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Abstract. At CRYPTO 2019, Gohr first introduces the deep learning
based cryptanalysis on round-reduced SPECK. Using a deep residual
network, Gohr trains several neural network based distinguishers on
8-round SPECK-32/64. The analysis follows an ‘all-in-one’ differential
cryptanalysis approach, which considers all the output differences effect
under the same input difference.
Usually, the all-in-one differential cryptanalysis is more effective than
that only uses one single differential trail. However, when the cipher
is non-Markov or its block size is large, it is usually very hard to fully
compute. Inspired by Gohr’s work, we try to simulate the all-in-one
differentials for such non-Markov ciphers through deep learning. As proof
of works, we trained several distinguishing attacks following machine
learning simulated all-in-one differential approach. We present 8-round
differntial distinguishers for Gimli-Hash and Gimli-Cipher, each with
trivial complexity. Finally, we explore more on choosing an efficient
machine learning model and show a three layer neural network can be
used.
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1 Introduction

Machine Learning (ML) techniques have made a great progress in the last
decades. At present, such techniques are predominantly used to various
fields, such as computer vision [28], machine translation [3,30], autonomous
driving [16], to name a few. In the aspect of cryptography however, usage
of ML is mainly confined in the context of side channel analysis (SCA),
such as [14,25], to the best of our knowledge.

Therefore the applicability of ML techniques in classical cryptanalysis
is not much explored. It seems the community is rather skeptical regarding
such approach. For example, the authors in [1] comment, “Neural networks
are generally not meant to be great at cryptography. Famously, the simplest



neural networks cannot even compute XOR, which is basic to many
cryptographic algorithms”.

Although ML techniques have been used against legacy ciphers, like
the Enigma (the German cipher used during second world war) [20], it is
not until the work by Gohr [19] at CRYPTO’19 that this line of research
finally gets its exposure. The idea here is applied to recover the key attacks
on round-reduced SPECK using ML.

This work focuses on extending the commonly used model of differ-
ential distinguisher by using ML techniques. In the case of differential
distinguisher, the attacker XORs a chosen input difference δ to the input
of the state of the (reduced round) cipher and watches for a particular
output difference ∆, with randomly chosen inputs. If the (δ,∆) pair occurs
with probability significantly higher for the (reduced round) cipher than
what it should be for a random case, the (reduced round) cipher can
be distinguished from the random case. This probability of δ → ∆ is
modeled by differential branch number [17] or by automated tools like
Mixed Integer Linear Programming (MILP) [26]. We extend the modeling
for differential distinguisher by incorporating machine learning algorithms.

We argue that the usual modeling with branch number or MILP under-
estimates attacker’s power. Having been collected the output differences,
the attacker can use any technique to distinguish the cipher from the
random case. In such a situation, machine learning techniques can reduce
the search complexity estimated by existing methods, often to the cube
root.

In our machine learning model, we choose t (≥ 2) input differences; say,
δ0, δ1, . . . , δt−1. After that, we feed all the output differences to the machine
learning model (instead of checking for any fixed output difference).

Detailed discussion of machine learning is out of scope of this work,
interested readers may refer to standard textbook such as [21] for the same.
We use TensorFlow1 back-end with Keras2 API. The optimizer function
is based on Adam algorithm [22].

Our Contributions

In this work, we construct machine learning models to simulate the all-in-
one differentials in [2], to distinguish non-Markov ciphers. We consider

the classical distinguisher game: Given ORACLE
$← {CIPHER, RANDOM}, the

1https://www.tensorflow.org/
2https://keras.io/
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attacker is to identify whether ORACLE = CIPHER with probability signifi-
cantly > 1/2 and with sufficiently small number of queries.

