a variant of threshold HE [6] described in the next paragraph.

Extensions to a multi-party scenario are possible using threshold HE [6], a protocol where
many parties cooperatively generate a common public key using their individual secret keys (“se-
cret shares”). In this setting, the joint secret key corresponding to the common public key is never
seen by any party. In GWAS, the same genotypes and phenotypes can be transmitted from multiple
participants and then combined together, or genotypes and phenotypes can be separately transmit-
ted for the same individuals from different participants and then joined together. This extension
does not add substantial computation overhead to our single-party HE solution (the computation
itself is performed the same way). Our work here is thus a step toward enabling analyses of sensitive
phenotypes that cannot be shared between groups/institutions and individual patient participation
in research studies without risk to genomic privacy.

Many of our HE improvements are general-purpose and can be applied to other application
domains where similar large-scale association and regression tools are used, including phenome-
wide association studies from electronic medical record data [19]; discovery of predictors of treat-
ment response in clinical trials [32]; and correlative studies of multi-modal data such as expres-
sion/microbiome activity [5]. The tests developed here can also be extended to richer machine
learning models, including decision and gradient boosted trees.

Materials and Methods

Homomorphic encryption

Our solution is based on an optimized variant of the Cheon-Kim-Kim-Song (CKKS) scheme [16],
which is designed for performing approximate number arithmetic homomorphically. We have devel-
oped a Double-Chinese Remainder Theorem (CRT), a.k.a, Residue Number System (RNS), variant
of the original scheme. Our variant is based on the same security assumptions as the original scheme,
namely the Ring Learning With Errors (RLWE) problem, but relies on native 64-bit integer arith-
metic instead of multiprecision integer arithmetic for better performance and parallelization. The
RLWE problem is immune to all known classical/quantum computer attacks, and is used as the
basis for the HE security standard [4].

The main differences of our Double-CRT variant compared to the original scheme are:

• Novel efficient re-scaling algorithm that works with residues directly, and does not require
switching to a slower positional (multiprecision) number system.

• Efficient key switching operation previously used for the Brakerski/Fan-Vercauteren (BFV)
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scheme [9, 20]. This key switching algorithm was originally proposed by Bajard et al. [7] and
improved by Halevi et al. [25].

Our variant and parameter selection for the LRA implementation are described in detail by
Blatt et al. [8] and also included in the Supplemental Information for completeness.

The CKKS HE scheme has also been extended to a fully homomorphic encryption (FHE) set-
ting [14, 12, 27], which supports ciphertext refreshing via bootstrapping when further computations
(e.g., after GWAS analysis) need to be performed. Although we did not use bootstrapping in our
HE solutions as the computation circuits for both the LRA and chi-square algorithms are known
in advance, our HE framework can be extended to this more general scenario.

Our work differs from our previous work in [8] and the corresponding iDASH analysis in multiple
key ways. First, we introduce the novel and highly efficient chi-square test, which is 40x faster and
consumes 6x less memory than the LRA proposed in [8]. Second, we evaluate the performance and
accuracy of both tests using a published GWAS study of 26,000 case/controls samples across 260,000
SNPs, whereas the implementation in [8] was evaluated over a toy dataset of 245 case/control
samples with 10,643 SNPs (the majority of which were rare variants) and was thus not investigated
in a production-level GWAS setting. The accuracy analysis in this manuscript additionally includes
accuracy of polygenic risk scores, which were not considered in [8]. Third, we evaluate both
methods across many data settings and extrapolate performance to 100,000 individuals and 500,000
SNPs, reflecting the scale of emerging GWAS studies. Fourth, we consider applications, distributed
computation, parallelization, and extensions to multi-party scenarios that were not discussed in [8].

Software implementation

We implemented our solution in PALISADE v1.4.0 [2], an open-source lattice cryptography library.
We added our own implementation for the RNS variant of the CKKS scheme to PALISADE (made
publicly available in PALISADE starting with v1.7). For loop parallelization, we used OpenMP.

Experimental testbed

Experiments were performed using a server computing node with 2 sockets of Intel(R) Xeon(R)
CPU E5-2680 v4 @ 2.40GHz, each with 14 cores. 500GB of RAM was accessible for the experiments.
The node had Fedora 26 OS and g++ (GCC) 7.1.1 installed.

Note that we kept all keys and ciphertexts loaded in the memory to show the total storage
requirement for both solutions. In a practical setting, ciphertexts could be serialized to and de-
serialized from persistent storage, such as solid-state drives, as needed, e.g., working with 16,384
SNPs at a time. In this case, the memory requirements would be significantly smaller than in our
experiments, and would remain essentially constant when the number of SNPs is increased.

Logistic regression approximation

Our LRA solution is based on the semi-parallel method of Sikorska et al. [35]. We applied a
number of approximations to optimize the HE solution. Our approximations are described in the
Supplemental Information. We focused on the case/control setting and thus did not evaluate a
standard linear regression but we note that it is a sub-problem of the LRA test that requires less
computation and has been previously demonstrated in the HE setting in the iDASH’18 competition
by the University of California, San Diego team [1].
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HE LRA solution

Our HE LRA solution is described in detail in the Supplemental Information. In summary, we
introduced two plaintext encodings and developed several methods for switching between the en-
codings. We also applied more than a dozen crypto-optimization techniques. The only differences
in the HE implementation for the AMD dataset compared to previous work [8] are in the values of
the learning rate and auxiliary scaling factors in the HE solution.

The current LRA implementation is limited to three regression covariates, though we believe
the method can model up to 5 covariates relatively efficiently using the same approach (Cramer’s
rule for matrix inversion) and a greater number of covariates using an approximate technique for
matrix inversion discussed by Cheon et al. [17].

Allelic chi-square test

We implemented a standard 1-degree-of-freedom allelic chi-square test for difference in major/minor
allele counts between cases and controls. Under Hardy-Weinberg equilibrium (enforced here through
genotype QC) this test is equivalent to the genotypic (2x3) chi-square test [34] or the Cochran
Armitage trend test used previously [18]. The Chi-Square HE solution is described in detail in the
Supplemental Information.

GWAS dataset processing

The GWAS data was downloaded from dbGAP (phs001039.v1.p1) and restricted to all self-identified
European samples and QC passing SNPs with minor allele frequency >1%. The gold standard
logistic regression was run using sex, age, and age squared as covariates using the standard glm
function in R. The LRA analyses were carried out with the same set of covariates and the chi-square
test analyses were carried out with no covariates.

Accuracy metrics

We evaluated test accuracy using two metrics: R2, computed as the coefficient of determination
from a regression of the estimated test statistic on the ground truth; and replication slope, computed
as the slope of the regression. The R2 reflects how much variance in the ground truth statistic
is explained by the estimate. The replication slope reflects the scaling factor on the effect sizes
imposed by the estimation. When the estimated effect size distribution is linear, the squared
replication slope of the test statistics can be thought of as the effective decrease in sample size due
to estimation noise [38].

