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Abstract. A cryptographic primitive, called encryption switching pro-
tocol (ESP), has been proposed recently. This two-party protocol enables
interactively converting values encrypted under one scheme into another
scheme without revealing the plaintexts. Given two additively and mul-
tiplicatively homomorphic encryption schemes, parties can now encrypt
their data and convert underlying encryption schemes to perform dif-
ferent operations simultaneously. Due to its efficiency, ESP becomes an
alternative to fully homomorphic encryption schemes in some privacy-
preserving applications.
In this paper, we propose an improvement in ESP. In particular, we con-
sider the multi-exponentiation with encrypted bases argument (MEB)
protocol. This protocol is not only the essential component and effi-
ciency bottleneck of ESP, but also has tremendous potential in many
applications. For example, it can be used to speed up many intricate
cryptographic protocols, such as proof of knowledge of a double loga-
rithm. According to our theoretical analysis and experiments, our pro-
posed MEB protocol has lower communication and computation cost.
More precisely, it reduces the communication cost by roughly 29% com-
pared to the original protocol. The computation cost of the verifier is
reduced by 19% − 42%, depending on the settings of experimental pa-
rameters. This improvement is particularly useful for verifiers with weak
computing power in some applications. We also provide a formal security
proof to confirm the security of the improved MEB protocol.

Keywords: Encryption switching protocols · Paillier encryption · Twin-
ciphertext proof · Zero-knowledge.

1 Background

Nowadays, data has been widely regarded as a kind of valuable resource. Many
solutions have been proposed to preserve the privacy of data during its usage,



2 Y. Liu et al.

such as secure multi-party computation (MPC) [9, 17, 18] and fully homomorphic
encryption (FHE) [8]. However, efficiency is still a problem in most cases.

In 2016, Couteau, Peters, and Pointcheval [6] proposed a cryptographic prim-
itive named encryption switching protocol (ESP) (for its extension, see [4]), and
it was shown that ESP has great potential to achieve many privacy-preserving
goals efficiently. In ESP, two parties secretly share the private keys of an ad-
ditively homomorphic encryption scheme and a multiplicatively homomorphic
encryption scheme, such that the two parties can individually encrypt messages,
but should cooperate to perform threshold decryption in order to decrypt a
ciphertext. Two parties can also work interactively to switch one underlying en-
cryption scheme of a ciphertext to the other without revealing the plaintext. In
summary, ESP allows both parties to perform both additions and multiplica-
tions on encrypted values to evaluate pre-deterministic circuits securely. It was
shown that ESP could be instantiated for generic two-party computation (2PC)
protocol [6], and thus ESP is powerful to cover many MPC tasks (see examples
in [5]).

To ensure that the encryption switching procedure of ESP is executed cor-
rectly in the presence of malicious parties, the authors of [6] introduced a new
cryptographic primitive, called twin-ciphertext proof (TCP). We call a cipher-
text pair (C+, C×) twin-ciphertext if the encrypted (or committed) value of the
additively homomorphic encryption ciphertext (or commitment) C+ is equal to
the value encrypted in the ciphertext C× of multiplicatively homomorphic en-
cryption. In TCP protocol, the prover can efficiently prove that a given pair
(C1, C2) is a twin-ciphertext pair without revealing the encrypted value and
corresponding random coins. The main idea of TCP is to generate a random
twin-ciphertext pair first, and then show the colinear relation between this ran-
dom twin-ciphertext pair and the pair (C1, C2) to complete the proof. During
this approach, the generated random twin-ciphertext pair is consumed. There-
fore, to speed up ESP processes, the prover can generate a pool of random
twin-ciphertext pairs before executions of ESP and consume them one by one
during the ESP executions. We note that this approach is similar to the Beaver
triples technique [2].

Although a costly cut-and-choose procedure is involved in the generation of
random twin-ciphertext pairs, the authors of [6] mentioned that it is possible to
batch the executions of TCP. More precisely, by consuming one random twin-
ciphertext pair, we are able to prove that some given pairs are all twin-ciphertext
pairs simultaneously. This technique can be used to batch the generation of ran-
dom twin-ciphertext pairs or conduct TCP for many pairs simultaneously. A
protocol called multi-exponentiation with encrypted bases argument (MEB) is
thereby proposed and acts as the underlying basis to batch the executions of
TCP. The MEB protocol is designed for additively homomorphic encryption (or
commitment) schemes. Informally, given parameters (λ)i=1,...,` and additively
homomorphic encryption ciphertexts ((ci)i=1,...,`, C), the MEB protocol allows a
prover to prove the knowledge of encrypted values ((mi)i=1,...,`,M) and random
coins of ((ci)i=1,...,`, C), respectively, and the fact that the encrypted value M
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of C satisfies M =
∏`
i=1m

λi
i , in a zero-knowledge manner. The basic idea of

batching TCP executions is to batch the two ciphertexts of all pairs separately
in a multi-exponentiation form and execute a TCP for the pair of batched cipher-
texts. The MEB protocol is indeed the bottleneck of efficiency for the execution
of batch TCP.

