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Abstract. FORS is the underlying hash-based few-time signing scheme
in SPHINCS+, one of the nine signature schemes which advanced to
round 2 of the NIST Post-Quantum Cryptography standardization com-
petition. In this paper, we analyze the security of FORS with respect to
adaptive chosen message attacks. We show that in such a setting, the
security of FORS decreases significantly with each signed message when
compared to its security against non-adaptive chosen message attacks.
We propose a chaining mechanism that with slightly more computa-
tion, dynamically binds the Obtain Random Subset (ORS) generation
with signing, hence, eliminating the offline advantage of adaptive cho-
sen message adversaries. We apply our chaining mechanism to FORS
and present DFORS whose security against adaptive chosen message at-
tacks is equal to the non-adaptive security of FORS. In a nutshell, using
SPHINCS+-128s parameters, FORS provides 75-bit security and DFORS
achieves 150-bit security with respect to adaptive chosen message attacks
after signing one message. We note that our analysis does not affect the
claimed security of SPHINCS+. Nevertheless, this work provides a bet-
ter understanding of FORS and other HORS variants, and furnishes a
solution if new adaptive cryptanalytic techniques on SPHINCS+ emerge.

Keywords: Digital signatures, Hash-based signature schemes, Post-
Quantum Cryptography, Adaptive chosen message attacks.

1 Introduction

The current digital signature infrastructure adopts schemes that rely on the
hardness of factoring or finding discrete logarithms in finite groups [24, 12, 18].
Given recent advances in physics which point towards the eventual construction
of large scale quantum computers [1], these hard problems will be solved in poly-
nomial time using Shor’s algorithm [25]. Lattice-based, coding-based, and mul-
tivariate signatures are considered quantum resilient schemes in the Q1 model
[7]. However, either their exact security with respect to quantum attacks is still
not clear [11, 5] or their communication/storage complexity is impractical to a
multitude of applications, e.g., megabyte keys for the matrices of McEliece-based
cryptosystems [27]. On the other hand, hash-based digital signatures have mod-
erately sized keys (order of kilobytes), and their quantum security relies solely
on that of hash functions based on Grover’s algorithm. They have been proven



to offer simple quantum resilient security properties [26]. Note that the proofs
in [26] follow the Q1 model where no superposition queries to quantum oracles
are allowed [7].

Hash-based signature algorithms are comprised of two schemes, an underlying
signing scheme and an extension algorithm. The former algorithm defines the
main signing procedure where a key pair can be used to sign one (Lamport [19],
Winternitz one time signature scheme (WOTS), WOTS++ [8, 14]) or a few
messages (e.g., Biba [21], HORS [23], HORS++[22], PORS [2], and FORS [4]),
after which a new key pair should be generated to maintain security against
forgery attacks. More precisely, the security of hash-based few time (HBFT)
signature schemes decreases after revealing each signature, and hence their bit-
security is given under the condition that re-keying is required after r signatures.
Accordingly, translating this constraint to acceptable attack models implies that
a maximum of r queries are allowed to the signing oracle.

The extension algorithm is a top level construction that employs several in-
stances of underlying signing schemes (OTS and HBFT) in a Merkle tree struc-
ture. Such an algorithm enables signing multiple messages where signatures are
verified with one public key (Merkle root). Extension algorithms can be stateful
such as Merkle Signature Scheme MSS [20], eXtended Merkle Signature Scheme
(XMSS) [9], XMSS+ [15], Multi Tree XMSS (XMSSMT ) [16], and XMSS with
tightened security (XMSS-T) [17], or stateless such as SPHINCS [5], SPHINCS+

[4, 6], and Gravity SPHINCS [3]. Stateless signature algorithms conform to the
basic definition of digital signatures where no state updates are required to guar-
antee security, and only keys are needed to securely generate valid signatures at
any time.

The security of hash-based signature algorithms relies on the security of the
underlying basic signing schemes. SPHINCS is a hyper-tree construction that
uses WOTS and HORS trees for signing. In [2], Aumasson and Endignoux in-
vestigated the subset-resilience problem [23] and showed that HORS is vulner-
able to weak-message attacks where an adaptive adversary looks for messages
that produce smaller Obtain Random Subsets (ORSs). Consequently, they re-
ported a 7-bit decrease in the expected security of SPHINCS against classical
attacks. Moreover, they proposed PORS, a variant of HORS which employs a
pseudorandom bit generator (PRNG) instead of a hash function to obtain ran-
dom subsets with distinct elements, thus avoiding the effect of weak messages.
However, PORS is not secure against adaptive chosen message attacks where
an adversary is able to generate random subsets for as many messages as they
want, and select a set of r message for online queries. Finally, FORS, another
HORS variant, was proposed and is currently adopted in SPHINCS+, a round
2 candidate in the NIST Post-Quantum Cryptography standardization compe-
tition [4, 10]. Compared to PORS, FORS mitigates weak-message attacks by
increasing the size of the keys by a factor of κ where κ is the number of random
subsets, and the overall signature size is also increased when it is integrated
in a hyper-tree structure. On its own, the security of FORS against adaptive
chosen message attacks decreases significantly with each signed message, which
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currently has no known effect on the security of SPHINCS+ because it employs
a pseudorandomly generated randomizer that is publicly sent along with the sig-
nature, and is used as a key for the hash function in FORS to obtain the random
subsets. However, if cryptanalytic techniques are devised which can annihilate
how this public randomizer is utilized or can break its generation procedure,
then SPHINCS+ will be vulnerable to adaptive chosen message attacks. Hence,
given the significance of SPHINCS+ as a candidate for standardization, we be-
lieve our analysis of its underlying signature scheme, FORS, is important, along
with DFORS which offers a drop-in strengthened candidate.
Our contribution. In what follows, we summarize the contributions of this paper.

