
1

“This work has been submitted to the IEEE for possible
publication. Copyright may be transferred without notice, after
which this version may no longer be accessible.”

2

Reputation Driven Dynamic Access Control
Framework for IoT Atop Proof of Authority

Ethereum Blockchain
Auqib Hamid Lone1 and Roohie Naaz1

Abstract—Security and Scalability are two major challenges
that IoT is currently facing. Access control to critical IoT
infrastructure is considered as top security challenge that IoT
faces. Data generated by IoT devices may be driving many hard
real time systems, thus it is of utmost importance to guarantee
integrity and authenticity of the data and resources at the first
place itself. Due to heterogeneous and constrained nature of
IoT devices, traditional IoT security frameworks are not able to
deliver scalable, efficient and manageable mechanisms to meet
the requirements of IoT devices. On the other hand Blockchain
technology has shown great potential to bridge the missing gap
towards building a truly decentralized, trustworthy, secure and
scalable environment for IoT. Allowing access to IoT resources
and data managed through Blockchain will provide an additional
security layer backed by the strongest cryptographic algorithms
available. In this work we present a reputation driven dynamic
access control framework for IoT based on Proof of Authority
Blockchain, we name it as Rep-ACM. In Rep-ACM framework
we build two major services, one for Reputation building (for bet-
ter IoT device behaviour regulations) and other for Misbehaviour
detection (for detecting any Misbehaviour on object resource
usage). Both of these services work in coordination with other
services of proposed framework to determine who can access
what and under what conditions access should be granted. For
Proof of Concept (PoC) we created private Ethereum network
consisting of two Raspberry Pi single board computers, one desk-
top computer and a laptop as nodes. We configured Ethereum
protocol to use Istanbul Byzantine Fault Tolerance (IBFT) as
Proof of Authority (PoA) consensus mechanism for performance
optimization in constrained environment. We deployed our model
on private network for feasibility and performance analysis.

Index Terms—Reputation, Access Control, IoT, Permissioned
Blockchain, Proof of Authority.

I. INTRODUCTION

THE term ”Internet of Things” (IoT) was first introduced
by K. Ashton [1] in 1999. In simpler terms IoT refers to

the connection of devices with constrained capabilities to the
Internet. The ”Things” in IoT are devices which can perform
remote sensing, monitoring and actuating. The ubiquitous
interconnection of physical objects greatly accelerates collec-
tion, aggregation and sharing of data with other connected
devices and applications, thus widening IoT applicability in
many different domains ranging from smart healthcare, home
automation etc. With increased popularity of IoT and ever
increasing number of smart devices with insufficient security
enforcement connected to internet, access control mechanisms
have become an extremely important to prevent security and

1Auqib Hamid Lone and Roohie Naaz are with Department of CSE, NIT
Srinagar, Jammu & Kashmir,190006 India. ahl@nitsri.net

privacy breaches in an untrustworthy IoT environment. Due
to heterogeneous and constrained nature of IoT devices, tradi-
tional IoT security frameworks are not able to deliver scalable,
efficient and manageable mechanisms to meet the requirements
of IoT devices. Thus, an important question arises: how can
we achieve distributed, scalable and trustworthy access control
in IoT?. Fortunately, Blockchain technology has shown great
potential in bridging the missing gap towards building a truly
decentralized, trustworthy, secure and scalable environment for
IoT. With the advent of smart contracts (a piece of executable
code) Blockchain has now evolved as a promising platform for
developing trustworthy applications. In this paper, we propose
a reputation driven dynamic access control framework for
IoT based on Proof of Authority Blockchain, we name it as
Rep-ACM. We configured Ethereum protocol to use Istanbul
Byzantine Fault Tolerance (IBFT) as Proof of Authority (PoA)
consensus mechanism for performance optimization in con-
strained environment.

As a short summary, the major contributions of the proposed
Rep-ACM framework include:

1) A new Rep-ACM framework integrating permissioned
Blockchain and smart contract capabilities.

2) Smart contracts based policy enforcement to regulate
resource access in IoT devices.

3) Reputation service for building subject reputation based
on each access result, to incentivize (in case of positive
reputation) or penalize (in case of negative reputation)
subjects on misbehaving with object resources, thus
helping in better IoT device behaviour regulations.

4) Ethereum client configured to work with IBFT as con-
sensus protocol eliminates computational burden from
nodes, thus a suitable choice for constrained devices
especially in IoT environment.

5) A prototype implementation and experimentation to val-
idate and evaluate Rep-ACM ideas.

Rest of the paper is organized as follows: section II gives
related work, section III presents the proposed framework,
section IV presents the implementation and performance eval-
uation of proposed framework, finally section V concludes the
paper and references are list in the end.

II. RELATED WORK

Traditional access control mechanisms for IoT are prone to
single point of failure, as they rely on the centralized databases
containing user access policies. This drives research towards

3

finding alternative solutions for meeting access control require-
ments for heterogeneous IoT environment. Several Blockchain
based access control mechanisms have been proposed in the
recent past for addressing requirements of the IoT devices.
Below is the brief summary of the most recent and relevant
ones.

