An Improvement of Multi-Exponentiation with
Encrypted Bases Argument: Smaller and Faster

Yi Liul-2[0000-0003-1722-6746] () Wangl[0000—0001—9780—5443]’
Yiu?

and Siu-Ming

! Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,
Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen 518055, China
liuy7@mail.sustech.edu.cn
wangqi@sustech.edu.cn

2 Department of Computer Science,
The University of Hong Kong

Pokfulam, Hong Kong SAR, China

smyiu@cs.hku.hk

Abstract. A cryptographic primitive, called encryption switching pro-
tocol (ESP), has been proposed recently. This two-party protocol enables
interactively converting values encrypted under one scheme into another
scheme without revealing the plaintexts. Given two additively and mul-
tiplicatively homomorphic encryption schemes, parties can now encrypt
their data and convert underlying encryption schemes to perform dif-
ferent operations simultaneously. Due to its efficiency, ESP becomes an
alternative to fully homomorphic encryption schemes in some privacy-
preserving applications.

In this paper, we propose an improvement in ESP. In particular, we con-
sider the multi-exponentiation with encrypted bases argument (MEB)
protocol. This protocol is not only the essential component and effi-
ciency bottleneck of ESP, but also has tremendous potential in many
applications. For example, it can be used to speed up many intricate
cryptographic protocols, such as proof of knowledge of a double loga-
rithm. According to our theoretical analysis and experiments, our pro-
posed MEB protocol has lower communication and computation cost.
More precisely, it reduces the communication cost by roughly 29% com-
pared to the original protocol. The computation cost of the verifier is
reduced by 19% — 42%, depending on the settings of experimental pa-
rameters. This improvement is particularly useful for verifiers with weak
computing power in some applications. We also provide a formal security
proof to confirm the security of the improved MEB protocol.

Keywords: Encryption switching protocols - Paillier encryption - Twin-
ciphertext proof - Zero-knowledge.

1 Background

Nowadays, data has been widely regarded as a kind of valuable resource. Many
solutions have been proposed to preserve the privacy of data during its usage,

2 Y. Liu et al.

such as secure multi-party computation (MPC) [9, 17, 18] and fully homomorphic
encryption (FHE) [8]. However, efficiency is still a problem in most cases.

In 2016, Couteau, Peters, and Pointcheval [6] proposed a cryptographic prim-
itive named encryption switching protocol (ESP) (for its extension, see [4]), and
it was shown that ESP has great potential to achieve many privacy-preserving
goals efficiently. In ESP, two parties secretly share the private keys of an ad-
ditively homomorphic encryption scheme and a multiplicatively homomorphic
encryption scheme, such that the two parties can individually encrypt messages,
but should cooperate to perform threshold decryption in order to decrypt a
ciphertext. Two parties can also work interactively to switch one underlying en-
cryption scheme of a ciphertext to the other without revealing the plaintext. In
summary, ESP allows both parties to perform both additions and multiplica-
tions on encrypted values to evaluate pre-deterministic circuits securely. It was
shown that ESP could be instantiated for generic two-party computation (2PC)
protocol [6], and thus ESP is powerful to cover many MPC tasks (see examples
in [5]).

To ensure that the encryption switching procedure of ESP is executed cor-
rectly in the presence of malicious parties, the authors of [6] introduced a new
cryptographic primitive, called twin-ciphertezt proof (TCP). We call a cipher-
text pair (Cy, Cx) twin-ciphertext if the encrypted (or committed) value of the
additively homomorphic encryption ciphertext (or commitment) C is equal to
the value encrypted in the ciphertext C'yx of multiplicatively homomorphic en-
cryption. In TCP protocol, the prover can efficiently prove that a given pair
(C1,C5) is a twin-ciphertext pair without revealing the encrypted value and
corresponding random coins. The main idea of TCP is to generate a random
twin-ciphertext pair first, and then show the colinear relation between this ran-
dom twin-ciphertext pair and the pair (Cy,Cs) to complete the proof. During
this approach, the generated random twin-ciphertext pair is consumed. There-
fore, to speed up ESP processes, the prover can generate a pool of random
twin-ciphertext pairs before executions of ESP and consume them one by one
during the ESP executions. We note that this approach is similar to the Beaver
triples technique [2].

Although a costly cut-and-choose procedure is involved in the generation of
random twin-ciphertext pairs, the authors of [6] mentioned that it is possible to
batch the executions of TCP. More precisely, by consuming one random twin-
ciphertext pair, we are able to prove that some given pairs are all twin-ciphertext
pairs simultaneously. This technique can be used to batch the generation of ran-
dom twin-ciphertext pairs or conduct TCP for many pairs simultaneously. A
protocol called multi-exponentiation with encrypted bases argument (MEB) is
thereby proposed and acts as the underlying basis to batch the executions of
TCP. The MEB protocol is designed for additively homomorphic encryption (or
commitment) schemes. Informally, given parameters (A);=1,.. ., and additively
homomorphic encryption ciphertexts ((¢;)i=1,....¢, C'), the MEB protocol allows a
prover to prove the knowledge of encrypted values ((m;)i=1,... ¢, M) and random
coins of ((¢;)i=1,....e, C), respectively, and the fact that the encrypted value M

An Improvement of MEB: Smaller and Faster 3

of C satisfies M = Hle m), in a zero-knowledge manner. The basic idea of
batching TCP executions is to batch the two ciphertexts of all pairs separately
in a multi-exponentiation form and execute a TCP for the pair of batched cipher-
texts. The MEB protocol is indeed the bottleneck of efficiency for the execution

of batch TCP.