While more description of our method is given in Section 3, we present
a summary here. During the training (offline phase), we take the (possibly
round-reduced) CIPHER. With randomly generated key and plaintext, we
find generate t (≥ 2) differentials. We feed the output differentials into
a machine learning model stating the ith differential belongs to class
i. When enough data are generated, we run the model and check for
its training accuracy, a. If a > 1/t, we proceed to the testing (online
phase), otherwise we abort the procedure. During the testing, we randomly
generate plaintexts and compute the input differentials (in order). Then,
the corresponding output differentials are generated after querying the
ORACLE. The ML model predicts the corresponding classes for each of the
output differentials. We tally the number of cases where the prediction is
successful, i.e., the ML model returns the correct class for the distinguisher.
Comparing the relative accuracy for this tally, the attacker is able to
determine if ORACLE = CIPHER or ORACLE = RANDOM.

Thus we reduce the actual problem of distinguishing the CIPHER from
RANDOM into a classification problem. Here we choose the most common
ML tool, Multi-Layer Perceptron (MLP).

We apply our strategy to round-reduced GIMLI [10], which is a 2nd

round candidate in ongoing the NIST Lightweight Cryptography (LWC)
competition. Results are described in Section 4 and can be summa-
rized as follows For GIMLI, we obtain 8-round practical distinguishers
on GIMLI-HASH and GIMLI-CIPHER in nonce respecting case in Section 4.
The distinguishing complexity is 217.6 offline data to train the model offline
and 214.3 online data to distinguish the cipher. Note that the authors
of GIMLI [10] proved that the optimal 8-round differential trail is with
probability of 2−52. If we use this trail to distinguish 8-round GIMLI, we
need at least 252 online data. Thus, we are able to perform a differential
distinguisher in around cube root complexity.

In Section 5, we discuss effects of choosing different neural networks
with respect to 8-round GIMLI-CIPHER as the target cipher. We show even
a three layer neural network works well for our purpose. We also discover
a few differential distinguishers for 8-round GIMLI-CIPHER in the process.

It is to be mentioned that our ML assisted model is generic in nature
and can be adopted to any symmetric key setting. All the results presented
are practical and can be carried out in around an hour in a modern
computer. We would like to emphasize that we use the same model as the
differential distinguisher, only the analysis is done by machine learning
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(instead of branch number or automated tools like MILP). We feed all the
output differences to ML (i.e., no output difference is fixed a prior).

2 Background

2.1 Markov Ciphers

At Eurocrypt’91, Lai, Massey and Murphy [23] introduced the concept of
Markov Ciphers for iterated ciphers.

Definition 1 (Markov Chain [23]). Given a sequence of discrete ran-
dom variables v0, v1, ..., vr is a Markov chain, if for 0 ≤ i < r,

P (vi+1 = βi+1|vi = βi, vi−1 = βi−1, ..., v0 = β0) = P (vi+1 = βi+1|vi = βi).
(1)

If P (vi+1 = β|vi = α) is independent of i for all α and β, the Markov
chain is called homogeneous.

Given an r-round iterated cipher, the input of ith round is denoted as Yi
(0 ≤ i ≤ r) and the corresponding input differences are ∆Y0, ∆Y1, ...,∆Yr.
Then, Lai et al. introduced the following definition of Markov cipher etc.

Definition 2 (Markov Cipher [23]). An iterated cipher with round
function Y = f(X,K) is a Markov cipher if there is a group operation
⊗ for defining differences such that, for all choices of α (α 6= 0) and β
(β 6= 0),

P (∆Y = β|∆X = α,X = γ)

is independent of γ when the subkey K is uniformly random, or equivalently,
if

P (∆Y = β|∆X = α,X = γ) = P (∆Y (1) = β1|∆X = α)

for all choices of γ when the sub-key K is uniformly random.

Theorem 1. If an r-round iterated cipher is a Markov cipher and the
r round keys are independent and uniformly random, then the sequence
of differences ∆X = ∆Y0,∆Y1, ...,∆Yr, is a homogeneous Markov chain.
Moreover, this Markov chain is stationary if ∆P is uniformly distributed
over the non-neutral elements of the group.