Polygenic risk score

We implemented a simple threshold-based polygenic risk score to avoid parameter tuning. After
computing the GWAS statistics, variants passing a given p-value threshold were retained (P¡0.01
or P¡5e-8) and used to predict the genetic value of each individual in the study. The prediction
for each sample was the sum across all SNPs of the number of major alleles the individual caries
times the major allelic odds ratio of that SNP. We did not account for linkage disequilibrium across
markers (i.e. through pruning) because we were only interested in the relative accuracy of the
genetic value computed from different tests.
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Runtime extrapolation

For the chi-square test, runtime was computed for all N=25,000 samples in increasing blocks of
M=16,384 SNPs until maximum RAM capacity was reached at M=49,152; as well as for a single
block of M=16,384 SNPs from N=5,000 to N=25,000 in steps of 5,000 (Table S4). For the LRA,
which required substantially more RAM, runtime was computed for N=5,000 samples in increasing
blocks of M=16,384 SNPs until maximum RAM capacity was reached at M=65,536; as well as
a single block of M=16,384 from N=2,500 to N=15,000 in steps of 2,500. A linear trend line
was then fit to the subsampled data to extrapolate to larger SNP/sample sizes; the linear fit was
highly accurate, producing an R2>0.98 for both tests (Tables S3 and S6). Linear extrapolation
was similarly used in previous published work [18].

Memory extrapolation

We measured peak RAM usage (i.e. the total storage requirement) after downsampling SNPs at
a fixed sample size (Table S7), or individuals fixed at 16,384 SNPs (Table S8). Extrapolation
was then calculated from downsampled individuals using a linear fit, which was highly accurate
(R2>0.99) (Table S8). We note that computations involving individuals that cannot be fully stored
in memory (e.g. millions) can be computed in large individual subsets and merged by meta-analysis
with negligible loss of accuracy, as is typically done for large-scale GWAS studies involving multiple
consortia.

Distributed computation and parallelization

Both LRA and chi-square test algorithms perform computations for each SNP independently. Our
implementations use ciphertext packing and hence perform GWAS computations for batches of
16,384 and 4,096 SNPs at a time for LRA and chi-square test, respectively. This implies that the
GWAS computation for a large number of SNPs can be trivially distributed to multiple nodes by
sending different batches to different nodes in parallel. For instance, we can securely evaluate a
GWAS of N=100,000 and M=500,000 using the chi-square test in 11 minutes on 31 nodes if batches
of 16,384 SNPs are sent to different nodes in parallel vs. 5.6 hours when a single node is used for
the whole computation.

Data Availability

Our analysis is based on the phs001039.v1.p1 dataset available for download in dbGAP. The pseu-
docode for chi-square test and LRA HE protocols is listed in Algorithms 2 and 5 of SI, respectively.
The implementation of all cryptographic capabilities used in our work, including our optimized
CKKS variant, is publicly available for download in PALISADE v1.7.4 and later [2]. The imple-
mentation of the GWAS protocols developed in this work is publicly available [3].
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Supplemental Information

Allelic χ2 Solution

Tests of genetic association are usually performed for each SNP. The data for each SNP with minor
allele a and major allele A can be summarized as a contingency table of counts of disease status
by either genotype count, aa, Aa and AA, or allele count, a and A. The contingency table for the
allelic case is given by
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a A Total

Control n00 n01 r0
Cases n10 n11 r1
Total c0 c1 2N

Here, n00 is the number of control cases carrying the minor allele a; n01, the control cases with
major allele A; n10 and n11, the corresponding cases that the disease is present; r0 and r1 are twice
the total number of control and cases, respectively; c0 and c1 correspond to minor and major allele
counts; and N is the cohort size. Let yi denote the disease status for the ith individual (yi = 1
for the disease case, and yi = 0 otherwise), and si ∈ {0, 1, 2} corresponds to the number of allele
variants of individual i. Then n11 = y> · s, r1 = 2y> · y, and c1 =

∑N
i=1 si.

The χ2 test is used to determine whether there is a significant difference between the expected
frequencies and the observed frequencies. In this case, the allelic-χ2 statistic for the Pearson test
of independence becomes

χ2 =
2N(2n11N − c1r1)2

c1(2N − c1)r1 · (2N − r1)
.

The strength of the association can also be quantified using the odd-ratio

OR =
n11(n11 − r1 − c1 + 2N)

(c1 − n11)(r1 − n11)
.

A convenient property of the above equations is that they can be used to calculate the χ2 and
OR for M SNPs simultaneously by using a vectorized formulation, i.e., setting n11 = y> · S,
r1 = 2(y> · y)uM , and c1 := u>N · S and replacing the scalar 2N by d = 2 N uM . Here,
S ∈ {0, 1, 2}N×M is the “SNP matrix” where Sij corresponds to the jth SNP of the ith individual,
and ub = {1}bi=1 for b = M,N . To complete the formulation, the scalar multiplications and divisions
must be replaced by their corresponding vector-element-wise counterpart operations.

The vectorized formulation for the Allelic χ2 procedure is presented in Algorithm 1.

Data Encoding

The SNPs matrix S is packed row-wise. If the number of SNPs is larger than n/2 (4,096 in our
implementation), then η = d2Mn e ciphertexts are used for each individual. The total number of
ciphertexts needed to encode S is η ·N .

The condition vector y uses one ciphertext per component, with the same value replicated to
all n/2 plaintext slots. The total number of ciphertexts needed to encode y is N .

HE Solution

The optimized HE algorithm is depicted in Algorithm 2. The most expensive operations are
the matrix-vector product in step 8, which requires N homomorphic multiplications and N − 1
homomorphic additions, and the summation in step 9, which requires N−1 homomorphic additions.
All subsequent steps work with single ciphertexts.

14



Algorithm 1 Allelic χ2–Test of Independence (Closed formulation)

1: procedure Server
2: Contingency table:
3: Define: ub = {1}bi=1 ∈ Rb for b = M,N
4: n11 := y>S
5: c1 := u>NS

6: r1 := 2 (
∑N

i=1 yi) uM
7: d := 2 N uM
8: χ2

num := d ? (n11 ? d− c1 ? r1)
2 . SIMD products

9: χ2
den := c1 ? (d− c1) ? r1 ? (d− r1)

10: ORnum := n11 ? (n11 − r1 − c1 + d)
11: ORden := (c1 − n11) ? (r1 − n11)

12:

13: procedure Client
14: χ2 and p-values:

15: χ2 := χ2
num

χ2
den

. component-wise division

16: pval := stats.chi2.sf(x = χ2, df = 1)
17: Odd-Ratios:
18: OR := ORnum

ORden
. component-wise division

Note: + and ? denote SIMD addition and multiplication, respectively.

The required multiplicative depth is 3, which implies that 4 CRT moduli are needed. The scaling
factor γ is introduced to guarantee that the decrypted results can fit without a wrap-around in
a single CRT modulus (otherwise, the number of CRT moduli would be 5, increasing the overall
computational complexity of the computation).

All homomorphic multiplcations are performed without a single key switching operation (no
relinearization), which has a significantly higher cost than SIMD multiplications and additions
used in our solution. We applied the rescaling operation only after the multiplications involving
single ciphertexts. For instance, no rescaling was applied in step 8 until after the summation.

HE Parameters

We used the following HE parameters for our implementation. According to [4], our parameters
correspond to at least 128 bits of security.

• The ring dimension n was 213 = 8, 192.

• The number of CRT limbs in the fresh ciphertext modulus was 4, which corresponds to 3
levels. Each CRT modulis was 50 bits long.

• Number of bits p in the CKKS scheme was 50.

• We used the ternary secret key distribution, i.e., random integers between -1 and 1.

• The error distribution parameter σ was 3.19.