TCP, as the direct application of the MEB protocol, is not only the underlying
protocol of ESP but also of independent interest. Many commonly used MPC
protocols that are expensive in traditional scenarios become very cheap when
TCP is involved [6], e.g., proof of knowledge of exponential relation of committed
values (for both plain/committed exponent), proof of knowledge of a double
logarithm, proof of committed prime, etc. Hence, improvements of the MEB
protocol can further enhance the performance of these protocols.

Moreover, MEB can individually play as the underlying protocol of some
applications that are typical in commercial and medical areas. For instance, users
may wish to evaluate a public function f on an encrypted dataset (d;)i=1,....m
provided by a data holder, where f is of the form f = [],(>_; a;d;) with public
constant parameters {ai,az,...} and {A1, Az,...}. The MEB protocol can thus
be used for the data holder to prove the correctness of the encrypted evaluation
results without revealing other information of the dataset. Compared with FHE-
based solutions, this approach provides a relatively smaller encrypted dataset
and is much more efficient for functions with higher depths of multiplication.

In this paper, we provide an improved MEB protocol, in the sense that our
protocol is more efficient for both the prover and the verifier, and has lower
communication cost than the original MEB protocol in [6]. The same as the
original protocol, our MEB protocol is also a public-coin special honest-verifier
zero-knowledge (SHVZK) argument of knowledge (see more information in Sec-
tion 2). In general, the argument size of our protocol is roughly 29% smaller than
that of the original protocol. Meanwhile, our protocol reduces the computation
cost of the verifier by 19% — 42% depending on different experimental param-
eters. The basic idea of our protocol is that we further decompose statements
into several conditions and batch them into one proof of a specific relationship
to obtain a compact and more efficient protocol (see more details in Section 3
and Section 4.1).

We summarize the main contributions of this paper in the following.

1. We provide an improvement of the MEB protocol in both argument size and
efficiency. To be comparable with the original MEB protocol of [6], we present
the construction of our MEB protocol based on Paillier encryption [14]. We
remark that MEB protocol for other additively homomorphic schemes, such
as Pedersen commitment scheme [15], can be constructed in a similar ap-
proach.

2. We provide proof-of-concept implementations for both our MEB protocol and
the original MEB protocol. We compare the two protocols from the perspec-
tives of theoretical analysis and experiments to verify the improvement of
our MEB protocol.

4 Y. Liu et al.

The rest of this paper is organized as follows. In Section 2, we introduce
some necessary background knowledge. We provide the description of our MEB
protocol and the corresponding subprotocols in Section 3 and Section 4, respec-
tively. Comparisons between our protocol and the original protocol are presented
in Section 5 from both theoretical and experimental aspects. We conclude this
paper with future work in Section 6.

2 Preliminaries

In this paper, we mainly focus on constructing a public-coin SHVZK argument of
knowledge and prove its security under standard security definitions (see [12,13]
for more information). Note that such a protocol can be compiled to be secure
against malicious verifiers with low overhead by many techniques, such as using
an equivocal commitment scheme [3] and adopting the Fiat—Shamir heuristic [7].

2.1 Notation

We write x < .S for uniformly sampling = from a set S. We use bold let-
ters to represent vectors, e.g., m = (mq,...,my) is a vector with ¢ entries.
The notation ab denotes the entry-wise product of two vectors a and b, i.e.,
ab = (a1by,...,asbp), and the notation ra denotes scalar multiplications, i.e.,
ra = (ray,...,rag). The notation ||n|| is used to represent the length of the
bit-representation of a given variable n, and the notation |S| denotes the size of
a given set S.

We say a function f in variable p mapping natural numbers to [0, 1] is negligi-
ble if f(u) = O(p™¢) for every constant ¢ > 0. We say that 1— f is overwhelming
if f is negligible. In our protocols, we will give a security parameter p written
in unary as input to all parties.

In the following descriptions of protocols, P denotes the prover, and V denotes
the verifier.

2.2 Paillier Encryption

Paillier encryption scheme is a public-key additively homomorphic encryption
scheme that is semantically secure [10] under the Decisional Composite Residu-
osity assumption. The public key of Paillier encryption scheme is a strong RSA
modulus n = pq, where p and ¢ are safe primes with the same length. We denote
the Paillier encryption algorithm as Enc, and thus encrypting a value m with
random coin p is represented as Enc(m;p) = (1 + n)™p™ mod n?. It is easily
verified that Paillier encryption scheme is additively homomorphic, such that
Enc(my; p1)Enc(ma; p2) = Enc(my + me; p1p2) and Enc(m; p)® = Enc(zm; p®).

2.3 Pedersen Commitment

Pedersen commitment scheme is used as a component of our protocol. Given a
strong RSA modulus n, we can expect that there is a reasonably small value

An Improvement of MEB: Smaller and Faster 5

k = O(log(n)), such that kn + 1 is a prime, and thus find a group G of order
n. Let the commitment key to be ck = (go,91,--.,9¢,h), where go,...,g¢,h
are all generators of G. We denote the Pedersen commitment algorithms for
single values as Com; for ¢ = 0, ..., ¢. Committing a value m with random coin
r by Com; is via computing Com;(m;r) = ¢g"h". We further denote as Com
the general Pedersen commitment for vectors, and committing a vector m with
random coin 7 is to compute Com(m;r) = (Hf:1 g;"*)h". Note that vectors with
less than ¢ entries can be committed by setting the remaining entries to 0. In
our description here and below, equations of the Pedersen commitment (for both
message space and commitment space) implicitly involve modulo operations.