Theorem 1 is adopted from [23]. According to Theorem 1, one can
compute the probability of an r-round differential characteristic as,

P (∆Y1 = β1, ∆Y2 = β2, . . . ,∆Yr = βr|∆X = β0) =
r∏

i=1

P (∆Y1 = βi|∆X = βi−1).

(2)
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Fig. 1: A two-round permutation without sub-keys

However, the above theory can not be applied to non-Markov ciphers,
such as stream ciphers like SALSA [8], TRIVIUM [15]. One of the most
important feature of those primitives is that there are no sub-keys in
each iterated round. In this situation, the iterated cipher usually can not
be regarded as Markov cipher or a homogeneous Markov chain. This is
because, the differences in the former rounds usually have significant effect
on the the differences of the latter rounds, where Equation 1 does not
hold any more. Hence, we can not use the Equation 2 to compute the
probability of a characteristic any more.

As shown in Figure 1, we introduce a toy cipher to explain the depen-
dence of the differences between a 2-round cipher without sub-keys. We use
the 4-bit SBox of GIFT-64 [4] as an example. The differential distribution
table (DDT) SBox (1A4C6F392DB7508E) is omitted here for the interest
of brevity and can be found in [4]. Suppose ∆Y1[0] and ∆Y1[1] are the
input difference of the upper and lower SBox in Figure 1, respectively.
We try to compute the probability of a differential characteristic, where
∆Y1 = (2, 3), ∆W1 = (5, 8), ∆Y2 = (6, 2), and ∆W2 = (2, 5).

From the DDT of the GIFT SBox, it is easy to know the probabil-
ity of ∆Y1 → ∆W1 is 2−5. The valid tuples of (Y1[0],W1[0], Y ′1 [0],W ′1[0])
are (0, 1, 2, 4), (2, 4, 0, 1), (4, 6, 6, 3) and (6, 3, 4, 6). The valid tuples of
(Y1[1],W1[1], Y ′1 [1],W ′1[1]) is (d, 0, e, 8) and (e, 8, d, 0). Only input pairs
with (Y1[0], Y1[1]) = (0, d), (0, e), (2, d) and (2, e) are valid for the differ-
ential characteristic. Hence the probability of the characteristic is 2−6,
instead of 2−9 computed by Equation 2.

2.2 Basic Description of GIMLI

GIMLI [9] is a cross-platform permutation proposed by Bernstein et al. at
CHES’17. Based on GIMLI permutation, Bernstein et al. [10] introduced
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the lightweight hashing and authenticated encryption algorithms, i.e.,
GIMLI-HASH and GIMLI-CIPHER, which are included in the 2nd round of
NIST Lightweight Cryptography (LWC) competition [27]. GIMLI is also
used in the open source cryptographic library LibHydrogen3.

GIMLI permutation works on a 384-bit state which can be represented
as a 3× 4 matrix of 32-bit words, namely

s =

s0,0 s0,1 s0,2 s0,3s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3


where the jth column of s is s∗,j = s0,j , s1,j , s2,j , the ith row of s is
si,∗ = si,0, si,1, si,2, si,3. The details of GIMLI permutation is given in
Algorithm 1, which is adopted from [9].

Algorithm 1: GIMLI permutation

Input: s = (si,j)
Output: GIMLI(s)
1: for r from 24 down to 1 inclusive do
2: for j from 0 to 3 inclusive do
3: x← s0,j ≪ 24 . SP-box
4: y ← s1,j ≪ 9
5: z ← s2,j
6: s2,j ← x⊕ (z � 1)⊕ ((y ∧ z)� 2)
7: s1,j ← y ⊕ x⊕ ((x ∨ z)� 1)
8: s0,j ← z ⊕ y ⊕ ((x ∧ y)� 3)