15



Algorithm 2 Allelic χ2–Test of Independence (Optimized HE Algorithm)

1: Define: ux = {1}xi=1 ∈ Rx forx = M,N
2: γ := 0.1 ·N−2 . γ is a scaling factor (for optimization)
3: d := 2N · uM
4: d∗ := 2Nγ · uM
5: r1 := 2 (

∑N
i=1 yi) . Binary tree addition

6: r∗1 := γ · r1
7: for j ∈ [η] do
8: n11 := y>Sj . SIMD mult w/o relinearization + binary tree addition
9: c1 := u>NSj . Binary tree addition

10: c∗1 := γ · c1
11: χ2

j,num := (n11 ? d∗ − c1 ? r∗1)
2 . SIMD products

12: χ2
j,den := c1 ? (d∗ − c∗1) ? r1 ? (d∗ − r∗1) . SIMD products

13: n∗11 := γ · n11

14: ORj,num := n11 ? (n∗11 − r∗1 − c∗1 + d∗) . SIMD products
15: ORj,den := (c1 − n11) ? (r∗1 − n∗11) . SIMD products

Logistic Regression Approximation Algorithm

Semi-Parallel Approach of Sikorska et al. [35]

Logistic regression is widely used to model binary response data in GWAS. For instance, it can be
used to examine the relationship between disease status (control versus real cases) with respect to
phenotypes (age, weight, height, etc.) and genotypes (such as SNP variations). Let yi denote the
disease status for the ith individual in a sample of size N (yi = 1 if the individual is a disease case,
and yi = 0 otherwise), and (x′i, si) be the corresponding predictor, where x′i ∈ RK corresponds to
the phenotypes and si ∈ {0, 1, 2}M to the genotypes of individual i for a set of K phenotypes and
M SNPs. The logistic regression model expresses the relationship between yi and the predictor set
(x′i, si) in terms of the conditional probability Pr(Y = yi|x′i, si) of disease, as:

Pr(yi|x′i, si) = σ
(
(2yi − 1)(θ′0 + x′i · θ′ + si · β)

)
,

where σ is the logistic function, σ(x) = 1
1+exp (−x) ; θ

′
0 ∈ R, θ′ ∈ RK and β ∈ RM are the K+M + 1

parameters to be determined. For the sake of simplicity, we adopt the canonical notation, that is,
θ ≡ (θ′0,θ

′) ∈ RK+1 and xi ≡ (1,x′i) ∈ RK+1 for i = 1, . . . , N .
Assuming that the effect of each SNP is independent of each other, it is possible to formulate it

as a set of M independent equations, i.e., decompose the computation into M independent logistic
regression cases for K + 1 parameters. Sikorska et al. [35] proposed a “semi-parallel” approach to
speed up the logistic regression in the above scenario. The goal is to avoid looping over each SNP
by using a vectorized formulation, which includes optimized vector and matrix operations, that
allows performing multiple identical actions over different data in a single operation.

The method relies on the assumption that the covariant parameters θ are nearly the same for
all SNPs. This assumption allows the reformulation of fitting N vectors in RK+1, followed by
a one-step calculation for M SNPs at once. Therefore Sikorska’s semi-parallel logistic regression
consists of 2 stages:

1. Estimate the coefficients of the clinical covariates, θ ∈ RK+1;
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2. For each of the M SNPs, estimate the corresponding coefficients β̂ and p-value p ∈ RM .

The first stage, the estimation of θ, θ̂, was widely addressed in the literature, in particular in
the iDASH’17 secure genome analysis competition [36, 28, 13, 31, 30].

The second stage, the estimation of the SNP-coefficients β̂, approximates the optimization
problem by a single Newton-Raphson iteration, leading to

β̂ = H−1 X> W ζ,

where X is a matrix in RN×(K+1) whose rows are the vectors xi, i = 1, . . . , N ; W ∈ RN×N is a
diagonal matrix with ωii = ρi(1 − ρi) and ρi = σ(xi · θ̂(t)) for i = 1, . . . , N ; H = X> W X in
R(K+1)×(K+1); ζi = log( ρi

1−ρi ) + yi−ρi
ωii

, i = 1, . . . , N .

Finally, the z-value for each parameter βj , for j = 1, . . . ,M , is given by zj =
β̂j
εj

, where

εj =
√

(C−1)jj is the error associated to β̂j and C = S>W(S−XH−1(X>WS)). A more compact

expression of it is

zj =
1

det H

∑n
i wiiζ

∗
i s
∗
ij√∑n

i wiis
∗
ij
2

j = 1, . . . ,m,

with

ζ∗ = det H ζ −XH†X>W ζ,

S∗ = det H S−XH†X>W S.

where H† denotes the adjoint of H.

Our Approximations

To optimize the efficiency of our HE solution, we introduced several approximations to the semi-
parallel method of Sikorska et al. [35].

Logistic Regression We found that the gradient descent method is adequate for estimating θ.
Starting from an initial θ(0), the gradient descent method at each iteration t updates the estimation
of the regression parameters

θ̂(t+1) ← θ̂(t) + αtX(y + ρ),

where αt is the learning rate at the t-th iteration. Our numerical experiments suggest that a
single iteration of the gradient descent procedure with α0 = 0.015 and θ(0) = 0 provides adequate
accuracy. For simplicity, we denote α0 as α in the rest of the paper.

Logistic function approximation We used Chebyshev polynomials to approximate the lo-
gistic function [33]. From the analysis we performed, we found that a degree-1 approximation
σ(x) = 0.5 + 0.15625x provides results with sufficient accuracy. Please refer to section Analysis of
our approximations for further details.

Approximation of ζ In order to approximate ζ, we considered a Talyor series expansion
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around p = 1
2 :

ζ(p, y) ≈(−2 + 4y)+

(−8 + 16y)(p− 1

2
)2 − 32

3
(p− 1

2
)3+

(−32 + 64y)(p− 1

2
)4 − 256

5
(p− 1

2
)5+

(−128 + 256y)(p− 1

2
)6 − 1536

7
(p− 1

2
)7+

(−512 + 1024y)(p− 1

2
)8.

Matrix Inversion and Division Instead of calculating the inverse of the matrix H, Cramer’s rule
was used: H−1 = adj(H)

det(H) , where adj(H) is the adjoint of matrix H and det(H) is its determinant.

As the division is an expensive operation, it was deferred to a later stage (after decryption).
p-value calculation After computing the z-values on the server, the p-value computation is

performed on the client as depicted in Algorithm 4.
Full Procedure The approximations described above were used to create an optimized proce-

dure for the server computation (Algorithm 3). Note that line 2 of Algorithm 3 is the closed form
for ρ that incorporates the parameter estimation of the logistic regression. Therefore θ̂ does not
appear explicitly in Algorithm 3.

The annotated encrypted procedure is presented in Algorithm 5. It will be referenced through-
out the rest of this section.

HE Parameters

The parameters used are summarized below. According to [4], our parameters correspond to at
least 128 bits of security for classical computers.

• The size of ciphertext modulus QL for fresh ciphertexts is 850 bits.

Algorithm 3 Approximated Semi-Parallel Procedure: Server Computations
1: α← 0.00358

2: ρ← 0.15625α ·X(X> (y − 0.5)) + 0.5

3: W← ρ ? (1− ρ)

4: ζ ← zExpand (ρ,y)

5: H← (X>W)X

6: B← Adjoint (H)

7: d← Determinant (H)

8: ζ∗ ← d · ζ − (XH)((X>W)ζ)

9: S∗ ← d · S−X((B(X>W))S)

10: z2den ← (d · d ·W) (S∗ ? S∗)

11: znum ← (Wζ∗)> S∗

? denotes element-wide multiplication
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Algorithm 4 Approximated Semi-Parallel Procedure: Client Post-Processing

1: z← znum ?/
√

z2den
2: p← 2pnorm(−abs(z)))

?/ denotes element-wise division

• The ring dimension n is 215 = 32, 768.