Pedersen commitment is computationally binding under the discrete loga-
rithm assumption, such that a non-uniform probabilistic polynomial-time (PPT)
adversary cannot find two openings of the same commitment except a negligi-
ble probability. The commitment scheme is perfectly hiding, because no mat-
ter what value/vector is committed, the commitment is uniformly distributed
in G. Clearly, Pedersen commitment scheme is additively homomorphic, such
that Com(my;r1)Com(meg;re) = Com(my + mao;ry + 1r2) and Com(m;r)* =
Com(zm;ar).

2.4 The Generalized Schwartz—Zippel Lemma

We will use the following generalized Schwartz—Zippel lemma in this paper.

Lemma 1 (Generalized Schwartz—Zippel). Let p be a non-zero multi-variate
polynomial of total degree d > 0 over a ring R. Let S C R be a finite set with
[S| > d, such thatVa #b € S, a—b € R is not a zero divisor. Then the probability
of p(x1,...,2¢) =0 for randomly chosen x1,...,xp +sS is at most |¥g|.

3 Multi-exponentiation with Encrypted Bases Argument

In this section, we give the formal description of MEB protocol, propose the main
body of our improved MEB protocol, and prove that our protocol is secure.

Description
— Common Reference String: Pedersen commitment key ck = (go, g1, - - -, ge, b,).
— Word: A = (A1,...,) € ({0,1}%)%, £ + 1 Paillier ciphertexts A and a =
(a1, ...,as). The public key of the Paillier encryption scheme is n, and we
denote p = ||n||. Note that £ = O(u°) and k = O(u°) for a large enough
constant c.

— Statement: There are some (m;, p;)i=1,...¢ and p such that a; = Enc(m;; p;)
foralli=1,...,0 and A = Enc([]'_, m}*; p).
Witness: p, (mg, pi)i=1,....0-

The main idea of this protocol is as follows. First, the prover P provides a list
of Pedersen commitments to the verifier V and proves that she knows the open-
ings of commitments, such that each committed value is equal to each encrypted

6 Y. Liu et al.

value of (a;)i=1,...¢ and A in batches. This approach bridges Paillier encryption
and Pedersen commitment schemes. Thus proving the multi-exponentiation rela-
tion of these committed values will accordingly impliy the multi-exponentiation
relation of encrypted values.

To prove the multi-exponentiation relation of committed values, both parties
first can individually write every A; as the bit-representation \; = A, - - - A1, and
compute the commitment to the vector a; = (mi‘”,...,m;‘“) forj=1,...,k.
P then provides V with commitments to vectors

ZZ:j 2¢7j)‘1<i> ZZ:j 2¢7j)\l¢
b]:(ml ,...,me)
and $—i+1 $—j+1
26— 2777 Mg 26=32777" Mg
cj:(ml 7 N)

P proves in zero-knowledge that the committed vectors of these given commit-
ments satisfy all equations b; = ajc;j41 and ¢; = b;b; in batches. This implicitly
indicates that the committed by is of the form b; = (mi‘1 - ,mz‘e). Finally, P
proves to V in zero-knowledge that the product of all entries of the committed
by is equal to the encrypted value of the Paillier ciphertext A using the corre-
sponding commitment that has been provided in the first step. Following these
steps, the statement is proved. The detailed procedure of the protocol is in the
following.

Procedure
1. P picks (rq,...,7¢,70r) ¢ Z5HL, computes commitments ¢; < Com;(m;;7;)
fori=1,...,fand C + Como(Hf:1 mf"‘;rM). Then P sends (¢;)i=1,...c and

C to V. V will continue to interact with P if all ¢; € G and C € G. Otherwise,
V outputs reject.
Then P proves for each ¢ her knowledge of (m;,r;, p;) and the knowledge
of (M = Hle mf‘i,TM,p), such that ¢; = Com;(m;;r;), a; = Enc(m;; p;i),
C = Comg(M;ry), and A = Enc(M;p), using the batch equality proof
introduced in Section 4.1. In other words, P proves to V that each committed
values of ((¢;)i=1,... ¢, C) is equal to each encrypted values of ((a;)i=1,...¢, A).
2. Let (A;j)j=1,....x be the bit decomposition of A;, i.e., Ay = Ajy -+ A1 Both
parties locally compute general Pedersen commitments

‘
)\i'
Ca; + Com((m;])izl,...z;z)\ia‘ri)
i=1

forj € {1,..., s} from commitments (¢;)i=1,... ¢ via cq; = Hi’/\i]:l Ci H’i,)\ijzo gi,

and set cp, ¢ Cq.. We denote the committed vectors of cq; as a; =
Aij Aej

(mi7,...,m,").

