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1 Prologue

Non-interactive zero-knowledge proofs are a recent trend in the world of crypto-
currencies with examples including Pinocchio [Parno et al., 2013], ZK-SNARK [Ben-
Sasson et al., 2013, Parno et al., 2016], Aurora [Ben-Sasson et al., 2019], Li-
gero [Ames et al., 2017], and Bulletproofs [Bünz et al., 2018], and ZK-STARK [Ben-
Sasson et al., 2018]. The potential of ZK-STARKs was not missed by the Eth-
ereum Foundation which provided grant money to StarkWare Industries for
further research and development of efficient ZK-STARKs to be used by the
Ethereum platform [StarkWare Industries, 2019a].

The basic primitive used in ZK-STARKs is a hash function which is em-
ployed for proving the correct evaluation for a Merkle-tree. This hash function
must be efficient as time, memory and communication costs of ZK-STARKs are
essential for their applicability. However, the cost metric of this hash function
differs from standard software or hardware costs due to the algebraic nature of
the problem. As commonly used primitives such as SHA-2 and AES are known
to be costly in this setting [Ben-Sasson et al., 2018] the need of arithmetization-
oriented counterparts arose.

This challenge prompted attempts from multiple teams which resulted to
date in three main approaches: the Hades design strategy [Grassi et al., 2020a]
championing Starkad and Poseidon [Grassi et al., 2019], the GMiMC fam-
ily [Albrecht et al., 2019b], and the Marvellous design strategy championing
Vision and Rescue [Aly et al., 2019]. It was recently announced that following
the STARK-Friendly Hash Challenge [StarkWare Industries, 2019b] and invited
3-rd party cryptanalysis [Beyne et al., 2020] StarkWare will use Rescue for its
Ethereum effort.
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Contribution This paper in an annotated version for the origin story of Rescue.
Our aim is to provide a historiographic account on the design process from the
initial idea and up until the opening point of [Aly et al., 2019]. Chronologic-
ally, it is a prequel to [Aly et al., 2019] forming its backstory, but it can also
be viewed as an independent work serving a twofold purpose: to make expli-
cit the thought process leading to the Marvellous design strategy in the hope
that other researchers may find it useful in advancing their own ideas; and to
share some of our discarded approaches in the hope that follow-up works can
avoid the pitfalls of the bad ones and be inspired by the good ones. Where ap-
propriate, we provide additional commentary to illuminate our considerations.
While this is not a classical scientific paper, we hope that readers will still find
it useful.

2 Exposition

The original STARK paper considered primitives working over binary fields.
This approach was later abandoned by StarkWare industries in favour of prime
fields, but for us this step was necessary as it suggested Rijndael [Daemen and
Rijmen, 2002] as a possible starting point due to its algebraic structure, and this
framed our way of thinking throughout the entire design process. We describe
the relevant aspects of Rijndael in Section 2.1.

In the two years since the beginning of the work described in this paper,
the cryptanalytic understanding of arithmetization-oriented algorithms was
greatly improved [Albrecht et al., 2019a, Keller and Rosemarin, 2020, Beyne
et al., 2020, Eichlseder et al., 2020, Grassi et al., 2020b, Cid et al., 2020]. How-
ever, in the prehistoric era in which this story takes place, statistical attacks
ruled the dome and we believed that ensuring resistance to those should be our
main focus. We describe the wide trail strategy, that is the security argument
underlying the resistance of Rijndael to statistical attacks, in Section 2.2.

2.1 Rijndael-128 (Canon)

Rijndael-128, better known as AES-128, consists of five building blocks; Ad-
droundKey, SubBytes, MixColumns, ShiftRows and ExpandKey. For Rijndael-
128, we have a 128-bit key and 128-bit state, where the state is viewed as 16
blocks of 8 bits each i.e., it is an element in F4×4

28 . Since the efficiency of STARKs
was believed at the time to depend solely on the number of field multiplica-
tions, that was also our focus, and we recall here the SubBytes and ExpandKey
steps in more detail.

SubBytes The SubBytes step is a bricklayer function of S-Boxes, where each
S-Box works over one byte and consists of the composition of two functions,
S-Box(z) = g◦f (z). The first function f is defined as the adapted multiplicative
inverse function over F28 where zero is explicitly mapped to zero,

f : F28 → F28 : x 7→ x254.
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The second function g is an affine transformation

g : F8
2→ F8

2 : x 7→Mx+ b,

with M ∈ F8×8
2 and b ∈ F8

2. The main property of this transformation is to make
the polynomial representation of the S-Box over F28 more complex and thus
to increase the resistance of the cipher against algebraic attacks. Note that the
affine transformation works over F2. However, the entire S-Box can be repres-
ented as the following polynomial over F28 ,

S-Box(z) = 0x05 · z254 + 0x09 · z253 + 0xF9 · z251 + 0x25 · z247 + 0xF4 · z239

+ 0x01 · z223 + 0xB5 · z191 + 0x8F · z127 + 0x63.

