
Reputation Driven Dynamic Access Control Framework

for IoT atop PoA Ethereum Blockchain

Auqib Hamid Lonea,∗, Roohie Naaza

aDepartment of Computer Science and Engineering., NIT Srinagar, Jammu and
Kashmir,India,190006

Abstract

Security and Scalability are two major challenges that IoT is currently fac-
ing. Access control to critical IoT infrastructure is considered as top security
challenge that IoT faces. Data generated by IoT devices may be driving
many hard real time systems, thus it is of utmost importance to guarantee
integrity and authenticity of the data and resources at the first place itself.
Due to heterogeneous and constrained nature of IoT devices, traditional IoT
security frameworks are not able to deliver scalable, efficient and manage-
able mechanisms to meet the requirements of IoT devices. On the other hand
Blockchain technology has shown great potential to bridge the missing gap
towards building a truly decentralized, trustworthy, secure and scalable envi-
ronment for IoT. Allowing access to IoT resources and data managed through
Blockchain will provide an additional security layer backed by the strongest
cryptographic algorithms available. In this work we present a reputation
driven dynamic access control framework for small scale IoT applications
based on Proof of Authority Blockchain, we name it as Rep-ACM. In Rep-
ACM framework we build two major services, one for Reputation building
(for better IoT device behaviour regulations) and other for Misbehaviour de-
tection (for detecting any Misbehaviour on object resource usage). Both of
these services work in coordination with other services of proposed frame-
work to determine who can access what and under what conditions access
should be granted. For Proof of Concept (PoC) we created private Ethereum
network consisting of two Raspberry Pi single board computers, one desktop

∗Auqib Hamid Lone
Email addresses: ahl@nitsri.net (Auqib Hamid Lone), naaz310@nitsri.net

(Roohie Naaz)

computer and a laptop as nodes. We configured Ethereum protocol to use
Istanbul Byzantine Fault Tolerance (IBFT) as Proof of Authority (PoA) con-
sensus mechanism for performance optimization in constrained environment.
We deployed our model on private network for feasibility and performance
analysis.

Keywords: Reputation, Access Control, IoT, Permissioned Blockchain,
Proof of Authority

1. Introduction

The term ”Internet of Things” (IoT) was first introduced by K. Ashton
[1] in 1999. In simpler terms IoT refers to the connection of devices with
constrained capabilities to the Internet. The ”Things” in IoT are devices
which can perform remote sensing, monitoring and actuating. The ubiquitous
interconnection of physical objects greatly accelerates collection, aggregation
and sharing of data with other connected devices and applications, thus
widening IoT applicability in many different domains ranging from smart
healthcare, home automation etc. With increased popularity of IoT and ever
increasing number of smart devices with insufficient security enforcement
connected to internet, access control mechanisms have become an extremely
important to prevent security and privacy breaches in an untrustworthy IoT
environment. Due to heterogeneous and constrained nature of IoT devices,
traditional IoT security frameworks are not able to deliver scalable, efficient
and manageable mechanisms to meet the requirements of IoT devices. Thus,
an important question arises: how can we achieve distributed, scalable and
trustworthy access control in IoT?. Fortunately, Blockchain technology has
shown great potential in bridging the missing gap towards building a truly
decentralized, trustworthy, secure and scalable environment for IoT. With the
advent of smart contracts (a piece of executable code) Blockchain has now
evolved as a promising platform for developing trustworthy applications. In
this paper, we propose a reputation driven dynamic access control framework
for IoT based on Proof of Authority Blockchain, we name it as Rep-ACM.
We configured Ethereum protocol to use Istanbul Byzantine Fault Tolerance
(IBFT) as Proof of Authority (PoA) consensus mechanism for performance
optimization in constrained environment.

As a short summary, the major contributions of the proposed Rep-ACM
framework include:

2

1. A new Rep-ACM framework integrating permissioned Blockchain and
smart contract capabilities.

2. Smart contracts based policy enforcement to regulate resource access
in IoT devices.

3. Reputation service for building subject reputation based on each access
result, to incentivize (in case of positive reputation) or penalize (in case
of negative reputation) subjects on misbehaving with object resources,
thus helping in better IoT device behaviour regulations.

4. Ethereum client configured to work with IBFT as consensus protocol
eliminates computational burden from nodes, thus a suitable choice for
constrained devices especially in IoT environment.

5. A prototype implementation and experimentation to validate and eval-
uate Rep-ACM ideas.

Rest of the paper is organized as follows: section 2 briefly introduces back-
ground of technologies used in the proposed framework, section 3 gives re-
lated work, section 4 presents the proposed framework, section 5 discusses the
implementation and performance evaluation of proposed framework, finally
section 6 concludes the paper and references are listed at the end.

2. Background

It is important to understand the working principles of both Blockchain
and IoT access control, in order to design truly decentralized and secure
access control framework for IoT. In this section we briefly introduce work-
ing principles of Blockchain technology and access control requirements and
challenges for IoT environments.

2.1. Blockchain Technology

Blockchain is a chain of connected tamper evident data structure called
blocks, which contain or record everything that happens on some distributed
systems connected to a peer-to-peer network. Each block is logically divided
into two parts, namely, the header and the body. Generally body part of the
block contains details of transactions or recorded events and the header of
the block contains, among other fields the identifier of previous block. The
identifier of previous block is obtained by taking cryptographic hash of the
block. Thus each block in Blockchain is linked to previous block through a
cryptographic hash, resulting in an append only system. Blockchain was first

3

developed for Bitcoin cryptocurrency and serves as distributed public ledger
and transactions or events recorded on it are nearly impossible to tamper [2].
The driving force behind the interest in Blockchain research has been its key
characteristics that provide security, anonymity and integrity without relying
on trusted third party organisation. Initially Blockchain usage was restricted
to cryptocurrencies only, after the advent of Ethereum: A next generation
smart contract and decentralised application platform [3], applications be-
yond cryptocurrencies are being developed and explored. Blockchains can be
implemented in many different ways to meet demands of various application
scenarios. Based on the type of implementation, Blockchains can be broadly
classified into three categories:

• Public Blockchain: This type of Blockchain is open to public and any-
one can participate as a node in decision-making process and thus are
truly decentralized and permissionless in nature.

• Private Blockchain: This type of Blockchain is open only to members
of a single organization and thus are permissioned in nature. Every
node joining the network is a known member of a single organization.

• Consortium Blockchain:This type of Blockchain is open only to a con-
sortium or group of organizations that has decided to share the ledger
among themselves. Consortium or Federated Blockchain are similar to
private Blockchain in the sense that it is also permissioned in nature.