The work presented in [2] proposed a new Blockchain based
access control architecture for arbitrating roles and permis-
sions in IoT. In essence a tokenized approach is proposed
where access policies are enforced through smart contracts for
allowing or revoking access to stored IoT data. Another token
based approach to access control was proposed by the authors
in [3], where access policies are written into smart contracts
for granting and revoking access privileges to the users with
varying roles. Another similar work was carried out by the
authors in [4], where access to stored IoT data is granted or
revoked by means of functions written in smart contracts. In
[5], the authors propose a scheme for guaranteeing integrity
of policy evaluation process utilizing Ethereum Blockchain
and Intel SGX trusted hardware for cloud federations. Authors
in [6] propose a Bitcoin based architecture for managing
access rights through Blockchain transactions. Authors in [7]
proposed a Blockchain and Machine Learning based dynamic
access control policy for IoT. The proposed framework utilized
Blockchain for ensuring a truly distributed infrastructure and
Machine Learning algorithms (Reinforcement Learning) for
achieving optimized and self adjusted security policies for IoT
access control management. The work presented by authors in
[8] introduced the concept of connecting local Blockchains to
a public overlay Blockchain, where access policies are stored
within Blockchain making them publicly verifiable detecting
any unauthorized access attempts. Authors in [9] extended
the idea proposed by [8] by dropping any transaction issued
by an adversary from the Blockchain network altogether. In
[10] authors propose a Blockchain based authentication and
access control solution for IoT devices. Proposed model works
in two phases: in first phase user authenticates himself to
the smart contract and in second phase user receives authen-
tication token and IoT device receives authentication token
and Ethereum address of authorized user, thus authenticating
user to IoT device. Another work presented by the authors
in [11] proposed a Blockchain based access control scheme
for off-chain data stored in Decentralized Hash Tables(DHT).
The Blockchain in proposed solution stores access policies
of different users for any data stored data in DHT. On
access request, DHT nodes verify user access privileges from
Blockchain records. Similar work was proposed by the authors
in [12] by modifying InterPlanetary Filesystem (IPFS) to
incorporate Blockchain based access control for file sharing.
Authors in [13] proposed a smart contract based framework
for distributed and trustworthy access control for IoT. The
work presented by authors in [14] proposed a role based
access control mechanism using smart contracts. The pro-
posed scheme is composed of two main components namely
Blockchain smart contract and the challenge response protocol.
For accessing any resource, users have to provide response
to a challenge given by service provider. Upon successfully
verification access to desired resource is granted. Authors in

[15] proposed a new method for access control in IoT based
on Blockchain which helps users in accessing and controlling
their data. In essence smart contracts are used for policy
evaluation, to allow access to the resources. Work presented in
[16] proposed a decentralized IoT system based on blockchain.
Then they established a secure fine-grained access control
strategies for users, devices, data, and implemented the strate-
gies with smart contract. Authors in [17] proposed a secure
fine-grained access control system for outsourced data, which
supports read and write operations to the data. They have
leveraged attribute-based encryption (ABE) scheme, which is
regarded as a suitable to achieve access control for security
and privacy (confidentiality) of outsourced data. The work
presented in [18] proposed a Blockchain based access control
for conflict of interest domains. They integrated a Blockchain
in their architecture to make access control fair, verifiable and
decentralized. Authors in [19] proposed a novel Blockchain
driven decentralized architecture for permission delegation and
access control for IoT application. Authors in [20] proposed
a decentralized access control mechanism for IoT data using
blockchain and trusted oracles. The proposed scheme uses
trusted oracles as interface gateways and a provider of trusted
and uniform source feeds for IoT data. The work presented by
authors in [21] proposes a Hyperledger Fabric driven attribute-
based access control scheme to allow flexible and fine-grained
authorization for IoT devices. Authors in [22] have proposed
Ethereum based authentication and access control mechanism
for securing device communication in IoT networks.

The work presented in this paper is inspired by the above
mentioned solutions, in particular the work done by the authors
in [13], with following differences:

1) A PoA based private Blockchain network for perfor-
mance optimization;

2) A single smart contract deployed by Objects for man-
aging accesses to their resources by multiple subjects;

3) Reputation service for building subject reputation based
on each access result, to incentivize (in case of positive
reputation) or penalize (in case of negative reputation)
subjects on misbehaving with object resources, thus
helping in better IoT device behaviour regulations; and

4) Access specifiers for maintaining integrity of proposed
framework.

III. PROPOSED FRAMEWORK

In this paper we propose Rep-ACM: Reputation driven
Dynamic Access Control Framework for IoT applications on
the top of Proof of Authority Ethereum Blockchain. Simplified
architecture of proposed framework consists of four main
parts: 1) Participants (subjects and objects) 2) Front End
for registering and retrieving addresses and ABI’s of deployed
object access control contracts 3) Smart contracts (registry and
Rep-ACM) and 4) Blockchain network as shown in figure
1.

1) Participants: They are real actors in the network. Any
participant in proposed framework acts as either subject
or object. IoT devices under the supervision of IoT
gateway act as objects in the proposed framework.

4

Fig. 1: Detailed Architecture of Rep-ACM

Servers, user devices and other communicating devices
act as subjects. In certain situations vice versa is also
possible. Subjects and Objects are either Validator nodes
or Lightweight nodes. Validator nodes perform following
jobs in the network:

• Storing a copy of the blockchain
• Validating transactions and taking part in consensus

process by creating, proposing and adding blocks to
Blockchain.

Lightweight nodes simply issue transactions and rely on
validators for adding and validating their transactions
Participants communicate with Blockchain by calling
appropriate deployed smart contract ABI’s.

2) Front-End: It provides interface for objects to register
their deployed access control contract address and ABI
in the registry contract. Subjects use front-end for re-
trieving desired objects access control contract address
and ABI from registry contract.

3) Smart Contract: Proposed framework makes use of mul-
tiple instances of Access control smart contract (Rep-
ACM) one by each object (IoT device) and a single reg-
istry contract for lookup purposes. Each object deploys
Rep-ACM to control access to its resources and data.