9: if r mod 4 = 0 then . linear layer
10: s0,0, s0,1, s0,2, s0,3 ← s0,1, s0,0, s0,3, s0,2 . Small-Swap
11: else if r mod 4 = 2 then
12: s0,0, s0,1, s0,2, s0,3 ← s0,2, s0,3, s0,0, s0,1 . Big-Swap

13: if r mod 4 = 0 then
14: s0,0 = s0,0 ⊕ 9e377900⊕ r . Add constant

return si,j

GIMLI-HASH Taking advantage of GIMLI permutation and the Sponge
construction [11], GIMLI-HASH is defined as shown in Figure 2. The message
M is padded and divided into 128-bit blocks, i.e. m0, . . . ,mt. They are
XORed into the state in the absorb phase the state and output 256-
bit digest in the squeeze phase. Our neural distinguisher happens in

3https://github.com/jedisct1/libhydrogen
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Fig. 2: Construction of GIMLI-HASH

the processing of the last message block mt. When reducing that GIMLI

permutation from 24 rounds to 8 rounds, we can distinguish the hash
function from random oracle.

GIMLI-CIPHER Taking advantage of GIMLI permutation and the Mon-
keyDuplex construction [12], GIMLI-CIPHER is defined as shown in Figure
3. Here σ0, . . . , σt are the associated data and padded to 128-bit blocks.
Here m0, . . . ,mt and c0, . . . , ct are the plaintext and ciphertext blocks,
respectively. Note that at least one block of associated data is processed.
So at least 2 GIMLI permutations (48 rounds) are used until the first
ciphertext block c0 generated. In this paper, we target on the case where
only one block of associated data is processed. We reduce the 48-round
initialization phase to 8 rounds to distinghuish reduced GIMLI-CIPHER.

f

Nonce
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pad( )t

f

0m 0c

f...
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Fig. 3: Construction of GIMLI-CIPHER
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2.3 Gohr’s Work on SPECK (CRYPTO’19)

Using a deep residual neural networks, Gohr in [19] achieves better results
than the best classical cryptanalysis on 11-round SPECK [5]. In this work,
first train several machine learned distinguishers for round-reduced SPECK

based on an all-in-one differential cryptanalysis [2] are trained, where the
attacker considers potentially all the output differences of a block cipher for
a given input difference and to combine the information derived from them.
Under the Markov assumption, Gohr first computed the entire difference
distribution table of round-reduced SPECK with a fixed input difference,
which can be achieved due to the small block size of SPECK-32/64. Hence,
the all-in-one differentials for the 5-/6-/7-/8-round SPECK-32/64 following
the Markov assumption are reported. After this, the same distinguishing
task via the neural networks is performed.

Concretely, the following steps are used to train the model:
1. Collecting training data by generating uniformly distributed keys and

plaintext pairs given a fixed input difference as well as the binary
labels Yi.

2. If the binary label Yi = 1, then the plaintext pairs are encrypted
by k-round SPECK to produce the ciphertext pairs. If other wise, the
random ciphertext pairs are generated.

3. Pre-process ciphertext pairs to fit the format required by the neural
network and start to train them.

Finally, the author gains several machine-learned distinguishers on
round-reduced SPECK which are a little more efficient the the distinguishers
derived by computing the entire difference distribution table. After that,
Gohr used the neural distinguishers to launch several key-recovery attacks
on round-reduced SPECK.

Inspired from Gohr’s work [19], the following questions come to our
mind, and subsequently we employ neural networks:

• As the all-in-one approach considers all the output differences with one
input difference, it is more efficient to distinguish the ciphers than that
using only one input difference and one output difference. However,
computing the all-in-one distinguisher is infeasible when the state of
the cipher is large, e.g. 128-bit state. However, as shown by Gohr’s
attack, the neural networks can match the all-in-one distinguisher well.
Hence, we can take advantage of the neural networks to simulate the
all-in-one distinguishers for larger state ciphers.
• As shown in Gohr’s attack, under Markov assumption, one can compute

the all-in-one distinguishers somehow. However, there are many ciphers
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which can not be assumed as Markov, such as some permutation-based
ciphers or stream ciphers, where there are no sub-key in the iterated
rounds (the justification is given in Section 2.1). In these situations, it
is hard to compute the all-in-one distinguishers.