2.1.1. Ethereum Smart Contracts

Although being first and most popular Blockchain application, Bitcoin
has limited applications only within cryptocurrency space, due to Turing-
incompleteness of its scripting language. However with the advent of
Ethereum which implements smart contracts, the potential applicability of
Blockchain beyond cryptocurrencies has become endless. The term smart
contract was first introduced by Nick Szabo in 1994 [4]. Smart contracts
are computer programs that are executed on Blockchain when required con-
ditions are satisfied. They have both code (functions) as well data (state)
similar to Java programs. Serpent and Solidity (JavaScript like) are two high
level scripting or programming languages used for writing Ethereum smart
contracts, but Solidity is most popular and widely used language for writ-
ing Ethereum smart contracts. Smart contracts are compiled into a piece of
Ethereum specific bytecode call Ethereum Virtual Machine (EVM) bytecode

4

just like Java programs which are compiled into Java specific JVM bytecode.
A Smart contract has both account and address associated with it. Smart
contracts usually provide many functions or application binary interfaces
(ABIs), which are used to modify the state of the smart contract. ABIs can
be invoked by sending a transaction from an account or message from other
contract . call functions can interact with smart contracts without modify-
ing its state. Ethereum is the first public Blockchain platform that allows
advanced and customized smart contracts with the help of Turing-complete
virtual machine called EVM. Ethereum is currently the most popular devel-
opment platform for smart contracts and is used to design various kinds of
decentralized applications (DApps) beyond cryptocurrency space.

2.1.2. Ethereum Consensus Algorithms

Consensus algorithms are heart and soul of any Blockchain platform as
they help in achieving trust among geographically distributed and untrusted
nodes. Ethereum can be configured to work with different consensus al-
gorithms depending on specific application scenario whether public or pri-
vate Ethereum network is to be deployed. In case of public permissionless,
Blockchain implementation consensus algorithms are generally based on lot-
tery based selection of a single node for generation and insertion of new block
into the Blockchain. Proof of Work (PoW) and Proof of Stake (PoS) are two
widely used consensus approaches used by public Blockchains like Bitcoin and
Ethereum. PoW involves searching for a value that when hashed in combina-
tion with other block information, such as with SHA256, the resulting hash
begins with the constant number of zero (0) bits or is less than a specific tar-
get. In essence PoW involves nodes finding a proof, that they have performed
computationally expensive work [2]. In PoS instead of solving difficult com-
putational puzzle, nodes economic share in the network are put to stake. A
node for Block creation and insertion is selected in pseudorandom fashion,
with probability of being selected proportional to nodes share in the network
[5]. In permissioned Blockchain deployments such as private and consortium
Blockchains, only a limited number known participants carry a copy of the
entire Blockchain. Proof of Authority (PoA) is a consensus approach used
mainly in private Ethereum deployments. PoA is the specific type of PoS,
in which individual’s identity is at stake rather than cryptocurrency. In PoA
validators are pre-authorized and identities are known. Thus misbehaviour
by any validator in the network results in losing his personal reputation and
consequently being expelled from the validator set. There are many variants

5

of PoA such as Aura, Clique and Istanbul Byzantine Fault Tolerant (IBFT).
In our proposed framework we have configured Ethereum to work with the
latter.

• Istanbul Byzantine Fault Tolerance : Istanbul Byzantine Fault
Tolerance (IBFT) [6] is an adaption of Practical Byzantine Fault Tol-
erant (PBFT) algorithm to serve as Proof of Authority (PoA) consen-
sus algorithm, providing consensus service for the Ethereum protocol.
In essence IBFT is a state replication algorithm, where each valida-
tor node maintains a state machine replica to reach consensus. IBFT
adapts original PBFT algorithm by inheriting three phase consensus
structure, PRE-PREPARE, PREPARE and COMMIT. IBFT can tol-
erate at most F faulty nodes in a network of N = 3F + 1 validator
nodes. IBFT algorithm proceeds in rounds with new block being gen-
erated every T seconds, where T is block period and can be configured
as per the need and feasibility. Before each round a proposer is selected
either through round robin or sticky proposer scheme among available
set of validators. Proposer creates a new block proposal and broadcasts
it to all validators with a PRE-PREPARE message. Upon receiving
PRE-PREPARE message from proposer, validators enter the PRE-
PREPARED state and then broadcasts PREPARE message. This
step ensures that all validators are working on the same sequence and
the same round. In second phase validators receiving 2F + 1 PRE-
PARE messages enter into PREPARED state and broadcasts COM-
MIT message. This step is for informing peers about acceptance of
block proposal from proposer. In the last phase, validators wait for
receiving 2F + 1 COMMIT messages to insert the proposed block into
Blockchain. Blocks are final in IBFT because there are no forks and
hence any valid block will be present somewhere in the chain. To work
in asynchronous network environment IBFT uses future messages and
backlog concepts. Messages which are declared as future messages are
put to backlog and processed later whenever possible. To speed up the
consensus, if validator receives 2F + 1 COMMIT messages before re-
ceiving 2F +1 PREPARE messages, it will jump to the COMMITTED
state without waiting for further PREPARE messages.

2.2. Access Control in IoT

Access control is one of the important security services that protects sys-
tem resources from unauthorized access. An effective access control should

6

satisfy the main security properties of the CIA triad: Confidentiality, In-
tegrity and Availability [7]. Access control models are implemented in many
different areas including operating system and database management system
at different levels. In IoT context access control process works at different
layers of IoT reference model to protect resource access and safeguard data
in various forms: data in motion, data at rest and data at IoT device itself.
Furthermore access control mechanism in IoT ensures that only authorized
users access sensor data, update device software and order other devices to
perform a certain operation on sensor data [8]. Any basic access control
mechanism consists of five entities:

1. Subject : Any entity in the form of user or process that requests access
to objects.

2. Object : Any entity in the form of user or process that possesses infor-
mation being accessed by subjects.

3. Actions : Actions represent operations to be performed on objects(read,
write, execute, etc.).

4. Privileges : Privileges represent authorization or permission to perform
certain operations on objects in the form of user or process that requests
access to objects.

5. Access policies : Set of rules that define conditions and constraints,
whether access is to be granted or denied.

In broader sense access control mechanisms in IoT systems are classified into
two major categories : centralized and distributed. In centralized access con-
trol mechanisms, the access control logic is implemented at a central entity.
The entity could be a server or any other device with direct communica-
tion with IoT devices. The central entity receives data collected by IoT
devices and is solely responsible for making access control decisions. While
in distributed access control mechanisms, access control logic is distributed
among several IoT devices. Usually in distributed access control approach
IoT devices are provided with necessary resources for data processing and
information transfer [9].

2.2.1. Access Control Challenges in IoT

Due to dynamic, highly scalable nature of IoT environment and hetero-
geneity, resource-constrained characteristics of IoT devices, designing and
implementing access control strategies faces more challenges in meeting re-

7

quirements of IoT networks. Some of the important challenges are enumer-
ated below:

1. Scalability : Large number of devices connected to IoT increases man-
agement overload in access control system. Therefore access control
strategies are expected to be scalable in terms of size, structure and
number of devices.