Rijndael’s ExpandKey Rijndael uses a key schedule to expand a short key
into several round keys used in the AddRoundKey steps of the cipher. The key
schedule consists of four steps: SubWords, AddWords, RotWords and AddCon-
stants. The AddWords and RotWords steps are there to introduce diffusion in
the key schedule, while the SubWords step introduces nonlinearity and the
AddConstants step eliminates symmetry. As the linear steps do not affect the
complexity of an arithmetization-oriented design, we only focus on the Sub-
Words step. This step consists of a bricklayer of four S-Boxes, the same as in
the Rijndael round function, but which operate over a word rather than a byte.

2.2 The Wide Trail Strategy

From [Daemen, 1995] and [Daemen et al., 1997, Section 3.1]:

The wide trail design strategy is introduced as a means to guarantee low maximum
probability of multiple-round differential trails and low maximum correlation of

multiple-round linear trails.

This strategy is used to parameterise an algorithms’s resistance against dif-
ferential and linear cryptanalytic attacks. In the design of Rijndael [Daemen
and Rijmen, 2002], the designers consider four rounds of Rijndael-128. By us-
ing properties of the linear layers, they argue that any non-trivial input activ-
ates at least 25 S-Boxes.

Next, they compute the cryptanalytic properties of an S-Box considering dif-
ferential and linear cryptanalysis, namely the maximum difference propagation
probability and the maximum absolute correlation. The difference propagation
probability δ of an n bit Boolean function f is defined as

δ = 2−nmax
i,j
|{x | f (x)⊕ f (x⊕ i) = j}|.

The maximum absolute correlation λ is similarly

λ= max
α,β∈Fn2

(
2 Pr
a∈F2n

[αa⊕ βf (a) = 0]− 1
)

.
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The cryptanalytic properties of the inversion function are due to [Nyberg, 1993].
For F28 they are δ = 2−6 and λ= 2−3; more generally, for an arbitrary field F2n

we use the formulae δ = 2−n+2 and |λ|= 2−dn/2e+1.3

As there are at least 25 active S-Boxes in four rounds, each with a difference
propagation probability of at most δ = 2−6 and a maximum absolute correla-
tion |λ|= 2−3, a four round differential trail has a maximal probability of 2−150

and a maximal absolute correlation of 2−75. This means that an eight round trail
has a maximal probability of 2−300 and maximum absolute correlation 2−150

which Daemen and Rijmen deemed sufficient to resist differential and linear
attacks.

3 Jarvis (a Rijndael Remake)

Indeed, as a non-specializing algorithm, Rijndael is rather STARK-efficient.
However, two observations suggest that some changes could make it even more
so, without compromising security. We describe the ideas behind these changes
in this section with Jarvis as its climax. By a naive estimation, Jarvis is about
100-fold more efficient than Rijndael when used in a STARK. As was found
later, some of the ideas were applied too aggressively and had to be dialed back
a little.

Firstly, the native field of Rijndael is fixed to 8 bits while STARKs normally
operate over larger fields. It is possible of course to build a variant of Rijndael
over a state in F16

232 and/or embed subspaces of F16
28 into an extension field e.g.,

F2
(28)8 but it nevertheless seemed that reconsidering the structure of the state

would improve both efficiency and security.
Second, observing that ZK-STARKs (as well as other similar proof systems)

do not aim to compute a function but rather to attest the validity of a previ-
ous computation, they offer a unique “trick”, namely non-determinism, which
asserts that a given constraint evaluates to TRUE if and only if the inverse of
said constraint evaluates to TRUE. Owing to non-determinism, a polynomial is
STARK efficient not only when it is of low rational degree but also it is suffi-
cient for its compositional inverse to be of low rational degree. The latter means
that the polynomial A(x) is STARK-efficient if the polynomial A−1(x) such that
A−1(A(x)) = x is of low degree.4

Equipped with these two observations, Jarvis aims to improve the efficiency
of Rijndael when used inside a STARK. The most significant change in the new
construction is that it employs a larger S-Box hence reducing their overall num-
ber. We bundle all the S-Boxes of one round thus creating a nonlinear function
over the whole state rather than over individual bytes. As the multiplicative in-
verse can be represented by two low-degree constraints regardless of the field

3 Note how both quantities decrease exponentially when n grows. This is useful since
ZK-STARKs and other similar technologies usually operate over fields larger than 8-
bit.

4 The concept of non-determinism was generalized in [Aly et al., 2019] to include any
method which allows to avoid costly exponentiation.
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size, this improves the STARK-efficiency 16-fold. By Fermat’s little theorem we
get

f : F2n → F2n : x 7→ x2n−2,

or in rational form

f (x) =

1
x , if x , 0.
0, otherwise.