TCP, as the direct application of the MEB protocol, is not only the underlying
protocol of ESP but also of independent interest. Many commonly used MPC
protocols that are expensive in traditional scenarios become very cheap when
TCP is involved [6], e.g., proof of knowledge of exponential relation of committed
values (for both plain/committed exponent), proof of knowledge of a double
logarithm, proof of committed prime, etc. Hence, improvements of the MEB
protocol can further enhance the performance of these protocols.

Moreover, MEB can individually play as the underlying protocol of some
applications that are typical in commercial and medical areas. For instance, users
may wish to evaluate a public function f on an encrypted dataset (di)i=1,...,m

provided by a data holder, where f is of the form f =
∏
j(
∑
i aidi)

λj with public
constant parameters {a1, a2, . . .} and {λ1, λ2, . . .}. The MEB protocol can thus
be used for the data holder to prove the correctness of the encrypted evaluation
results without revealing other information of the dataset. Compared with FHE-
based solutions, this approach provides a relatively smaller encrypted dataset
and is much more efficient for functions with higher depths of multiplication.

In this paper, we provide an improved MEB protocol, in the sense that our
protocol is more efficient for both the prover and the verifier, and has lower
communication cost than the original MEB protocol in [6]. The same as the
original protocol, our MEB protocol is also a public-coin special honest-verifier
zero-knowledge (SHVZK) argument of knowledge (see more information in Sec-
tion 2). In general, the argument size of our protocol is roughly 29% smaller than
that of the original protocol. Meanwhile, our protocol reduces the computation
cost of the verifier by 19% − 42% depending on different experimental param-
eters. The basic idea of our protocol is that we further decompose statements
into several conditions and batch them into one proof of a specific relationship
to obtain a compact and more efficient protocol (see more details in Section 3
and Section 4.1).

We summarize the main contributions of this paper in the following.

1. We provide an improvement of the MEB protocol in both argument size and
efficiency. To be comparable with the original MEB protocol of [6], we present
the construction of our MEB protocol based on Paillier encryption [14]. We
remark that MEB protocol for other additively homomorphic schemes, such
as Pedersen commitment scheme [15], can be constructed in a similar ap-
proach.

2. We provide proof-of-concept implementations for both our MEB protocol and
the original MEB protocol. We compare the two protocols from the perspec-
tives of theoretical analysis and experiments to verify the improvement of
our MEB protocol.
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The rest of this paper is organized as follows. In Section 2, we introduce
some necessary background knowledge. We provide the description of our MEB
protocol and the corresponding subprotocols in Section 3 and Section 4, respec-
tively. Comparisons between our protocol and the original protocol are presented
in Section 5 from both theoretical and experimental aspects. We conclude this
paper with future work in Section 6.

2 Preliminaries

In this paper, we mainly focus on constructing a public-coin SHVZK argument of
knowledge and prove its security under standard security definitions (see [12, 13]
for more information). Note that such a protocol can be compiled to be secure
against malicious verifiers with low overhead by many techniques, such as using
an equivocal commitment scheme [3] and adopting the Fiat–Shamir heuristic [7].

2.1 Notation

We write x←$S for uniformly sampling x from a set S. We use bold let-
ters to represent vectors, e.g., m = (m1, . . . ,m`) is a vector with ` entries.
The notation ab denotes the entry-wise product of two vectors a and b, i.e.,
ab = (a1b1, . . . , a`b`), and the notation ra denotes scalar multiplications, i.e.,
ra = (ra1, . . . , ra`). The notation ||n|| is used to represent the length of the
bit-representation of a given variable n, and the notation |S| denotes the size of
a given set S.

We say a function f in variable µ mapping natural numbers to [0, 1] is negligi-
ble if f(µ) = O(µ−c ) for every constant c > 0. We say that 1−f is overwhelming
if f is negligible. In our protocols, we will give a security parameter µ written
in unary as input to all parties.

In the following descriptions of protocols, P denotes the prover, and V denotes
the verifier.

2.2 Paillier Encryption

Paillier encryption scheme is a public-key additively homomorphic encryption
scheme that is semantically secure [10] under the Decisional Composite Residu-
osity assumption. The public key of Paillier encryption scheme is a strong RSA
modulus n = pq, where p and q are safe primes with the same length. We denote
the Paillier encryption algorithm as Enc, and thus encrypting a value m with
random coin ρ is represented as Enc(m; ρ) = (1 + n)mρn mod n2. It is easily
verified that Paillier encryption scheme is additively homomorphic, such that
Enc(m1; ρ1)Enc(m2; ρ2) = Enc(m1 +m2; ρ1ρ2) and Enc(m; ρ)x = Enc(xm; ρx).

2.3 Pedersen Commitment

Pedersen commitment scheme is used as a component of our protocol. Given a
strong RSA modulus n, we can expect that there is a reasonably small value
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k = O (log(n)), such that kn + 1 is a prime, and thus find a group G of order
n. Let the commitment key to be ck = (g0, g1, . . . , g`, h), where g0, . . . , g`, h
are all generators of G. We denote the Pedersen commitment algorithms for
single values as Comi for i = 0, . . . , `. Committing a value m with random coin
r by Comi is via computing Comi(m; r) = gmi h

r. We further denote as Com
the general Pedersen commitment for vectors, and committing a vector m with
random coin r is to compute Com(m; r) = (

∏`
i=1 g

mi
i )hr. Note that vectors with

less than ` entries can be committed by setting the remaining entries to 0. In
our description here and below, equations of the Pedersen commitment (for both
message space and commitment space) implicitly involve modulo operations.