2. Heterogeneity : IoT system connects devices with varying underlying
technologies and application domains. Thus access control mechanisms
are expected to support interoperability among heterogeneous devices.

3. Limited Resources : Due to lightweight nature of IoT devices, the ca-
pability of resources (computation and storage) associated with them
is limited. Thus access control model designed for IoT should be effi-
cient and optimal in imposing overhead on devices and communication
networks.

4. Context Awareness and Dynamism: Access decisions in IoT environ-
ments have to be dynamic and context (surrounding environment, user
behaviour etc.) based. The dynamic nature of IoT devices makes access
control policies highly complex.

3. Related Work

Traditional access control mechanisms for IoT are prone to single point
of failure, as they are based on the centralized databases containing user
access policies. This drives research towards finding alternative solutions
for meeting access control requirements for heterogeneous IoT environment.
Several Blockchain based access control mechanisms have been proposed in
the recent past for addressing requirements of the IoT devices. Below is the
brief summary of the most recent and relevant ones.

The work presented in [10] proposed a new Blockchain based access con-
trol architecture for arbitrating roles and permissions in IoT. In essence a
tokenized approach is proposed where access policies are enforced through
smart contracts for allowing or revoking access to stored IoT data. Another
token based approach to access control was proposed by the authors in [11],
where access policies are written into smart contracts for granting and revok-
ing access privileges to the users with varying roles. Another similar work
was carried out by the authors in [12], where access to stored IoT data is
granted or revoked by means of functions written in smart contracts. In [13],

8

the authors propose a scheme for guaranteeing integrity of policy evaluation
process utilizing Ethereum Blockchain and Intel SGX trusted hardware for
cloud federations. Authors in [14] propose a Bitcoin based architecture for
managing access rights through Blockchain transactions. Authors in [15]
proposed a Blockchain and Machine Learning based dynamic access control
policy for IoT. The proposed framework utilized Blockchain for ensuring a
truly distributed infrastructure and Machine Learning algorithms (Reinforce-
ment Learning) for achieving optimized and self adjusted security policies for
IoT access control management. The work presented by authors in [16] in-
troduced the concept of connecting local Blockchains to a public overlay
Blockchain, where access policies are stored within Blockchain making them
publicly verifiable detecting any unauthorized access attempts. Authors in
[17] extended the idea proposed by [16] by dropping any transaction issued
by an adversary from the Blockchain network altogether. In [18] authors pro-
pose a Blockchain based authentication and access control solution for IoT
devices. Proposed model works in two phases: in first phase user authenti-
cates himself to the smart contract and in second phase user receives authen-
tication token and IoT device receives authentication token and Ethereum
address of authorized user, thus authenticating user to IoT device. Another
work presented by the authors in [19] proposed a Blockchain based access
control scheme for off-chain data stored in Decentralized Hash Tables(DHT).
The Blockchain in proposed solution stores access policies of different users
for any data stored data in DHT. On access request, DHT nodes verify user
access privileges from Blockchain records. Similar work was proposed by the
authors in [20] by modifying InterPlanetary Filesystem (IPFS) to incorporate
Blockchain based access control for file sharing. Authors in [21] proposed a
smart contract based framework for distributed and trustworthy access con-
trol for IoT. The work presented by authors in [22] proposed a role based
access control mechanism using smart contracts. The proposed scheme is
composed of two main components namely Blockchain smart contract and
the challenge response protocol. For accessing any resource, users have to
provide response to a challenge given by service provider. Upon successfully
verification access to desired resource is granted. Authors in [23] proposed
a decentralized access control mechanism for IoT data using blockchain and
trusted oracles. The proposed scheme uses trusted oracles as interface gate-
ways and a provider of trusted and uniform source feeds for IoT data.

The work presented in this paper is inspired by the above mentioned
solutions, in particular the work done by the authors in [21], with following

9

differences:

1. A PoA based private Blockchain network for performance optimization;

2. A single smart contract deployed by Objects for managing accesses to
their resources by multiple subjects;

3. Reputation service for building subject reputation based on each access
result, to incentivize (in case of positive reputation) or penalize (in case
of negative reputation) subjects on misbehaving with object resources,
thus helping in better IoT device behaviour regulations; and

4. Access specifiers for maintaining integrity of proposed framework.

4. Proposed Framework

In this paper we propose Rep-ACM: Reputation driven Dynamic Access
Control Framework for small scale IoT applications on the top of Proof of
Authority Ethereum Blockchain. Simplified architecture of proposed frame-
work consists of four main parts: 1) Participants (subjects and objects)
2) Front End for registering and retrieving addresses and ABI’s of deployed
object access control contracts 3) Smart contracts (registry and Rep-ACM)
and 4) Blockchain network as shown in figure 1.

1. Participants: They are real actors in the network. Any participant
in proposed framework acts as either subject or object. IoT devices
under the supervision of IoT gateway act as objects in the proposed
framework. Servers, user devices and other communicating devices act
as subjects. In certain situations vice versa is also possible. Subjects
and Objects are either Validator nodes or Lightweight nodes. Validator
nodes perform following jobs in the network:

• Storing a copy of the blockchain

• Validating transactions and taking part in consensus process by
creating, proposing and adding blocks to Blockchain.

Lightweight nodes simply issue transactions and rely on validators
for adding and validating their transactions Participants communicate
with Blockchain by calling appropriate deployed smart contract ABI’s.

2. Front-End: It provides interface for objects to register their deployed
access control contract address and ABI in the registry contract. Sub-
jects use front-end for retrieving desired objects access control contract
address and ABI from registry contract.

10

Figure 1: Detailed Architecture of Rep-ACM

11

3. Smart Contract: Proposed framework makes use of multiple instances
of Access control smart contract (Rep-ACM) one by each object (IoT
device) and a single registry contract for lookup purposes. Each object
deploys Rep-ACM to control access to its resources and data.

4. Blockchain Network: It comprises of Peer-to-Peer (P2P) network of
nodes and a PoA (IBFT) consensus protocol that governs the commu-
nication over P2P network.

4.1. Implementation of Proposed Framework
For implementation purposes we designed private and permissioned

blockchain network. The Blockchain infrastructure is implemented through
Geth [24]: a popular implementation of a full Ethereum node. Geth allows
to setup a private network and configure all aspects of the blockchain and the
consensus protocol employed. We configured geth to work with PoA based
consensus namely, the IBFT consensus protocol described in Section 2.1.2.
On top of this blockchain infrastructure, we deploy and run a smart contract
implementing the proposed access control framework The implementation of
Rep-ACM framework Involves three steps: (i) the initialization of the private
blockchain, (ii) the creation of the private network and (iii) the creation and
deployment of the smart contract.