- We analyze the security of FORS against adaptive chosen message adversaries.
We show that its bit security with respect to adaptive chosen message attacks
decreases significantly when compared to its security in a non-adaptive setting.
We adopt the adaptive chosen message attack model defined by Reyzin and
Reyzin [23] and used in the analysis of HORS and PORS.

- We propose a hash chaining mechanism that binds the process of generating
a message ORS with signing it, which eliminates the offline adversarial ad-
vantage and makes ORS generation feasible only for the signing entity. We
apply the chaining scheme to FORS and present Dynamic Forest Of Random
Subsets (DFORS), a new HORS variant that resists adaptive chosen message
attacks. We show that the bit-security of DFORS with respect to adaptive
chosen message attacks is more than that of FORS by a factor of r+ 1, where
r is the number of signed messages per key under a given security level.

- We analyze the security of DFORS with respect to adaptive chosen message
adversaries, discuss its limitations, and report its theoretical computational
and communication performance. Finally, we compare DFORS with FORS and
other HORS variants.

2 Preliminaries

In what follows, we provide the notation and definitions used throughout the
paper. FORS can be seen as a generalized instance of HORS and it inherits
most of the specifications of HORS. Accordingly, for completeness, we provide
a brief overview of the HORS signature scheme.

2.1 Notation

Let n denote our security parameter. Consider a finite key space K, message
space of arbitrary length M, the two hash families H and G where H = {Hk :
{0, 1}∗ → {0, 1}κτ |k ∈ K}, and G = {Gk : {0, 1}∗ → {0, 1}n|k ∈ K}. Hk (resp.
Gk) is an κτ -bit (resp. n-bit) keyed one-way function. Let the κτ -bit message
digest of an arbitrary length message m ∈M be divided into κ elements, each of
length τ bits, such that the integer representation of a given element is a subset
of {0, 1, . . . , t− 1}, where t = 2τ . We refer to the set {0, 1, . . . , t− 1} by T , and
the subset of κ-elements of the set T is denoted by Sκ(T ). Let ORSκ(m) denote
an Obtain Random Subset function which returns a κ element subset from the
κτ -bit hash value of a message m, formally defined as follows

ORSκ(m) : Hk(m)→ Sκ(T )|k ∈ K
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The notion of ORS functions was introduced by Reyzin and Reyzin when HORS
was proposed [23]. It has been shown that the security of the scheme is reduced
to the subset resilience problem [23]. More precisely, for a given bit-security
level, at most r messages can be signed before re-keying is required, otherwise
an adversary can find a message whose ORS is covered by the union of the
ORSs of the r messages.

Definition 1 The messages (m1,m2, . . . ,mr,mr+1) are in an r-subset-cover
relation, Crκ, if the Obtain Random Subset of message mr+1 (ORSκ(mr+1))
is a subset of the union of all Obtain Random Subsets of the r-messages,
ORSκ(m1) ∪ORSκ(m2) ∪ . . . ∪ORSκ(mr), formally

Crκ(m1,m2, . . . ,mr+1)⇔ ORSκ(mr+1) ⊆
r⋃
i=1

ORSκ(mi).

If finding the above cover relation for a given ORS function is infeasible, then
it is said that such a function is r-subset resilient.

Definition 2 An ORS function is r-subset-resilient if for any polynomial time
adversary A(1n,κ,t), the probability of finding (m1,m2, . . . ,mr+1) such that
ORSκ(mr+1) is a subset of ORSκ(m1) ∪ORSκ(m2) ∪ . . . ∪ORSκ(mr) is negli-
gible, Formally

Pr[(m1,m2, . . . ,mr+1)← A(1n,κ,t) : Crκ(m1,m2, . . . ,mr+1)] ≤ negl(n, t).

Definition 3 An ORS function is r-target-subset-resilient, if for any polyno-
mial time adversary A who is given the ORSs of r messages

⋃r
i=1ORSκ(mi),

it is infeasible to find a message mr+1 such that its κ-element ORSκ(mr+1) is
a subset of the union of ORSs of the r messages, formally

Pr[(mr+1)← A(1n,κ,t,m1,m2,...,mr) : Crκ(m1,m2, . . . ,mr+1)] ≤ negl(n, t)

2.2 Hash to Obtain Random Subset (HORS) Few-time Digital
Signature Scheme

In HORS [23], the signer randomly generates t secret keys each of n-bit length,
(SK = sk0, sk1, . . . , skt−1). Using a one-way function f : {0, 1}n → {0, 1}n, the
signer computes the public key, PK = (pk0 = f(sk0), pk1 = f(sk1), . . . , pkt−1 =
f(skt−1)). For signing an arbitrary length message m ∈ M, ORSκ(m) =
{h0, h1, . . . , hκ−1} is evaluated by dividing the κτ -bit message digest value of
HK(m) into κ elements, each of length τ bits. Each element is represented
by an integer hi where 0 ≤ i ≤ κ − 1 and hi ∈ {0, 1, . . . , t − 1}, t = 2τ .
To generate the signature, σ, the signer reveals the secret keys whose indices
correspond to the integer representation of the κ elements in the ORS, i.e.,
σ = (skh0