Pedersen commitment is computationally binding under the discrete loga-
rithm assumption, such that a non-uniform probabilistic polynomial-time (PPT)
adversary cannot find two openings of the same commitment except a negligi-
ble probability. The commitment scheme is perfectly hiding, because no mat-
ter what value/vector is committed, the commitment is uniformly distributed
in G. Clearly, Pedersen commitment scheme is additively homomorphic, such
that Com(m1; r1)Com(m2; r2) = Com(m1 + m2; r1 + r2) and Com(m; r)x =
Com(xm;xr).

2.4 The Generalized Schwartz–Zippel Lemma

We will use the following generalized Schwartz–Zippel lemma in this paper.

Lemma 1 (Generalized Schwartz–Zippel). Let p be a non-zero multi-variate
polynomial of total degree d ≥ 0 over a ring R. Let S ⊆ R be a finite set with
|S| ≥ d, such that ∀a 6= b ∈ S, a−b ∈ R is not a zero divisor. Then the probability
of p(x1, . . . , x`) = 0 for randomly chosen x1, . . . , x`←$ S is at most d

|S| .

3 Multi-exponentiation with Encrypted Bases Argument

In this section, we give the formal description of MEB protocol, propose the main
body of our improved MEB protocol, and prove that our protocol is secure.

Description

– Common Reference String: Pedersen commitment key ck = (g0, g1, . . . , g`, h, n).
– Word: λ = (λ1, . . . , λ`) ∈ ({0, 1}κ)`, ` + 1 Paillier ciphertexts A and a =

(a1, . . . , a`). The public key of the Paillier encryption scheme is n, and we
denote µ = ||n||. Note that ` = O (µc ) and κ = O (µc ) for a large enough
constant c.

– Statement: There are some (mi, ρi)i=1,...,` and ρ such that ai = Enc(mi; ρi)

for all i = 1, . . . , ` and A = Enc(
∏`
i=1m

λi
i ; ρ).

– Witness: ρ, (mi, ρi)i=1,...,`.

The main idea of this protocol is as follows. First, the prover P provides a list
of Pedersen commitments to the verifier V and proves that she knows the open-
ings of commitments, such that each committed value is equal to each encrypted
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value of (ai)i=1,...,` and A in batches. This approach bridges Paillier encryption
and Pedersen commitment schemes. Thus proving the multi-exponentiation rela-
tion of these committed values will accordingly impliy the multi-exponentiation
relation of encrypted values.

To prove the multi-exponentiation relation of committed values, both parties
first can individually write every λi as the bit-representation λi = λiκ · · ·λi1, and

compute the commitment to the vector aj = (m
λ1j

1 , . . . ,m
λ`j
` ) for j = 1, . . . , κ.

P then provides V with commitments to vectors

bj = (m
∑κ
φ=j 2

φ−jλ1φ

1 , . . . ,m
∑κ
φ=j 2

φ−jλ`φ
` )

and

cj = (m
∑κ
φ=j 2

φ−j+1λ1φ

1 , . . . ,m
∑κ
φ=j 2

φ−j+1λ`φ
` ) .

P proves in zero-knowledge that the committed vectors of these given commit-
ments satisfy all equations bj = ajcj+1 and cj = bjbj in batches. This implicitly

indicates that the committed b1 is of the form b1 = (mλ1
1 , . . . ,mλ`

` ). Finally, P
proves to V in zero-knowledge that the product of all entries of the committed
b1 is equal to the encrypted value of the Paillier ciphertext A using the corre-
sponding commitment that has been provided in the first step. Following these
steps, the statement is proved. The detailed procedure of the protocol is in the
following.

Procedure

1. P picks (r1, . . . , r`, rM )←$Z`+1
n , computes commitments ci ← Comi(mi; ri)

for i = 1, . . . , ` and C ← Com0(
∏`
i=1m

λi
i ; rM ). Then P sends (ci)i=1,...,` and

C to V. V will continue to interact with P if all ci ∈ G and C ∈ G. Otherwise,
V outputs reject.
Then P proves for each i her knowledge of (mi, ri, ρi) and the knowledge

of (M =
∏`
i=1m

λi
i , rM , ρ), such that ci = Comi(mi; ri), ai = Enc(mi; ρi),

C = Com0(M ; rM ), and A = Enc(M ; ρ), using the batch equality proof
introduced in Section 4.1. In other words, P proves to V that each committed
values of ((ci)i=1,...,`, C) is equal to each encrypted values of ((ai)i=1,...,`, A).