4.1.1. Blockchain Initialization

Initialization of any Blockchain network involves the creation of its genesis
block (first block) and contains the important initial configuration parame-
ters. The only configuration parameters that are of interest for the purposes
of the proposed framework are:

• Block Period T : the block period of the IBFT consensus algorithm and
represents the rate at which new blocks are created in the Blockchain
network.

• Block Gas Limit G : Maximum amount of gas transactions in a block
are allowed to consume

• Validators : The Ethereum addresses of the pre-authorized validators.

Block Period T and Block Gas Limit G are two important configuration pa-
rameters that greatly affects the overall performance of Blockchain network.
This is due to the fact that T and G plays role in transaction latency (block
inclusion latency and consensus latency) and block headers overhead, thus
controlling the rate at which Blockchain grows with time.

12

4.1.2. Blockchain Setup

In proposed framework validators and lightweight nodes are Geth nodes.
Istanbul-tools help in creating genesis block with fixed and known valida-
tors. All the nodes in the network are initialized with same genesis block
and a JSON file containing the node ids of the validators. Validators once
started from geth command line can never leave the network, unless they
start misbehaving and consequently are expelled from then network by other
validators. In contrast lightweight nodes can join/leave the network at any
time. Lightweight nodes are also started from geth command, but their ad-
dresses are not included in the genesis block.

4.1.3. Smart Contract Implementation and Deployment

We implemented smart contract in Solidity contract-oriented program-
ming language [25]. Proposed framework comprises of multiple modules that
work in coordination to control access to the critical IoT infrastructure. We
first define all the data structures used by the modules for maintaining the
state of subjects and objects in the network.

1. Feedback : We define Feedback as a solidity structure for building rep-
utation of the subjects. It comprises of following elements:

Struct Feedback contains
uint trustScore;
uint time;
string message;
address from;
// other optional stuff

• trustScore: for every access performed by subject on object a trust
score is sent back to subject as a feedback. Using net promoter
score (NPS) [26] like scale on trust score, access requests are clas-
sified as either negative, neutral or positive.

• time: represents date and time at which feedback is received

• message: reason for such a feedback

• from: address of object from which feedback is received

2. Misbehaviour : It is defined so as to record any abnormal action per-
formed by the subject on object. Misbehaviour comprises of following
fields:

13

Struct Misbehaviour contains
bytes32 Res;
address Sub ;
uint Act ;
uint time;
uint penalty;
string msbType;
// other optional stuff

• Res : Valid resource of object on which Misbehaviour happens.
Resources can be anything ranging from files belonging to IoT
devices to data produced by sensors.

• Sub : address of subject from which misbehaviour is detected

• Act : Action that subject tried to perform on object resource.
Possible actions include R (Read), W (Write) or X (Execute)

• time: represents date and time at which Misbehaviour was de-
tected

• penalty : Penalty imposed on subject i.e. number of minutes a
subject has been blocked for making any access request.

• msbTyp: This represents type of Misbehaviour detected from sub-
ject

3. Misbehaviour on Resource : In order to record any sort of misbe-
haviour on IoT resource done by subject we define MisbehaviourOnRe-
source solidity structure comprising of following fields:

Struct MisbehaviourOnResource contains
Misbehaviour[] misbonRes ;
uint timeToUblock ;
// other optional stuff

• misbonRes : A dynamic array of type Misbehaviour, for recording
all misbehaviours on a particular resources by subjects.

• timeToUblock : This represents time at which resource becomes
available for the subject; if 0: available otherwise blocked. This
field depends on actual penalty imposed on subject which itself is
a function of reputation and penalty due to misbehaviour.

14

4. Policy : Objects maintain set of policies to control access on resources
and data. Policy data is recorded in a solidity structure comprising of
following fields:

Struct Policy contains
bool isSet ;
address Sub ;
bytes32 Res;
string Per ;
uint Act ;
string Pir ;
uint minInterval ;
uint lastReq ;
uint countFR ;
uint threshold ;
bool accRes ;
uint accCode;
// other optional stuff

• isSet : A boolean variable to determine if police is already set for
particular subject on specific resource

• Sub: Subject (valid Ethereum address) for which access control is
defined

• Res : Object resource for which policy is being set

• Per : Permission for subject on object resource, whether allowed
or denied access

• Act: Action that subject can perform on object resource, 7
(”R:Read,W:Write and X:Execute”), 3 (”R:Read and W:Write”),
1 (”R:Read”)

• Pir : Access priority for subject on object resource
”N:Normal/H:High/L:Low”. Priorities change based on feedbacks
received from object.

• minInterval : Minimum time duration(in seconds) allowed be-
tween two successive requests

• lastReq : Time of Last Request

• countFR: Number of frequent requests within minInterval

• threshold : threshold on countFR, above which a misbehaviour is
suspected

• accRes : last access result

15

• accCode: last access code

5. Mapping of subjects to resource access policies: In proposed
framework subjects are mapped to corresponding access policies set by
objects on their resources. Access result depends both on static policies
set by objects and dynamic information related to current behaviour
and reputation of the subjects. There is a many to many mapping be-
tween subjects and resource access policies as shown in Table 1. Every
subject has critical information pertaining to reputation and misbe-
haviour associated with it, as shown in Table 2. On misbehaviour the
latter information plays an important role in deciding penalty time to
be imposed on subjects.

Table 1: Rep-ACM Access Control Matrix

Subjects Resources
Access Policies

Sub Res Pir Per Act . . . accRes

S1

R1 S1 R1 N/H/L A/D R/W/X . . . T/F
R2 S1 R2 N/H/L A/D R/W/X . . . T/F
... S1

... N/H/L A/D R/W/X . . . T/F
RN S1 RN N/H/L A/D R/W/X . . . T/F

S2

R1 S2 R1 N/H/L A/D R/W/X . . . T/F
R2 S2 R2 N/H/L A/D R/W/X ... T/F
... S2

... N/H/L A/D R/W/X . . . T/F
RN S2 RN N/H/L A/D R/W/X . . . T/F

SN

R1 SN R1 N/H/L A/D R/W/X . . . T/F
R2 SN R2 N/H/L A/D R/W/X . . . T/F
... SN

... N/H/L A/D R/W/X . . . T/F
RN SN RN N/H/L A/D R/W/X . . . T/F

6. Deriving subject reputation from feedback trust score value :
On each access a subject receives a feedback containing trust score
value from object. Feedbacks are classified based on net promoter

Table 2: Information associated with each subject

Address Feedback Received from Objects Misbehaviour on Object Resources Total Trust Score Access Request Count Avg Trust Score Reputation
0xb91efd5d5f49849e95e378e19075124f35f889dc Feedback 1 Misbehaviour 1

X N d(X/N)e Neutral/Positive/NegativeFeedback 2 Misbehaviour 2
.