4) Blockchain Network: It comprises of Peer-to-Peer (P2P)
network of nodes and a PoA (IBFT) consensus protocol
that governs the communication over P2P network.

A. Implementation of Proposed Framework

For implementation purposes we designed private and per-
missioned blockchain network. The Blockchain infrastructure
is implemented through Geth [23]: a popular implementation
of a full Ethereum node. Geth allows to setup a private network
and configure all aspects of the blockchain and the consensus
protocol employed. We configured geth to work with PoA
based consensus namely, the IBFT consensus protocol. On top

of this blockchain infrastructure, we deploy and run a smart
contract implementing the proposed access control framework
The implementation of Rep-ACM framework Involves three
steps: (i) the initialization of the private blockchain, (ii) the
creation of the private network and (iii) the creation and
deployment of the smart contract.

1) Blockchain Initialization: Initialization of any
Blockchain network involves the creation of its genesis block
(first block) and contains the important initial configuration
parameters. The only configuration parameters that are of
interest for the purposes of the proposed framework are:

• Block Period T: the block period of the IBFT consensus
algorithm and represents the rate at which new blocks are
created in the Blockchain network.

• Block Gas Limit G: Maximum amount of gas transactions
in a block are allowed to consume

• Validators: The Ethereum addresses of the pre-authorized
validators.

Block Period T and Block Gas Limit G are two important
configuration parameters that greatly affects the overall per-
formance of Blockchain network. This is due to the fact that
T and G plays role in transaction latency (block inclusion
latency and consensus latency) and block headers overhead,
thus controlling the rate at which Blockchain grows with time.

2) Blockchain Setup: In proposed framework validators
and lightweight nodes are Geth nodes. Istanbul-tools help in
creating genesis block with fixed and known validators. All the
nodes in the network are initialized with same genesis block
and a JSON file containing the node ids of the validators.
Validators once started from geth command line can never
leave the network, unless they start misbehaving and conse-
quently are expelled from then network by other validators. In
contrast lightweight nodes can join/leave the network at any
time. Lightweight nodes are also started from geth command,
but their addresses are not included in the genesis block.

3) Smart Contract Implementation and Deployment: We
implemented smart contract in Solidity contract-oriented pro-
gramming language [24]. Proposed framework comprises of
multiple modules that work in coordination to control access
to the critical IoT infrastructure. We first define all the data
structures used by the modules for maintaining the state of
subjects and objects in the network.

1) Mapping of subjects to resource access policies: In pro-
posed framework subjects are mapped to corresponding
access policies set by objects on their resources. Access
result depends both on static policies set by objects
and dynamic information related to current behaviour
and reputation of the subjects. There is a many to
many mapping between subjects and resource access
policies as shown in Table I. Every subject has critical
information pertaining to reputation and misbehaviour
associated with it, as shown in Table II. On misbehaviour
the latter information plays an important role in deciding
penalty time to be imposed on subjects.

2) Deriving subject reputation from feedback trust score
value: On each access a subject receives a feedback

5

TABLE I: Rep-ACM Access Control Matrix

Subjects Resources Access Policies
Sub Res Pir Per Act . . . accRes

S1

R1 S1 R1 N/H/L A/D R/W/X . . . T/F
R2 S1 R2 N/H/L A/D R/W/X . . . T/F
... S1

... N/H/L A/D R/W/X . . . T/F
RN S1 RN N/H/L A/D R/W/X . . . T/F

S2

R1 S2 R1 N/H/L A/D R/W/X . . . T/F
R2 S2 R2 N/H/L A/D R/W/X ... T/F
... S2

... N/H/L A/D R/W/X . . . T/F
RN S2 RN N/H/L A/D R/W/X . . . T/F

SN

R1 SN R1 N/H/L A/D R/W/X . . . T/F
R2 SN R2 N/H/L A/D R/W/X . . . T/F
... SN

... N/H/L A/D R/W/X . . . T/F
RN SN RN N/H/L A/D R/W/X . . . T/F

containing trust score value from object. Feedbacks
are classified based on net promoter score like scale
defined as follows:

feedback(trustScore) =

 NegativeFeedback trustScore ≤ 5
NeutralFeedback trustScore > 5 and tScore(x) ≤ 8
PositiveFeedback trustScore > 8 and tScore(x) ≤ 10

Trust score value is given based on nature of access,
if access is as per already defined policy a positive
feedback (trust score value 10) is given by object to
subject, if no policy is defined for subject then neutral
feedback (trust score value 8) is given by object to
subject , if access is against predefined policy or request
still blocked or misbehaviour detected then negative
feedback (trust score value 4) is given by object to
subject, and if access is against predefined policy
and misbehaviour is also detected then also negative
feedback (trust score value 4) is given by object to
subject. Overall reputation of subject is also derived
from net promoter score like scale but on average trust
score received from object feedbacks as shown below:

tScore(x) =
⌈x+ 10 + feedbackScoreOnMisbeahviour

trequest + 2

⌉
(1)

where x represents total trust score received by a
subject, feedbackScoreOnMisbeahviour represents
a feedback score on misbehaviour, used in advance
as feedback is submitted only after the completion
of access request and trequest represents total count
of access requests. Every subject starts from positive
reputation with a trust score of 10. With time subject
reputation varies based on its behaviour while accessing
object resources on the network. On misbehaviour

getReputaion(tScore(x)) =

 Negative Reputaion tScore(x) ≤ 5
Neutral Reputaion tScore(x) > 5 and tScore(x) ≤ 8
Positive Reputaion tScore(x) > 8 and tScore(x) ≤ 10

3) Important Functionalities of Proposed Framework:
Rep-ACM framework uses services of two smart con-
tracts with several APIs as shown in figure 1 for per-
forming different functions within the framework.
a) Registry Smart Contract: Registry smart contract
provides two main functionalities apart from other tasks
in the framework:

a) It allows objects in the system to register their
deployed Rep-ACM smart contracts instances.

b) Registry smart contract also allows subjects to
access desired objects resources through ABIs of
registered Rep-ACM smart contract instances.