, skh1
, . . . , skhκ−1

). For verification, the verifier computes ORSκ(m) =
{h0, h1, . . . , hκ−1}, then checks if f(skhi) = pkhi , otherwise verification fails.
The description of HORS is given in Algorithm 3 in Appendix A.
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Security. Assuming that f is a one-way function, the security of HORS is
reduced to the hardness of the (target) subset-resilience problem [23]. It has been
shown that the probability of finding a message (mr+1) such that ORSκ(mr+1)
is covered by the obtained random subsets of the r previously signed messages
is (rκ/t)κ which corresponds to the probability of κ randomly chosen elements
being a subset of the revealed rκ secret keys. The corresponding bit-security is
then

log2(t/rκ)κ = κ(log2 t− log2 r − log2 κ).

In [2], it was proven that the security of HORS with respect to adaptive chosen
message attacks is

κ

r + 1
(log2 t− log2 r − log2 κ) +

log2 r!

r + 1
,

(see Appendix B). A practical example of a weak-message attack was also given
where an adaptive adversary finds messages that map to subsets with repeated
indices which results in smaller subsets, i.e., number of distinct elements < κ.
Such subsets are easier to cover and consequently, a 7-bit decrease in the expected
security of SPHINCS against classical attacks was reported.

Variants. HORS++ [22] was introduced to provide security against adaptive
attacks. A one-to-one mapping function S(m) that belongs to a cover-free family
[13] is utilized to ensure that for any r + 1 messages S(mr+1) *

⋃r
i=1(S(mi).

Three constructions for S(m) based on polynomials over finite fields, error cor-
recting codes, and algebraic curves over finite fields were presented. Conse-
quently, HORS++ increases the signature size and the size of the secret keys to
achieve the same security level of HORS against non-adaptive chosen message
attacks. Moreover, the computational efficiency is decreased due to the computa-
tion of S(m). Later, PORS was suggested to replace HORS in SPHINCS where
the idea of having distinct elements in subsets of weak messages was enforced
by use of a pseudorandom bit generator to obtain the subsets [2]. However, al-
though PORS mitigates weak-message attacks, it is still vulnerable to adaptive
chosen message attacks under the definition given in Appendix B. Lastly, FORS
was proposed and used in SPHINCS+ [4], where security against weak-message
attacks is achieved by increasing the key size from t values to κt values such that
each index out of the κ indices in the ORS reveals a secret key from a different
pool of t secret keys. Accordingly, when integrated in a tree structure the size of
the signature also increases.

3 FORS Security Analysis

Unlike HORS which generates t secret keys from which the secret keys that are
indexed by ORS(m) are released, FORS generates (κt) secret keys and dedicates
t secret keys for each index out of the κ indices. By doing so, FORS mitigates
weak message attacks because even if two elements in ORS(m) are equal, they
index values from different secret key pools. The n-bit public key of FORS is the
hash of the concatenation of κ Merkle tree roots. Each root is associated with a
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binary hash tree whose leaves are the hashes of t secret key elements in a given
pool. Accordingly, one FORS instance has κ trees, each of height log t = τ .

Figure 1 depicts the signatures of message 100 011 110 using (a) HORS and
(b) FORS, where κ = 3 and t = 8. In FORS, the first 3 bits, i.e., 100, of the
message selects sk4, the secret key corresponding to the 4-th leaf indexed from
the left and starting from 0 in the first tree along with its authentication path to
root0. Similarly, the second (resp. third) 3 bits of the message selects sk3 (resp.
sk6) from the second (resp. third) tree with the authentication path to root1
(resp. root2). In HORS, the three 3-bit parts of the message index sk4, sk3, and
sk6 from the same tree, and with each selected secret key a 3 node authentication
path is selected, hence the overlap in the node (colored in pale red and gray)
at the pre-root level. More details about hash trees and authentication path
calculations are provided in Section 4.

root

(a) HORS signature within a binary tree construction

root2root1root0

(b) FORS signature within κ binary trees construction

Fig. 1: HORS and FORS signatures of the message 100 011 110 where κ = 3
and t = 8. The 8 rectangles under each tree depict the eight secret keys whose
hashes are stored in the corresponding leaf nodes.

It can be verified from Figure 1 that if two 3-bit parts of the message are
equal, then the same secret key value is revealed in HORS. This fact is exploited
in the weak messages attack where an adversary searches for messages that
have as many repeated indices as possible, which lead to ORSs containing fewer
distinct elements, and thus can be easily covered with the ORSs of the revealed r
messages. However, this problem is mitigated in FORS because repeated indices
select secret keys from different pools. In what follows, we investigate the security
of FORS with respect to non-adaptive chosen message attacks.

3.1 FORS in a Non-adaptive Setting

Reyzin and Reyzin introduced clear attack models for analyzing HBFT signature
schemes against (non) adaptive chosen message attacks [23]. Such models are
used in the analysis of all HORS-variants, i.e., PORS, and FORS. Specifically,
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in a non-adaptive setting, also referred to by r-target subset resilience problem
(see Def. 3), an adversary is required to first choose r messages m1,m2, . . . ,mr,
after which they are provided with key k of Hk and allowed to select a message
mr+1 and evaluate Hk(mr+1). A successful non-adaptive chosen message attack
happens when the adversary is able to find Crκ, i.e., find a message mr+1 that is in
an r-subset cover relation with m1,m2, . . . ,mr. This scenario corresponds to an
attacker who is trying to forge a signature after observing all r allowed signatures
per key, or an adversary who is allowed r queries at a time before being supplied
with k to verify any of the returned signatures. Few-time signature schemes are
expected to maintain their security against forgery attacks even after releasing
all r signatures.