P computes for j € {1,...,x — 1}

e 2979,
cp; < Com((m;"*~ "Yiz1,.03T0;)

An Improvement of MEB: Smaller and Faster 7

and for j € {2,...,k}

E o¢—i+1 i
e; ¢ Com((m;~*~ Yimt, i Tey) -

where all Tb; and Te; are uniformly sampled from Z,,. We denote the com-

; ZH:/- 2°79 A1 527 s
mitted vectors of cp, as bj = (m7"*~’ s, my 0), and of ¢,
S 20—]+1/\1¢ Z 2¢]+1)\2¢)
as ¢j = (mi"*~’ NN R), respectively.

Note that for j € {1,...,k — 1},
bj =ajcjt1,
and for j € {2,...,k},
cj =bj;b;.
P sends (cp,;)j=1,...x—1 and (c¢;)j=2,...x to V.
. If all ep; € G and ¢¢; € G, V sends random challenges z,y < (Z%)? to P.

Otherwise, V outputs reject. v
. Both parties locally compute ¢, + c””] forje{l,...,ks—1}, Cp, 4 Cp,

for j € {2,..., K}, ca <[]} ! I] i 2ccwrj_Q, and c_1 + Com(—1;0).

Meanwhile, P computes the commltted vectors and random coins of Cal

prti—2

. 4 Pl . i

via a; — 2’a; and Taj x? .4 Aijri, of cb/, via b;. + z"72p; and
K+j—2 . K Kt+j—2n,

Ty T Tp;, and of cg via d ZJ L xib; + dja @ c; and

7 K+)— 2

rq Ej:l oy, + Zj:2m Te;

Furthermore, let us define a bilinear operation * for a given variable y as

axb=73" aby'

Then P proves to V the knowledge of (a;-,ra;)jzl,__w_h (b;.,rb;)j:27,,,,m

(€j,7¢;)j=2,...x5 (B5,7b;)j=2,....x, d,Tq such that

Caf, = Com(af;r, '), Cp, = Com(b;.;rb;,), ce; = Com(cjsre;),
rk—1
cy; = Com(bj;7p;), ca = Com(d;rq) Za *cJ_H—l—Zb xbj—1xd = 0.
Jj=1 Jj=2

using the zero argument introduced in Section 4.2.
. If the zero argument is rejected, V outputs reject. Otherwise, P proves to V
the knowledge of by, rp,, M = Hle mf‘ and rjs, such that

¢p, = Com(by;rp,), C = Como(M,rn) Hb“ =

using the committed single value product (CSVP) argument introduced in
Section 4.3.

8 Y. Liu et al.

Theorem 1. The MEB protocol above is a public-coin SHVZK argument of
knowledge.

Proof. The completeness of the protocol first follows from the completeness of
the underlying batch equality proof. Then according to the homomorphic prop-
erty of Pedersen commitment scheme, we can verify that

¢
I i Aij g /.
Cay = Cay = Com((2/m;")ica,..e;07 (Y Nijr)) = Com(afirgs)
i=1
o ophti—2 ktj—2p . kt+i—2 . /A
Cy, = C, = Com(zx bj;z Th;) = Com(bj,rb;) ,
and
Kk—1 K
o prtie?
ca=]]e; [
Jj=1 Jj=2
Kk—1 K Kk—1 K
:Com(g z’b; + E "2 E vy, + E "2)
Jj=1 j=2 j=1 j=2
= Com(d;rq) .

It is easy to verify that b; = ajcj4q1 for j € {1,...,x — 1}, and ¢; = b;b; for
j€12,...,k}. Thus, we have

K—1 K
’ /
> ajcin+) bibj—d
=1 =2
K—1 K K—1 K
— Ja.:cs Rti=2p . b — ip. — Ktj=24.
—Zx agcJ_H—i—Za: bib; Zx b; Za: cj
Jj=1 Jj=2 Jj=1 Jj=2

k—1 K
=Y @(ajejn —by) + Yy a3 (bibj —¢5) =0
j=1 j=2

Furthermore, given the random y, if ab = ¢, the equation a * b = 1 * ¢ holds.
This shows that

Kk—1 K
D alxcipa+ Y bixb;—1xd=0.
j=1 j=2

Finally, since by; = m?ﬂ the equation Hle b1; = M is always satisfied.

For SHVZK, the simulator S first picks (71, ...,7¢,7ar) s Z51, computes
commitments ¢; < Com;(0;r;) for ¢ = 1,...,¢ and C + Com(0;ry). Since
Pedersen commitment is prefect hiding, the commitments (¢;);=1,... ¢ and C have
the same distribution as that of the real execution. Then S runs the SHVZK
simulator for the batch equality proof.

Given the challenge x and y, the simulator S picks rp; <= Zy, for j = 1,..., k—
1, and re; < Z, for j = 2,..., s, computes commitments cp; = Com(0;7p,)

An Improvement of MEB: Smaller and Faster 9

and c.; = Com(0;7c;), and computes cq;), Cals by Cdy and c_; as in the real
execution. Due to the prefect hiding property of Pedersen commitment scheme,
these commitments are perfectly indistinguishable from the real execution. The
simulator S then runs the SHVZK simulators for both the zero argument and
the CSVP argument.

Because the distributions of commitments are perfectly indistinguishable
from the real execution and the underlying protocols are SHVZK, the simulated
transcripts generated by S are indistinguishable from those of real executions.