2. Let (λij)j=1,...,κ be the bit decomposition of λi, i.e., λi = λiκ · · ·λi1. Both
parties locally compute general Pedersen commitments

caj ← Com((m
λij
i )i=1,...,`;

∑̀
i=1

λijri)

for j ∈ {1, . . . , κ} from commitments (ci)i=1,...,` via caj =
∏
i,λij=1 ci

∏
i,λij=0

gi,
and set cbκ ← caκ . We denote the committed vectors of caj as aj =

(m
λ1j

1 , . . . ,m
λ`j
` ).

P computes for j ∈ {1, . . . , κ− 1}

cbj ← Com((m
∑κ
φ=j 2

φ−jλiφ
i )i=1,...,`; rbj )
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and for j ∈ {2, . . . , κ}

ccj ← Com((m
∑κ
φ=j 2

φ−j+1λiφ
i )i=1,...,`; rcj ) .

where all rbj and rcj are uniformly sampled from Zn. We denote the com-

mitted vectors of cbj as bj = (m
∑κ
φ=j 2

φ−jλ1φ

1 , . . . ,m
∑κ
φ=j 2

φ−jλ`φ
` ), and of ccj

as cj = (m
∑κ
φ=j 2

φ−j+1λ1φ

1 , . . . ,m
∑κ
φ=j 2

φ−j+1λ`φ
` ), respectively.

Note that for j ∈ {1, . . . , κ− 1},

bj = ajcj+1 ,

and for j ∈ {2, . . . , κ},
cj = bjbj .

P sends (cbj )j=1,...,κ−1 and (ccj )j=2,...,κ to V.

3. If all cbj ∈ G and ccj ∈ G, V sends random challenges x, y←$ (Z∗n)2 to P.
Otherwise, V outputs reject.

4. Both parties locally compute ca′
j
← cx

j

aj for j ∈ {1, . . . , κ−1}, cb′
j
← cx

κ+j−2

bj

for j ∈ {2, . . . , κ}, cd ←
∏κ−1
j=1 c

xj

bj

∏κ
j=2 c

xκ+j−2

cj , and c−1 ← Com(−1; 0).
Meanwhile, P computes the committed vectors and random coins of ca′

j

via a′j ← xjaj and ra′j ← xj
∑`
i=1 λijri, of cb′

j
via b′j ← xκ+j−2bj and

rb′
j
← xκ+j−2rbj , and of cd via d ←

∑κ−1
j=1 x

jbj +
∑κ
j=2 x

κ+j−2cj and

rd ←
∑κ−1
j=1 x

jrbj +
∑κ
j=2 x

κ+j−2rcj .

Furthermore, let us define a bilinear operation ∗ for a given variable y as
a ∗ b =

∑
i aibiy

i.

Then P proves to V the knowledge of (a′j , ra′
j
)j=1,...,κ−1, (b′j , rb′

j
)j=2,...,κ,

(cj , rcj )j=2,...,κ, (bj , rbj )j=2,...,κ, d, rd such that

ca′
j

= Com(a′j ; ra′
j
) , cb′

j
= Com(b′j ; rb′

j
) , ccj = Com(cj ; rcj ) ,

cbj = Com(bj ; rbj ) , cd = Com(d; rd) ,

κ−1∑
j=1

a′j∗cj+1+

κ∑
j=2

b′j∗bj−1∗d = 0 .

using the zero argument introduced in Section 4.2.
5. If the zero argument is rejected, V outputs reject. Otherwise, P proves to V

the knowledge of b1, rb1 , M =
∏`
i=1m

λi
i and rM , such that

cb1 = Com(b1; rb1) , C = Com0(M, rM ) ,
∏̀
i=1

b1i = M

using the committed single value product (CSVP) argument introduced in
Section 4.3.
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Theorem 1. The MEB protocol above is a public-coin SHVZK argument of
knowledge.

Proof. The completeness of the protocol first follows from the completeness of
the underlying batch equality proof. Then according to the homomorphic prop-
erty of Pedersen commitment scheme, we can verify that

ca′
j

= cx
j

aj = Com((xjm
λij
i )i=1,...,`;x

j(
∑̀
i=1

λijri)) = Com(a′j ; ra′
j
) ,

cb′
j

= cx
κ+j−2

bj = Com(xκ+j−2bj ;xκ+j−2rbj ) = Com(b′j ; rb′
j
) ,

and

cd =

κ−1∏
j=1

cx
j

bj

κ∏
j=2

cx
κ+j−2

cj

= Com(

κ−1∑
j=1

xjbj +

κ∑
j=2

xκ+j−2cj ;

κ−1∑
j=1

xjrbj +

κ∑
j=2

xκ+j−2rcj )

= Com(d; rd) .

It is easy to verify that bj = ajcj+1 for j ∈ {1, . . . , κ − 1}, and cj = bjbj for
j ∈ {2, . . . , κ}. Thus, we have

κ−1∑
j=1

a′jcj+1 +

κ∑
j=2

b′jbj − d

=

κ−1∑
j=1

xjajcj+1 +

κ∑
j=2

xκ+j−2bjbj −
κ−1∑
j=1

xjbj −
κ∑
j=2

xκ+j−2cj

=

κ−1∑
j=1

xj(ajcj+1 − bj) +

κ∑
j=2

xκ+j−2(bjbj − cj) = 0

Furthermore, given the random y, if ab = c, the equation a ∗ b = 1 ∗ c holds.
This shows that

κ−1∑
j=1

a′j ∗ cj+1 +

κ∑
j=2

b′j ∗ bj − 1 ∗ d = 0 .