This function is especially well performing in STARKs as its transition con-
straint is x2f (x) + x = 0 which has degree three.

Similar to the S-Box of Rijndael, we compose the multiplicative inverse op-
eration with an affine polynomial. A family of polynomials which are of partic-
ular interest in this context are F2-linearized polynomials, i.e., polynomials of
the form

L(x) =
n−1∑
i=0

cix
2i ∈ F2n [x].

Such a polynomial is known to be a permutation over F2n if and only if it has
only the root 0 in F2n . Finally we add a constant to this linearized polynomial,
making it affine:

A(x) = c−1 +
n−1∑
i=0

cix
2i ∈ F2n [x].

The purpose of the affine polynomial is to ensure high algebraic complexity,
i.e., the affine polynomial and its inverse must be of high polynomial degree to
avoid algebraic attacks and chosen such that not all its coefficients are subfield
elements of F2n to avoid invariance-based attacks.

A high polynomial degree appears to be at odds with the optimization target
of using as few field multiplications as possible. To overcome this, we decided
to add extra structure. Most naively, we can make A(x) STARK-efficient by tak-
ing it as an affine polynomial of low polynomial degree, e.g., a quartic polyno-
mial, but such that its compositional inverse is of high polynomial degree and
such that both polynomials are resistant against possible invariance-based at-
tacks. The polynomial is used in such a way that the STARK can be evaluated
over the direct, low-degree polynomial while an adversary would have to deal
with the inverse, high-degree counterpart. Several variants over the same idea
are possible and the one we chose uses two quartic linearized polynomials B(x)
and C(x) to construct an affine polynomial A(x) = C ◦B−1(x).5

As a result of moving from a 4 × 4 state to a 1 × 1 state, there is no longer
a need for the ShiftRows and the MixColumns operations and they can be dis-
carded.6 The resulting algorithm is depicted in Figure 1.

5 Following [Albrecht et al., 2019a] we later considered other variants which are de-
scribed in the bonus track.

6 The purpose of the ShiftRows and MixColumns operations is to “spread” good prop-
erties from on cell to as many cells as possible. When the state consists of only a single
cell there are no target cells for its good properties.
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x
−1 A(x)

Ki

(x)B
−1 C(x)

Si Si+1

Figure 1. One round of Jarvis

For the key schedule we decided on two principles. For the first principle,
since arithmetization-oriented algorithms were a relatively new concept, in or-
der to compensate for the uncertainty in this new, little-studied object, the
key schedule should not be too simple.7,8 Second, we understood that the key
schedule does not need to offer the same security as the round function since
it cannot be attacked directly.9 We decided to keep the multiplicative inverse
part but to omit the affine polynomial. The key schedule of Jarvis is depicted
in Figure 2.

x
−1Ki +rconi Ki+1

Figure 2. One round of Jarvis’s key schedule

7 Inspired by the concurrent trend of lightweight cryptography the designs of the time
did not have a key schedule at all (i.e., the master key is simply injected between every
two rounds) or a very simple one (e.g., linear). This was done to improve efficiency
when the algorithm is implemented in an IoT setting.

8 We also understood that the main use of Jarvis will be as a primitive to a hash func-
tion. In this setting, the key part can be precomputed and thus does not increase the
cost of the STARK.

9 This is also the case for Rijndael where the diffusion is slower in the key schedule
compared to the round function.
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4 Friday (Jarvis the Sequel)

So far we have made a STARK-friendly block cipher, but secure integrity veri-
fication requires a cryptographic hash function. There are basically two gen-
eric constructions allowing to transform a block cipher into a hash function:
the Merkle-Damgård construction and the sponge construction. Recalling that
STARKs are extremely inefficient outside their native field, the sponge con-
struction is at a disadvantage due to its internal structure enforcing a separa-
tion between the inner and outer parts of the sponge.

The model we had in mind was that instead of iterating over the compres-
sion function, the message, regardless of size, can be absorbed entirely in one
step by increasing the field size.10 We therefore decided to go with Merkle-
Damgård [Merkle, 1989, Damgård, 1989] which we describe in Section 4.2.

The Merkle-Damgård construction employs a one-way compression func-
tion, i.e., a function from m bits to n bits where m > n. There are several ways
to build a one-way compression function from a block cipher, with the most
widely used ones being: Davies-Meyer, Matyas-Meyer-Oseas, and Miyaguchi-
Preneel; for a complete survey see [Preneel et al., 1993]. Believing that all
these constructions are interchangeable,11 our only requirement was that the
message is injected via the plaintext interface, thus allowing to precompute
the input to the key interface.12 The decision between Miyaguchi-Preneel and
Matyas-Meyer-Oseas was arbitrary and we opted for Miyaguchi-Preneel out of
loyalty to Bart Preneel who was the head of our research lab.13 We provide a
description of the Miyaguchi-Preneel construction in Section 4.1.