Finding Crκ in FORS. Given an adversary who observed the signatures of r
messages, finding a message mr+1 that is in an r−subset cover relation with the
other r messages (Cr-FORS

κ (m1,m2, . . . ,mr+1)) has probability of success (r/t)κ

[6], which is equal to the probability that each log t-bit element out of the κ
elements in ORS(mr+1) is covered by an element at the same position of the
ORSs of the other r messages, i.e., hi(mr+1) ∈

⋃r
j=1 hi(mj) for 0 ≤ i ≤ κ − 1,

where hi(mj) denotes the i-th ORS element of the j-th message. Accordingly,
the corresponding bit-security against non-adaptive chosen message attacks is
given by

log2(t/r)κ = κ(log2 t− log2 r).

3.2 Adaptive Chosen Message Attack Against FORS

In this setting, an adversary is given the hash key k and allowed to evaluate
Hk for any message of their choice before selecting r + 1 messages. This attack
also indicates the r-subset resilience of the signature algorithm (see Def. 2). The
definition of adaptive chosen message attack is given in Appendix B. Applying
the same analysis to FORS, given the key k of Hk, an adversary A generates
the ORSs of q > r messages offline, where Hk(mi) = h0||h1||. . . ||hκ−1 and
ORS(mi) = {h0, h1, . . . , hκ−1}, for 0 ≤ i ≤ q − 1 A searches for all possible
combinations of (r + 1) message sets from the set of q messages. For any given
r+1 messages combination, the probability that message mr+1 is covered by the
remaining r messages (i.e., Cr-FORS

κ (m1,m2, . . . ,mr+1)), is (r/t)κ. Accordingly,
A obtains

(
q
r+1

)
sets of r + 1 messages and each set gives

(
r+1
r

)
possible choices

for mr+1. Therefore, the probability of A successfully generating Cr-FORS
κ is

bounded from above by

SuccC
rFORS
κ (A) ≤

(
q

r + 1

)(
r + 1

r

)
(r/t)κ,

SuccC
r-FORS
κ ≤ q

(
q − 1

r

)
(r/t)κ,

SuccC
r-FORS
κ (A) ≤ q.(q − 1) . . . (q − r)

r!
(r/t)κ.
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which can be approximated by

SuccC
r-FORS
κ (A) ≤ qr+1

r!
(r/t)κ.

Assuming a success probability close to 1, the above equation can be expressed
as

(r + 1) log2 q − log2 r! +κ(log2 r − log2 t) = 0.

Then the bit security of FORS with respect to adaptive chosen message attacks
is given by

κ

r + 1
(log2 t− log2 r) +

log2 r!

r + 1
.

One may conclude that due to the offline adversarial advantage given to A
(i.e., knowledge of k implies the feasibility of evaluating ORSs for more than r
messages of their choice), FORS bit security against adaptive chosen message
attacks decreases by a factor of (r + 1) when compared to the non-adaptive
setting. Note that, currently there is no attack against SPHINCS+ that can
utilize the offline adversarial privileges and produce r + 1 messages in an r-
subset cover relation. This is because SPHINCS+ uses a fixed pseudorandom
generation of the key k to get the obtained random subset ORSκ(Hk(m)). We
also note that k is message dependent and is sent in the clear with each signature
so verification takes place. Accordingly, in the event of attacks on the process by
which k is evaluated from m, a dramatic decrease in the security of SPHINCS+

will follow. Consequently, in the following section we present a technique that
is robust against adaptive chosen message attacks on FORS. Our mechanism
annihilates the adversarial offline advantages associated with knowing the hash
key k.

4 Dynamic Forest Of Random Subsets (DFORS)

In this section we present Dynamic Forest Of Random Subsets DFORS, a new
HORS-variant that mitigates the offline advantage of an adversary which leads to
the adaptive chosen message attack on FORS (discussed in Section 3). The main
feature of DFORS is that the generation of the ORS is performed concurrently
with signing such that each signature element is utilized to generate the next
element of the ORS. In other words, signing and ORS generation are bound
together using a chaining mechanism that utilizes the revealed secret keys. This
procedure ensures that given a message, only the signer is able to efficiently
generate an ORS. By doing so, even if an adversary has knowledge of k, they
are not able to compute ORSs of a given message of their choice unless they
have some secret key knowledge. In what follows we give a detailed specification
of DFORS.

4.1 DFORS Parameters

DFORS uses the following parameters.

n : The security parameter and the bit-length of (i) the secret seed SK.seed,
(ii) secret keys ski,j (0 ≤ i ≤ t− 1, 0 ≤ j ≤ κ− 1), (iii) public key PK.root,
and (iv) the output of the used one way function F , and hash function G.
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κ : The number of (i) sub-strings of the input message, (ii) secret key pools
where each contains t secret keys, and (iii) hash trees.

τ : The bit length of a sub-string of the input message and the hash tree
height.

t : the number of secret keys per pool and the number of leaves in each hash
tree, t = 2τ .

The input message for DFORS is of length κ log t = κτ bits. To achieve n-bit
security when signing r messages, we have κτ > n (see Section 5.1).