Finally, since b1i = mλi
i , the equation

∏`
i=1 b1i = M is always satisfied.

For SHVZK, the simulator S first picks (r1, . . . , r`, rM )←$Z`+1
n , computes

commitments ci ← Comi(0; ri) for i = 1, . . . , ` and C ← Com(0; rM ). Since
Pedersen commitment is prefect hiding, the commitments (ci)i=1,...,` and C have
the same distribution as that of the real execution. Then S runs the SHVZK
simulator for the batch equality proof.

Given the challenge x and y, the simulator S picks rbj ←$Zn for j = 1, . . . , κ−
1, and rcj ← Zn for j = 2, . . . , κ, computes commitments cbj = Com(0; rbj )
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and ccj = Com(0; rcj ), and computes caj , ca′
j
, cb′

j
, cd, and c−1 as in the real

execution. Due to the prefect hiding property of Pedersen commitment scheme,
these commitments are perfectly indistinguishable from the real execution. The
simulator S then runs the SHVZK simulators for both the zero argument and
the CSVP argument.

Because the distributions of commitments are perfectly indistinguishable
from the real execution and the underlying protocols are SHVZK, the simulated
transcripts generated by S are indistinguishable from those of real executions.

Here we show that the protocol is witness-extended emulation. The emu-
lator will run the protocol with a random challenge, and output the resulting
transcript. If the argument is rejected, the emulator is done. If the argument is
accepted, the emulator will try to extract a witness. The emulator uses witness-
extended emulator of the batch equality proof to extract the encrypted values
and random coins of Paillier ciphertexts (ai)i=1,...,` and A, and the opening of
(ci)i=1,...,` and C that open to the these encrypted values.

Since x and y are randomly choosen, Lemma 1 guarantees that the equation∑κ−1
j=1 a

′
j ∗ cj+1 +

∑κ
j=2 b

′
j ∗ bj − 1 ∗ d = 0 holds if bj = ajcj+1 and cj = bjbj ,

while holds with a negligible probability if there exists one equation that does
not hold.

Hence, if the encrypted values of (ai)i=1,...,` and A do not satisfy the state-
ment of MEB, the verifier will output reject with an overwhelming probability
based on Lemma 1 and the the soundness of the underlying zero argument and
CSVP argument. Therefore, the extracted witnesses satisfy the statement with
an overwhelming probability, and the soundness of the protocol follows. ut

We note that the round complexity of the protocol can be reduced to five
rounds. More precisely, the messages sent by the prover in Step 1 and Step 2
could be sent in the same round. Meanwhile, the 3-round batch equality proof
and CSVP argument can be executed in parallel from Step 1. In the third round,
the batch equality proof and CSVP argument end with the prover answering the
challenge messages while the 3-round zero argument protocol starts. Hence the
protocol ends in the fifth round, and we obtain a 5-round protocol (see Fig. 1).

(ci)i=1,...,`, C,
(cbj )j=1,...,κ−1, (ccj )j=2,...,κ Batch Equality

Proof
CSVP

Argument
x, y

Zero
Argument

VP

Fig. 1. The procedure of our MEB protocol

4 Subprotocols

In this section, we present the subprotocols mentioned in Section 3.
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4.1 Batch Equality Proof

Informally, the batch equality proof is for a prover to prove that he knows the
encrypted values of a set of Paillier ciphertexts and the openings of a set of Ped-
ersen commitments that can be opened to these encrypted values. We illustrate
the batch equality proof in the following.

Description

– Common Reference String: Pedersen commitment key ck = (g0, g1, . . . , g`, h, n).
– Word: ` Pedersen commitments c, and ` Paillier ciphertexts a, where ` =
O(µc ) for a large enough constant c. The public key of the Paillier encryption
scheme is n, and we denote µ = ||n||.

– Statement: There exist some (mi)i=1,...,`, (ri)i=1,...,`, and (ρi)i=1,...,`, such
that ci = Comi(mi; ri) and ai = Enc(mi; ρi) for i = 1, . . . , `.

– Witness: (mi)i=1,...,`, (ri)i=1,...,`, and (ρi)i=1,...,`.

Procedure

1. P picks u←$ (Zn)`, v←$ (Zn)`, w←$ (Z∗n)`, computes xi ← Comi(ui, vi)
and yi ← Enc(ui;wi) for i = 1, . . . , `, and sends x, y to V.

2. If all xi ∈ G and yi ∈ Z∗n2 , V picks (d, e)←$ (Z∗n)2, and sends them to P.
Otherwise, V outputs reject.

3. P computes s ←
∑`
i=1(vi + rie)d

i mod n, ti ← wiρ
e
i mod n, zi = ui +

mie mod n for i = 1, . . . , `, and sends s, t, z to V.
4. V checks whether both Com(z1d, . . . , z`d

`; s) =
∏`
i=1(xic

e
i )
di , (1 + n)zitni ≡

yia
e
i mod n2 for i = 1, . . . , ` hold and t is relatively prime to n. If all condi-

tions hold, V outputs accept. Otherwise V outputs reject.