To achieve the above two functionalities Registry smart
contract maintains a lookup table as shown in Table III
containing the following information:

• Object address: the address of the object or IoT
gateway ;

• Gateway address: the address of IoT gateway (when
objects are IoT devices);

• Object: the name of the object who is the owner of
the resources for which access polices are defined;

• Access control contract address: the address of the
smart contract

• ABI: the ABIs provided by the contract;

In general, objects are creators of Rep-ACM smart con-
tract instances, however when IoT devices act as objects,
local IoT gateways act as agents for deploying contracts
and sending transactions on their behalf. IoT gateways
associate ethereum account addresses with each of the
IoT devices under its control and use their account
addresses while deploying and sending transactions. The
Gateway address lookup table entry is is filled with
object address, when objects are other than IoT devices.
Registry smart contract provides the following main
ABIs to maintain the entries of the lookup table.

• register() : This ABI allows the valid objects to
register details of their deployed Rep-ACM smart
contract instance.

• getContract() : This ABI receives the object ad-
dresses and name as input and returns the address
and ABIs af the registered contract instance as
output.

• updateRegister() : This ABI after proper validation
allows objects to update their exiting lookup table
fields especially Access control contract address and
ABI.

• deRegister() : This ABI receives the object address
and name as input and after proper validation deletes
corresponding lookup table entry.

Only creators of the corresponding Rep-ACM smart
contract instances are allowed to register, update and
delete the details of contract instances from the lookup
table.
b) Rep-ACM Smart Contract: The heart and soul of
the proposed framework is Rep-ACM smart contract, as
it provides all necessary functions to facilitate smooth
access control of the IoT system. Rep-ACM smart
contract provides the following main ABIs to control
access to object resources, maintain subject reputation
and penalize subjects on misbehaviour.

• addPolicy() , updatePolicy() & deletePolicy() ABIs:
These ABIs of Rep-ACM smart contract instance
are used by objects to add, update and delete access

6

TABLE II: Information associated with each subject
Address Feedback Received from Objects Misbehaviour on Object Resources Total Trust Score Access Request Count Avg Trust Score Reputation

0xb91efd5d5f49849e95e378e19075124f35f889dc Feedback 1 Misbehaviour 1
X N d(X/N)e Neutral/Positive/NegativeFeedback 2 Misbehaviour 2

.

control policies for controlling access to object
resources. Only creator can invoke these ABIs.

• getAccess() : This is the main ABI of Rep-ACM
smart contract, which allows subjects to access their
desired object resources. accessControl() ABI uses
services of the other ABIs like submitFeedback(),
getReputation(), and onMisbehaviour() to efficiently
manage access control. The getAccess() ABI is
summarized in algorithm 1. The execution flow
of access control process is shown in fig 3 and
actions taken on each access code are explained in
algorithm 3. Steps required to be taken by subjects
in order to access object resources are shown in
figure 2 and explained below:

– Step 1: The subject calls getContract() ABI of
Registry smart contract to retrieve the desired ob-
jects registered Rep-ACM smart contract instance
for access control.

– Step 2: The Registry returns the address and
ABI of the requested Rep-ACM instance to the
subject.

– Step 3: The subject then uses address and getAc-
cess() ABI of Rep-ACM obtained in step 2 to
access object resource. Subject sends transaction
with required information by invoking getAc-
cess() ABI. The validators in the Blockchain
network collect such transaction and include that
in the block. Transaction will be executed only
if block is mined by some validator.

– Step 4: After receiving access request from sub-
ject, object’s Rep-ACM instance more specifi-
cally getAccess() ABI performs both static and
dynamic check on access request. Subjects repu-
tation is also taken into count, when determin-
ing penalty for subject if any misbehaviour is
detected.

– Step 5: Finally, access control terminates by
returning access control result to both subject and
object.

• onMisbehaviour() ABI: This ABI gets invoked
when any misbehaviour is detected on resource
access by subject. This ABI takes subject ad-
dress(implicitly passed as caller of getAccess() ABI)
as input and returns penalty(in minutes) to block
subject from making any further request, until
blocking time completes. onMisbehaviour() ABI is
briefly summarised in algorithm 2.

• getReputation() ABI: This ABI takes subject ad-
dress(implicitly passed as caller of getAccess() ABI)
as input and returns average trust-score of the sub-
ject as output. It is invoked by getAccess() ABI
to determine the average trust-score of the subject.

Fig. 2: Access control steps in Rep-ACM framework

Penalty received by a subject in onMisbehaviour()
ABI is increased(multiplied) or decreased(divided)
by a factor of netAccessDiff based on the subject
reputation. Effective blocking time for a subject is:
peanlty = d penalty

netAccessDiff e when positive reputa-
tion,
peanlty = penalty ∗ netAccessDiff when nega-
tive reputation
and peanlty = penalty when neutral reputation.
getReputation() ABI is briefly summarized in algo-
rithm 5.

• submitFeedback() ABI: For each access a subject
receives a feedback from object. Apart from other
information feedback includes a trust-score(1-10),
given based on the nature of access i.e. for positive
access subject receives a trust-score of 10, for
neutral access a trust-score of 8 is given to subject
and for negative access a trust-score either 2 or 4
is given based on the severity of access violation
e.g. if subject fails both static and dynamic checks
during access, it receives a trust-score of trust-score
of 4 is given to subject. Since reputation is directly
proportional to trust-score, thus more the trust-score,
the better the reputation of the subject in the IoT
environment. The submitFeedback() ABI is invoked
by getAccess()ABI and is briefly summarised in
algorithm 4.