4.2 Key Generation

In what follows, we give the specifications of the secret and public key generation
procedures. Moreover, DFORS is described in Algorithm 2.

Secret key generation. Let SK.seed denote an n-bit secret seed that is sam-
pled at random. Given a pseudorandom function, PRF : {0, 1}n × {0, 1}n →
{0, 1}n, the n-bit κt secret key values ski,j , 0 ≤ i ≤ t − 1, 0 ≤ j ≤ κ − 1 are
generated by

ski,j = PRF (SK.seed, i+ jt),

where each set of t secret keys belong to one of the κ pools.

Hash trees and public key generation. Using one-way function F :
{0, 1}n → {0, 1}n applied on the secret keys ski,j , 0 ≤ i ≤ t−1, 0 ≤ j ≤ κ−1, the
leaf nodes of the κ hash trees are generated, Li,j = F (ski,j). Every t leaves, L∗,j ,
are combined together in a Merkle tree construction to form the j-th (out of κ)
tree. Then, the roots of these κ trees, root0, root1, . . . , rootκ−1, are concatenated
to form an input to the hash function to get the n-bit public key expressed as

PK.root = Gk(root0||root1||. . . ||rootκ−1).

Binary Hash Tree. DFORS uses the XMSS binary Merkle tree construction [9].
The height of the binary hash tree is τ . It has τ + 1 levels, t = 2τ leaf nodes
(each of size n bits) on level 0, i.e., Li, 0 ≤ i ≤ t− 1, and an n-bit root node on
level τ . We denote the nodes in level j by Ni,j where 0 ≤ i < 2τ−j , 0 ≤ j ≤ τ
and Ni,0 = Li. To construct the tree, the hash function G and a 2n-bit mask, q,
per hash evaluation are used. These bit masks are introduced to provide second-
preimage resistance. The rationale for using different bit masks for each hash
evaluation is to mitigate multi-target attacks [17]. For details on generating the
hash keys Ki,j and bit masks qi,j , the reader is referred to [17, 4]. Formally, for
0 < j ≤ τ , a node Ni,j is given by

Ni,j = Gki,j ((N2i,j−1||N2i+1,j−1)⊕ qi,j).

Figure 2 shows a simplified example of one of the κ trees in DFORS with t = 8.
Assuming it is the j-th tree, it depicts the nodes in the authentication path
(colored in gray) associated with revealing sk3,j .
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level3

level2

level1

level0

Tree Root

L0 L1 L2 L3 L4 L5 L6 L7

Fig. 2: A binary hash tree with the nodes in the authentication path (colored in
gray) for leaf node L3 (colored in black)

4.3 Signing and ORS Generation

We denote by Z(h) a function that takes as input κτ bits, h, and outputs the
j-th τ bits of h, where j = h mod κ. Formally, Z : {0, 1}κτ → {0, 1}τ , and letting
h = h0||h1||. . . ||hκ−1, for 0 ≤ j ≤ κ− 1

Z(h) : hj ← {h0||h1||. . . ||hκ−1}, j = h mod κ.

The signing algorithm takes as input the message m, the secret seed SK.seed,
and the hash key k. It constructs the κ trees as explained above in Section 4.2.
To compute the κ random subset ORSκ(m) = (b0, b1, . . . , bκ−1), the algorithm
first evaluates Hk(m) = h0, then computes Z(h0) = b0. The first element in the
signature, sig0, is comprised of i) the secret key of index b0 in the first pool,
σ0 = skb0,0, and ii) the corresponding authentication path Auth0, thus sig0 =
σ0, Auth0. Next, h0 and skb0,0 are used to choose the second random element,
Z(h1) = b1, where h1 = Hskb0,0

(h0||h0). The second signature element, sig1, is
the secret key of index b1 in the second pool, σ1 = skb1,1, and its corresponding
authentication path Auth1 , sig1 = σ1, Auth1. In general, the i-th element of
the ORSκ(m) is given by Z(hi) = bi where hi = Hskbi−1,i−1

(h0||hi−1). The i-th
signature element, sigi, is the secret key value of index bi in the i-th pool and its
corresponding authentication path Authi, sigi = σi, Authi, where σi = skbi,i.
The above process is repeated until κ elements are generated (b0, b1, . . . , bκ−1).
Finally, the signature is given by

Σ = (sig0, sig1, . . . , sigκ−1) = (skb0 , Auth0, skb1 , Auth1, . . . , skbκ−1 , Authκ−1)

= (σ0, Auth0, σ1, Auth1, . . . , σκ−1, Authκ−1).

The ORS generation and signing process is illustrated in Figure 3.
The authentication path of a leaf Li contains all the sibling nodes of the nodes

in the path from the leaf Li to the tree root. It is required so that the verifier can
successfully generate the root in order to verify the signature element σi related
to the leaf node Li. Figure 2 shows a simple hash tree with the authentication
path for leaf L3 colored in black and the authentication path nodes colored in
gray, Authi = (L2, N0,1, N1,2).
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...

h0 = Hk(m) → h0
0 h0

1
. . . h0j0

= b0 . . . h0
κ−1

h1 = Hskb0 (h0 ‖ h0) → h1
0

. . . h1j1
= b1 . . . h1

κ−1

hκ−2 = Hskbκ−3
(h0 ‖ hκ−3)→ hκ−2

0 hκ−2
1

. . . h
κ−2
jκ−2

. . . hκ−2
κ−1

hκ−1 = Hskbκ−2
(h0 ‖ hκ−2)→ hκ−1

0
. . . h

κ−1
jκ−1

. . . hκ−1
κ−1

bκ−1

bκ−2

ORSκ(m) → b0 b1 . . . bκ−2 bκ−1

Fig. 3: The DFORS procedure to compute ORSκ(m), where ji = hi mod κ, bi =
hiji , and skbi is the bi-th secret key in the i-th secret key pool.