Here we show that the protocol is witness-extended emulation. The emu-
lator will run the protocol with a random challenge, and output the resulting
transcript. If the argument is rejected, the emulator is done. If the argument is
accepted, the emulator will try to extract a witness. The emulator uses witness-
extended emulator of the batch equality proof to extract the encrypted values
and random coins of Paillier ciphertexts (a;)i=1,...¢ and A, and the opening of
(¢i)i=1,... ¢ and C that open to the these encrypted values.

Since x and y are randomly choosen, Lemma 1 guarantees that the equation
Z;;ll afxcipr+> 5 by xbj—1xd=0holds if bj = ajcjt1 and ¢; = b;b;,
while holds with a negligible probability if there exists one equation that does
not hold.

Hence, if the encrypted values of (a;);=1,.. s and A do not satisfy the state-
ment of MEB, the verifier will output reject with an overwhelming probability
based on Lemma 1 and the the soundness of the underlying zero argument and
CSVP argument. Therefore, the extracted witnesses satisfy the statement with
an overwhelming probability, and the soundness of the protocol follows. a

We note that the round complexity of the protocol can be reduced to five
rounds. More precisely, the messages sent by the prover in Step 1 and Step 2
could be sent in the same round. Meanwhile, the 3-round batch equality proof
and CSVP argument can be executed in parallel from Step 1. In the third round,
the batch equality proof and CSVP argument end with the prover answering the
challenge messages while the 3-round zero argument protocol starts. Hence the
protocol ends in the fifth round, and we obtain a 5-round protocol (see Fig. 1).

(ci)i=1,..0, C,
P (b)i=tm—ty (Ce)j=2.n Batch Equality H CSVP | V
LY Proof H Argument —
— H -
Zero
Argument >

Fig. 1. The procedure of our MEB protocol

4 Subprotocols

In this section, we present the subprotocols mentioned in Section 3.

10 Y. Liu et al.

4.1 Batch Equality Proof

Informally, the batch equality proof is for a prover to prove that he knows the
encrypted values of a set of Paillier ciphertexts and the openings of a set of Ped-
ersen commitments that can be opened to these encrypted values. We illustrate
the batch equality proof in the following.

Description

— Common Reference String: Pedersen commitment key ck = (go, g1, - - -, ge, b,).

— Word: ¢ Pedersen commitments ¢, and ¢ Paillier ciphertexts a, where ¢ =
O (p€) for a large enough constant c. The public key of the Paillier encryption
scheme is n, and we denote p = ||n||.

— Statement: There exist some (m;)i=1,... ¢, (Ti)i=1,... ¢, and (p;)i=1,...¢, such
that ¢; = Com;(my;r;) and a; = Enc(my; p;) for i =1,... ¢,

— Witness: (m;)i=1,....e, (7i)i=1,....e, and (p;)i=1,... -

Procedure

1. P picks u ¢s(Z,)", v s (Z,)", w s (Z:)*, computes x; + Com;(u;,v;)

and y; < Enc(u;;w;) for i =1,...,¢, and sends x, y to V.
2. If all z; € G and y; € Z7,, V picks (d,e) < (Z)?, and sends them to P.

Otherwise, V outputs reject.
3. P computes s <« Zle(vi + re)d" mod n, t; < w;pf modn, z; = u; +

msemodn for i =1,...,¢, and sends s, t, z to V. ‘
4. V checks whether both Com(z1d, ..., zd";s) = Hle(:cicf)dl, (I+n)%tl =
yial mod n? for i = 1,...,¢ hold and ¢t is relatively prime to n. If all condi-

tions hold, V outputs accept. Otherwise V outputs reject.

Theorem 2. The batch equality proof above is a public-coin SHVZK proof of
knowledge.

Proof. The completeness of the protocol can be verified as follows.

2

¢ 4))
Com(z1d, ..., zed"; s) = (H 9?‘”) he = (H gf“#m"e)‘”) RS (v trje)d
1=1 i=1
_ (g?id hvid‘glmied'hried‘) — H(xicf)d

i=1

=

(1+n)"t =1+ n)(ui+mie) (wips)"
= (1 +n)"wi) (1 +n)"™p}")°
= y;a$ mod n?
For SHVZK, given e and d, the simulator S picks s; <—sZ,, t; +sZ;,, and

zi sy for i =1,...,¢, and computes s <+ Zle s;d* mod n. S then computes
T < gih%ics ¢, y; + (1+n)?tPa; © mod n? for i = 1,...,£. It is easy to check

An Improvement of MEB: Smaller and Faster 11

that the simulated transcript (x,y, €,d, s, t, z) is perfectly indistinguishable from
the transcript of a real execution.

To prove that the protocol has witness-extended emulation, the emulator
runs the protocol with P*. If the transcript is accepted, it has to extract a
witness. We let the emulator rewind the challenge phase to obtain ¢ pairs of
accepted transcripts with the same x, y. Meanwhile, each pair has different
random (d(;));j=1,....c, and both transcripts in each pair are respectively with
different random e and e’. We denote these pairs of accepted transcripts with
index j =1,...,/{ as follows.