• selfDestruct() ABI: This is used by objects to com-
pletely remove Rep-ACM smart contract instance
from Blockchain.

7

Algorithm 1: getAccess() ABI
Input: resource,action,time
Output: Allows or Blocks access request based on defined policies

and Reputation of subject and returns access result
Require: defined policies on resources for subjects as

p←lookup[resource][msg.sender], policy check as pCheck←false,
behaviour check as bCheck ←true, imposed penalty as penalty←0,

total access requests as totoalCount, total negative feedbacks as
negativeCount, total positive feedbacks as positiveCount, uint
netAccessDiff←1, misbehaviours on resource by subject as
msbOnRes←MisbehaviourOnResource[resource][msg.sender],
Reputation score of subject as repScore

if p.subject==msg.sender then
if msbOnRes.timeToUnblock ≥ time then

accessCode = 1
else

if msbOnRes.timeToUnblock > 0 then
msbOnRes.timeToUnblock = 0
p.countFR = 0
p.lastReq = 0

if p.per == allow && p.action== action then
pCheck← true

if time-p.lastReq ≤ p.minInterval then
p.countFR++
if p.countFR ≥ p.threshold then

penalty = onMisbehaviour(msg.sender)
bCheck = false
repScore= getReputation(msg.sender)
if totalCount ≥ 1 then

if repScore ≤5 then
netAccessDiff=

negativeCount-positiveCount
penalty = penalty ∗ netAccessDiff

else if repScore> 5 && repScore ≤ 8)
then

penalty = penalty

else
netAccessDiff=

positiveCount-negativeCount
penalty = d penalty

netAccessDiff
e

else
penalty = 1

misbonRes.timeToUnblock = time + penalty
misbonRes.push(resorce,msg.sender,action,msbType,time,penalty)

else
p.countFR = 0

if pCheck && bCheck then
accessCode = 0

if ¬pCheck && bCheck then
accessCode = 2

if pCheck && ¬bCheck then
accessCode = 3

if ¬pCheck && ¬ bCheck then
accessCode = 4

p.lastReq = time
p.result = pCheck && bCheck
p.accCode = accessCode

else
accessCode = 5

IV. PROTOTYPE IMPLEMENTATION AND PERFORMANCE
EVALUATION

In this section, we first introduce our experimental setup
built for realizing Rep-ACM framework prototype and then
evaluate its feasibility and performance. The algorithms de-
fined in previous section are generic in nature and can be
implemented on any Blockchain platform as long as it sup-
ports execution of smart contracts. We choose Ethereum as

Algorithm 2: onMisbehaviour() ABI
Input: subject
Output: penalty
Require: count of negative feedbacks received by a subject

as negativeCount
if negativeCount≥ 0 then

nCount←negativeCount[subject]
penalty←nCount+1
return penalty

else
revert

Algorithm 3: Actions on different Access codes
Input: accessCode
Output: Appropriate actions based on access code returned on

accessing resources under objects by subjects
if accessCode==0 then

• submitFeedback(sub,obj,10,”Access Granted”);
• Grant access to resource under object requested by subject and

Trigger appropriate event with Access result as true

else if accessCode==1 then
• submitFeedback(sub,obj,4,”Requests are still Blocked”);
• Trigger appropriate event with Access result as false

else if accessCode==2 then
• submitFeedback(sub,obj,4,”Static policy check failed”);
• Trigger appropriate event with Access result as false

else if accessCode==3 then
• submitFeedback(sub,obj,4,”Misbehaviour detected ”);
• Trigger appropriate event with Access result as false

else if accessCode==4 then
• submitFeedback(sub,obj,4,”Static policy check failed & Misbehaviour

detected”);
• Trigger appropriate event with Access result as false

else
• submitFeedback(sub,obj,8,”Invalid Subject”);
• Trigger appropriate event with Access result as false
• Add access policy for subject after verification

Fig. 3: Execution Flow of Rep-ACM

8

TABLE III: Access Control Registry
Object address Gateway address Object Access Control Contract Address ABI

0xf537a4d70b1223f7cc051db18602124c8ac9b578 0x958b10a5a104a7a2d271d8dd4240d78967c4212d Pi-Camera 0x3f3553d6c5ebb1fa698b89498983997a251cf122 Rep-ACM 1 ABI
0x4c6009f254364ea0f49e0da18287971fa4f716dd 0x4c6009f254364ea0f49e0da18287971fa4f716dd Object A 0xec56a3500085b15502e14288e71e5c5f0b08b33a Rep-ACM 2 ABI

0x4b0897b0513fdc7c541b6d9d7e929c4e5364d2db 0xca35b7d915458ef540ade6068dfe2f44e8fa733c Sensor C 0x0dcd2f752394c41875e259e00bb44fd505297caf Rep-ACM 3 ABI
...

...
...

...
...