Theorem 2. The batch equality proof above is a public-coin SHVZK proof of
knowledge.

Proof. The completeness of the protocol can be verified as follows.

Com(z1d, . . . , z`d
`; s) =

(∏̀
i=1

gzid
i

i

)
hs =

(∏̀
i=1

g
(ui+mie)d

i

i

)
h
∑`
j=1(vj+rje)d

j

=
∏̀
i=1

(guid
i

i hvid
i

gmied
i

i hried
i

) =
∏̀
i=1

(xic
e
i )
di

(1 + n)zitni ≡ (1 + n)(ui+mie)(wiρ
e
i )
n

≡ ((1 + n)uiwni ) ((1 + n)miρni )
e

≡ yiaei mod n2

For SHVZK, given e and d, the simulator S picks si←$Zn, ti←$Z∗n, and

zi←$Zn for i = 1, . . . , `, and computes s←
∑`
i=1 sid

i mod n. S then computes
xi ← gzii h

sic−ei , yi ← (1 + n)zitni a
−e
i mod n2 for i = 1, . . . , `. It is easy to check
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that the simulated transcript (x,y, e, d, s, t, z) is perfectly indistinguishable from
the transcript of a real execution.

To prove that the protocol has witness-extended emulation, the emulator
runs the protocol with P∗. If the transcript is accepted, it has to extract a
witness. We let the emulator rewind the challenge phase to obtain ` pairs of
accepted transcripts with the same x, y. Meanwhile, each pair has different
random (d(j))j=1,...,`, and both transcripts in each pair are respectively with
different random e and e′. We denote these pairs of accepted transcripts with
index j = 1, . . . , ` as follows.

(x,y, e, d(j), s(j), t(j), z(j)) (x,y, e′, d(j), s
′
(j), t

′
(j), z

′
(j))

Note that the witness-extended emulator will make on average 2` arguments,
and hence it runs in expected polynomial time.

For each pair of transcripts, we have for i = 1, . . . , ` the equations

(1 + n)z(j)itn(j)i ≡ yia
e
i mod n2

and
(1 + n)z

′
(j)it′n(j)i ≡ yia

e′

i mod n2 .

Then there should be some m′, u′, such that

z(j)i = u′i +m′ie

and
z′(j)i = u′i +m′ie

′ .

The emulator can compute (e.g., via Gaussian Elimination) m′ and u′, which
are encrypted values of (ai)i=1,...,` and (xi)i=1,...,`. Due to the fact that Paillier
encryption scheme is perfectly binding, the emulator can extract the same m′

and u′ from every pair of transcripts (and every pair of (z(j), z
′
(j)) are identical).

Let αi ← ai(1 + n)−m
′
i mod n2. Following the result above, there should be

some w′ and ρ′, such that for i = 1, . . . , `,

αi = ρ′ni mod n2

and for j = 1, . . . , `,

tn(j)i ≡ w
′
iρ
′e
i mod n2 , t′n(j)i ≡ w

′
iρ
′e′
i mod n2 .

The above first equation indexed by j divided by the second one is equal to

(t(j)it
′−1
(j)i)

n ≡ ρ′e−e
′

i mod n2 .

Since e − e′ is relatively prime to n except a negligible probability, we can find
β, γ, such that nβ + (e− e′)γ = 1. Hence, ρ′ can be extracted via

ρ′i = αβi

(
(t(j)it

′−1
(j)i)

n
)γ

mod n2 ,
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since we have

αβi

(
(t(j)it

′−1
(j)i)

n
)γ
≡ ρ′nβi ρ

′(e−e′)γ
i ≡ ρ′nβ+(e−e′)γ

i ≡ ρ′i mod n2 .

Therefore, with an overwhelming probability, these (m′i, ρ
′
i) are the encrypted

values and random coins of the ciphertexts (ai)i=1,...,` .
Now the emulator continues to extract the openings of commitments (ci)i=1,...,`.

There should be some r′ and v′, such that for j = 1, . . . , `,

ci = g
m′i
i hr

′
i , xi = g

u′i
i h

v′i .

Given a pair of accepted transcripts, we have

Com(z(j)1d(j), . . . , z(j)`d
`
(j); s(j)) =

∏̀
i=1

(xic
e
i )
di(j) ,

Com(z′(j)1d(j), . . . , z
′
(j)`d

`
(j); s

′
(j)) =

∏̀
i=1

(xic
e′

i )d
i
(j) ,

where z(j) = m′e+ u′ and z′(j) = m′e′ + u′ according to the prefect binding of
Paillier encryption scheme. Thus, it is easy to derive the resulting equations

Com(0, . . . , 0; s(j)) =
∏̀
i=1

(xic
e
i )
dig
−z(j)1di(j)
i =

∏̀
i=1

(hv
′
ihr
′
ie)d

i
(j)

and

Com(0, . . . , 0; s′(j)) =
∏̀
i=1

(xic
e′

i )d
i

g
−z′(j)1d

i
(j)

i =
∏̀
i=1

(hv
′
ihr
′
ie
′
)d
i
(j) .