(:I?, Y, €, d(])7 S(])a t(])v Z(])) (:13, Yy, 6/7 d(])v S/(j)a t/(j)7 z/(j))

Note that the witness-extended emulator will make on average 2¢ arguments,
and hence it runs in expected polynomial time.
For each pair of transcripts, we have for i = 1,..., ¢ the equations

(1 +n)*0itly); = ysaf mod n?
and)
(1+n)* 0t = yiaf mod n?.
Then there should be some m/’, u’, such that
/! /!
Z(j)i = Uy +mye

and

zEj)i = u; +mie .
The emulator can compute (e.g., via Gaussian Elimination) m’ and ', which
are encrypted values of (a;);=1..¢ and (x;);=1,...¢. Due to the fact that Paillier
encryption scheme is perfectly binding, the emulator can extract the same m/’

and v’ from every pair of transcripts (and every pair of (z(;), z’(j)) are identical).

Let a; < a;(1+ n)*mé mod n?. Following the result above, there should be
some w’ and p’, such that for: =1,...,¢,

a; = pi™ mod n?
and for j=1,...,¢,

!/ e

t0y = wip mod n®, (), =

(i = w!p!® mod n?.
The above first equation indexed by j divided by the second one is equal to
re—e’

(t(j)it'(;.)li)" = p}™° mod n?.

Since e — €’ is relatively prime to n except a negligible probability, we can find
B, v, such that ng + (e — ¢’)y = 1. Hence, p’ can be extracted via

5

12 Y. Liu et al.
since we have

7

1\ om e—e)y _ mp+(e—e')y _
af ((t(j)itzj)li)) =/ ﬁp/i("= p? (=07 = 4l mod n?.

Therefore, with an overwhelming probability, these (m}, p;) are the encrypted
values and random coins of the ciphertexts (a;)i=1,...¢ -

Now the emulator continues to extract the openings of commitments (¢;);=1,... ¢-
There should be some 7’ and v, such that for j =1,...,¢,

4 ’ !/ ’
Ci=9; " R , Ti=g; ihYi .

Given a pair of accepted transcripts, we have

e .
Com(Z(j)ld(J), SPIP Z(J)gdé), S(j)) = H(ajicf)d(j) ,
i=1
é .
Com(zgj)ld(j), .. -aZEj)edfjﬁS/(j)) = H(micf)dm ,
=1

where z(;) = m’e + ' and z’j =m'e + u’ according to the prefect binding of
Paillier encryption scheme. Thus, it is easy to derive the resulting equations

¢ . ¢
Com(0,...,0;5(;)) = H(xicf)mgi—zundm _ H(hu;hr;e)dgj)
i=1 i=1
and
¢ i —zl ., d ¢ i
Ndt T EG 1A ol vl \dE
Com(0,. .. ,O;s'(j)) = H(micf)d 9; @1 — H(h%h’“ze)4
i=1 i=1
We can further derive
¢ ‘
Sy = Z(U; +rie)d(; mod n, S() = Z(v; +rie')d(;) mod n.
i=1 i=1

Given £ pairs of accepted transcripts, we can easily recover v’, v’ (e.g., via
Gaussian Elimination) with an overwhelming probability. It is easy to verify
that these (m}, r})i=1,.. ¢ and (u}, v})i=1,.. ¢, are the openings of the commitments
(¢i)i=1,...c and (z;)i=1,... ¢, respectively.

Hence, the protocol has witness-extended emulation, and the soundness of
the protocol follows.]

*

For the verification step (Step 4), the verifier can pick f «-sZ;, compute
7 + Zle zifimodn, T =[]'_, t/" mod n, and check whether (1 4+ n)2T" =

=1 "1
Hle(yiaf)fl mod n?. If the equation holds, we have (1 + n)*t? = y;a¢ mod n?
with an overwhelming probability according to Lemma 1. This could reduce the

computation cost of the verification.

An Improvement of MEB: Smaller and Faster 13

4.2 Zero Argument
For completeness, we restate the zero argument introduced in [1] as follows.
Description

— Common Reference String: Pedersen commitment key ck = (go, 91, - ., gz, h,1).
Word: 2¢ Pedersen general commitments (cq;)i=1,....¢, (Co;)i=1,....¢, & variable
y, a bilinear map *.

— Statement: There exist some (s, 7o,)i=1.....05 (Vi, Tw;)i=1,....¢, Such that ¢, =

Com(u;i, Ty,), o, = Com(v;, 1y,) foralli=1,... ¢, and Zle u; * vy = 0.
- Witness: (’u’i7rui)i=1,..4,ea ('vivr‘vi)i=1,...,€-

Procedure
1. P picks (ug,vet1) < (Z5)?%, (Tugs Tw,) <5 Z2, and computes
Cug +— Com(ug;Tay) ;s Cogys < COM(Vey15T0,,,) -

Then P computes for ¢ =0,...,2¢

dd) — Z Uj ¥ Vj .
0<i<,1<j<t+1
j=l+1—¢+i
P picks (rag, .-, Tay,) s Z2F1, sets rq,,, = 0, and computes commitments
ca, = Comg(dg;ra,) for ¢ =0,...,20. After the computation, P sends cy,,

Cugyq> and (Cdy)p=o0,...,2¢ tO V.
2. V sends z < Z; to P.
3. P computes

041 441

Y4 Y4
Uu — leul Ta Zzirui v — szfjﬂvj Ty Zx”lfjrvj
i=0 i=0 j=1 j=1
2¢
1+ Z x¢rd¢
¢=0

and sends u, Ty, U, Ty, t to V.
4. V outputs accept if cy, € G, o,y € G, (Ca,)o=0,....20 € G*F, ¢4, =
Comg(0;0), (u,v) € (Z4)2, (T4, 7v,t) € Z3, and

¢ 04+1 20
i L41—j ¢
H Car; = Com(u;7y) H Co,; = Com(v;7y), H cg, = Comg(uxv;t).
i=0 j=1 $=0

Otherwise, V outputs reject.