Finally, instantiating Miyaguchi-Preneel with Jarvis, and using the result-
ing compression function in Merkle-Damgård, we obtain Friday which is de-
picted in Figure 3.

10 In hindsight this model was too simplistic since it incurs communication overhead
resulting from the larger digests, or requires truncation of the output which is why
we originally avoided the sponge construction.

11 As we discovered later, these constructions are in fact not interchangeable and each
of them offers a different resistance level against Gröbner basis attacks.

12 In fact, this micro-optimization is only relevant for absorbing the first block of the
message. Indeed the key schedule can be precomputed on the IV for the first itera-
tion, but the chaining values entering subsequent calls are a function of the unknown
message and therefore can only be computed online. However, back then, we didn’t
see a need for a second iteration, see the previous paragraph.

13 To be clear, we did not discuss this with Bart and this paper would be the first time
he learns about this story. We simply found this Easter-egg amusing.
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IV

m1 m2 mt

Jarvis H2

H1

m2

Ht

Figure 3. Friday

4.1 Miyaguchi-Preneel

This scheme makes use of a black box block cipher E, where the chaining value
is injected via the key interface, and the message via the plaintext interface. The
two inputs are fed forward and each is XORed to the output of the block cipher.
The n-bit output is then irreversible, i.e., it is impossible to recover the original
input. The scheme is depicted in Figure 4 and we refer the reader to [Black
et al., 2002] for its security.

Hi−1

E Hi

mi

Figure 4. The Miyaguchi-Preneel one-way compression function using a block cipher E

4.2 Merkle-Damgård

A hash function is a function taking an arbitrary length input and returning a
fixed length output. The Merkle-Damgård scheme does so by iterating a one-
way compression function like the one we described before. Since the underly-
ing one-way function takes inputs of fixed length, the message M needs to be
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padded before being fed as an input into the hash function. The type of pad-
ding used is important for security purposes and we describe the most common
one here.

LetM be the message to be padded and let |M | be the length ofM in an r-bit
encoding. We start by appending a 1 at the end of M such that the message is
now M ||1. Then, the necessary number of trailing zeros is appended (possibly
none) followed by the r-bit length encoding such that M ′ = M || 1 || 0∗ || |M |
and the length of |M ′ | in bits is an integral divisor of the block size n.

The new message M ′ is partitioned into t blocks m1, ...,mt , each of length n
which are then given one by one as inputs to the Miyaguchi-Preneel construc-
tion instantiated with a block cipher E and having state size n where

H0 = IV , (1)

Hi = EHi−1
(mi)⊕Hi−1 ⊕mi , 1 ≤ i ≤ t, (2)

and IV (Initialisation Vector) is the string 0n (i.e., a sequence of n zeros). The n-
bit output of the hash function is simply the final state value Ht . As we already
mentioned, we believed at the time that a single iteration will always be suffi-
cient and that we are being generous by providing a more general description.

5 The Shadow Saga

5.1 Jarvis’s Shadow

During our work on Jarvis and Friday, it became apparent that there is both
value and market demand for a similarly optimized algorithm operating over
prime fields.

The task seemed mostly straightforward. The considerations that make Jar-

vis STARK-friendly remain valid also for prime fields. The only obstacle was to
attain a high rational degree in the S-box layer since there is no analog in prime
fields to the affine polynomial we used for Jarvis and the inversion function
cannot offer this degree alone.

We started entertaining ideas to overcome this and these are described in
this section.

The Jarvis Prime Family This was our first attempt at converting Jarvis to
prime fields. The state is an element in the extension field Fp2 . First, the state
goes through the inversion function in Fp2 ; then, it passes through a linear layer
in Fp.

This approach is precursory to the approach we eventually took of using a
state consisting of more than one field element. However here it is still implicit
and hidden by the properties of the extension field, hence the large S-box.

In this approach, there is always an expensive step, either we evaluate the
algorithm over Fp and the inversion function becomes expensive or we eval-
uate over Fp2 and the linear layer becomes expensive. This, together with the
mixing, was meant to provide for a high polynomial degree.
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Evaluation of the algorithm is done with a tower field approach which en-
ables calculating the inversion function over Fp2 using an inversion in Fp and
three extra multiplications. We depict the algorithm in Figure 5.

x
−1

Ki

Mx(x)

Figure 5. One round of Jarvis Prime

The Insanity Family In this family (nicknamed Insanity because we were try-
ing to do the same thing over and over again and kept expecting different res-
ults) the field is still Fp2 and the idea is to first invert each element in the base
field Fp then invert them together in Fp2 as an extension field element.