4.4 Signature Verification

The verification algorithm takes as input the message m, the
public key PK.root, the hash key K, and the signature Σ =
(σ0, Auth0, σ1, Auth1, . . . , σκ−1, Authκ−1). It computes Hk(m) = h0, then
Z(h0) = b0 to get the leaf index of the first hash tree. Then, it applies the
one-way function F to the signature element σ0 of the signature Σ to get the
leaf node Lb0 in the first tree. The authentication path Auth0 and the leaf Lb0
are used to compute the root of the first tree. The leaf index b0 is required so
that the verifier knows which node is concatenated on the right and on the left.
The tree root calculation procedure is described in Algorithm 1. Generally, the
verification algorithm computes the i-th tree root by applying Algorithm 1 on
σi, Authi, and the leaf index bi where bi = Z(hi), and hi = Hσi−1(h0||hi−1).
This process is repeated until κ tree roots are computed which are then
concatenated to form an input to the hash function G. If the output of G is
equal to PK.root, the signature is valid, otherwise verification fails.

Algorithm 1 Tree Root Computation

Input: Leaf node Li, Leaf index i, Auth. Path = (A0, A1, . . . , Aτ−1).
Output: The Tree Root Nτ .

Set N0 ← Li
for 1 ≤ j ≤ τ do

if bi/2j−1c ≡ 0 mod 2 then
Nj = Gki,j (Nj−1||Aj−1 ⊕ qi,j)

else
Nj = Gki,j (Aj−1||Nj−1 ⊕ qi,j)

end if
end for
Return (Nτ )
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Algorithm 2 DFORS Algorithm

procedure Key Generation(t, κ)

SK.seed
R←− {0, 1}n

for 0 ≤ j ≤ κ− 1 do
for 0 ≤ i ≤ t− 1 do

ski,j ← PRF (SK.seed, i+ jt)
Li,j ← F (ski,j)

end for
end for
Compute the roots of the κ tree as described in section 4.2
PK.root← G(root0||root1||. . . ||rootκ−1)
Output (SK.seed, PK.root)

end procedure

procedure Signing(m, SK.seed,k, κ, t)
Generate the κ binary hash trees as in key generation procedure
h0 ← Hk(m), h0 = h0

0||h0
1||. . . ||h0

κ−1

b0 ← Z(h0) = h0
j0 , j0 = h0 mod κ

sig0 ← (σ0, Auth0), Where σ0 = skb0,0
for 1 ≤ i ≤ κ− 1 do

hi ← Hskbi−1,i−1(h0||hi−1), hi = hi0||hi1||. . . ||hiκ−1

bi ← Z(hi) = hiji , ji = hi mod κ
sigi ← (σi, Authi), where σi = skbi,i

end for
Σ← (σ0, Auth0, σ1, Auth1, . . . , σκ−1, Authκ−1)
Output (Σ,m)

end procedure

procedure Verification(m, PK.root, k, Σ = (σ0, Auth0, σ1, Auth1, . . . , σκ−1, Authκ−1))
h0 ← Hk(m), h0 = h0

0||h0
1||. . . ||h0

κ−1

b0 ← Z(h0) = h0
j0 , j0 = h0 mod κ

Lb0 ← F (σ0)
root0 ← Algorithm 1 (Lb0,0, b0, Auth0)
for 1 ≤ i ≤ κ− 1 do

hi ← Hσi−1(h0||hi−1), hi = hi0||hi1||. . . ||hiκ−1

bi ← Z(hi) = hiji , ji = hi mod κ
Lbi ← F (σi)
rooti ← Algorithm 1 (Lbi,i, bi, Authi)

end for
if G(root0||root1||. . . ||rootκ−1) = PK.root then

out = 1
else

out = 0
end if
Output (out)

end procedure

5 Security and Efficiency

In what follows, we analyze the security of DFORS and demonstrate the effect
of the dynamic chaining on the security of FORS. Afterwards, the computa-
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tional cost of the DFORS key generation, signing, and verification algorithms
are presented. The bit size of the signature and keys are also given.

5.1 DFORS Security Analysis

In this section, we present a detailed analysis of DFORS with respect to weak-
message attacks and r-target subset resilience adversaries. More precisely, since
the proposed chaining technique does not allow an adaptive adversary who has
knowledge of k to compute the ORSs of any message of their choice before asking
the signing oracle for its signature, DFORS is essentially r-subset resilient. Hence,
our analysis focuses on its security when an adversary is given the signatures of
r messages.