Algorithm 4: submitFeedback() ABI
Input: subject, object, trustScore, message, DateTime
Output: Builds reputaion of subject based on access actions

performed on objects
Require: feedback list as feedbacks, total access requests as

totoalCount, total negative feedbacks as negativeCount, total
neutral feedbacks as neutralCount, total positive feedbacks as
positiveCount, total trust score as scoreSum, feedbacks given as
feedbackGiven, feedbacks received feedbackReceived

if trustScore≥ 0 and ≤ 10 then
feedback←feedbacks[subject][object]
accessCounter←totoalCount[subject]
totalScore←scoreSum[subject]
feedbackGivenHistory←feedbackGiven[object]
feedbackReceivedHistory←feedbackReceived[subject]
feedback.score ← trustScore
feedback.date← DateTime
feedback.message← message
feedback.submittedBy ← object
accessCounter++
totalScore+=trustScore
if trustScore ≥ 0 && trustScore ≤ 5 then

negativeCount++
else if trustScore > 5 && trustScore ≤ 8 then

neutralCount++
else if trustScore > 8 && trustScore ≤10 then

positiveCount++
feedbackGivenHistory.push(feedback)
feedbackReceivedHistory.push(feedback)

else
revert

Algorithm 5: getReputation() ABI
Input: subject
Output: returns reputation of a subject either Negative, Neutral or

Positive
Require: total access requests as totalCount, total trust score as

scoreSum
if totalCount ≥ 0 && scoreSum ≥ 0 then

tCount←totalCount[subject]
tScore←scoreSum[subject]
avgScore←d tScore+14

tCount+2
e

return avgScore
else

revert

Blockchain platform because it allows for better management
of subject account reputations. The overall network design for
proof of concept is shown in figure 4.

A. Rep-ACM Prototype Environment Setup
For Proof of Concept we created private Ethereum network

consisting of two Raspberry Pi 3 Model B single board
computers, one desktop computer and a laptop as nodes. We
also have 4 static nodes running on desktop computer as
validators. The desktop and laptop corresponds to the user
devices in the prototype system and the single board computers
correspond to the local gateways. We considered access control
issue between the two single board computers in which one

Fig. 4: Rep-ACM Network Setup

Fig. 5: Testbed used for prototype implementation

serves as object(or the agent of the object) and other as subject
(or the agent of the subject). The detailed specification of
devices used in prototype are listed in table IV and testbed
used for prototype implementation is shown in figure 5.

Regarding the software, on each device go-ethereum client
was installed to transform the device into a private Ethereum
network node. With istanbul-tools [25] we created private
Ethereum network running IBFT as PoA consensus protocol.
There is no mining as we used Ethereum with IBFT, where
known and authorized nodes called as validators do the job of
miners. For prototype implementation we have chosen 4 nodes
to act as validators in the Blockchain network. Any device
with suitable storage capacity can act as validator, thus IoT
gateways with suitable storage capacity could act as full nodes
in proposed framework. For writing, compiling and deploying
Rep-ACM smart contract we utilized the Remix integrated
development environment(IDE) [26] which is browser-based

9

TABLE IV: Specification of Devices

Device CPU Memory Hard Disk OS
Raspberry Pi 3 Model B ARMv7 Processor rev 4 (v7l), 1.2GHz 1GB SDRAM 16GB(microSD card) Raspbian GNU/Linux 9 (stretch)
Dell OPTIPLEX 9020 Intel Core i7-4790, 3.60GHz 4GB 500GB Ubuntu 16.04 LTS
Dell Precision 7720 Intel Core i7-6820HQ, 2.70GHz 32GB 1TB Ubuntu 16.04 LTS

IDE for Solidity(programming language for writing Ethereum
smart contracts) [24]. In addition we have installed web3.js
[27] both on object and subject side to interact wit Blockchain
from front-end through http connections. Web3.js allows mon-
itoring the states of Rep-ACM framework smart contracts and
sending and receiving access control requests and responses.

B. Experimentation

We conducted experiments in order to validate the consis-
tency of smart contract execution and to test the feasibility of
the framework for access control. We added access policies
for subjects at object side with constant minInterval = 1000s
and threshold = 2. In proposed framework misbehaviour from
subjects could happen in two ways 1) either by positive
frequent access requests or by 2) frequent negative accesses
(policy check failures) crossing threshold. After failing two
consecutive policy checks, third time a misbehaviour was
detected and a penalty of 3 minutes was imposed on subject as
shown in figure 6a. After completion of penalty time, subject
sends access request as per policy defined by object (Resource
owner) and access was granted as shown in figure 6b, thus
confirming the correctness of smart contract execution. For
analysing the effect of subject reputation on misbehaviour
penalty, we performed several access requests to object re-
sources from different subjects. Access requests include both
positive as well as negative accesses (accesses not as per
defined policy) including misbehaviours. We consider two case
scenarios, in first case we consider subject doing misbehaviour
after certain number of negative accesses without doing any
positive access to better understand effect of negative accesses
on subject reputation and penalty on misbehaviour. In first
case we consider subject doing second type of misbehaviour.
For second case, after doing 62 consecutive negative accesses
in case first, subject does a misbehaviour only after certain
number of positive accesses to better understand effect of
being good in network by getting less penalty on misbehaviour
with more positive accesses on object resources. For second
case we consider subject doing first type of misbehaviour.

From figures 7a and 7b we can clearly observe that, with in-
crease in negative accesses, penalty on misbehaviour increases
sharply and subject reputation decreases and from figures 7c
and 7d we observe that with increase in positive accesses,
penalty on misbehaviour decreases drastically when subject
reputation grows from negative to neutral and to positive
respective.

C. Performance Evaluation

This section provides brief analysis of the proposed frame-
work in terms of cost and security.

1) Cost Analysis: Every transaction executed on Ethereum
Blockchain costs some Gas, representing unit of cost for a
particular operation. In Ethereum Gas is paid in terms of
Ether, as it is crypto fuel for running applications on the
Blockchain network. There are transaction and execution gas
costs for each function performed on the blockchain network.
Execution cost includes the cost of internal storage in the
smart contracts as well cost associated with any manipulation
of Blockchain state. Transaction cost includes execution cost
and the cost related to other factors like contract deployment
and sending data to Blockchain network. Since we utilized
IBFT as Blockchain consensus mechanism in proposed frame-
work, there is no mining, thus no computational burden on
Blockchain nodes.