3 Machine Learning Based Distinguisher

3.1 Overview

A top-level description of the distinguisher is given in Algorithm 2, As
mentioned earlier, here the attacker chooses t (≥ 2) input differences
δ0, δ1, . . . , δt−1. In the testing (online) phase, the attacker tries to learn
whether ORACLE is CIPHER or RANDOM. In other words, if the accuracy (a)
of ML training is higher than what it should be for random data (i.e.,
1/t), the online phase takes place. In the online phase, if the accuracy of
predicting the classes (a′) is same a, we infer the chosen ORACLE = CIPHER.
On the other hand, if a′ = 1/t, we conclude ORACLE = RANDOM. Therefore,
no conclusion can be drawn if the training accuracy a = 1/t. Also note
that, we need at least two differentials. This is in contrast to the classical
differential cryptanalysis where only one differential is chosen [29, Chapter
3.4]. Moreover, neither a nor a′ can be (significantly) less than 1/t, as at
this bound the ML model is predicts classes uniformly.

Algorithm 2: Differential distinguisher using machine learning

1: procedure Offline phase (Training)
2: TD ← (·) . Training data
3: Choose random P,K
4: C ← CIPHER(P )
5: for i = 0; i ≤ t− 1; i← i+ 1 do
6: Pi ← P ⊕ δi
7: Ci ← CIPHER(Pi)
8: Append TD by (i, Ci ⊕ C)

. Ci ⊕ C is from class i

9: Repeat from Step 3 if required
10: Train ML model with TD
11: ML training reports accuracy a
12: if a > 1/t then
13: Proceed to Online phase
14: else . a = 1/t
15: Abort

1: procedure Online phase (Testing)
2: TD′ ← (·) . Testing data
3: Choose random P
4: C ← ORACLE(P )
5: for i = 0; i ≤ t− 1; i← i+ 1 do
6: Pi ← P ⊕ δi
7: Ci ← ORACLE(Pi)
8: Append TD′ by Ci ⊕ C
9: Test ML model with TD′

10: for i = 0; i ≤ t− 1; i← i+ 1 do
11: Model predicts class j
12: a′ = proportion of ]{i = j}
13: if a′ = a then
14: ORACLE = CIPHER

15: else . a′ = 1/t
16: ORACLE = RANDOM

17: Repeat from Step 3 if required
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Discussion on ORACLE = RANDOM

Given the ORACLE is RANDOM, if there are i right classifications out of the

total t classes, the probability is Pr(i) =
(ti)(t−1)t−i

tt . Hence, we can compute

the expectation of the number of the right classifications: E =
∑t

i=0 iPr(i).
In the training of the neural networks, the accuracy is the rate of the

correct classifications. Namely, for RANDOM case, the accuracy is approxi-
mately E/t. For example, if t = 2, then the expected training accuracy is
0.5; if t = 32, the expected training accuracy is 0.03125. So if the training
accuracy for a given set of samples is higher than what it would be for
random data, we conclude it as CIPHER.

3.2 Training and Testing the Model

Our distinguisher works on the (unkeyed) permutation with a suitably
chosen number of rounds. For the sake of simplicity, we denote the (un-
keyed) permutation with input P as CIPHER(P ). The basic work-flow is
given next.

Training (Offline)

1. Select t (≥ 2) non-zero input differences δ0, δ1, . . . , δt−1.
2. For each input difference δi, generate (an arbitrary number of) input

pairs (P, Pi = P ⊕ δi). Run the (unkeyed) permutation the input pairs
to get the output pairs using (C ← CIPHER(P ), Ci ← CIPHER(Pi) for
all i). Then XOR the outputs within a pair to generate the output
difference (Ci ⊕ C). The output difference together with its label i
(i.e., this sample belongs from class i) form a training sample.