Due to tower field constructions, the inversion over Fp2 can be reduced to
an inversion over Fp with a small number of multiplications over Fp. The al-
gorithm is depicted in Figure 6.

Figure 6. One round of Insanity

The Prodigy Family This scheme is the same as Insanity, but now working
with x3 over the extension field. Over Fp this operation becomes a polynomial
multiplication which we believed can be nicely optimised.

The x3 function is known to be a permutation when GCD(p − 1,3) = 1.14

Here we use it over an extension field, thus requiring that GCD(p2 − 1,3) = 1.

14 This function was already used previously in the literature e.g., as the non-linear
function of MiMC.
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In every round x3 triples the degree of the multivariate polynomial expres-
sion. The algorithm is presented in Figure 7.

Figure 7. One round of Prodigy

The Scion Family This scheme is the same as Prodigy, but with an added lin-
ear layer following after the x3 function. This time, instead of the degree of the
multivariate polynomial expression tripling, it grows 12-fold. The algorithm is
depicted in Figure 8.

x
−1

x
−1 Mx(x)Si Si+1

KiCi

x
3

Figure 8. One round of Scion

The Headache Family At this point we realized that there is no reason to use
a non-linear operation for mixing and decided to abandon the extensions field
approach in favor of vector spaces. The state is in F2×2

p and we searched for
ways to introduce extra algebraic complexity without harming efficiency too
much.

Headache is a Keccak-like design where everything works over Fp but
which continues the trend of mixing different power maps. However, this is
an optimisation game between the number of rounds and the efficiency per
round. It is tough to figure out how many rounds are needed and what exactly
is the effect of interleaving different power maps. The algorithm is presented in
Figure 9.

This design was also the tipping point where algorithms based on multiple
field elements in the state started being more efficient than Jarvis, making this
subsection, rather than Subsection 5.2, the main storyline.
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x
−1

x
3

x
3

x
−1

Mx(x)Si Si+1

KiCi

Figure 9. One round of Headache

The Big Betty Family With this design we realized that it is difficult to make
security claims when mixing different power maps and that it is possible to
attain the same efficiency by carefully choosing the right one and sticking to
it.15

This algorithm increases the state size while retaining the security level.
This is a possible improvement for all other designs. The number of constraints
per round is equal to the number of elements in the state. Considering a six
element state, we need only 8 rounds to get maximal multivariate degree. Note
that because we work with smaller S-Boxes, the wide trail strategy becomes
more pressing, requiring at least 7 rounds for achieving resistance against stat-
istical attacks. The algorithm is presented in Figure 10.

x
−1

x
−1

x
−1

x
−1

Mx(x)Si Si+1

KiCi

x
−1

x
−1

x
−1

x
−1

x
−1

x
−1

x
−1

⋮ ⋮

⋯

⋯

⋱

Figure 10. One round of Big Betty

The The Algorithm Formerly Known as Rescue Family This design im-
proves the diffusion by taking the Shark structure rather than a Square one.16

This family was originally named Rescue but we decided to reserve this name
for the version published in [Aly et al., 2019].

First, the content of cell i is raised to the power ai ; then, the two cells are
mixed by a linear layer in Fp. The round function is depicted in Figure 11.

15 Siemen said: "Mixing different power maps just to improve confidence is indecisive
and unprofessional. We should fix the power map and ensure the security around this
decision".

16 We were not familiar at the time with the SHARK-structure.
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Specifically, we considered three instances: one where both ai = −1; one
where both ai = 3 and, as it was developed in parallel to Big Betty, we also
considered a1 = −1 and a2 = 3. This design is similar in structure to the final
Rescue.

x
a1

x
a2

Mx(x)Si Si+1

Ki

Figure 11. One round of The Algorithm Formerly Known as Rescue

The Niederreiter Family This design, was suggested by Vincent Rijmen in
order to increase the multivariate rational degree while still being very STARK-
Friendly. The algorithm is depicted in Figure 12. However, it is not a permuta-
tion and it is difficult to prove security claims.

x
−1

x
−1

x
−1

x
−1

Mx(x)Si Si+1

KiCi

Figure 12. One round of Niederreiter

The Phoenix Family To make Niederreiter a permutation, we can turn to
Feistel-like networks. When combined with a four-element state, we have full
multivariate degree in only 13 rounds. For a six-element state, we need only 7
rounds. The algorithm is presented in Figure 13.

The above observation is a precursor to the width-depth tradeoff we later
observed when evaluating resistance against Gröbner basis attacks. The down-
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side is that the S-box is no longer a power map therefore it becomes harder to
employ the wide-trail strategy to prove resistance against statistical attacks.17

x
−1

x
−1

Mx(x) Si+1

KiCi

Si

Figure 13. One round of Phoenix

The Hermit Family Inspired by [Xu et al., 2018] this design follows up from
Phoenix (hence the name Hermit — different shell, same creature).