• The number of CRT limbs in the fresh ciphertext modulus is 17 (L = 17), which corresponds
to 16 levels in the computation circuit. Each CRT modulus is 50 bits long.

• Number of bits p in the plaintext scaling factor of CKKS scheme is 50. For this value of p, the
approximation error introduced by each rescaling typically affected up to 25 least significant
bits of the encrypted data.

• The key switching window matches the size of CRT moduli, i.e., 50 bits.

• We use the ternary secret key distribution, i.e., random integers between -1 and 1, as com-
monly done for BFV.

• The error distribution parameter σ is 3.19.
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Cheon-Kim-Kim-Song Homomorphic Encryption Scheme and Our HE Optimiza-
tions

Our solution is based an optimized variant of the Cheon-Kim-Kim-Song scheme [16]. We have
developed a Double-Chinese Remainder Theorem (CRT), a.k.a, Residue Number System (RNS),
variant of the original scheme. Our variant is based on the same security assumptions as the original
scheme, but relies on native 64-bit integer arithmetic instead of multiprecision integer arithmetic
for better performance and parallelization.

The original CKKS scheme is formulated for cyclotomic polynomial rings R = Z[x]/ 〈xn + 1〉,
where n is a ring dimension that is a power of two 2. The current ciphertext modulus is typically
defined as Q` = 2`, i.e., the scheme works with residue rings R` = R/Q`R = Z2` [x]/ 〈xn + 1〉. The
algorithms are [16]:

• Setup(1λ). For an integer L that coresponds to the largest ciphertext modulus level, given
the security parameter λ, output the ring dimension n. Set the small distributions χkey, χerr,
and χenc over R for secret, error, and encryption, respectively.

• KeyGen. Sample a secret s ← χkey, a random a → RL, and error e ← χerr. Set the secret
key sk← (1, s) and public key pk← (b, a) ∈ R2

L, where b← −as+ e (modQL).

• KSGensk(s′). For s′ ∈ R, sample a random a′ ← R2·L and error e′ ← χerr. Output
the switching key as swk ← (b′, a′) ∈ R2

2L, where b′ ← −a′s′ + e′ + QLs
′ (modQ2L). Set

evk← KSGensk(s2). Set rk(κ) ← KSGensk(s(κ)).

• Encpk(m). For m ∈ R, sample v ← χenc and e0, e1 ← χerr. Output ct ← v · pk +
(m+ e0, e1) (modQL).

• Decsk(ct). For ct = (c0, c1) ∈ R2
` , output m̃ = c0 + c1 · s (modQ`).

• CAdd(ct, c). For ct = (b, a) ∈ R2
` and c ∈ R, output ctcadd ← (b+ c, a) (modQ`).

• Add(ct1, ct2). For ct1, ct2 ∈ R2
` , output ctadd ← ct1 + ct2 (modQ`).

• CMult(ct, c). For ct ∈ R2
` and c ∈ R, output ctcmult ← c · ct (modQ`).

• Multevk(ct1, ct2). For cti = (bi, ai) ∈ R2
` , let (d0, d1, d2) = (b1b2, a1b2 + a2b1, a1a2) (modQ`).

Output ctmult ← (d0, d1) + bQ−1L · d2 · evke (modQ`).

• Rotaterk(κ)(ct, κ). For ct = (b, a) ∈ R2
` and rotation index κ, output ctrotate ← (b(κ), 0) +

bQ−1L · a(κ) · rk
(κ)e (modQ`).

• ReScale (ct, p). For a ciphertext ct ∈ R2
` and an integer p, output ct′ ← b2−p·cte (mod(Q`/2

p)).

The CKKS scheme supports an efficient packing of r (up to n/2) real numbers into a single
ciphertext. The encoding and decoding operations are defined as follows:

• Encode (w, p). For w ∈ Rr, output the polynomial m← bφ(2p ·w)e ∈ R.

• Decode (m, p). For a plaintext m ∈ R, output the polynomial w← φ−1(m/2p) ∈ Rr.

Here, φ(x) is a certain complex canonical embedding map, which is similar conceptually to
inverse Fourier transform.

2CKKS also supports general cyclotomic rings but they are typically less efficient.
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Our RNS variant of the CKKS scheme

Our CKKS variant performs all operations in RNS. In other words, the power-of-two modulus
Q` = 2` is replaced with

∏`
i=1 qi, where qi are same-size prime moduli satisfying qi ≡ 1 mod 2n (for

efficient number theoretic transforms (NTT) that convert native-integer polynomials w.r.t. each
CRT modulus from coefficient representation to the evaluation one, and vice versa). The primes
are chosen to be as close to 2p as possible to minimize the error introduced by rescaling.

The two major changes in our variant compared to the original CKKS scheme deal with rescaling
and key switching. We also made two other minor changes. First, we use the ternary random
discrete distribution for χkey and χenc instead of the sparse distributions as the lattice attacks
for this case are better studied, and the ternary distribution is included in the HE standard [4].
Second, we do additional scaling of plaintexts and ciphertexts to support the use of RNS (only
native integer arithmetic) during encoding/decoding.

Rescaling in RNS To efficiently perform rescaling in RNS from Q` to Q`−1, we replace the
scaling down by 2p with scaling down by q`. We choose all qi, where i ∈ [L], such that 2p/qi is
in the range (1 − 2−ε, 1 + 2−ε), where ε is kept as small as possible. To minimize the cumulative
approximation error growth in deeper computations, we also alternate qi w.r.t. 2p. For instance, if
q1 < 2p, then q2 > 2p and q3 < 2p, etc.

The new rescaling operation to scale down by one level is defined as

• ReScaleRNS (ct). For a ciphertext ct ∈ R2
` , output ct′ ← bq−1` · cte (modQ`−1).

We derive the procedure for computing bq−1` · cte (modQ`−1) using the CRT scaling technique
proposed in [25]. Consider the following CRT representation of a multiprecision integer x ∈ ZQ` :

x =
∑̀
i=1

xi · q̃i · q∗i − υ′ ·Q` for some υ′ ∈ Z, (1)

where
q∗i = Q`/qi ∈ Z and q̃i = q∗i

−1 (mod qi) ∈ Zqi .

Then we can write

x

q`
=

1

q`

( `−1∑
i=1

xiq̃iq
∗
i + x`q̃`q

∗
` − υ′Q`

)
.

After rounding and applying the modulo reduction, the last term is removed yielding⌊
x

q`

⌉
≡

`−1∑
i=1

xi ·
q̃iq
∗
i

q`
+

⌊
x` ·

q̃`q
∗
`

q`

⌉
(modQ`−1) . (2)

The first term can be directly computed in RNS by summing up the products of xi and q−1` ( mod qi).

For the second term, we precompute the residues of
⌊
q̃`q

∗
`

q`

⌋
and multiply them by the corresponding

residues of x` during rescaling. Then we add the fractional part, which has the residue of bx`/q`e,
i.e., 0 or 1, for each CRT modulus qi. Note that the fractional part is negligibly small and hence
can be excluded from the implementation.

The computational complexity of rescaling is determined by the computation in the second
term of (2). We first need to run one native inverse NTT for residues w.r.t. q` and then ` − 1

21



native NTTs to go back to the evaluation representation. All the computations in the first term
of (2) are done directly in evaluation representation. Therefore, each rescaling operation requires `
native-integer NTTs.

The maximum approximation error introduced by rescaling from ` to `−1 is
∣∣q−1` ·m− 2−p ·m

∣∣ ≤
2−ε · |2−p ·m|.