Weak-message attacks. DFORS inherits FORS mitigation to weak-message at-
tacks [6] because it specifies an independent key pool for each index in the ORS.
Consequently, even if an ORS element is repeated, the corresponding revealed
secret keys will be different.

r-target subset resilience. According to Definition 3, we assume an ad-
versary A when given the ORSs of r messages will return mr+1 where
Crκ(m1,m2, . . . ,mr+1). In what follows, we show that the success probability
of A is bounded from above by (r/t)κ. Note that since ORS generation is secret
key dependent, the ORS function of DFORS is intrinsically r-subset resilient.
In other words, the value of any random ORS element, bi, depends on the pre-
viously revealed signature element σi−1 = skbi−1

and the original message m.
Accordingly, without any oracle queries, A has no feasible function to evaluate
ORSs of messages of their choice. On the other hand, if A is given the signa-
tures of r messages or they queried r messages of their choice, they need to
find a message mr+1 such that each element in its obtained random subset,
ORSDFORS

κ (mr+1) = (b0, b1, . . . , bκ−1), is covered by the elements at the same
corresponding positions in the ORSs of the other r messages

Crκ(m1,m2, . . . ,mr+1)⇔ bi(mr+1) ∈
r⋃
j=1

bi(mj), 0 ≤ i ≤ κ− 1.

Due to the chaining process in generating b0, b1, . . . , bκ−1, A generates the ORSs
sequentially. At any position i, if bi(mr+1) /∈ ∪rj=1bi(mj), then A fails. In

addition, they cannot evaluate bi+1 = Z(Hskbi
(h0||hi)) when skbi is not re-

vealed by any of signatures of the r messages, Generally, for the i-th position in
ORSDFORS

κ (mr+1)

bi(mr+1) /∈
r⋃
j=1

bi(mj)⇒ skbi /∈
r⋃
j=1

σi(mj),

where σi(mj) and bi(mj) denote the i-th signature element and i-th ORS el-
ement of the j-th message, respectively. Thus, the probability that A finds
Crκ(m1,m2, . . . ,mr+1) successfully is equal to their probability of finding a mes-
sage mr+1 such that ∀i ∈ {0, 1, . . . , κ − 1}, each of the log t-bit bi(mr+1) ∈
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{bi(m1), bi(m2), . . . , bi(mr)}. Since A is given r messages, the probability of
finding a cover for one bi(mr+1) is (r/t)i+1 because this implies that ∀j <
i; bj(mr+1) ∈ {bj(m1), bj(m2), . . . , bj(mr)}. Thus, the probability of finding a
cover for all the κ elements in ORSDFORS

κ is equal to the probability of finding a
cover for the last element, bκ−1(mr+1), which is (r/t)κ. Therefore

SuccC
r-DFORS
κ (A) ≤ (r/t)κ,

so the corresponding DFORS bit-security against adaptive chosen message at-
tacks is

log2(t/r)κ = κ(log2 t− log2 r).

Compared to the adaptive chosen message attack security of FORS (See
Section 3), the bit security of DFORS is higher by a factor of (r+ 1). The extra
cost is performing κ−1 more calls to the hash function. Unlike FORS, the signing
procedure cannot be parallelized because of the chaining mechanism.

5.2 Theoretical Efficiency

Key generation. This procedure requires κt PRF function computations to gen-
erate the t secret values for κ pools, κt one-way function F computations to
compute the leaf nodes of the hash trees, and κ(t − 1) + 1 hash function G
evaluations to evaluate the κ hash trees and get the public key PK.root.
Signing. This procedure requires κt PRF function computations, κt one-way
function F computations, κt hash function (H and G) to compute the κ hash
trees (κ(t−1) hash G calls), and κ hash H calls to get ORSκ(m). Note that the
whole tree structure is computed with each signature, otherwise, the scheme
storage requirements will be huge.
Verification. This procedure requires κ one-way function F computations that
compute the trees leaves, κ(τ+1) hash function (H and G) evaluations to recon-
struct the κ trees roots from the revealed secret values and the authentication
paths (κτ calls to G), and κ calls H to get ORSκ(m).
Signature size. The signature contains κ secret key elements and κτ tree node
for the associated authentication paths. Thus, the signature size is κn(τ + 1)
bits, where n is the bit size of each secret keys and hash tree node.
Length of keys. The size of the secret key, SK.root, is equal to that of the public
key, PK.root, and it is n bits.

The computational complexities of the above procedures are given in Table 2.

5.3 Comparison with HORS Variants

DFORS inherits all the advantageous security properties of FORS. Addition-
ally, it is secure against adaptive chosen message attacks. In fact, for the same
parameters the bit-security of DFORS with respect to adaptive chosen message
adversaries is equal to that of FORS under non-adaptive chosen message attacks.
Table 1 gives a comparison between the bit security level of FORS and DFORS
in an adaptive adversarial setting. We use the recommended parameters (i.e., n,
τ , and κ) for all six instances of SPHINCS+.
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Table 1: DFORS and FORS security levels for an adaptive chosen message attack using
the SPHINCS+parameters for different numbers of signed messages

SPHINCS+ instance τ κ
FORS DFORS

r = 1 r = 2 r = 4 r = 8 r = 1 r = 2 r = 4 r = 8

SPHINCS+-128s 15 10 75 47 27 15 150 140 130 120

SPHINCS+-128f 9 30 135 80 43 22 270 240 210 180

SPHINCS+-192s 16 14 112 70 40 22 224 210 196 182

SPHINCS+-192f 8 33 132 77 41 20 264 231 198 165

SPHINCS+-256s 14 22 154 95 54 29 308 286 264 242

SPHINCS+-256f 10 30 150 90 49 25 300 270 240 210

Table 1 shows the significant effect of increasing the number of signed mes-
sages, r, on the bit security of FORS. On the other hand, this effect is very
reasonable with DFORS. For instance, when r = 1, an adaptive attack on FORS
is equivalent to a collision attack on the underlying κτ -bit hash function H which
has a complexity of 2κτ/2 evaluations. However, due to the r-subset resilience
of DFORS where finding a covered ORS requires successive dependency on the
signature elements, an adversary must find a second preimage of the ORS in the
revealed secret keys, hence the complexity is 2κτ evaluations.