We change the Feistel structure of Phoenix to the one from [Xu et al., 2018,
Thm. 6]. This ensures that we can easily extend the state size to an arbitrary
number of elements and apply theorems on the algebraic degree of the result-
ing nonlinear function. This restores the applicability of the wide trail strategy
while keeping performance the same as for Phoenix. The algorithm is depicted
in Figure 14.

Mx(x)

Ki

x
−1

x
−1

Figure 14. One round of Hermit

5.2 MiMC’s Shadow (The Rise of x(2p−1)/3)

In parallel to our effort of finding the appropriate structure, we explored pos-
sible options for the power map inside the S-box. The initial motivation was
our uneasiness with x−1 being an involution which seemed like a property an
adversary would be able to exploit in such a simple design.18 We felt it was

17 We conjectured that it might still be possible to characterize the new S-box.
18 The reader is reminded that these were the early days of arithmetization-oriented

algorithms, giants were scarce and we had to stand carefully on the shoulders of laes-
trygonians.



Prelude to Marvellous 15

acceptable when composed with an affine polynomial, but for prime fields this
wasn’t possible anymore.

The power map x3 offered a good starting point. We recall that this power
map is a permutation over Fp when GCD(p−1,3) = 1 and was already used in
the literature as a non-linear function in the core of MiMC.

In the previous subsection we described attempts to crossbreed the x−1 and
x3 functions. But we remained unhappy with this approach as it doubled the
attack surface while at the same time made coming up with security proofs
more difficult. We embarked on a quest to find STARK-friendly functions with
high polynomial degree and this subsection describes this quest. It takes place
in an alternative timeline where the 1× 1 state has not yet been eliminated.

On Elfs and Dwarfs Two variants of MiMC exist [Albrecht et al., 2016]. The
first has a 1 × 1 state and follows the iterated Even-Mansour approach. The
other has a 1 × 2 state used in a Feistel structure. The latter requires double
the number of rounds as the former, but is more suitable for hashing in ZK-
STARK.19

A MiMC circuit is very deep due to the slow growth of the polynomial de-
gree. This was later inherited by Hades giving it an elfin slender figure. Com-
paratively, Marvellous designs are dwarfish. Short and wide they allow for
a shallower circuit due to the x−1 function giving rise to a higher polynomial
degree for the same cost (i.e., 2 multiplications).

We quickly discarded power maps with exponent > 3 as their efficiency was
roughly inversely proportional to their polynomial degree.20 From the starting
point that x3 is a permutation when GCD(p − 1,3) = 1, it follows that its in-
verse x1/3 also exists. Observing that the power map describing this inverse,
i.e., x(2p−1)/3 is of high degree, suggested that it may be suitable for our needs.

The Sneaky Family This algorithm uses a Feistel network to transform a dense
cubic polynomial into a permutation. This 2-round Feistel is used as an S-Box
to an SPN structure.21

19 In parallel to our work Albrecht et al. published more variants of MiMC based on
generalized Feistel networks, see [Albrecht et al., 2019b].

20 This is not to say that power maps α > 3 should not be used (see e.g., [Bonte et al.,
2020], just that α = 3 provides the best trade-off between efficiency and security.

21 Chronologically, this family was developed in parallel to the Hermit family which is
where the two storylines diverge.
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XL XR

⊕f⊕

K1

⊕f⊕

K2

X′L X′R

Figure 15. The S-Box of the Sneaky

The S-Box is depicted in Figure 15 where we take f (x) = x
1
3 +x and we con-

sider K1 and K2 as two random round keys. The first observation for this S-Box
is that due to the Feistel structure it is a permutation. The second observation
is that the mapping f is generally not a permutation. Due to the high degree
of this polynomial, it seemed unclear that this mapping is cryptographically
strong. We thus proved the following lemma.

Lemma 1. f (x) = x
1
3 + x is Almost Perfect Nonlinear (APN).

Proof. Let z = x
1
3 and set f (z) = z + z3. Due to this polynomial being of de-

gree 3, it can have at most two nontrivial solutions for f ′(z) = 0. Since x
1
3 is a

permutation, we find that f ′(x) = 0 has exactly two solutions and f is APN.
We find that our S-Box has a complex forward or backward polynomial ex-

pressions as forwards the expressions are

X ′R = XR+ f (XL+K1) ,

X ′l = XL+ f (f (XL+K1) +XR+K2)

and backwards we have

XR = X ′R − f ((X
′
L − f (X

′
R+K2))−K1) ,

Xl = X ′L − f (X
′
R+K2) .
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The above expressions are all of degree at least 2p−1
3 . However, the S-Box allows

for an efficient multivariate expression of the following form:

(X ′L −XL −X
′
R −K2)

3 −X ′R −K2 = 0,

(X ′R −XR −XL −K1)
3 −XL −K1 = 0,

which are two equations of degree 3 and therefore STARK-efficient.
Nevertheless, note that the above equations are dense in both XL,XR,X ′L and

X ′R. Thus the S-Box is a good candidate to offer near regular Gröbner resilience.