16

score like scale defined as follows:

feedback(trustScore) =

NegativeFeedback trustScore ≤ 5
NeutralFeedback trustScore > 5 and tScore(x) ≤ 8
PositiveFeedback trustScore > 8 and tScore(x) ≤ 10

Trust score value is given based on nature of access, if access is
as per already defined policy a positive feedback (trust score value
10) is given by object to subject, if no policy is defined for subject
then neutral feedback (trust score value 8) is given by object to
subject , if access is against predefined policy or request still blocked
or misbehaviour detected then negative feedback (trust score value
4) is given by object to subject, and if access is against predefined
policy and misbehaviour is also detected then also negative feedback
(trust score value 4) is given by object to subject. Overall reputation
of subject is also derived from net promoter score like scale but on
average trust score received from object feedbacks as shown below:

tScore(x) =
⌈x + 10 + feedbackScoreOnMisbeahviour

trequest + 2

⌉
(1)

where x represents total trust score received by a subject,
feedbackScoreOnMisbeahviour represents a feedback score on
misbehaviour, used in advance as feedback is submitted only after
the completion of access request and trequest represents total count of
access requests. Every subject starts from positive reputation with
a trust score of 10. With time subject reputation varies based on
its behaviour while accessing object resources on the network. On
misbehaviour

getReputaion(tScore(x)) =

Negative Reputaion tScore(x) ≤ 5
Neutral Reputaion tScore(x) > 5 and tScore(x) ≤ 8
Positive Reputaion tScore(x) > 8 and tScore(x) ≤ 10

7. Important Functionalities of Proposed Framework : Rep-ACM
framework uses services of two smart contracts with several APIs as
shown in figure 1 for performing different functions within the frame-
work.

(a) Registry Smart Contract: Registry smart contract provides
two main functionalities apart from other tasks in the framework:

17

i. It allows objects in the system to register their deployed Rep-
ACM smart contracts instances.

ii. Registry smart contract also allows subjects to access desired
objects resources through ABIs of registered Rep-ACM smart
contract instances.

To achieve the above two functionalities Registry smart contract
maintains a lookup table containing the following information:

• Object address : the address of the object or IoT gateway ;

• Gateway address : the address of IoT gateway (when objects
are IoT devices);

• Object : the name of the object who is the owner of the re-
sources for which access polices are defined;

• Access control contract address : the address of the smart con-
tract

• ABI : the ABIs provided by the contract;

In general, objects are creators of Rep-ACM smart contract in-
stances, however when IoT devices act as objects, local IoT gate-
ways act as agents for deploying contracts and sending transac-
tions on their behalf. IoT gateways associate ethereum account
addresses with each of the IoT devices under its control and use
their account addresses while deploying and sending transactions.
The Gateway address lookup table entry is is filled with object
address, when objects are other than IoT devices. Registry smart
contract provides the following main ABIs to maintain the entries
of the lookup table.

• register() : This ABI allows the valid objects to register de-
tails of their deployed Rep-ACM smart contract instance.

• getContract() : This ABI receives the object addresses and
name as input and returns the address and ABIs af the reg-
istered contract instance as output.

• updateRegister() : This ABI after proper validation allows
objects to update their exiting lookup table fields especially
Access control contract address and ABI.

• deRegister() : This ABI receives the object address and name
as input and after proper validation deletes corresponding
lookup table entry.

18

Only creators of the corresponding Rep-ACM smart contract in-
stances are allowed to register, update and delete the details of
contract instances from the lookup table.

(b) Rep-ACM Smart Contract: The heart and soul of the pro-
posed framework is Rep-ACM smart contract, as it provides all
necessary functions to facilitate smooth access control of the IoT
system. Rep-ACM smart contract provides the following main
ABIs to control access to object resources, maintain subject rep-
utation and penalize subjects on misbehaviour.

• addPolicy() , updatePolicy() & deletePolicy() ABIs: These
ABIs of Rep-ACM smart contract instance are used by ob-
jects to add, update and delete access control policies for con-
trolling access to object resources. Only creator can invoke
these ABIs.

• getAccess() : This is the main ABI of Rep-ACM smart con-
tract, which allows subjects to access their desired object re-
sources. accessControl() ABI uses services of the other ABIs
like submitFeedback(), getReputation(), and onMisbehaviour()
to efficiently manage access control. The getAccess() ABI is
summarized in algorithm 1. The execution flow of access con-
trol process is shown in fig 3 and actions taken on each access
code are explained in algorithm 3. Steps required to be taken
by subjects in order to access object resources are shown in
figure 2 and explained below:

– Step 1: The subject calls getContract() ABI of Registry
smart contract to retrieve the desired objects registered
Rep-ACM smart contract instance for access control.

– Step 2: The Registry returns the address and ABI of the
requested Rep-ACM instance to the subject.

– Step 3: The subject then uses address and getAccess()
ABI of Rep-ACM obtained in step 2 to access object re-
source. Subject sends transaction with required informa-
tion by invoking getAccess() ABI. The validators in the
Blockchain network collect such transaction and include
that in the block. Transaction will be executed only if
block is mined by some validator.

– Step 4: After receiving access request from subject, ob-

19

ject’s Rep-ACM instance more specifically getAccess()
ABI performs both static and dynamic check on access re-
quest. Subjects reputation is also taken into count, when
determining penalty for subject if any misbehaviour is de-
tected.

– Step 5: Finally, access control terminates by returning
access control result to both subject and object.

• onMisbehaviour() ABI: This ABI gets invoked when any mis-
behaviour is detected on resource access by subject. This
ABI takes subject address(implicitly passed as caller of getAc-
cess() ABI) as input and returns penalty(in minutes) to block
subject from making any further request, until blocking time
completes. onMisbehaviour() ABI is briefly summarised in
algorithm 2.

• getReputation() ABI: This ABI takes subject ad-
dress(implicitly passed as caller of getAccess() ABI) as
input and returns average trust-score of the subject as
output. It is invoked by getAccess() ABI to determine the
average trust-score of the subject. Penalty received by a
subject in onMisbehaviour() ABI is increased(multiplied) or
decreased(divided) by a factor of netAccessDiff based on the
subject reputation. Effective blocking time for a subject is:
peanlty = d penalty

netAccessDiff
e when positive reputation,

peanlty = penalty∗netAccessDiff when negative reputation
and peanlty = penalty when neutral reputation. getReputa-
tion() ABI is briefly summarized in algorithm 5

• submitFeedback() ABI: For each access a subject receives a
feedback from object. Apart from other information feedback
includes a trust-score(1-10), given based on the nature of ac-
cess i.e. for positive access subject receives a trust-score of
10, for neutral access a trust-score of 8 is given to subject
and for negative access a trust-score either 2 or 4 is given
based on the severity of access violation e.g. if subject fails
both static and dynamic checks during access, it receives a
trust-score of trust-score of 4 is given to subject. Since rep-
utation is directly proportional to trust-score, thus more the
trust-score, the better the reputation of the subject in the

20

IoT environment. The submitFeedback() ABI is invoked by
getAccess()ABI and is briefly summarised in algorithm 4.