3. Check if the training accuracy is > 1/t. Otherwise, the procedure is
aborted.

Testing (Online)

1. Generate the input pairs in the same way as training. In other words,
randomly generate an input P . With the same input differences chosen
during training δ0, δ1, . . . , δt−1; generate new inputs Pi = P ⊕ δi for all
i = 0(1)t− 1.

2. Collect the outputs C and Ci’s by querying ORACLE with input P and
Pi’s in order, for all i = 0(1)t− 1.

3. Generate the testing data as C ⊕ Ci for all i and in order.
4. Get the predicted classes from the trained model with the testing data.
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5. Find the accuracy of class prediction by the trained ML model.
6. If ORACLE = RANDOM, then the ML model would arbitrarily predict

the classes. Therefore the testing accuracy would be (close to) 1/t.
Otherwise, if ORACLE = RANDOM, then the ML model would predict the
class for C ⊕Ci as i as accurately as training (> 1/t). Therefore, from
the accuracy from the training, the CIPHER can be distinguished from
RANDOM.

3.3 Comparison with Existing Models

All-in-one Differential Cryptanalysis The differences with all-in-one
differential cryptanalysis [2] with our ML assisted differential distinguisher
are as given:

1. All-in-one differential cryptanalysis takes only one input difference. In
our case, we need at least two differentials.

2. All-in-one differential cryptanalysis does not use the cases where the
output difference is not same as the pre-determined output difference.
We make use of all the cases.

Additionally, our model does not directly lead to a key recovery attack
(we leave the problem of key recovery for future research), and also results
of multiple rounds in our model cannot be (at least directly) concatenated
to infer on higher rounds.

Gohr’s Model Our analysis focuses on different direction from that of
Gohr’s [19]. Gohr tries to prove the ability of ML-based distinguishers, so
he selects SPECK [5] with small state size. This way he is able computed the
full DDT of round-reduced SPECK to compare with his neural distinguishers.
We focus on other directions. More precisely, we consider ciphers with
bigger state and non-Markov ciphers. Both of them are hard to compute
the all-in-one distinguishers and we successfully to simulate them via
machine learning. It can be stated that our model is much simpler and
performing the whole analysis takes less than an hour in a decent computer.

4 Results on Round-Reduced GIMLI

Using a SAT/SMT-based approach, the authors of GIMLI presented the
optimal differential trails up to 8 rounds [10], which are given in Table 1.
Note that the differential probability of a trail is DP and the weight of
the same trail is − log2(DP ). If we use the optimal 8-round differential
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trail to distinguish GIMLI, we need more than 252 plaintext pairs. In this
section, we introduce a machine-learning based differential distinguisher
on 8-round GIMLI, the data complexity needed to distinguish 8-round
GIMLI is only 1000 plaintext pairs.

Table 1: The optimal differential trails for the round-reduced GIMLI

Rounds 1 2 3 4 5 6 7 8

Weight 0 0 2 6 12 22 36 52

Note that we are going to distinguish the output of reduced GIMLI-HASH

and GIMLI-CIPHER with a given input difference from random data. We
show our analysis for GIMLI-HASH and GIMLI-CIPHER.

GIMLI-HASH For GIMLI-HASH in Figure 2, we focus on the processes of
absorbing the last block of message M and squeezing the first 128-bit
hash value h as shown in the dash box.

Data Collection. Suppose the full message M is just 127 bytes (denote the
ith byte as M [i]), then after padded with a zero byte, the 128-bit block
is absorbed into the sponge function. Note that the initial 384-bit state
is zero except the last byte. We collect the training data by flipping the
least significant bit of byte M [4] and M [12]. Namely, process the message
pairs with difference 1 in the 4th byte or 12th byte and compute the first
128-bit hash values pairs accordingly and collect the difference of hash
values ∆h as training samples. The training samples are labeled with 0
or 1 according to different message differences. Our neural network is to
classify hash differences with the two different message differences into
the two labels. Totally, we generate 217.6 samples.