This procedure can be easily generalized to support scaling down by multiple CRT moduli.
This case is similar to the first stage of complex scaling in CRT representation described in Section
2.4 of [25].

Key Switching For key switching, we use the CRT decomposition key switching algorithm
that was originally proposed in [7] and improved in [25] for the Brakerski/Fan-Vercauteren (BFV)
scheme. The advantages of this technique vs. the one used in the original CKKS scheme (initially
proposed for the Brakerski-Gentry-Vaikuntanathan scheme in [23]) are that this technique has
lower computational complexity for relatively small numbers of levels (up to 8 or so), and does not
require an approximately two-fold increase in the ring dimension to support the appropriate lattice
security level. Both of these benefits were important for our solution.

The operations of the CKKS scheme that are modified by the key switching procedure are
rewritten as:

• KSGenRNSsk(s′). For s′ ∈ R, sample a random a′i ← RL and error e′i ← χerr. Output the
switching key as swk ← {(b′i, a′i)}i∈[L] ∈ R

2×L
L , where b′i ← −a′is′ + e′i + q̃i · q∗i · s′ (modQL).

Set evk← KSGenRNSsk(s2). Set rk(κ) ← KSGenRNSsk(s(κ)).

• MultRNSevk(ct1, ct2). For cti = (bi, ai) ∈ R2
` , let (d0, d1, d2) = (b1b2, a1b2 + a2b1, a1a2) (modQ`).

Decompose d2 into its CRT components [d2]qi and output

ctmult ← (d0, d1) +
∑̀
i=1

[d2]qi · evki (modQ`) .

• RotateRNSrk(κ)(ct, κ). For ct = (b, a) ∈ R2
` , output

ctrotate ← (b(κ), 0) +
∑̀
i=1

[a(κ)]qi · rk
(κ)
i (modQ`) ,

where [a(κ)]qi are CRT components of a(κ).

Each key-switching operation requires one inverse NTT (` native-integer NTTs) to switch d2
(or a(κ) for rotation) from evaluation to coefficient representation and then ` NTTs (`2 − ` native-
integer NTTs) to go back to evaluation representation for each CRT component. Hence, the total
complexity in terms of native-integer NTTs is `2.

This key switching procedure also supports a second level of decomposition by extracting base-w
digits in each residue using the procedure described in Appendix B.1 of [7].

Noise Estimates
We present here heuristic noise estimates for the RNS variant of CKKS using the canonical

embedding norm, which corresponds to the infinity norm for the evaluation of a polynomial R at
2n complex roots of unity. For more details on the canonical embedding mapping and norm, the
reader is referred to [16]. The main differences between our expressions and those in [16] are due
to the use of ternary uniform distribution and a different key switching technique.
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• Encoding and Encryption. The bound for fresh encryption Bclean = 6σ
(
4
√

3n+
√
n
)
,

where σ is the standard deviation for error distribution. The decoding is correct as long as
2p > n+ 2Bclean.

• Addition. The bound for homomorphic addition Badd = B1 + B2, where Bi is the noise
bound for i-th ciphertext.

• Rescaling. The noise bound for rescaling is Brescale = q−1` ·B +Bscale, where B is the input
noise and Bscale =

√
3 (12n+

√
n).

• Rotation. The noise bound for rotation (key switching) is Bksw = 8√
3
· nσw dlogw q`e.

• Multiplication. If we have two ciphertexts ct1 and ct2 with ‖m1‖can∞ < ν1, noise bound
B1 and ‖m2‖can∞ < ν2, noise bound B2, respectively, the noise bound Bmult = ν1B2 + ν2B1 +
B1B2 +Bksw.

In most cases, the parameter selection is determined by the multiplicative depth and the approx-
imation error in rescaling. The approximation error (with about ε bits being “erased” by rescaling)
dominates the noise growth of other operations and should be done last (after a multiplication).
The only practical exception is when rotations are performed before any multiplications. In this
case, the key switching noise may be high if the w-base is large, e.g., comparable to 2p as in the
case of CRT decomposition without further digit decomposition of each residue.

Comparison to the RNS variant by Cheon et al. [15]
Both our RNS variant of CKKS and the variant proposed by Cheon et al. [15] work with an RNS

basis consisting of native-integer primes qi that are close to 2p (with ε bits of precision). In other
words, scaling down by 2p is replaced with approximate scaling down by q`. Hence the rescaling
approach in both variants is similar. The techniques for the scaling operation itself are different,
but the computational complexity of both scaling techniques appears to be the same (requiring `
native-integer NTTs).

The key switching-procedure developed in [15] is based on the approach originally proposed for
the Brakerski-Gentry-Vaikuntanathan scheme [23], which requires doubling the ciphertext modulus
(and roughly doubling the ring dimension). We use the residue/digit decomposition approach
originally proposed in [7] and improved in [25]. Our key-switching technique requires more NTTs
but provides better overall performance for relatively “shallow” circuits (our estimates suggest this
approach should be faster up to 8 levels or so).

Plaintext encoding

Our solution uses two kinds of plaintext encoding. Initially, X and y are packed in single ciphertexts
similar to how it was done in [30]. We denote this as packed-matrix encoding. All matrix products in
steps 2 through 8 of Algorithm 5 use the rotation-based SumRowVec and SumColVec procedures
from [28]. Later in the algorithm (starting from step 9), the solution switches to single-integer
ciphertexts for X and the vectors and matrices derived from X and y. We call the latter encoding
as packed-integer encoding. As a result of this, our matrix operations with the SNPs data (first
appearing in step 9) involve only cheap SIMD multiplications and additions of packed-integer and
packed-row-vector ciphertexts, and do not involve any expensive rotations. All operations before
computing on the SNPs data are performed using packed-matrix (single) ciphertexts.
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Packed-matrix encoding The packed-matrix encoding packs a full matrix or vector into a
single ciphertext, cloning as many entries as needed to support matrix-matrix and matrix-vector
products. The cloning makes it possible to minimize the number of computationally expensive
rotations in matrix-matrix (vector) products.

We encode/encrypt both X and X> to avoid calling transposition in the encrypted domain.
We pack X ∈ RN×k in a row-wise order, cloning each row k− 1 times before going to the next row.
Here, we introduce k = K + 1 for brevity.

X =



X11 X12 . . . X1k

X11 X12 . . . X1k
...

...
...

...
X21 X22 . . . X2k

X21 X22 . . . X2k
...

...
...

...
XN1 XN2 . . . XNk

XN1 XN2 . . . XNk


We pack X> ∈ Rk×N by taking each element of matrix X (marshalling it in the row-wise order)
and cloning it to form a complete row.

X> =



X11 X11 . . . X11

X12 X12 . . . X12
...

...
...

...
X1k X1k . . . X1k

...
...

...
...

XN1 XN1 . . . XN1

XN2 XN2 . . . XN2
...

...
...

...
XNk XNk . . . XNk


Both matrices require N · k2 slots.

We pack y ∈ RN column-wise by cloning y k2 − 1 times to the right. That is, we have

y =


y1 y1 . . . y1
y2 y2 . . . y2
...

...
...

...
yN yN . . . yN


︸ ︷︷ ︸

k2 cloned values

The resulting vector ρ is represented the same way as y. Both use N · k2 slots.
The diagonal matrix W is represented as a vector by extracting the diagonal, and the resulting

vector is packed in the same format as ρ.
The SNPs matrix S is encoded either as an array of ciphertexts (when M > n/2) or a single

ciphertext (when M ≤ n/2) without any cloning, i.e., the classical SIMD packing of vectors is used.
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Matrices and vectors, such as X and y, can be encoded in a single ciphertext as long as
N · k2 ≤ n/2. If this condition does not hold, the packing can be trivially extended to multiple
ciphertexts per matrix/vector.