Theorem 3 ([1]). The zero argument protocol above is a public-coin SHVZK
argument of knowledge.

14 Y. Liu et al.

4.3 Committed Single Value Product (CSVP) Argument

We restate the committed single value product (CSVP) argument in [11] as
follows.

Description

— Common Reference String: Pedersen commitment key ck = (go, g1, - - -, ge, h,).

— Word: A general Pedersen commitment ¢ and a Pedersen commitment C
committed by Comg.

— Statement: There exits some (m,r) and (M, rps), such that ¢ = Com(m;r),

C = Como(M;ry), and M = Hle m;.
— Witness: (m,r) and (M, rp).

Procedure
1. P computes
b1<—m1, b2<—m1m2, e by M.
Then P picks (di, ..., ds, rq,u) s (Z,)F2, sets 01 < dy, (82,...,00) s Z571,
(rs,7) <= Z2, computes
cq < Com(d;rg), c¢5 <+ Com(—d1da,...,—dp_1de;7rs), a < Comg(dg;u),
CA — COm((SQ — m261 — b1d27 A ,54 — TTLe(% —1- bzfldg;TA) s
and sends cq4, c5, a, and ca to V.
2. V sends the challenge z <—sZ;, to P.
3. P computes
my<—amy+dy -, mpame+dy, v ar+rg,
by« axby +6 -, bpabp+0,, s < axrat+rs z+ ary+u,
and sends m{,b},...,mp, b, 1", s, z to V.
4. V outputs accept if all ¢4, ¢s5,ca € G, af, by, ..., a),b,,1', s, 2 € Z, and

c"cqg = Com(m/;r"), c%es = Com(zby — bymby, ... xb, —b,_;m.;s"),

C%a = Comg(by;2), by =m].
Otherwise, V outputs reject.

Theorem 4 ([11]). The committed single value product (CSVP) argument pro-
tocol above is a public-coin SHVZK argument of knowledge.

5 Evaluation and Comparisons

In this section, we compare our MEB protocol with the original MEB protocol
introduced in [6] from both theoretical and experimental aspects. We first an-
alyze the argument size of both protocols and the number of communication
rounds required by the protocols. Then, we conduct experiments to compare
their running times in different settings of parameters.

An Improvement of MEB: Smaller and Faster 15

5.1 Theoretical Comparison

We denote the length of the bit-representation of the RSA modulus n as p. Thus,
elements in Z,, and Z; can be represented by p bits, and elements in Z,2 can
be represented by 2pu bits. We further denote the length of bit-representation
of elements in G as 7, and we can expect that n = O(p). The main MEB
protocol involves £ terms. Table 1 provides the comparison. The argument sizes
of subprotocols are calculated according to the parameter settings of the main
MEB protocol. For instance, according to Step 1 of the main protocol, the batch
equality proof involves £+ 1 terms when the main MEB protocol involves ¢ terms.

Table 1. Comparison of argument size and communication rounds

Sub-protocols (Our MEB) Argument size Rounds
Batch equality proof 4+ T)p+ L+ 1)y 3
Zero argument 20+ 4)p+ (4 + 1)y 3
CSVP argument (20 +4)p+4n 3
Main MEB argument 2u+ (04 2k — 1)y 5

Overall Comparison:
Our MEB protocol 8¢+ 17)u+ (20 + 6K+ 5)n
Original MEB protocol [6] (12¢ + 20)p + (2¢ 4 6k + 15)n

ot Ot

Table 1 presents the argument size and round complexity of all subprotocols
of our protocol together with the overall cost of both our protocol and the
original MEB protocol. Both MEB protocols are of 5 rounds, while the size of
ours is smaller than that of [6]. Since we can expect that n & u, the argument size
of our protocol is roughly 29% smaller than that of protocol in [6]. Hence, our
protocol has a lower communication cost compared with the original protocol.

5.2 Experimental Results

We provide proof-of-concept implementations for both our protocol and the orig-
inal protocol. The implementations are in C++ using the NTL library [16] for
the underlying modular arithmetic. Experiments are carried out on MacBook
Air (2018) of macOS 10.15.5 with 1.6 GHz dual-core Intel Core i5, 8GB of RAM
using a single thread. We compare the running times of both protocols using
different settings of parameters. Note that the communication cost is given in
Section 5.1, and we here only measure the running times without the communi-
cation time. The results are shown in Table 2.

From Table 2, we can see that our protocol is more efficient for both prover
and verifier compared with the original protocol. Our protocol reduces the com-
putation cost of the verifier by 19% — 42% depending on different experimental
parameters. Especially when p = 2048, ¢ = 128 and t = 8, the execution time

16 Y. Liu et al.

Table 2. Running time comparison of our MEB protocol and MEB protocol in [6]

P Original MEB protocol [6] Our MEB protocol
Prover Verifier Total time| Prover Verifier Total time
1024 128 8 1.749s 0.776s 2.525s 1.583s 0.480s 2.063s
1024 256 16| 6.272s 1.787s 8.059s| 6.112s 1.453s 7.565s
2048 128 8| 11.275s 4.884s 16.159s| 10.273s 2.851s 13.124s
2048 256 16| 38.102s 11.250s 49.352s| 36.410s 8.647s 45.057s
2048 512 8 | 44.506s 19.507s 64.013s| 41.636s 15.824s 57.460s

of the verifier in our protocol is 58% of that of the verifier in [6]. Therefore,
our protocol saves more computation cost compared with the original protocol.
We emphasize that the computation cost of the verifier is critical for many ap-
plications. One example is the computation on encrypted datasets as we have
mentioned in Section 1. In this example, different from the data holder who
may serve multiple users and have more computational power, users may use a
device with much weaker computational capability. Hence, our improvement in
the efficiency of the verifier is significant for this kind of applications.