GIMLI-CIPHER For GIMLI-CIPHER in Figure 3, we assume there is only
one associated data block, so at least 2 GIMLI permutations (48 rounds)
are involved until the first ciphertext block c0 output. We reduce the 48
rounds to 8 rounds to find non-randomness in the ciphertext block c0 via
neural network.

Data Collection. Generate uniformly distributed 256-bit keys K and 128-
bit nonce pairs N with difference 1 in the 4th byte or 12th byte of the
nonces. Set the associated data and the first message block m0 to be zero.
Compute the ciphertext c0. Collect the differences of ∆c0 with label 0
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or 1 as training samples. Our neural network is to classify the ciphertext
differences with the two different nonce differences into the two labels.
Totally, we generate 217.6 samples.

Training. Training was run for 20 epochs on the data set of size 217.6.

Distinguishing GIMLI via Machine-learned Model. After trained the model
in the training phase, we get the machine-learned model for 8-round
GIMLI-CIPHER stored in “.h5” file. Then we generate 214.3 valid samples
and also 214.3 random data to test the model. It outputs about an accuracy
0.5120 for valid samples and 0.5001 for random data. Namely, we can
distinguish 8-round GIMLI-CIPHER with 217.6 offline data and 214.3 online
data. We also train 6-/7-/8-round GIMLI-HASH and GIMLI-CIPHER with
the same data complexity, the accuracies are given in Figure 2.

Table 2: Accuracy of neural distinguishers on Round-reduced Initialization of
GIMLI-CIPHER and GIMLI-HASH

Rounds
Accuracy

GIMLI-HASH GIMLI-CIPHER

6 0.9689 0.9528

7 0.7229 0.6340

8 0.5219 0.5099

5 Choice of Machine Learning Model

For finding a distinguisher, we chose to opt for deep learning techniques
that can reveal the hidden structures in the data without explicit feature
selection. Our problem is treated as a classification problem where one
tries to check whether a particular differential was inserted at the input
to the cipher or not. Results in this section where obtained by finding
a distinguisher on 8 rounds of GIMLI with 217 of training data samples.
Number of epochs was set to 5 as for higher numbers the models tend
to overfit. When using machine learning algorithms, one has to make
a choice on hyperparameters that would perform the best on the given
problem. These parameters are normally chosen in an empirical way, by
testing various network architectures and following best practices. There
are automated techniques to tune the hyperparameters [6, 7], however,
these require significant resources. There is also an approach called Neural
Architecture Search (NAS) that aims at searching for the best neural
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network architecture for a given problem [18]. Here we report the outcome
from the manual architecture search in Section 5.1. Results in this section
were obtained by using Nvidia Quadro RTX 8000 with 48 GB of memory.

5.1 Manual Way to Determine the Architecture

We have tried several different neural network types, including the basic
multi-layer perceptron (MLP), Convolutional Neural Network (CNN), and
Long Short-Term Memory Network (LSTM). We have varied the width
(number of neurons per layer) and the depth (number of layers) of these
to find out the best accuracy and speed of learning. We have also tried
several different types of activation functions. The input layer size of the
model corresponds to bit size of the plaintext for a target cipher, and the
output layer size is always two, to indicate whether there a differential can
be distinguished or not. Our findings, which contain several distinguishers
for GIMLI-CIPHER, are stated in Table 3. Architecture denotes number
of neurons per layer starting from the input layer. Activation function
denotes the function that was used in the hidden layers, as the output
layer always used softmax. A summary can be given as follows:

• CNNs are not suitable for the purpose of finding a distinguisher. We
have tried several architectures, and the accuracy was always 0.5. This
is expected result, as CNNs are aimed at recognizing patterns in input
data, which helps in image recognition or natural language processing,
but does not work for cipher input where the bits are not related in
any way.