Table 2 presents a comparison between DFORSand other HORS variants with
respect to their computational efficiency, signature and key sizes, and security
against adaptive chosen message attacks.

Table 2: Comparison between HORS, PORS, FORS, and DFORS

Algorithm
KGen Signing Verification Signature SK/PK Adaptive

(# OWF)† cost cost size ‡ size‡ security

HORST

t PRF t PRF

NOt OWF t OWF κ OWF κ(log t− x+ 1) + 2x†† 1

t− 1 Hash t Hash κ(log t− x) + 2x†† Hash

PORS‡‡
t PRF t+ κ PRF

κ(log t− blog κc+ 1) 1 NOt OWF t OWF κ OWF

t− 1 Hash t Hash κ(log t− x− 1) + 2x†† Hash

FORS

κt PRF κt PRF

κ(log t+ 1) 1 NOκt OWF κt OWF κ OWF

κ(t− 1) + 1 Hash κ(t− 1) + 1 Hash κ log t+ 1 Hash

DFORS

κt PRF κt PRF

κ(log t+ 1) 1 YESκt OWF κt OWF κ OWF

κ(t− 1) + 1 Hash κt Hash κ(log t+ 1) Hash

† OWF denotes one-way function.
‡ Size is given as a factor of n bits.
†† x = dlog κe for optimal signature size in case of HORST and for the upper bound on the signature size in PORS.
‡‡Verification cost and signature size are the upper bound values.
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6 Conclusion

We analyzed the security of FORS, the underlying hash-based few-time signing
scheme of SPHINCS+, with respect to adaptive chosen message attacks. We
showed that as the number of signed messages, r, increases, its bit-security with
respect to adaptive chosen message adversaries decreases significantly compared
to its non-adaptive counterpart. As a solution, we proposed DFORS, which builds
on FORS but utilizes a secret key dependent ORS function. Such a function binds
the process of generating the ORS with signing which makes it feasible only
for the signer. Accordingly, we showed that the bit security of DFORS against
adaptive chosen message attacks is more than that of FORS by a factor of r+ 1.
Note that our analysis does not affect the claimed security of SPHINCS+ but
rather provides a better understanding of the security of its underlying signing
scheme and offers a mechanism that can be adopted by most HORS variants to
provide security against adaptive chosen message attacks.
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A HORS Specification

The HORS key generation, signing, and verification procedures are given in
Algorithm 3.

Algorithm 3 HORS Algorithm

procedure Key Generation(t)
Generate the secret key SK at random, SK = (sk0, sk1, . . . , skt−1)
Compute the public key PK = pk0, pk1, . . . , pkt−1 = f(sk0), f(sk1), . . . , f(skt−1)
Output (SK, PK)

end procedure

procedure Signing(m, κ, SK,k)
Compute h = Hk(m), h = h0||h1||. . . ||hκ−1.
ORSκ(m) = {h0, h1, . . . , hκ−1}.
σ = (σ0, σ1, . . . , σκ−1) = (skh0 , skh1 , . . . , skhκ−1)
Output (σ)

end procedure

procedure Verification(m, κ, σ, PK,k)
Compute h = Hk(m), h = h0||h1||. . . ||hκ−1

ORSκ(m) = {h0, h1, . . . , hκ−1}
for 0 ≤ i ≤ κ− 1 do

if f(σi) = pkhi then
out = 1

else
out = 0
break

end if
end for
Output (out)

end procedure

B Adaptive Chosen Message Attack against HORS

In [23], the following adaptive chosen message attack against HORS was defined.
Let A be an adaptive chosen message adversary against HORS such that given
the key k, A can compute the hash of any message m and ORSκ(m) offline.
Given a security parameter, n, under the birthday paradox, A can find r + 1
messages in a cover relation Crκ with which to query the signing oracle, formally

Pr[k ← K, (m1,m2, . . . ,mr+1)← A(k) : Crκ(m1,m2, . . . ,mr+1)] ≤ negl(n).

Aumasson and Endignoux [2] subsequently presented an adaptive chosen
message attack against HORS and proved that the security level decreases by a
factor of r + 1 when compared to non adaptive chosen message attacks. Their
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attack is as follows. Given an adversary A and a key k, the hash value Hk(m) for
any message of their choice can be computed, and say there are q > r messages.
For all possible combinations of (r+1) messages from the q messages, A searches
for Cr−HORSκ (m1,m2, . . .mr+1) such that

Cr−HORSκ ⇔ ORS(mr+1) ∈
r⋃
j=1

ORS(mj).

For any given subset, the probability of being an r-subset-cover relation is
(rκ/t)κ. The number of (r + 1)-message combinations which A can construct
from the q messages are

(
q
r+1

)
and each combination can form

(
r+1
r

)
choices.

Accordingly, their probability of success in defeating the r-subset resilience (SR)
is given by

Succr−SRHORS(A) ≤
(

q

r + 1

)(
r + 1

r

)
(
rκ

t
)κ ≤ q

(
q − 1

r

)
(
rκ

t
)κ.

Assuming a success probability close to 1, the security level of HORS against an
adaptive chosen message attack is

κ

r + 1
(log2 t− log2 κ− log2 r) +

log2 r!

r + 1
.
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