Packed-integer encoding To support efficient matrix multiplication without rotations, we
also encode X as N · k single-integer ciphertexts. In this case, each entry of X is cloned to all slots
of a single ciphertext. We denote such packing of X as X1.

Algorithm 5 Annotated HE Computation (all scalars, vectors, and matrices are encrypted except

for α and constants)

Encrypted Inputs: X,X>,X1,y,S

Encrypted Outputs: z2den, znum

1: α← 0.00358 . plaintext constant

2: ρ← 0.15625α ·X(X> (y − 0.5)) + 0.5 ∈ RN . adds 3 levels (taking into account the

summation depth increase); we use the packed X here instead of X>; D=3.

3: W← ρ ? (1− ρ) ∈ RN . ? denotes SIMD multiplication; adds 1 level; D=4.

4: ζ ← zExpand (ρ,y) ∈ RN . Polynomial evaluation; 8-in-series product; depth 4 w.r.t. ρ;

D=7.

5: H← (X>W)X ∈ Rk×k . depth 2 w.r.t. W; first product is a SIMD multiplication. D=6.

6: B← Adjoint (H) ∈ Rk×k . 2-in-series products; depth-2 HM + depth 1 for bit

mask multiplication; adds 2 levels; 2k2 rotations; convert B into k2 packed-integer ciphertexts,

denoted as B1; D=9 for B; D=10 for B1.

7: d1 ← Determinant (H) ∈ R . 3-in-series products; depth-2 HMs + depth 1 for bit mask

multiplication; no depth increase; D=9.

8: ζ∗ ← d1 · ζ − (XB)((X>W)ζ) ∈ RN . Adds 2 HMs + 2 bit mask multiplications to depth = 4

levels; D=13.

9: S∗ ← d1 · S−X1(B1(X
>
1 (W1S))) ∈ RN×m . Adds 1 to depth;

most expensive matrix multiplication costing roughly 2Nk ciphertext multiplications; need to

convert 1 ciphertext W into N W1 ciphertexts; D=14.

10: z2den ← ((d1 · d1) ·W>
1 ) (S∗ ? S∗) ∈ R1×m . SIMD squaring in computing S∗ ?S∗; adds 2 levels;

D=16.

11: znum ← (Wζ∗)1
>S∗ ∈ R1×m . first product

is SIMD multiplication; we use the index 1 here to denote the conversion of the packed-matrix

ciphertext into N packed-integer ciphertexts; D=16.

Note: HM is homomorphic multiplication; D is current depth; subscript 1 denotes packed-

integer encoding.

Conversion from packed-matrix to packed-integer encoding

The main bottleneck of our solution is the conversion of vectors from a packed-matrix ciphertext to
multiple packed-integer ciphertexts. We have developed and implemented three different methods
for performing this conversion. Based on the requirements for performance and scalability, we chose
one of these methods for our prototype.
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To illustrate the problem and its solutions, we consider the task of converting the packed-
matrix single-ciphertext encryption of y into N packed-integer ciphertexts. A similar task has to
be executed twice in our algorithm for secure GWAS.

Method 1: NdlogNe rotations
Our first solution can be summarized as follows:

1. Fill all n/2 slots of y by cloning existing N ·k2 slots. This requires log
(
n/
(
2N̄ · k2

))
rotations

and additions. The cloning procedure is described in [30]. Here, N̄ = 2dlogNe.

2. Run N bit mask multiplications to form N ciphertexts each containing n/(2N̄) cloned values
for each component of y. All other slots are zeroed out.

3. Clone existing n/(2N̄) non-zero values to all slots in each of the N ciphertexts. This operation
requires NdlogNe rotations and additions, and is the main bottleneck of the computation.

Method 2: N̄ rotations and dlogNe depth increase
The idea of our second solution is to represent the conversion as a binary tree. At each level

i of the tree we perform i rotations, 4 · i bit mask multiplications, and 2 · i additions, getting two
output ciphertexts from each input ciphertext. Although this recursive method requires only N̄
rotations, 4N̄ bit mask multiplications, and 2N̄ additions, there is a dlogNe depth increase due to
bit mask multiplications at each level of the binary tree.

To illustrate this approach, consider a simpler case (the logic would stay the same when we
clone yi any number of times):

[y1y2y3 · · · yN−2yN−1yN ].

First rotate by -1 and get

Rot1(y) = [yNy1y2 · · · yN−3yN−2yN−1].

Then multiply both y and Rot1(y) by M1 = [101010 · · · 10] and M2 = [010101 · · · 01], and sum
up two possible combinations, yielding

y1,1 = y ? M1 +Rot1(y) ? M2 = [y1y1y3y3 · · · yN−1yN−1],

y1,2 = y ? M2 +Rot1(y) ? M1 = [yNy2y2 · · · yN−2yN−2yN ].

Next computeRot2(y1,1) andRot2(y1,2), multiply y1,1 and y1,2 and their rotations by [110011 · · · 1100]
and [001100 · · · 0011] for each pair, and sum up four possible combinations. Now there are 4 y2,i
items.

We recursively execute this procedure until the end.
Method 3: N̄2 bit mask multiplications and N̄ rotations
Another approach achieving N rotations can be summarized as follows:

1. Fill all n/2 slots of y by cloning existing N · k2 slots.

2. Compute N̄ − 1 cheap rotations of the original ciphertext using the hoisting procedure
from [26].

3. For each component of y, do N̄ bit mask multiplications (one per rotation) that would extract
the component and zero out all other slots.
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4. For each component of y, do N̄ − 1 additions of masked ciphertexts.

Although this procedure requires only roughly N̄ cheap rotations, it involves N̄2 bit mask
multiplications and additions, which now become the main bottleneck for relatively large values of
N .

Comparison of the methods We implemented all three methods, and carried out both
complexity and practical performance comparison.

As N is relatively large (at least 245), N̄2 bit mask multiplications in Method 3 resulted in
computation runtimes that are at least 2x-3x larger than Method 1 with NdlogNe rotations.
However, Method 3 would be faster for smaller N , e.g., less than 100.

Method 2 is a good option only when the depth increase can be incorporated in the existing
circuit without increasing the overall circuit depth. But the scalability of this approach is ques-
tionable. The depth increase of dlogNe = 8 could not be integrated in the circuit of our solution,
and thus we chose Method 1 for our implementation.

Note that in our implementation the depth cost of bit mask multiplication is the same as for
homomorphic multiplication, which implies there is room for improvement. Therefore, a more
depth-efficient bit mask multiplication procedure may result in a significantly better performance
for Method 2, possibly superior to that of Method 1.

Minimizing the number of key switching operations

One of the optimization goals for our solution is to reduce the number of key switching operations,
which are used both for rotation and relinearization (after homomorphic multiplication). Each
such operation has a high computational complexity, i.e., requires `2 native-integer NTTs. We
have optimized our algorithm to minimize the number of key switching operations. For instance,
all computations involving encrypted SNPs data require only 16 (k2) key switching operations in
total. A great majority of the computations involving encrypted SNPs data use only “cheap” SIMD
multiplications and additions, and sparingly rescaling operations.