• LSTMs perform better than CNNs, but worse than fine-tuned MLP.
The main drawback of LSTMs was the training speed – as they have
recurrent layers, these have high memory requirements and more
computations are required. Generally, the time required to train LSTM
was ≈ 10× more compared to MLP.

• MLPs provide the best accuracy, and can be tuned to train in very
fast time. Our best result was achieved by MLP with 2 hidden layers
and 1024 neurons per hidden layer (MLP III in Table 3), respectively.
One can notice that in some cases we used Leaky ReLU as activation
function [24], which allows a small, positive gradient when the unit is
not active (e.g. input is negative), and therefore is considered more
“balanced.” This was an advantage for smaller networks compared
to normal ReLU, but for the network with 1.2M parameters, its
performance was slightly worse.
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Table 3: Benchmarks for manual architecture search with 8-round GIMLI-CIPHER

Network Architecture Activation Function ] Parameters Training Time (s) Accuracy

MLP I∗ (128, 296, 258, 207, 112, 160, 2) ReLU 226,633 330.8 0.5465

MLP II∗ (128, 1024, 2) ReLU 150,658 270.2 0.5462

MLP III∗ (128, 1024, 1024, 2) ReLU 1,200,256 287.4 0.5654

MLP IV∗ (128, 256, 128, 64, 2) LeakyReLU 90,818 307.9 0.5473

MLP V∗ (128, 1024, 2) LeakyReLU 150,658 271.3 0.5470

MLP VI∗ (128, 1024, 1024, 2) LeakyReLU 1,200,256 290.8 0.5476

LSTM I∗ (128, 256, 128, 2) tanh/sigmoid 444,162 2814.6 0.5305

LSTM II∗ (128, 200, 100, 128, 2) tanh/sigmoid 313,170 2727.7 0.5324

CNN I (128, 128, 128, 100, 2) ReLU 128,046 475.6 0.5000

CNN II (128, 1024, 128, 128, 100, 2) ReLU 604,206 537.3 0.5000

∗ : Distinguisher for 8-round GIMLI-CIPHER

6 Conclusion and Open Problems

In this work, we propose a novel idea on finding distinguishers on symmetric
key primitives by using machine learning. At the core, we use multiple
differentials and convert the problem of distinguisher CIPHER from RANDOM

into a classification problem. Thus, our idea extends from the classical
all-in-one differential distinguisher [2, 13]. The classification problem can
be efficiently tackled by a machine learning model, thus giving an edge over
the all-in-one differential technique. Our method is simple to implement,
and also efficient as it can be carried out in around an hour by a modern
computer. As a proof of concept, we show our method on GIMLI [10].
Although we are unable to find an attack on full round GIMLI, we show
reduction of search complexity reported by the designers for reduced
rounds.

Here we summarize the basic advantages and limitations of our pro-
posed model:

+ The attack model is simple. In terms of neural network, our method
works with as simple as a three layer neural network.

+ For round-reduced ciphers, we show that the complexity for differential
cryptanalysis can be reduced to around the cube root of the claimed
complexity. For example, the designers of GIMLI [10] claim the com-
plexity of mounting a differential distinguisher by existing modeling
methods would be at least 252 data (see Table 1). However we are able
to find the same with complexity of around 217 data.

+ Our work is generic, and can be applied to any symmetric key primitive
where the differential cryptanalysis can be applied. Here we target
non-Markov ciphers as these are typically more complicated to analyze.
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− So far, we are not able to extend our model to cover further rounds.
− For the time being, our model does not have a key recovery function-

ality.

In a future scope, other non-Markov ciphers and Markov ciphers like
GIFT [4] can be experimented with. Since the work relies on a classification
problem at its core, a Support Vector Machine (SVM) can be used instead
of neural network.
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