The Extremis Family This cipher is formed by a small tweak to the MiMC

family where the state is over Fp.
To evaluate the algorithm with r rounds we take the first r/2 rounds to

use x(2p−1)/3 and the other r/2 rounds to use x3. The algorithm is depicted in
Figure 16.

x

2p−1

3

K1

x

2p−1

3

Ki

x
3

Ki+1

x
3

KNb

Figure 16. The Extremis cipher

The algorithm consists of only two operations, a nonlinear layer over the
whole state and a round key addition. The S-Box is either the cubing function
or its compositional inverse. As STARKs can either evaluate the function or its
compositional inverse, the cost per round is always two constraints.

We abandoned this approach due to intuitive concerns about algebraic meet-
in-the-middle and inside-out attacks.

The Pepper family The Pepper family was something we were content with,
and in fact, it was mostly ready for publication when we decided to abandon
the the Merkle-Damgård approach. It alternates between x3 and x1/3 in even
and odd steps, respectively, see Figure 17.

x
1

3 x
3

Ki+2

Si Si+2

Ki+1

Figure 17. One round (two steps) of Pepper
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6 Shadows Assemble (A Crossover Episode)

Jarvis and Friday were published in [Ashur and Dhooghe, 2018] and were
received favourably by their intended audience. They can be seen (together
with GMiMC [Albrecht et al., 2019b] and a few unpublished works) as second
generation arithmetization-oriented algorithms which are characterized by an
attempt to aggressively optimize for performance. This makes them different
from first generation works like MiMC [Albrecht et al., 2016] and LowMC [Al-
brecht et al., 2015] which sought to explore the trade-offs between linear and
non-linear operations.

Yet several developments described in this section prevented Jarvis and Fri-

day from gaining traction and prompted the development of the third genera-
tion algorithms. In this section we describe these developments.

As we mentioned in Section 2, when we began with this project, statistical
attacks were king of the hill and that was our focus for Jarvis and Pepper.
Algebraic attacks were considered an odd bird in the world of symmetric cryp-
tography and in particular, Gröbner basis attacks while known, were thought
of as dark magic.22

In an interesting plot twist, subsequent research found algebraic attacks to
be effective against algebraic algorithms,23 while statistical attacks were found
to be mostly irrelevant.24 Shortly after [Ashur and Dhooghe, 2018] was made
public, Albrecht et al. published a Gröbner basis attack against it in [Albrecht
et al., 2019a].25 This attack exploits two properties: firstly, they showed that
from the cryptanalyst’s perspective the inversion function admits a simpler
representation than we expected which can be exploited. In addition, they claimed
that it is possible to find monic affine polynomials which describe a round of
Jarvis as a low-degree polynomial.26

In parallel to the work of Albrecht et al. an undesirable (different) property
of the 1×1 structure was communicated to us privately which supposedly also
allowed for a Gröbner basis attack.

In our opinion, the true complexity of the two attacks above is higher than
claimed, and in any case resistance against both can be restored by increasing
the number of rounds at the cost of slightly worse complexity. What eventually
tipped the balance to abandon these designs rather than attempting to salvage
them was that during the development of Pepper we discovered that the degree

22 Tomer: "Gröbner basis attacks never work, we don’t need to worry too much about
them".

23 In hindsight, that the word “algebraic” is used in both terms should have raised a red
flag.

24 For an extended discussion on why this is the case, see [Aly et al., 2019, Sec. 4.2.1].
25 In response to this work, Tomer said, referring to his previous comment: "I am prob-

ably the first symmetric-key designer to be f***** by a Gröbner basis attack".
26 The latter idea was later used in the design of Rescue in order to improve efficiency

by “folding” the round. For details on the notion of folding see [Aly et al., 2019, Sec.
7.1.2].
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of regularity remains fixed, or grows very slowly depending on the choice of
the compression function.27

At this point we decided to depart from the Merkle-Damgård construction
in favor of the sponge construction. In turn, this decision prompted a change
to the state which could no longer be 1 × 1 due to the necessity to distinguish
between the inner and outer parts of the sponge.28

We decided to crossbreed The Algorithm Formerly Known as Rescue for
its round function with Pepper for its S-box and 2-step round. The Rescue fam-
ily will have anm×1 state. In every step, each of them state elements goes either
through x1/3 or through x3, followed by an MDS matrix. This family is depicted
in 18.