We can further derive

s(j) =
∑̀
i=1

(v′i + r′ie)d
i
(j) mod n , s′(j) =

∑̀
i=1

(v′i + r′ie
′)di(j) mod n .

Given ` pairs of accepted transcripts, we can easily recover v′, r′ (e.g., via
Gaussian Elimination) with an overwhelming probability. It is easy to verify
that these (m′i, r

′
i)i=1,...,` and (u′i, v

′
i)i=1,...,`, are the openings of the commitments

(ci)i=1,...,` and (xi)i=1,...,`, respectively.
Hence, the protocol has witness-extended emulation, and the soundness of

the protocol follows. ut

For the verification step (Step 4), the verifier can pick f ←$Z∗n, compute

Z ←
∑`
i=1 zif

i mod n, T =
∏`
i=1 t

fi

i mod n, and check whether (1 + n)ZTn ≡∏`
i=1(yia

e
i )
fi mod n2. If the equation holds, we have (1 + n)zitni ≡ yiaei mod n2

with an overwhelming probability according to Lemma 1. This could reduce the
computation cost of the verification.
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4.2 Zero Argument

For completeness, we restate the zero argument introduced in [1] as follows.

Description

– Common Reference String: Pedersen commitment key ck = (g0, g1, . . . , g`, h, n).
– Word: 2` Pedersen general commitments (cui)i=1,...,`, (cvi)i=1,...,`, a variable
y, a bilinear map ∗.

– Statement: There exist some (ui, rui)i=1,...,`, (vi, rvi)i=1,...,`, such that cui =

Com(ui, rui), cvi = Com(vi, rvi) for all i = 1, . . . , `, and
∑`
i=1 ui ∗ vi = 0.

– Witness: (ui, rui)i=1,...,`, (vi, rvi)i=1,...,`.

Procedure

1. P picks (u0,v`+1)←$ (Z`n)2, (ru0 , rv`)←$Z2
n, and computes

cu0 ← Com(u0; ra0) , cv`+1
← Com(v`+1; rv`+1

) .

Then P computes for φ = 0, . . . , 2`

dφ ←
∑

0≤i≤` ,1≤j≤`+1
j=`+1−φ+i

ui ∗ vj .

P picks (rd0 , . . . , rd2`)←$Z2`+1
n , sets rd`+1

= 0, and computes commitments
cdφ = Com0(dφ; rdφ) for φ = 0, . . . , 2`. After the computation, P sends cu0 ,
cv`+1

, and (cdφ)φ=0,...,2` to V.
2. V sends x←$Z∗n to P.
3. P computes

u←
∑̀
i=0

xiui ru ←
∑̀
i=0

xirui v ←
`+1∑
j=1

x`−j+1vj rv ←
`+1∑
j=1

x`+1−jrvj

t←
2∑̀
φ=0

xφrdφ

and sends u, ru, v, rv, t to V.
4. V outputs accept if cu0 ∈ G, cv`+1

∈ G, (cdφ)φ=0,...,2` ∈ G2`+1, cd`+1
=

Com0(0; 0), (u,v) ∈ (Z`n)2, (ru, rv, t) ∈ Z3
n, and

∏̀
i=0

cx
i

ui = Com(u; ru) ,

`+1∏
j=1

cx
`+1−j

vj = Com(v; rv) ,

2∏̀
φ=0

cx
φ

dφ
= Com0(u∗v; t) .

Otherwise, V outputs reject.

Theorem 3 ([1]). The zero argument protocol above is a public-coin SHVZK
argument of knowledge.
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4.3 Committed Single Value Product (CSVP) Argument

We restate the committed single value product (CSVP) argument in [11] as
follows.

Description

– Common Reference String: Pedersen commitment key ck = (g0, g1, . . . , g`, h, n).
– Word: A general Pedersen commitment c and a Pedersen commitment C

committed by Com0.
– Statement: There exits some (m, r) and (M, rM ), such that c = Com(m; r),

C = Com0(M ; rM ), and M =
∏`
i=1mi.

– Witness: (m, r) and (M, rM ).

Procedure

1. P computes
b1 ← m1 , b2 ← m1m2 , · · · b` ←M .

Then P picks (d1, . . . , d`, rd, u)←$ (Zn)`+2, sets δ1 ← d1, (δ2, . . . , δ`)←$Z`−1n ,
(rδ, r∆)←$Z2

n, computes

cd ← Com(d; rd) , cδ ← Com(−δ1d2, . . . ,−δ`−1d`; rδ) , a← Com0(δ`;u) ,

c∆ ← Com(δ2 −m2δ1 − b1d2, . . . , δ` −m`δ`− 1− b`−1d`; r∆) ,

and sends cd, cδ, a, and c∆ to V.
2. V sends the challenge x←$Z∗n to P.
3. P computes

m′1 ← xm1 + d1 · · · , m′` ← xm` + d` , r′ ← xr + rd ,

b′1 ← xb1 + δ1 · · · , b′` ← xb` + δ` , s′ ← xr∆ + rδ z ← xrM + u ,

and sends m′1, b
′
1, . . . ,m

′
`, b
′
`, r
′, s′, z to V.