• selfDestruct() ABI: This is used by objects to completely re-
move Rep-ACM smart contract instance from Blockchain.

21

Algorithm 1: getAccess() ABI
Input: resource,action,time
Output: Allows or Blocks access request based on defined policies and Reputation of subject

and returns access result
Require: defined policies on resources for subjects as p←lookup[resource][msg.sender], policy

check as pCheck←false, behaviour check as bCheck ←true, imposed penalty as penalty←0,
total access requests as totoalCount, total negative feedbacks as negativeCount, total positive
feedbacks as positiveCount, uint netAccessDiff←1, misbehaviours on resource by subject as
msbOnRes←MisbehaviourOnResource[resource][msg.sender], Reputation score of subject as
repScore

if p.subject==msg.sender then
if msbOnRes.timeToUnblock ≥ time then

accessCode = 1
else

if msbOnRes.timeToUnblock > 0 then
msbOnRes.timeToUnblock = 0
p.countFR = 0
p.lastReq = 0

if p.per == allow && p.action== action then
pCheck← true

if time-p.lastReq ≤ p.minInterval then
p.countFR++
if p.countFR ≥ p.threshold then

penalty = onMisbehaviour(msg.sender)
bCheck = false
repScore= getReputation(msg.sender)
if totalCount ≥ 1 then

if repScore ≤5 then
netAccessDiff= negativeCount-positiveCount
penalty = penalty ∗ netAccessDiff

else if repScore> 5 && repScore ≤ 8) then
penalty = penalty

else
netAccessDiff= positiveCount-negativeCount
penalty = d penalty

netAccessDiff
e

else
penalty = 1

misbonRes.timeToUnblock = time + penalty
misbonRes.push(resorce,msg.sender,action,msbType,time,penalty)

else
p.countFR = 0

if pCheck && bCheck then
accessCode = 0

if ¬pCheck && bCheck then
accessCode = 2

if pCheck && ¬bCheck then
accessCode = 3

if ¬pCheck && ¬ bCheck then
accessCode = 4

p.lastReq = time
p.result = pCheck && bCheck
p.accCode = accessCode

else
accessCode = 5

22

Table 3: Access Control Registry

Object address Gateway address Object Access Control Contract Address ABI
0xf537a4d70b1223f7cc051db18602124c8ac9b578 0x958b10a5a104a7a2d271d8dd4240d78967c4212d Pi-Camera 0x3f3553d6c5ebb1fa698b89498983997a251cf122 Rep-ACM 1 ABI
0x4c6009f254364ea0f49e0da18287971fa4f716dd 0x4c6009f254364ea0f49e0da18287971fa4f716dd Object A 0xec56a3500085b15502e14288e71e5c5f0b08b33a Rep-ACM 2 ABI

0x4b0897b0513fdc7c541b6d9d7e929c4e5364d2db 0xca35b7d915458ef540ade6068dfe2f44e8fa733c Sensor C 0x0dcd2f752394c41875e259e00bb44fd505297caf Rep-ACM 3 ABI
...

...
...

...
...

Algorithm 2: onMisbehaviour() ABI
Input: subject
Output: penalty
Require: count of negative feedbacks received by a subject as negativeCount
if negativeCount≥ 0 then

nCount←negativeCount[subject]
penalty←nCount+1
return penalty

else
revert

Algorithm 3: Actions on different Access codes
Input: accessCode
Output: Appropriate actions based on access code returned on accessing resources under

objects by subjects
if accessCode==0 then

• submitFeedback(sub,obj,10,”Access Granted”);

• Grant access to resource under object requested by subject and Trigger appropriate event with
Access result as true

else if accessCode==1 then

• submitFeedback(sub,obj,4,”Requests are still Blocked”);

• Trigger appropriate event with Access result as false

else if accessCode==2 then

• submitFeedback(sub,obj,4,”Static policy check failed”);

• Trigger appropriate event with Access result as false

else if accessCode==3 then

• submitFeedback(sub,obj,4,”Misbehaviour detected ”);

• Trigger appropriate event with Access result as false

else if accessCode==4 then

• submitFeedback(sub,obj,4,”Static policy check failed & Misbehaviour detected”);

• Trigger appropriate event with Access result as false

else

• submitFeedback(sub,obj,8,”Invalid Subject”);

• Trigger appropriate event with Access result as false

• Add access policy for subject after verification

23

Algorithm 4: submitFeedback() ABI
Input: subject, object, trustScore, message, DateTime
Output: Builds reputaion of subject based on access actions performed on objects
Require: feedback list as feedbacks, total access requests as totoalCount, total negative

feedbacks as negativeCount, total neutral feedbacks as neutralCount, total positive feedbacks
as positiveCount, total trust score as scoreSum, feedbacks given as feedbackGiven, feedbacks
received feedbackReceived

if trustScore≥ 0 and ≤ 10 then
feedback←feedbacks[subject][object]
accessCounter←totoalCount[subject]
totalScore←scoreSum[subject]
feedbackGivenHistory←feedbackGiven[object]
feedbackReceivedHistory←feedbackReceived[subject]
feedback.score ← trustScore
feedback.date← DateTime
feedback.message← message
feedback.submittedBy ← object
accessCounter++
totalScore+=trustScore
if trustScore ≥ 0 && trustScore ≤ 5 then

negativeCount++

else if trustScore > 5 && trustScore ≤ 8 then
neutralCount++

else if trustScore > 8 && trustScore ≤10 then
positiveCount++

feedbackGivenHistory.push(feedback)
feedbackReceivedHistory.push(feedback)

else
revert

Algorithm 5: getReputation() ABI
Input: subject
Output: returns reputation of a subject either Negative, Neutral or Positive
Require: total access requests as totalCount, total trust score as scoreSum
if totalCount ≥ 0 && scoreSum ≥ 0 then

tCount←totalCount[subject]
tScore←scoreSum[subject]
avgScore←d tScore+14

tCount+2
e

return avgScore
else

revert

5. Prototype Implementation and Performance Evaluation

In this section, we first introduce our experimental setup built as the Rep-
ACM framework prototype and then evaluate feasibility and performance of
proposed Rep-ACM framework. The overall network design for proof of
concept is shown in figure 4.