Table V shows the average gas costs of smart contract
functions of the proposed framework. The values shown
in the table are approximate and can vary environment to
environment. Each function listed in table V was executed
5 times to calculate the average cost. Smart contract functions
are invoked by the participants (subjects and objects) of the
proposed framework. Functions which does not involve any
updation in the Blockchain state costs least, while as func-
tions which considerably changes the state of smart contract
variables stored on Blockchain costs the most. constructor
function is a special function as it is related to the deployment
of smart contract and is executed once for each object in the
life-cycle of the proposed model. Every object deploys the
smart contract for managing access to its resources by subjects.

TABLE V: Average Cost of Smart Contract Functions in Gas
Function caller Function Name Average Transaction Cost Average Execution Cost

Object Rep-ACM constructor 5641994 4226142
Object addPolicy 200865 175433
Object updatePolicy 36604 11364

Gateway registry constructor 856385 610717
Object registerContract 171269 89197
Object updateContract 83524 1452
Subject getContract 33722 10466
Subject accessControl 282843 260381

2) Security Analysis: In this section we present brief se-
curity analysis on how our proposed solution ensure key
security goals such as integrity, non-repudiation, authorization,
availability and accountability.

1) Integrity: Proposed framework ensures integrity by stor-
ing traceability provenance data regarding subject access
history in an immutable Blockchain infrastructure. Cryp-
tographic hash functions make Blockchain immutable in
nature.

2) Non-Repudiation: Every action is recorded in tamper-
proof logs in proposed framework and all actions are
linked and cryptographically signed by the initiator. No
participant can deny their actions as everything is saved
in the tamper-proof logs.

10

(a) Misbehaviour after two consective Policy check failures (b) Access as per defined Policy

Fig. 6: Access Result at IoT Gateway (at Object side)

(a) Effect on Subject Penalty (b) Effect on Reputation (c) Effect on Subject Penalty (d) Effect on Reputation

Fig. 7: Effect of Misbehaviour after certain number of consecutive Negative accesses and Positive accesses

3) Authorization: In proposed framework role restrictions
have been strictly enforced by using solidity modifiers
to ensure proper authorization checks before executing
any smart contract functions.

4) Availability: Since access policies are enforced through
smart contract functions, they immediately becomes
available to subjects. The information stored on the
Blockchain is saved in distributed and decentralized
fashion and thus is immune to single point of failure.

5) Accountability and Resistance against Sybil attacks :
Since Ethereum account addresses (public keys) of sub-
jects and objects are linked with reputation score, they
can be made accountable for their actions on Blockchain.

3) Comparison with Zhang et al.’s scheme [13]: A thor-
ough comparative analysis of Rep-ACM was carried with
Zhang et al. [13] scheme and it was observed that our scheme
improves deployment cost by reducing the number of smart
contracts to be deployed. In an IoT infrastructure with n
subjects, n objects our schemes requires only n smart contracts
to be deployed compared to n2 contracts using Zhang et al.’s
scheme. Also we were able to launch DoS attack against
Zhang et al.’s scheme by repeatedly calling misbehaviour-
Judge() contract function externally with victims address as
a subject, as a result it receives huge penalty without actually
doing any misbehaviour on object resources. Furthermore we
extended Zhang et al. scheme by eliminating the possibility
of DoS attack by making implicit call to judge smart contract
function. For throughput suppose there are 10000 IoT devices
and each device has one transactions for every 10 minutes, the
TPS (transactions per second) is at least 166, which is well
within the range of throughput of IBFT consensus protocol.
Zhang et al.’s scheme is based on PoW Ethereum, so maximum

Fig. 8: Comparison on Cost in terms of Gas used for Smart
Contract Deployment

achievable throughput in their case is 15tps.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a proof-of-concept architecture
that adopts proof-of-authority (istanbul practical byzantine
fault tolerant) Ethereum Blockchain technology to implement
reputation driven dynamic access control (Rep-ACM) frame-
work for IoT applications, where access policies are enforced
through smart contracts stored on Blockchain. Proposed frame-
work contains Rep-ACM smart contract, deployed by objects
to control access to their resources and a Registry contract
deployed by gateways to manage Rep-ACM smart contract

11

instances deployed by the objects connected to it. We imple-
mented Rep-ACM framework and conducted experiments in
order to validate the consistency of smart contract execution
and to test the feasibility of the framework for access control in
IoT. Experiments showed that the cost for proposed framework
to integrate PoA (IBFT) Blockchain and smart contracts are
within reasonable range while gaining various intrinsic benefits
from permissioned Blockchain and smart contracts. As part of
the future work, we aim to develop end-to-end decentralized
application (DApp) that provides easy to use interface for
interacting with Rep-ACM framework ABIs. As an extension
to the work, it would be interesting to design functionality
that allows objects to share reputation of those subjects who
have accessed their resources, with other objects in the IoT
environment. Sharing of subject reputations will help other
objects in designing access policies dynamically. In future
we also aim at making validator selection dynamic, based on
reputation in the network.

REFERENCES

[1] K. Ashton et al., “That ‘internet of things’ thing,” RFID journal, vol. 22,
no. 7, pp. 97–114, 2009.

[2] O. Novo, “Blockchain meets iot: An architecture for scalable access
management in iot,” IEEE Internet of Things Journal, vol. 5, no. 2, pp.
1184–1195, 2018.