4. V outputs accept if all cd, cδ, c∆ ∈ G, a′1, b
′
1, . . . , a

′
`, b
′
`, r
′, s′, z ∈ Zn and

cxcd = Com(m′; r′) , cx∆cδ = Com(xb′2 − b′1m′2, . . . , xb′` − b′`−1m′n; s′) ,

Cxa = Com0(b′`; z) , b′1 = m′1 .

Otherwise, V outputs reject.

Theorem 4 ([11]). The committed single value product (CSVP) argument pro-
tocol above is a public-coin SHVZK argument of knowledge.

5 Evaluation and Comparisons

In this section, we compare our MEB protocol with the original MEB protocol
introduced in [6] from both theoretical and experimental aspects. We first an-
alyze the argument size of both protocols and the number of communication
rounds required by the protocols. Then, we conduct experiments to compare
their running times in different settings of parameters.
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5.1 Theoretical Comparison

We denote the length of the bit-representation of the RSA modulus n as µ. Thus,
elements in Zn and Z∗n can be represented by µ bits, and elements in Zn2 can
be represented by 2µ bits. We further denote the length of bit-representation
of elements in G as η, and we can expect that η = O (µ). The main MEB
protocol involves ` terms. Table 1 provides the comparison. The argument sizes
of subprotocols are calculated according to the parameter settings of the main
MEB protocol. For instance, according to Step 1 of the main protocol, the batch
equality proof involves `+1 terms when the main MEB protocol involves ` terms.

Table 1. Comparison of argument size and communication rounds

Sub-protocols (Our MEB) Argument size Rounds

Batch equality proof (4`+ 7)µ+ (`+ 1)η 3
Zero argument (2`+ 4)µ+ (4κ+ 1)η 3
CSVP argument (2`+ 4)µ+ 4η 3
Main MEB argument 2µ+ (`+ 2κ− 1)η 5

Overall Comparison:
Our MEB protocol (8`+ 17)µ+ (2`+ 6κ+ 5)η 5
Original MEB protocol [6] (12`+ 20)µ+ (2`+ 6κ+ 15)η 5

Table 1 presents the argument size and round complexity of all subprotocols
of our protocol together with the overall cost of both our protocol and the
original MEB protocol. Both MEB protocols are of 5 rounds, while the size of
ours is smaller than that of [6]. Since we can expect that η ≈ µ, the argument size
of our protocol is roughly 29% smaller than that of protocol in [6]. Hence, our
protocol has a lower communication cost compared with the original protocol.

5.2 Experimental Results

We provide proof-of-concept implementations for both our protocol and the orig-
inal protocol. The implementations are in C++ using the NTL library [16] for
the underlying modular arithmetic. Experiments are carried out on MacBook
Air (2018) of macOS 10.15.5 with 1.6 GHz dual-core Intel Core i5, 8GB of RAM
using a single thread. We compare the running times of both protocols using
different settings of parameters. Note that the communication cost is given in
Section 5.1, and we here only measure the running times without the communi-
cation time. The results are shown in Table 2.

From Table 2, we can see that our protocol is more efficient for both prover
and verifier compared with the original protocol. Our protocol reduces the com-
putation cost of the verifier by 19%− 42% depending on different experimental
parameters. Especially when µ = 2048, ` = 128 and t = 8, the execution time
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Table 2. Running time comparison of our MEB protocol and MEB protocol in [6]

µ ` t
Original MEB protocol [6] Our MEB protocol

Prover Verifier Total time Prover Verifier Total time

1024 128 8 1.749s 0.776s 2.525s 1.583s 0.480s 2.063s
1024 256 16 6.272s 1.787s 8.059s 6.112s 1.453s 7.565s
2048 128 8 11.275s 4.884s 16.159s 10.273s 2.851s 13.124s
2048 256 16 38.102s 11.250s 49.352s 36.410s 8.647s 45.057s
2048 512 8 44.506s 19.507s 64.013s 41.636s 15.824s 57.460s

of the verifier in our protocol is 58% of that of the verifier in [6]. Therefore,
our protocol saves more computation cost compared with the original protocol.
We emphasize that the computation cost of the verifier is critical for many ap-
plications. One example is the computation on encrypted datasets as we have
mentioned in Section 1. In this example, different from the data holder who
may serve multiple users and have more computational power, users may use a
device with much weaker computational capability. Hence, our improvement in
the efficiency of the verifier is significant for this kind of applications.

6 Conclusions and Future Work

In this paper, we provide an improvement of the MEB protocol in both argument
size and efficiency. We prove the security of our protocol and demonstrate our
improvement from both theoretical and experimental aspects. Since MEB is the
bottleneck for batching the executions of TCP and has advantages to be adopted
in some applications as mentioned in Section 1, our improvement is significant
for ESP, TCP-based protocols, and other applications.

Based on our results, future work could be carried out in two main directions.
One direction is to further improve the MEB protocol in both communication
cost and efficiency. Since we only provide a proof-of-concept implementation
with single-thread, the other direction is to optimize the implementation of the
protocol, which may further improve the performance of related cryptographic
primitives and protocols.
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