6 Conclusions and Future Work

In this paper, we provide an improvement of the MEB protocol in both argument
size and efficiency. We prove the security of our protocol and demonstrate our
improvement from both theoretical and experimental aspects. Since MEB is the
bottleneck for batching the executions of TCP and has advantages to be adopted
in some applications as mentioned in Section 1, our improvement is significant
for ESP, TCP-based protocols, and other applications.

Based on our results, future work could be carried out in two main directions.
One direction is to further improve the MEB protocol in both communication
cost and efficiency. Since we only provide a proof-of-concept implementation
with single-thread, the other direction is to optimize the implementation of the
protocol, which may further improve the performance of related cryptographic
primitives and protocols.

Acknowledgments. Y. Liu and Q. Wang were partially supported by the Na-
tional Science Foundation of China under Grant No. 61672015 and Guangdong
Provincial Key Laboratory (Grant No. 2020B121201001). Y. Liu and S.-M. Yiu
were also partially supported by ITF, Hong Kong (ITS/173/18FP).

References

1. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Pointcheval, D., Johansson, T. (eds.) Advances in Cryptology - EUROCRYPT
2012 - 31st Annual International Conference on the Theory and Applications of

10.

11.

12.

13.

14.

An Improvement of MEB: Smaller and Faster 17

Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings. Lec-
ture Notes in Computer Science, vol. 7237, pp. 263-280. Springer (2012)

Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.) Advances
in Cryptology - CRYPTO ’95, 15th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 27-31, 1995, Proceedings. Lecture Notes
in Computer Science, vol. 963, pp. 97-109. Springer (1995)

Beaver, D.: Adaptive zero knowledge and computational equivocation (extended
abstract). In: Miller, G.L. (ed.) Proceedings of the Twenty-Eighth Annual ACM
Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, May
22-24, 1996. pp. 629-638. ACM (1996)

Castagnos, G., Imbert, L., Laguillaumie, F.: Encryption switching protocols revis-
ited: Switching modulo p. In: Katz, J., Shacham, H. (eds.) Advances in Cryptol-
ogy - CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I. Lecture Notes in
Computer Science, vol. 10401, pp. 255-287. Springer (2017)

Couteau, G., Peters, T., Pointcheval, D.: Secure distributed computation on private
inputs. In: Garcia-Alfaro, J., Kranakis, E., Bonfante, G. (eds.) Foundations and
Practice of Security - 8th International Symposium, FPS 2015, Clermont-Ferrand,
France, October 26-28, 2015, Revised Selected Papers. Lecture Notes in Computer
Science, vol. 9482, pp. 14-26. Springer (2015)

Couteau, G., Peters, T., Pointcheval, D.: Encryption switching protocols. In: Rob-
shaw, M., Katz, J. (eds.) Advances in Cryptology - CRYPTO 2016 - 36th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 14-18,
2016, Proceedings, Part I. Lecture Notes in Computer Science, vol. 9814, pp. 308—
338. Springer (2016)

Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) Advances in Cryptology - CRYPTO
'86, Santa Barbara, California, USA, 1986, Proceedings. Lecture Notes in Com-
puter Science, vol. 263, pp. 186-194. Springer (1986)

Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) Proceedings of the 41st Annual ACM Symposium on Theory of Comput-
ing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009. pp. 169-178. ACM
(2009)

Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, A.V. (ed.) Pro-
ceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987,
New York, New York, USA. pp. 218-229. ACM (1987)

Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270-299 (1984)

Groth, J.: A verifiable secret shuffle of homomorphic encryptions. J. Cryptology
23(4), 546-579 (2010)

Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols - Techniques and
Constructions. Information Security and Cryptography, Springer (2010)

Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computation.
J. Cryptology 16(3), 143-184 (2003)

Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) Advances in Cryptology - EUROCRYPT ’99, Inter-
national Conference on the Theory and Application of Cryptographic Techniques,
Prague, Czech Republic, May 2-6, 1999, Proceeding. Lecture Notes in Computer
Science, vol. 1592, pp. 223-238. Springer (1999)

18

15.

16.
17.

18.

Y. Liu et al.

Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) Advances in Cryptology - CRYPTO ’91, 11th
Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 11-15, 1991, Proceedings. Lecture Notes in Computer Science, vol. 576, pp.
129-140. Springer (1991)

Shoup, V.: Ntl: A library for doing number theory, http://www.shoup.net/ntl
Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd An-
nual Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3-5
November 1982. pp. 160-164. IEEE Computer Society (1982)

Yao, A.C.: How to generate and exchange secrets (extended abstract). In: 27th
Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27-29
October 1986. pp. 162-167. IEEE Computer Society (1986)