S2i−2

x
1
α

...

x
1
α

M

xα

...

xα

+

K2i−1

M S2i+

K2i

Figure 18. One round (two steps) of Rescue

27 Informally, the degree of regularity is a quantity capturing how “structured” a a poly-
nomial system is and its knowledge allows to estimate the complexity of a Gröbner
basis attack. For a more elaborate discussion see [Aly et al., 2019, App. A].

28 This departure turned to be a blessing in disguise since it revealed a useful trade-
off between the width of the circuit and its depth. This trade-off is explained in [Aly
et al., 2019, Sec. 4.2.3].
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7 Epilogue

’tis the end
of our story,

’er is no gore
& neither glory. 4

The secret trick
— monomial,

a sequel is
Aly et al. 8

This work was made
with STARKs in mind,

but ’er is more
to optimize. 12

∃(a trick)
for FHE,

for you to find
it won’t be me. 16

Inverses are
two none the same,

ye shan’t compose
instead — −1-invert. 20

For MPC
it is that case,

that faster run
still offloads less. 24

My student friend
do not despair,

one day you’re here
the next one there. 28

Rejoice because
Reviewer 2,

is one’s promoter
but not of you. 32
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A Directors’ Cut

A.1 Speaker for the Dead (Bonus Track I)

Following the attack presented in [Albrecht et al., 2019a] we explored possible
approaches to preventing the “folding” of equations from different rounds. The
ability to do so means, implicitly, that the algorithm contains hidden structure
which is eliminated in the folding process.

Working on this we realized that there is a direct link between the STARK-
efficiency of the algorithm and the complexity of a Gröbner basis attack against
it. It appeared to us that this is always the case, even for ideas we did not yet
consider. If this conjecture is true, it means that as designers we should not
search for a trapdoor that allows to evaluate the STARK efficiently while keep-
ing the attack complexity high because (under this conjecture) such a trapdoor
could simply not exist.

This understanding left us with two options: either we try to remove as
much structure as possible, which is the approach described in this section;
or we try to quantify the hidden structure and incorporate it into our analysis
which is what we eventually went for in [Aly et al., 2019].29

29 Quantifying the hidden structure is not a trivial task in itself. In [Aly et al., 2019, Sec.
4.2.3] we developed a novel framework for arguing resistance against Gröbner basis
attacks. Still, this task is computationally heavy and highly sensitive to the way the
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In searching for ways to remove the hidden structure we came up with two
promising ways described below. We stress that these methods have only been
casually evaluated and we do not vouch for their security, nor do we claim that
this is an exhaustive list. It was working on these methods that revealed to us
the weird behavior of the degree of regularity in Merkle-Damgård hashes and
made us abandon this approach for the sake of the sponge construction.

Jarvis-Mark I: This variant differs from Jarvis in the order of the affine poly-
nomials. We take two STARK-efficient quartic affine polynomials B(x) andC(x),
such that B−1(x) and C−1(x) are of high polynomial degree. Then, B(x) and
C−1(x) are composed together to create an algebraically complex yet STARK-
friendly affine polynomial such that B(x) is evaluated first, then C−1(x). The
round function is depicted in Figure 19.

x
−1 (x)C

−1

Ki+1

Si B(x) Si+1

Figure 19. One round of Jarvis-Mark I

Jarvis-Mark II In the second variant,A(x) is as before, but we alternate between
A−1(x) and A(x) in even and odd rounds, respectively. At this point we already
decided to refer to an S-box evaluation followed by an affine polynomial eval-
uation as a step, and refer to two consecutive steps as a round.

This approach was developed around the same time as Pepper, which is why
it is not surprising that it is being used in both, and we later also reused it for
Vision. The round function is depicted in Figure 20.

x
−1 (x)A

−1

Ki+1

Si Si+2x
−1 A(x)

Ki+2

Figure 20. One round of Jarvis-Mark II

algorithm is modeled as a polynomial system. There seem to be much room for further
research to improve on this framework.
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A.2 Children of the Mind (Bonus Track II)

The Vibranium Family A new Feistel structure, by hand you can check the
structure to be invertible. This design is made to show the possibility of creating
lesser known Feistel structures. On the one hand it might be more efficient, on
the other hand it has unknown security properties.

x
−1

Mx(x) Si+1

KiCi

Si

Figure 21. One round of Vibranium

The Nightclub Family We note that it is possible to find quadratic permuta-
tions over extension fields. There should be literature to ensure such a binomial
is easily found over larger prime fields. When such a quadratic permutation P
is found, the Rescue family can be extended to allow for quadratic functions.
This creates an algorithm whose AIR encoding consists of several quadratic
multivariate equations instead of cubic or quintic ones. These AIR equations
are found when the quadratic binomial is represented in its “Algebraic Nor-
mal Form” over its prime base field. The overall cost of the AIR when calculat-
ing in the degree is still equal, thus this should only be used when quadratic
constraints are a priority. We also note that this structure does not admit an
efficient R1CS structure.