24

Figure 2: Access control steps in Rep-ACM framework

25

Figure 3: Execution Flow of Rep-ACM

26

Table 4: Specification of Devices

Device CPU Memory Hard Disk OS
Raspberry Pi 3 Model B ARMv7 Processor rev 4 (v7l), 1.2GHz 1GB SDRAM 16GB(microSD card) Raspbian GNU/Linux 9 (stretch)
Dell OPTIPLEX 9020 Intel Core i7-4790, 3.60GHz 4GB 500GB Ubuntu 16.04 LTS

Dell Precision 7720 Intel Core i7-6820HQ, 2.70GHz 32GB 1TB Ubuntu 16.04 LTS

Figure 4: Rep-ACM Network Setup

5.1. Rep-ACM Prototype Environment Setup

For Proof of Concept we created private Ethereum network consisting of
two Raspberry Pi 3 Model B single board computers, one desktop computer
and a laptop as nodes. We also have 4 static nodes running on desktop
computer as validators. The desktop and laptop corresponds to the user
devices in the prototype system and the single board computers correspond
to the local gateways. We considered access control issue between the two
single board computers in which one serves as object(or the agent of the
object) and other as subject (or the agent of the subject). The detailed
specification of devices used in prototype are listed in table 4 and testbed
used for prototype implementation is shown in figure 5.

27

Figure 5: Testbed used for prototype implementation

Regarding the software, on each device go-ethereum client was installed to
transform the device into a private Ethereum network node. With istanbul-
tools [27] we created private Ethereum network running IBFT as PoA con-
sensus protocol. There is no mining as we used Ethereum with IBFT, where
known and authorized nodes called as validators do the job of miners. For
prototype implementation we have chosen 4 nodes to act as validators in
the Blockchain network. Any device with suitable storage capacity can act
as validator, thus IoT gateways with suitable storage capacity could act as
full nodes in proposed framework. For writing, compiling and deploying
Rep-ACM smart contract we utilized the Remix integrated development en-
vironment(IDE) [28] which is browser-based IDE for Solidity(programming
language for writing Ethereum smart contracts) [25]. In addition we have in-
stalled web3.js [29] both on object and subject side to interact wit Blockchain
from front-end through http connections. Web3.js allows monitoring the
states of Rep-ACM framework smart contracts and sending and receiving
access control requests and responses.

5.2. Experimentation

We conducted experiments in order to validate the consistency of smart
contract execution and to test the feasibility of the framework for access
control. We added access policies for subjects at object side with constant
minInterval = 1000s and threshold = 2. In proposed framework misbehaviour

28

from subjects could happen in two ways 1) either by positive frequent access
requests or by 2) frequent negative accesses (policy check failures) crossing
threshold. After failing two consecutive policy checks, third time a misbe-
haviour was detected and a penalty of 3 minutes was imposed on subject
as shown in figure 6a. After completion of penalty time, subject sends ac-
cess request as per policy defined by object (Resource owner) and access
was granted as shown in figure 6b, thus confirming the correctness of smart
contract execution. For analysing the effect of subject reputation on mis-
behaviour penalty, we performed several access requests to object resources
from different subjects. Access requests include both positive as well as neg-
ative accesses (accesses not as per defined policy) including misbehaviours.
We consider two case scenarios, in first case we consider subject doing misbe-
haviour after certain number of negative accesses without doing any positive
access to better understand effect of negative accesses on subject reputation
and penalty on misbehaviour. In first case we consider subject doing second
type of misbehaviour. For second case, after doing 62 consecutive negative
accesses in case first, subject does a misbehaviour only after certain number
of positive accesses to better understand effect of being good in network by
getting less penalty on misbehaviour with more positive accesses on object
resources. For second case we consider subject doing first type of misbe-
haviour.

(a) Misbehaviour after two consective Policy
check failures

(b) Access as per defined Policy

Figure 6: Access Result at IoT Gateway (at Object side)

29

(a) Effect on Subject Penalty (b) Effect on Reputation

Figure 7: Effect of Misbehaviour after certain number of consecutive Negative accesses

(a) Effect on Subject Penalty (b) Effect on Reputation

Figure 8: Effect of Misbehaviour after certain number of consecutive Positive accesses

From figures 7a and 7b we can clearly observe that, with increase in neg-
ative accesses, penalty on misbehaviour increases sharply and subject repu-
tation decreases and from figures 8a and 8b we observe that with increase in
positive accesses, penalty on misbehaviour decreases drastically when subject
reputation grows from negative to neutral and to positive respective.

30

5.3. Performance Evaluation

This section provides brief analysis of the proposed framework in terms
of cost and security.

5.3.1. Cost Analysis

Every transaction executed on Ethereum Blockchain costs some Gas, rep-
resenting unit of cost for a particular operation. In Ethereum Gas is paid in
terms of Ether, as it is crypto fuel for running applications on the Blockchain
network. There are transaction and execution gas costs for each function
performed on the blockchain network. Execution cost includes the cost of
internal storage in the smart contracts as well cost associated with any ma-
nipulation of Blockchain state. Transaction cost includes execution cost and
the cost related to other factors like contract deployment and sending data to
Blockchain network. Since we utilized IBFT as Blockchain consensus mech-
anism in proposed framework, there is no mining, thus no computational
burden on Blockchain nodes.

Table 5 shows the average gas costs of smart contract functions of the
proposed framework. The values shown in the table are approximate and
can vary environment to environment. Each function listed in table 5 was
executed 5 times to calculate the average cost. Smart contract functions are
invoked by the participants (subjects and objects) of the proposed frame-
work. Functions which does not involve any updation in the Blockchain
state costs least, while as functions which considerably changes the state of
smart contract variables stored on Blockchain costs the most. constructor
function is a special function as it is related to the deployment of smart con-
tract and is executed once for each object in the life-cycle of the proposed
model. Every object deploys the smart contract for managing access to its
resources by subjects.

Table 5: Average Cost of Smart Contract Functions in proposed framework

Function caller Function Name Average Transaction Cost in gas Average Execution Cost in gas
Object Rep-ACM constructor 5641994 4226142
Object addPolicy 200865 175433
Object updatePolicy 36604 11364

Gateway registry constructor 856385 610717
Object registerContract 171269 89197
Object updateContract 83524 1452
Subject getContract 33722 10466
Subject accessControl 282843 260381

31

5.3.2. Security Analysis

In this section we present brief security analysis on how our proposed
solution ensure key security goals such as integrity, non-repudiation, autho-
rization, availability and accountability.

1. Integrity: Proposed framework ensures integrity by storing trace-
ability provenance data regarding subject access history in an im-
mutable Blockchain infrastructure. Cryptographic hash functions make
Blockchain immutable in nature.

2. Non-Repudiation: Every action is recorded in tamper-proof logs in pro-
posed framework and all actions are linked and cryptographically signed
by the initiator. No participant can deny their actions as everything is
saved in the tamper-proof logs.

3. Authorization: In proposed framework role restrictions have been
strictly enforced by using solidity modifiers to ensure proper autho-
rization checks before executing any smart contract functions.

4. Availability: Since access policies are enforced through smart contract
functions, they immediately becomes available to subjects. The infor-
mation stored on the Blockchain is saved in distributed and decentral-
ized fashion and thus is immune to single point of failure.