Multiplications with lazy or no relinearization

In steps 9 through 11 of Algorithm 5, our procedure calls only 16 (k2) relinearizations. In other
words, all large-dimension SIMD products are performed without relinearization (the ciphertext
size is allowed to grow). The procedure calls the relinearization procedure only when multiplying
by B1 in step 9, which works with the smallest dimension (k) in the chained matrix product. We
refer to this deferred relinearization as “lazy” relinearization. Any homomorphic multiplications
after this product are performed without a single relinearization, which significantly reduces the
runtime of computation.

Use of additions instead of rotations The packed-integer encoding is introduced in steps 9
through 11 of Algorithm 5 to replace any rotation-based summations over rows/columns with SIMD
homomorphic additions. The only places where the rotations are used are to homomorphically
convert B, W, and (Wζ∗) from packed-matrix encoding to the packed-integer one. The use of
rotation-based summation in the chained product of step 9 would require a substantially larger
number of rotations as compared to the conversion of two vectors of size N and one matrix of size
k × k.
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Minimizing the number of NTTs

Besides key switching, NTTs are used for rescaling. In some cases, expensive rotations can be
replaced with hoisted automorphisms from [26], reducing the number of NTTs for multiple rotations
of the same ciphertext to the NTT cost of a single rotation. Our solution minimizes the number of
rescaling operations and uses hoisted automorphisms where applicable.

Use rescaling sparingly We use the following techniques to minimize the number of rescaling
operations:

• When there are homomorphic multiplications followed by aggregation of ciphertexts, such as
addition of multiple ciphertexts, we apply rescaling after the aggregation, i.e., we call it once
rather than for every homomorphic multiplication.

• If there is a benefit in lazy rescaling, e.g., when the number of ciphertexts at the following
level is much smaller, we defer rescaling until later. In this case, we have to make sure the
depth requirement is not increased, which is true when one of the multiplicands is scaled
w.r.t. 2p rather a power of it.

• The rescaling operations are not called at the end of computation if skipping them does not
increase the multiplicative depth of the circuit.

Hoisted automorphisms Hoisted automorphisms are useful when multiple rotations of the
same ciphertext need to be computed [26]. Our solution encounters this scenario when computing
the matrix inversion of H in steps 6 and 7 of Algorithm 5, and hence the hoisted automorphisms
are used there in favor of regular rotations.

Minimizing the noise growth and ciphertext modulus

We minimized the noise growth/ciphertext modulus of the computation circuit using the following
techniques:

• Binary tree multiplication was employed for any chained products of ciphertexts.

• Closed-form expressions (such as in step 2 of Algorithm 5) were derived to get the maximum
benefit from binary tree multiplication.

• Binary tree addition for any summation of a large number of ciphertexts was employed to
achieve a O(logN) noise growth.

• To guarantee that the end result of the computation requires only one native-integer polyno-
mials, we multiplied both numerator and denominator by estimated scaling factors (different
from 2p). These factors were introduced during bit mask multiplications to avoid any extra
depth increase due to this additional scaling.

• The maintenance operations of HE, such as key switching and rescaling, were properly ordered
to minimize the noise growth. For instance, rescaling was done after the rotations following
a multiplication (not before).
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Harnessing the CRT ladder

As the circuit evaluation progresses, the number of CRT limbs, i.e., native polynomials in the
Double-CRT structure, gets reduced due to rescaling. For instance, at level ` the number of
CRT limbs is reduced by L− ` as compared to fresh ciphertexts. This provides a speedup in CKKS
compared to scale-invariant schemes, such as BFV. We can further take advantage of the decreasing
CRT “ladder” by encrypting plaintexts at the level they are first used and by compressing evaluation
keys as the computation progresses. This reduces storage requirements. We also minimize the
number of CRT limbs by finding the minimum number of limbs needed for correct result (starting
from the end of the computation circuit). Below we provide some examples of how these techniques
are applied in our solution.

Encrypt ciphertexts at the level first used As the SNPs matrix S is first used in step
9 of Algorithm 5 (after 10 levels of computation), we encrypt it using 7 CRT limbs rather than
17 corresponding to the initial ciphertext modulus. This reduces the storage requirements for the
SNPs matrix by a factor of 2.4x.

Compress evaluation keys as needed Same rotation keys are used multiple times throughout
the computation. Whenever they are no longer required below a certain level, we compress them
to the current level, thus reducing the number of CRT limbs. Note that the rotation keys consume
most of the space utilized by public keys in our solution.

Use the lowest number of CRT limbs for ciphertexts Once the lowest multiplicative
depth for the circuit is determined, we choose the actual level for ciphertexts by counting from the
end of the circuit (not from the beginning) up to the specific computation. This minimizes the
number of CRT limbs used, thus reducing both runtime and storage requirements.

Consider the example of S. If we were to count the level from the beginning of the circuit, we
would choose level 8 (to match the level of B1). But we choose 10 instead because the maximum
depth of computations from S in step 9 to the end of the circuit is 6. This gives more than 1.5x
runtime improvement for the rotations in the conversion from W to W1, which is done immediately
before computing W1S. The storage requirement for S is also reduced by roughly a factor of 1.3x.

Matrix inversion

As pointed out earlier, we use Cramer’s rule to compute the matrix inverse of H. The numerator
is the adjoint of H while the denominator is the determinant of H. To extract specific components
of H, we use cheap rotations (hoisted automorphisms) followed by bit mask multiplications to
clear out the values that are not used. As both numerator and denominator contain a lot of
common products of the rotations for H, we wrote both of them down in the closed form and
compute common products only once. The closed form for the determinant also allows the direct
application of binary tree multiplication (3-in-series products require a binary depth of 2). The
depth cost of these steps is 3 (2 for homomorphic multiplications and 1 for bit mask multiplication).

When computing the determinant and k2 components in the adjoint, all homomorphic multi-
plications are performed without relinearization, and the relinearization is applied at the very end
(for each component) after all additions and subtractions are done. This significantly reduces the
number of expensive key switching operations when computing the matrix adjoint and determinant.

The procedure for computing the adjoint and determinat also prepares the packed-matrix vari-
ant of B for computing ζ∗ in step 8 and the packed-integer variant B, i.e., B1, for computing S∗ in
step 9 by performing appropriate rotations and additions. The final rescaling for the components in
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the adjoint and determinant is done after all rotations are computed. Otherwise the noise growth
in rotations would lead to incorrect results after decryption.

Order of products in matrix chain multiplication

The order of matrix products in matrix chain multiplications has a major effect on the performance
of our solution. The two most complex and costly chained matrix products in Algorithm 5 are step
8 (computation of ζ∗) and step 9 (computation of S∗). Typically the matrix chain multiplication
problem is an optimization problem that can be solved using dynamic programming. In the case
of regular plaintext computations, the goal is usually to minimize the number of element multipli-
cations. In the encrypted solution, additional constraints are introduced, and these constraints can
be different depending on the plaintext encoding used, as illustrated below.

In step 8, we work with a chain of single ciphertexts (packed matrix encoding). The constraints
for this case can be summarized as follows:

• Make sure the outcome of each intermediate product is a single ciphertext. For instance, we
cannot have a product where outer dimensions are both N .

• The costs of SumRowVec and SumColVec are different. The latter requires a bit mask
multiplication, and the number of rotations corresponds either to row or column size. The
possible constraints are to minimize the number of rotations and/or minimize the depth of
bit mask multiplications.

• Minimize the depth of the overall circuit. In other words, the term at highest level should
be given special attention. The binary tree multiplication technique should also be properly
applied.

In step 9, we work with products of many packed-integer ciphertexts and N SIMD-packed ci-
phertexts (for each row of matrix S). The guidelines for optimization in this case can be summarized
as follows:

• Minimize the total number of SIMD multiplications.