[3] A. Ouaddah, A. Abou Elkalam, and A. Ait Ouahman, “Fairaccess: a new
blockchain-based access control framework for the internet of things,”
Security and Communication Networks, vol. 9, no. 18, pp. 5943–5964,
2016.

[4] T. Le and M. W. Mutka, “Capchain: A privacy preserving access control
framework based on blockchain for pervasive environments,” in 2018
IEEE International Conference on Smart Computing (SMARTCOMP).
IEEE, 2018, pp. 57–64.

[5] S. Alansari, F. Paci, and V. Sassone, “A distributed access control system
for cloud federations,” in 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS). IEEE, 2017, pp. 2131–2136.

[6] D. D. F. Maesa, P. Mori, and L. Ricci, “Blockchain based access
control,” in IFIP international conference on distributed applications
and interoperable systems. Springer, 2017, pp. 206–220.

[7] A. Outchakoucht, E. Hamza, and J. P. Leroy, “Dynamic access control
policy based on blockchain and machine learning for the internet of
things,” Int. J. Adv. Comput. Sci. Appl, vol. 8, no. 7, pp. 417–424, 2017.

[8] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, “Blockchain for
iot security and privacy: The case study of a smart home,” in 2017 IEEE
international conference on pervasive computing and communications
workshops (PerCom workshops). IEEE, 2017, pp. 618–623.

[9] M. S. Ali, K. Dolui, and F. Antonelli, “Iot data privacy via blockchains
and ipfs,” in Proceedings of the Seventh International Conference on
the Internet of Things. ACM, 2017, p. 14.

[10] A. Z. Ourad, B. Belgacem, and K. Salah, “Using blockchain for
iot access control and authentication management,” in International
Conference on Internet of Things. Springer, 2018, pp. 150–164.

[11] H. Shafagh, L. Burkhalter, A. Hithnawi, and S. Duquennoy, “Towards
blockchain-based auditable storage and sharing of iot data,” in Proceed-
ings of the 2017 on Cloud Computing Security Workshop. ACM, 2017,
pp. 45–50.

[12] M. Steichen, B. Fiz, R. Norvill, W. Shbair, and R. State, “Blockchain-
based, decentralized access control for ipfs,” in 2018 IEEE International
Conference on Internet of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData). IEEE, 2018,
pp. 1499–1506.

[13] Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, and J. Wan, “Smart contract-
based access control for the internet of things,” IEEE Internet of Things
Journal, vol. 6, no. 2, pp. 1594–1605, 2018.

[14] J. P. Cruz, Y. Kaji, and N. Yanai, “Rbac-sc: Role-based access control
using smart contract,” IEEE Access, vol. 6, pp. 12 240–12 251, 2018.

[15] C. Dukkipati, Y. Zhang, and L. C. Cheng, “Decentralized, blockchain
based access control framework for the heterogeneous internet of things,”
in Proceedings of the Third ACM Workshop on Attribute-Based Access
Control, 2018, pp. 61–69.

[16] S. Sun, S. Chen, R. Du, W. Li, and D. Qi, “Blockchain based fine-grained
and scalable access control for iot security and privacy,” in 2019 IEEE
Fourth International Conference on Data Science in Cyberspace (DSC).
IEEE, 2019, pp. 598–603.

[17] Q. Xia, E. B. Sifah, K. O.-B. O. Agyekum, H. Xia, K. N. Acheampong,
A. Smahi, J. Gao, X. Du, and M. Guizani, “Secured fine-grained
selective access to outsourced cloud data in iot environments,” IEEE
Internet of Things Journal, vol. 6, no. 6, pp. 10 749–10 762, 2019.

[18] G. Ali, N. Ahmad, Y. Cao, Q. E. Ali, F. Azim, and H. Cruickshank,
“Bcon: Blockchain based access control across multiple conflict of
interest domains,” Journal of Network and Computer Applications, vol.
147, p. 102440, 2019.

[19] G. Ali, N. Ahmad, Y. Cao, M. Asif, H. Cruickshank, and Q. E. Ali,
“Blockchain based permission delegation and access control in internet
of things (baci),” Computers & Security, vol. 86, pp. 318–334, 2019.

[20] H. Albreiki, L. Alqassem, K. Salah, M. Rehman, and D. Svetinovic,
“Decentralized access control for iot data using blockchain and trusted
oracles,” 2019.

[21] Y. Zhang, B. Li, B. Liu, J. Wu, Y. Wang, and X. Yang, “An attribute-
based collaborative access control scheme using blockchain for iot
devices,” Electronics, vol. 9, no. 2, p. 285, 2020.

[22] U. Khalid, M. Asim, T. Baker, P. C. Hung, M. A. Tariq, and L. Rafferty,
“A decentralized lightweight blockchain-based authentication mecha-
nism for iot systems,” Cluster Computing, pp. 1–21, 2020.

[23] “Geth client for running a full ethereum node,” accessed: 05-12-2019.
[Online]. Available: https://github.com/ethereum/go-ethereum/wiki/geth

[24] “Solidity a high-level language for implementing smart
contracts,” accessed: 01-08-2019. [Online]. Available:
https://solidity.readthedocs.io/en/develop/

[25] “istanbul-tools utility for configuring istanbul bft
(ibft) network,” accessed: 01-08-2019. [Online]. Available:
https://github.com/getamis/istanbul-tools

[26] “Remix ide for ethereum smart contract programming,” accessed:
05-12-2019. [Online]. Available: https://remix.ethereum.org/

[27] “Web3 javascript api to interact with ethereum nodes,” accessed:
04-12-2019. [Online]. Available: https://github.com/ethereum/web3.js/