5. Accountability and Resistance against Sybil attacks : Since Ethereum
account addresses (public keys) of subjects and objects are linked with
reputation score, they can be made accountable for their actions on
Blockchain.

6. Conclusion and Future work

In this paper, we present a proof-of-concept architecture that adopts
proof-of-authority (istanbul practical byzantine fault tolerant) Ethereum
Blockchain technology to implement reputation driven dynamic access con-
trol (Rep-ACM) framework for small scale IoT applications, where access
policies are enforced through smart contracts stored on Blockchain. Pro-
posed framework contains Rep-ACM smart contract, deployed by objects to
control access to their resources and a Registry contract deployed by gate-
ways to manage Rep-ACM smart contract instances deployed by the objects
connected to it. We implemented Rep-ACM framework and conducted ex-
periments in order to validate the consistency of smart contract execution
and to test the feasibility of the framework for access control in IoT. Ex-
periments showed that the cost for proposed framework to integrate PoA

32

(IBFT) Blockchain and smart contracts are within reasonable range while
gaining various intrinsic benefits from permissioned Blockchain and smart
contracts. As part of the future work, we aim to develop end-to-end decen-
tralized application (DApp) that provides easy to use interface for interacting
with Rep-ACM framework ABIs. As an extension to the work, it would be
interesting to design functionality that allows objects to share reputation
of those subjects who have accessed their resources, with other objects in
the IoT environment. Sharing of subject reputations will help other objects
in designing access policies dynamically. In future we also aim at making
validator selection dynamic, based on reputation in the network.

References

[1] K. Ashton et al., “That ‘internet of things’ thing,” RFID journal, vol. 22,
no. 7, pp. 97–114, 2009.

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[3] V. Buterin, “Ethereum: A next-generation smart contract and
decentralized application platform, 2013,” URL {http://ethereum.
org/ethereum. html}, 2017.

[4] N. Szabo, “The idea of smart contracts,” Nick Szabo’s Papers and Con-
cise Tutorials, vol. 6, 1997.

[5] I. Bentov, A. Gabizon, and A. Mizrahi, “Cryptocurrencies without proof
of work,” in International Conference on Financial Cryptography and
Data Security. Springer, 2016, pp. 142–157.

[6] “Istanbul byzantine fault tolerant consensus protocol,”
https://github.com/ethereum/EIPs/issues/650, accessed: 01-08-2019.

[7] V. Suhendra, “A survey on access control deployment,” in International
conference on security technology. Springer, 2011, pp. 11–20.

[8] M. Adda, J. Abdelaziz, H. Mcheick, and R. Saad, “Toward an access
control model for iotcollab,” Procedia Computer Science, vol. 52, pp.
428–435, 2015.

33

[9] J. L. Hernández-Ramos, A. J. Jara, L. Marin, and A. F. Skarmeta,
“Distributed capability-based access control for the internet of things,”
Journal of Internet Services and Information Security (JISIS), vol. 3,
no. 3/4, pp. 1–16, 2013.

[10] O. Novo, “Blockchain meets iot: An architecture for scalable access
management in iot,” IEEE Internet of Things Journal, vol. 5, no. 2, pp.
1184–1195, 2018.

[11] A. Ouaddah, A. Abou Elkalam, and A. Ait Ouahman, “Fairaccess:
a new blockchain-based access control framework for the internet of
things,” Security and Communication Networks, vol. 9, no. 18, pp. 5943–
5964, 2016.

[12] T. Le and M. W. Mutka, “Capchain: A privacy preserving access control
framework based on blockchain for pervasive environments,” in 2018
IEEE International Conference on Smart Computing (SMARTCOMP).
IEEE, 2018, pp. 57–64.

[13] S. Alansari, F. Paci, and V. Sassone, “A distributed access control sys-
tem for cloud federations,” in 2017 IEEE 37th International Conference
on Distributed Computing Systems (ICDCS). IEEE, 2017, pp. 2131–
2136.

[14] D. D. F. Maesa, P. Mori, and L. Ricci, “Blockchain based access con-
trol,” in IFIP international conference on distributed applications and
interoperable systems. Springer, 2017, pp. 206–220.

[15] A. Outchakoucht, E. Hamza, and J. P. Leroy, “Dynamic access control
policy based on blockchain and machine learning for the internet of
things,” Int. J. Adv. Comput. Sci. Appl, vol. 8, no. 7, pp. 417–424,
2017.

[16] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, “Blockchain for
iot security and privacy: The case study of a smart home,” in 2017 IEEE
international conference on pervasive computing and communications
workshops (PerCom workshops). IEEE, 2017, pp. 618–623.

[17] M. S. Ali, K. Dolui, and F. Antonelli, “Iot data privacy via blockchains
and ipfs,” in Proceedings of the Seventh International Conference on the
Internet of Things. ACM, 2017, p. 14.

34

[18] A. Z. Ourad, B. Belgacem, and K. Salah, “Using blockchain for iot access
control and authentication management,” in International Conference
on Internet of Things. Springer, 2018, pp. 150–164.

[19] H. Shafagh, L. Burkhalter, A. Hithnawi, and S. Duquennoy, “Towards
blockchain-based auditable storage and sharing of iot data,” in Proceed-
ings of the 2017 on Cloud Computing Security Workshop. ACM, 2017,
pp. 45–50.

[20] M. Steichen, B. Fiz, R. Norvill, W. Shbair, and R. State, “Blockchain-
based, decentralized access control for ipfs,” in 2018 IEEE International
Conference on Internet of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData). IEEE,
2018, pp. 1499–1506.

[21] Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, and J. Wan, “Smart contract-
based access control for the internet of things,” IEEE Internet of Things
Journal, vol. 6, no. 2, pp. 1594–1605, 2018.

[22] J. P. Cruz, Y. Kaji, and N. Yanai, “Rbac-sc: Role-based access control
using smart contract,” IEEE Access, vol. 6, pp. 12 240–12 251, 2018.

[23] H. Albreiki, L. Alqassem, K. Salah, M. Rehman, and D. Svetinovic,
“Decentralized access control for iot data using blockchain and trusted
oracles,” 2019.

[24] “Geth client for running a full ethereum node,”
https://github.com/ethereum/go-ethereum/wiki/geth, accessed:
05-12-2019.

[25] “Solidity a high-level language for implementing smart contracts,”
https://solidity.readthedocs.io/en/develop/, accessed: 01-08-2019.

[26] “Net promoter score,” https://www.netpromoter.com/know/.

[27] “istanbul-tools utility for configuring istanbul bft (ibft) network,”
https://github.com/getamis/istanbul-tools, accessed: 01-08-2019.

[28] “Remix ide for ethereum smart contract programming,”
https://remix.ethereum.org/, accessed: 05-12-2019.

35

[29] “Web3 javascript api to interact with ethereum nodes,”
https://github.com/ethereum/web3.js/.

36