• Minimize the depth of the overall circuit. In other words, the term at highest level should
be given special attention. The binary tree multiplication technique should also be properly
applied.

In our solution, the decisions regarding the order of matrix chain multiplication were done
by hand. But in a more general case, where the computation circuit is built automatically, one
would have to include algorithms for finding the optimal order by solving the appropriate dynamic
optimization problem.

Loop parallelization

To benefit from multi-core CPU environments, our solution applies loop parallelization at various
levels.

At the encryption stage, the parallelization is done for the loop iterating over all individuals
(size N , which is at least 245). This implies the encryption runtime should decrease almost linearly
with the number of physical cores.

30



Table 2: Scalability of the HE LRA test on N=5,000 samples.
N M KeyGen [s] Encrypt [s] Compute [s] Decrypt [s] Peak RAM [GB]

5000 16384 7.9 66.9 1275 0.062 163
5000 32768 7.5 84.7 1482 0.12 208
5000 49152 7.9 103.5 1731 0.19 253
5000 65536 7.3 118.5 2051 0.24 306

Table 3: Scalability of the HE LRA test on M=16,384 SNPs.
N M KeyGen [s] Encrypt [s] Compute [s] Decrypt [s] Peak RAM [GB]

2,500 16384 7.8 35 612 0.056 83
5,000 16384 7.9 66.9 1275 0.062 163
7,500 16384 7.6 99.5 1990 0.067 244
10,000 16384 8.7 127.3 2738 0.073 324
15,000 16384 6.7 190.9 4052 0.58 485

In the computation stage, the following loop parallelizations are applied:

• All matrix products in X1(B1(X
>
1 (W1S))) at step 9 of Algorithm 5 are parallelized over

inner dimensions (N or k, depending on the product).

• All SIMD products in steps 10 and 11 of Algorithm 5 are parallelized over N .

• In matrix inversion, the extraction of k2 components of H is parallelized over k2.

• In the homomorphic encoding conversion routine of Method 1, the parallelization is applied
to the main loop over N .

• Loop parallelization is also applied in many places at the level of CKKS and lower-lever
ring operations. In the case of NTTs for polynomials in Double-CRT representation, the
parallelization is done over `. In the case of RNS subroutines, the parallelization is applied
at the level of polynomial coefficients (dimension n).
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Figure 4: Accuracy comparison of odds ratios (OR) computed by clear and HE tests.
(A,B) report results from clear vs HE comparisons of the chi-square and LRA test respectively;
(C,D) report comparisons of the HE test to the gold standard logistic regression in the clear.
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Figure 5: Accuracy comparison of polygenic risk scores computed by clear and HE tests
for SNPs restricted to P¡5e-8. R2: coefficient of determination of the regression; a0: intercept
of the regression; a1: slope of the regression; ρ: correlation of statistics.

33



Figure 6: Peak memory usage at 16,384 SNPs. Memory usage (RAM) measured from down-
sampling individuals in an analysis of 16,384 SNPs.. Measured results are shown with points,
extrapolated linear fit with dashed line.
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Table 4: Extrapolation of the HE LRA test.
N M Meas. Compute [s] Extrap. Compute [s] Extrap. Compute M=500k [hrs]

2,500 16384 612 608 5.2
5,000 16384 1275 1301 11.0
7,500 16384 1990 1994 16.9
10,000 16384 2738 2688 22.8
15,000 16384 4052 4074 34.5
50,000 13780 116.8
100,000 27645 234.3
150,000 41510 351.9
200,000 55375 469.4
250,000 69240 587.0
300,000 83105 704.5
350,000 96970 822.0
400,000 110835 939.6
450,000 124700 1057.1
500,000 138565 1174.6

Table 5: Scalability of the HE chi-squared test on N=25,000 samples.
N M KeyGen [s] Encrypt [s] Compute [s] Decrypt [s] Peak RAM [GB]

25000 16384 0.007 57.2 166.3 0.134 133
25000 32768 0.007 125.6 332.5 0.245 281
25000 49152 0.007 220.1 476.4 0.567 477

Table 6: Scalability of the HE chi-squared test on M=16,384 SNPs.
N M KeyGen [s] Encrypt [s] Compute [s] Decrypt [s] Peak RAM [GB]

5000 16384 0.008 10.9 33.8 0.11 27
10000 16384 0.007 22.9 80.1 0.12 55
15000 16384 0.007 34.6 97.8 0.12 81
20000 16384 0.008 46.4 143.1 0.12 111
25000 16384 0.007 57.2 166.3 0.134 133
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Table 7: Extrapolation of the HE chi-squared test.
N M Meas. Compute [s] Extrap. Compute [s] Extrap. Compute M=500k [hrs]

5,000 16,384 33.8 39 0.3
10,000 16,384 80.1 72 0.6
15,000 16,384 97.8 105 0.9
20,000 16,384 143.1 138 1.2
25,000 16,384 166.3 171 1.4
50,000 336 2.8
100,000 666 5.6
150,000 996 8.4
200,000 1326 11.2
250,000 1656 14.0
300,000 1986 16.8
350,000 2316 19.6
400,000 2646 22.4
450,000 2976 25.2
500,000 3306 28.0
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Table 8: Peak RAM usage scaling with # of SNPs and fixed individuals.
LRA Chi-square

Measured Peak Extrapolated Measured Peak Extrapolated
N M RAM [GB] Peak RAM [GB] N M RAM [GB] Peak RAM [GB]

5000 16384 163 162 25000 16384 133 125
5000 32768 208 209 25000 32768 281 297
5000 49152 253 257 25000 49152 477 469
5000 65536 306 304 25000 65536 641
5000 81920 352 25000 81920 813
5000 98304 399 25000 98304 985
5000 114688 447 25000 114688 1157
5000 131072 494 25000 131072 1329
5000 147456 542 25000 147456 1501
5000 163840 589 25000 163840 1674
5000 180224 637 25000 180224 1846
5000 196608 684 25000 196608 2018
5000 212992 732 25000 212992 2190
5000 229376 779 25000 229376 2362
5000 245760 827 25000 245760 2534
5000 262144 874 25000 262144 2706
5000 278528 922 25000 278528 2878
5000 294912 969 25000 294912 3050
5000 311296 1017 25000 311296 3222
5000 327680 1064 25000 327680 3394
5000 344064 1112 25000 344064 3566
5000 360448 1159 25000 360448 3738
5000 376832 1207 25000 376832 3910
5000 393216 1254 25000 393216 4082
5000 409600 1302 25000 409600 4254
5000 425984 1349 25000 425984 4426
5000 442368 1397 25000 442368 4598
5000 458752 1444 25000 458752 4770
5000 475136 1492 25000 475136 4942
5000 491520 1539 25000 491520 5114
5000 507904 1587 25000 507904 5286
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Table 9: Peak RAM usage scaling with # of individuals at 16,384 SNPs.
LRA Chi-square

Measured Peak Extrapolated Measured Peak Extrapolated
N RAM [GB] Peak RAM [GB] RAM [GB] Peak RAM [GB]

2,500 83 83 27 23
5,000 163 163 35
7,500 244 244 47
10,000 324 324 55 59
15,000 485 485 81 83
20,000 646 111 107
25,000 807 133 131
30,000 968 155
35,000 1129 179
40,000 1290 203
45,000 1451 227
50,000 1612 251
55,000 1773 275
60,000 1934 299
65,000 2095 323
70,000 2256 347
75,000 2417 371
80,000 2578 395
85,000 2739 419
90,000 2900 443
95,000 3061 467
100,000 3222 491
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